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We generalize the notion of quantum state designs to infinite-dimensional spaces. We first prove that,
under the definition of continuous-variable (CV) state 7-designs from [Blume-Kohout et al., Commun.
Math. Phys. 326, 755 (2014)], no state designs exist for ¢ > 2. Similarly, we prove that no CV unitary
t-designs exist for ¢ > 2. We propose an alternative definition for CV state designs, which we call rigged

t-designs, and provide explicit constructions for = 2. As an application of rigged designs, we develop a

design-based shadow-tomography protocol for CV states. Using energy-constrained versions of rigged
designs, we define an average fidelity for CV quantum channels and relate this fidelity to the CV
entanglement fidelity. As an additional result of independent interest, we establish a connection between
torus 2-designs and complete sets of mutually unbiased bases.

DOI: 10.1103/PhysRevX.14.011013

I. INTRODUCTION AND SUMMARY

Itis useful in a wide variety of fields to be able to efficiently
calculate averages of polynomial functions over points in a
space. Prominent examples include Gaussian quadrature
rules [1] and spherical designs [2,3], which reduce integrals
of polynomials to weighted sums of polynomial values at
particular points. More generally, a #-design over a space is a
set of points picked in such a way that averaging any
polynomial of degree < ¢ over the design is equivalent to
uniformly averaging the same polynomial over the space.
Gaussian quadrature rules and spherical designs are 7-designs
over the hypercube and hypersphere, respectively, and closely
related ideas can be formulated for simplices and tori [4—10]
as well as general topological spaces [11].

Designs also have a number of important applications in
quantum theory. A quantum state 7-design is an ensemble
of quantum states such that expectation values of homo-
geneous polynomials of degree ¢ or less in the amplitudes
of quantum states are the same whether the averaging is
performed uniformly over all states or over only the states
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in the design [12-22]. State, unitary, and spherical [20,23]
designs are important tools in tomography [16,19,24-28],
state distinction [20,29], randomized benchmarking
[23,30-33], fidelity estimation [23,34-39], cryptography
[40,41], sensing [42,43], fundamental physics [21,44-46],
and error correction [47-50].

Both the original formulation of designs and its quantum
counterparts hold only for finite-dimensional spaces.
This means that none of the applications proven to work
through the use of designs, e.g., quantum state fidelity
relations [23,30-33,35,36] and design-based tomographic
protocols [25-28], carry over naturally to countably
infinite-dimensional spaces. Such spaces are important
for quantum applications, because they describe quantum
systems whose natural degrees of freedom are continuous
variables (CVs), e.g., electromagnetic modes of optical or
microwave cavities, or mechanical modes of harmonic
oscillators.

Formulating a notion of designs would unlock important
abilities for CV systems. We proceed to do so in this paper,
summarizing both our formalism and several fleshed-out
applications below.

A. Nonexistence of CV designs

A first attempt to define state 7-designs for CV systems
was made in Ref. [51]. The authors showed that a particular
set of CV states—the Gaussian states [52]—does not form
a CV 2-design. This is perhaps surprising, since Gaussian
unitaries are the infinite-dimensional analog of finite-
dimensional Clifford unitaries, which themselves can form

Published by the American Physical Society
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2-designs [53-56]. Similarly, Ref. [57] defined the notion
of CV unitary #-designs and argued that Gaussian unitaries
do not form a 2-design. These results leave open the
question of whether CV state (unitary) designs require non-
Gaussian states (unitaries).

In this work, we answer this open question and prove
that CV state and unitary t-designs do not exist for
any t > 2. Our results hold for any separable, infinite-
dimensional Hilbert space, not just the space L2(R)
associated with CV quantum systems. Thus, even the
inclusion of non-Gaussian states and unitaries does not
help in defining z-designs over CV systems.

Our proof relies on the connection between state designs
and simplex designs. We first show that infinite-dimensional
simplex #-designs do not exist for # > 2. Then, using the
simple fact that the complex probability amplitudes of any
pure quantum state can be parametrized by a simplex (for the
moduli) and a torus (for the phases), we show by contradiction
that infinite-dimensional state designs do not exist either.

B. Rigged designs

We show that removing the requirement for states to be
normalizable yields a meaningful extension of the notion of
designs. We define rigged t-designs that utilize states in a
rigged Hilbert space, the Hilbert space populated by, e.g.,
the non-normalizable eigenstates of the oscillator position
and momentum operators. We construct several examples
for rigged 2-designs, thus proving that rigged state designs
exist even though CV state (¢ > 2)-designs do not.

In particular, it is well known that there is no notion of
uniform integration over L?(R), and our proof that CV
t-designs do not exist for # > 2 proves that there is no form
of integration over L?(R) that has even basic qualities that
mimic uniform integration. Rigged designs get around this
shortcoming by expanding the integration space to the set
of all non-normalizable states in a rigged Hilbert space—
specifically, the space S(R)’ of tempered distributions. We
construct a measure on S(R)’ that mimics the qualities of a
uniform measure over infinite-dimensional quantum states,
and we then construct designs on this space.

Our firstrigged design consists of Fock states as well as the
phase states, which form a well-known positive operator-
valued measure (POVM) that is optimal for measuring the
angle of rotation induced on a mode [58-64] (see Ref. [65],
Sec. 3.9, for an exposition). The other examples combine
Fock states with the cosine and sine states (and rotated states
thereof), close relatives of the phase states [59]. In all cases,
an extra parameter is induced on the phase states via
evolution by a “Kerr” Hamiltonian 722, with 7 the occupation
number operator [66].

C. Design-based shadows

The ability to use rigged #-designs as POVMs lends itself
to a natural extension of shadow tomography [25-28] to CV

systems. In finite-dimensional versions of such protocols,
one generates a classical snapshot of an unknown quantum
state by performing random measurements according to the
states from a 2- or 3-design. Then the expectation values over
several observables can be efficiently and accurately esti-
mated using these classical snapshots [26].

We propose a CV shadow tomography protocol based
on the Kerred-phase-state and Fock-state rigged 2-design.
The advantage of our protocol is that it maintains the key
feature of the original qubit shadow protocols, namely, the
ability to efficiently measure many observables using
only a set of “shadow” snapshots of a particular form.
This protocol can be generalized to an efficient multimode
protocol using a recent result [67]. We discuss how our
rigged CV shadows can be used for CV entanglement
verification.

Although our design-based shadow protocol is more
experimentally taxing than, e.g., CV shadows based on
conventional homodyne or photon parity measurements
[67], it can be implemented by combining and improving
previously demonstrated experimental techniques. In order
to utilize our first (second, third) rigged 2-design as a POVM
in the lab, one needs to be able to evolve the system under a
Kerr Hamiltonian and then apply the phase (cosine, sine)
state POVM. In addition, one needs to alternatively measure
in the Fock-state basis. All three aspects of this protocol—
CV phase measurements [68,69], photon-number resolution
(e.g., Ref. [70]), and engineered Kerr evolution [71-73]—
have been realized in some form in microwave cavities
coupled to superconducting qubits [66]. Providing an
experimentally realizable implementation of our protocol
that can achieve the same scaling as our predicted sample
complexity is an interesting avenue for future work.

D. Approximate CV designs

Another natural question to ask is whether approximate
CV state designs exist in L?(R). Or can the notion of
designs be defined over the CV states that satisfy some
energy constraints? We provide a solution to this problem
by regularizing the rigged CV designs.

To approximate our rigged designs with sets of normal-
ized states, we use operators called regularizers, which
correspond to different cutoffs of the infinite-dimensional
space. For example, a regularizer that projects onto a low-
energy finite-dimensional subspace corresponds to a hard
cutoff, i.e., a maximum-energy constraint. A regularizer
that smoothly decays with increasing energy but has
support on the full infinite-dimensional space corresponds
to a soft cutoff, i.e., an average-energy constraint. By
analogy to numerical quadrature rules on the real line, a
sharp cutoff is akin to restricting the domain of integration
to a compact interval, while a smooth cutoff is akin to
endowing the line with a Gaussian measure. Moreover,
certain regularizers allow us to extend the notion of a frame
potential [16,17,74] to infinite dimensions.
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Regularizers (also known as cooling or damping oper-
ators) and related ideas have been employed in works
on CV quantum error-correcting codes [75,76] (also
Appendix B in Ref. [77]), uniform continuity for quantum
entropies [78], energy-constrained capacities [79] and
distances [80,81] of CV channels, and CV cryptographic
protocols [82].

E. Average CV fidelity

Armed with regularized-rigged designs, we extend the
well-known notion of average fidelity (over all states) of a
quantum channel from finite-dimensional [23,30-33] to
CV systems. In previous such extensions, systems were
limited to the setting where the average fidelity between
operations is estimated over an ensemble of coherent states
[83-91]. Other approaches to benchmarking CV operations
rely on witnesses that are lower bounds to the true average
fidelity over an ensemble of Gaussian states [89,90], while
energy-constrained diamond-distance-based performance
estimates require knowledge of the noise model in exper-
imental approximations and are often computationally
taxing [80,91-96].

We provide two different definitions of the average
fidelity of a CV quantum channel. These formulas can be
directly employed to estimate the average fidelity between
CV quantum gates and their experimental approximations
[92]. Our formulation yields an experimental procedure to
estimate the average fidelity of an arbitrary CV quantum
gate without requiring the knowledge of the noise involved
in experimental implementations. As a concrete example,
we estimate the average fidelity between an ideal displace-
ment operation and its experimental approximation [92],
suggesting that an average over coherent states only is not a
good approximation to an average over all CV states.

F. Average-to-entanglement fidelity relation

Another interesting open question in CV information
theory is to establish a relation between the average channel
fidelity and the entanglement fidelity, similar to the finite-
dimensional setting [35,36]. In this work, we solve this
open problem and establish connections between average
and entanglement fidelities for CV operations.

We utilize the conventional notion of single-mode CV
entanglement fidelity, namely, the fidelity over a two-mode
squeezed vacuum state [97,98]. We then evaluate our
average fidelity over states in the corresponding regular-
ized-rigged design. Combining these two fidelity formulas,
we establish a simple relation between the average gate
fidelity and the entanglement fidelity for CV operations.

G. Relating designs to mutually
unbiased bases (MUBs)

As an additional result of independent interest, we find a
relationship between torus 2-designs and complete sets of

mutually unbiased bases [99], and we prove that the
condition of mutually unbiasedness can be replaced by a
torus 2-design condition.

H. Outline

The rest of the paper is meant to succinctly relay the
results and is structured as follows. In Sec. II, we introduce
finite-dimensional designs. In Sec. III, we develop the
notion of infinite-dimensional designs and prove that CV
state and unitary 7-designs do not exist for any 7 > 2. In
Sec. IV, we then define rigged designs and provide explicit
constructions for rigged 2-designs. In Sec. V, we introduce
regularized-rigged designs. In Sec. VI, we study applica-
tions of rigged and regularized-rigged designs. In particu-
lar, in Sec. VI A, we introduce the shadow tomography
formalism to CV quantum states. In Sec. VI B, we discuss
how such rigged CV shadows can be used for CV
entanglement verification. Next, in Sec. VIC, we define
various notions of the average fidelity of a CV quantum
channel using regularized-rigged 2-designs. We then prove
a relationship between the CV entanglement and average
fidelities. Finally, in Sec. VII, we conclude with a brief
summary and discuss open questions.

II. FINITE-DIMENSIONAL DESIGNS

In this section, we review relevant prior results on finite-
dimensional state designs, making contact with designs on
simplices and tori.

Quantum state designs reduce integrals of polynomials
over all quantum states to averages over a discrete set. Let
C“ denote a d-dimensional Hilbert space with orthonormal
basis {|n) }9-}. Because of their normalization and global-
phase redundancy, quantum states in this space correspond
to points in the complex-projective space CP4~! [100,101].
A nontrivial complex-projective ¢-design is a set of states
X ¢ CP?!, sampled according to some probability mea-
sure p, satisfying [12-21]

JE W) = /:Pd_l flw)dy (1)

for any polynomial f(w) of degree ¢ or less in the
amplitudes of yw and degree ¢ or less in the conjugate
amplitudes. The canonical measure dy on the set of such
quantum states, called the Fubini-Study measure [100,101],
is the unique unit-normalized volume measure that is
invariant under the action of the unitary group U(d) (see
Appendix B 1 for more details).

The above conventional relation can be lifted into a
relation between particular operators by using the fact that
polynomials of degree up to ¢ in state degrees of freedom
can be expressed as expectation values of operators with ¢
copies of the state.
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Consider, for example, ¢ = 2 and an arbitrary polynomial
Fw) = 393 o f jramW 1@ 1, in the amplitudes y; =
(jlw) and their conjugates y;, with complex coefficients
Jf jkim- This polynomial can equivalently be expressed as an

expectation value of a bipartite operator f with respect to
two copies of |y)(y|:

d—1

fw) = Z_ £ itm () (mlyr) (wr ) (wlk) - (2a)
= Tr(fly) (w]®?). (2b)

where | = >t hmeo S jkim| /) [K) (1| {(m]. Using this relation,
we see that X is a t-design if and only if

E e = [ (e a. @)

Next, we can use representation theory (see Appendix C 3
for details) to solve the integral on the right-hand side,
yielding

i
T

L (ot = @)

where H§d> is the projector onto the permutation-invariant

(also known as symmetric [102]) subspace of (C¢)®", the
t-fold tensor product of the original space, and Tr is the trace
function. When ¢ = 1, this integral reduces to a resolution of
the identity. For higher ¢, the resolution can be only of the
symmetric subspace, since the 7-fold tensor product of any
state is symmetric under all permutations (see Appendix B 2
for details).

Combining the above manipulations yields the following
“operator-level” definition of a complex-projective #-design:

(d)

®r 1L
—.
Tri?

E (lv){wl) (5)

pveX

Designs can be obtained via the convenient parametri-
zation of pure states in terms of a simplex and a torus. State
amplitudes can be written as

(Jlw) = /pje. (6)

where the probabilities p; add up to one due to normali-
zation and the phases ¢; are 2z periodic (with ¢, set to zero
to remove global-phase redundancy). By definition, the
probability distribution defined by p; is a point on the
(d — 1)-simplex,

S, b

Ad_l = {(po’ e pd—l) E [0’ l]d
=0

while the vector of phases parametrizes a (d — 1)-torus
T%'. Hence, volume integration over all states is reduced
to volume integration over the simplex and the torus
[100,101] (see Appendix C4 for details). This naturally
makes contact with simplex and torus designs.

Simplex and torus designs are defined in a similar
fashion to complex-projective designs. A set X C A™ of
probability vectors is an m-simplex 7-design if, for all tuples
a=(ay,...,a;)€{0,1,...,m},

! 1
qugqai - / Epa,. dp. (8)

where dp is the standard measure on the simplex. A set
of angles X C T™ is an m-torus ¢-design if, for all tuples
a=(ay,....,a;)€{1,2,...om}" and b= (by,....,b,)€E
{1,2,...,m},

t 1
1(00,-05,) _ i(dha; =s;)
agxge /'",-1_[16 - ®)

where d¢ is the standard measure on the torus. We discuss
various constructions of simplex and torus designs in
Appendixes C 1 and C 2, respectively.

There is a bilateral connection between complex-pro-
jective designs and designs on the corresponding simplices
and tori. Denoting z as the “Born-rule” map that produces
the vector of probabilities (p,)9Z} from a state |y), the set
7(X) is a simplex f-design for any complex-projective
t-design X [8,103] (see Appendix C 5 for details). On the
other hand, a combination of a simplex and a torus #-design
of appropriate dimensions yields a complex-projective
t-design [8]. We provide a proof of these latter connections
and present various combinations that yield complex-
projective 2-designs for all d in Appendix C 4.

Our simplex designs from Eq. (8) are more commonly
referred to as simplex positive, interior (or boundary)
cubature rules [4-9]. Our torus t-designs from Eq. (9)
closely resemble trigonometric cubature rules [5], but the
two are not equivalent. In Appendix F, we show that torus
designs are equivalent to a special case of torus cubature
rules from Ref. [8]. We then establish a connection between
torus 2-designs and MUBs, which might be of independent
interest. To the best of our knowledge, this connection has
not been previously discussed.

III. CONTINUOUS-VARIABLE DESIGNS

In this section, we develop the notion of CV designs and
present our main results in Theorem 2 and Corollary 3.
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Let L?(R) denote an infinite-dimensional, separable
Hilbert space of square-integrable functions on the real line,
with a countable Fock-state (also known as photon number-
state or occupation number-state) basis {|n)|n € Ny}, where
N, denotes the natural numbers including zero. We note that
all separable Hilbert spaces are isomorphic to L?(R). We call
unit-norm vectors in L?(R) CV quantum states.

The right-hand side of Eq. (4) is straightforward to
generalize to infinite dimensions. Let I, denote the projector
onto the symmetric subspace of ¢ copies of L?(R) (see
Appendix B 2). For any tuples a = (ay, ...,a,) €N} and
b= (by,....b,) eN(,

na:6) = (@lal )1 (@) (10

denotes the matrix elements of I'l,. The trace of this projector,
TrI1,, is infinite, but we can simply omit it from the equation.

The left-hand side of Eq. (4) is unfortunately impossible
to generalize to infinite dimensions [104]. Since L?*(R) is
infinite dimensional, there is no finite Haar measure on its
corresponding unitary group U[L?*(R)] (see Sec. V in
Ref. [105]). Therefore, there is no natural unitarily invariant
volume measure on the set of CV quantum states. However,
if one could define the unitarily invariant volume integra-
tion over all CV states, Schur’s lemma would imply that
the resulting integration would be proportional to II,.
Therefore, in principle, infinite-dimensional state designs
can be defined using the definition of complex-projective
designs in Eq. (5) but without the TrII, term.

An infinite-dimensional design may be parametrized by
points in a noncompact space with a non-normalizable
measure. To accommodate this, we relax the assumption
that the parameter space of a design is a probability space

and instead assume it is a generic measure space—a triple
consisting of X C L*(R), a collection X of all reasonable
subsets of X called a o-algebra, and a measure u (see
Appendix D for details). The only difference from a
probability space is that u(X), the measure on the entire
space, no longer has to be finite.

Combining the above ideas, we define CV designs as
abstract measure spaces that average to the unnormalized
symmetric-subspace projector.

Definition 1. Let X C L>*(R). The measure space
(X,Z, u) is a continuous-variable t-design if

[{ () () ® ) = T, (11)

where we use the weak (Pettis) integral [106]. In other
words, for all tuples a, b €N},

A(ﬁ(aill//)(wlb») duly) = (a:b).  (12)

i=1

Definition 1 is a formalized version of the definition of
CV state r-designs given in Ref. [51]. We note that
Definition 1 bypasses the issue of defining a volume
measure on the set of CV quantum states. We do not
perform any integration on the set of all states and instead
require a design to match the projector onto the symmetric
subspace. This construction is illustrated in Fig. 1.

There is an alternative motivation for Definition 1 that we
describe in detail in Appendix D 5. It is based on the
following observation in finite dimensions. Integration over
the set CP?~! of d-dimensional quantum states is equivalent
to integration over C¢ with d independent zero-mean, unit-
variance complex Gaussian distributions. The integration is

Discrete variable ‘ Continuous variable ’ ‘ Rigged ’

Hgd): ((Cd)®t — ((Cd)®t 4 o9 IT; : L2(R)®t — LQ(R)®t }—’{ 1L, : S(R)®t - S(R)®t ’

Fact

Jopaos (1) () ®* dy oc TIY

Definition | (CP?~! ¢-design) Definition | (C'V t-design) Definition | (Rigged t-design)
(X cCPLSp)st. |d— oo (X c LA(R),X,pu) s.t. (X C S(R)’,E,u) s.t.
Jx (1)) dp(ep) o TV Jx () (@)®* dp() o T, Jx (O™ dp(x) o T,

FIG. 1. Sketch of definitions of finite-dimensional designs, CV designs, and rigged designs. The key point is the absence of the middle
block in the middle and right columns. A generalization of the middle block to the continuous-variable case is ill defined, as discussed in
Sec. III. Therefore, to define CV designs, we simply skip the middle step, as discussed in Definition 1. An alternative characterization or
definition of CV and rigged designs is described in Appendix D 5.
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over each of the d amplitudes of the quantum state with
respect to the Gaussian measure, and the resulting state is
then normalized. We can similarly put an infinite product of
Gaussian measures on the space C* and then define a CV
t-design to be a measure space over L?(R) that matches
integration over C* for polynomials of degree ¢ or less. We
show in Appendix D 5 that this definition is equivalent to
Definition 1.

Since IT1; = T, where 1 denotes the infinite-dimensional
identity operator, any orthonormal basis for L?*(R) or
POVM is a CV 1-design. For example, the photon-number
basis |n) satisfies ), <y, |1)(n| = 1, which corresponds to
a photon-counting measurement. Coherent states {|@) } also
form a 1-design as they satisfy [.|a){(a|(d*a/x)=1, which
corresponds to a heterodyne measurement. Finally, the
eigenstates of cos(¢)x + sin(¢)p form a 1-design, which
corresponds to a homodyne measurement.

In Sec. II, we argued that a complex-projective design on
C givesrise to a simplex design. Similarly, in Appendix D 1,
we prove that the existence of CV tdesigns implies the
existence of infinite-dimensional simplex #-designs. Here,
we define a infinite-dimensional simplex design by starting
with a finite-dimensional simplex integration over the unit-
normalized Lebesgue measure and then removing the nor-
malization requirement of the measure as we take the
dimension to infinity.

By construction, a CV 1-design induces an infinite-
dimensional simplex 1-design by converting the ampli-
tudes of a quantum state to probabilities via the Born
rule. For example, the simplex design induced by the
CV l-design {|n)|n €Ny} is a set of probability distribu-

tions {p™|n €N, }. Here, p") = (P(()n)v P(ln), ...) is a prob-

ability distribution over N, defined as pE") = &,

As for t > 1-designs, we prove that no set of CV states,
Gaussian or not, forms a CV tdesign for any # > 2 (see
Appendix D for proofs).

Theorem 2. For any t > 2, continuous-variable state
t-designs do not exist.

The nonexistence of state (¢ > 2)-designs immediately
implies nonexistence of unitary (¢# > 2)-designs, because
their existence would imply the existence of state designs.

Corollary 3. For any t > 2, continuous-variable unitary
t-designs do not exist.

To prove Theorem 2, we show that infinite-dimensional
simplex #-designs do not exist for # > 2 and then invoke the
connection between state and simplex designs described in
Sec. II. The nonexistence of infinite-dimensional simplex
designs can be understood as follows. All simplex (¢t > 2)-
designs require at least one point near the centroid of the
simplex. The centroid of a finite-dimensional simplex A4~
is the point (1/d,...,1/d). However, for the infinite-
dimensional case, the centroid is no longer a valid point
on the probability simplex. In the context of quantum
states, this translates to the fact that uniform superpositions

of all Fock states are not normalizable. We are, therefore,
motivated to remove the requirement that elements of
CV rdesigns are normalized states.

IV. RIGGED DESIGNS: DEFINITION
AND CONSTRUCTIONS

The nonexistence of CV r-designs for ¢ > 1 stems from
the requirement that elements of said designs, according to
Definition 1, belong to L?(R) and, thus, should have finite
norm. We are, therefore, motivated to develop a new notion
of CV designs that allows for non-normalizable states.

To include non-normalizable states in a CV design, we
need to consider a set larger than L?(R). We consider the
space of tempered distributions, denoted as S(R)’ D L*(R),
which contains infinitely squeezed position or momentum
states as well as oscillator phase states [58—62,65]. Despite
being awkwardly called “states,” these and other distribu-
tions may not be normalizable.

The use of distributions, whether for our purposes or for
CV measurement protocols such as homodyne detection
[86], is well defined only for those CV states for which
inner products with tempered distributions are finite. This
class consists of those states which admit finite expectation
values of all powers of the occupation number operator
=73 ,en,n)(n|, making up the Schwartz space
S(R) ¢ L*(R) [107]. Together, the three spaces of interest
make up the Gelfand triple S(R) c L*(R) c S(R), the
standard rigged Hilbert space for a quantum harmonic
oscillator [108—110].

We modify Definition 1 to include tempered distribu-
tions. The motivation for our modification is summarized
in Fig. 1.

Definition 4. Let X C S(R)’. The measure space
(X, X, u) is called a rigged t-design if

A ) D® dutz) = a1, (13)

for all positive integers ¢ < ¢, where oy € (0, 00), where we
use the weak (Pettis) integral. In other words, for all tuples
a,beNt,

A(ﬁ@ilxﬂx\b») duly) = a, i (a:b)  (14)

i=1

forr < 7.

Analogously to what is discussed below Definition 1,
there is an alternative motivation Definition 4 that we
describe in Appendix D 5. Recall that we described an
equivalent definition of CV designs to be measure spaces
over L?(R) that match integration over C® with an infinite
product of Gaussian measures. In Appendix D 5, we further
show C*\S(R) has measure zero in C*, so that the
integration over C*® is equivalent to integration over S(R)’.
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It follows, therefore, that rigged 7-designs exist for any
teN, since we can simply take the aforementioned
measure space over S(R)’ to be our design. This design
is, however, not desirable, since it involves infinite-dimen-
sional integration. We, thus, look for more manageable
measure spaces that form rigged designs.

Inclusion of distributions circumvents the no-go
Theorem 2 and allows us to construct several examples
of rigged 2-designs. Our first example consists of Fock
states {[n)},cn, and a family of distributions that we call
Kerred phase states |0),—tempered distributions defined
informally as

16) > expli(on + gn?)]|n) (15)

1
! VzﬂneNo

and formally as functionals mapping |w) € S(R) to
w(6.9) =, 0y)

- %2_ >~ expl=i(0n + pn®)](nly).  (16)

”neNo

The Kerred phase “states” consist of oscillator phase states
[58—65], evolved up to some “time” @ under a Hamiltonian

% associated with the optical Kerr effect. In Appendix D 3,

we prove that
/ do / dqo 010) 6‘|

z Z n)(n])®" +
nGNO
fort=1and t =2, where @) =7+ 1/2 and @, = 1.

To show that the above set is a design, we extend simplex
and torus 2-designs to the rigged regime (see Appendix D 3
for details). The integration over the two phases {6, ¢}
corresponds to a torus 2-design. The Fock states |n)
correspond to extremal points of a simple simplex 2-design
consisting of extremal points and the centroid in the finite-
dimensional case, with the centroid vanishing in the
infinite-dimensional case (as discussed in Sec. III). By
removing the normalization condition, we define an “non-
normalizable centroid,” which corresponds to a uniform
superposition of Fock states |0 = 0),,_,. Combining such a
state with the aforementioned torus 2-design gives the
Kerred phase states.

Oscillator phase states are (left) eigenstates of the
oscillator phase operator Z =, |1 + 1)(n| [58-65],
an analog of the oscillator raising operator but without the
square-root factor. Both the phase and raising operators do
not admit right eigenstates, but =4 superpositions of
each operator with its adjoint yield (anti-)Hermitian oper-
ators that admit well-known distributions as eigenstates.
Superpositions of lowering and raising operators admit

_al

(17)

position and momentum states as eigenstates, respectively,
while superpositions of the phase operator and its adjoint
admit the cosine and sine states, respectively [59].
In Appendix D 3, we show that these two sets of states,
when evolved under the Kerr Hamiltonian and combined
with Fock states, make up two more examples of rigged
2-designs. More generally, since Z is unitarily related to
Ze'” via a Fock-space rotation e” eigenstates of a linear
combination of Ze!” and its conjugate should similarly
yield a distinct set of designs for any w.

We do not provide constructions of useful rigged
3-designs. As shown with an example in Appendix D 3,
not all simplex 2-designs can be extended to infinite
dimensions. Thus, the difficulty in constructing a rigged
3-design lies is finding a simplex 3-design that is well
behaved enough to be extended to infinite dimensions. We
leave this exciting open question for future work.

V. REGULARIZED-RIGGED DESIGNS

Our rigged designs consist of non-normalizable states,
but some applications require approximate versions of such
designs that consist of physical quantum states. One way to
approximate is to simply truncate the Fock space, corre-
sponding to a hard or maximum-energy cutoff. This brings
us back to finite dimensions, reducing rigged designs to
ordinary quantum state designs. Another way, possible only
with our infinite-dimensional formulation, is to impose a
soft or average-energy cutoff that maintains the ability for
states to have infinite support in Fock space. Both cutoffs
can be encompassed in a general regularization formalism.

Let the regularizer R be a positive-semidefinite operator
that yields a corresponding “regularized projector”

% .= R®TL,R®"  such that TrII® < c0.  (18)
The two aforementioned energy cutoffs correspond, respec-
tively, to regularizers

hard cutoff, d € N,

P,:=>"9"Viny(n
R_{ R 4 n)(n| (19)
soft cutoff, f > 0,

Rﬂ = e—ﬂn

but our formalism allows for more general R. We construct
regularized designs by applying a regularizer to elements of
a rigged design.

Suppose (X, X, u) is a rigged t-design satisfying ;, = 1.
Regularization by an appropriate regularizer, such as Ry
and P,, converts X into a set of normalized states

= Rlp)/[IRL)Ilr) € X}, (20)

with corresponding c-algebra Xy and measure

= {lv)

du(|y)) = du(y) - || Rlx)|* /TeIL®. (21)
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These regularized designs average to H / TrH ) instead
of I,
du(x)
[ b = [ ®owre 2L
Y Tr H
(R)
I1
=— . (22)
Tr®

The use of normalized states allows us to promote Y to a
probability space. By taking the trace of both sides of Eq. (22)
and applying assumption (18), we see that the measure v
is automatically normalized: 1 = [, (w|w)'dv(y) = v(Y).
This allows us to express [, (-)dv(y) as a statistical expect-
ation E, cy(-) of states in ¥ sampled according to the
distribution defined by v (see Appendix D4 for details).
This yields the definition below, with a related definition of
regularized CV unitary designs provided in Appendix D 7.

Definition 5. Let Y C L?>(R). The probability space
(Y,Zy,v) is called an R-regularized-rigged t-design if

s
e Ok

JE (W) WD (23)

Analogous to the discussion below Definitions 1 and 4,
there is again an alternative motivation for Definition 5 that
we detail in Appendix D 5. Recall that an infinite product of
zero-mean, unit-variance Gaussian measures on C*® forms
a rigged 7-design. We show in Appendix D5 that if the
variance of the ith measure is instead A; such that the
diagonal operator R;; = 4; is trace class (>_; 4; < o0), then
the resulting measure space is a \/R-regularized-rigged
t-design for any fr&€N. Importantly, with this measure,
C*\L?(R) has measure zero in C*® so that the design is a
measure space over L2(R) as desired.

We now consider regularizing the Fock-state and Kerred
phase-state design (17) with the soft-energy cutoff
R = R; = ¢ (19). Denote the regularized Kerred phase
states (also known as phase coherent states [111]) as

5 RelO),
90 = TR 0},

/1 —e 28 Z e—ﬂn+1€n+1¢n- >’ (24)

such that [[|6),,[| = 1. Then, it follows that

(Rp)
|®2+f/ 10)(0|2%dodp = —2—. (25)
P e eI

S walnhin

neN,

where the limit of integration for both 8 and ¢ is [-x, 7],
f = cosh p/[e”(2x)?], and w, = (4sinh?BcoshB/ef4r+3)).

Given a fixed average-energy constraint £, it is natural to
define an energy-constrained state design consisting of
states {w}, such that each state in the design satisfies
Tr(fy) < E. Our regularized-rigged design does not satisfy
this condition explicitly, as it contains Fock states |n) with
n > E, as shown in Eq. (25). However, the contribution of
large-n terms is suppressed by the w, coefficient in
Eq. (25), which decays exponentially with n. Thus, our
regularized-rigged designs are good approximations to
energy-constrained state designs. It is an interesting open
question to further develop the framework for energy-
constrained state designs; we make some headway in this
direction by formulating constrained integration in
Appendix C 6, albeit for the finite-dimensional case.

As another example, we show in Appendix D 6 that
displaced Fock states form regularized 2-designs for which
the regularizer is the maximum-energy cutoff from
Eq. (19), granted that we are allowed to use negative
weights in the combination.

An important feature not inherited from the finite-
dimensional case is that, in general, an R-regularized-rigged
t-design is not an R-regularized-rigged (# — 1)-design. For
example, if Y is an R-regularized-rigged 2-design, then

O e ey 2
E ly)(w| = ((TrR*)1 4+ R?) # . (206)
yey 2T Trrr®

2 1

violating Eq. (23) for = 1. Similarly, if Y is an
R-regularized-rigged 3-design, then

JE(w) )

(R)

Il

= Zn(m (TrRH)T® T+ 1@ R*+R*Q1) (27)
rils

instead of H / TrH

Notice that as R gets closer to the identity in Egs. (26)
and (27), TrR?> dominates the remaining terms. This
behavior holds for general ¢. As described further in
Appendix D4, if Y is an R-regularized-rigged ¢-design,
then it is almost an R-regularized-rigged (¢ — 1)-design in
the sense that

R
Lt

® (1 + O(1/TrR?)).
Trl'[t 1

£ () (y])®- (28)

7

We conclude this section by generalizing the frame
potential from finite dimensions [16,17,74] to regular-
ized-rigged r-designs. For a positive definite (and, there-
fore, invertible) regularizer R, we define the frame potential
of an ensemble G over unit vectors in L?(R) to be

VPG = E |(wIRp)P.

W, 4) €g (29)
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In Appendix D4 a, we prove the following proposition
regarding the frame potential.

Proposition 6. Let R be positive definite. For any
ensemble G,

R) (g 1

(
V ) Z (P
' Tert®)

(30)

with equality if and only if G is an R-regularized-rigged
t-design.

Note the presence of the R™' in Eq. (29). We see
something similar in Sec. VIC, where we find that
finite-dimensional formulas nicely generalize to infinite
dimensions by introducing factors of R~! to R-regularized-
rigged designs.

VI. APPLICATIONS OF RIGGED DESIGNS

In Sec. VI A, we develop a shadow tomography protocol
for CV systems based on rigged CV designs. In Sec. VIB,
we show how such CV rigged shadows can be used for
entanglement verification. In Sec. VIC, we develop the
notion of the average fidelity of a CV quantum channel by
using regularized-rigged 2-designs, relate this fidelity to the
CVentanglement fidelity, and compare various fidelities for
the case of the pure-loss channel.

A. Design-based CV shadows

The main idea behind finite-dimensional shadow tomog-
raphy protocols is to perform random measurements of an
unknown state to create classical snapshots through which
many properties of the same unknown state can be
efficiently predicted [25-28]. One can perform O(log M)
random measurements of an unknown state p to accurately
predict the expectation values of M different observables
with high probability. Each measurement for one such
protocol yields a shadow of the form 3|e)(e| — I on each
qubit of the system, where e is an eigenstate of one of the
qubit Pauli matrices and [ is the two-by-two identity.
The number of measurements needed is independent of
the dimension of the Hilbert space, a property that can be
proven using designs [26].

Shadow tomography can be framed in terms of informa-
tionally complete POVMs, which include quantum state
(t > 2)-designs [112]. The concept of POVMs extends to
infinite dimensions in such a powerful way that POVM
elements can even be tempered distributions [65] (see also
Appendix A in Ref. [82]). Such POVMs are widely used.
For example, homodyne measurements correspond to
measurements in the position-state POVM or its rotated
counterparts [113], while measuring in the phase-state
POVM is optimal for determining the angle induced by
a phase-space rotation (see Sec. II1.9 in Ref. [65]).

Utilizing rigged designs as infinite-dimensional POVMs,
we develop a CV shadow tomography protocol (see

Appendix E1 for more details). Here, our goal is to
determine (O;) := Tr(pO;) for a collection of M single-
mode observables Oy, ..., Oy, where p is an unknown
infinite-dimensional state which we can access on a
quantum device. We first describe a protocol utilizing a
rigged 3-design and then describe a protocol utilizing
a rigged 2-design such as the one constructed in
Eq. (17). The former case is slightly more general and
easier to describe, but we have not yet constructed useful

rigged 3-designs. We leave this question for future work.

1. CV shadows with rigged 3-designs

Let (X,X,u) denote a rigged 3-design, which implies
that [, (ly) (x|)®'du(x) = /11, for t€{1,2,3} and o, €
(0, 00). Without loss of generality, let a; = 1, rescaling the
measure p if necessary. Then, it follows that the design
resolves the identity:

/X 2 ) = 1, (31)

and, therefore, v:A — [, |y)(x|du(y) is a POVM.

Recall that a POVM maps subsets, which correspond to
collections of measurement outcomes, to bounded, non-
negative self-adjoint operators (see Appendix B 1 for a
measure theory review and Appendix E 1 for a short review
on POVMs). Sampling from such a POVM results in
sampling measurement outcomes from the probability
measure 4’ :A +— Tr[pr(A)]. We denote the measurement
outcome corresponding to y as c¢(y) that we then store on a
classical computer.

Suppose that we measure N times from g/, resulting in
outputs {c(yy),...,c(¥y)}. Each of these outputs corre-
sponds to a CV shadow

» =a32m>m| -1, (32)

Note that |y;) is not generally a physical quantum state but
instead a tempered distribution. Fortunately, this is un-
important, since we are simply storing a description of |y;)
on a classical computer.

Using the classical snapshot and the classical description
of observables O;, one can compute

N I
0= > Te(p,0;). (33)
i=1

On average, this yields the right answer: By the rigged
2-design property of X, E[0;] = (O;), where the expectation
value is taken over measurement outcomes. Moreover,
convergence to the right answer depends only on the
features of O;: Using the rigged 3-design property of X,
we find that Var(d;) = O[(Tr|O;|)?/N] in the large-N limit
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(see Appendix E 1 for details). We perform the aforemen-
tioned procedure K times, resulting in a collection C; =

{65-1), - 6;1{) }. Following Theorem 1 in Ref. [26], for each
J» the median of C; is within & of (O;) with probability at
least 1 — 6 provided that

1
N = 0<—2 (maXTr|(’)j)2>, (34a)
et

K = O(log(M/5)). (34b)
In other words, using a shadow tomography procedure with
arigged 3-design, we can accurately determine the expect-
ation values of M observables using only ~log M mea-
surements, provided that each observable O; is reasonably
well behaved, that is, provided that max;Tr|O,| is not
too large.

2. CV shadows with rigged 2-designs

If we had used only a rigged 2-design in the above
protocol, we would still have that E[0,] = (O;). For certain
observables O;, we can show that a rigged 2-design is
sufficient to give reasonable bounds on the variance by
following an analogous result in finite dimensions from
Ref. [112].

As before, suppose we have a collection of N shadows
D1, ---, Py sampled from the POVM defined by the rigged
2-design, yielding estimates 0; (33). We pick observables
that satisfy

c<Tr(p;0;) <d (35)
for some ¢ < d€R almost surely for every shadow p;.

Then, to achieve a success probability of at least 1 — 6 and
maximum additive error ¢, we need only

2M\ (d - c)?
NZI"g(?)( o

shadows to determine (O;) for each 1 < j < M.

For concreteness, we consider a simple example of the
rigged 2-design shadow protocol. Let each observable O;
be of the form O; = |a;)(b;| + |b;){a;| for a;, b; €N,. We
use the rigged 2-design from Eq. (17) consisting of Fock
states and Kerred phase states. The explicit sampling step
for this procedure is worked out in Appendix E 1 c. Using
the explicit form of [0),, it follows that, for any possible
shadow p; coming from this design, |Tr(p;0;)| < 1/5.
Therefore, to determine the M observables {O;} to a
maximum additive error ¢ with success probability at least
1 — 6, we need only

(36)

2MN\ 2

measurements.

B. Entanglement verification

In finite dimensions, classical shadows of a quantum
state allows for the checking of many entanglement
witnesses on that state [26]. Indeed, the same result holds
for design-based CV shadows.

From Theorem 2.2 in Ref. [114], for infinite-dimensional
states p, p is entangled if and only if there exists a
finite-rank operator A and a real number a such that
a+Tr(pA) <0 and a+ Tr(cA) >0 for all separable
states o. Since A is finite rank, the expectation value of
A with respect to a rigged shadow is finite even though the
rigged shadow is not a normalizable quantum state. Hence,
the use of rigged shadows (obtained from very few
measurements of p) allows one to test many candidate
witnesses A in order to determine if p is entangled.

C. Fidelities of CV quantum channels

We develop the notions of the average fidelity of a CV
quantum channel as well as their relationship to the CV
entanglement fidelity. Such notions require approximate
(i.e., regularized) versions of our rigged designs. We work
out the case of a general positive semidefinite regularizer R
but note that the reader should keep in mind the two
physically relevant hard- and soft-energy cases (19), corre-
sponding to R = P, = 4=} [n)(n| and R = Ry := ™",
respectively. Finally, we benchmark the performance of a
displacement operation by evaluating various fidelities for
the case of the loss channel in Sec. VIC 3.

1. Average fidelity of CV quantum channels

In a d-dimensional Hilbert space, quantum states belong
to a compact space CP?!. Therefore, one can define
quantities that are averaged over all quantum states. In
particular, for a quantum channel D, the average channel
fidelity is defined as [23,34-38]

Fo)y= [ Wil whwde. 69

quantifying how close D is to an identity channel on
average. Because of the nonexistence of a standard measure
on infinite-dimensional space, as discussed in Sec. 111, this
formula cannot be extended to CV systems.

Since there are exactly two copies of |w)(y| in the
integrand for the average fidelity, the integral over all states
can be substituted with an average over any state 2-design
X using Eqgs. (4) and (5):

F(D) =

E (wID(jw){w|)w). (39)

yeX
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The design provides a more manageable sample of states
that is useful for estimating the average fidelity of quantum
operations [23,30-33]. This formula can be extended to
infinite dimensions using normalized (i.e., regularized)
versions of our rigged designs from Sec. V.

Let Y denote a regularized-rigged 2-design with a
general positive semidefinite regularizer R. There is more
than one way to generalize the average fidelity from the
finite-dimensional case, and we consider two average-
fidelity quantities defined for a CV channel D:

FI"(D) = Ne E wIR*DW)R*y).  (40a)

E wIDW)lw), (40b)

74

where we use the shorthand notation D(y) = D(|yw)(y|) and
where the constant Nz =[TrR*+ (TrR?)?/TrR?>+ (TtR)?].
The second quantity faithfully uses two copies of the
normalized state projections |w)(y| sampled from the
design, while the first can revert one copy back to its non-
normalizable version using the Moore-Penrose inverse R™ of
the regularizer.

As a sanity check, let us employ a hard-energy cutoff
and plug in the regularizer R = P, = Y 9=} |n)(n| from
Eq. (19) into Eq. (40). This essentially recovers the finite-
dimensional case. Since the Moore-Penrose inverse of a
projector is itself, the two average-fidelity quantities are
equal for this case. Moreover, if D is trace preserving for

states within the subspace defined by P, then F (IP" >(D) =

F <2P")(D) = F(D), recovering the finite-dimensional
design-based average fidelity from Eq. (39).

In a setting relevant to CV states enjoying infinite
support, such as coherent or squeezed states, one should
consider a regularizer with no zero eigenvalues. We prove
in Appendix E 2 that an R-regularized-rigged 2-design is
informationally complete for states on the entire Fock space
whenever R is invertible. Therefore, choosing R = P, may
not be a good approximation of average fidelity over all CV
states.

2. Average-to-entanglement fidelity relation

In the finite-dimensional case, the entanglement fidelity
for a quantum channel D on C¢ is [23,34-36]

Fe(D) = (¢|(Z ® D)(9)|#). (41)

where |¢) = (1/+/d) 392} |n) ® |n) denotes a maximally
entangled state and 7 is the identity channel. This fidelity
quantifies how well entanglement with a reference system
is preserved by D. We refer the reader to Appendix A in
Ref. [115] for a nice review of the utility of the entangle-
ment fidelity. The entanglement fidelity is related to the
average fidelity by the following simple formula [35,36]:

_ .~ dF,(D)+1

FD) = =4k #2)

We can similarly relate our average-fidelity relations (40) to
a CV version of entanglement fidelity.

Maximally entangled states become non-normalizable as
d — o0, meaning that CV versions of such states also have
to be regularized in order to define an analogous fidelity.

We require that R be diagonal in the Fock-state basis and
define the regularized state

1
Tr

\r) = RV @ RV |n) @ [n),  (43)

neNy

3

a purification of the regularizer state

pr = Tro(|¢g) (Pr]) = R/TrR. (44)

The R-regularized CV entanglement fidelity of a channel D
is then

FP(D) = (rl(Z ® D) () |r)- (45)

In Appendix E 2, we show that both CV average-fidelity
quantities from Eq. (45) are related to the CV entanglement
fidelity (45) as

_ dgF" (D) + Tr[D(pge)RR]
N dp +1

, (46a)

_ dRFgR)<D) + dgTr[D(pg)pg]
dg +1 ’

(46b)

Since we are assuming R is diagonal, RR™ is simply a
projector onto the subspace for which R has support. For
invertible R, this subspace is the whole space so that
RR* =1, and, therefore, Eq. (46a) yields a CV generali-
zation of the finite-dimensional average-to-entanglement
fidelity relation (42):

dgFP(D) 41

dp +1 ’ (47)

where the effective dimension dictated by the regularizer is
the inverse purity of the regularizer state (44),

dg =1/Trp% = (TrR)*/TrR>. (48)

This effective dimension in the infinite-dimensional case
plays the role of, and reduces to, the actual dimension in the
finite-dimensional case.

The above general formulation reduces to a more
physically relevant one when the soft-energy cutoff
R =Ry =¢e7" (19) is used as the regularizer. The state
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|pr) (43) becomes a Gaussian two-mode squeezed vacuum
state (also known as thermofield double) with squeezing

parameter r = log[l +e#/2/v/1 —e™?] [98], while the
regularizer state (44) becomes a thermal state whose
“inverse temperature” # > 0 sets the energy scale of states
involved in the regularization. The effective dimension (48)
becomes

dp = 2Tr(pgh) + 1, (49)

directly related to the mean energy of the thermal state.
Similar energy-dependent factors also replace dimensions
in studies of uniform continuity for quantum entropies [78]
as well as bounds on energy-constrained capacities of
Gaussian channels [79]. Since |¢pg) is a Gaussian state,
the corresponding CV entanglement fidelity may be extract-
able via reasonable experimental protocols [88,89].

As for more general R, we emphasize that Eqs. (46) and
(47) hold as is only when R is diagonal in the {|n)} basis
even though Eq. (40) is well defined even when R is not
diagonal. Of course, one has the freedom to arbitrarily
choose the basis with respect to which the CV entanglement
fidelity is defined, so R being diagonal is not a substantial
restriction.

Recall in Eq. (29) and Proposition 6, we saw that
introducing factors of R~ into a definition of frame
potential resulted in finite-dimensional formulas nicely
generalizing to infinite dimensions. We again see this

effect present in Eq. (47). The definition of F\*) utilizes

factors of R~!, while F ER) does not. As a consequence, the
finite-dimensional relation (42) involving F' and F, very
closely matches the infinite-dimensional relation (47)

R) and F eR>, whereas the relation involving

involving F
_< ) and F (46b) contains a factor not present in the

ﬁmte dimensional case.

3. Fidelity benchmarks for displacement operations

We compare the fidelity quantities introduced in this
section to known quantities for the case of the pure-loss
channel, D = £* [116], with transmissivity k € [0, 1]. This
case is relevant to benchmarking the performance of
displacement operations that are implemented via a non-
ideal two-mode beam splitter, with the transmissivity
characterizing the degree of nonideality [92,117]. All
quantities described below are computed analytically in
Appendix E2 a.

In order to put all quantities on as equal of a footing, we
set them to be a function of a fixed energy scale 7 using the
following convention (with other choices possible). For the
soft- and hard-energy regularizers, R; = ¢ and P, =

4=11n)(n| (19), respectively, we set
1/n)

p=log(1+ and d=|n|+1. (50)

The soft-energy cutoff then corresponds to an average
energy of 7 for the regularizer thermal state (44) and an
effective dimension dp = 2n + 1 (49).

Our first comparison is between all fidelities that utilize
a reference mode. This comparison is between the CV
entanglement fidelity (45), with either soft- or hard-
energy regularization, and its minimum energy-constrained
version [92,118]

LK) = min

_ ,<‘//|£K(II/EA)|W>EA’ (51)
wia: Tr(iawa)<i

m1n (

consisting of an optimization of the CV entanglement
fidelity over all input states whose average energy on
the mode acted on by the channel is bounded by 7.

The three reference-mode fidelities {F' 2“), F ER/’ ), F f:fl)n}
are plotted for 7 = 4 and all transmissivities k € [0, 1] in
Fig. 2(a). All quantities decrease in similar fashion with
decreasing transmissivity, with the soft-energy fidelity
following the scaling of the minimum case slightly better
than the hard-energy fidelity near unity transmissivity.
Because of the parametrization picked in Eq. (50), the
entanglement fidelities for the two energy constraints are
equal for zero transmissivity: F' o) — F éRﬂ) =1/(i+1)?
at k = 0.

Our second comparison is between fidelities that do not
utilize a reference mode. This set includes both of our CV
average fidelities from Eq. (40), each with either a soft- or a
hard-energy constraint. These are related to the entangle-
ment fidelity of a CV channel via Eqgs. (46a) and (46b),
respectively. Since the pure-loss channel is trace preserving
on the subspace defined by P, two of these four fidelities
are equal in the case of the hard-energy constraint:
F(IP @)

=)= F gg"). This comparison also includes the

average fidelity of the pure-loss channel over an ensemble
of coherent states:

FO) (£%) o= / Pl @a)da,  (52)
C

where |a) denotes the coherent state specified by a € C. We
choose the density function to be p(a) = (1/zi1)e™1"/" to
ensure that the average occupation number of the ensemble
of coherent states is [, p(a)|a|*d®a = n

The four average- ﬁdehty quantities {F i3 Pa), F, &) F ;R/’/ 2

COh} are plotted for 7 =4 and all transmissivities k in
Fig. 2(b). Note that the average fidelity over an ensemble of
coherent states does not qualitatively match the other
fidelities. In particular, the concavity of F,, near unity
transmissivity is different from the other fidelity quantities.
This may be related to the fact that an ensemble of
coherent states forms only a CV 1-design, whereas the
other fidelities are defined with respect to various notions
of 2-designs. This result suggests that the coherent-state
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FIG. 2. Various fidelity benchmarks for the pure-loss channel £ plotted vs the channel’s transmissivity k, with the energy-constrained
parameter 7 = 4, and all other fidelity parameters being functions of 7 according to Eq. (50). (a) Comparison of fidelities that utilize a
reference mode: the CV entanglement fidelity F, (45) with soft- and hard-energy constraints (19) as well as the minimum energy-
constrained entanglement fidelity F;, (51). (b) Comparison of our three average-fidelity quantities—the soft-energy-constrained

average fidelities F' ER” ) (46a) and F (ZR/‘/ 2) (46b) as well as the hard-energy-constrained case F (lgd>—with the fidelity F”

(52) calculated

coh

by averaging over an ensemble of coherent states. The qualitatively different behavior of the coherent-state fidelity suggests that it may

not be a good approximation to averages over CV states.

average may not be a useful approximation for an average
over all CV states.

VII. CONCLUSION

In this work, we study quantum state designs in finite
and infinite dimensions. In finite dimensions, we review a
method for constructing complex-projective designs using
simplex and torus designs. In particular, we establish a
relationship between torus designs and complete sets of
mutually unbiased bases.

We then prove a no-go theorem implying that a naive
extension of the definition of state designs to infinite
dimensions fails. Similarly, we prove that CV unitary
t-designs do not exist for any 7 > 2. Prior to our work, it
was proven [51] (argued [57]) that Gaussian resources are not
sufficient to form CV state (unitary) designs. Our no-go
theorem establishes a stronger result implying that even non-
Gaussian resources are not sufficient to form CV designs.

The lack of CV designs is due to a restriction to using
only normalizable states. We successfully extend the notion
of state designs to infinite dimensions by proposing a new
definition of CV state designs using non-normalizable
states. These non-normalizable states belong to a rigged
Hilbert space, and we provide various constructions of
such rigged 2-designs consisting of Fock states and
oscillator phase states [58-62,65] subject to Kerr-
Hamiltonian evolution.

As an application of rigged designs, we extended the
formalism of shadow tomography [25-28] to CV systems.

We show that our rigged 2-designs and, if useful ones exist,
rigged 3-designs can yield efficient shadow-based proto-
cols. It is an interesting direction to experimentally imple-
ment our design-based CV shadow tomography protocol
based on rigged 2-designs and compare it with other
protocols based on homodyne or heterodyne measurements
[113], which can also be formulated within a shadowlike
framework (albeit without the use of designs) [67]. The
POVMs defined by the rigged 2-designs that we con-
structed are highly non-Gaussian. It is an exciting open
theoretical and experimental direction to develop tech-
niques to measure from such POVMs.

We construct approximate CV designs by regularizing
the elements of rigged designs. These regularized-rigged
designs consist of physical quantum states and, therefore,
can be used to define information-theoretic quantities, such
as fidelities, for CV quantum channels. In particular, we
define various notions of the average fidelity of a CV
channel. We then establish a relation between the average
fidelity and the entanglement fidelity of a CV channel. Our
result is a natural generalization of finite-dimensional
formulas [119], where the dimension is replaced by the
effective dimension that depends on the mean energy of the
input state to the channel. It is an interesting open question
to develop efficient experimental methods to prepare states
belonging to regularized-rigged designs introduced in our
work. On the theory side, it may be interesting to determine
a relationship between the energy-constrained diamond
distance [80,81] and the average fidelity introduced in
our work.
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As discussed in Sec. VI C 3, an important application of
regularized-rigged designs is to estimate the average
fidelity between an ideal unitary and its experimental
approximations. We emphasize again that our results are
applicable directly when analytical expressions of an ideal
unitary gate and its experimental approximation are known.
Instead of estimating the average fidelity over a subset of
states such as coherent states, one can calculate a good
approximation of the average fidelity over all states using
our regularized-rigged designs.

We construct rigged and regularized-rigged CV state
2-designs, leaving the interesting question of constructing
useful CV state ¢-designs for # > 3 to future work. Another
interesting direction is to develop the notion of energy-
constrained CV state designs, where each state in the
design satisfies a fixed energy constraint. Our regularized-
rigged state designs are good approximations of energy-
constrained CV state designs.

Our rigged designs are defined on the Hilbert space
L*(R) of a single mode but can formally be mapped into
any other countably infinite Hilbert space, because all such
spaces are isomorphic. A mapping like this from the single-
mode space to the space L?(R") of multiple modes is likely
to be physically obscure. An interesting future topic would
be to develop designs for other spaces, such as multiple
modes, rotors, and rigid bodies [76], using states natural to
those spaces. For example, we anticipate that designs
similar to our Kerred phase-state designs can be formulated
for the space of the planar rotor, L?[U(1)] (see Sec. IV B in
Ref. [76]). Similarly, cross-Kerr interactions [66] may
provide a recipe for rigged designs for multiple modes.

We also prove that CV unitary 7-designs do not exist for
any ¢ > 2. A natural research question is whether, similar to
rigged CV state designs, there exists a reasonable notion of
CV operator designs. We introduce one such notion in this
work, leaving the interesting and important question of how
to construct such designs to future work.

Finally, another interesting avenue to explore is that of
designs for function spaces. In Appendix D 5, we showed
how our rigged designs can be interpreted as designs over
infinite-dimensional function spaces. Can this theory be
further generalized to other functional integrals, such as,
e.g., path integrals? In particular, in field theories, one is
typically interested in correlators (i.e., polynomials in the
fields) of various degrees; a #-design is, therefore, a space of
fields that match all correlators up to degree 7. Can designs
be defined and used in this context? References [120-123],
which contain a small number of cubature rules for Weiner
integrals, may be a useful place to start.
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APPENDIX A: POINTERS TO APPENDIXES

In Appendixes B-F, we provide proofs of our main
results and summarize relevant background material on CV
information theory. Appendix B covers relevant definitions
from measure theory and properties of projectors onto the
symmetric subspace of a separable Hilbert space.
Appendixes C 1 and C 2 review finite-dimensional simplex
and torus designs. Appendixes C3—C 5 review complex-
projective designs and their relationship to simplex and
torus designs. Using simplex and torus designs, we develop
a design formalism for constrained complex-projective
integration in Appendix C 6. To the best of our knowledge,
the formalism developed in Appendix C6 is novel.
Similarly, to the best of our knowledge, Definition 1,
Theorem C9, and Proposition C11 from Appendix C 2
are new, though we prove in Appendix F that Definition 1
is equivalent to a previous definition given in Ref. [8].
A relationship between simplex, torus, and complex-
projective designs was described in Ref. [8]. We further
extend on this relationship in Appendixes C 3—-C 5.

Readers who are familiar with finite-dimensional com-
plex-projective designs may wish to begin directly from
Appendix D. Appendixes D and E discuss the main results of
this paper. In Appendixes D 1 and D 2, we prove that CV
state and unitary t-designs do not exist for # > 1. In
Appendixes D 3 and D 4, we define and construct rigged
and regularized-rigged designs, which are generalizations of
CV state designs. In Appendix D 5, we discuss an alternative
characterization of CV, rigged, and regularized-rigged
designs based on integration over infinite-dimensional
Gaussian measures. In Appendix D 7, using regularized-
rigged designs, we propose a new definition of an approxi-
mate CV unitary 7-design. In Appendix E 1, we develop
the formalism for CV shadows based on rigged designs. We
then define the average fidelity of a CV channel based on
regularized-rigged designs in Appendix E 2. Finally, in
Appendix F, we establish a relationship between torus
2-designs and complete sets of mutually unbiased bases
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that, to the best of our knowledge, had not been previously
established.

APPENDIX B: PRELIMINARIES

In this section, we summarize some definitions and prior
results relevant for the rest of the appendix. We point
readers to Refs. [97,98] and Ref. [124] for background
on continuous-variable information theory and measure
theory, respectively.

Throughout this manuscript, N and N, denote the sets of
positive and non-negative integers, respectively. A t-fold
Cartesian product Ny x - - - x Ny is denoted by Nj. Z, are
the integers modulo d, Z, = {0, ...,d — 1}.

States.—We consider continuous-variable states (normal-
ized vectors) in the separable infinite-dimensional Hilbert
space H = L*(R). Separable Hilbert spaces, by definition,
have a Schauder or Hilbert space basis; any vector in a
separable Hilbert space can be written as > . ;a,|v,) for
some Schauder basis {v,} which is always guaranteed to
exist (see Chap. 17.1 in Ref. [125]). For concreteness, when
discussing an explicit basis, we use the standard Fock
basis on L?(R), denoted by {|n)|n €Ny}. In the position
representation, a Fock state |n) is w,(x) = (x|n) =
(x4 /\/n12")e " /2H ,(x), where H, is the nth Hermite
polynomial. We also consider d-dimensional qudit states,
where the Hilbert space is C¢. We fix an orthonormal basis of
C“ and denote itas {|0), ..., |d — 1)}. Qudit states belong to
complex-projective space CP?~!, which is described more
in Appendix B 1.

m-torus and m-simplex.—The m-torus is denoted by
T"x=[0,27)" =(R/2zZ)™. The unit-normalized Lebesgue
measure on 7" is given by d¢ == [1/(2x)"]d¢;...d,,.
Moreover, the m-simplex is defined as

o) w

A" = {(po, ooy P) €10, 1] H!
i=0

Any integration over A™ can be defined using the unit-
normalized Lebesgue measure on A™ as follows:

f(pos - Pm)

[ tordp=m:

[0,1]”'“
x&(1=po=+--=pun)dpo...dp,, (B2)
where § is the Dirac delta function and f(p) is any function
over p.

1. Measure theory

In this section, we summarize definitions and key
theorems from measure theory. We point readers to
Ref. [124] for more details. For a concise introduction to
basic concepts in measure theory, we recommend video

lectures in Ref. [126], which serves as much of the
inspiration for our summary below.

For a finite set X, the most natural way to assign a
measure (i.e., “size” or “volume”) to subsets of X is by
cardinality. However, for many applications, this method
breaks down for infinitely large sets. Intuitively speaking,
measure theory is a way to generalize the notion of
determining the size of a subset to infinitely large sets.
To begin, fix a possibly infinite set X. We denote the power
set of X by P(X).

To assign generalized “volumes” to subsets of X, we are
looking for a map p:X — [0, 00|, where £ C P(X) is some
collection of subsets of X. For a subset A C X, let A€ X.
We assign the volume, or measure, of A in X to be u(A).
Notice that the codomain of y is the positive extended real
line [0, o0, which we define to be [0, 00) U {oo}. This
notation signifies [0, 00) as the standard non-negative part
of R and {oo} as the set containing the symbol co. In other
words, we include oo in the codomain of the measure u. For
all r€]0, 0], the symbol oo is defined by the following
three rules:

r 4+ 00 = 00,
if r=20

0
roo = ] 0o — oo undefined.
oo otherwise,

(B3)

The domain X of u is the collection of all measurable
subsets of X, where a measure is assigned to each element
of X by u. In particular, the collection of measurable sets
should satisfy the following.

(1) @,XeZ;ie., avolume can be assigned to the empty
set and the whole set X.

(2) If A€X, then the complement of A, A° = X\A,
should also be in X; i.e., if A is measurable, the
complement of A should also be measurable.

(3) Ifacountable collection of sets A; are in X, then their
union [ J;A; should also be in X.

A set £ C P(X) satisfying these aforementioned properties
is called a o-algebra.

Given a set X and a o-algebra £ on X, one can then
formally define a measure y:X — [0, oo]. p should genera-
lize the properties of volume and, therefore, must satisfy the
following two conditions.

(1) u(@) = 0; i.e., the empty set has zero volume.

(2) For any countable collection of pairwise disjoint sets
A;eX, u(J;A;) =22 u(A)); ie., the volume of a
region is the sum of the volumes of its constituents.

The triplet (X, X, p) is called a measure space. A measure p
on X is called o finite if X is the union of at most
countably many subsets of finite measure. In other words,
if there exists a countable collection A, A,, ... €X such
that | J;A; = X and each A; satisfies u(A;) < co, then pis &
finite. For example, consider X = R, and A; = (j— 1.1,
Jj+0.1)uU (=j—0.1,—j+ 1.1). The length of each A; is
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2.4, which is finite, and the countable union U; A; = R.
Hence, R with the measure u[(a,b)] = b — a is o finite.

One can show that, for many cases of interest, not all
subsets can be measurable [i.e., X # P(X)] if the measure is
desired to satisfy certain properties. For example, in the
case of X = R, we desire the measure to have the properties
u(r+A) =pu(A) for all reR and A C X, and p([a, b]) =
b — a. One can prove that such a y:P(X) — [0, co] cannot
exist. Hence, in general, one must restrict the -algebra X to
not be the entire power set. The most important ¢-algebra
on R is the Borel o-algebra, which is the smallest o-algebra
that contains all open sets in R equipped with the standard
topology. The most important measure on R is the
Lebesgue measure, which satisfies the two properties
above. Given the product of two o-finite measure spaces,
one can define a unique product measure space. Using this
construction, one can construct the Lebesgue measure on
R?, and this can be reinterpreted as a Lebesgue measure
on C.

A crucial feature of measure spaces is the concept of
almost everywhere, often abbreviated u-a.e. or just a.e. if
the measure is clear. A property is said to hold p-a.e. if it is
true everywhere except on a subset that is contained inside
a subset of measure zero. For example, the rationals Q are
contained within a measurable subset of measure zero in
the reals R with respect to the Lebesgue measure. In fact, Q
is itself measurable. Therefore, the property that “r e R is
irrational” holds a.e. with respect to the Lebesgue measure.
One important property that shows up often is f < g a.e. for
two measurable functions f and g. This means that the set
{xe€X|g(x) > f(x)} is contained within a measurable set
with measure zero.

Between two measure spaces (X,Z;,4;) and (X5, X5, ),
amap f:X, - X, is called measurable if the preimage of
measurable sets is measurable, meaning that f = (A,) € £, for
allA, € 2,. For X, = R with the standard Lebesgue measure,
if amap f:X — R is measurable, then for every r €R the
preimage =1 ({r}) = {x € X;|f(x) = r} is measurable (see
pp- 359-360 in Ref. [124]). Intuitively, in order to integrate
over a function, we must be able to determine the measure of
the domain for which that function takes a certain value. For
example, in the case of a bump function f:R — R, where
f(r) = c whenever r € A and zero otherwise, the integral of f
is defined as cu;(A) = cuy [f~'({c})]. Therefore, we must
require that £~'({c}) be measurable.

We now briefly describe the intuition for Lebesgue
integration. For a measurable set A €ZX, the indicator
function 11, (x) is defined to be 1 if x € A and 0 otherwise.
A simple function is any function of the form fg, =
> ally for each o;€R and A; €X. The Lebesgue
integral of fg, is defined as [y fomdu = > 1, au(A;).
Let S denote the set of all simple functions. For a nonsimple,
non-negative function f, the Lebesgue integral of f is
defined as a supremum over all simple functions

[ fau= sup [ Fondn (B4)
X fsim€S JX

fsim</f ae.

Finally, for a general measurable function f, the
Lebesgue integral of f is defined in terms of the integral
of non-negative functions by [y fdu = [, max(0, f)du —
fx max (0, —f)du and is, hence, defined only if both
max(0, f) and max(0, —f) are integrable, since co — oo is
undefined.

A measurable function f is said to be integrable if
Jx | f1dpu is finite. One basic fact about Lebesgue integration
is that if f < g almost everywhere, then [, fdu < [, gdu.
Also, the integral is linear, so that [,(f + g)du =
[y fdu+ fX gdu. Oftentimes, we include an integration
parameter for clarity. We define the notation

[ faute) = [ sn

The space L'(X,X,u) is the set measurable functions
(identified if they agree almost everywhere) f:X — R for
which [y |f|'du < co. Define the r-norm to be ||f]|, :=
(fx |f|’d/4)'/’. With respect to the z-norm, L'(X, X, u) is a
Banach space. L?(X, X, u) is a Hilbert space with respect to
the inner product (f,g) = [y fgdu in the real case, and
similarly in the complex case but with g — g. A bounded
sequence in L'(X, X, u) is a sequence of measurable maps
(fi)ien for which ||f;||, <M for some finite number
M €R. When the c-algebra and measure are clear from
context, we denote L'(X,%,u) as L'(X). For example,
when L?(R) is written, the o-algebra and measure are
assumed to be the standard Borel os-algebra and Lebesgue
measure on R.

(BS)

a. Theorems and lemmas

We now state and discuss various theorems that are used
in our proofs. First, we review the Lebesgue dominated
convergence theorem (see Chap. 18.3 in Ref. [124]), which
provides a condition under which a limit can be brought
inside of an integral.

Theorem Bl (Lebesgue dominated convergence theo-
rem). Let (X,Z,u) be a measure space and (f,),cyn @
sequence of measurable functions on X for which f,, — f
pointwise almost everywhere on X and the function f is
measurable. Assume there is a non-negative function g that is
integrable over X and dominates the sequence (f,), e 0n X
in the sense that |f,| < g almost everywhere on X for all .
Then, f is integrable over X and lim,,_o, [y f.du = [y fdu.

As a simple example of the Lebesgue dominated con-
vergence theorem, consider the sequence of functions
fu(x) =€ on R. (f,),cn converges pointwise to the
zero function, because for every fixed x, lim,,_,, f,(x) = 0.

Every f, is bounded above by g(x) = e~ for all x, and the
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integral of g over R is finite. Hence, lim,_, fR fadu =
Jelim, o f,du =0. If we instead just compute the
integral, we find that [, f,du = \/z/n, which indeed goes
to zero as n — oo.

Next, we state the Riesz weak compactness theorem (see
Chap. 19.5 in Ref. [124]), which forms the backbone of our
proof that continuous-variable state 7-designs do not exist
for t > 2.

Theorem B2 (Riesz weak compactness theorem). Let
(X, %, u) be a o-finite measure space. Let 1 < 7 < oo and ¢/
such that 1/r 4 1/¢ = 1. If (p;)$?,, is a bounded sequence
in L'(X) = L'(X,X, u), then there exist a subsequence
(Pi)2o of (pi)2, and a function g € L'(X) for which

VheL!(X): lim / pi hdp = / ghdu.  (B6)
- JXx X

Indeed, this theorem is the main ingredient in our proof
of the nonexistence of continuous-variable 7-designs.
Notice that this theorem does not hold for # = 1 but rather
t > 1. This ultimately is the reason why our proof of
nonexistence of continuous-variable state t-designs holds
only for # > 2. This is a nice sanity check, since Example
D4 shows explicit examples of continuous-variable state
1-designs. The proof of the Riesz weak compactness
theorem uses that L’(X) is a reflexive Banach space for
all 1 <t<oo. For each such r, L"(X) is naturally
isomorphic to the dual space of L(X). However, L'(X)
is not the dual of L*(X). Since the Riesz weak compact-
ness theorem is so important for this work, we present a
simple example to help understand the theorem.

Example B3. Suppose (f,),cn 1S @ sequence of func-
tions f,:[0, 1] — R defined by f, =+/nllg i/, €L*([0,1]),
where the indicator function 11y, ,(x) on an interval [a, b]
is 1 for any x in the interval and O elsewhere. The norm of
Fu is a3 = fo LfulPdu = nu([0,1/n]) = 1. Hence,
(fu)nen is @ bounded sequence in L2([0, 1]). Therefore,
there is a subsequence (f', )<y and a function g€L?([0,1])
for which

VY heL?([0,1]): hm/ fnkhd,u—/ ghdu.  (B7)

k—o0

Consider the constant function h = 1€ L?*([0,1]). We
can explicitly compute the left-hand side to be
limy_, o, f[o,u Vo1 /0, = iMoo \/715/ 1y = 0. Similarly,
one can consider functions %, , = 11, ;) forany a < b €10, 1]
and compute the left-hand side to be zero for all choice of a
and b. Therefore, it must be that f[o, 1l gy, pydu = O forall a
and b, meaning that ¢ must be zero almost everywhere.
One says that the subsequence (f,, ) converges weakly to
0 in L2([0,1]). This is to be contrasted with strong
convergence. If (f, ) were to converge strongly to O in

L*([0,1]), then limy o [0/, —OFPdu =0, which is
clearly not the case. It is not hard to see that the full
sequence (f,) also converges weakly to 0.

Consider instead the sequence (f,),cyn defined by
fn = (=1)". The sequence is bounded in LZ2([0,1]).
Therefore, there is a subsequence (f,, ),y that converges
weakly to a function ¢ € L?([0, 1]). This example shows
why the Riesz weak compactness theorem proves only that
a subsequence weakly converges to g, as opposed to the
whole sequence. In this case, one can take the subsequence
of even n so that f,, = 1 or odd n so that f,, = —1. These
subsequences then converge weakly (and strongly) to 1 and
—1, respectively, but the full sequence (f,),cy does not
converge weakly to anything in L2([0, 1]).

Notice that the Riesz weak compactness theorem
requires a o-finite measure space. Thus, in order to use
the theorem, we need to be able to ensure that our measure
space is o finite. The following lemma (see Chap. 18.2,
Proposition 9 in Ref. [124]) allows us to do this.

Lemma B4. Let (X, X, u) be a measure space and f: X —
[0, oo] a non-negative integrable function on X. Then f is
finite almost everywhere and the set {x € X|f(x) > 0} is ¢
finite.

b. Haar measure

Suppose (G,-) is a compact Hausdorff topological
group. Let X be the Borel s-algebra on G, that is, the
smallest c-algebra that contains all open sets of G. A
measure u is called left invariant if u(A) = u(gA) for all
g€ G and A€X. The Haar measure on G is the unique
left-invariant measure satisfying u(G) = 1. The finite-
dimensional unitary group G = U(d) is compact and, there-
fore, can be equipped with the measure py,,, satisfying

/ dﬂHaar(U) =1,
U(d)

/ F(U) ity (U) = / FVU) b (V)
U(d) U(d)

_ / FUV)dioe(U)  (BS)
U(d)

for any V e U(d).

The Haar measure on U(d) induces a unitarily invariant
measure on complex-projective space CP?~!. The construc-
tion is summarized as follows [100,101,127]. The unitary
group is defined on C“ with respect to an inner product. The
unit sphere $?¢~! ¢ C? can be viewed as an embedding into
C“ and consists of all unit-normalized vectors in C?. The
inner product on C¢ remains defined on $2?~!. The set of all
quantum states in C¢ is CP4~! := §2¢=1 /U(1). Modding out
by U(1) represents the irrelevance of a global phase factor. In
particular, $?¢~! can be viewed as a fiber bundle, with CP?~!
the base space and U(1) the fiber on top of each point in
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CP?!. The bundle projection z:5%?~! — CP?! induces a
map between the tangent spaces 7, : T, 5%~ — T, CP*!
(the push-forward map). With some care, z, can be used to
construct a Hermitian metric on TCP¢~! via the inner
product on $2?=!. The real part of such a metric defines a
Riemannian metric g, which can then be used to define a
volume form, called the Fubini-Study volume form, on
CP4! in the usual way. By construction, the Fubini-
Study volume form is unitarily invariant with respect to
the definition of unitary via the inner product on $¢~!. In
particular, 7z is a Riemannian submersion, and the resulting
metric is the unique unitarily invariant metric up to scaling.
In this way, we define a unitarily invariant measure on
CP?-!. Integrals with respect to this measure are denoted
Jepa-r f(y)dy. By unitary invariance, [-pai f(Uy)dy =
Jepat f(w)dy for all U e U(d).

A (nonfinite) Haar measure can also be defined on
noncompact groups provided that they are locally compact.
We do not discuss this fact much here, other than to say that
the unitary group on L?(R), U[L?(R)], does not have a
Haar measure since it is not locally compact (see Sec. V in
Ref. [105]). Hence, there is no natural way to integrate over
all unitaries acting on the space of continuous-variable
quantum states.

2. Projector onto symmetric subspace

In this section, we summarize the analytical form of
projectors onto the symmetric subspace of a separable
Hilbert space H, either finite or infinite dimensional. Let S,
denote a group of permutations of ¢ elements. For any
6 €S, let W, H® — H®" denote a unitary operator that
transforms the Fock basis as follows:

Woln) @ - ® |n,) = [np1(1)) @ -+ ® [ng11).  (BY)

Let IT,: H®" — H®’ denote the projector onto the sym-
metric subspace of H®', i.e., the subspace isomorphic to
the quotient space H®'/{v — W, v|v € H®',6 € S,}. Using
W, I1, can be defined as follows.

Claim B5.—For each t € N, let I; denote a projector onto
the symmetric subspace of H®'. Then,

1
HFWZWU.

c€ES,

(B10)

For completeness, we outline an algebraic proof of I1,. It
can also be proven using group-theoretic tools, as is shown
in, e.g., Sec. Ilin Ref. [21], and using linear algebra, as shown
in Proposition 1 in Ref. [102]. For a complete discussion on
the symmetric projector, we refer to Harrow [102].

Proof. We denote the set of permutations of a vector
veEH® as P(v):={W,v|c€S,}, where W, is given
by Eq. (B9). Let B={|i)lie{l,...,dimH} be an

orthonormal basis of H and B®’ the corresponding ortho-
normal basis of H®".

As an example, suppose t =4 and v=|1)®[2) R |1) ®
|1) e B®". We use the notation v! to mean v! = 3! - 11, since
|1) occurs three times and |2) one time. Similarly, suppose
t=5and v = 5% ® |1)®2. Then »! = 3!-2!. One can
then verify that

1
B - {7 ng|veB®’}
V U!|St|n;t

is an orthonormal basis of the symmetric subspace of H®'.
For any v € B%®" and u € B/, the following holds:

(B11)

v!
<1}|M> = mﬁuespan[P(v)]

"ol
— { IS
0

Using one-dimensional subspaces spanned by the basis
vectors in 3, the projector onto the symmetric subspace of
H®" can be represented as

=3 Ju)ul.

ueB

if u € span[P(v)], (B12)

otherwise.

(B13)

Next, we determine the matrix elements of II, in the basis
B. Let v,w e B. Then,

(ol lw) = > (vlu) (ulw) (Bl4a)
ueb'
Volw!
= |S | Z5u€span[P(17)]5uESpan[P(w)] (B14b)
nouep
v!
- m6v€P(W)' <B14C)
t

Finally, consider the matrix elements of (1/|S,]) >, cs5, W:

1 1
0l (15 oW ) ) = g Sl (B1Sa)
| f|ges, | t|0'€Sz
s B15b
_m vEP(w)» ( )
which proves the claim. m

We now define some more notation for the matrix
elements of the symmetric projector.
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Definition B6. For any tuples a, b €N}, define

,(a;b) =,(ay, ...,a;; by, ..., b)) (B16a)
1 !
= (&) (gm) @
and define
A(a)=AN(ay,...,a;) =T,(a;a). (B17)

For this appendix, we need some properties of A.
Clearly, A,(a) > 0 for all tuples a € N{). Similarly, A,(a) =
AJo(a)] for any o€S, Additionally, A,(ay,...,a,) =
Aa; +1,...,a,+1). Finally, for a tuple »€N;! and
a number i€N,, denote the direct sum as the tuple
b @ (i) = (by,...,b,_;,i). For any fixed b €N, there
exists an N € N such that forall m,m’ > N:A,[b @& (m)] =
A,[b @ (m’)]. This means that, for example,

lim A,(0,...,0,m) > 0.

m—oo

(B18)

To get a handle on these definitions and properties,
consider the example for 1 = 2.
Example B7. In the case of t = 2,

I =Wy +Way) =5(1+S),  (BI19)

N =
N =

where S is the SWAP operator. We use cyclic notation for
permutations, so that (1)(2) is the identity permutation and
(12) is the other permutation in S,. One can also find I, by
summing over projectors onto an orthonormal set of
symmetric states, as

— <|o>|1>+|1>|o>> <<0|<1|+<1|<0|>

V2 V2
+ 1) 1)(1[(1]
0)12) +12)]0) ((0(2] + (2[{0]
() (PR e e
Therefore,
I (ay, ay; by, by) = %(51111;15@1;2 +8a,0,00,5,)s  (B21)

and A2(a1’a2) = %(1 + 5a1a2)'

APPENDIX C: FINITE-DIMENSIONAL DESIGNS

1. Simplex designs

A simplex f-design, more commonly referred to as a
(positive, interior) simplex cubature rule in the literature
[4-9], is a set of points on the simplex and a weight function
that exactly integrates polynomials of degree ¢ or less.

Definition C1 (simplex design). Let P C A™ be afinite set
andu:P — R_,beaweight functionon P.Letdp denote the
standard unit normalized Lebesgue measure on the simplex.
The pair (P, u) is called an m-dimensional simplex t-design
if, for all tuples a = (ay, ...,a,;) €{0,1,...,m},

(C1)

t !
Sw@ [0 = [ TLpadr.
i=1 i=1

qeEP

The pair (P,u) defines a probability ensemble, and we,
therefore, define E,cpg(q) =>_,cpw(q)g(q) for any
function g.

Since the coordinates of a point on the simplex sumto 1, by
summing over one of the a; on both sides, we find that a
simplex #-design is automatically a simplex (¢ — 1)-design.
The measure dp is proportional to §(1—py—---—p,)x
dpo...dp,,. For BENJ™ and peA™, define p’:=

m . p?. For example, if m =2 and f = (0,2,1), then
p? = p3p,. Then, one can compute the moments from the
Dirichlet distribution [4]

Y] _ m! mn .
/mp dp (m+ﬂ0+-~~+ﬂm)!Hﬁ’!' (C2)

i=0

We list various simplex #-designs. We use the notation

(C3)

so that fﬁ-l) = &,;. In this way, a point p € A™ is written as
p=>"00f (). Denote the centroid of the simplex
by ¢ = (1/m+ 1) 30, £,

Theorem C2 (extremal points of the unit m-simplex form
a I-design). Let P be the set P = {f)]i€ {0, ...,m} and u
the constant map w(f)) = 1/(m + 1). The pair (P, u) is a
simplex 1-design.

Proof. We must prove that (1/m + 1) 37, g(f?) =
n! [sn g(p)dp for any linear polynomial g(p) = p;. The
left-hand side is then (1/m+ 1)) "6, =1/(m+1),
and the right-hand side is 1/m + 1 by Eq. (C2). [

Theorem C3 (centroid of the unit m-simplex forms a
1-design). Let P be the set P={c} and u the map
u(c) = 1. Then the pair (P, u) is a simplex 1-design.

Proof. Clearly, g(¢) =1/(m + 1) for any linear poly-
nomial g(p) = p;. =

Theorem C4 (extremal points plus the centroid of the
unit m-simplex form a 2-design). Let P be the set P=
{c}u{f9i€{0,...,m} and u the map defined by u(c) =
(m+1/m+2) and u(f®) = [1/(m + 1)(m + 2)]. Then,
the pair (P, u) is a simplex 2-design.
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Proof. Tt suffices to prove that

m

m+2 Zg

l=0

m+ 1

—— g+t ——

m+ 2 (m+1)

= m! / 9(p)dp (C4)

for any quadratic polynomial g(p) = p;p,. By Eq. (C2),
the right-hand side equals 1 +6,/(m + 1)(m +2). The
left-hand side is

m+1 1 “
m+2g(c)+(m+1)(m+2);g(f()

1 1 m

~ (m+1)(m+2) b
(m+1)(m+2)’ (C5b)

as desired. i

Theorem C5 [simplex 2-design (see Theorem 2 in Ref. [6]
and Corollary 4.1 in Ref. [7]]. Let r=1/v/m+2. Let
) = rf0 4 (1 —r)c. Let P be the set P={vlie
{0, ...,m} and u the constant map u(v\)) =1/(m +1).
Then, the pair (P, u) is a simplex 2-design.

The simplex 2-design in Theorem C5 utilizes m + 1
points in A™, which is, in fact, the best that can be done (see
Table 1 in Ref. [5]).

2. Torus designs

We define torus designs analogously to simplex designs.
We let T = [0, 2x).

Definition C6. Let S C T be a finite setand v: S = R
be a weight function on S. Let d¢ denote the standard unit
normalized Lebesgue measure on the torus. The pair (S, v)
is called an m-dimensional forus t-design if, for all tuples

a:(al,...,at)e{l,Z,...,m}f and b:(bl’”_’bt)e
{1,2,...,m},
1 ) 1 )
ZU(Q) Hel(gni_ebi) :/ Hel(¢ai_¢hi)d (C6)
0es i=1 "=

The pair (S,v) defines a probability ensemble, and
we therefore define Eycgg(el’, ..., e1%) =3, s v(0) x
g(e%, ..., %) for any function g.

It follows from the definition that a torus t-design is
always a torus (# — 1)-design. For example, suppose t = 2,
andleta = (1, ) and b = (1, k) for any j and k. Then, it is
clear that the 2-design (S, v) also satisfies the 1-design
condition. By definition, a torus z-design must match
integration on polynomials g(s) = ¢(sy,...,s,,) that are
degree ¢ in s and degree ¢ in degree 5. One could generalize

the definition to match integration on polynomials that are
degree r in s and degree ¢ in 5. We call the corresponding
sets (¢,7') torus designs. In this way, a torus r-design is a
shorthand notation for a (#, 7)-design.

The definition of a torus z-design closely resembles the
definition of a trigonometric cubature rule [5]; however,
they are not equivalent. To the best of our knowledge, the
notion of general torus cubature was first proposed in
Ref. [8], where it was formulated as a generalization of
trigonometric cubature rules in terms of algebraic tori. Our
definition of a 7" t-design corresponds to the definition in
Ref. [8] of an order ¢ cubature rule on the maximal torus
T[PSU(m + 1)] = T™ with an algebraic structure given by
a faithful orbit of its linear action by conjugation on the
vector space of (m—+1)x (m+ 1) complex matrices.
Here, PSU(m + 1) is the projective special unitary group,
which is the special unitary group SU(m + 1) modulo its
center. In Appendix F, we show the equivalence of the two
definitions as well as comment on the relationship to
standard trigonometric cubature and to complete sets of
mutually unbiased bases.

We now construct various torus designs.

Theorem C7 (1-design on the m-torus). Let S be the set

S ={(0,2zq/m,2x2q/m, ....2zx(n — 1)qg/m)|q € Z,,}
(C7)

and v the constant map v(¢) = 1/m. Then, the pair (S, v)
is an m-torus 1-design.
Proof. 1t is sufficient to check for g(s) = s,5,:

= E eZmaq/m —2zibg/m _ E equ a-b)/ ab (C8)
q ez, CI €Z,
Meanwhile,

. . 1 .
/ efee” v dp = 2 / e =P)dp,dp), = .- (CI)
m (27[) T2

n
Theorem C8 [t-design on the m-torus (concatenation of
t-designs on each factor of S')]. Let S be the set

S ={(2nd,/(t+ 1), 2zdy/(t + 1), ...,

27d,,/(t+1))|dez™, (C10)

and v the constant map v(¢p) = (¢ + 1)~". Then, the pair
(S,v) is an m-torus t-design.
Proof. 1t is sufficient to

sa| ...salsbl ...Sb[:

check for g(s) =
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1 27i
m Z exXp |:[—|-—1 (dal + -t da!):|

m
dEZHl

2l
- = (d et d
xexp[ oy b,)}
1 if a is a permutation of b,
= . (c11)
0 otherwise.
Meanwhile,
/ 0y b ) ity +-40) g
1 if a is a permutation of b,
= | (C12)
0 otherwise.
=

Theorem C9 (efficient 2-design on the m-torus).
Define p to be the smallest prime number strictly
larger than max(2,m) [by the prime number theorem,
p€O(m+logm)]. Let S be the set

S ={(0.27(q1 + q2)/p.27(2q, +445)/p. ...
2x((m = 1)q, + (m = 1)*q2)/p)lg €Z,. g €Z,,}
(C13)

and v the constant map v(¢) = 1/ p?. Then, the pair (S, v)
is an m-torus 2-design.
Proof. 1t suffices to prove that

/ el@itti=ti—d1) ggp = %Zei((ﬁ@/—@‘aﬂ, (C14)

P 4es

The right-hand side is

iz E el(0;+0,-0,—0;)

p oesS
L S elasirh k)2 p)a i)
L €7,
(Cl5a)

= 5i+j,k+l6i2+j2,k2+[2 (Cle)
1 ifi=Inj=kori=kAj=]I,

= . (Cl15¢)
0 otherwise,

where we use Lemma C10 in the last line. The left-hand
side is

/ el ditdi—bi—d) d¢

1 / ‘
= (bitdi=b=b)dep, ... dep Cl6
e ..de,, a
G Jozar 1 e
1 ifi=IANj=kori=knj=]I,
= ) (C16b)
0 otherwise,
which is equal to the right-hand side. [

The torus 2-design in Theorem C9 utilizes what
Ref. [128] calls the “ax? + bx construction” that is utilized
in constructions of complete sets of mutually unbiased
bases. From Ref. [17], it is known that such sets form
complex-projective 2-designs. Hence, we can now under-
stand the ax? + bx construction as a torus 2-design. The
ax® + bx construction utilizes the following Diophantine
system.

Lemma C10. Let I, be the finite field with p elements
for an odd prime p. Let F be either [, or Z, and let
addition, multiplication, and equality be with respect to F
[e.g., for F = [F,, a = b is the same as a = b mod p]. The
Diophantine system of equations

a+b=c+d, a*+b*=c*+d* (Cl17)
is solved only by solutions of the form
(a=c)A(b=d) or (a=d)A(b=c). (CI8)

Proof. Plugging the first equation into the second
equation, we find that (c+d—a)*>+b*>=c*+d>%
Simplifying yields ab = cd. If b = 0, then either ¢ or d
must equal zero, so that the solution is of the desired form.
If b # 0, then

ab + b* = bc + bd, (C19a)
cd + b* = bc + bd, (C19b)
(d—=b)(c—b) =0. (C19¢)

Therefore, either b =c¢ or b = d. Along with a+ b =
¢ + d, this proves the claim. =

Theorem C9 can be generalized to the case where we
allow p to be any positive integer power of a prime, because
Lemma C10 can be generalized to the case of any Galois
(finite) field.

An m-torus 1-design trivially requires at least m elements.
To conclude this subsection, we show that an m-torus
2-design requires at least m(m — 1) + 1 elements.
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Proposition CI1. Let (S,v) be a T™ 2-design. Then,
IS| > m(m —1).

Proof. The torus 2-design condition can be expressed as
follows. Let

I'={(0,....0).(1,—1,0,....0), (1,0, =1,0,....0), ...
(=1.1,0,...,0), ....(0,....0, =1, 1)} (C20)

so that [I'|=m(m—1)+1. Let each ¢p€S label a

basis element of V:=CISl so that {|¢)|¢€S} is an
orthonormal basis of V. Then, for k€I, define |k) =

> pes Vv(@)e*?|@). The 2-design condition is summed
up by (k|k') = ;.. Hence, {|k)|k € '} must be orthonormal
in V, meaning that |I'| < dimV = |S]. L]

3. Complex-projective Haar integral

For integration over the set of d-dimensional qudit states
CP4!, one finds [19,21]

IT
/ () w)®dy =—"5.  (C21)
cpd-! TrlT

where dy denotes the unitarily invariant Fubini-Study
volume form on the complex-projective space CP¢~!
and I : (C%)® - (C4)®" s the projector onto the sym-
metric subspace of (C?)®' defined in Definition B6 (see
Secs. 4.5, 4.7, and 7.6 in Ref. [100] and Example 8.8 in
Ref. [101]). We begin by showing this equality.

Each |y) lives in the finite-dimensional Hilbert space
H = C<. For any integer ¢, the tensor product H® splits up
into a direct sum of the symmetric and antisymmetric
subspaces of H®', so that H® =~ H}™ @ H;™™. Consider
the representation of the group of unitaries acting on H,
p:U(H) — U(H®"), defined by U — U®'. The subspaces

2™ and H™™ are invariant under p. One can see this by
noting that, for any unitary U, p(U )HEa>Sy "= H§a>sym, since
U®' acts symmetrically on the tensor product factors.
Therefore, the representation p can be decomposed into a
direct sum of irreducible representations on ;"™ and ;™"

We can now invoke Schur’s lemma, which states that if a
nonzero operator M on an irrep space commutes with every
element of that irrep, then M is proportional to the identity
on that irrep space. In our case, M = [-pai (|y) (w|)dw.
The irrep space of interest is H;"". The elements of the
irrep are unitaries U®’. Because of the unitary invariance of
the Fubini-Study metric, one finds that M commutes with
all unitaries of the form U®’. Therefore, by Schur’s lemma,
M must be proportional to the identity on H;*™, which is
precisely Hgd). Finally, the Fubini-Study volume measure is
normalized such that the volume of CP?~! is unity. Hence,
TrM = 1, meaning that the proportionality constant must

be 1/TrI\?.

Next, we discuss integration over CP™ with respect to
the Fubini-Study volume form where m = d — 1 and show
that it can be expressed as integration over a flat simplex
and a flat torus. For a formal treatment of this fact, see
Secs. 4.5, 4.7, and 7.6 in Ref. [100] and Example 8.8 in
Ref. [101]. One first constructs the Fubini-Study volume
form (see Appendix B 1). Then, one constructs a coordinate
transformation mapping the simplex cross the torus to a
coordinate patch of CP™. Pulling back the volume form
along this coordinate transformation yields the volume
form on the simplex cross the torus.

Here, we instead give an informal treatment. Define p, =
1->", p;and ¢y = 0. Then, the p; and ¢; parametrize a
quantum state |/pg|0) + >, \/p;e'?ii). To define a valid
state, the p are elements of the probability simplex A™ =
{p = (PO, seey pm) € [0’ 1]m+1| Z;n:() Pi= 1} and the ¢ are
elements of the torus 7 = [0,2z)". We denote the
Lebesgue measure on A™ by dp =[], dp; and on T™ by
d¢p =[], d¢;. One can easily perform the integration over
the simplex and torus to find that [m!/(2z)"]dpd¢ is a
normalized volume measure such that vol(A™ x T™) = 1.
Consider a quantum state in C"*! parametrized by o; € C as
ly) =>™ ,a,|n); the natural measure is d’qq...d%a,,.
Applying the polar coordinate transformation a, =
\/ﬁei% and keeping track of Jacobian factors, the measure
becomes proportional to dpdep.

In conclusion, we have determined that

m!
L wwpear =g [

p.¢)(p.#|)®'dpd,
(C22)

where

pad) = VIO + S Bt (C23)
=

4. Complex-projective designs from simplex
and torus designs

For finite d, an ensemble £ over CP“~! is a complex-
projective t-design if

E L w)®) = [ (). (c24)

lw)e&

Again let m = d — 1. The characterization of the integral
over CP™ given in Eq. (C22) motivates the construction of
complex-projective designs via constructions of simplex
and torus designs. Such a construction was also noted in
Theorem 4.1 in Ref. [8]. In particular, Eq. (C22) consists of

a product of integrals of the form m! f AP JVITE p . dp
and [1/(27)"] [rwexp[id -1 (¢, — #;,,)]dp. The latter
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integral can be evaluated by a 7-design on the torus and is
equal to 1 whenever ) i (¢;, — ¢;,..) = 0 regardless of ¢
and zero otherwise. In other words, it is nonzero only when
the j;’s are paired. But when the j,’s are paired, the term

1/ %;1 pj, becomes a monomial of degree 7 in p. Hence,

the resulting integral can be evaluated with a simplex

t-design. We summarize with the following theorem.
Theorem CI2. Let P be a t-design on the m-simplex A™,

meaning that P is an ensemble over A” such that

qEP[g(Q)] = /A g(p)dp (C25)

for any polynomial g(p) = g(py, ..., pm) of degree less
than or equal to 7. Similarly, let S be a r-design on the
m-torus 7", meaning that S is an ensemble over 7"
such that

H[ES[Q(e”l, o, efn)] = / g(el?, ... ei?n)dp  (C26)
€ m
for any polynomial ¢(s) = g(s, ..., s,,) of degree 7 in s and

degree ¢t in 5. Then, D = P x S is a t-design on CP",
meaning that

E [(p-#)p.#)®] = / ()W) ®dy.  (C27)

(p.p)€D cpr

with [p, ) = > /P )).
We can state this in terms of weight functions as follows.
Let (P,u) be a A%"! t-design and (S, v) be a T t-design.

Define D = {|p,¢)|p€P.¢p €S} and
w(lp.#) =u(p) D v(¢). (C28)
W%:sz;w

Then (D,w) is a CP"! t-design. Morally, w(|p,¢)) is
essentially u(p)v(¢p). However, the map (p, ¢) — |p, @) is
not bijective; specifically, if p is on the boundary oA,
then for any ¢ there are many ¢’ satisfying |p, ¢) = |p, ¢').
Therefore, the definition of w must be modified accord-
ingly, as is done in Eq. (C28).

We now construct explicit complex-projective designs
by concatenating simplex and torus designs given in
Appendixes C 1 and C 2. For this subsection, we use the
following notation for complex-projective 7-designs. Fix a set
D c CP™ of points in CP™, and letw: D — R be a weight
function. The pair (D, w) is a complex-projective z-design if

S w(8ED® = [ (wwhay.  (€29)

|&)eD

Construction 1.—Combining the simplex 2-design from
Theorem C4 and the torus 2-design from Theorem C9, we

find that, for any m €N, the pair (D,w) is a complex-
projective 2-design, where p is the smallest prime number
strictly larger than max(2,m), D is the set

D ={[))|i€{0,....m} U{lg1.92)|q1.92€ Z,}.  (C30)
and w:D — R_ is the map defined by w(|i)) = [1/(m +
D)(m+2)] and w(lgy..q2)) = [m + 1/(m + 2)p*]. By the
prime number theorem, p€O(m-+logm). Here, |q;,q,) =
(1/v/m+ I)Z;?’:Oez”i<‘11/+qzjz)/1’|j>. When m + 1 is prime,
this reduces to the well-known complete set of mutually
unbiased bases given in Ref. [129] (indeed, this can be
generalized to whenever d = m + 1 is a prime power). For
prime d, this complex-projective design is uniformly
weighted. However, for nonprime d, the weights are not
uniform.

Construction 2.—We can construct a uniformly
weighted complex-projective 2-design for all m that uses
p*(m + 1) points by combining the simplex 2-design from
Theorem C5 and the torus 2-design from Theorem C9.
Define r = 1/y/m + 2 and the state

14+rm , .
|f, qi, q2> = me2ﬂ1(qlf+q2f2)/p|£>
1- Lo
* m+'1262”‘<q'f+q2/2)/ﬂ|j>,

#

(C31)

the set

D ={|¢.q1.9:)|¢ €{0,....m.q1.q:€2,}, (C32)
and the constant map w(|#, q;, q,)) = (n + 1)~! p=2. Then,
the pair (D, w) is a complex-projective 2-design.

One can also construct a complex-projective > 3-design
for all n by combining the simplex designs given in
Refs. [8,9] with the torus design given in Theorem C8.

We note that if one relaxes the requirement that the
weights be non-negative, then one can construct signed
complex-projective designs by using signed simplex and
torus designs. For example, simple and explicit simplex
signed 7-designs are given for all odd ¢ in Theorem 4 in
Ref. [130]. We leave this for future work.

5. Simplex designs from complex-projective designs

In this subsection, we discuss the opposite direction to
Theorem C12, namely, that complex-projective t-designs
give rise to simplex z-designs via the projection z:CP" —
A™ defined by |w) = (|(Oly)|?, ..., |{m|w)|*). Such a con-
struction was also pointed out in Refs. [8,103]. This is the
first step in our proof of the nonexistence of continuous-
variable (¢ > 2)-designs. We show that a continuous-variable
design gives rise to an infinite-dimensional analog of a
simplex design via a lemma analogous to Lemma C13 and
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then show that such infinite-dimensional simplex designs do
not exist for ¢ > 2. Hence, it is useful to discuss the finite-
dimensional case first.

Lemma C13. Let D be a t-design on CP". Then z(D) is a
t-design on A,

Proof. Since D is a design on CP”, which satisfies by
definition

E 6™ = [ (e (C330)
— [ (o g dpap. (330

where the last line comes from Eq. (C22), sandwiching this
equation by (a,|...(a,| and |a,)...|a,), we find

JE P )P

= / Pa,---Pa,dpdep, (C34)
Aﬂ’ XTIYI

and, hence,

E g, ] = ..p. dp. C35
qeﬂ(m[qa, 4, /Anpa1 Padp (C35)

Therefore, the ensemble (D) matches the integral over A”
for degree t monomials and, thus, by linearity matches for
all polynomials of degree ¢ or less. [
In terms of weight functions, we can write this as
follows. Let z~! denote the preimage of . If (D, w) is a
CP™ t-design, then (z(D),u) is a A™ t-design, where

u: n(D) = R.y,

pH w(y). (C36)
wer(p)
Lemma C13 tells us that
_ 1 (d)
Pa,++-Pa,dp = W<al|"'<at‘nt lai)...la)
A" Trll,
1
:WAE(D((II, ...,Clt), (C37)
Trll;

where recall that A§d> and H§d> are defined in Definition B6.
One can then define an infinite-dimensional simplex design
analogously to how we define continuous-variable designs
in Definition D2. In particular, to get something well
defined in the infinite limit, we remove the TrIl, normali-
zation, and we replace the E by an integral over an arbitrary
measure space.

Definition CIl4 (infinite-dimensional simplex t-design).
Let (X, X, u) be a measure space, and fix an integer 7 € N.

Let p = (p;); en, be a sequence of measurable maps
pi:X g [0, 1] If

Zp,-(x) =1py-ae inX

ieN,

(C38)
and
vaeNg: [ T[po@duto =Ada)  (€39)
X 20

then [(X,X,u),p] is an infinite-dimensional simplex
t-design.

In this definition, A, is defined in terms of II,: H®' —
H®' given in Definition B6, and H is an infinite-
dimensional separable Hilbert space, e.g., L?(R). In the
next subsection, we show in Lemma D6 that, without loss
of generality, the measure space for an infinite-dimensional
simplex-design design can be taken to be ¢ finite. Then, in
Lemma D7, we show that no infinite simplex #-designs
exist for any ¢ > 2.

Example C15 (infinite-dimensional simplex I-design).
When ¢ = 1, we have that A;(a) = 1 for any a € N,. We
have many infinite-dimensional simplex 1-designs. For
example, let X =N, £ = P(X), and u be the standard
counting measure p(A) =|A|. Finally, for x€X, let
Pa(x) = 8,y Then,

Apa(x)dﬂ(x) = Z(Sax =1= Al(a)’

xeNy

(C40)

as desired.

6. Constrained complex-projective integration

We now briefly describe one consequence of the for-
malism developed so far. This subsection is essentially
unrelated to the rest of the paper but interesting nonethe-
less. We sketch the consequence with an example using the
number operator, though we note that it can be generalized.

Define the number operator 7 by 7i|n) = n|n). Consider
the constraint on |y) € CP?! that (y|a|y) = N for some
constant . Since the constraint is diagonal in the chosen
basis, it acts on only the simplex part of CP¢!. In
particular, while integration over CP“~! involves integra-
tion over the simplex A?~!, integration over CP¢~! with the
constraint that (y/|7|y) = N involves integration over the
simplex A%, where

d—1

> np, = N}. (C41)
n=0

Recall from the Krein-Milman theorem that any compact
convex subset of Euclidean space is the convex hull of its
extremal points. The simplex A%~! is the convex hull of its
d extremal points (1,0, ...,0), (0,1, ...,0), ..., (0,0,..., 1).
The simplex A% is also the convex hull of its d —1

Ad-2 .= {p e Ad-1
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extremal points, but its extremal points are more compli-
cated and depend on V. In particular, we let b\ denote the
ith extremal point of A2, so that b() = (bé”, biﬁl).
Then, it is easy to check that the extremal points are

L0 :{(1—l+—1)5j0+%5j,i+1 ifi+1>N,
! (1 =258, +455 60 ITi+ 1SN,
(C42)
where i €{0,...,d -2} and j€{0,....d — 1}.

It then follows, analogously to Theorem C12, that a
t-design on the constrained CP?~! space can be con-
structed from z-designs on A%? and T¢. Furthermore,
the simplex AY™> can be parametrized via baryocentric
coordinates in terms of the standard simplex A9~2. In
particular, a point in A2 defines a particular convex
combination of the extremal points of A“~2, which gives a
point in A2 Therefore, one can compute the integral
|

Jepar () (w])®'6(N = (wlitly))dy up to proportionality
by using simplex and torus designs. We note that such a
construction does not work if the §(N — (y|i|y)) con-
straint is replaced with @(N — (y|i|y)), where © is the
Heaviside step function. This is for a slightly subtle reason.
The & constraint results in a measure on A2 that is, up to
proportionality, the standard Lebesgue measure. On the
other hand, the ® constraint results in a more complicated
measure, and, indeed, this measure mixes the contributions
of the torus and the simplex in the integral. As such, the
resulting integral is no longer over a simple product of a
simplex and torus but rather over a more complicated
combination of the two.

The & constraint that fixed (y|i|y) = N is interesting
nonetheless. By using any of the simplex 1- and 2-designs
from Appendix C 1 and any of the torus 1- and 2-designs
from Appendix C2, we can compute the following inte-
grals, up to proportionality, in terms of the extremal
points b():

d-
L wwley = i o —Z ) (k Z (c43)
1 d-2 d-1 o
AP(I_I(|W><W|)®25(N — (ylaly))dy « m Z(l + 51;‘)[ Z by bka (ki) ko) (k[ (ka | + (k1) ko) (ka| (ks [)
ij=1 ky =1
d-1
+ 300 1K) k) (K| @ (C44)
k=1
If we, for example, fix A/ = 1, then the result is
. Hy_, 1 &
lw)(wlo(1 = (wlily))dy o (1 - 0)0] + ——= D 7 k)], (C45)
Ccpd-! d -1 -1 T—1 k
where H,_; =Y ¢=11/k is the (d — 1)th harmonic number. "E [(ly)(w))®] =11,.” (D1)

APPENDIX D: CONTINUOUS-VARIABLE
DESIGNS

In extending the definition of complex-projective
designs to the infinite-dimensional case of continuous
variables, one encounters the issue that TrII, is not finite.
Hence, in accordance with the definition of continuous-
variable designs given in Ref. [51], we remove the trace in
the denominator of I, /TrII, and replace the equality with a
proportionality. By a simple rescaling of the ensemble, the
proportionality constant can be made arbitrary. Thus, we
can, in fact, keep the equality. We are, therefore, tempted to
define a continuous-variable #-design as an ensemble &
satisfying

However, since TrI1, is infinite, it follows that the ensemble
£ must not be compact, making E, ill defined. We,
therefore, replace the expectation value with an integral
over an arbitrary measure space (X, X, u). Here, X is a set, £
is a o-algebra on X, and p:X — Ry U {oo} is a measure
on X. Finally, we arrive at the precise definition of a
continuous-variable #-design on L?(R).

Definition DI (continuous-variable state t-design).
Let X C LZ([R{), (X,%,u) be a measure space, and fix a
positive integer t € N. Let IT,: L>(R)®" — L?(R)® be as in
Definition B2. If

L (1) (W)@ du(yr) = T1 (D2)
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where we use the weak (Pettis) integral, then (X, X, u) is a
continuous-variable state t-design. Hence, we require a
design to satisfy

/X(li[<“i|‘/’> <W|bi>> du(y) =10, (ay, ....a; by, ....b,)

i=1

(D3)

for all tuples a, b eNj.

The motivation for this definition of continuous-variable
state designs is summarized in Fig. 1. An alternative
characterization of continuous-variable state designs is
given in Appendix D 5. If one is familiar with weighted
complex-projective designs, as defined in, e.g., Ref. [19],
then one can imagine that the measure y is a Lebesgue-
Stieltjes measure coming from a weight function. For the
purposes of designs, the weak (Pettis) integral is more
natural than the strong (Bochner) integral, because we are
generally interested in averaged functions of y. Ultimately,
we prove that continuous-variable 7-designs do not exist for
t > 2, which immediately implies the result for the case of
the strong integral as well.

By parametrizing states in L?(R) with polar coordinates,
one can arrive at an equivalent definition of continuous-
variable -designs.

Definition D2 (continuous-variable state t-design). Let
X be an arbitrary set and (X, X, ) be a measure space, and
fix an integer t EN. Let p = (p;);en, and ¢ = (¢;),en, be
sequences of measurable maps p;: X —[0,1] and ¢;: X - R
satisfying ) ; c, pi(x) = 1 for almost all x € X. Define the

state |p(x), p(x)) € L*(R) by

P(x), ¢(x)) = Y /pa(x) € [n).

neN,

(D4)

Let IT,: L>(R)®" — L*(R)® be as in Definition B2. If

A(IP(X),¢(X)><p(X),¢(X)I)®’ du(x) =T, (D5)

where we use the weak (Pettis) integral, then [(X, Z, i), p, ]
is a continuous-variable state t-design. Hence, we require a
design to satisfy

A<ﬁ<ai|P(x)»¢(X)><p(x),¢(x)|bi>> dp(x)

i=1
:H,(al,...,a,;bl,...,bt) (D6)
for all tuples a, b € Nj.

Definition D2 is a more operationally useful definition
for our purposes, but we emphasize that Definitions D1 and
D2 are equivalent definitions, where the latter is simply a
different parametrization of the former.

Proposition D3. Definitions D1 and D2 are equivalent
definitions.

Proof. For any |y) coming from the first definition, we
get the sequences p and ¢ for the second definition as
Pn = |{n|y)|> and ¢, = arg(n|y). One can then normalize
each p; by p;(x) = pi(x)/>; pi(x) and then absorb a
factor of (3, pi(x))" into the measure.

Conversely, for any measure space and sequences p and
¢ coming from the second definition, we get the measure
space [X C L?(R), X, u| for the first definition, since the
parametrization defines states in L?(R). n

We include Definition D1 since it closer matches
the standard definition of a weighted complex-projective
design. In light of Proposition D3, henceforth we use
Definition D2. To become better acquainted with this
definition, consider the following example of a continuous-
variable state 1-design.

Example D4 (continuous-variable state [-designs).
Consider the measure space where X =N,, X is the
power-set P(X), and u is the standard counting measure
on N,. Let p,:x + §,,, and ¢, :x +— 0. Then,

[ 166040} (o). #) ()
= Y In=an=x =T,

xeNy

(D7)

where note that IT; = 1. Hence, this is an example of a
continuous-variable state 1-design.

Similarly, consider R ( with the standard Borel 5-algebra
and Lebesgue measure. Consider also [0,27z) with the
normalized Lebesgue measure. Let (X, X, u) be the unique
product measure space for X = R., x [0,27). For an
element xeX, notate x=(r,0), for reR., and 0€[0,2x).
Let p,:(r,0)>e"r"/n! and ¢, : (r,0) — On. Then,

A 1p(), )Y (p(x), 0)|da(x)

: 5" n)(m| [ d > jgedtn-mer I
= — n)y(m r eglv\n—m)e=r
2r /0 /0 vnlm!

nmeN,
(D8a)
= 3" n)nl / " dre-r% (D8b)
neNy 0 .
= > In)(nl =11, (D8c)
neN,

giving another example of a 1-design. This 1-design is more
commonly written as

JCE (D9)
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where d’a = dReadlma and |a) is a coherent state.
Namely, coherent states form an overcomplete frame.

We emphasize that this definition completely sidesteps
the issue that one cannot define a finite Haar measure on
U[L?(R)] since it is not a compact group and, indeed, not
even a locally compact group (see Sec. V in Ref. [105]). See
Fig. 1 for a visualization. The issue is sidestepped by never
considering the integral over all states in L?(R). Instead, we
note that the integral over all states for a finite-dimensional
Hilbert space gives a finite-dimensional I1,, and we extend
the definition of a design to the infinite-dimensional case
by extending T1, to the infinite-dimensional space L?*(R).
This is exactly the approach that was taken in Refs. [51,57].
Alternatively, in Appendix D5, we do explicitly con-
sider integration over the infinite-dimensional space
C*® 2 L*(R).

1. Nonexistence of continuous-variable state designs

It has been shown that no set of Gaussian states can form
a continuous-variable 2-design [51]. We extend this result
to show that there do not exist continuous-variable
t-designs for any ¢ > 1. We emphasize that our proof, in
fact, works for any separable Hilbert space H, not just
L*(R), since it assumes only the existence of a countable
orthonormal basis.

Theorem D5. No continuous-variable state or unitary
t-designs exist for any integer ¢ > 2.

Theorem D5 is an immediate consequence of Lemmas
D6 and D7 below. Figure 3 provides an overview of the
proof. We recommend reading this section first, keeping
in mind the specific example of ¢+ = 2, where the explicit
form of Il, and A, are given in Example B7. After
understanding this case, the extension to arbitrary ¢ > 2
is straightforward.

To begin, we show that existence of continuous-variable
state ¢t-designs implies existence of simplex #-designs.

Lemma D6. If a continuous-variable 7-design exists, then
there exists a o-finite measure space (X,XZ,u) and a

sequence p = (p;)%,, of measurable maps p;:X — [0, 1]
satisfying

pi(x) =1 p-ae. in X (D10)
i=0
and
t
VaeNj: /Hpai(x)d,u(x) = A,(a). (D11)
Xi=1

Proof. Suppose a continuous-variable state 7-design
exists. Then, Eq. (D6) holds for all tuples a,b €N}, and
p satisfies Eq. (D10) by Definition D2. Indeed, Eq. (D10) is
simply the requirement that the quantum states be normal-
ized. Plugging in a = b and A,(a) =I1,(a;a) by defini-
tion, we get

Aa) = [ (TTalpo) 66} 0. p0la ) o

i=1

(D12a)

- / 1T 1l p(x), () Pelu(x) (D12b)
X i

~ [ TTpaiauto. (D12¢)

Therefore, the measure space and sequence p satisfy
Egs. (D10) and (D11). The only remaining thing to show
is that X can be o finite.

Consider the function f = p} whose codomain is clearly
[0, 1]. By Eq. (D11), 0 < fod,u < o0. Hence, by Lemma
B4, the preimage f~'{(0,1]} = p7'{(0,1]} is a o-finite
set. Since a countable union of o-finite sets is ¢ finite, it
must be that Y = |J2,p;7'{(0,1]} is o finite (also recall
that any o-finite set is measurable). The set X\Y is equal to

Continuous-variable de-
signs, Definition D.2

Lemma D.6 ‘

Infinite dimensional simplex
designs, Definition C.14

Lebesgue Dominated Conver-
gence Theorem, Theorem B.1

Riesz Weak Compactness
Theorem, Theorem B.2

~ | -

plex (t > 2)-designs do

Infinite dimensional sim-
not exist, Lemma D.7

FIG. 3.

An outline of the proof of the non-existence of continuous-variable ¢-designs for ¢ > 2.
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®, 7' ({0}). Equation (D10) is required to hold almost
everywhere in X. This means that the set of points for
which it does not hold is contained within a measure zero
subset of X. Clearly, Eq. (D10) does not hold when
x€X\Y. Therefore, X\Y is contained within a measure
zero subset of X. Thus, if Eq. (D11) holds on X, then it also
holds on Y, and, of course, the same is true for Eq. (D10).

Hence, we have determined that if Egs. (D10) and (D11)
are satisfied by the measure space (X, X, u), then they are also
satisfied by the measure space (Y, X|y, u|y ), where |, denotes
the restriction to the subset Y C X. To see that (Y, Z|y, u|y) is
a valid measure space, recall that we have already shown that
Y € . Then, one can straightforwardly check that X|, is a o-
algebra of Y and p|, is a valid measure with respect to Z|, so
that the restriction of (X, X, 4) to Y is a measure space (see,
e.g., Chap. 17.1, Exercise 6 [124]). We have also shown that
(Y, Z|y, uly) is o finite. In summary, we have shown that if a
continuous-variable 7-design exists, then there exists a
measure space satisfying Egs. (D10) and (D11). We then
showed that the existence of this measure space implies the
existence of a o-finite measure space satisfying Eqs. (D10)
and (D11), hence completing the proof. [

As we commented in Lemma C13, a complex-projective
design gives rise to a simplex design. Ata high level, Lemma
D6 is extending this fact to the continuous-variable regime.
Similar to how we extended the definition of a complex-
projective design to infinite dimensions, the analogous
extension of a simplex design to infinite dimensions is the
conditions in Egs. (D10) and (D11), as in Definition C14.
The extra bit about X being o finite is just a technical point
needed so that Theorem B2 can be used in the next lemma.

Given Lemma D6, we immediately see that if no o-finite
measure space and sequence p can satisfy Egs. (D10) and
(D11), then no continuous-variable 7-designs can exist.
This is what we show in the following lemma.

Lemma D7. No (X, %, u) and (p;)2,, exist satisfying the
conditions of Lemma D6 for any € Ns,.

Proof. Assume by way of contradiction that such
(X,Z,p) and (p;) exist. Because of Eq. (D10), it must
be that for almost all x € X, lim;_,,, p;(x) = 0. Since the
sequence (p;) converges, it must be the case that every
subsequence (p; )i>, of (p;) also converges to the same
point; lim_, p;, (x) = 0 for almost all x. For any tuple
jE€N, define g(x) =[];_, p;(x), which is in L'(X) =
LY(X,Z,p) (e., [y gdu < o) by Eq. (D11). Consider the
sequence (f; )i, Wwhere f; (x) = p; (x)g(x) for any
JEN. Then, f; converges pointwise to the zero function
f(x) = 0 almost everywhere as k — oo, and f is obviously
measurable. Since the codomain of p; is [0, 1], it follows
that f;, < g for all i;. Therefore, (f; ) is a sequence in
L'(X) and is dominated by a non-negative integrable g.
Hence, we can apply the dominated convergence theorem
B1 to swap the limit and the integral and find that

limk—wo ||fik _f||1 = O’ glVlﬂg

t
vieng: iim [ pi )] pi0 dutv) =0 (013)
=1

Next, we consider the sequence (p;)$°,, which is a
bounded sequence in L'(X) since [y pldu < oo by
Eq. (D11). Therefore, we can apply the Riesz weak compact-
ness theorem from Theorem B2 to find a subsequence
(pi,)2 and a function g for which for all h € L (X):

im [ pi (Oh(0du(x) = [ ghx)dut). (D14

k—o0

where ¢ = t/(t — 1). Now, we must prove that g is zero
almost everywhere.

First, we show that ¢ must be non-negative almost every-
where. Heuristically, this is because ¢ is being substituted for
a limit of probabilities, which themselves are always non-
negative. More technically, let 11, be the indicator function,
so that 11, (x) is 1 if x € A and zero otherwise. Since X is ¢
finite, there exists a sequence (A;) where A; is measurable
A €Y, u(A;j) < oo, and X = [J22yA;. Since A; has finite
measure, 11, €L’ (X). Plugging h = 11, into Eq. (D14),
we find that [y q(x)114,(x)du(x) > 0 for all j. Therefore,

f 4 qdp > 0 for every A €X of finite measure, and we can
build up X from such A’s. This tells us that g > 0 almost
everywhere.
Next, we show that g must be the zero function
almost everywhere. For some jeN), we plug h(x)=
', p;(x)EL"(X) into Eq. (D14). Using Eq. (D13) for
the left-hand side of Eq. (D14), this tells us that

VjeN;: /q(x)Hpjl(x)dﬂ(x)zo. (D15)
X =1

Along with the fact that ¢ must be non-negative almost
everywhere, this implies that g(x) must be zero almost
everywhere whenever p;(x) # O for any j. As such, g must
be zero almost everywhere on the set [ J>p;'{(0, 1]}. But
we show in the proof of Lemma D6 that X\ %2 p7{(0, 1]}
is contained within a measure zero subset of X.

We have shown that ¢ is the zero function almost
everywhere on X. Hence, Eq. (D14) becomes

YhelL'(X): lim

k—o0

[ pi@hdu) =0. (D16

Plugging / = pl' [which is in L”(X) by Eq. (D11)]
into Eq. (D16), we arrive at limy_o, [y p§ ' p; du = 0.
But Eq. (D11) tells us that limy_ [y p5'p;du=
limy_, o, A, (0, ..., 0, i;), which, from the definition of A, in
terms of I',, is strictly positive as shown in Eq. (B18). We have
reached a contradiction, hence completing the proof. [
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The nonexistence of state designs statement in Theorem
D5 follows as an immediate corollary of Lemmas D6 and
D7. The nonexistence of unitary designs follows straight-
forwardly from the nonexistence of state designs, as we
explain in the next subsection. Furthermore, Theorem D5
still holds even in the case when one allows (X, X, 4) tobe a
signed measure space by a simple appeal to the Hahn
decomposition theorem [131]. Indeed, using this theorem,
one simply splits the signed measure space into two non-
negative measure spaces and then proceeds with the proof
of Theorem D5.

2. Nonexistence of continuous-variable unitary designs

Theorem D5 extends the results from Ref. [51], where it
is shown that the set of Gaussian states does not form a state
2-design, and the results from Ref. [57], where it is shown
that the set of Gaussian unitaries does not form a unitary
2-design. The nonexistence of continuous-variable state
t-designs for t > 1 immediately implies the nonexistence of
continuous-variable unitary 7-designs for ¢ > 1, since any
unitary design gives rise to a state design by twirling a
fiducial state. To be clear, we consider the definition of a
continuous-variable unitary 2-design given in Ref. [57].
Namely, a unitary 2-design is any ensemble £ of unitaries
satisfying

E(U ® VAU ® U)] % (ITe[A] + STr[sA])  (D17)

for any operator trace-class operator A, where S is the SWAP
operator that swaps the elements of the tensor product
space. Since this should hold for any A, we can substitute
A = (|p)(¢])®? for any fiducial state |¢) (e.g., the zero
Fock state |0)). We can then define a new ensemble over
states & = {U|¢)|U € E}. The result is

E[() )% «5(1+8) =T, (DI

which precisely matches the definition of a continuous-
variable state 2-design given in Ref. [51] and the definition
we use in Definition D2. Hence, by contraposition, if a state
design does not exist, then a unitary design necessarily does
not exist.

This result holds generally for the definition of
continuous-variable unitary ¢-designs given in Footnote
89 in Ref. [57]. Specifically, a unitary t-design is an
ensemble & satisfying

[E[U@AUW z W, Tr(W;'A)  (D19)
| t| GES,
for any trace-class operator A. Substituting A = (|¢)(¢|)®’

for some fiducial state |¢), then define a new ensemble over
states &' = {U|¢)|U € £}. The result is then

E[(jy) {w)®] o ﬁ > oW, =TI,

cES,

(D20)

meaning that £ is a continuous-variable state #-design
according to Definition D2. By the nonexistence of
continuous-variable (¢ > 2)-designs then, such a unitary
design does not exist for ¢ > 2.

3. Rigged continuous-variable state designs

The result of Theorem D5 is that no continuous-variable
(t > 2)-designs exist. The main hindrance to the construc-
tion of continuous-variable state (# > 2)-designs is the
requirement that the states be normalized. In particular,
the proof does not rely on exactly what the states were
normalized to, only that lim,_, , p; = 0. Hence, the require-
ment that the states belong to L?(R) inhibits the existence
of continuous-variable designs. This motivates the
approach taken in this section, where we construct rigged
continuous-variable state designs by relaxing the normali-
zation condition, thus allowing unphysical states such as
the infinite superposition state ) _, <, ). Specifically, we
use elements of the standard rigged Hilbert space on top of
L%*(R) to reconstruct I1,. These elements are called tem-
pered distributions (see below); some familiar tempered
distributions are the position eigenstates |x) and the
momentum eigenstates |p). In the next section, we reintro-
duce normalization via a soft energy cutoff, hence making
the rigged continuous-variable designs a type of approxi-
mate continuous-variable design.

When we remove the normalization condition on the
states, many of the finite-dimensional complex-projective
designs still do not naturally extend to the continuous-
variable regime. For example, consider the complex-
projective design given in Eq. (C32). We begin by making
the states |m,q;,q,) non-normalizable by multiplying
through by v/n + 1 and then take the n — oo limit. In this
limit, » = 1/v/n + 2 — 0, and, hence, v/n + 1|m, q,, q>) =
Vn+1im', q,, q,) for all m and m’. One can straightfor-
wardly check that these states do not reconstruct Il,. In
particular, these states form only a 1-design, as the under-
lying simplex design is only a 1-design.

However, some finite-dimensional complex-projective
designs do extend to the continuous-variable regime when
normalization is removed. For example, consider the
following CP?~! 2-design, when d is prime, given in
Eq. (C30), which also happens to be a maximal set of
mutually unbiased bases [17,129]. Define the state |q,), =

glan) = (1/Vd) Y21 exp|(27i/d)(q,n + g,n*)]|n). One
can stralghtforwardly show that, for each g,, {|q,),,|9, €
{0,...,d — 1} is an orthonormal basis and that

ld
T
2 n=0

d-1

£33 (plan @l

q1.92=0

(D21)
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The phases involved in this design utilize the so-called
“ax? + bx construction” described in Ref. [128]. In the
language of our paper, the ax”> + bx construction is allud-
ing to a particular torus 2-design construction, namely,
given in Theorem C9.

This design cannot be extended to a continuous-variable
design, because the states |q;) ¢, are unphysical when d is
infinite. If we relax the normalization condition, however,
we can reconstruct the infinite-dimensional symmetric
projector with an analogous design.

Proof.

/_ “dy / " d6(al6), (b]6),, (O]c), 6]d)

- (2l>‘z / “dy / " dgettat-c-d)giola 11~
T — —

{1 ifa+b=c+dand a*+b*=c*+d?*

0 otherwise

Lo

otherwise
= 5a05bd + 5ad6bc - 5ab5a05ad

= 2H2(a, b; C, d) - 5ab5a05ad

=20L(a.bic.d) ~ Y _ {aln)(b|n)(n|c)(n|d).

neNy

Strictly speaking, Eq. (D23) should say I1,| s(r)» since the
(9], are defined only on Schwartz space S(R) C L*(R).
However, its action can be uniquely extended to all of
L*(R). This is formalized later on in this section.

We can find analogous results using cos and sin
states from Ref. [59]. We note that looking at the |9>(/,
non-normalizable states was motivated by lifting the finite-
dimensional complex-projective design to the continuous-
variable case. These states are Kerred phase states, which
form a continuous projection-valued measure (PVM) [59].
From these states, we are then motivated to define the
| cos 9>q, and | sin 6)(,, states, which are defined in Ref. [59],
since they are similar to the Kerred phase states but nicer in
many ways. In particular, for each ¢, they form a
generalized orthogonal basis.

CZ_dZ)

Theorem DS8. Define the non-normalizable state

16}, = ,10) > expli(n + @n?)]|n).

1
=— (D22)
2r neN,

Then,

=5 Y () + 5 [“ap [*ao(,lonal, )

neNy

(D23)

(D24a)

(D24b)

(D24c)

fa=c#b=dora=d#b=cora=b=c=d

from Lemma C10 (D24d)

(D24e)
(D24f)

(D24g)

Theorem D9. Define the non-normalizable state

|cos8), = ,|cos )

= \/% Z elo"” sin[(n + 1)0]|n). (D25)

neN,

Then,

= 3 (n)n])?

neN,

1 [= b4
+Z/ d(p/ do(,| cos)(cosb|,)®*.  (D26)
- 0
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Proof.
/ do / d6(a|cos 0),,(b|cos 0),,,(cos b|c),,(cos O|d) (D27a)
/ / dOei?(@ b =~) sin[(q + 1)0] sin[(b + 1)0] sin[(c + 1)0] sin[(d + 1)0] (D27b)
6 b / dOsin[(a + 1)0] sin[(b + 1)6)] sin[(c + 1)0] sin[(d + 1)6] (D27c¢)
oz
1 b4
=600 / dO[cos[0(a+b+c+d+4)] —cos[f(—a+ b+ c+d+2)]
n 0
—cos[@la—b+c+d+2)—cosl@(a+b—c+d+2)]+coslf(a—b—c+d)
—cos[@(a+b+c—d+2)|+cosl@(a—b+c—d)]+cosl@(a+b—c—d) (D274)
=082 psincla+b+c+d+4)—sinc(—a+b+c+d+2)—sincla—b+c+d+2)
—sinc(a+b—-c+d+2)+sincla—b—c+d)—sincla+b+c—d+2)
+sinc(a—b+c—d)+sincla+b—c—d)] (D27e)
= 5a2+172,c2+al2 [_5a,b+c+d+2 = Opatetdir — 5c,a+b+d+2 = Ogatbtret2 T Outdpre T 5a+c,b+d =+ 5a+b,c+d]7 <D27f)
|
where we use that [ cos(x0)df = zsincx and sincx = We now focus on the three terms individually. The third

[sin(zx)/7x] when x # 0 and 1 when x = 0. One can easily ~ term is solved in Lemma C10 as 6,22 2 2044pcta =
verify that there are no integer solutions to the Diophantine ~ 0,.0,4 + 0,40pc — OupOucOuq- The first term is nonzero only
system a> +b* =c?>+d* and a =b+c+d+2. Thus,  when a, b, c, and d solve

/” do /ﬂ df(a| cos 0),,(b|cos0),,(cosb|c),(cos O|d)
- 0

= 822+ (Oardbre T Oarebid T %arbera) (D28) a+b=c+d and atd=b+c. (D29)
|

Plugging a = b + ¢ — din, we find (b + ¢ — d)> + b*> = ¢* + d” or, equivalently, (b + ¢)(b — d) = 0. Therefore, the first
term is nonzero only when b = d and a = c. A similar analysis holds for the second term, where we find that it is nonzero
only when b = ¢ and a = d. Hence, we find that

/ " do A " d6(alcos ), (b| cosB),, (cos ]c), (cos Od) (D30a)
= 84cOpd + Baadpe + (8acOpa + Suadpe = SavOacdaa) (D30b)
= 2(84c0d + 8aadpe) = SapOacdad (D30c)
= 4T (a, by c,d) = Y {aln)(b|n)(n|c)(n|d), (D30d)

=
proving the result. n

Theorem DI10. Define the non-normalizable state

|sin6), = ,|sin6) := Z el (ei(r )0 — e=ilr+1)(0-m)) ), (D31)

neN,

9l
S
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Then,
M=+ 3 (n)n))® +1/”d¢ /”/2 do(,| sin 6) (sin 0], ®? (D32)
2 4nEN0 4 —71' 22 @ @
Proof.
z /2
/ d(p/ df{a|sin0) ,(b|sin0),,(sinb|c),(sinO|d) (D33a)
- -r/2
/ d(p/ daelgo a*+b*—c? dz)( i(a+1)6 _ e i(a+l)(6‘—;z)) (ei(bJrl)H _ e—i(b+l)(9—ﬂ))
—/2
% (e—l(c+1)9 el (c+1)(6— n)) (e—l(d+1)0 el i(d+1)(6— n)) (D33b)
1 .
= S8l 4 Dsine((a+ b — ¢~ d)2)
+ (=D)P=e((=1)4P* 4 L Dsinc((a—b +c—d)/2)
+ (=1)a¢((=1)4 =+ L Dsinc((a—b —c +d)/2)
+ terms that are always zero when a®> + b = ¢? + d] (D33c¢)
= 81124 Barbera + (1) Barepia + (1) Curapyic)- (D33d)
From here, we continue exactly as in Theorem D9 and find that
b4 /2
/ dqo/ df(a|sin0) ,(b|sin0),,(sinbc),(sinO|d) = 411,(a, b;c,d) — Z (a|n){b|n)(n|c){n|d), (D34)
- -z/2 neNy
completing the proof. n

We now state some facts about the non-normalizable
states used above, the proof of which can be found in
Sec. VI in Ref. [59]. Our definition of these states differs
from the definition in Ref. [59] in that we add an additional
phase factor " but this does not affect any of the
following facts. For the following, we use ¢ to denote the

Dirac delta function on the interval [—z,z], namely,
5(6) = 310 (6) = (1/27) X,

w(cos | cos®), = (0 -¢), (D35a)

(/}(sin 0|sin@), = 5(0 -0, (D35b)

/0 ol cosB)(cosb)|,dd =1, (D35¢)

/0 ol sin@)(sind|,do =1, (D35d)

A ,0)(6],d0 = 1. (D35e)

From these, we see that the cos and sin states form a
generalized orthogonal basis for each ¢, and the cos, sin,
and @ states form a continuous PVM for each ¢. More
generally, one can consider y-rotated sine and cosine states

I S . L, )
|9>(/).,}’ — Z elon (61(n+1)6' _ e—l(n+1)(€—y)) |n>’ (D36)
\/g n=0
where |6),,o = |cos®), and |),, = [sin6),. Similar to

above, for any fixed y, summing over Fock states and
integrating the |0),, ., states over 6 and ¢ yields a rigged
2-design.

Next, we restrict our attention to the |cos €>(/,, since a
similar analysis holds for |sin®), and |6),. Let & and
a' be the standard annihilation and creation opera-
tors, respectively, so that 71 = ata. The elements of
{|cos®),l0€(0,7)} are generalized eigenvectors—or,
more precisely, tempered distributions—of the operator
cos(0),,:=3a" (A+1)7"/2e7+1) + H.c., where H.c. denotes
the Hermitian conjugate of the first term. This can be
concisely expressed in terms of the Susskind-Glogower

@y
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phase operator [58,62] e = Y onen, [+ 1){(n], yield-

ing co/s(\e)w = Lelfelri+1) 4 Hec.,

The standard position state (x| is to be understood as a
distribution in that it is a continuous linear functional on a
subset of L?(R) that is described below It is defined via the
relation (x|y) = = [gw(x)5(x — x)dx'. Similarly,
the momentum state < pl is understood as a distribution
defined by (ply) = (1/V27) [ e Py (x)dx.

The (/,(cos 0| can be understood analogously; namely,
p(cos 6| is defined by

plcosOly) = fz sin[(n + 1)0e=i7* (n|y),  (D37)

nENU

where (n|y) is the standard inner product [, ¥, (x)y(x)dx
with y, (x) = (x|n) the Fock state wave functions.

We now formalize this intuitive understanding of
the (cos@)|, states as distributions. References for this
discussion are Ref. [108] for a formal treatment and
Refs. [109,110] for a broad overview. We have found that
the combination of Fock states with |cos#),, |sin6),,, or
|0)),, distributions is enough to reconstruct IT,. We call such
designs rigged designs, since the latter states live in the
rigged Hilbert space on top of L?(R).

The standard rigged Hilbert space of the harmonic
oscillator is the Gelfand triple S(R) c L*(R) c S(R)".
S(R) is called Schwartz space, and as a topological vector
space it has a continuous dual space. S(R)’ is called the
space of tempered distributions and is the continuous dual
space of S(R). For physical quantum states, we often desire
that they have finite position, momentum, and energy
moments. The first part of the Gelfand triple is the set
of all such states, which for the harmonic oscillator is,
hence,

S(R)= (1 DE*p’).

apeN,

(D38)

where D(M) denotes the maximal domain of the operator
M. Since the domains of & and p are dense in L?(R), it
follows that S(R) is dense in L?(R).

S(R) is a Fréchet space, meaning that it is a topological
vector space with a topology induced by a countable family
of seminorms ||-||, ; defined by

(D39)

d
— a” 2|
1/ 1lp Sup |x dxﬁ‘
An equivalent condition for a function f to belong to S(R)
is that || f]|,; < oo for all a, € N,. The topology induced

by the seminorms is equivalent to the topology induced by
the metric (see p. 29 in Ref. [108])

Z y-a—p_ W T 9llap If = gllaﬂ
1+_Hf g”aﬁ

afeN,

(D40)

Equipped with the metric, we can check continuity of a map
T:S(R) — C in the usual way. T is continuous if, for all

n—oo . . n—oo
sequences (f,),ens fu—3 f implies T(f,) =3 T(f).
Strictly speaking, this is the definition of sequentially
continuous, but continuity and sequential continuity are

equivalent on metric spaces. Here, f, =2 J means that
Ve>0,3INeN such that Vn>N:d(f,, f) <e, and

T(f,) = T(f) means similarly but with the metric on C.

We are now interested in characterizing the continuous
dual of S(R), denoted by S(R)’, which is a subset of
the algebraic dual. Hence, we restrict our attention to linear
maps T:S(R) - C. When T is linear, T(f) —T(g) =
T(f — g). We also notice that d(f,g) =0 if and only if
Ilf = gll.p = O for all @, B. Therefore, the condition that T
be a tempered distribution, meaning that 7 € S(R)’, is that
it is linear and satisfies

(Ya.peNy: lim [|f,,[l,, = 0) = (lim |T(f,)| =0)

(D41)

for any sequence of functions (f,,),,en C S(R).

As described above, a rigged Hilbert space is a triplet
S(R) c L*(R) c S(R)". S(R) is the “bra space” of tem-
pered distributions. One can analogously construct the “ket
space” of antilinear continuous functionals on S(R). This
space is often denoted as S(R)*.

We now revisit the (cos 8|, (sind|,, and (6], states and
show that they each belong to S(R)’, while their ket
counterparts belong to S(R)*. As before, we restrict our
attention to the (cos 6|, states, as the others are analogous.
By construction, (cosd)|, is clearly linear. We now show
that it is continuous. We use Eq. (D41) and compute

lim |,,(cos 0]f,,)|

\/7263‘“/’” sin[(n + 1)0](n|f ) (D42a)

nENO

= lim

m—oo

< 1im 3 [{nlf,)] (D42b)
neN,
1
= lim ola"|fm D42c
Jim 3 o) (D42c)
= lim x) | x (X D42d
msm%f]/w(@ L) raas| (0420

011013-33



IOSUE, SHARMA, GULLANS, and ALBERT

PHYS. REV. X 14, 011013 (2024)

s 5 [re) o2 )

O (D42¢)
o Jim sup <x+dii> ) (D42f)
=0. (D42g)

The last line comes by assumption from Eq. (D41). The
second-to-last line comes from the facts that 3, 1/v/n! <co
and that [ [yo(x)|dx < oo, where y,(x) is the position
representation of the lowest Fock state as described in
Appendix B. Hence, (cosf)|, is a tempered distribution.
From Theorem D5, we know that CV 2-designs do
not exist. However, Theorems D8-D10 show that rigged
CV 2-designs do indeed exist, where we define a rigged
CV design analogously to a standard CV design with the
additional feature that tempered distributions are allowed.

4. Regularized-rigged state designs—Making rigged
state designs physical

Suppose we have a construction of II, in terms of
unphysical states, so that I, = [y ([x){(r|)®'du, where X
is some measure space with measure x. We use y to denote
possibly non-normalizable states and y to denote properly
normalized states. Define a Hermitian operator R which
we call the regularizer. For example, R could be e ", where
n is the number operator diagonal in the Fock basis
f|i) = i|i). Then,

¥ .= ReL, RS (D43a)

~ [ ®I iR (D43b)

As long as the amplitudes of each [y) do not grow too fast
(indeed, their growth is constrained by the condition that
ly) be a tempered distribution; see below), the states R|y)
are normalizable. Define the normalized state correspond-
ing to the tempered distribution y as |w) = R|y)/||R|x)||-
Then,

m® = / () wD® R [Pdu.  (D44)

One can then define a new measure v which is y weighted

by the positive factor ||R|y)||*/TrII® (one can imagine
using a Lebesgue-Stieltjes measure construction), thus
giving

i
e L
Trll; X

(D45)

The first thing to note is that by taking the trace of both
sides one finds that v(X) = 1. Hence, the measure space
defined by X and v is a proper probability space. Next,
suppose that R = e™#". The parameter # is an inverse
energy. 1/f fixes an energy scale of the states involved in
the design. As 1/ — oo, the energy of the states becomes
infinite, and HSR) looks more and more like I1, = HEH).
When f is exactly zero, the equation becomes uninterest-
ing, since II,/TrIl, is just the zero operator.

Nevertheless, f is a parameter that one can tune that
enforces a soft energy cutoff. The smaller one tunes j3, the
more the ensemble resembles a continuous-variable state
t-design. The soft energy cutoff e " is chosen to ensure
physicality of the resulting states. In particular, e #" always
takes a tempered distribution to a state in L?(R), whereas,
for example, a soft cutoff of the form (7 + 1)~” for some
b > 0 does not always achieve this. We, therefore, use e "
to make any rigged design into an approximate design
composed of physical states. This is formalized in the
following proposition.

Proposition DI11. If |y) is a tempered distribution, then
e P|y) is a state in L*(R) for any > 0.

Proof sketch. From Theorem 3 in Ref. [132], any tempered
distribution can be expressed as [y) = >, <, @,|n). We first
calculate the norm of e#|y):

U™y = 3 lay e,

neN,

(D46)

We, therefore, find that e #?|y) € L*(R) as long as |a,,| grows
with n asymptotically slower than exponential. Hence, to prove
the proposition, we need to show that if a,, grows exponentially
or faster in n, then |y) is not a tempered distribution. This is
proven in Theorem 3 in Ref. [ 132]. For completeness, we show
it here as well. We use Eq. (D41) to show this.

Fix some sequence (f,),en ©Of states f, €S(R)
satisfying

Va»ﬁe NO: n]li_l;lgo”fmna,ﬂ =0. (D47)

Specifically, let [f,,) =e™ >, cn, € |n) for some arbi-
trarily small € > 0. Then, assuming the best case where a,,
grows exponentially as a, = e’ for some y > 0,

lim [(7f)] = lim [ > a,e=m=en (D48a)
m-—-oo m-—-oo ne NO
= lime™| ) " einenlr=e)|. (D48b)
e neN,

011013-34



CONTINUOUS-VARIABLE QUANTUM STATE DESIGNS: THEORY ...

PHYS. REV. X 14, 011013 (2024)

Since ¢ can be arbitrarily small, we can always choose it so
that y — e > 0, and, therefore, the sum diverges no matter
the choices of the phases 6,. Hence,

Tim |(¢]f,,)] # 0. (D49)

proving, by Eq. (D41), that |p) is not a tempered
distribution. L]

This proposition justifies our choice e as the soft
energy cutoff, since a cutoff such as (1 + 7)™ does not
satisfy the proposition for any b. However, there do exist
rigged designs for which (14 7)™ is sufficient. For
example, the [0),, |cosf),, and [sind), are all tem-
pered distributions that generate rigged 2-designs, and
(14+7)7210),,.(147)2|cosh),,.(147)?|sind),€L*(R).
Hence, one may suggest that, for these rigged designs, one
should use (1 +7)7 as a soft energy cutoff in place of
e”". However, one desirable property of physical quantum
states is that all position, momentum, and energy moments
are finite. In other words, one may desire that the states
belong to S(R) € L?(R). One can straightforwardly show
that, for example, (1 + 72)7?|6),, & S(R) for any b, whereas
e7|6),, € S(R). This is another justification for the use
of e,

Example D12. Consider, for example, the rigged design
given Theorem DS. Sandwiching the design with R results
in the normalized states V1 —e=2/ 3, (e /mHiontion’| ),
Each of these states has energy coth(f)/2 —1/2. The
design also still consists of the original Fock states |n),
but the weight in front of each Fock state decays exponen-
tially with n as ~e™?". Thus, despite the fact that the design
uses arbitrarily high energy states (i.e., |n) for all natural
numbers n), the weight factor in front of these high energy
states is exponentially small in the energy. Therefore, the
design effectively uses states finitely upper bounded in
energy, where the bound is tuned by . We refer to Sec. V in
Ref. [111] for a review of these states, which are related to
so-called phase coherent states.

We consider now an R-regularized-rigged #-design G,
which satisfies

n®
E (W) w)® =& (D50)
weg TrIT,
By tracing out, e.g., the last factor, we find

E, eq(lw)(w]) @Y o« Tr,IT%). Recall from Appendix B2
that TT, = (1/¢!) >, <5, W,. Consider a permutation ¢ € S,
that leaves the last factor fixed. Let #€S,_; be the
permutation with the same cyclic decomposition as o.
For example, when ¢t = 3 and ¢ = (12)(3) is the permu-
tation swapping 1 and 2 and leaving 3 fixed, then we set
7= (12). We see that, for such a o, Tr,(R®W,R®") =
(TrR?)R®-DW_R®(-1) Hence, the sum over all such

permutations results in (TrR?)Y, o5 R®-DW, RO =

(TrRz)Hgl_ei. For all other permutations 7 that do not leave
the rth factor fixed, Tr,W, does not pick up a factor
of (TrR*). We, hence, find that E,cg(|y)(y|)®"" ~
(TrR?)IT®) + [terms without (TrR?)]. Assuming that the
regularizer R is close to the identity so that (TrR?) is large
and applying the above arguments to both the numerator

and denominator of Eq. (D50), we, thus, find that an
R-regularized-rigged r-design G satisfies

R
0
')

1—

E (W) )P0 = = (14 0(1/Te?)). - (DS1)

It is in this sense that an R-regularized-rigged #-design is
almost an R-regularized-rigged (¢ — 1)-design up to factors
of 1/TrR.

In the special case when R =P, = > L |n)(n|, a
P -regularized-rigged t-design G is simply a CP?!
t-design, and, hence, it is also exactly a (¢ — 1)-design.
However, when R is an invertible operator, the result is only
a (t — 1)-design up to terms of the order of 1/TrR>.

a. Frame potential

In this section, we generalize the well-known frame
potential from finite-dimensional state designs [17] to
regularized-rigged designs. Specifically, for a positive
definite regularizer R, we define the frame potential of
an ensemble G [i.e., a probability space over unit vectors in
L*(R)] to be

viR(G) = E |(wlRg)P".

ieg (D52)

We prove the following proposition regarding R-regular-
ized-rigged t-designs and the frame potential.

Proposition DI13. Let R be positive definite. For any
ensemble G,

B(G) > 1

(
V ) — 9’
' Trrt®

(D53)

with equality if and only if G is an R-regularized-rigged
t-design.

Proof. This proof is a modification of that of
Eq. (3) in Ref. [17]. Let E := E, cg(|y)(w|)® and &:=

(R-H®'E — Hg\/ﬁ) / TrHER) . By recalling the definitions of
regularized-rigged designs and of the symmetric projector
(B10), we see that G is an R-regularized-rigged #-design
if and only if £ =0 or, equivalently, Tr&? = 0. We find
that
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0 < Tré? (D54a)
Tr[(1%)’]
_ -1\®t -1\®1
= Tr[(R"")®'E(R®'E] + 1)
t
T [ENYR (R-1y®1] (D54b)
ril;
(R)
TrlIl 2
= Vi¥0) + — 5  TrEM]  (DS4c)
(TrIL,™)*  Trll
1 2
=g T (D54d)
TrlT; Trll;
_y® 1
=V T ® (D54e)
r t

with equality if and only if G is an R-regularized-rigged
t-design. In the second-to-last line, we use that ETI, = E
and that TrE = 1. (]

If R is instead only positive semidefinite and not
invertible, then we can modify the definition of the frame
potential to utilize the Moore-Penrose inverse R in place
of the inverse R~!. The proposition then still holds as is,
with the addition of the assumption that RRT™G = G, where
recall RR™ is a projector onto the support of R.

Notice the presence of the R™! in the definition of the
frame potential. We also see such a presence in Appendix E 2
when generalizing fidelity quantities to infinite-dimensional
spaces.

5. Alternative characterization of continuous-variable,
rigged, and regularized-rigged designs

To generate a random state |y) € CP?~!, one can equiv-
alently choose d amplitudes {o; € C|i €0, ...,d — 1}, where
each a; is drawn independently from the unit variance normal
distribution A/(0, 1). The state Y, o;|i)/||>_; a;]i)|| is then a
random state drawn from CP4~!

Motivated by this and by Sec. IV.1 in Ref. [133], we
consider integration on the Fréchet space C* = [[;cx, C
with the product topology. Define §;:C* — C to be the
projections §;(x) = x;. Let  be the smallest o-algebra on
C* such that 0; is measurable for every j. Note that this
corresponds to the Borel oc-algebra; that is, the product
topology and the os-algebra are both generated by sets of the
form A = [];cn, Ai» where each A, is an open subset of C
and only finitely many A; are proper.

Let (0, 4;) be the Gaussian measure on C with mean 0
and variance 4;. Define the measure p:X — [0, 0] by
= ®;en, N (0, 4;), where each 4; € (0, 00). The construc-
tion for such a measure is as follows. For A = [[;cn, A;
where all but finitely many A; satisfy A; = C, define
#(A) = [lien, N(0,4;)(A;). For every i for which

A; = C,N(0,4;)(A;) = 1. Hence, p is well defined on such
sets A, since the product is finite. From its definition on such
sets A, ¢ can be uniquely extended to all of X (see Theorem
10.6.1 in Ref. [134]).

Let {|n)|neNy} be a basis for L>(R). For z€C®,
let [z) = >, en, Za|n). Any tempered distribution can be
expressed as |z) for some z € C® satisfying certain con-
ditions (see Theorem 3 in Ref. [132]). We, therefore, define
the following subsets of C*:

S = {zeC®||z) e S(R)}, (D554)
f%(NO) = {z€C%||z) e L*(R)}, (D55b)
§:={z€C%||z) e S(R)'}. (D55c¢)

Lemma DI4. Suppose that 4; = 1 for all i €N;. Then,
u(S") =1 and, therefore, u(C*\S") = 0.
Proof. Note that

| 2 | ,
/C"" P |2)|| du(z) = n; m/cm |z, % du(z)
= D56
Z s (D56)

(1/f +1)|z)||* < oo for almost all z. For any
zeC®, if [|(1/A+1)[z)|| < oo, then |z) €S(R) (see
Theorem 3 in Ref. [132]). Hence, |z) € S(R)' y-ae. =

Through an analogous calculation with the integrand
being |[||z)[|*, one finds that if 7,y A; < oo, then
u[€%(Ng)] =1 (see Remark 4.1.2 in Ref. [133]). Define
R to be the diagonal matrix with diagonal entries 4;. If R is
the identity, then wu(S’) =1, while if R is trace class,
then pu[¢2(Ny)] = 1.

It follows that if R is the identity, integrals over the
measure space (C®, X, u) are equal to integrals over the
restricted measure space (8',Z|g, p|g). Similarly, if R is
trace class, integrals over the measure space (C*,Z,u)
are equal to integrals over the restricted measure space
[£6(No). Zlg ).

Next, we show that, when R is the identity, )
is a rigged r-design for any r€N, and, when R is trace
class, [£2(Ny), 22 (ng) ez ()| 18 an R-regularized-rigged
t-design for any r €N [135].

Given the construction of our measure space over C*,
integrals over polynomials in z reduce to simple finite-
dimensional Gaussian integration. For the purposes of
designs, we are interested in only such polynomials.
Consider

/ H ailz)(z|b;)du(z

(D57)

/ HZu b, d/,l
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for a, b €N{,. Since the integrand depends only on at most
2t elements of z, we can use Fubini’s theorem so that the
integral reduces to an integral over C* with the measure
® N(0, 4;). Then, one can easily check by induction (or
just by using standard properties of Gaussian integrals) that

the integral equals Hgﬁ)(a; b), and, therefore,

[ 1T dut) =
i=1

in the weak sense. When R is the identity, (8, Z|¢, |y ) is
a rigged r-design (for all t€N), and when R is trace

class, [£2 (No). Z| 2 () -#
t-design (for all € Ny).

(D58)

2 (\y)) 18 @ VR-regularized-rigged

6. Displaced Fock states as negative-weight
approximate designs

The projection onto the two-body symmetric subspace is
(see Appendix B 2)

1 . :
I, = 3 (]] + ei(7/2)(a"=b )(ﬂ—b))’ (D59)

where the second operator in the parentheses is the SWAP
operator and a (b) represents the lowering operator for the
first (second) mode. To simplify calculations, we apply the
beam-splitter operation

U = exp [% (a™b - ab*)} ,

5(72) oo

which is equivalent to partitioning the two-mode Hilbert
space into a tensor product of a center-of-mass L*(R) factor
whose corresponding coordinate is symmetric under SWAP
and an antisymmetric factor whose coordinate is antisym-
metric (see Sec. Il in Ref. [51]). In the Fock-space picture,
this results in

a
acting as U*(b)U =

1 + einb'b
2

= In)n

neN,

UILU =1 ®

(D61)

PEN,

which now projects onto the entire symmetric factor and the
even Fock-state subspace of the antisymmetric factor.

We now determine what happens if one sums up two
copies of all displaced versions of a particular Fock state
|€). Using the fact that SWAP acts on displacements as
UD®?*U" = D, ® 1 and the fact that displacements form a
unitary 1-design, we have

ul [ 2 ps2ee)eeps?
([ Lepeieareans:)or

_/d2 (D, ® YUY (e|UT(DE®@ 1) (D62a)

=Tr (U|€)(¢€|UY), (D62b)
where Tr; is the partial trace over the first factor.

We next write out U as a direct sum of irreducible
representations of SU(2), with each representation acting
on a sector of fixed total occupation number. Irreducible
representations of SU(2) are known exactly in terms of
the Wigner-D matrices [136], and the matrix elements we
need are

=|(2¢ —n,n|U|¢, 6)|?

\Dgn Afo-20

Plugging this in yields

2 (2¢-2n)!(2n)!

2
U(/d D®2|ff)<ff|D®2> —11®ch 12n) (2n].

(D64)

When ¢ =0, we have céo) =1, corroborating the result
from Sec. IIl in Ref. [51]. For general ¢, this result yields

nonzero coefficients c,(1 ) for all Fock states <27 in the
antisymmetric factor.

We now linearly combine instances of Eq. (D64) with £
from zero to some 7, and compensate the c,(f)
weights b, in front of each Fock state. This yields

(szb,f / D,|£6)(¢¢|D; )U1

using

mdx

(D65a)

fmﬂx L
1- Zp:er] bpc(f )

O

bf:

(D65b)

which yields I, up to the Fock state 2¢ in the antisym-
metric factor. However, some of the b,’s are negative,
meaning that the right-hand side of Eq. (D65a) cannot be
treated as an expectation value of operators sampled
according to a probability distribution. The ensemble can
be formulated in terms of a measure space with a signed
measure, and there may be schemes to sample from such an
ensemble [137]. Thus, displaced Fock states form a hard-
energy regularized 2-design with a signed measure.
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One may be tempted to take £, to infinity. In this case,
the coefficient b, ~— oo, showing that this regularized
design does not yield a CV design and corroborating the
no-go Theorem D5 (recall we extended Theorem D5 to the
case of signed measure spaces at the end of Appendix D 1).

7. Approximate continuous-variable unitary designs

In finite dimensions, a unitary design reconstructs the
superoperator

(D66)

cES,

In this way, when acting on a fiducial state p = |¢) (|, one
finds

Pip®) = |S|ZHW H(Wollp®) (D67a)
cES,
=15 |an VTr[W; ! p®] (D67b)
cES,
ZHW (D67c¢)
O‘GS
=1I,. (D67d)

From above, we have states in L?(R) that construct the

normalized symmetric projector I1°) = R®TL,R®". In a
similar way, let us normalize the superoperator P,. Define

P = Z IR®'W,)(R®'W,|.  (D68)
|S | cES,
Then, when acting on a fiducial state p = |¢) (¢
) Z||R®’W ) (RW,|[p®") (D69a)
|S | cES,
> IR®W,)Tr[ROW;'p®]  (D69b)
|S | cES,
= Tr|(Rp)®I1;" (D69c)
TP (D69d)

With this, we now define an approximate continuous-
variable unitary f-design to be a collection of unitaries
U;:L*(R) —» L*(R) that satisfy

Z<HU1'><U1‘||)®I = p®

i

(D70)

As with rigged state designs, the parametrization i of the
unitaries, represented here heuristically as a sum, may
constitute a measure space. We leave determination of
existence of such designs to future work.

APPENDIX E: APPLICATIONS OF RIGGED
AND REGULARIZED-RIGGED DESIGNS

1. Continuous-variable shadows

In this subsection, we use rigged designs to construct
infinite-dimensional classical shadows of a quantum state
p. With these shadows, one can, for example, efficiently
compute the expectation value of many observables.
Reference [112] phrased shadow tomography from
Ref. [26] in terms of informationally complete POVMs.
We generalize their discussion to infinite dimensions.

Specifically, suppose that the measure space (X, X, u) is
a rigged 3-design. In other words,

‘@mmwwm:mm (E1)

for each r€{1,2,3}, where a;,a,,a; € (0, 00) are some
numbers. We assume without loss of generality that a; = 1
(if not, just rescale the measure). Recall that we use |y) to
denote tempered distributions and |w) to denote physical
quantum states.

Let v:X — P(H), where P(H) denotes the set of non-
negative operators on an underlying separable, infinite-
dimensional Hilbert space H, and define

=Ammwm. (E2)

This map is a POVM, because it satisfies the axioms

M v(X)=1

(2) v(@) =0, and

(3) v(lJ;A;)) = > ;v(A;) for countable collections of

disjoint A; € Z.

The first axiom is satisfied, since X is a rigged 1-design
with a; = 1. The second axiom is trivially satisfied. The
third axiom follows from the ¢ additivity of the measure y.

We can, therefore, measure a state p with respect to the
POVM v. As usual, associated to the POVM is a standard
probability measure p' defined by x/'(A) = Trlpr(A)].
When measuring the state p with the POVM v, we sample
outcomes labeled by y € X from the probability measure z'.
Indeed, we have the freedom to label the outcomes however
we choose. In particular, suppose that to each tempered
distribution (i.e., non-normalizable, and, therefore, unphys-
ical, quantum state) |y) € X, we associate a physical state
ly,) €H of unit norm. Then, the measurement channel
representing the POVM v is p — [y [w,) (y, |dp' ().

In the realm of shadow tomography, however, we have
even more freedom than this. Once we measure from the
POVM, we store a shadow on a classical computer and
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never need to physically prepare the shadow. Therefore, we
do not need to associate physical states |y,) to the
measurement outcomes of the POVM; we are free to
associate the unphysical tempered distributions |y) to the
measurement outcome corresponding to y. The resulting
map representing the measurement process is then

M(p) = / )l (r)- (E3)

Since ,u is a probability measure, we define the notation

Eyex () = fy()du (¢). Hence,
Mip) = E [0 (E4)

M is not a physical quantum channel; indeed, TrM (p) is not
finite. However, M represents the process of measuring p
with respect to the physical POVM v and storing the result
classically. This part of the formalism, namely, associating
the infinite-trace operator |) (y| to the measurement outcome
¥, 1s the only part that differs from the finite-dimensional
case. In the finite-dimensional case, the designs contain only
physical states |y), and a physical density matrix |y ) (| is
associated to the measurement outcome y. Ultimately, since
this part of the procedure is being done classically, this
difference is inconsequential, and we continue exactly as we
would in the finite-dimensional case.

Using the fact that X is a rigged 2-design, we can
evaluate

Mip) = [ L'ty (Esa)
= A Ue) e Telpl) (el du(x ) (ESb)
(1) [Gu) @] (e
= aTr[(p ® 1)I1,] (E5d)
z%Trl[(p@)ﬂ)(ﬂ ®1+59)] (ESe)
=21 +p). (ESf)

where S is the swap operator. Hence, p =

E,cx [(2/a2)lx) (x| — 1], and, therefore, for any observ-

able O,

©)=Tp0) = ETr|(20td-1)0|. @9

Suppose that we make N measurements. The output of the
ith measurement is a label y;. We store the classical shadow

Pi = (2/ax)|xi)(xi| — 1 on a classical computer. Therefore,

after N measurements, we have a classical collection
{P1 ..., Py} Given sufficient information about our design
and the observable, one can classically compute Tr(p;O).
Define

=) THHO). (E7)
i=1

By construction, E[0] = (O), where the expectation is taken
over possible measurement outcomes. By Chebyshev’s
inequality, Pr[|0 — E[0]| > €] < Var(d)/e?, where

Var() = EZ: Var G TrLﬁ,O]) (E8a)
1 N
=7 ; Var(Tr[p;O)) (E8b)
sz\gﬁ < [ mo] TrO) (E8c)
_ % Var <Tr L% ) mo] - Tr(’)> (E8d)
(T2 o] -mo) - Lor
(ESe)
— 3, E (T 2wl + oy

-2me| 20| (mo) ) -y (o (s

:N“a% / Telly) (O Te(plie) (x)dz)

3 (T [ Te(ole) r)eutr)
e (110) [ Tl O Telol) ) ltz)
- (o (Be)
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Using that X is a rigged 1-, 2-, and 3-design, we find

Var(d) = ;"’; t(p ® O ® O] + I(Tr(’))z

a3

~ e (TOITH{(p ® O)L] 1,0 (ESw
_ 3?\,“* (TFO)? + 2(Tr0)(O) + TrO? + 2(0?)]
0‘2
+ % (TrO)? — Niaz (TrO)(TrO + (O))
- (E9D)
2
co <%> . (E9¢)
It then follows that
T 2
Pl — E[0]] = ] € 0 (%) (E10)

Consider computing the expectation value of M observ-
ables Oy, ..., Oy using the same N shadows p; as above,
and let 0, be the same as 0 from above but corresponding to
O;. Then, applying the union bound, we find

Mmax;(Tr|O;|)?

P 5, — E[6,]] > €] €O
imgx|o; ~ E0]| > d € 0 (M

). (E11)

Hence, to achieve a failure probability of at most §, we
need N € O(M max,(Tr|O;])?/5€?).

a. Using median of means

We can do much better than this by using the median-of-
means estimator as described in Theorem 1 in Ref. [26],
where we compute the median of K sample means and each
mean is taken with N samples. Indeed, their theorem
applies immediately, and we instead find that

N€0<1max(Tr|(9 ) ) and KeO(log(M/5)) (E12)

suffices to estimate each (O;) to maximum additive error €
with success probability at least 1 — . Thus, the total
number of samples from p needed to accurately predict
(Oy), ..., (Oy) scales as log M.

Unfortunately, we have not yet found a useful rigged
3-design (arigged 3-design is described in Appendix D 5, but
it involves infinite-dimensional integration). The 3-design
condition is used to compute the variance Var().

One may wonder how well a rigged 2-design works
for shadow tomography. Since the variance calculation
requires three copies of |y){y|, the variance depends on the
specific rigged 2-design that is used. Here, we compute the
variance with respect to the rigged 2-design that uses the
Kerred phase states, namely,

1 2 dOdy
S ®r 0)(0],)® ——
= a1, (E13)

for re{1,2}, where @ =1 and ay = 1/(x + 1/2). The
only term in the variance that is different is

T OFTrlple) () = 5" S~ (O Pl +3 " [ (01000, 61010 d0dp (1)
1
271' +1 n; On nPn.n m Z Z Onl.m10n2,mzpn3,m3

x / ei6'(n1+n2+n3—m1—mz—m3)eiq)(nf+n§+n§—mf—m§—m§)ded(p
[0,22)

27z—|—1

neNy

)

ny+ny+nz,my+my+ms

Unfortunately, there is no obvious closed form simplifica-
tion. We can, however, investigate specific cases. For
example, consider the case when O is diagonal in the Fock
basis {|n)}. Then, this term simply becomes §(O?%) +
(1/47)(Tr©O)?. Hence, if we have a collection of M ob-
servables Oy, ..., Oy, that are each diagonal in the Fock state

Zonnpnn 2

1
T)Zﬂ' Z Z O”lsml 0’12,m2pn3,m3

0,2

n —&-nz-&-n2 m +m2+m3

ny,ny.n3 € Ny my,my,mz €Ny

(E14b)

ny,ny,ny €Ny my,my,m3 €Ny

(El4c)

basis, then one needs only ~log(M)max,(Tr|O;|)* mea-
surements of p from the POVM defined by the rigged
2-design to estimate (O,), ..., (Oy).

Perhaps amore interesting case is when O =|a) (b|+|b) (a|
for positive integers a and b. Assume that » > a and define
A := b —a > 0. In this case, the term above becomes
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1
= (2” +1 )2” O”] my Onz,mzpns-mg 6n|+nz+ﬂ3,m| +my+m3 6n%+n§+n§,m%+m%+m§ (El 521)
ny,nymy,my €4{a,b} nz.mz €Ny
= ; [©? o 1) o2 13} o
2z +1)2z a.bPns.my 02t 2b+my 0202413 262 +m3 T O aPny.my O2b-tny 2atmy 020 03 20 +m3
nz,mz €Ny
+ zou,hoh,apn3,nz3 5}1';"1';] (Ele)

1
= E _ o E _ 13} 2 + 2T,
(27[ + 1)2” |: Py 2(a=b)+n392a%+n3 207 +(2a-+n3~2b)> + L Nopn3,2(b a)+n3 9202412 2a*+(2b+n3-2a) + p]

n3 €Ny

n3>2A

1 1

1
z(2r+1

< 2
“a2r+ 1)

Hence, if we have a collection of M observables of the form
O; = la;)(b;| + |b;){a;|, then we can accurately determine
each (O;) with only ~log M measurements of p using the
rigged 2-design.

b. Using Hoeffding’s inequality

Again motivated by Ref. [112], we consider using
Hoeffding’s inequality and using only the 2-design prop-
erty. Hence, this section applies to rigged 2-designs, of
which we have constructed several. Specifically, suppose
that we again consider estimating (O;) with N shadows by
0;=(1/N)>NTr(p;0;). If —co<c<Tr(p;0;)<d<o
almost surely for each shadow p,, then Hoeffding’s inequal-
ity immediately implies that

) . 2Ne?
Then, applying the union bound,
Pr[max|o; — E[0,]| > €] < 2M ex | 2Ne (E17)
R e =R

o o —a a— a— —a
227+ 1) + 27+ 1)27 36>a03a3b P (3b—a)/2.(3a=b)/2 T P(Ba=b)/2.(3b—a)/2)

) (1 + 3352403026 R(P(3p-a) /2.(30-1)/2))

(E15c)

1 1
77,'(277,' T 1) + (2” T 1)2ﬂ { Z pn;,n3—2A52a2+n§,2b2+(n3—2A)2 + Z pn3.n3+2A62b2+n§.2a2+(n3+2A)2:| (E15d)

n3 €Ny

(E15e)

(E15f)

(E15g)

Therefore, to achieve a failure probability of at most o, we
need

2M\ (d — ¢)?
Nzlog( 75 ) 5o

(E18)
to compute the M observables to additive accuracy e.

For instance, we consider the example from above where
the observables are O; = |a;)(b;| + |b;)(a;|, and we per-
form the shadows procedure with the rigged 2-design given
in Eq. (E13). One easily finds that —2/z(x + 1/2) <
Tr(p;0;) <2/n(x+1/2). Hence, we can determine
the expectation value of the M observables with error
€ and failure probability at most 6 with only N >
log(2M /5)(8/7*(x + 1/2)€?) measurements.

c. Worked example

We now work through a simple, explicit example of
using shadow tomography with the rigged 2-design in
Eq. (E13) to determine the expectation value of M
observables with log M measurements. We let each observ-
able be O; = |a;)(b;| +|b;){a;| + |c;){c;| for arbitrary
non-negative integers a;, b;, and c;. Suppose that we have
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access to a blackbox quantum device that prepares p, but
we know nothing else about it.

Generate shadows.—The first step is to describe a
procedure to generate a classical shadow. Recall that
single-qubit “local Clifford” shadows [26] consist of
choosing randomly between measuring in three different
POVMs—the three Bloch-sphere axes—each yielding a
binary outcome. In our case, for a single mode, we choose
between measuring in either the discrete Fock-space
POVM or a continuum of phase-state POVMs which differ
by how much they have evolved under the Kerr
Hamiltonian (quantified by ¢). Each POVM has an infinite
number of outcomes: The Fock-state POVM admits a
countable infinity of outcomes indexed by Fock-state
occupation number 7, while the phase-state POVMs have
a compact continuous set of outcomes indexed by phase-

x < 1/(2m + 1), then we measure p in the Fock-state basis
{|n)|[neNy}. The result is an integer n €N, and the
classical shadow is then a classical label representing the
operator p\") := (27 4 1)|n)(n| — 1. If, on the other hand,
x> 1/(2z + 1), then we draw a random number ¢ between
0 and 2z and measure p with the continuous POVM defined
by the operators {,|0)(6],|6 € [0,27)} and the measure dé.
The output of such a measurement is an angle 6 € [0, 27), and
the classical shadow is then a classical label representing the
operator %) == (2z +1),,|6)(6],, — 1.

Classically compute expectation values with respect to
shadows.—For the shadow /’)("), we easily see that

Trm(")(’)j] = Tr[[(27 + 1)|n)(n| = 1]O}]

=(2 1),. — 1. E19
state index 6. (27 +1) e (E19)
From Eq. (E13), we generate a shadow as follows. First,
we draw a random number x between 0 and 1. If For the shadow ﬁ(g*’/’), we compute
|
Tr[p@»O;] = Tr[[(2z + 1),,|6) (0], — 1]0;] (E20a)
2741 i0(n—m)-+ip(n>—m?)
== d e (m|O;|n) -1 (E20b)
n,m€Ny
2r+ 1 i0(a.—b ) +ip(a?— i0(b;—a;)+ip(b;—a;
— _”zﬂ (b ioldi=b) | giob—atio(bi=a) | 1) _ (E20c)
1
= (2+ 1/x)cos[0(a; — b)) + ¢(a; — b7)] + 7 (E20d)

Choose the number of shadows to generate—We see
that, for every possible shadow p and every observable O,
—-2—1/72+1/2n<Tr[pO;] <2x. Therefore, from Eq. (E18),
we set

b 262

361 2M
~—log| =—).
2 B\ 5

Estimate expectation values with respect to state.—With
all this in place, we can now classically compute each (O;)
to a maximum additive error of € with success probability at
least 1 — o. First, generate N shadows with the procedure
described above. Then, with those N shadows, classically

. L"g<%> (2r+2+ 1/ —1/21)?

(E21)

compute the mean expectation value of each observable O;
over the N shadows using the expressions derived above for
Tr[p! O] and Tr[p#)©;]. With probability at least 1 — &,
all of these M means are within ¢ of the true expectation
values with respect to p.

2. Fidelity calculations

In this subsection, we derive the calculations shown in
Sec. VIC. Throughout this subsection, we let £ denote an
R-regularized-rigged 2-design, meaning that £ is an ensem-
ble over unit-normalized quantum states satisfying

Eyeellw)(w])® = (HéR)/Trl'IgR)). We assume that R is
positive semidefinite. Recall then that HgR) =(R®
R)I(R ® R) and IT, = 1 (1 + S). Therefore, 2Tr1’IgR> =

(TrR?)?> + TrR*. From this characterization, one easily
computes that
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E_(wlA)lw)wl =Tr[A® D E )l ®lv) (w] (E22a)
—— & Tn[(A® )(R* ® R + (R’ ® R?)S)] (E22b)
2TrH2
_ ! ® [R°Tr(RAR) + R*AR?| (E22¢)
2TrIl,
_ R’Tr(RAR) + R?AR? (E224)
(TrR?)? + TrR*
Furthermore,
E _(w|Alw)(w|Blw) = Tr[B E (w|Alw)lw)(wl] (E23a)
eé weé
BR’Tr(RAR) + BR*AR? (E23b)
(TrR?)? + TrR*
_ Tr(RBR)Tr(RAR) + Tr(RBR?AR) (E230)

(TrR?)? 4+ TrR*

We now study definitions of fidelity. We now assume that R is diagonal in the 7 basis. We define a continuous-variable
version of a maximally entangled state as [98]

1

I

be) = A (R ® RY) S |n) @), (E24)

3

When R = e, |¢hg) is a two-mode squeezed vacuum state; when R = P, |¢z) is a finite-dimensional maximally
entangled state. Define its reduced state on one mode by

pr = Tra|pr)(#r| = R/TIR. (E25)

Let D be a quantum channel with Kraus operators K so that D(p) = Y KpK'. In analogy with the finite-dimensional
case, define the entanglement fidelity as

FP(D) = (rl(Z ® D) () |¢r) (E26a)
:m—lRyZ S (1] ® (n|R'?)(1 @ K)(jm) ® R'2|m))
K nm,jk
x ((j] ® (IR'2)(1 ® KT)(k) ® R'?k)) (E26b)
= TR ZZZ (n|R'2KR'2|n) (j|R'2KR'2|j) (E26¢)
= ITe(prK)I. (E26d)

Furthermore, in analogy with the finite-dimensional case, we define two “average fidelity” quantities:

4y 2
FOD) = T T € IR DR ). (272
FS(D) = E_(y|D(w)ly). (E27b)

yet
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We again emphasize that these definitions are independent of which R-regularized-rigged 2-design & is used, since they
involve only two copies of |y) and two copies of (. Notice that when R = P, since the Moore-Penrose inverse R™ of a

projector is itself, we find that F 5p a) — FgP a)

By Eq. (E23c), we immediately find that

F(D) =

TrR* + (TrR?)?
TR+ (TR Z SWIRTK ) (w KR ) (E28a)
TrR* + (TrR?)? <~ Tr(RK'RTR)Tr(RR*KR) + Tr(RK'R*R*R*KR)
- K 2 Z = . (E28b)
TrR* + (TrR) (TrR*)* + TrR
>k ek TH(RK'RTR)Tr(RRVKR) + Tt[RTR*R™D(pp2 )]
, (E28c¢)

de + 1

where we define an effective dimension dy :=

(TrR)?/TrR?. Since we are assuming R to be diagonal, RR* = R*R.

Furthermore, by definition of the Moore-Penrose inverse, RRTR = R and RYRR™ = R™. Therefore,

dp>_k|Tr(pgK)|* 4+ Tr[RRTD(py2)]

7(R)
F®(D) = E2
") . .
_ dgF (D) + Tr[RRD(ppe)] (E29b)
dg + 1 ’
We perform a similar calculation for F' ER):
=(VR
FR D) =% E _(wlKlw) y|Kw) (E30a)
K
B Tr(R1/2K'{'R1/2)Tr(R1/2KR1/2) +Tr(R1/2KTRKR1/2) (E30b)
- (TrR)? + TrR?
_ ST kITr(RK)|? + S 4 Tr(KRK'R) (E30c)
(TrR)? + TrR?
_ dr_k|Tr(prK)|* + dry_ Tr(KprK'pr) (E30d)
dp +1
_ dgF¥ (D) + dgTr[D(pg)pe] (E30e)

dg + 1

When R = P, is the projector and D is trace preserving
on the restricted d-dimensional subspace, both relations
reduce to the finite-dimensional relation. When R is
invertible, such as the case when R = e™#", we find

_dgFP (D) +1

dg + 1 (E31)

a. Loss channel

We now compute the various average fidelity quantities
for the pure-loss channel £* defined in Sec. VIC3 and

shown in Fig. 2. From Eq. (4.6) in Ref. [116], the Kraus
operators for £* are

— )2 |m)(m +i|  (E32)

50T

for i eN.
We begin with F (L") Let |a) be the coherent state
specified by ae C. Then as calculated in Ref. [92],

011013-44



CONTINUOUS-VARIABLE QUANTUM STATE DESIGNS: THEORY ...

PHYS. REV. X 14, 011013 (2024)

Fep=—= | e/ alc*(a) (@)layd’a  (E33a)
b7
! (E33b)
L4 all—x)?
Next, we consider the entanglement fidelity F (L',")
) = (1/VTIR)(RV* @ RV*) 7%  [n) @ |n) and

assume that R is diagonal in the |n) basis. Then, from
Eq. (E26d),

(ﬁk‘ —

RP Z ITr(RK;)|2. (E34)

When R =R;=e" one easily finds this to be
(e —1)%/(e! — k)?. Recall that in Sec. VIC 3 we require

that dg, == (TrRy)*/TrRj; = 1 + 2i. Solving for 8, we find
that ¢/ = 1 + 1/#, and, therefore,

FE (%) = (1 + (1 = k)2 (E35)
On the other hand, when R = P, = >_9=1 |n)(n
Py) (1 - Kd)2
)= ————. E36
() = e (E36)
From Eq. (E31), F (EK) is the same as F* (L’K) up to

an offset. However, F g (L£*) is not as simple. Indeed, from

Eq. (E30), we must compute

K 1 il
Tr[L*(pr,)PR,] = WZTY(K‘R/JK,- Rp) (E37a)
(1=e" Zze—ﬂ (@tb) (a|K,|b) (b|K|a) (E37b)
= (1= P2y eflath) < )(1 — K2)b-ay2a (E37c¢)
a<b
el —1
Therefore, from Eq. (E30),
d A _ 1
Ry, mer Ry (Ryp) / py | €
LK) = d L E38
(€9 = gy e )+ 5] (E384)
1 W12 ¥
- [(62,5 )2 + ey 2} (E38b)
dg, +1 (e =x)* e’ +x
1 W12 e
- (ez )2 + 62 5 (E38c)
tanhf+ 1 [(e¥ —k)? ¥+«
|
Requiring that dy, = 1 + 271 yields ¢/ = 1 + 1/, giving 1 &
& TrLA(Py/d)P) == > (alKilb) (blK[la)  (E40w)
i=0 a,b=0
Rﬁ/Z (EK) _ ( n+ )((1 - K)zﬁ + 2) (E39)
2((1=x)ii + 1) (K2 + )i+ 1) | -1 b
b-
== ( >(1 K2)b=ax (E40b)
- daSh:O b-a
Finally, we compute F (E") 2l (LX) =F gP"’)(C").
From Eq. (E29), it remalns only to compute
Te[C5(P,/d)P,], which is =1 (E40c)
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Indeed, this is 1, since £¥ does not take a state that is
defined in the subspace P, out of that subspace. Using
d=1+n, we find

(I_Kr'l+l)2 N 1
(1-x)?A+1)AE+2) Aa+2°

F<1{’;+1>(£K) — (E41)

The plots of all of these fidelities as functions of « are
shown in Fig. 2.

APPENDIX F: TORUS DESIGNS,
TRIGONOMETRIC CUBATURE, AND
MUTUALLY UNBIASED BASES

In this section, we prove the equivalence between our
definition of a torus #-design (cf. Definition C6) and the
definition given in Ref. [8]. In Ref. [8], Kuperberg defines a
general notion of torus cubature that generalizes the more
established theory of trigonometric cubature [5,138]. We are
interested in one of the cases of his definition; namely, our
definition of a 7! t-design is equivalent to his definition of
a positive degree 7 cubature rule on T[PSU(n + 1)]. After
showing this, we compare a torus design to the more standard
trigonometric cubature rules and find that a torus #-design lies
somewhere between a degree r and degree 2t positive
trigonometric cubature rule. Finally, we prove a relationship
between torus 2-designs and complete sets of mutually
unbiased bases.

1. Equivalence to Kuperberg’s definition

We begin by describing Kuperberg’s definition. Consider
a group 7 that is isomorphic to the torus 7 = 7" = (S')".
Suppose p:7 — GL(V) is a free linear representation, with
V areal vector space V = R". Since p is free, it follows that
there is one or many faithful orbits O. Suppose u € V such
that O = {p(g)ulge T} is a faithful orbit. Since O is
faithful, 7 can be identified with O via 7 2 g <«
p(g)u € O. With this identification, 7 inherits an algebraic
structure, since it is well defined to consider addition such
as p(g)u + p(h)u eV for every g, h € 7. With this struc-
ture, along with the unit normalized Haar measure on 7°
(since 7 is compact), we can define cubature on 7 as
follows. A set S C 7 and weight function v:S - R_g is a
(positive) cubature rule of degree 7 on 7 if

S () flp(h)u] = /T folguldulg)  (F1)

hes

for any polynomial f:V — R of degree ¢ or less. Since
V =~ RN, we can, therefore, view f as a being a function of
the entries of the vectors p(g)u. Kuperberg also states that
this definition is independent of u for generic choices of u
as long as the resulting O is faithful [139].

We now apply this to 7 = T[PSU(n + 1)]. PSU(n + 1)
is the projective special unitary group of (n 4+ 1) x (n + 1)

matrices defined by SU(n+1)/U(1). Then 7 =
T[PSU(n + 1)] is a maximal torus (maximal, compact,
connected, Abelian Lie subgroup) of PSU(n + 1), which is
the group of diagonal unitary matrices with determinant 1
modulo the center of SU(n+ 1) (i.e., modulo global
phases). For a unitary U €7, let U;; denote the entry in
the ith row and jth column. The determinant condition
implies that U, ,; is uniquely determined by U; for
i=1,...,n. We, therefore, see that 7 =~ 7". We can also
take an alternative view of 7°; we can view 7 as the group
of diagonal unitary matrices with U, . ; ,,»; = 1 modulo the
center. This is the view we take. Below, we consider the
adjoint action of this group, and, therefore, we do not have
to worry about modding out the center; ultimately, we just
end up integrating out global phases.

We let N =2(n+ 1)? and identify V with the vector
space of (n + 1) x (n + 1) complex matrices C"+1)*(+1),
We consider a linear action of 7 defined by conjugation on
V; in other words, p(g) is defined by A+ gAg'. As
mentioned, we can pick any u € V as a base point as long
as the resulting orbit

ei¢l e_i¢1

ei¢n e_i¢n

1 1

b1 by € [, 7) (F2)
is faithful. We pick u to be the matrix of all 1’s:

1 .- 1

I ... 1
One can then easily check that

0= {U where ”ij = ei(¢i_¢i> |¢17 . --7¢n € [_”aﬂ)"ﬁn—H = O}
(F3)

A degree ¢ positive cubature rule on 7 is a set S C 7 and
weight function v:S§ — R that satisfies

, i oy d...dd,
St sty = [ tgu) L

hes

(F4)

f is a polynomial of degree at most ¢ in the entries. By
linearity, we can consider f to be a monomial. From O, we
consider monomials of degree < ¢ in the variables

011013-46



CONTINUOUS-VARIABLE QUANTUM STATE DESIGNS: THEORY ...

PHYS. REV. X 14, 011013 (2024)

{el=t|i j=1,...,

n—l—l}, (F5)

where recall that ¢, ; = 0. It follows that an equivalent definition of a degree ¢ positive cubature rule on 7 is as follows. Let

S C [-z,7)" and v:S — R.. Hence, for each ¢p €S, ¢, €

Y, ... k. e{l,..

wn+1}: Z

oes

’jt’klv ey

Notice that this takes care of a/l monomials of degree ¢ or
less. For example, consider the monomial €!?'. This is taken
care of by setting jy =1and j, =---=j, =k =---=
k,=n-+1.

We easily see that the right-hand side (i.e., the integral)
does not change if we integrate over ¢, instead of just
fixing it to be 0. Similarly, on the left-hand side, for every
0€S, we can shift each #; by a constant 9, — 6, + ¢
without changing anything. Therefore, we can remove the
definition that 6, ; =0 and instead allow 6,,, to be
arbitrary. Thus, we arrive at an equivalent definition of a
degree 1 positive cubature rule on 7 as follows. Let S C
[z, 7)™ and v:S — R_g. Then, (S, v) must satisfy

S0 [[eo = [ e

0es i=1
Notice that this is exactly our definition of an (n + 1)-torus
t-design per Definition C6.

In conclusion, our definition of a 7"*! t-design is
equivalent to Kuperberg’s definition of a degree ¢ positive
cubature rule on T[PSU(n + 1)].

i(h,~,) 41 AP

27[)n+1

(F7)

2. Comparison to standard trigonometric cubature

A degree ¢ positive trigonometric cubature rule (S, v) on
T" must satisfy

" =1

ges i=1

whenever ) " | |a;| < 1. We see that our 7" t-designs lie
somewhere between a degree ¢ and degree 2t trigonometric
cubature rule. To see the former, we show that a torus
t-design must also be a degree ¢ trigonometric cubature
rule. From the definition of torus designs,

11 13
va) Hei(‘)ﬂi‘gbf) _ / Hei(¢a,»—¢b,.)d¢. (F9)
oes i=1 =1

: : n ia;0;
Suppose we consider a monomial [ [, % If >, |a;| < 1,
then we can generate the monomial via a choice of a; and

[-7, ), and we define ¢, ; = 0. Then, (S, v) must satisfy

9”+ +0,,~ 0y, ——0;,) :/ ei(‘/’fl+"'+¢fr_¢k1_"'_¢kx)d¢l"'d¢"' (F6)
[-7.7)

(27)"

b;. Indeed, recall that without loss of generality we can
assume that 6, = 0. Consider as an example t = 3, n = 4,
and the task of generating the monomial defined by
a=(2,0,—1,0). Then, we set a; =1, a, =1, a3 =4,
bl = 3, and b2 = b3 =4, Then, Ht 9”! eb
ei(1t014+0:=0:=0.=04) - which is exactly [[;e%% since
0, = 0. Hence, by a proper choice of a; and b;, any
monomial of degree ¢t or less can be generated by

L e'% =% and, hence, a torus t-design is also a degree
t trigonometric cubature rule.

On the contrary, if we allow ), |a;| > 1, we find that
there are some monomials that cannot be generated by a
sufficient choice of a; and b;. So even though a torus
t-design involves monomials of degree up to 2¢, it is not, in
general, a degree 2¢ trigonometric cubature rule. However,
since torus 7-designs involve certain monomials only up to
degree 2¢, a trigonometric cubature rule of degree > 2t is a
torus z-design.

3. Relation to MUBs

We begin by recalling the definition of a complete set of
mutually unbiased bases [99].

Definition F1 (complete set of MUBs). Suppose that
By, ..., B, are each orthonormal bases of C". B; and B; are
called mutually unbiased if

¢)EB;: [(wlg)* =1/n.

The collection By, ..., B, is called a complete set of MUBs
if the bases are pairwise mutually unbiased. This can be
equivalently stated in term of the phases 9; « involved in the

bases (see below):
(1) 0rth0n0rmality.—\7’i,j,k€{0, con—1}

n—1 1<9 -0, _ .
=o€ jil kel _5jk’

(2) Mutual unbiasedness.—VNi# j,k,me{0,...,n—1}:
| Z?l:(; ei(a;.(‘l_arfn.l) |2 = n.
We now show the relationship between complete sets of

MUBSs and torus 2-designs. Recall the matrix I, that, for any
orthonormal basis {|0), ..., )}, has matrix elements

v |W> EBia

(F10)

(1/n) x

(a, bic,d) = (a| @ (b[I|c) ® |d)
1

(5ac6bd - 5ad5bc)' (Fl 1)

T2
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By simply doing the integration, one finds that S is an equal
weight [i.e., v(0) = 1/|S|] T" 2-design if and only if

Ze 0,+0,—0.—0,)
N

oes

=200, (a,bic.d) = 8,,8,:0,4. (F12)

Here, we show a connection between equal weight torus
2-designs and complete sets of MUBs.

Lemma F2. The phases of a complete set of MUBs on C”
form an equal weighted n-torus 2-design of size n.

Proof. Without loss of generality, we can assume that
one of the bases is the computational basis. So assume that
By = {|0), ..., |n — 1)}. Then, in order for |{y|j)| = 1/+/n
for each j€{0,...,.n—1}, |y)€B;, and i €{1,...,n}, it
must be that each other basis B; must involve only uniform
superposition states over the computational basis. With this
in mind, define [y) so that

B, = {lw)lie{l. ..n}}.

Define 9},6 so that

i) = Ze“‘"

From Ref. [17], we know that the complete set of
MUBs forms a complex-projective 2-design. Therefore,
D={|0),....[n=1)}u{ly})i,je{1,...,n}} is a complex-
projective 2-design. We, therefore, find that

1y (0% + 3w

Tan+1) T

(F13)

(F14)

(F15)

Let a,b,c,d€{0,...,n —1}. Applying (a| ® (b| on the
left-hand side and |¢) ® |d) on the right-hand side, we find

§ : +6)‘ 6’ -0\ )
5ab6a05ad +—= 2 C 4
i,j=1

=2I1,(a, b;c,d). (F16)
Per the definition of an n-torus 2-design from above, we see
that the angles 6", form an n-torus 2-design with size n°.

Furthermore, Theorem 3.3 from Ref. [140] states that if
By, ..., B, are each orthonormal bases of C" and | J,B; is an
unweighted complex-projective 2-design, then m = n only
if the bases are mutually unbiased. The following lemma
therefore follows.

Lemma F3. If an equal weighted n-torus 2-design exists
such that the phases in the design define n orthonormal
bases, then there exists a complete set of MUBs in C”.

Therefore, we have an if and only if.

Corollary F4. There exists a complete set of MUBs in C"
if and only if there exists an equal weighted n-torus
2-design such that the phases in the design define n
orthonormal bases. Concretely, there exists a complete
set of MUBs in C" if and only there exists angles 9;‘,/(
such that o

(1) Vi jk€{0,....,n—1}: 15t et — 5, ;

(2) VYa,b,c,def{0,....,n—1}:

= Z RIS

_{1 ifa=candb=d)or(a=dandb=c),

Jsc 6’/(1)

0 otherwise.

In summary, the definition of a complete set of MUBs
has two conditions: orthonormality and mutual unbiased-
ness. We have shown that the mutually unbiased condition
can be replaced with the condition that the phases must
form a torus 2-design of size exactly n.
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