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Tensor network contraction is central to problems ranging from many-body physics to computer science.
We describe how to approximate tensor network contraction through bond compression on arbitrary
graphs. In particular, we introduce a hyperoptimization over the compression and contraction strategy itself
to minimize error and cost. We demonstrate that our protocol outperforms both handcrafted contraction
strategies in the literature as well as recently proposed general contraction algorithms on a variety of
synthetic and physical problems on regular lattices and random regular graphs. We further showcase the
power of the approach by demonstrating approximate contraction of tensor networks for frustrated three-
dimensional lattice partition functions, dimer counting on random regular graphs, and to access the
hardness transition of random tensor network models, in graphs with many thousands of tensors.
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I. INTRODUCTION

Tensor network contraction, a summation over a product
of multidimensional quantities, is a common computational
structure. For example, this computation underlies quantum
circuit simulation [1–9], quantum many-body simulations
[10–17], evaluating classical partition functions [18–25],
decoding quantum error correcting codes [26–32], coun-
ting solutions of satisfiability problems [25,33–39], stat-
istical encoding of natural language [40–43], and many
other applications. The cost of exact contraction scales,
in general, exponentially with the number of tensors.
However, there is evidence, for example, in some many-
body physics applications, that tensor networks of interest
can often be approximately contracted with satisfactory
and controllable accuracy, without necessarily incurring
exponential cost [44,45]. Many different approximation
strategies for tensor network contraction have been pro-
posed [12,13,17,20,23,46–50]. Especially in many-body
physics contexts, the approximate contraction algorithms are
usually tied to the geometry of a structured lattice. In this
work, we consider how to search for an optimal approximate
tensor network contraction strategy, within an approach that
can be used not only for structured lattices, but also for
arbitrary graphs. We view the essential prescription as the
order in which contractions and approximate compressions

are performed: this sequence can be summarized as a
computational tree with contraction and tensor bond com-
pression steps.Within this framework, sketched in Fig. 1, the
problem reduces to optimizing a cost function over such
computational trees: we term the macro-optimization
over trees “hyperoptimization.” As we will demonstrate in
several examples, optimizing a simple cost function related
to the memory or computational cost of the contraction
also leads to an approximate contraction tree with small
contraction error. Consequently, our hyperoptimized
approximate contraction enables the efficient and accurate
simulation of awide range of graphs encountered in different
tasks, bringing the possibility of eliminating, or otherwise
improving on, formal exponential costs. In addition, in the
structured lattices arising in many-body physics simulations,
we observe that we can improve on the best physically
motivated approximate contraction schemes in the literature.
A tensor T is a multi-index quantity (i.e., a multidimen-

sional array). We use lower indices to index into the tensor,
e.g., Ti1i2…in is an element of an n-index T, and upper
indices to label a specific tensor, e.g., T ½1�; T ½2�…, out of a
set of tensors. A tensor network contraction sums (con-
tracts) over the (possibly shared) indices of a product of
tensors,

Tfeoutg ¼
X

feg=feoutg

Y
v

T ½v�
fevg; ð1Þ

where feg is the total set of indices, feoutg is the subset
that is left uncontracted, and fevg is the subset of feg for
tensor T ½v�. We can place the tensors at the vertices v of a
network (graph), with the bonds (edges) corresponding to
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the indices feg. An examples of contraction is shown in
Fig. 2(a).
In practice, the sum in Eq. (1) is performed as sequence

of pairwise contractions, and the order of contraction
greatly affects both the memory and time costs. Much
recent work has been devoted to optimizing contraction
paths in the context of simulating quantum circuits [6–9].
Parametrized heuristics that efficiently sample the space of
contraction paths, for example, by graph partitioning, are
crucial, and optimizing the parameters of such heuristics
(hyperoptimization) to minimize the overall cost has
proven particularly powerful, leading to dramatic reduc-
tions in contraction cost (i.e., many orders of magnitude).
Here we extend the ideas of hyperoptimized tensor

network contraction to the setting of approximate tensor
network contraction. As discussed above, approximate
contraction has a long history in many-body simulation,
but such work has focused on regular lattices. Although
several recent contributions have addressed arbitrary graphs
[30,51,52], with a fixed contraction strategy, they do not
focus on optimizing the strategy itself. In part, this is
because there is a great deal of flexibility (and thus many
components to optimize) when formulating an approximate
contraction algorithm, and because an easily computable
metric of quality is not clear a priori.
We proceed by first formulating the search space of

approximate tensor network contraction algorithms, which
we identify as a search over approximate contraction trees. To
reduce the search space, we define simple procedures for
gauging and when to compress bonds in the tree. We then
discuss how to sample the large space of trees, by optimizing

FIG. 1. Overview. The approximate contraction is specified by
a sequence of contractions and compressions, expressed as an
ordered tree. The strategy optimizes a cost function over such
trees. (a) The hyperoptimization loop. Approximate contraction
trees ϒ on the graph G are suggested by the tree generator. The
tree characteristics are controlled by heuristic parameters θ and
maximum bond dimension χ. The hyperoptimizer minimizes a
cost function M or C (peak memory or computational cost).
(b) The approximate contraction tree. The tensor network T is
shown at the bottom. Moving upward, pairs of tensors are
contracted (blue lines), and singular value compressions are
performed between tensors (orange lines). By the top of the tree,
one obtains a scalar output Z, using resources ∼M or C.

FIG. 2. (a) Pairwise exact contraction of a tensor network, with the unordered contraction tree ϒunordered indicating the contractions.
Each intermediate (green node) corresponds to a pair of parentheses in the expression. (b) An approximate contraction tree ϒ for same
network. Since compression steps do not commute, this tree is ordered. Here, the compressions (orange lines) take place at steps 4 and 6.
(c) The sequence of contractions and compressions associated with the tree in (b). Newly contracted tensors in green, tensors with
compressed bonds in orange.
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the hyperparameters of a contraction tree generator, with
respect to the peak memory or computational cost. We
use numerical experiments to establish the success of the
strategy, comparing to existing algorithms designed for
structured lattices and for arbitrary graphs. Finally, using
the hyperoptimized approximate contraction algorithms, we
showcase the range of computational problems that can be
addressed, in many-body physics, computer science, and
complexity theory, illustrating the power of approximate
tensor network computation.

II. FRAMEWORK FOR APPROXIMATE
CONTRACTION ALGORITHMS

A. Components of approximate contraction

In an exact tensor network contraction, the computational
graph, specified by the sequence of pairs of tensors which are
contracted, can be illustrated as a computational contraction
tree. This is illustrated in Fig. 2(a), where the tensor network
is shown by the black lattice at the bottom, and the
contractions between pairs occur at the green dots in tree,
ϒunordered. Note that the value and cost of the exact tensor
network contraction do not depend on the order in which the
contractions are performed [53]; thus, the contraction tree is
unordered. The problem of optimizing the cost of exact
contraction is thus a search over contraction trees to optimize
the floating point and/or memory costs.
In the process of contracting tensors, one generally creates

larger tensors, which share more bonds with their neighbors.
In approximate contractionwe aim to reduce the cost of exact
contraction by introducing an approximation error. Themost
commonly employed approximation is to compress the large
tensors into smaller tensors (with fewer or smaller indices);
this is the type of numerical approximation that we also
consider here. The simplest notion of compression arises in
matrix contraction, e.g., given twoD ×Dmatrices A, B, the
contractionAB ≈ Ā B̄, where Ā is of dimensionD × χ andB
is of dimension χ ×D, and the approximation is an example
of a low-rank matrix factorization. The singular value
decomposition (SVD) is an optimal (with respect to the
Frobenius norm) low-rank matrix factorization. Singular
value decomposition is also at the heart of compressing
tensor network bonds. For example, if we have two tensors
connected by bonds [Fig. 3(a)], we can view the bonds as
performing a matrix contraction [Fig. 3(b)], and use SVD
to replace the connecting bonds by one of dimension χ
[Fig. 3(d)]. In the general tensor network setting, however,
things are more complicated, because when compressing a
contraction between two tensors, one should consider the
other tensors in the network, which affect the approximation
error. The effect of the surrounding tensors on the compres-
sion of a given bond is commonly known as including the
“environment” or “gauge” into the compression.We consider
how to perform bond compression, including a simpleway to
include environment effects into the bond compression for
general graphs, in Sec. II C.

Given a compression method, we view the approximate
tensor network contraction as composed of a sequence of
contraction and compression steps. Compressions do not
commute with contractions (or each other); thus, a con-
traction tree with compression (an approximate contraction
tree) is an ordered tree. An example tree ϒ is shown in
Fig. 2(b), where in addition to the contraction operations
(the green dots), we see compressions of bonds between
tensors (the orange lines). The ordered sequence of con-
tractions and compressions is visualized in Fig. 2(c). If we
work in the setting where the compressed bond dimension
χ is specified at the start, then once the approximate
contraction tree is written down, the memory or computa-
tional cost of the contractions and compressions can be
computed. Optimizing the approximate contraction for
such costs thus corresponds to optimizing over the space
of approximate contraction trees.
The space of trees to optimize over is extremely large.

This we tackle in two ways: by defining the position of
compression steps in the tree entirely in terms of where
the contractions take place (discussed in Sec. II D),
which means we only need to optimize over the order
of the contractions; and by using the hyperoptimiza-
tion strategy, where (families) of trees are parametrized
by a small set of heuristic parameters, constituting a
reduced dimensionality search space (described in
Secs. II G and II H).

FIG. 3. Primitive tensor operators for approximate contraction.
(a) Grouping of indices into left, shared, and right sets, giving a
matricization of the product AB, with rank DAB. (b) Graphical
depiction of contracting two tensors AB → C. (c) Graphical
depiction of an isometric tensor Q such that when dimensions
with incoming arrows are grouped Q†Q ¼ 1. (d) Compression of
the shared bonds between two tensors A and B, via QR reduction
and truncated SVD to new shared bond dimension χ. (e) Gauging
of the bond between A and B to generate an isometric tensor QA.
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Ideally we wish to minimize the error of the approximate
contraction as well as the cost, but the error is not known
a priori. This can only be examined by benchmarking the
errors of our hyperoptimized contraction trees. This is the
subject of Sec. III.
Note that other ingredients could also be included in an

approximate tensor network contraction algorithm, for
example, the use of factorization to rewire a tensor net-
work, generating a graph with more vertices [20,52], or
inserting unitary disentanglers to reduce the compression
error [54,55]. We do not currently consider these ingre-
dients in our algorithm search space, although the frame-
work is sufficiently flexible to include such ingredients in
the future. We also note that some of these additional
ingredients are targeted at the renormalization of loop
correlations in tensor networks to yield a proper renorm-
alization group (RG) flow [56]. We discuss the corner
double line model and show that it is accurately contract-
ible, at least at small bond dimension, with our approximate
strategy in the Supplemental Material (SM) [57].
To aid in our discussion of the ingredients of the

approximation contraction algorithm, and how to examine
our choices, we will use a set of standard benchmark
models, which we now discuss.

B. Models for testing

To assess our algorithmic choices, we will consider
two families of lattices and two tensor models. (Note
that these are only the tensor networks we use for testing
the algorithm; Sec. IV further considers other models
to demonstrate the power of the final protocol). The two
types of lattices we consider are (i) the 2D square and
3D cubic lattices, which reflect the structured lattices
commonly found in many-body physics applications,
and (ii) 3-regular random graphs (graphs with random
connections between vertices, where each vertex has degree
3). On these lattices, the two types of tensors we consider
are (i) (uniaxial) Ising model tensors, at inverse temperature
β close to the critical point, and (ii) tensors with random
entries drawn uniformly from the distribution ½λ; 1� (we
refer to this as the URand model). Changing λ allows us to
tune between positive tensor network contractions and
tensors with random signs, the latter case being reminiscent
of some random circuit tensor networks. In all models, the
dimension of the tensor indices of the initial tensor network
will be denoted D, while the dimension of compressed
bonds will be denoted χ; we refer to the value of the tensor
network contraction as Z, and the free energy per site
f ¼ − ln Z=βN, where N is the number of spins. More
discussion of these models (as well as a treatment of corner
double line models [56]) is in the SM [57].

C. Bond compression strategies

We first define how to compress the shared bonds feABg
between tensors A, B. We can matricize these by grouping

the indices as feAg=feABg, feABg, and feBg=feABg, with
effective dimensions DA, DAB, and DB, respectively [see
Fig. 3(a)]. Generally, DAB < DA and DAB < DB and so AB
is already low rank and we can avoid forming it fully.
Instead we perform QR-decomposition (QR) of the matri-
cized A, B, giving

AB ¼ QAðRARBÞQB ð2Þ

¼ QAðRABÞQB; ð3Þ

where the Q matrices satisfy the canonical conditions
Q†

AQA ¼ 1, QBQ
†
B ¼ 1, with the canonical direction indi-

cated by an arrow in graphical notation shown in Fig. 3(c)
(detailed in the SM [57]). Then, we obtain the compressed
Ā, B̄ through the SVD of RAB,

RAB ≈UAσV
†
B;

Ā ¼ QAUAσ
1=2;

B̄ ¼ σ1=2V†
BQB; ð4Þ

truncating to χ maximal singular values in σ. Because of the
canonical nature of the Q matrices, truncating the SVD of
RAB achieves an optimal compression in the matrix
Frobenius norm of AB due to the orthogonality of QA, QB.
Usually T will contain additional tensors connected to A,

B. We refer to the additional network of connected tensors as
the environment E, with T ¼ P

feg=feoutg AfeAgBfeBgEfeEg
[Fig. 4(a)]. To compress the bond eAB optimally, we must
account forE. We first consider the case whenE forms a tree
around the bond eAB [Fig. 4(a)(iii)]. Then, we can perform
QR inward from the leaves of the tree, pushing the R factors
toward the bond [Figs. 4(b)(i)–4(b)(iii)]. This is a type of
gauging of the tensor network (i.e., it changes the tensors but
does not change the contraction T ), and we refer to this
as setting the bond eAB in the tree gauge; alternatively, we
can say the tensors in the tree are in the canonical form
centered around bondeAB. This results in a similarmatricized
T ¼ QAðRABÞQB, where QA, QB have accumulated the
products of R factors from all tensors to the left and right of
bond eAB [Fig. 4(b)(iii)]. Then, the truncated SVD of RAB in
Eq. (4) similarly achieves an optimal compression of eAB
with respect to error in T .
More generally, T may contain loops, which extend into

the environment [Fig. 4(a)] and a similarly optimal gauge
is hard to compute [58,59]. However, by cutting loops in
the environment E (i.e., not contracting some of the bonds
in the loops) we obtain a tree of tensors around bond eAB,
e.g., a spanning tree out to a given distance r. (There are
multiple ways to cut bonds to obtain a spanning tree; the
specific spanning tree construction heuristic is given in
the SM [57].) Placing eAB in the tree gauge (of distance r),
we can then perform the same compression by truncated
SVD, but without the guarantee of optimality since we are
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neglecting loop correlations; see Fig. 4(c). However, this
type of tree gauge compression is easy to use in the general
graph setting, and thus will be the main bond compression
scheme explored in this work.
One can show [57,60–62] that performing the truncation

in Eq. (4) is equivalent to inserting the projectors PA ¼
RBVBσ

−1=2 and PB ¼ σ−1=2U†
ARA such that AB ≈ APAPBB.

As such, having computed RA and RB from the local
spanning trees we can form and contract PA and PB directly
into our original tensor network without affecting any
tensors other than A and B, but still include information
from distance r away. In other words, the steps depicted in
Fig. 4 are performed virtually, which avoids having to reset
the gauge after compression.

D. Early versus late compression

In practice, compression must be performed many times
during a tensor network contraction. It might seem natural
to perform compression immediately after two tensors are
contracted to form a tensor larger than some size threshold,

here given by a maximum bond dimension χ (early
compression). This is illustrated in Fig. 5(a). However,
as discussed above, including information from the envi-
ronment is important for the quality of compression. Early
compression means that tensors in the environment are
already compressed, decreasing their quality. An alternative
strategy is to compress a bond between tensors only when
one of them (exceeding the size threshold) is to be
contracted (late compression), as illustrated in Fig. 5(b).
By delaying the compression, more bonds or tensors in the
environment are left uncompressed, which can potentially
improve the quality of the contraction. However, late
compression will also increase the cost or memory of
contraction (as there are more large tensors to consider).
This means that it is most efficient to use late compression
when the associated gain in accuracy is large.
In Fig. 5(c), we assess the effect of early versus late

compression when contracting a 2D 16 × 16 lattice (D ¼ 4,
URand model with tensor entries ∈ ½−0.5; 1�). All com-
pressions are performed using the tree gauge (out to some
distance r, several tree distances r are shown), and we show

FIG. 4. Overview of the tree gauge for improving bond compression accuracy, suitable for arbitrary local geometry. (a) Given the bond
eAB connecting tensors A and B, we want to take into account information from the surrounding environment E, shown in (i). In (ii) we
form a local spanning tree (shaded bonds) up to distance r ¼ 2 from A and B. If we consider “loop” bonds (colored orange) that are not
part of the spanning tree as cut, then the resulting local tree environment shown in (iii) can be optimally compressed as a proxy target.
(b) Depiction of the gauging process for a local tree. In (i) tensors at distance r ¼ 2 from A and B are QR decomposed, and the R factors
(yellow circles) are accumulated toward the bond eAB; see Fig. 3(e). In (ii) the same happens for r ¼ 1 tensors, and finally in (iii) the R
factors from A and B after accumulating all the outer gauges, RA and RB, are contracted to form RAB. (c) The Frobenius norm (squared)
of an r ¼ 1 local region in the tree gauge is shown in (i). The norm of the local network with loop bonds (orange) cut is shown in (ii),
which is exactly encoded, due to the isometric tensors, as ðTrR†

ABRABÞ1=2. Performing a truncated SVD on RAB is thus only r-locally
optimal up to the presence of such loop bonds.
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the relative error of the contraction ΔZ as a function of the
maximum allowed bond dimension χ. We see in this case
that late compression is more accurate than early com-
pression, and that this improvement increases when using
larger tree gauge distances, reflecting the fact that the
gauging is incorporating more environment information. In
Fig. 5(d), we similarly compare early versus late compres-
sion using the tree gauge in a 3D lattice (using a hyper-
optimized Span tree as described later). In contrast to the
2D result, here we see a smaller improvement from
performing late versus early compression and from increas-
ing the tree gauge distance. This suggests that incorporating
the effect of the environment requires a more sophisticated
gauging strategy in 3D. In general, we summarize our
findings as follows: late compression is preferred when
trying to maximize accuracy for a given bond dimension χ
or size of the largest single tensor operation, while early
compression can be better when optimizing computational
total cost or memory for a given accuracy. In our sub-
sequent calculations, we will indicate the choice of early or
late compression in the simulations.

E. Comparison of the tree gauge to other gauges

To evaluate the quality of the tree gauge compared to
other gauging or environment treatments in the literature,
we consider contractions on a 2D lattice. To isolate the
comparison to only the choice of gauge, we use the same
approximate contraction tree as used in boundary contrac-
tion; namely, contraction occurs row by row starting from
the bottom, and compression occurs left to right after the
entire row is contracted. We then use four different gauges
or environment treatments during the compression: none,
tree, boundary, and full. None corresponds to no gauging.
Tree is the tree gauge discussed above (up to distance r).

Boundary corresponds to the standard matrix product state
(MPS) boundary gauging [44,50], where, after the new row
of tensors has been contracted into the boundary, the
boundary MPS is canonicalized around the leftmost tensor
and then compressed left to right in an MPS compression
sweep (see Fig. 3 of the SM for an illustration [57]). Full
corresponds to explicitly computing the environment E by
approximate contraction (using the standard MPS boun-
dary contraction algorithm to contract rows from the top).
Then, for the tensors A, B sharing bond eAB to be com-
pressed, the scalar value of the tensor network is Z ¼
TrBEA (where A, B, E have been matricized). Using the
eigenvector decomposition, BEA ¼ LσR†, where L, R are
left, right eigenvectors, respectively, then eAB is optimally
compressed by defining B̃ ¼ L̃†B, Ã ¼ AR̃, where L̃; R̃ are
the eigenvectors corresponding to the eigenvalues of largest
absolute magnitude [22,24]. Note that the full environment
gauge is expensive, as it requires an estimate of E from all
the tensors in the network.
The numerical performance of the different strategies is

shown in Fig. 6 for two problems: a 32 × 32 lattice (2D
Ising model, near critical) and a 16 × 16 lattice (D ¼ 4,
URand model with entries ∈ ½−0.5; 1�). In all cases, we see
that including some environment information is better than
not including any environment (“none”). In the 2D Ising
model, as the tree distance r increases, tree gauge com-
pression converges in quality to the MPS boundary
environment scheme (“boundary”); the two are related as
the MPS boundary corresponds to setting an infinite tree
distance r for a tree that grows only along the boundary. In
the 2D URand model, even for small r, the tree gauge
already improves on the boundary environment. The full
environment treatment yields the best compression quality
for larger χ, but this is achieved at larger cost.

FIG. 5. (a) Schematic of “early” compression, where after each pairwise contraction, any shared bonds of total size > χ are truncated.
(b) Schematic of “late” compression, where before each pairwise contraction, any shared bonds of total size > χ are truncated. (c) Error
ΔZ of contracting a 16 × 16 D ¼ 4 TN with uniform random entries ∈ ½−0.5; 1� as a function of χ, tree gauging distance r, and either
early or late compression. The TN is contracted using the standard MPS boundary contraction algorithm. Line (band) shows median
(interquartile range) over 50 instances. (d) The same but for an approximate contraction of a 5 × 5 × 5 D ¼ 2 tensor network with
uniform random entries ∈ ½−0.4; 1�. The 3D TN is contracted using a hyperoptimized Span tree.
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Our numerical results in 2D suggest that the tree gauge is a
reasonable compromise between accuracy and efficiency,
equaling or outperforming the common boundary environ-
ment strategy, while being well defined for more general
graphs.

F. Approximate contraction algorithm

Given a choice of late or early compression, and using
the tree gauge, we can explicitly write down a simple
pseudo-code version of the core approximate contraction
function, Algorithm 1, which implements Fig. 1(b). The
exact form of the inner functions is detailed in the SM [57].
An alternative, that might be useful in some contexts, is to
use the compression locations to transform a tensor net-
work into an approximately equivalent but exactly con-
tractible form, by inserting a set of explicit projectors—this
is also detailed in the SM [57].

G. Generating contraction trees

After fixing the choice of early or late compression, the
subsequent location of compressions in the contraction tree
is purely determined by the contraction order. This is a
major simplification, because, when optimizing over the
approximate contraction trees, we need only optimize the
order of contractions. Nonetheless, the space of ordered
trees is still extremely large and hard to sample fully.
To simplify the search, we work within a lower-

dimensional parametrization of the search space by intro-
ducing tree generators. These heuristics generate trees
within three structural families we term Greedy, Span,
and Agglom. The specific instance of tree within each

family is defined by a set of hyperparameters that can then
be optimized. Here we describe the heuristic generators at a
high level (with a more detailed description in the SM [57]).
The input to the generators is only the tensor network

FIG. 6. (a) Error in free energyΔf as a function of bond dimension χ for different gauging and environments for the 2D Ising model at
the critical point. (b) Contraction error ΔZ for the same settings but on a D ¼ 4 URand model with λ ¼ −0.5. All contractions contract
from the boundary row by row; thus all bond compressions are for bonds on the boundary. However, different gauging is performed
before the compressions. None, no gauging; tree, bonds are placed in the tree gauge up to distance r, followed by “late” compression,
Boundary, bonds are placed in the canonical form of the MPS boundary, before compression; full, the environment around tensors A, B
is explicitly contracted using a counterpropagating MPS of the same bond dimension, and the bond between AB is then truncated to
minimize the error in TrBEA. Note that since E is itself only approximate and many truncations are compounded, the error overall is not
guaranteed to be smaller than another method—as seen for some small χ points here. (c) Illustration of the different environments that a
single compression step is optimal with regard to.

ALGORITHM 1. Approximate contraction.

Input: tensor network T , ordered contraction treeϒ, maximum
bonddimension χ, treegauge distance r, flagcompress_late
// i, j, k, l label tensors, T ½i�;… in T .
for i; j∈ϒ do
if compress_late then

for l∈NEIGHBORSðT ; iÞ do
if BONDSIZEðT ; i; lÞ > χ and l ≠ j then

COMPRESS TRUE GAUGEðχ; r; T ; i; lÞ
end if

end for
for l∈NEIGHBORSðT ; jÞ do

if BONDSIZEðT ; j; lÞ > χ and l ≠ i then
COMPRESS TRUE GAUGEðχ; r; T ; j; lÞ

end if
end for

end if
k ← CONTRACTðT ; i; jÞ
if not compress_late then

for l∈NEIGHBORSðT ; kÞ do
if BONDSIZEðT ; k; lÞ > χ then

COMPRESS TRUE GAUGEðχ; r; T ; k; lÞ
end if

end for
end if

end for
Return: T
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graph, bond sizes, and χ—the tensor entries are not
considered.
The Greedy tree generator assigns a score to each

bond in the T . It then chooses the highest scoring bond,
generates a new T by simulating bond contraction and
compression (i.e., computing the new sizes and network
structure), and repeats the process, building an ordered
tree. The bond score is a combination of the tensor sizes
before and after (simulated) compression and contraction, a
measure of the centrality of the tensors (their average
distance to every other tensor), and the subgraph size of
each intermediate (i.e., how many tensors were contracted
to make the current tensor); the hyperparameters are the
linear weights of each component in the score.
The Span tree generator is inspired by boundary con-

traction. It generates a directed spanning tree of the original
graph, and the contraction order is chosen to contract the
leaves inward. Contracting simultaneously along all the
branches of the tree defines an effective contraction boun-
dary, that sweeps toward the root. The algorithm begins by
choosing either the most or least central node in the tensor
network (TN), i0, as an initial span,S ¼ fi0g. It then greedily
expands to a connected node j, adding the contraction
ði; jÞ → i in reverse order to the path, where i∈S; j ∉ S.
The algorithm repeats by then considering all neighbors
of the newly expanded span S → S ∪ fjg. A few local
quantities—connectivity toS, dimensionality, centrality, and
distance to i0—are combined into a score used in the greedy
selection of the next node in the tree, and the combination
weights are the hyperparameters.
The previous approaches grow ordered trees locally.

The Agglom tree generator explicitly considers the full
TN from the start and is inspired by renormalization group
contraction strategies in the literature [20]. Given a com-
munity size K, the generator performs a balanced parti-
tioning over the N tensors in T to find N=K roughly equal
subgraphs. These subgraphs then define intermediate ten-
sors, and the tensors within the subgraph are contracted
using the Greedy algorithm with default parameters. After
simulating the sequence of compressions and contractions,
the network of intermediate tensors defines a new “coarse
grained” tensor network for which the agglomerative
process can be repeated. In this work, Agglom uses the
KaHyPar graph partitioner [63,64], treating the community
size K, imbalance, partitioning mode, and objective as the
tunable hyperparameters.
Some sample ordered contraction trees generated by the

above heuristics are shown in Fig. 7 for a 2D 8 × 8 lattice.
In particular, we observe the boundarylike contraction
order of the Span tree (contracting row by row from
the bottom) and the hierarchical RG-like structure of the
Agglom tree (forming increasing clusters); the Greedy
tree contracts simultaneously from all four corners inward,
rather than from one side like the Span tree. Note that the
Agglom tree tends to perform more contractions before
compressions are performed than the Span tree because it

constructs many separate clusters simultaneously, and
the Greedy tree exhibits behavior intermediate between
the two.

H. Optimizing the contraction trees

We optimize the trees by tuning the hyperparameters
that generate them with respect to a cost function. Since
we also wish to sample many different trees it is important
that the cost function is cheap to evaluate. We perform the
optimization over the hyperparameter space using Bayesian
optimization [65,66], which is designed for gradient-free
high-dimensional optimization. The overall process is shown
in Fig. 1(a), with more detailed pseudo-code in the SM [57].
Depending on the computational resources available, we

can choose the cost function to be memory (peak memory
usage M) or the computational (floating point) cost C.
For C we include the cost of contractions, QR, and SVD
decompositions.
We optimize the contraction trees over the hyperpara-

meters in each of the three families of ordered tree
generators. In all results with optimized trees, we used a
budget of 4096 trees, though in practice a few hundred
often achieves the same result. The practical effect of the
hyperoptimization time is considered in the SM [57].

I. Quality of hyperoptimization

To test the quality of the hyperoptimization and the tree
search space, we first consider a small (but nonetheless

FIG. 7. Example approximate contraction trees for a 2D 8 × 8
square lattice TN. Panels (a)–(c) show the ordered contraction
trees with compressions (orange, using the “late” strategy)
explicitly marked for the Span, Agglom, and Greedymethods,
respectively. The computation proceeds from the bottom to top.
Panels (d)–(f) show the same contraction trees as hierarchical
communities, with the contraction ordering proceeding from the
smallest pink bands to largest blue bands.
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nontrivial-to-contract due to large D and χ) square TN of
size 6 × 6. In this case, the number of tensors is small
enough that it is possible to perform an exhaustive search
over all ordered contraction trees using a branch and bound
algorithm (BB; see SM [57]); here we minimize peak
memory M. In Fig. 8 we compare the performance of the
hyperoptimized Greedy algorithm against the exhaustive
branch and bound search (using tree gauging for compres-
sion in each case for a fair comparison). The standard
boundary contraction algorithm is also shown as a com-
parison point.
As shown in Fig. 8(a), hyperoptimizing over the space of

Greedy trees produces performance quite similar to the
BB search and very different from the standard boundary
contraction. This indicates that the hyperoptimization is
doing a good job of searching the approximation contrac-
tion tree space for graphs of this size. In the top panel, we
can see the optimal contraction strategy found by BB
produces a very different contraction order to boundary
contraction, exploiting the finite size of the graph and the
targeted χ to significantly reduce M.
We can also verify that optimizing M leads to reduced

error. In Figs. 8(b) and 8(c), we show the contraction error

for the URand model with λ ¼ −0.8, where it can be seen
that for equivalent error (∼10−4, indicated by the yellow
circles) the peak memory or cost of using the hyper-
optimized Greedy or BB approximate contraction trees is
indeed much lower than that of boundary contraction.
Interestingly, the heavily optimized BB tree does not
improve on the error of the Greedy tree for a given peak
memory M.

III. BENCHMARKING HYPEROPTIMIZED
APPROXIMATE CONTRACTION TREES

A. Summary of hand-coded strategies
for regular lattices

In our benchmarking below, when considering regular
lattices, we will compare to a range of hand-coded con-
traction strategies used in the literature in many-body
physics applications, namely boundary contraction, cor-
ner transfer renormalization group (CTMRG) [67], and
higher-order tensor renormalization group (HOTRG) [68].
We briefly summarize the hand-coded strategies here.
Boundary contraction (as already used above) is a standard
method in 2D, but has not been widely applied in 3D.

FIG. 8. Performance of hyperoptimized approximate contraction for a 6 × 6 square TN with all bonds of sizeD ¼ 16. The TN is filled
with uniformly random entries ∈ ½λ ¼ −0.8; 1.0� (2D URand model). We test three different contraction trees: standard MPS boundary
contraction, optimization over Greedy trees, brute force optimization over all approximate contraction trees (BB). The upper insets
show snapshots illustrating the boundary contraction, an example of Greedy, and the optimal BB contraction for χ ¼ 32. (a) The peak
memory usageM of the standard MPS boundary method, compared to the Greedy and BB algorithms which have been optimized for
each χ. (b),(c) The error for each plotted against peak memoryM and computational cost C, respectively, averaged over 20 instances of
the URand model. The compressions are performed late using a tree-gauge distance r ¼ 1. The yellow circles correspond to
approximately equal error ΔZ ≈ 10−4, using the boundary and Greedy trees, to enable the ratio of costs to be determined; e.g., the
observed speed-up of Greedy over boundary for this error is 120×.
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We define a 3D version of projected entangled pair state
(PEPS) boundary contraction on a cube that first contracts
from one face of the cube toward the other side, leaving a
final 2D PEPS tensor network that is contracted by 2D
boundary contraction (with the same χ). CTMRG is usually
applied in 2D and to infinite systems. Here we apply
CTMRG to the finite lattice by using a finite number of
CTMRG moves [57]. Finally, HOTRG has been applied to
both 2D and 3D infinite simulations; here we perform
a limited number of RG steps appropriate for the finite
lattice. For both CTMRG and HOTRG, we also compute
and insert different projectors for each compression, since
we are dealing with generically inhomogeneous systems.
Illustrations of all the algorithms are given in the SM [57].

B. Cost scaling with graph size

In Fig. 9 we show the computational cost (memory and
floating point cost) of hyperoptimized trees in the Greedy,
Span, and Agglom classes for a 2D square of size L × L,
a 3D cube of size L × L × L, and for 3-regular random

FIG. 9. Contraction peak memory and cost of approximate contraction trees in different families versus exact contraction cost and
CTMRG, HOTRG, and boundary contraction algorithms, for different geometries (insets show sample geometry). The tree gauging
distance is set to r ¼ 0 for this comparison, with “early” compression, and we also turn off gauging in the boundary algorithm. The
hyperoptimized trees are optimized for M and C separately. (a),(b) Peak memory M and cost C of contracting a 2D square TN with
D ¼ 4 and χ ¼ 32 as a function of side length L. (c),(d) Peak memory M and cost C of contracting a 3D cube TN with D ¼ 4 and
χ ¼ 32 as a function of side length L. (e),(f) Peak memory M and cost C of contracting 3-regular random graphs with initial bond
dimension D ¼ 2 and χ ¼ 4 as a function of number of vertices jVj. The line and shaded band show the median and interquartile range
across 20 instances, respectively.

FIG. 10. Depiction of the contraction tree found by the Span
algorithm, optimized for minimum floating point cost C, for a
large 3D lattice. The colors of the highlighted edges and nodes
indicate the stage of contraction they are involved in, running
from blue (earliest) to red (latest).
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graphs with jVj vertices, using the early compression
strategy, and given bond dimension χ. We compare against
the cost of contraction trees generated by boundary con-
traction, CTMRG, and HOTRG.
From this and other examples, we can make some

general observations. First, Span trees yield good costs
for simple lattices which have a regular local structure,
the Agglom tree is superior for random graphs, and the
Greedy tree works well for both sets. The markedly
different performance of the Agglom and Span trees on
random versus simple lattices suggests that these are two
good limiting cases for testing contraction heuristics.
Interestingly, in the 3D cubic case, the hyperoptimized
Span tree performs a boundarylike contraction, but rather
than contracting from one face across to the other side, it
can find a strategy that contracts all faces toward a point, as

visualized in Fig. 10. This substantially improves over the
hand-coded boundary PEPS strategy in terms of cost.
Similar observations apply to the Greedy tree, which is
similar to or outperforms both Span and hand-coded
algorithms for smaller structured lattices, although its
performance degrades for larger lattices. We also find that
Greedy trees optimize the cost function less well in other
instances of large lattices. This suggests that the search
space generated by the Greedy tree generator is limiting at
larger lattice sizes.
In the 2D square lattice, we find that compared to the

hand-coded algorithms, the Span and Greedy trees with
early compression are superior with respect to memory and
cost, even beating out the most widely used boundary MPS
strategy. At smaller system sizes, the superior performance
of Span and Greedy over boundary MPS reflects the

FIG. 11. Error versus compressed bond dimension χ of hyperoptimized approximate contraction using optimized Span, Greedy, and
Agglom trees, in comparison to boundary contraction, CTMRG, and HOTRG, for medium size TNs. (Insets show sample geometry.) In
terms of gauging settings for the hyperoptimized methods, in 2D we use r ¼ 6 with late compressions, and for the others we use r ¼ 3
and early compression. (a) Relative error in the free energy of the 2D Ising model on a 32 × 32 square lattice close to the critical point.
(b) Relative error in the contracted value of the 2D URand model on a 16 × 16 square lattice with D ¼ 4 in the intermediate hardness
regime of λ. (c) Relative error in the free energy of the 3D Ising model on a 6 × 6 × 6 cubic lattice close to the critical point. (d) Relative
error in the contracted value of the 3D URand model on a 5 × 5 × 5 cubic lattice with D ¼ 2 in the intermediate hardness regime of λ.
(e) Relative error in the free energy of the Ising model on 3-regular random graphs with jVj ¼ 300 close to the critical point (line and
bands show median and interquartile range across 20 instances). (f) Relative error in the contracted value of the URand model on
3-regular random graphs with D ¼ 2 in the intermediate hardness regime of λ (line and bands show median and interquartile range
across 20 instances).
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ability of these algorithms to exploit edge and boundary
effects. Interestingly, CTMRG is also superior to boundary
MPS at small system sizes, and the optimized strategies
seem to interpolate between a more CTMRG-like and MPS
boundarylike contraction. The HOTRG algorithm exhibits
similar performance to the Agglom tree, as expected due to
its real-space RG motivated ordering of contractions. At
larger sizes, boundary, CTMRG, Span, and Greedy show
similar asymptotic cost, with the optimized strategies
retaining a modest asymptotic improvement in memory.

C. Error versus bond dimension

As discussed above, we optimize over the generated
contaction trees for a given bond dimension χ. In Fig. 11,
we plot the relative error in the contraction value ΔZ or free
energy per site Δf for 2D and 3D Ising and random tensor
models for the hyperoptimized contraction and hand-coded
strategies as a function of bond dimension.
It is natural to expect the error of an approximate

contraction to decrease as we increase χ, since in the limit
χ → ∞ the algorithm becomes exact. For all the models
and algorithms investigated we find a roughly polynomial
suppression of the error with inverse χ. What is perhaps less
obvious is whether approximate contraction trees with
given χ should yield comparable errors regardless of the

cost of the particular tree,M or C. We see that this is in fact
the case for the hyperoptimized trees, i.e., the error
correlates reasonably well with the compressed bond
dimension χ, independent of the choice of tree. Thus by
choosing the optimized tree with lowest cost for a given χ,
we are not paying a price in terms of accuracy.
On the other hand, the hand-coded algorithms do not

follow this observation; e.g., CTMRG in the 2D lattice and
boundary PEPS and HOTRG in the 3D lattice exhibit
considerably larger errors than the hyperoptimized strate-
gies for given χ. For fixed bond dimension, the hyper-
optimized contraction trees appear to use the computational
resources (memory and cost) in a more effective way to
reduce error than the hand-coded strategies.

D. Error versus cost

We next consider the error obtained for a given peak
memory or computational cost. In Fig. 12 we show the
relative error in the contraction value ΔZ/free energy per
site Δf for 2D and 3D Ising and random tensor models for
the hyperoptimized contraction and hand-coded strategies,
plotted against peak memory usage or contraction cost
(depending on which was used as the cost function to
optimize the trees). In this figure, the sizes of the problems
were chosen so that the exact value of Z or f can be

FIG. 12. Error versus cost of hyperoptimized approximate contraction using optimized Span, Greedy, and Agglom trees, in
comparison to boundary contraction, CTMRG, and HOTRG, for medium size TNs where the exact reference values are available. Here
the error is plotted against either the total cost of the contraction C or peak memory requirement M as computed by tracing through the
computation. The trees are optimized for each separately. Four different lattice and model combinations are shown: (a) 2D Ising model,
(b) 2D URrand model, (c) 3D Ising model, and (d) 3D URrand model. The lines are annotated with the value of χ. The gauging settings
used for the hyperoptimized methods are r ¼ 6 and late compression in 2D and r ¼ 2 and early compression in 3D.
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computed by exact TN contraction. In Fig. 13 we consider
the same models, but now for problem sizes too large for
exact contraction. In these cases, we use d ln jZj=dχ and
df=dχ as a metric of the convergence of the calculation.
From these plots we observe a few features. In the 2D

models, the optimized Span, Greedy, and standard
boundary contraction algorithms generally all achieve quite
similar performance, and are the best performing algo-
rithms. (We note that although Span shows a consistent
advantage over boundary contraction in the error versus χ
plots in Sec. III C, it does not do so when the overall cost or
memory is considered, because this depends on additional
details besides χ, such as the number of large tensors, order
in which they contracted, etc.) CTMRG, HOTRG, and
Agglom also perform similarly, and all perform much
worse than the Span, Greedy, and standard boundary
contraction algorithms on this regular 2D lattice.
In 3D, the PEPS boundary, CTMRG, and HOTRG all

perform quite poorly, while Span performs well. Greedy
performs well in the smaller examples, but degrades in the
larger lattice, presumably again because of the limited
contraction tree space generated by the Greedy algorithm.
As noted in Sec. III C, hyperoptimized Span trees choose a
quite different contraction path than the PEPS boundary
algorithm, while still taking advantage of the boundary, and
this is key to the improved performance.

Taken in total, the comparisons in the last three sub-
sections illustrate how the optimized approximate contrac-
tion trees are competitive with, and can even exceed, the
performance of standard contraction strategies in the simple
lattices studied in many-body physics applications.

E. Comparison to another strategy
for general graphs

We next turn to a comparison of our hyperoptimized
approximate contraction strategy to another recently pro-
posed technique for arbitrary graphs. Reference [52]
proposed an algorithm to automatically contract arbi-
trary geometry tensor networks with a good performance
across a range of graphs. For convenience we refer to that
algorithm as CATN. As we cannot trace through CATN in
the same way as our previous performance comparisons,
we measure the contraction time directly on a single CPU.
Although CATN is formulated in a geometry independent
manner, a critical difference with the current work is that
CATN does not optimize over families of approximate
contraction trees.
In Fig. 14 we compare CATN against hyperoptimized

Span trees for the 2D or 3D Ising model at approximately
the critical point, as a function of accuracy versus con-
traction time. For the Span trees, we sweep over χ for

FIG. 13. Error versus cost of hyperoptimized approximate contraction using optimized Span, Greedy, and Agglom trees, in
comparison to boundary contraction, CTMRG, and HOTRG, for large TNs where no exact reference is available. As a proxy for error,
we monitor the rate of change of the log contraction value or free energy with bond dimension, d ln jZj=dχ, df=dχ, respectively. We plot
this against both contraction cost and peak memory, where the trees have been optimized separately for each. The hyperoptimized
methods use gauging settings of r ¼ 6 in 2D and r ¼ 2 in 3D, both with early compression. Four different lattice and model
combinations are shown: (a) 2D Ising model, (b) 2D URrand model, (c) 3D Ising model, and (d) 3D URrand model.
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different choices of tree gauge distance r (i.e., each line
corresponds to one r, while χ is swept over). The
performance of CATN is considered as a function of the
two bond dimensions Dmax and χ (each line corresponds to
a given Dmax, while χ is swept over). We do not include the
time to find the tree for the hyperoptimized contraction
since one generally reuses this many times. However, as a
rough guide, for the lattices in Fig. 14 the search converges
to a good tree in 10–20 sec. Further details and compar-
isons are in the SM [57]. We see clearly that in both the 2D
and 3D cases [Figs. 14(a) and 14(b), respectively] the
hyperoptimized Span trees achieve a better accuracy
versus contraction time trade-off than the CATN algorithm.
Given that CATN itself has an ordering of compressions, an
interesting question is to what extent the strategy of CATN
might also be optimized.

IV. POWER OF HYPEROPTIMIZED
APPROXIMATE CONTRACTION

We now illustrate the power of the hyperoptimized
approximate contraction protocol defined above in a further
range of interesting problems.

A. Ising partition function on the pyrochlore lattice

We consider a tensor network contraction corresponding
to the Ising partition function on large, finite, pyrochlore
lattices with up to 4000 sites. (We consider the version of
the model where all spins are aligned along the same axis;
see Ref. [69].) The highly frustrated geometry makes it
harder to compute a low complexity contraction path for

this tensor network than in simpler lattices. In Fig. 15(a) we
show the peak memory for the optimized Span algorithm
as a function of side length L. The total lattice size is
L × L × L × 4; thus, the largest calculation (L ¼ 10) is a
contraction of 4000 tensors. For L > 6 we see the peak
memory starts to saturate. By fitting fðχÞ ¼ Aþ B=χ to our
data for parameters A and B we can accurately estimate
both the free energy and its error as the fitted value and
square root variance of the parameter A ¼ fð∞Þ. We show
the result of this in Fig. 15(b), in the vicinity of the critical
point [70,71]. We note that while Ising systems like this can
be studied using Monte Carlo techniques, the partition
function itself is tricky to estimate, requiring methods [72]
beyond the standardMetropolis algorithm [73]. Figure 15(d)
shows the second derivative of ð1=NÞ lnZ with respect to
inverse temperature, ∂2ð−βfÞ=∂β2, which displays a grow-
ing peak as a function of system length L, illustrating the
critical point.
The largest exactly contractable tensor network corre-

sponds to size L ¼ 6; it is visualized in the inset Fig. 15(c).
For this size we can investigate the free energy error of the
approximate contraction scheme Δf, and this is shown in
Fig. 15(e). We see that increasing χ reliably decreases the
error, and for the largest χ considered, the relative free
energy is only 10−4.

B. Random 3-regular graphs and dimer coverings

We next study a problem defined on random 3-regular
graphs. Here the Agglom algorithm performs best, and we
show the resulting complexities in terms of peak memory
M in Fig. 16(a). Here, because the length of loops in the

FIG. 14. Performance comparison of hyperoptimized approximate contraction (current work) and the algorithm of Pan et al. [52] for
computing the free energy of the Ising model at approximately the critical point of (a) a square lattice and (b) a cubic lattice. For both
algorithms χ is varied and the points are labeled with the value. The insets show the geometry and specific sizes of the lattices.
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graph grows with increasing number of vertices jVj, we
still find an exponential scaling, even when compressing
to fixed χ. Nonetheless, we can usefully push much
beyond exactly contractible limit of jVj ∼ 300 [illustrated
in Fig. 16(c)]. To study the accuracy we consider the
problem of counting dimer coverings on these graphs. This
is equivalent to so-called positive Sharp-1-IN-3SAT [36,74,75].
Each edge (i.e., index) is considered a potential dimer, and
by placing the tensor

Ti;j;k ¼
�
1 if iþ jþ k ¼ 1

0 otherwise
ð5Þ

on each vertex, we enforce that every tensor be “covered”
by a single dimer only for any configuration to be valid.
The decision version of this problem is NP-complete
[76,77], and on random 3-regular graphs specifically the
problem is known to be close, but just on the satisfiable
side, in terms of ratio of clauses to variables, of the hardest
regime [74,75]. The contraction of the above tensor net-
work gives the number of configurations Z at zero temper-
ature and a corresponding “residual” entropy, S ¼ lnZ. We
plot S in Fig. 16(b). Considering the entropy per site s=jVj
by performing a least squares fit with a quadratic function
of inverse size 1=jVj and bond dimension 1=χ,

FIG. 15. Approximate contraction of the ferromagnetic Ising model on the pyrochlore lattice. (a) Peak memory M of the Span
algorithm on the pyrochlore lattice withD ¼ 2 as function of side length L and χ. (b) The free energy f near the critical point, estimated
by extrapolating approximate contractions in χ. A tree-gauge distance of r ¼ 2 was used and the error bars show fit uncertainty.
(c) Example instance of the pyrochlore geometry for L ¼ 6 corresponding to 864 sites. (d) The second derivative of −βf with respect to
β, showing a diverging peak around the critical point for increasing L. (e) Relative error in free energy near the critical point as a function
of χ for L ¼ 6 and r ¼ 2.

FIG. 16. Approximate contraction of dimer covering counting on random 3-regular graphs. Quantities are averaged over 20 instances.
(a) Peak memoryM of the Agglom algorithm on random 3-regular graph instances with D ¼ 2 as a function of number of vertices jVj.
(b) Configuration entropy, S ¼ lnW, whereW is the number of valid configurations as a function of jVj and χ. The red dotted line shows
the constant from a least squares fit to a quadratic function of inverse jVj and χ (see main text). (c) Example random regular graph for
jVj ¼ 300. (d) Relative error in S as a function of χ for jVj ¼ 300.
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sðjVj; χÞ ¼ s∞ þ c1
jVj2 þ

c2
jVj þ

c3
jVjχ þ

c4
χ
þ c5
χ2

; ð6Þ

with fitted parameters, s∞; c1…5, we can estimate the
infinite size entropy per site as s∞ ¼ 0.1429ð2Þ. The
theoretical value of this can be computed using
Ref. [78] when jVj≳ 5 × 1011 (see the SM [57]), yielding
0.1438, suggesting a small systematic error remains
from the finite size. In Fig. 16(d) we consider the relative
error in S when compared to exact contraction results for
jVj ¼ 300, where again we see that increasing χ reliably
improves the error.

C. Hardness transition in random tensor networks

The final problem we consider is one where the hardness
derives from the tensor entries themselves rather than the
geometry. We take the URand model—with tensor entries
sampled uniformly ∈ ½λ; 1�—and consider two lattices
which are amenable to contraction with relatively large
χ, the square and diamond lattices. We take sizes 16 × 16
with D ¼ 4 and 6 × 6 × 6ð×2Þ with D ¼ 2, respectively,
both of which are at the limit of what is contractible exactly.
In Fig. 17(a) we show the relative error in the approx-
imately contracted value ΔZ as a function of λ across 20
random instances. There is a clear transition in hardness
at λ ∼ −0.7—above this even moderate χ is sufficient to
contract the tensor network with very good accuracy.
Below this, however, there is no improvement to the error
at all with increasing χ; the contracted value remains
essentially impossible to approximate. An obvious question
is how does Z itself change with λ? In Fig. 17(b) we show

the fraction of instances whose exact value Z is negative, as
well as the average magnitude of Z. The problem varies
from smaller magnitude values (compared to the total
number of terms in the sum, ∼10300) evenly split between
negative and positive, to large always positive values.
We also consider the same model but embedded in a 3D
diamond geometry in Fig. 17(c). The same transition in
hardness occurs at a slightly different value of λ. In the hard
regime, there remains some small ability to approximate Z
with large χ, probably as this is approaching exact con-
traction. The complexity of contraction of the random
tensor network is thus closely related to the positive nature
of the tensor entries. This is likely related to the conjectured
low entanglement of typical positive tensor networks [79],
as well as the hardness of approximating complex valued
Ising models [80–82].

V. CONCLUSIONS

We have introduced a framework for approximate con-
tractions of tensor networks defined on arbitrary graphs,
based on hyperoptimizing over ordered contraction trees
with compression steps. In particular, our work attempts to
optimize over the many choices and components in such an
algorithm, ranging from the manner in which compressions
are performed to the sequence and ordering of compression
and contractions. Interestingly, we observe that by mini-
mizing a cost function associated with memory or computa-
tional cost, we simultaneously generate an approximate
contraction tree that yields small contraction error. In many
cases, we find that the optimization produces signifi-
cantly cheaper and more accurate contraction strategies

FIG. 17. Hardness transition in approximately contracting tensor networks with random uniform entries ∈ ½λ; 1�. (a) Relative error ΔZ
in approximately contracted value of the URand model on the square lattice using the Greedy algorithm as a function of λ and χ with
r ¼ 2. Line and bands show median and interquartile range across 20 instances. (b) Distribution of actual values Z for the square URand
model in terms of fraction of negative instances (green, left-hand axis) and average absolute magnitude (purple, right-hand axis). Error
bars denote error on mean. (c) Relative error ΔZ in approximately contracted value of the URand model on the diamond lattice using the
Greedy algorithm as a function of λ and χ with r ¼ 2. Line and bands show median and interquartile range across 20 instances.
(d) Distribution of actual values Z for the diamond URand model in terms of fraction of negative instances (green, left-hand axis) and
average absolute magnitude (purple, right-hand axis). Error bars denote error on mean.
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than handcrafted approximate contraction algorithms, even
in well-studied regular lattices. While we cannot claim
that our final algorithm is optimal, the purpose of the
framework is to allow an optimization over compression
strategies, and such an optimization can be extended
should, for example, other metrics of approximate
contraction quality be introduced. We envisage that the
many constituent parts of our protocol can be separately
improved in future works.
We have discussed different regimes of computational

advantage for approximate contraction over exact contrac-
tion. Firstly, for locally connected graphs and “nonhard”
tensor entries, we expect approximate contraction to
display an exponential benefit over exact contraction,
as shown here for the pyrochlore lattice. Secondly, for
certain geometries with long-range interactions, we expect
approximate contraction to still scale exponentially, but
with a usefully reduced prefactor, as shown here for
3-regular random graphs. Finally, we expect some classes
of tensor entries to be essentially impossible to approx-
imately contract, regardless of geometry, as shown here for
certain distributions of random tensors. Whether the latter
result corresponds to the hardness of contraction expected
for generic random quantum circuits is an interesting
question. Similarly, the application of these techniques
to quantum circuit and ansatz expectation values is a natural
direction that we leave for future work.
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