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Many organisms exhibit branching morphologies that twist around each other and become entangled.
Entanglement occurs when different objects interlock with each other, creating complex and often irreversible
configurations. This physical phenomenon is well studied in nonliving materials, such as granular matter,
polymers, and wires, where it has been shown that entanglement is highly sensitive to the geometry of the
component parts. However, entanglement is not yet well understood in living systems, despite its presence in
many organisms. In fact, recent work has shown that entanglement can evolve rapidly and play a crucial role
in the evolution of tough, macroscopic multicellular groups. Here, through a combination of experiments,
simulations, and numerical analyses, we show that growth generically facilitates entanglement for a broad
range of geometries. We find that experimentally grown entangled branches can be difficult or even
impossible to disassemble through translation and rotation of rigid components, suggesting that there are
many configurations of branches that growth can access that agitation cannot. We use simulations to show
that branching trees readily grow into entangled configurations. In contrast to nongrowing entangled
materials, these trees entangle for a broad range of branch geometries. We, thus, propose that entanglement
via growth is largely insensitive to the geometry of branched trees but, instead, depends sensitively on
timescales, ultimately achieving an entangled state once sufficient growth has occurred. We test this
hypothesis in experiments with snowflake yeast, a model system of undifferentiated, branched multi-
cellularity, showing that lengthening the time of growth leads to entanglement and that entanglement via
growth can occur for a wide range of geometries. Taken together, our work demonstrates that entanglement is
more readily achieved in living systems than in their nonliving counterparts, providing a widely accessible
and powerful mechanism for the evolution of novel biological material properties.
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I. INTRODUCTION

Many organisms grow with filamentous, branching
morphologies, including plants, mycelial networks, cya-
nobacterial mats, and more. These branched treelike
organisms often wind around themselves or others,
thus becoming visually tangled (Fig. 1). This physical
phenomenon, called “entanglement,” is well studied in
nonliving materials [1–10], where it is known to funda-
mentally affect material properties (e.g., rheological
properties of polymer melts [11–15]). Entanglement
has also recently become a topic of interest in active
systems [16–18]. Entanglement provides these systems
unique and potentially useful material properties. For
instance, materials composed of entangled components

are generally both strong and tough [6,8] and exhibit
strain stiffening [3]. But, these studies also make it clear
that entanglement requires either precise engineering of
the structure (for example, entangled polymers often
require chemical cross-linking [4,6–8]) or precise geom-
etry of the entangling constituents [2,3]. However, the
growth of an organism is qualitatively distinct from the
assembly of nonliving materials. Entangled multicellular
systems experience birth and death events, providing sink
and source terms to their continuity equation [19], their
branches consist of many cells, making them effectively
athermal, and they are also evolved rather than designed.
Therefore, the rules for generating nongrowing entangled
materials do not necessarily apply to entanglement via
growth, leaving it unclear what determines whether
growing systems do or do not entangle.
It was recently discovered that entanglement rapidly

evolves, de novo, in multicellular yeast clusters [23]. These
clusters, known as “snowflake yeast,” initially grow as
branched trees. They are subjected to selection for large
size every day for 600 days; over this time, snowflake yeast
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evolves a new morphology in which disconnected
branches are physically entangled, enabling clusters to
grow larger than 1 mm in size. The speed and ease with
which snowflake yeast evolves entanglement, combined
with the presence of many entangled organisms in nature
(Fig. 1), suggests either that all of these organisms are
coincidentally positioned near a specific structural and
geometric entanglement sweet spot or that there is a
broader physical principle that enables entanglement via
growth for a wide range of growing branched trees.
Here, we use a combination of experiments and a

variety of numerical modeling methods to show that
growth readily establishes entanglement in branched trees
for nearly any geometry, unlike entanglement of non-
growing elements. We find that these entangled configu-
rations are difficult or even impossible to access through
translation and rotation alone; in other words, the struc-
tures produced by growing, entangled branches cannot be
assembled like rigid, granular, nonliving materials. First,
we use numerical manipulations of experimental data to
interrogate what kinds of entangled branches can or cannot
be disassembled. Then, we develop a simple simulation to
investigate how entangled configurations of branches arise
and how entanglement probability is affected by geometric
properties of the branches. Surprisingly, we find that
entanglement via growth is generically easy to achieve,
almost regardless of branch geometry. This leads us to
develop a simple model, without specifying a growth
morphology, to explore the onset of entanglement via
growth. We find that entanglement can be a slow process,
suggesting that, for growing branched trees, entanglement
depends primarily on timescales—if growth does or does
not stop before entanglement is complete—rather than
geometry. We test this idea in experiments by growing
branching microbes, explicitly manipulating the length of
time they sit next to one another, and separately their
branching geometry, confirming that timescales control
entanglement via growth.

II. ENTANGLED, GROWING BRANCHES

We begin by investigating an experimental system that is
known to grow into entangled configurations, a multicel-
lular baker’s yeast called snowflake yeast [23]. Snowflake
yeast form structures that resemble branching trees via
continued rounds of cell division. New cells bud from their
mother cell and remain attached through a rigid chitinous
bond; if the bond breaks, it is not reformable. Cells do not
adhere via sticky interactions such as surface flocculation
proteins or extracellular matrix. Therefore, cells are con-
nected one to another in a treelike pattern, such that
breaking any chitinous bond breaks the group into two
pieces [24–26]. We use snowflake yeast strains taken from
an ongoing long-term evolution experiment [23]. We have
previously found that branches of yeast cells can interact
sterically with one another, intercalating and entangling
within a single yeast tree [23], with entanglement arising
de novo in fewer than 600 days of experimental evolution.
Given the precision necessary to create nonliving entangled
materials, it is surprising that this new morphology evolves
so readily in all five independently evolving populations.
This observation suggests that perhaps entanglement via
growth is fundamentally different than entanglement of
nonliving materials.
We first test if agitation affects the integrity of entangled

branches. Unlike previous experiments with entangled
granular materials, in which mechanical agitation leads
to collapse of a rigid column [2], or in observations of
active tangled matter, which can reversibly tangle and
untangle quickly [18], the snowflake yeast branches appear
difficult, if not impossible, to disassemble. When vortex
mixed at medium strength, snowflake yeast groups main-
tain their size distribution, suggesting that mechanical
agitation (weak enough to not break intercellular bonds)
alone cannot disassemble the tangled aggregate [Fig. 2(a)].
Crucially, although there are mathematical tools to rigor-
ously measure the entanglement complexity of open curves

FIG. 1. Several examples of entangled, growing materials. (a) Tree roots winding and twisting around each other. Photo used with
permission from Omar Ram via Unsplash. (b) Peltigera membranacea, a type of lichen, in cross section. The scale bar is 100 μm. Image
source, Ref. [20]. Image used with permission from Chistopher Tomellion. (c) The fossilized (probable) fungus Prototaxites, which
formed structures 8 m tall 400 million years ago. Strands are about 50 μm in diameter. Image source, Ref. [21]. This image is in the
public domain. (d) Scanning electron micrograph of hyphae of Pleurotus. The hyphae have a diameter of about 3 μm. Image source,
Ref. [22]. Image used with permission from Dr. Carmen Sanchez. (e) Confocal microscope image of snowflake yeast, scale bar 50 μm.
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in three dimensions [27,28], there is yet no rigorous method
to predict if such configurations are geometrically trapped.
We, therefore, turn to empirical tests of snowflake yeast at
the microscale to confirm if growth accesses configurations
that cannot be disassembled.
Previous work used scanning electron microscopy to

image 3D volumes of a single snowflake yeast group [23].
Here, we segment each disconnected branch of cells in
those 3D image stacks and generate 3D surface data
by approximating their surfaces through alpha shapes
[Fig. 2(b)]. We then seek to measure the degree of
entanglement of these surfaces. While there are elegant
methods for computing the degree of entanglement,
including contour reduction algorithms and the average
crossing number [29,30], applying these methods to
branched structures is nontrivial. We instead employ a
brute-force method by computationally simulating artifi-
cial translations and rotations of various branches of cells
and tracking their collisions (see Appendix D). Using this
method, we investigate if the experimentally observed
configurations that snowflake yeast grow into can be
disassembled via mechanical agitation.
We quantify the degree of confinement by performing

simulations in which we translate one yeast branch with

respect to others. We identify two separate branches
[Fig. 2(b)(i)] that are entangled, where entanglement is
defined as occurring when one disconnected branch pen-
etrates the convex hull of another, a definition broadly used
when studying entanglement [2,3,23]. We construct alpha
shapes of both pieces. Then, we translate the two alpha
shapes with respect to each other by identifying one target
piece [the gray piece in Fig. 2(b)] and one stationary piece
and moving the target piece a distance of 1.3 cell lengths in
discrete steps of size 0.03 cell lengths. We allow the alpha
shapes to overlap and at each step measure the overlapping
volume between the two alpha shapes. We repeat this “drag
experiment” 1000 times in different directions, each direc-
tion defined by a unit direction vector, each vector evenly
dispersed around the unit sphere. Contact is defined to be
the point at which the overlapping volume exceeds one
cubic micron (see Appendix D). Of the 1000 sampled
directions, 35 do not make contact exceeding this thresh-
old, indicating that the two pieces are not prohibitively
entangled. The median first contact distance is 0.20 cell
lengths [Fig. 2(c)]. We next add a third branch of cells from
the same snowflake yeast cluster [Fig. 2(b)(ii)] and repeat
the drag simulation. With three branches, contact occurs in
every translation direction, and the median first contact

FIG. 2. Growing branches access configurations inaccessible or difficult to access through agitation alone. (a) Histogram of yeast
group sizes before and after strong agitation via vortexing. (b) Several examples of entangled branches. (i) Two pieces penetrate each
other’s empty space, (ii) a third piece also entangles with the previous two, and (iii) a view of all pieces identified in the sample data
cube. (c) Cumulative distribution function (CDF) for the distance dragged until the point of first contact, in units of distance scaled by
average cell length. Dark line, two piece interaction from (a)(i); lighter line, the three-piece interaction from (a)(ii). Inset: an example of
one drag run, showing net overlap scaled by the maximum overlap and distance pulled scaled by cell length. The distance to defined first
contact, Δ, is illustrated. (d) Mean-squared displacement vs lag time for four different agitation interaction scenarios. The target piece is
always the gray piece from (b). From dark to light, the lines represent free diffusion, one interaction (b)(i), two interactions (b)(ii), and all
interactions (b)(iii). (e) Top, the effective diffusion constant for all lines from (d), scaled by the free diffusion constant. Bottom, the
fraction of independent simulations that translate at least one cell length. (f) The coordination number for all 38 pieces from (b)(iii).
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distance is 0.13 cell lengths. Thus, in this example, the
entangled piece can sometimes escape one neighbor, but it
cannot escape two neighbors.
While these simulations suggest that these three

branches are highly entangled, it is possible that the
target branch can escape with a simple series of trans-
lations and rotations—maneuvers that are readily acces-
sible to nonliving materials. To test this idea, we randomly
translate and rotate the branches to determine if they can
undo snowflake yeast entanglement from growth. In our
algorithm, one branch (the target) experiences movements
that combine a random translation (a step of 0.4 μm,
or approximately 0.03 cell lengths, in a random direction)
and a random rotation (a rotation of 2° around a randomly
selected axis). Collisions are identified by tracking the
overlapping volume of the target branch with other
branches. Random movements are accepted if the
branches do not collide and rejected if they do collide,
in which case the target piece remains at its last non-
overlapping position and orientation. From our drag
experiments, we hypothesize that our target branch could
be disassembled if it interacted with only one other branch
but may be confined when interacting with two or more
others. To explore how many branches are required for
confinement with these specific geometries, we simulate
several different configurations of branches with varying
numbers of interacting pieces.
Following this procedure, we first agitate the target

branch [gray, Fig. 2(b)(i)] in free space, tracking the
position of its center of mass and calculating its mean
squared displacement (MSD, h½xðtþ τÞ − xðtÞ�2i) over
100 simulations, each running for 3000 time steps
[Fig. 2(d)]. The unconfined branch moves diffusively
with diffusion constant D0 ¼ 9.77 × 10−4 � 1 × 10−6 cell
lengths squared per simulated time step. Next, we sim-
ulate a pair of interacting branches [Fig. 2(b)(i)] and run
100 replicate simulations. We use the same target branch
(gray) as for the freely diffusing case. We find that the
target branch still moves diffusively, which is consistent
with our previous observation that the two-piece inter-
action is escapable. However, the effective diffusion
constant is lower (0.33D0 ¼ 3.21 × 10−4 � 1 × 10−6 cell
lengths squared per unit time) due to the many collisions
between the two pieces. Upon adding a third disconnected
branch [Fig. 2(b)(ii)], we find that the MSD of the target
piece ceases to grow linearly, indicating that it is caged by
its neighbors, even when the simulation run-time is
extended to be an order of magnitude longer than the
other simulations. Upon adding all remaining pieces
[Fig. 2(b)(iii)], motion is even more limited. To quantify
this caging effect, we measure an effective diffusion
constant for all four scenarios with the gray target piece,
scaled by the free-space diffusion constant, and find
that Deff approaches zero for three- and four-branch
simulations [Fig. 2(e), top]. Further supporting the caging

observations, we find that the fraction of agitation
simulations for which the target piece moves at least
one cell length scales with the effective diffusion
constant [Fig. 2(e), bottom, Pearson correlation coeffi-
cient r ¼ 0.86].
To test if other branches in the cluster behave similarly,

we repeat this agitation experiment with an entirely differ-
ent set of branches [Fig. 2(b)(iii)]. In this example, we
agitate the yellow branch with zero interactions, one
interacting branch (pink), two interacting branches (pink
and green), and three interacting branches (pink, green, and
black). In Fig. 7, we report the same characteristic flat-
tening of the mean squared displacement upon adding the
second interaction and include measurements of the effec-
tive diffusion constants. Last, as a demonstration for just
how dramatic this caging effect can be, we agitate one
branch that is entangled with 16 others [pink, Fig. 2(b)(iii)].
After 50 replicate simulations, each with 3000 time steps,
the agitation algorithm is never successful in completing
even a single accepted move (i.e., one that results in zero
collisions).
The above results suggest that branches entangled with

two or more other branches grew into highly confined
configurations that would be very difficult, if not impos-
sible, to reach through translations and rotations. We, thus,
next seek to determine how many branches are entangled
with two or more other branches within macroscopic
clusters. To do so, we identify 38 discrete branches and
compute the convex hull of each one. Then, for each
component, we determine how many other convex hulls it
penetrates, i.e., its coordination number z [Fig. 2(f)]. We
find that all branches penetrate the convex hull of at least
one other branch and 92% of the branches penetrate the
convex hulls of two or more other pieces. The average
coordination number is hzi ¼ 4.2� 2.7. Therefore, snow-
flake yeast branches appear to be highly confined.
These analyses of entangled branches suggest that entan-

glement via growth can achieve configurations that are
difficult, if not impossible, to disassemblevia translation and
rotation alone. In those configurations, the only way to
disassemble two or more entangled branches appears to be
to destroy or deform the material, for example, through
external forces that rupture cell-cell bonds or via branch
death. However, it is unclear if snowflake yeast coinciden-
tally possess a growth morphology with a geometry con-
ducive to such highly confined, entangled branches, or if
entanglement via growth is readily able to access such
configurations. To answer this question, we seek to explore
entanglement through growth via amodel system that grows
with a branched morphology and a tunable geometry.

III. ENTANGLEMENT FROM GROWTH VIA
RIGID-BODY SIMULATIONS

To test if entanglement is, in general, readily achieved
via growth, we simulate growing, branching trees in three
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dimensions with a variety of geometries. We vary the
geometry of these growing trees and determine which
geometries do and do not allow entanglement to occur.
Our simulations start with six “primary” tips, centered at
the origin, with each tip pointed along one of the cardinal
axes. Tips have a fixed diameter d and grow by continually
lengthening at a constant rate. After lengthening by a
distance Λd, each tip branches into two tips. The two new
tips branch symmetrically from the growth axis prior to
splitting, with branching angle θ and random azimuthal
orientation ϕ [Fig. 3(a)]. If a growing branch collides with a
branch on another tree that is already present, the growth is
rejected and the branch “retreats” by a small amount,
0.02Λ; then, it deflects by turning in a random orthogonal
direction. It then proceeds to lengthen and branch with its

new orientation, which could result in more collisions that
are similarly deflected. The lengthening and branching
processes are repeated to form a highly branched tree; in
principle, lengthening and branching could repeat indefi-
nitely, but here the simulation is truncated after a set
number of branching events per tree (B), which could be
different for each tree. Control parameters Λ and θ allow us
to test a wide variety of branch geometries.
The goal of these simulations is to investigate the range

of geometries that facilitate entanglement via growth. As
such, we employ no other mechano- or chemosensing
behavior; we also do not allow the dendrimers to elastically
deform. Any of those behaviors would make entanglement
more likely to occur, so we exclude them to keep the focus
on geometry. Thus, these simulations can be considered

FIG. 3. Simulations of growing branches easily entangle. (a) Illustration of a growing hyphal branch with one tip splitting into two
tips, along with relevant geometric parameters. (b) Two separately generated trees are pushed together and mechanically agitated.
(c) One tree is first generated, and then a second is grown nearby (three stages of growth are shown—early, middle, and late times).
(d) Histograms of distances between pairs of trees centers of mass. A stands for trees grown separately and agitated; G stands for trees
grown nearby. Lengths are scaled by the mean distance achieved from agitation alone. (e) Examples of individual grown trees with
varying geometric parameters. Top row: varying Λ from 2 to 5; bottom row: varying θ from 15° to 90°. (f) Phase maps measuring the
proportion of pairs of trees that are measured as entangled. Branching geometry is varied for four different growth times. From left to
right: three branching events (short times), four branching events (intermediate), five, and six. (g) Tracking trajectories of entanglement
probability for the specific branching geometries highlighted in (f).
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simple random walk models of dendrimerlike growth that
investigate the geometries of growing and entangling
branches. We also simulate an alternative approach in
which we make entanglement even more difficult to
achieve; growing tips that collide with existing branches
cease growing; these simulations produce results qualita-
tively similar to what we detail below (see Fig. 10).

A. Growth assembles configurations that mechanical
agitation cannot

We next seek to assess how easily growth entangles trees
compared to sequences of translations and rotations.
Particularly, we hypothesize that two already-grown and
nonentangled trees would have a limit to how close they
can be pushed together via translations and rotations.
Conversely, we hypothesize that growth could allow
branches to penetrate deeper into already-grown trees,
resulting in configurations that are irreversible to trans-
lations and rotations. To identify these configurations, we
measure the proximity of the tree centers of mass after
translating and rotating trees together and after growing
trees near each another.
First, we explore how we might assemble an entangled

configuration via a combination of translations and rota-
tions. We adapt the mechanical agitation algorithm that we
use to study disassembly in Fig. 2 for this purpose, with the
addition that trees are periodically forced together. We grow
two trees independently (geometric parameters Λ ¼ 4,
θ ¼ 45°, and B ¼ 4) and translate one tree toward the
other until the branches of the trees collide, as detected by
any nonzero intersection of their alpha shapes [Fig. 3(b)].
After this initial collision, one tree goes through a series
of small rotations and translations that are mechanically
restricted through collision detection. Then, the trees are
again pushed together. This process of pushing and
agitating is cycled many times. We track the distance
between the clusters’ centers of mass over time (Fig. 11),
finding that this amount of agitation leads to a plateau in the
closest distance the clusters could reach by the 25th cycle.
In Fig. 3(d), we plot the histogram of shortest distances
achieved by the two clusters. The mean distance achieved is
L0 ¼ 96.1� 8.8 simulation units (N ¼ 188); for compari-
son, the mean tree diameter is 107.9� 0.3 simulation units.
Therefore, the pushing algorithm generally results in tree
configurations that only weakly penetrate each other’s
space. We scale all future measurements of tree proximity
by the value L0, such that the mean distance achieved for
this set of simulations is of unit magnitude.
We next seek to model entanglement from growth. We

grow one tree in isolation and then start growing the second
tree 50 simulation units (0.52L0) away from the first tree’s
center of mass [Fig. 3(c)]. This distance represents about
half the mean distance between centers of mass achieved by
the agitated trees and is also located inside the radius of the
first tree. Because the new seed point is located slightly

inside the radius of the first tree, we check if there is any
initial overlapping volume (which would represent two
cells occupying the same space) and generate a new
location if there is. This approach results in 134 grown
configurations (B ¼ 4). The mean final center of mass
separation distance is 55.2� 4.6 units (0.57L0), substan-
tially closer than through agitation alone (p ≪ 0.001,
z ¼ 8.9, z test). The closest pair of agitated trees achieves
a center of mass distance of 72.8 units (0.76L0); only one
out of the total 134 grown trees is farther apart than that.
Furthermore, it is worth pointing out that grown trees
achieve this small center of mass distance despite growing
randomly in all directions, while agitated trees experience a
directional force that is designed to push their centers of
mass together. Thus, grown trees appear to readily achieve
configurations that are inaccessible via agitation alone.

B. Growth geometry mediates time needed to entangle

One of the characteristics of entangling granular materi-
als is that there is a geometric “sweet spot” for which
entanglement probability is maximized [2]. We explore if
such a geometric sweet spot also exists in our growing
system. We test many different branch geometries by
varying the geometric properties Λ (distance between
branch points) and θ (angle of the new branches) as shown
in Fig. 3(e). In each case, we simulate 100 different
instances, where one tree is grown in isolation and then
a second tree is grown nearby. Then, to quantify entangle-
ment, we drag the two trees apart along the vector
determined by the difference between their centers of mass
and track collisions by quantifying the overlapping volume
of their alpha shapes. We enumerate the proportion of
instances where the two trees collide from this drag
experiment. We find that, within the test parameters ranging
from Λ ¼ ½2; 6� and θ ¼ ½15; 90� and B ¼ 3 branching
events of growth, entanglement is more likely for sparser
networks (larger Λ) and for intermediate branching angles
(θ ¼ 120°) [Fig. 3(f)]. These results are consistent with
previous experiments on entangled granular materials that
identified a geometric sweet spot for maximum entangle-
ment probability [2].
We then increase the amount of time the target tree

grows, changing the number of branching events B. When
trees are grown for a short amount of time, there is little
entanglement observed, except for geometries near the
sweet spot. At intermediate times, many configurations
begin to entangle, but the geometric sweet spot is still easily
observable. However, when grown for long enough, even
geometries far from the sweet spot begin to entangle, and,
since the probability of entanglement saturates at 1, these
poorly entangling geometries “catch up” to well-entangling
geometries. In Fig. 3(f), we demonstrate this saturation
effect as a phase map with four panels, the first corre-
sponding to B ¼ 3 branching events and then B ¼ 4,
B ¼ 5, and B ¼ 6. There exist geometries that are not
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available for entanglement no matter the growth time; these
geometries correspond to very dense hyphal networks with
no space between the branches [i.e., some seen in Fig. 3(e)
and the gray region and line in Figs. 3(f) and 3(g)].
However, for all geometries for which entanglement can
occur, the probability of entanglement increases monoton-
ically with time [Fig. 3(g)]. This phenomenon suggests
that, for entanglement via growth, the primary role of
geometry is not to determine if entanglement occurs but to
determine how much growth is necessary for entanglement
to occur. In this sense, the amount of time a branched tree
can grow may be more significant than its geometry in
determining entanglement.

IV. GROWTH ENSURES TUNNELING
TO ENTANGLED STATES

Our results so far suggest that entanglement via growth
occurs readily for branched trees that are allowed to grow
for a sufficient amount of time, with less dependence on
their branching geometry. However, it remains possible that
these clusters, and snowflake yeast, are especially “primed”
for entangling via growth compared to entangling via
agitation. We, thus, seek to test these ideas with an
approach that provides maximal leniency for entanglement
from agitation and that lacks a specific geometry.
To do so, we employ a nongeometric, space-filling

model. In this model, we do not specify the growth
morphology and do not model contact-based interactions
between branches. Instead, we model the density of a
branching structure as a spatiotemporal scalar field ρðr; tÞ.
We consider a system with a radially isotropic density,
reducing the system to one dimension. The only mechani-
cal rule we impose is that a maximum packing density
exists; i.e., the sum of all separate density fields represent-
ing different objects is limited by a maximum material
packing density,

P
i ρiðrÞ ≤ ϕmax, where 0 < ϕmax ≤ 1.

This approach is inspired by simple, but fundamental,
physics of close-packed particles and cells—namely, cells
cannot overlap and, based on their geometry, have a
maximum packing fraction they cannot exceed [26,31,32].
These packing “rules” apply to all real cellular systems
but are also maximally permissive for entanglement via
agitation—so long as the sum of two density fields remains
less than ϕmax, they can be pushed together such that they
overlap. In fact, for this model, it would be possible to push
two such objects directly through one another, so long as
the packing density at every location remains below the
maximum packing density, i.e.,

P
i ρiðrÞ ≤ ϕmax remains

true everywhere. Clearly, for real, rigid objects, this is not
possible. Thus, this model is quite lenient for agitated
systems. Nonetheless, we find that growth easily and
inevitably accesses entangled configurations in regimes
that are inaccessible to agitation (Fig. 4).
We begin by modeling the time evolution of a growing

system, modeled as a radially isotropic field. Growth can

occur in the radial direction, thus increasing the radius, or it
can occur in directions that are orthogonal or misaligned to
the radial vector, thus increasing density in a region of
space they already occupy. We model this time evolution as

∂ρi
∂t

¼ Kρi

�
1 −

P
jρj
ϕs

�
þDðrÞ∇2ρi: ð1Þ

The first term of the right-hand side models the dynamics of
increasing density at occupied positions. Once there is
material occupying a position r, the density field at this
point increases via growth until it reaches its maximum
value ϕs, with rate of solidification K. This logistic term
also includes information about other scalar density fields,
with which ρiðrÞmust interact. This other material acts as a
further cap to the maximum density that ρi can reach. The
second term in Eq. (1) models expansion, i.e., growth into
previously unoccupied position r. We model expansion
with a diffusionlike second-order spatial derivative [with
proportionality constant DðrÞ that varies spatially] due to
the stochastic random-walk-like nature of branching events
in our simulations. Furthermore, we model the spatial
variation of the effective diffusion constant as DðrÞ ¼
D0½1 − ðPj ρj=ϕmaxÞ� to reflect the slowing rate of expan-
sion when interacting with dense, porous material.
An important characteristic of living, growing materials

(such as those in Fig. 1) is that they often do not grow to fill
space; i.e., their grown packing fraction is less than the
maximum possible [26,32]. Factors such as growth mor-
phology or the uptake and diffusion of nutrients can limit
the density to which the organism grows. In our model, we
allow for this possibility by explicitly writing the maxi-
mum density achieved through the solidification process
as ϕs, which may be less than the maximum possible
density ϕmax. We next numerically integrate our partial
differential equation model. We consider two scenarios,
representing entanglement via agitation and entanglement
via growth. For each scenario, ϕs ¼ 0.3, a similar value to
experimental measurements of the cellular packing den-
sity of snowflake yeast [32], and the maximum packing
density is ϕmax ¼ 0.5.
First, we separately grew two clusters [by integrating

Eq. (1)] until they each reach ϕs in their center. We then
push one cluster toward the other, which we refer to as the
barrier. Eventually, the cluster reaches a position r0 such
that ρ1ðr0Þ þ ρ2ðr0Þ ¼ ϕmax. At this point, the cluster
cannot be pushed any farther, as doing so results in
ϕðr0Þ > ϕmax [Fig. 4(a)].
In the second scenario, we grow a barrier until it reaches

ϕs in its center. We then grow a cluster starting a distance
r ¼ 1 away from the center of the barrier and observe that
the cluster grows through the barrier. As the height of the
barrier σ0 < ϕmax, growth inevitably tunnels through the
barrier to the other side, where it then continues to solidify,
entangling the barrier in place [Fig. 4(a)]. Note that this is a
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deterministic system; tunneling through the barrier always
happens for these chosen parameters.
Next, we seek to test the impact of the barrier’s density

and width on the timescale that it takes to traverse the
barrier. We generate step function barriers with varied
densities, from 0 to ϕmax, and widths, from w ¼ 0 to 0.6, to
investigate the amount of growth time necessary to traverse
the barrier. This traversal time (which we normalize by the
total length of our numerical simulations, i.e., the total
integration time) diverges as the barrier height approaches
the maximum density. Conversely, traversal time does not
diverge with barrier width, implying that, in principle, even
a very wide barrier eventually is traversed. These results
suggest a physical argument for barrier traversal. Passing
through a barrier of a given density takes, on average, a
particular amount of time per unit length. Increasing barrier
width does not significantly change the paths through the
barrier and, thus, does not change this traversal time per
unit length; therefore, wider barriers take proportionally
longer than narrower ones. Conversely, when the barrier
density is increased, the number of paths that traverse the

barrier decreases, as dead ends are inevitably created. This
leads to a nonlinear effect: At low densities, the number of
paths through the barrier remains relatively unchanged, but
at higher densities, the number of dead ends increases,
making the search time for a path increase nonlinearly.
The gray region in Fig. 4(b) illustrates a regime where

pushing the cluster all the way through the barrier is
impossible, because the sum of the two density fields
would together exceed ϕmax. Growing fields can traverse
the barrier even in this gray zone because growth can
proceed without exceeding ϕmax. This means that, even in
the case of this model, which is quite lenient to translating
fields directly through one another, growth still accesses
configurations that translation cannot achieve, even if
traversal times within the gray region are slow [Fig. 4(b)].
Finally, we seek to test some of these predictions via

simulations of dynamic, growing hyphae in three dimen-
sions. We use a sample cube of SEM data from snowflake
yeast experiments to generate a porous barrier. The density
of this block is controlled by eroding or dilating the voxels
of the 3D data sample [see Appendix E and Fig. 4(c)].

FIG. 4. Growth ensures tunneling to states unreachable from agitation alone. (a) Two numerical solutions to Eq. (1), plotting ρðrÞ vs r.
Top: Eq. (1) is solved in free space; then a barrier (red) is translated toward the grown density field (black) until the two-density sum
exceeds ϕmax at any location. The dashed line is the closest the barrier reaches. Bottom: Eq. (1) is solved when the barrier (red) is present,
illustrating tunneling through the barrier. The color bar and arrow indicate the direction of proceeding time. (b) Traversal time of a square
barrier vs the barrier density, from solutions to Eq. (1) for different barrier widths, normalized by maximum numerical integration time.
The white region is where the square barrier density is low enough so that the barrier could be pushed completely through the grown
density field, illustrating states that are accessible to agitation. The gray region is where the barrier and field cannot be pushed through
each other, indicating thermally inaccessible configurations. (c) Left: example simulation of traversal of rigid, branched hyphae (blue)
through a porous medium (gray). Right: examples illustrating changing density of the porous medium from 0.02 to 0.23. (d) Normalized
traversal times of simulations for varying porous medium densities and widths. The x axis is scaled by the bond percolation threshold for
3D cubic lattices [33,34]. Different color lines represent means across 96 different simulations for different barrier widths. For clarity,
the standard deviation in traversal times for only one barrier width is displayed.
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Then, we employ the branched-tree growth simulation used
in Fig. 3 to explore paths through the porous block. We
measure the traversal time when any branch of the growing
tree reaches the opposite side of the porous block. In Fig. 4,
we show one simulation, where the branch network (blue)
starts on the left side of the porous block and then grows,
eventually traversing a path through the gray porous
block to the other side. We track the traversal time for
96 simulations of each barrier density and width
[Fig. 4(d)]. We find that, in qualitative agreement with
the mean-field model, the traversal time increases super-
linearly for increasing density. We also find a nonlinear
increase in traversal time when increasing barrier width at
high densities, indicating that, in real (i.e., not mean-field)
systems, increasing barrier width may also increase the
number of dead-end paths. Future work may explore the
relative importance of material density and barrier size in
other experimental systems.

V. EXPERIMENTAL TESTS OF GROWING
ENTANGLEMENT

Finally, we seek to experimentally test the idea that
entanglement via growth depends heavily on timescales.
To do so, we use the snowflake yeast model system of
undifferentiated multicellularity, which has recently been
shown to evolve branch entanglement as a mechanism of
generating increased multicellular toughness [23,24].

A. Altering timescales to encourage entanglement
between separate clusters

One of the predictions of our entanglement models from
above is that branched trees can easily grow into entangled
configurations so long as they remain near each other and
grow for long enough. We seek to test this prediction
experimentally by growing, agitating, and imaging pop-
ulations of differentially labeled (red and green) snowflake
yeast. It was previously demonstrated that separate clusters
do not entangle when grown in a shaking incubator at
225 rpm [23]. But, based on the above simulations, we
hypothesize that separate clusters will entangle if shaken at
lower speeds, as they will spend more time in contact with
each other.
To test this hypothesis, we break groups of red- and

green-fluorescent snowflake yeast clusters into small pieces
by compressing them between glass slides and then grow
the red and green pieces in a single culture tube. After
incubation, we vortex-mix each tube to ensure that any
observed entanglements are mechanically stable and
then image clusters to determine if distinct red and green
clusters become entangled. Since we have no method for
determining if same-color entanglements (i.e., entangle-
ments between green-green or red-red clusters) are present,
we count only the known entanglements (i.e., entangle-
ments between green and red clusters) and normalize by the

total number of clusters observed. We determine the
experimental error via an empirical control where we
expect no entanglement to occur; we culture red- and
green-fluorescent strains in separate tubes overnight, then
mix them in a single vial, and image them immediately. All
error bars in Fig. 5 are from this control experiment.
When incubated in growth medium at low and medium

shaking speeds (50 and 150 rpm, respectively), entangle-
ment between distinct red and green clusters readily
occurs [15%, N ¼ 273 and 14%, N ¼ 299 of examples
in Fig. 5(a)], quantified by the relative proportions of
combination-colored clusters compared to the total number
of clusters [Fig. 5(b); see Appendix B]. At high shaking
speeds (250 rpm), entanglement is rare. This stark differ-
ence occurs because, at 50 and 150 rpm, yeast clusters
remain settled near the bottom of the tube, presumably
interacting with the same neighboring trees for multiple
rounds of cell division (see Supplemental Material Movies
1–3 [35]). At 250 rpm, clusters are dispersed throughout the
fluid and, therefore, pairs of clusters do not stay near each
other for sufficient times to grow entangled.
To directly test the effect of growth compared to

mechanical agitation alone, we incubate some samples in
a saline solution that inhibits cell division but keeps cells
alive. In the experiments with growth media, snowflake
yeast clusters start small but grow to large sizes. We, thus,
perform controls in saline solution for both small clusters
and large clusters, with size distributions matching the start
and end points of the growth experiment; i.e., we perform
experiments with both small (broken) clusters and large
(unbroken) clusters. In all cases where we observe entan-
glement via growth (i.e., low and medium shaking speeds
with growth medium), the proportion of entangled red-
green clusters is significantly higher in culture tubes with
growth than in those without growth (p < 0.01, z test),
suggesting that random translations and rotations of the
yeast branches due to agitation are not sufficient to entangle
separate clusters.

B. Genetically altering branch geometries

Our above work suggests that the phenomenology of
entanglement via growth and entanglement of nonliving
materials are qualitatively different. On the one hand,
nonliving materials entangle only if they are situated near
the geometric “sweet spot” [2]. On the other hand, our
simulations (Figs. 3 and 4) predict that entanglement via
growth can occur even for branching geometries that are
far from the sweet spot if the organisms are given enough
time to grow. In other words, nonliving materials entangle
only with optimal geometries, while we predict that
entanglement via growth can occur even with geometries
that are far from optimal. In this section, we test these
ideas experimentally.
To do so, we genetically engineer two different strains of

microscopic snowflake yeast, each with a different budding
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geometry. The first mutant is created by knocking out the
gene ace2 in single-celled yeast; this is the “ancestral”
strain used for the multicellularity long-term evolution
experiment (MuLTEE) [23]. This strain of snowflake yeast
tends to produce distally polar buds with fairly regular polar
angles of hθi ¼ 34� 17° (Fig. 8). The second mutant is
created by knocking out the genes rsr1 and ace2. Previous
works have shown that knocking out the gene rsr1 causes
buds to appear in random locations on the yeast cell

surface [36]. In our engineered mutants, the mean budding
angle is hθi ¼ 57� 31°, which is a broader distribution
than in the ace2 snowflakes (p ¼ 0.005, t ¼ 2.9, df ¼ 40,
two-sample t test; see Fig. 8). Importantly, neither of
these mutants entangle; mechanical stresses cause inter-
cellular bonds to fracture, splitting the organism into
separate pieces [25,26].
We next determine if clusters with these different

budding angle geometries can entangle. We previously

FIG. 5. Growing branches entangle readily. (a) Three examples of combination-colored, entangled yeast clusters. The scale bar is
100 μm. (b) Proportion of clusters observed to be entangled for various treatment types, normalized by the total number of clusters.
Horizontal dashed line is a measurement of algorithm error via a control where no entanglement is expected (i.e., immediately pipetting
a mix of green and red clusters onto a slide without any agitation or growth). Error bars are also drawn from this empirical measurement
of algorithm precision. Three stars indicate p < 0.001 significance level; two indicate p < 0.01. (c) Top left: ace2 snowflake yeast
that does not entangle. Inset: higher-magnification image of ace2 stained with calcofluor white that brightly highlights bud scars to
show the characteristic snowflake yeast pattern. The inset scale bar is 5 μm. Top right: We apply genetic mutation set 1
(mac ¼ clb2þ cln3þ gin4), inducing changes that lead to entanglement. The scale bars in the top left and top right are both
300 μm. Bottom: mean diameter (and standard error) of these two strains. (d) The same information as (c) but for the mutant line
ace2rsr1. The images have the same scale as their counterparts in (c).
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demonstrated that a mutation set (clb2, cln3, gin4),
here called mac, can cause the ace2 mutant to entangle
[we repeat these measurements anew here, Figs. 5(c)
and 5(d)] [23]. When we create this mutant strain of
snowflake yeast with highly elongated cells and stronger
intercellular bonds, mean group diameter increases by a
factor of 14.9 [Figs. 5(c) and 5(d), p ≪ 0.001, two-sided t
test, df ¼ 600, t ¼ −33.5], which corresponds to a change
in volume of > 1000-fold. In prior work, we have shown
that the onset of entanglement leads to a similar increase
in group volume [23]. Therefore, we use such an increase
in group size as a proxy for entanglement. If entanglement
via growth requires budding angle geometry to be near
a geometric sweet spot, then a snowflake yeast mutant
with rsr1 and mac (i.e., ace2þ rsr1þclb2þcln3þgin4)
should not entangle, since the budding angle distribution
is quite different and more spread. However, if adding the
mac mutations to an rsr1 mutant does result in entangle-
ment, this would experimentally demonstrate that entan-
glement via growth can occur for a wide range of
geometries.
We next construct the ace2þ rsr1þmac mutant and

measure its size. In agreement with our predictions from
simulations, we find that rsr1þmac mutants do, in fact,
entangle, increasing mean group diameter by a factor of
18.3 [Figs. 5(c) and 5(d), p ≪ 0.001, t ¼ 60.6, df ¼ 1053,
two-sided t test]. This test, therefore, confirms that the
original snowflake yeast budding geometry is not necessary
for entanglement to proceed. Instead, entanglement via
growth can occur for various budding geometries, includ-
ing those that have been randomized and are potentially far
from any sweet spot.

VI. DISCUSSION

Here, we use a combination of experiments, simulations,
and theory to show that growth of branching, rigid trees
more readily leads to entanglement than agitation alone. We
argue, and experimentally find, that growth can produce
effectively inaccessible configurations (i.e., ones that are
impossible to disassemble). In simulations and experi-
ments, we show that branching growth readily accesses
these configurations, even without evolved sensing behav-
iors. Finally, while geometric properties such as branch
diameter clearly play a role in the frequency and strength
of entanglements, we show through numerical methods
that, given the right conditions for entanglement to occur,
growth inexorably tunnels into configurations that are
impossible to access via agitation alone. Combined, this
evidence supports the idea that entanglement in growing
systems is relatively easy to achieve and more dependent on
timescales than geometry. Future work may explore how
this effect, here studied in disordered systems, may extend
to ordered systems as well.
There are two ways that nonliving systems are known to

entangle. First, they can mechanically agitate separate

pieces into configurations where they wrap around each
other [2,3,5,37,38]. Second, entanglement can be triggered
via synthesis of new bonds between previously separate
chains [4,6–8]. We do not explicitly compare entanglement
via growth to the latter case. But it is worth noting that
entanglement triggered through new bond formation is a
carefully engineered process. So far, such processes have
been studied with polymers composed of modular, alter-
nating blocks of coils and elastinlike domains [4,6], so that
new bonds are selectively triggered in particular locations
along the polymer. Otherwise, cross-linking of chains
becomes more frequent than entanglement events, and
the polymer gel loses its entanglement-derived qualities [8].
This kind of precise engineering is currently much more
difficult to achieve with living systems. While extant
complex multicellular organisms may be capable of the
precision needed for selectively cross-linking entangle-
ments, entanglement through growth is likely a more
relevant mechanism for establishing entanglements in
simple or nascent multicellular groups.
It was recently demonstrated that, even in cross-linked

gels, entanglement is responsible for increased toughness
[4,6,8]. Material toughness is an important property for
many organisms and organism collectives, especially those
that need to avoid fracture. For instance, toughness is an
important characteristic of cartilage [39] and other collagen
networks [40], especially as joint degeneration progresses
with age or injury [41]. Animal collectives are also shown
to actively entangle by bending limbs [16,37] as a mecha-
nism for holding themselves together under external
stresses like shear flows. Therefore, even in living systems
where cross-linkers are known and studied, accounting for
entanglement may be important.
In this paper, we show that entanglement is a common

and robust phenomenon in living systems that grow as
branching trees with permanent cell-cell bonds. Such bonds
are a frequent evolutionary outcome in the transition to
multicellularity, as exemplified by fungi, plants, red, green,
and brown algae, and filamentous bacteria [42]. We
demonstrate that entanglement via growth does not depend
on specific geometries or morphologies but rather on the
timescales of growth and interactions. Indeed, within the
snowflake yeast model system, entanglement evolves
within just 3000 generations of selection for larger size
[23]—a geological blink of an eye. Rather than requiring
substantial developmental innovation, we suggest that
entanglement may be one of the first mechanisms evolved
by branching multicellular organisms under selection to
grow tough bodies capable of withstanding internal strains
from cell division or external stresses from the environ-
ment. Despite the ease with which entanglement can evolve
and its convergent evolution across many multicellular
clades, much remains to be discovered about the role of
entanglement as a mechanism for generating tough, strong,
multicellular materials.

MORPHOLOGICAL ENTANGLEMENT IN LIVING SYSTEMS PHYS. REV. X 14, 011008 (2024)

011008-11



ACKNOWLEDGMENTS

The authors acknowledge the Core Facilities at the Carl
R. Woese Institute for Genomic Biology for use of their
Serial Blockface Scanning Electron Microscope. This work
was supported by NIH Grants No. R35-GM138030 to
W. C. R. and No. R35-GM138354 to P. J. Y.

APPENDIX A: CULTURING AND SAMPLE
PREPARATION

Multicellular yeast groups are sampled from an ongoing
long-term evolution experiment (MuLTEE [23]). These
anaerobic multicellular yeast clusters are evolved from an
ancestral multicellular “snowflake” petite yeast without a
functional copy of the gene ace2. When the ace2 gene is
not expressed, the final stage of cell division is not
completed, and mother-daughter cells remain attached
at the chitinous bud site. Since all cells are attached
directly to their mothers, snowflake groups form a fractal-
like branched-tree collective.
Yeast is generally cultured in 10 mL YEPD media

[10 g yeast extract, 20 g peptone, 20 g dextrose for 1 L de-
ionized (DI) water]. To keep yeast alive yet prevent further
growth, we use a saline solution of 0.85% sodium chloride
dissolved in DI water. Glass culture tubes are then
cultured overnight at 30 °C in a variable-speed shaking
incubator (Symphony Incubating Orbital Shaker model
3500I). We select 50, 150, and 250 rpm shaking speeds to
vary the agitation strength.

1. Mechanical agitation and population
size measurements

To test if mechanical agitation could disassemble
grown yeast clusters, yeast clusters are first grown in
overnight culture, then agitated, and then imaged to obtain
a population-level size distribution. After culturing, we use
wide-bore 1000 μL tips to pipette 1 mL of culture (making
sure to gently shake first) into two different microcentrifuge
tubes. Each tube is vortexed once at medium vortex speed
(5, VWRminivortexer) for 5 s. Then, one tube is left without
any more vortexing, and the other is vortexed for an
additional 5 s at a stronger vortexing speed (7). 100 μL is
sampled fromeach tube into fluorodishes, so that the clusters
are not flattened by a microscope slide, and imaged under
bright field using a Zeiss Axio Zoom V16 microscope.
After imaging, custom MatLab scripts segment and binar-

ize the clusters from the background. These scripts use a
combination of watershedding, morphological segmenta-
tion, and filtering to separate proximate clusters (code
attached). Cluster cross-sectional area is measured and used
to estimate cluster diameter using a spherical approximation.

2. Fluorescent tagging

To visualize entanglements between different groups of
snowflake yeast, we isolate a single snowflake genotype

from PA2, t600 (strain GOB1413-600), and engineer it to
constitutively express either green- or red-fluorescent
proteins. To do that, we amplify the prTEF-GFP-NATMX
construct from a pFA6a-eGFP plasmid and the prTEF-
dTOMATO-NATMX construct from a pFA6a-tdTomato
plasmid. We then separately replace the URA3 open
reading frame with GFP or dTOMATO constructs in an
isogenic single-strain isolate following the LiAc trans-
formation protocol [43]. We select transformants on nour-
seothricin sulfate (Gold Biotechnology Inc., U.S.) YEPD
plates and confirm green- or red-fluorescent protein activity
of transformed macroscopic clusters by visualizing them
under a Nikon Eclipse Ti inverted microscope.

3. Genetic manipulation of geometry

To manipulate snowflake geometry, gene deletions are
performed using standard polymerase chain reaction-
product-based yeast transformation techniques [44].
Plasmid pYM25 bearing the hphNT1 gene for hygromycin
resistance, pYM42 bearing natNT2 for nourseothricin
resistance, and plasmid pYM27 bearing kanMX4 for
G418 resistance are used as polymerase chain reaction
templates [45] for the deletion of genes using oligonucleo-
tides with 50 base pairs of flanking sequence from around
each reading frame. Each gene is deleted individually
in the Y55 homozygous diploid background previously
used in the Ratcliff laboratory [46] or the multicellular
GOB8 ace2Δ∶KANMX=ace2Δ∶∶KANMX strain created
from the same background. Random budding small
clusters (strain X, genotype ace2Δ∶∶KANMX=ace2Δ∶∶
KANMX, rsr1Δ∶∶natNT2=rsr1Δ∶∶natNT2), quadruple
mutants (strain AJB770, genotype ace2Δ∶∶KANM=
ace2Δ∶∶KANMX, cln3Δ∶∶hphNTI=cln3Δ∶∶hphNTI,
clb2Δ∶∶kanMX4=clb2Δ∶∶kanMX4, gin4Δ∶∶natNT2=
gin4Δ∶∶natNT2), and quintuple mutants (strain AJB799,
genotype ace2Δ∶∶kanMX4=ace2Δ∶∶kanMX4, cln3Δ∶∶
hphNTI=cln3Δ∶∶hphNTI, clb2Δ∶∶kanMX4=clb2Δ∶∶
kanMX4, gin4Δ∶∶hphNTI=gin4Δ∶∶hphNTI, rsr1Δ∶∶
natNT2=rsr1Δ∶∶natNT2) are constructed by repeated
sporulation and mating of these single-deletion strains.

4. Mixed culture preparation

First, two separate tubes of green- and red-fluorescent
yeast are grown overnight. Then, 150 μL is sampled from
each tube. The sample is spun down in a centrifuge, and the
YEPD supernatant is removed via pipetting. 300 μL DI
water is added, and the spin-down-rinse cycle is repeated.
100 μL is immediately transferred to a tube containing
10 mL saline solution; these are the large controls. The
remaining 200 μL is centrifuged, and most water is pipetted
away. The remaining paste is transferred onto a sterilized
glass microscope slide. Another slide is placed on top, and
fingertip pressure and shear are added to break the snow-
flake yeasts into small pieces. The crushed paste is rinsed
with sterile DI water into a microcentrifuge tube. 100 μL is
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transferred each into culture tubes containing YEPD and
saline solution, forming the growing sample and the small
control, respectively. All three culture tubes are then placed
in the shaking incubator overnight. This process is repeated
anew for each shaking speed tested.

APPENDIX B: CONFOCAL MICROSCOPY

To make a population-level measurement of entangle-
ment likelihood, we take population-level images via
confocal microscopy. First, 100 μL is sampled from each
culture tube and vortexed to ensure observation of only
strong entanglements. The sample is then pipetted onto
microscope slides with a shallow, round depression so that
clusters are not crushed by the microscope cover slips. The
population is then imaged using a confocal microscope
(Nikon A1R) at a few different z levels to ensure that any
amount of fluorescence is captured. The z stacks are later
compressed into a maximum intensity projection for each
color channel.

1. Counting red, green, and tangled clusters

Transmission field images are segmented using custom
MatLab scripts. Within each segmented region, color chan-
nels are binarized. We could, therefore, count the number of
pixels considered red, and the number considered green, for
each segmented region. If the fraction of pixels colored
red exceeds a threshold value, the cluster is labeled red.
Simultaneously, if the fraction of pixels colored green
exceeds a threshold value, the cluster is labeled green. If
neither red nor green pixel fractions exceed the threshold
value, then the cluster is labeled as unknown and is
discounted from further analysis. If both red and green
pixel fractions exceed the threshold value, the cluster is
labeled as both red and green and considered entangled. For
each experiment, this threshold value is tuned to maximize
image analysis efficiency. After preliminary image analy-
sis, clusters that are labeled as entangled are visually
checked for accuracy.
To gauge the population-level fraction of all clusters that

are entangled, we count the number of clusters labeled each
type. Out of all clusters imaged from a population N, there
are some labeled entirely red Nr, some labeled entirely
green Ng, and some labeled both red and green Ne, such
that N ¼ Nr þ Ng þ Ne. In the main text, we report the
proportion of clusters that are entangled as Ne=N.
However, based on initial concentrations and growth rates,
it is possible that, for different experiments, the initial
number of red and green clusters in one tube is different. To
account for this difference, the fraction of all entangled
clusters, Ne=N, is normalized by the smaller value of either
Nr=N or Ng=N for each shaking speed, as in ne ¼ Ne=Nr.
Notably, no p values change from nonsignificant to
significant, or vice versa, by using this correction. We
report this calculation in Fig. 6. Note that, since our

measurement method can detect if two separate clusters
become entangled only if they are different clusters, we do
not count any entirely red or entirely green clusters as
being entangled. Therefore, we likely undercount the total
amount of entanglement occurring in the tube.
Because the counting analysis method fundamentally

relies on cluster proximity, it is possible that two separate,
nonentangled clusters, one red and one green, happen to
locate next to one another for imaging, such that the
analysis algorithm counts the pair as entangled even though

FIG. 6. Counts of red-and-green entangled clusters are nor-
malized by the smaller proportion of either total red or total green
clusters in the field of view.

FIG. 7. Mean squared displacement plots for four circumstances
where one branch [yellow, main Fig. 2(a)(iii)] is agitated with
respect to others, with zero interactions, one interacting branch,
two interacting branches, and three interacting branches.

MORPHOLOGICAL ENTANGLEMENT IN LIVING SYSTEMS PHYS. REV. X 14, 011008 (2024)

011008-13



they are not. To measure this experimental imprecision,
we run a control experiment where we do not expect
entanglement to occur. Separated red and green clusters are
pipetted into the same microcentrifuge tube and then
immediately imaged without allowing time for growth.
The measured value for ne for this experiment is 0.033
and is taken as the experimental error for the remaining
experiments.

APPENDIX C: SCANNING ELECTRON
MICROSCOPY

Since yeast cells have thick cell walls that limit the
effectiveness of optical microscopy, we use scanning
electron microscopy to obtain three-dimensional struc-
tural information. We use data from the same experiments
reported in Refs. [23,32]. In those experiments, we use a
Zeiss Sigma VP 3View scanning electron microscope
(SEM) equipped with a Gatan 3View SBF microtome
installed inside a Gemini SEM column to obtain high-
resolution images of the internal structure of snowflake
yeast groups and locate the positions of all cells. All
SEM images are obtained in collaboration with the
University of Illinois’s Materials Research Laboratory
at the Grainger College of Engineering. Snowflake yeast
clusters are grown overnight in YPD media, then fixed,
stained with osmium tetroxide, and embedded in resin in
an Eppendorf tube. A cube of resin 200 μm × 200 μm×
200 μm (with an isotropic distribution of yeast clusters) is
cut out of the resin block for imaging. The top surface of
the cube is scanned by the SEM to acquire an image with
resolution 50 nm per pixel (4000 × 4000 pixels). Then, a
microtome shaves a 50-nm-thick layer from the top of the
specimen, and the new top surface is scanned. This
process is repeated until 4000 images are obtained so
that the data cube has equal resolution in x, y, and z
dimensions.
The resulting voxel representation of the interior of one

cluster is then binarized and segmented using custom
PYTHON scripts. Connected cells are identified using the
nearest-neighbor algorithm. From a particular subvolume
of the data cube, we identify 38 connected components,
which we call branches, that are not connected to one
another except through mechanical tangling events. Surface
data of each branch are obtained by using the surface
mesh tool in Mathematica 12, as previously described in
Ref. [23]. New to this study, the surfaces are imported into
Blender and remeshed using the Blender remesh tool to
lower the total number of data points on the surface. This
allows for faster computation speeds. Then, alpha shapes of
these branches are created. Alpha shapes are a generaliza-
tion of the convex-hull method that allows for nonconvex
shapes. The alpha value can be tuned to allow for more or
less concavity of the shape. But, furthermore, there are fast
algorithms for computing intersections of alpha shapes,
which are desirable here.

APPENDIX D: 3D STRUCTURAL
CONSTRUCTION AND MANIPULATIONS

We choose several individual branches from our list to
perform computational manipulations as described in the
main text. These manipulations involve either translations
or rotations of all points representing the branch, which
are carried out via matrix multiplication schemes. All of
these manipulation algorithms are written as custom
functions in MatLab.
Random rotations and translations are constructed as

follows. Random translation steps are sampled from a
uniform distribution on the domain ½−0.5; 0.5�, for each
coordinate x, y, and z. Then, the resulting vector is
normalized to have length a, where a is the step size
input. Random rotations are created by first choosing a
random axis and then rotating by a chosen angle magnitude
around this axis. The rotation axis is randomly chosen by
selecting a random number from a uniform distribution on
the domain ½−0.5; 0.5� for each coordinate x, y, and z and
then normalized to have unit magnitude.
During our mechanical agitation procedures, overlap-

ping volumes are calculated using MatLab’s built-in alpha
shape capabilities, which allows for fast and accurate
computations.

1. Choosing a threshold for the point of first contact

For drag experiments, we choose a threshold overlapping
volume of 1 cubic micron that marks the “point of first
contact.”We choose this value because it is close to a value
for which the force exerted on each cell is 1=10 the
magnitude of force previously measured to fracture bonds
between snowflake yeast cells [26]. Following a Hertzian
model of an elastic material, the force exerted by over-
lapping two elastic spheres of equal radius r by a distance d
is F ¼ 4=3Y

ffiffiffiffiffiffiffiffiffiffiffiðr=2Þp
d3=2, where Y is Young’s modulus.

The volume of overlap between the two spheres is
V ¼ π=12ð2r − dÞd2. Inputting a force of 0.05 μN, a
Young’s modulus of 1 MPa, and an effective radius of
5 μm, we solve for the appropriate deflection and find an
overlapping volume of 0.05 cubic microns. Multiplied by
20 cells, about the number of cells in the entangled
branches, returns a net overlapping volume value of 1
cubic micron.

2. Measuring bud scar angle distributions

Bud scar angle distributions are measured for two
strains: ancestral, ace2 knockout yeast cells, and ace2
rsr1 genetic mutants. Clusters are cultured overnight in
separate YEPD tubes at 30 °C and 250 rpm shaking speed.
The next day, bud scars (which are rich in chitin) are stained
with calcofluor white. To stain the cells, we take a 500 μL
sample of each tube, then centrifuge them and remove the
supernatant, and resuspend the sample in sterile DI water.
We repeat this process once more but this time do not
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resuspend the pellet. Then, 15 μL of 1 mg=mL calcofluor
stock is diluted in 500 μL 1×phosphate buffer solution.
250 μL of the prepared calcofluor solution is added on top
of the two pellets. After vortexing, we incubate the tubes in
darkness at room temperature for 25 min. The tubes are
centrifuged, the pellets removed, and the cells are resus-
pended in sterile DI water. Then, 30 μL is sampled from
each tube onto separate glass slides and taken for imaging
on a Nikon A1R confocal microscope with a 60× oil
objective. We use a 450 nm wavelength laser to excite the
calcofluor stain and take z stacks of cells to obtain three-
dimensional bud scar information. We examine nine ances-
tral, ace2 cells and 12 ace2 rsr1 mutant cells, each with two
bud scars in addition to their one birth scar. Custom Fiji and
MatLab scripts segment the cells, fit an ellipsoid of revolution
to each, segment the bud scars (which fluoresce very
brightly), and measure their polar orientation with respect
to a birth scar that is always located at the south pole of
the cell. The polar angle measured here is 0° at the north
pole, 90° at the equator, and 180° at the south pole. The
distribution of polar angles is reported in Fig. 8.

3. Measuring group size

To measure group size of each of the four strains of yeast
clusters, groups are grown overnight in YEPD at 30 °C and
250 rpm shaking speed. Then, 500 μL are sampled from
each tube into a fluorodish so that clusters are not broken
into pieces by a glass coverslip. We then image the clusters
on a Zeiss Axio Zoom V16 microscope. Custom scripts
segment the clusters from these images and measure their
cross-sectional area. This area is used to calculate an
effective diameter via d ¼ 2 � ffiffiffiffiffiffiffiffiffi

A=π
p

.

4. Measuring single cell size

To measure the single cell size of ancestral ace2 yeast
cells and randomly budding rsr1 cells, yeast clusters are

imaged on a Nikon widefield inverted microscope with a
40× objective. Ten individual cells are segmented from
these images, and their maximum diameter is measured
using the Fiji length measurement tool. The ancestral
snowflake yeast cells have a mean measured diameter of
7.0ð8Þ μm, and the randomly budding mutant has measured
mean diameter 6.6ð3Þ μm. A two-sample t test returns
t ¼ 1.54, df ¼ 18, and p ¼ 0.14.

APPENDIX E: BRANCHED-TREE SIMULATIONS

1. Growing trees

We create custom simulations for growing, branching,
dendrimerlike objects in three dimensions in MatLab. We call
these objects trees. Each tree is created by starting with six
seed points, which represent the hyphal tip. Each hyphal tip
possesses three properties: a location, an orientation, and
the number of steps that have occurred since it last split.
We continually track the locations and orientations of
each hyphal tip; additionally, we add these locations to a
growing list of tip locations for all previous time points.
Each time point, all hyphal tips walk forward one unit in the
direction they are oriented; their locations are then updated.
A disk of a selected radius is constructed around the hyphal
tip such that the plane of the disk is orthogonal to the tip’s
orientation. An integer number of evenly spread points
within this disk are then added to the list of all locations
previously occupied by the tree.
To start, all seed directions are the six cardinal directions

(−x and þx, −y and þy, and −z and þz). The hyphal tips
then extend until they reach a threshold number of steps
from their starting location. At this point, each hyphal tip
splits into two tips, each occupying the same location but
with different orientations. The angle between the two
orientation vectors is varied between [30, 180]° for our
simulations. The azimuthal orientation is randomly selected
from a uniform distribution on the domain ϕ ¼ ½0; 2πÞ.
After splitting, the algorithm continues to track a (now
larger) list of the hyphal tips. This process continues for a
set number of iterations.

2. Deflection of branches

When branches of the same tree encounter one another,
they do not interact. When branches of one tree encounter a
different tree, they deflect. Collisions are detected by
computing the overlapping volume of the alpha shapes
of the two trees. If there is any overlap, it is identified.
Then, the hyphal tip that penetrates the alpha shape of the
second tree retreats a small amount (0.5 units backward).
It then changes its orientation by randomly selecting an
orientation orthogonal to its last orientation.
We measure the density of example grown trees by

counting the number of voxels contained within the
branches a distance between r and rþ Δr from the center
of mass and dividing that value by the total number of

FIG. 8. Polar angle distribution for ace2 and rsr1 yeast cells.
Left: probability distribution functions for polar angle for ace2
(gray) and ace2 rsr1 (blue). Solid lines are kernel-smoothed
estimates of the density distribution. Right: CDFs of the two
distributions. Solid lines are the empirical CDF; dashed lines are
kernel-smoothed estimates. The two distributions are statistically
different via a t test with t ¼ 2.94, p ¼ 0.005, and df ¼ 40.
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voxels contained within a spherical shell of the same radius
and depth. We report the density maps in Fig. 9. Notably,
the density of all clusters decays from the interior after this
number of branching events.
We also test simulations where branches do not deflect

but instead are terminated (deleted from the hyphal tip list)
and others where branches deflected by 45° instead of 90°.
In both cases, trees that are grown near each other do not
recover their original positions (Fig. 10).

3. Mechanical agitation of branching trees

To mechanically agitate the trees, we could apply global
rotations and translations to all points in the tree list. We
then iteratively agitate via a combination of a translation
of two units in a random direction and a rotation of 2°
around a random axis, check for alpha shape collisions
between two trees, and accept or reject the agitation.
Each agitation is accepted if either (i) it results in a smaller
overlapping volume than in the previous agitation step or

(ii) with a Boltzmann probability p ¼ e−ΔV=T, whereΔV ¼
Vi − Vi−1 is the difference between current and previous
overlapping volumes, with annealing temperature T ¼ 10

units, which is generally restrictive (moves that increase
overlapping volume are rejected 64% of the time). If the
move is accepted, it is stored as the current state of the tree.
If it is rejected, we restore the last known state of the tree
and continue the agitation process.
Agitation experiments generally have two stages. First,

the trees are pushed together until they collide. Then, trees
are agitated as described in the above paragraph for a set
number of iterations. Then, the trees are again pushed
together, and again agitated, etc. The number of thermal
agitation steps is 25 used in the main text; we also test using
100 thermal steps, which we find does not change the
results (Fig. 11). Furthermore, we find diminishing returns
for continued cycles of pushing and jiggling; we decide to
terminate the simulations after 25 cycles based on these
results (Fig. 11).

FIG. 9. Density maps of example clusters after six branching events, showing the density ϕ changing with distance from the center of
the tree r in simulation units.

FIG. 10. Growing and pushing simulations for situations where, instead of deflecting 90° when encountering an existing branch,
hyphal tips either die (left) or deflect by 45° (right). In gray is the distribution of closest center of mass distance when trying to push trees
as close as possible. Blue is the distribution of center of masses after growth. The black line is the result of taking the grown trees and
trying to repush them together.
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4. Controlling for morphological differences
between grown and pushed trees

We next control for morphological differences between
trees that are grown separately and trees that are grown
close to each other. We collect pairs of trees that are grown
at a close separation distance and separate them by a far
distance (2L0). We then use the same pushing agitation
procedure outlined above to push them together. Rather
than achieving their original, close configuration (approx-
imately 50 units) once again, we find that trees achieve an
average minimum distance of 87.5� 8.1 (0.91L0) units.
This value is similar to the average minimum distance
achieved by trees undergoing solely agitation (p ¼ 0.29,
z ¼ −1.06), indicating that the close configuration is truly
inaccessible to agitated trees. In none of the 134 instances
do trees reach the same or closer distance through agitation
than they do through growth.

5. Measuring entanglement for a range
of different growth geometries

To explore the probability of entanglement for growing
hyphal trees of different geometric properties, we grow
trees nearby and then “drag” them apart to measure
collisions. First, we grow one tree in isolation with a
selected value of Λ and θ that defines its geometric
properties as described above, for a length of time B ¼ 4
which means that growth is truncated at four branching
events. The farthest reach of this tree is measured as
rmax ¼ maxðjr − r̄jÞ, where r is a list of the Cartesian
coordinates of the tree volume, r̄ is the center of mass
position of the tree, and j � � � j denotes the vector magnitude.
A random point on the surface of a sphere with radius rmax
is selected to be the initial seed point of a second tree,
which is then grown with the same values of Λ and θ and
for a length of time B which is varied from 3 to 6.

100 cases of each growth time B and geometric property
pair (Λ, θ) are simulated. After growth, the simulations are
checked for entanglement via a drag experiment. First, the
centers of mass (r̄1 and r̄2) are found for both trees. The
vector rpull ¼ r̄2 − r̄1 pointing from tree 1 to tree 2 is
defined as the dragging axis. Then, the second tree is pulled
along that axis away from tree 1 in steps of length 2
simulation units, until they are completely separated. At
each step, the overlap of the two alpha shapes is measured.
Entanglement is defined to occur when there is a peak in
the overlap volume greater than a threshold value of T ¼
π � d3 or the volume of a cylinder with radius d=2 and
height d, where d is the diameter of the branches. This drag
experiment is repeated for all 100 simulations of each
geometric and growth time value, and the proportion of
entangling simulations is measured.

6. Tunneling hyphae

We also use a modified version of the branched-tree
simulations to test predictions of our tunneling model. In
these simulations, hyphae began as one hyphal tip growing
in the positive x direction. Then, hyphal tips would extend
and periodically split, as described above. For the tunneling
simulations, the hyphal tips interact with a porous medium
rather than with another tree. Additionally, the number of
simultaneous hyphal tips is capped at 500 for computa-
tional speed. When the number of tips exceeds 500, some
tips are pruned (deleted from the list) until the number of
tips is below 500.
The porous medium used for these simulations is a

subsampled block of data taken from the SEM experiments
of the snowflake yeast. This subsampled, voxelized block
of data contains yeast cells at a packing fraction of
ϕ ¼ 0.38. The block is truncated at various depths to
obtain different porous medium widths. To obtain different

FIG. 11. Testing the algorithm for pushing or agitating trees as close as possible. Left: center of mass distance vs iteration number for
300 different simulated trajectories, where each iteration cycles (a) 25 random “kicks” combining a random translation and random
rotation and then (b) an external force that pushes the trees together until they collide. The dark line is the mean of the different
simulations. Middle: the same plot where there are 100 random kicks instead of 25 random kicks per iteration. Right: the distribution of
closest center of mass distance across the 300 simulations for both cases.
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volume fractions, the voxelized dataset is eroded or dilated
(using MatLab algorithms for binary image erosion and
dilation) with a cubic kernel. For different sized kernels, we
erode or dilate to different volume fractions, allowing
for densities ranging from 0.004 to 0.711, calculated by
dividing the number of voxels considered “on” by the total
number of voxels within the sample block. These densities
are normalized by the bond percolation critical value for
cubic lattices in three dimensions, pc ¼ 0.7530 [33,34].
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