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The stability of an optical atomic clock is a critical figure of merit for almost all clock applications.
To this end,muchoptical atomic clock researchhas focusedon reducingclock instability by increasing the atom
number, lengthening the coherent interrogation times, and introducing entanglement to push beyond the
standard quantum limit. In this work, we experimentally demonstrate an alternative approach to reducing
clock instability using a phase estimation approach based on individually controlled atomic ensembles in a
strontium (Sr) optical lattice clock. We first demonstrate joint Ramsey interrogation of two spatially resolved
atom ensembles that are out of phase with respect to each other, which we call “quadrature Ramsey
spectroscopy,” resulting in a factor of 1.36(5) reduction in absolute clock instability as measured with
interleaved self-comparisons. We then leverage the rich hyperfine structure of 87Sr to realize independent
coherent control over multiple ensembles with only global laser addressing. Finally, we utilize this
independent control over four atom ensembles to implement a form of phase estimation, achieving a factor
of greater than 3 enhancement in coherent interrogation time and a factor of 2.08(6) reduction in instability
over an otherwise identical single-ensemble clock with the same local oscillator and the same number of
atoms. We expect that multiensemble protocols similar to those demonstrated here will result in reduction
in the instability of any optical lattice clock with an interrogation time limited by the local oscillator.
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I. INTRODUCTION

Thanks to their remarkable precision and accuracy, optical
atomic clocks are rapidly advancing the frontiers of time-
keeping, quantum science, and fundamental physics [1].
State-of-the-art optical clocks have now reached the level of
10−18 in both stability and accuracy [2–6], enabling novel
emerging applications such as relativistic geodesy, searches
for ultralight dark matter, and gravitational-wave detection
[7–16]. Instability is a critical figure of merit for optical
atomic clocks, determining the sensitivity of clock compar-
isons to target signals in fundamental physics applications
and the achievable precision in applications to timekeeping,
metrology, and navigation [1,13]. The fundamental limit to
the instability of an optical clock with unentangled atoms is
given by the quantum projection noise (QPN),

σQPNðτÞ ¼
1

2πνCT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ Td

Nτ

r
; ð1Þ

where ν is the clock transition frequency, C is the contrast, T
is the coherent interrogation time, Td is the dead time, τ is
the averaging time, and N is the number of atoms being
interrogated.
Equation (1) implies that the clock instability can be

reduced through longer coherent interrogation times.
However, in optical clocks both conventional Ramsey
and Rabi spectroscopy are limited by frequency noise of
the local oscillator (LO), or clock laser, used to interrogate
the atoms. In the case of Ramsey spectroscopy, the inter-
rogation time is limited by the requirement that the phase
accumulated by the atoms in the rotating frame must
remain within ½−π=2; π=2� in order to avoid phase slips.
In addition, for atomic clock operations with duty cycles
less than one, noise on the LO during the dead time leads to
Dick noise, an aliased noise at harmonic frequencies of
1=Tc (Tc ¼ T þ Td corresponds to the cycle time) that
compromises the clock instability [17,18]. In particular, the
Dick-limited clock instability for Ramsey spectroscopy can
be approximated as (see Appendix F for details)

σDickðτÞ ¼
σLOffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
X∞
m¼1

���� sinðπmT=TcÞ
πmT=Tc

����
ffiffiffiffiffiffi
Tc

mτ

r
; ð2Þ

where σLO is the flicker frequency noise-floor-limited
instability of the LO. From Eq. (2), we can see that for
an atomic clock limited by Dick noise, the instability no
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longer scales with atom number, but can still be reduced
by increasing the interrogation time. These factors have
motivated considerable efforts into the development of
optical LOs with longer coherence times [19–23], the
use of synchronous differential comparisons to push
the interrogation time beyond the coherence time of the
LO [24–27], the use of multiple separate optical atomic
clocks to actively perform feedback or feed forward on the
LO [28], as well as the use of entangled atomic states
to push beyond the QPN limit for the same LO coherence
time [29–31], although the latter case will be useful only in
scenarios where the clock is QPN limited.
A proposed alternative and complementary path to

reducing the instability of optical atomic clocks is to more
efficiently allocate the available atomic resources. For
example, in Ref. [32], Rosenband and Leibrandt argued
that if the atoms in a clock are split up into multiple
ensembles and probed with different interrogation times in
parallel, the clock instability can be reduced exponentially
with atom number rather than with 1=

ffiffiffiffi
N

p
as in Eq. (1) for

uniform interrogation. Related work on efficient atomic
clock operations with several atomic ensembles was also
proposed by Borregaard and Sørensen [33]. Similarly, in a
recent theoretical work [34], Li et al. argued that through
joint interrogation of two atom ensembles that are 90° out
of phase, it should be feasible to extend the interpretable
phases accumulated by the atoms from ½−π=2; π=2� to
½−π; π�, thereby doubling the achievable Ramsey inter-
rogation time for a given LO and reducing the correspond-
ing clock instability.
There have been several prior and recent works on

combining separate optical atomic clocks to realize a single
compound clock with reduced instability and longer
coherent interrogation times [25,28,35,36]. For example,
in Dörscher et al. [35], dynamical decoupling sequences
were used along with near synchronous interrogation of
two separate optical atomic clocks in order to overcome the
laser coherence limit, extending the coherent interrogation
time by a factor of approximately 6.5. Bowden et al. [36]
performed QND measurements of one ensemble using
an optical cavity to extend the interrogation time of a
second ensemble in a separate apparatus by a factor of 7.
A simplified three-ensemble version of the Rosenband and
Leibrandt scheme was also recently demonstrated by Kim
et al. [28] using two separate interleaved Yb optical lattice
clocks to realize zero-dead-time operation and feed forward
on the interrogation of an additional Alþ single-ion clock,
achieving lifetime limited interrogation times. Related
techniques have also been implemented in atom interfer-
ometers to increase their dynamic range [37]. However,
the use of multiple independent optical clock apparatus,
including vacuum chambers, atom sources, and associated
optics, is extremely resource intensive and is not easily
scaled to larger numbers of ensembles, and any compound
clock would still benefit from reductions in the instability

of the constituent clocks, motivating work into realizing
similar gains within individual optical clocks through the
use of multiple atomic ensembles.
In this work, we demonstrate a multiensemble strontium

optical lattice clock that takes advantage of up to four
spatially resolved atom ensembles within a single vacuum
chamber and the same optical lattice to increase the
coherent interrogation time and reduce the absolute clock
instability. We first experimentally demonstrate joint inter-
rogation on two out-of-phase atom ensembles [34], which
we call “quadrature Ramsey spectroscopy,” which enables
the measurement of phase shifts of up to ½−π; π�, and
reduces the clock instability by a factor of 1.36(5), as
measured in a self-comparison. We then demonstrate a
novel approach which leverages the rich hyperfine structure
of 87Sr (I ¼ 9=2) to enable independent coherent control of
four atom ensembles in order to implement a simple form
of a phase estimation algorithm [38–40]. We prepare four
atom ensembles in pairs of two distinct nuclear spin states
(j1S0; mF ¼ 5=2i and j3P0; mF ¼ 3=2i, where mF is the
hyperfine sublevel) and demonstrate independent coherent
control of each ensemble pair on two different clock
transitions through frequency multiplexing. Combining
the four-ensemble scheme and the quadrature Ramsey
technique, we further improve the interrogation time by
a factor of roughly 1.7, achieving a factor of 2 reduction in
instability over a single-ensemble clock with the same atom
number, duty cycle, and LO.
We note that our multiensemble protocols will intro-

duce additional systematic frequency shifts that will
require additional characterization. However, none of
these shifts are new or unique to optical lattice clocks,
and we do not expect any of them to fundamentally limit
accuracy above the 10−18 level (see Appendix J for
details). These additional systematics will likely preclude
the near-term adoption of multiensemble protocols in the
most accurate state-of-the-art laboratory-based clocks. We
instead anticipate that multiensemble protocols such as
the ones we demonstrate here will first be adopted in
applications involving transportable clocks, where stabil-
ity is a more critical figure of merit and where record
setting accuracy is already impractical.

II. EXPERIMENTAL APPARATUS AND
QUADRATURE RAMSEY SPECTROSCOPY

The experimental apparatus used here is similar to the
multiplexed strontium optical lattice clock presented in
prior works [27,41]. A movable, one-dimensional optical
lattice is loaded with multiple atom ensembles, for exam-
ple, two atom ensembles at a 1-cm separation along the
lattice axis (ẑ) as shown in Fig. 1(a), followed by nuclear
spin polarization through optical pumping and in-lattice
cooling. A bias magnetic field applied along x̂ defines the
quantization axis, with a typical magnitude of 5.5 G.
A tunable magnetic field gradient along ẑ [ΔBðzÞ] ranging
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from 0 to 45 mG=cm is applied to introduce a differential
frequency shift dominated by the first-order Zeeman shift,
and thus a differential phase shift for a Ramsey sequence of
duration T of Δϕ ≈ γΔBðzÞT, where γ is the differential
gyromagnetic ratio for the addressed clock transition
between the two ensembles. To take full advantage of
the magnetic field gradient, we probe on the magnetically
sensitive j3P0; mF ¼ 7=2i → j1S0; mF ¼ 5=2i (noted as
je; 7=2i → jg; 5=2i) transition, which has a magnetic field
sensitivity of roughly 564 Hz/G. Synchronous differential
Ramsey spectroscopy is performed to characterize the
differential phase Δϕ [27], and the magnetic field gradient
is fine-tuned so that Δϕ ¼ π=2, where the Ramsey fringes
for the two ensembles are 90° out of phase as shown in
Fig. 1(b) in order to realize quadrature Ramsey spectros-
copy (Appendix B). A typical parametric plot taken
at a short free-evolution time (T ¼ 7.5 ms) is shown in
Fig. 1(c), where synchronous Ramsey spectroscopy is
performed by randomly sampling the phase of the final
global π=2 pulse, and each labeled quadrature corresponds
to the matching region in Fig. 1(b) (see Appendix C for
details). The differential phase has a typical long-term
differential instability below 10−19 as demonstrated in
prior work [27].
A standard Ramsey spectroscopy sequence begins with a

π=2 pulse that prepares the atoms in a 50∶50 superposition
of jgi and jei. The atoms then evolve freely for time T and
accumulate a phase θ, jgi þ eiθjei, in which θ ¼ 2πTΔf
and Δf is the detuning of the clock laser from atomic
resonance. A final π=2 pulse converts θ into a population
difference and generates the error signal for clock feedback
[Fig. 2(a)]. However, phases beyond ½−π=2; π=2� result in

population differences that are no longer unique, producing
an erroneous error signal. The interrogation times for
conventional Ramsey spectroscopy are therefore typically
constrained to well below the LO coherence time in order to
avoid a failure in the feedback servo due to phase slips [42],
an example of which is shown in the inset to Fig. 2(b).
Clock operation with Ramsey spectroscopy is performed

on the 1S0 → 3P0 clock transition. Because we lack a
second independent optical lattice clock to perform
direct comparisons against, we instead perform a self-
comparison, where two independent atomic servos using
the same experimental sequences are interleaved and
compared in order to determine the clock instability (prior
examples can be found in Refs. [43–45]). Separate digital
servos correct the clock laser frequency independently for
each interleaved sequence and generate a difference fre-
quency signal which is then used to extract the Allan
deviation and corresponding instability. Ramsey spectros-
copy on the je; 7=2i → jg; 5=2i transition is performed
simultaneously on two spatially resolved atom ensembles,
each containing roughly 4000 atoms. The interrogation
time in our system is primarily limited by frequency noise
of the LO, which limits our measured atom-laser coherence
time to roughly 100 ms [27]. The typical dead time per
cycle in our system is about 1.5 s, which is primarily
limited by atom preparation (roughly 1 s), and camera
readout (roughly 250 ms), so there is a total of roughly 3 s
of dead time for each clock in the self-comparison. The
process of loading multiple ensembles contributes only
roughly 100 ms of extra dead time (see Appendix D for
details) and is not a limiting factor for the duty cycle in
our apparatus.

∆f1
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FIG. 1. Quadrature Ramsey spectroscopy with a multiensemble clock. (a) Two ensembles of strontium atoms separated by 1 cm are
prepared using a movable optical lattice. A magnetic field gradient ΔBðzÞ is applied to introduce a differential phase shift (Δϕ) of π=2
between the two ensembles for a given Ramsey interrogation time T. (b) Theory curves showing the expected Ramsey fringes for the
two atom ensembles with a differential phase of π=2 [34]. The four regions (I, II, III, and IV) correspond to quadratures for decoding the
clock laser detuning. (c) Parametric plot of the measured excitation fractions from the two ensembles (P1, P2) for a π=2 phase difference
at a short Ramsey free-evolution time (T ¼ 7.5 ms) for the full randomly sampled range of detunings corresponding to
Δfi ∈ ½−1=2T; 1=2T�, with the light blue curve a fit to the expected ellipse. Each labeled quadrature corresponds to the matching
region in Fig. 1(b) (see Appendix C).
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In order to perform a fair comparison between the
quadrature Ramsey scheme and standard Ramsey spec-
troscopy using the same total atom number and exper-
imental sequence, the magnetic field gradient ΔBðzÞ is
tuned such that the differential phase between the
two ensembles is either Δϕ ¼ 0 (standard Ramsey) or
Δϕ ¼ π=2 (quadrature Ramsey) [Fig. 2(a)]. In the case of
Δϕ ¼ 0, the measurements from the two ensembles are
simply averaged together, and standard clock operation
using Ramsey spectroscopy is performed, with the mea-
sured phase given by

θ ¼ sin−1½2ðP − P0Þ=C�; ð3Þ

where P ¼ ðP1 þ P2Þ=2 is the average of the excitation
fractions from both clocks, and P0 ≈ 0.5 and C ≈ 0.95 are
the measured half maximum and contrast of the Ramsey
fringe, respectively. In this case, the two ensembles are
equivalent to a single-ensemble clock with 2N total atoms.
In the case of Δϕ ¼ π=2, quadrature Ramsey spectroscopy
is employed, with the excitation fractions (P1, P2) used as
inputs for the phase decoder RðP1; P2Þ, which determines
the quadrature of the acquired phase according to [34]

θ ¼RðP1;P2Þ

¼

8>>>>><
>>>>>:

ð−π − θ1 − θ2Þ=2 if P1 < P0;P2 < P0 ðIÞ
ðθ1 − θ2Þ=2 if P1 ≤ P0;P2 ≥ P0 ðIIÞ
ðθ1 þ θ2Þ=2 if P1 ≥ P0;P2 ≥ P0 ðIIIÞ
ðπ − θ1 þ θ2Þ=2 if P1 > P0;P2 < P0 ðIVÞ

ð4Þ

in which θ1¼ sin−1½2ðP1−P0Þ=C�, θ2¼ cos−1½2ðP2−P0Þ=
C�. We perform a series of self-comparisons for both
Δϕ ¼ 0 and π=2 cases by varying the interrogation time
T with each measurement averaging down for roughly
an hour. Each self-comparison yields Allan deviations
which are linearly fit assuming only white frequency noise
(that averages down as τ−1=2), which is on the order of
1 × 10−14=

ffiffiffi
τ

p
level and is dominated here by the Dick

noise from the LO. The extracted Allan deviations are
plotted as a function of T in Fig. 2(b). In the case of
Δϕ ¼ 0, we find that phase slips begin to occur somewhere
between the measurements at T ¼ 20 and T ¼ 30 ms
indicated by the cutoff of the shaded region in Fig. 2(b),
which we conservatively place near T ¼ 30 ms. This is
consistent with Monte Carlo simulations of the phase-slip
probabilities based on the measured LO noise spectrum
(Appendix H). Phase slips lead to the sudden accumulation
of frequency differences between the two servos at multi-
ples of the Ramsey fringe linewidth in Fig. 2(b). As a result,
outside the shaded region in Fig. 2(b) the self-comparison
no longer averages down and no meaningful Allan
deviation can be defined. In the case of quadrature
Ramsey spectroscopy with Δϕ ¼ π=2, we are able to
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ReadoutInitialize
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T, θ + 
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Phase decoder
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Clock 1

Clock 2

θ = (P1, P2)
P1

P2

∆f = θ/2πT
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FIG. 2. Increasing the interrogation time and reducing clock
instability with quadrature Ramsey spectroscopy. (a) Schematic of
clock operation using Ramsey spectroscopy with two atom ensem-
bles. Thedifferential phaseΔϕ is tuned to either 0 orπ=2 to compare
the clock performance between standard Ramsey spectroscopy and
quadrature Ramsey spectroscopy. The clock laser detuning (Δf) is
decoded using the excitation fractions from both clocks and is then
fed back to the LO. (b) Instability as a function of the Ramsey free-
evolution time (T) for both standard Ramsey (SR) with Δϕ ¼ 0
(red) and quadrature Ramsey (QR) with Δϕ ¼ π=2 (blue). Each
point corresponds to the extracted Allan deviation of the self-
comparison at 1 s obtained through linear fit as shown in panel (c).
Error bars represent 1σ standard deviation. The shaded region
represents a conservative estimate of the regionwhere phase slips do
not occur for SR with experiments taken over an hour for at least
2000 runs. Dashed line is a fit to the data based on Dick-noise-
limited instability after accounting for finite pulse length, assuming
the LO noise is dominated by flicker frequency noise (see
Appendix F). Inset: a representative plot of the measured frequency
difference between the two interleaved servos with an interrogation
time of T ¼ 40 ms for both SR (red) and QR (blue). A phase slip
occurs for SR, leading to a frequency offset of 1=T (dashed line).
(c) Lowest measured Allan deviations for clock self-comparisons
for SR at T ¼ 20 ms (red) and QR at T ¼ 40 ms (blue). The Allan
deviation for SR at T ¼ 40 ms (black), where a phase slip occurred
as shown in the inset of (b), is shown for reference. Error bars
indicate 1σ standard deviation. The line corresponds to a fit
assuming only white frequency noise (1=

ffiffiffi
τ

p
scaling). Because of

the finite attack time of the servos, we fit only to data after 40 s. Each
measurement averages for approximately one hour.
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extend the interrogation time to T ¼ 50 ms before we begin
to observe phase slips in the self-comparison. The optimal
clock performance for quadrature Ramsey spectroscopy in
our apparatus is achieved at T ¼ 40 ms with an instability
of 9.5ð3Þ × 10−15=

ffiffiffi
τ

p
, a factor of 1.36(5) smaller than the

instability measured at T ¼ 20 ms with conventional
Ramsey interrogation [Fig. 2(c)].

III. HYPERFINE STATE INITIALIZATION
AND INDIVIDUAL COHERENT CONTROL

OVER ENSEMBLE PAIRS THROUGH
GLOBAL ADDRESSING

While quadrature Ramsey spectroscopy with two ensem-
bles enables a doubling of the coherent interrogation time,
it cannot be naively extended beyond this by adding more
ensembles because Ramsey fringes are inherently 2π
periodic. In order to take advantage of additional ensembles
and further extend the coherent interrogation time, different
interrogation times are required for different samples,
as proposed in Refs. [32,33], which constitute a form of
a phase estimation algorithm [38–40]. Potential approaches
would be to address different spatially resolved ensembles
in multiple optical lattices with different focused clock
beams, or even to have different ensembles in different
vacuum chambers. However, both approaches are chal-
lenging and would suffer from added differential phase
[46,47] and intensity noise on the clock beams, as well as
additional frequency shifts due to the differing environ-
ments of each ensemble. It is therefore desirable to have all
of the atomic ensembles share the same lattice, vacuum
chamber, and clock beam. Fortunately, the magnetic field
gradient that enables quadrature Ramsey spectroscopy
can be combined with the rich hyperfine level structure
of 87Sr (I ¼ 9=2) to achieve independent clock interrog-
ation with multiple ensembles using only global addressing
of all the ensembles with a single clock beam.
The basic principle and relevant pulse sequence is shown

in Fig. 3(a). Similar to the two-ensemble case, we start
with a sample of four evenly spaced atom ensembles, each
containing roughly 2000 atoms, in the stretched state
jg; 9=2i. We first transfer the population into je; 7=2i with
a clock π pulse (i), then create a 50∶50 superposition
between je; 7=2i and jg; 5=2i using a clock π=2 pulse (ii).
We then transfer half of the population into je; 3=2i (iii),
and let the sample evolve for Tp, such that each ensemble
accumulates phase shifts of 0, π, 2π, and 3π, respectively,
due to the applied linear magnetic field gradient (at about
45 mG=cm). We then transfer the populations back to
jg; 5=2i (iv), and convert the accumulated phases into
population in either the jg; 5=2i and je; 3=2i states with
a final clock π=2 pulse (v). Ensembles 1 and 3 are left
in jg; 5=2i, while ensembles 2 and 4 are left in je; 3=2i
[Fig. 3(a)]. This state preparation sequence typically
takes about 250 ms yielding an overall state preparation
fidelity of about 90% limited by the clock π-pulse fidelity

(> 95% per pulse). Cleanup pulses are then applied to
remove unwanted residual populations in each of the
ensemble pairs.
To demonstrate that the ensembles are now in two

independently addressable pairs, Rabi spectroscopy is
performed by scanning the frequency of the global clock
laser applied to the four atom ensembles [Fig. 3(b)]. The
π-pulse duration is roughly 3 ms, whose power broadens
the linewidth to roughly 300 Hz. The transitions remain
resolved under a magnetic field of 5.5 G. Relevant
transitions for the subsequent clock interrogations are the
je; 7=2i → jg; 5=2i (noted as 7=2-5=2) and je; 3=2i →
jg; 1=2i (3=2-1=2) transitions, while both ensemble pairs
share the transition jg; 5=2i → je; 3=2i (5=2-3=2). The
detuning from the magnetic field insensitive 5=2-3=2
transition (−22.4 Hz=G) roughly indicates the ratio of
the magnetic sensitivities between the two clock transitions
of interest. In particular, the 7=2-5=2 transition is roughly a
factor of 1.7× more magnetically sensitive than the
3=2-1=2 transition. To characterize the crosstalk between
the two clock transitions, independent Rabi oscillations are
performed on the 7=2-5=2 (3=2-1=2) transition for en-
semble pairs 1 and 3 (2 and 4), as shown in Fig. 3(c). A fit
to the oscillations bounds the crosstalk between the two
hyperfine clock transitions to below 3%.

IV. PHASE ESTIMATION WITH FOUR
ATOMIC ENSEMBLES

Having achieved independent control with global
addressing through a combination of spatial and frequency
multiplexing, we proceed to demonstrate a combination of
quadrature Ramsey spectroscopy [34] with a simple phase
estimation algorithm [32,33] using four atomic ensembles.
This approach allows us to extend the coherent inter-
rogation time by a factor of 1.7 over quadrature Ramsey
with only two ensembles, and thereby further reduce the
clock instability (see Appendix G 1).
We interrogate a first ensemble pair to keep track of

the laser phase evolution within the range of ½−π; π� during
TA using quadrature Ramsey, while simultaneously inter-
rogating a second pair of ensembles on a different
hyperfine clock transition with quadrature Ramsey for
TBðTB > TAÞ. At the end of the measurement, we perform
global readout on all four ensembles and then use a simple
phase estimation algorithm to unwrap the phase accumu-
lated by the second pair during TB. As a result, we are able
to unambiguously measure the phase accumulated for
longer coherent interrogation times that would otherwise
lead to phase slips due to the modulo 2π ambiguity of
Ramsey fringes.
The basic principle is shown in Fig. 4(a), in which we

first apply a global π=2 pulse on the 3=2-1=2 transition for
ensemble pair (2, 4), and subsequently apply another global
π=2 pulse on the 7=2-5=2 transition for (1, 3). The delay
between the asynchronous pulses for (1, 3) and (2, 4) is a
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few ms, limited by the rise and fall times of the clock
pulses. As the two transitions are spectrally resolved, each
pulse impacts only the targeted pair, aside from a negligibly
small probe shift (see Appendix J 2).
We let ensembles (1, 3) freely evolve for time TA, with

the magnetic field gradient ΔBðzÞ tuned such that the
differential phase shift between ensembles (1, 3) is π=2, and
a second global π=2 pulse is applied to the 7=2-5=2

transition, and the phase accumulated by the ensembles
(1, 3) is stored in the populations of the clock states and is
shelved there temporarily. After a total free precession time
of TB, we apply the second π=2 pulse on the 3=2-1=2
transition for ensembles (2, 4). The free precession time TB
is chosen such that the differential phase of ensembles (2, 4)
is again π=2, with TB ¼ 1.7 × TA due to the difference in
magnetic moment for the two clock transitions, resulting in

(a)

(b) (c)

Clock
Clock

FIG. 3. Independent control over multiple atomic ensembles with only global addressing. (a) Left: the lattice is loaded with four evenly
spaced atomic ensembles with 0.33-cm nearest-neighbor separation, and a linear magnetic field. Right: relevant energy levels and the
pulse sequence used to prepare the ensembles in different hyperfine states. All four ensembles are initially prepared in the stretched
hyperfine ground state j1S0; mF ¼ 9=2i or jg; 9=2i. A first π pulse (i) transfers the population into j3P0; mF ¼ 7=2i (or je; 7=2i),
followed by a π=2 pulse (ii) on the je; 7=2i → jg; 5=2i transition that prepares a 50∶50 superposition. A second π pulse (iii) prepares a
superposition of two nuclear spins (je; 3=2i and je; 7=2i). During the free-evolution time Tp, an applied field gradient (about 45 G=cm)
introduces a phase shift of 0, π, 2π, and 3π for each atom ensemble, respectively. Final π pulse (iv) and π=2 pulse (v) prepare the
ensembles into opposite states, with ensembles (1, 3) on jg; 5=2i and ensembles (2, 4) on je; 3=2i. (b) Global Rabi spectroscopy of the
four atom ensembles after state preparation at a bias magnetic field of about 5.5 G. (c) Independent coherent Rabi oscillations for
ensembles (1, 3) (orange, red) on the jg; 5=2i → je; 7=2i transition and for ensembles (2, 4) (blue, light blue) on the je; 3=2i → jg; 1=2i
transition, respectively. Each plot represents the average of four independent scans, with each data point indicating the mean. Error bars
correspond to 1σ standard deviation. The solid curves correspond to fits to the expected sinusoidal Rabi oscillations and are used to
bound the crosstalk between the two hyperfine clock transitions.
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two quadrature Ramsey measurements with interrogation
times TA and TB ¼ 1.7 × TA.
The populations of all four ensembles are then simulta-

neously read out using global imaging pulses, where the
excitation fractions are used as inputs to the phase

estimator. In particular, we obtain two phases from the
two quadrature Ramsey measurements: θA ¼ RðP1; P3Þ
and θB ¼ RðP2; P4Þ. We constrain θA within ½−π; π�, and
we have θA ¼ 2πΔfTA, in which Δf is the LO detuning.
The actual accumulated phase shift θact;B during TB can fall

(b) (c)
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FIG. 4. Phase estimation using four atom ensembles with independent control through frequency multiplexing. (a) Basic principle and
pulse sequence for clock operation using phase estimation with four ensembles [32–34]. We interrogate on the je; 7=2i → jg; 5=2i
transition for clock pair (1, 3) for a free-evolution time of TA, during which the magnetic field gradient is chosen such that the phase
difference between ensembles 1 and 3 is π=2. Asynchronously, we interrogate on the je; 3=2i → jg; 1=2i transition for TB ¼ 1.7 × TA,
which is chosen such that the phase difference between ensembles 2 and 4 is also π=2 due to the difference in magnetic sensitivities for
the two transitions. An estimator extracts the LO detuning using information from all four clocks, which is then used to feed back on the
LO. (b) Comparison of inferred phase shifts using various decoders for a long interrogation time. The data are taken at ðTA; TBÞ ¼
ð50; 85Þ ms in a single four-ensemble experiment for 1000 measurement cycles. The inferred phase shifts are postprocessed and
extracted using various decoders. Top: inferred with standard Ramsey decoder using only ensemble 2. Middle: inferred with quadrature
Ramsey decoder using ensembles 2 and 4. Bottom: inferred with quadrature Ramsey with phase estimation decoder using all four
ensembles. The dashed lines indicate the ½−π=2; π=2� and ½−π; π� regions. The numbers above the histograms represent the summed
occurrences within each region. The y axes are shown in log scale for clarity. (c) Achievable interrogation time T and clock instability by
probing using two ensembles with Δϕ ¼ 0 (standard Ramsey, SR), two ensembles with Δϕ ¼ π=2 (quadrature Ramsey, QR), and four
ensembles with Δϕ ¼ π=2 [quadrature Ramsey with phase estimation as shown in panel (a), QR and PE]. Each point corresponds to the
extracted Allan deviation of the self-comparison at 1 s obtained through linear fit. Error bars represent 1σ standard deviation. In the case
of QR and PE, the interrogation time T refers to TB. The shaded regions represent conservative bounds on where phase slips do not occur
for each case with experiments taken over an hour for at least 2000 runs. The dashed line is a fit to the data based on Dick-noise-limited
instability after accounting for finite pulse length, assuming the LO noise is dominated by flicker frequency noise (see Appendix F).
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outside the range of ½−π; π�. Consequently, it cannot be
handled by the two-ensemble quadrature Ramsey decoder
alone [Eq. (4)] due to the 2π ambiguity. To unambiguously
determine θact;B, we employ a phase estimation algorithm
that uses the measurement of θA to remove the 2π
ambiguity in θB. This estimator is valid in the limit that
the LO noise is dominated by low-frequency noise and for a
low clock duty cycle (see Appendix E 2 for details). We
then feedback on the LO according to Δf ¼ θact;B=ð2πTBÞ.
The use of two quadrature Ramsey sequences with

different interrogation times allows us to perform phase
estimation and discriminate accumulated phases during TB
for ensembles (2, 4) beyond ½−π; π�. A representative plot
from 1000 measurement cycles of the inferred phase
shifts from the longest interrogation times (TA ¼ 50 ms,
TB ¼ 85 ms) without measured phase slips in the self-
comparison using the four-ensemble approach is shown in
Fig. 4(b). We note that the inferred phase shifts are
postprocessed using different decoders applied to the same
1000 measurements. The distributions of inferred phases
acquired by ensemble 2 using information from only a
single ensemble (ensemble 2) with a standard Ramsey
decoder (top, red), two ensembles (ensembles 2 and 4)
using a quadrature Ramsey decoder (middle, yellow), and
all four ensembles (ensembles 1, 2, 3, and 4) using the full
phase estimation decoder (bottom, blue) are compared.
Instances of 199 inferred phases beyond ½−π=2; π=2� in the
case of two ensembles, and eight inferred phases beyond
½−π; π� in the case of four ensembles can be observed,
respectively, which would otherwise result in correspond-
ing phase slips for the single-ensemble or two-ensemble
decoders for this interrogation time.
As shown in Fig. 4(c), the clock self-comparison Allan

deviation at 1 s from all three approaches (standard
Ramsey, quadrature Ramsey with two ensembles, and
quadrature Ramsey combined with phase estimation with
four ensembles) are compared using identical experimental
sequences and atom numbers, with the only differences
being the applied field gradients and how the accumulated
phases are extracted by the estimator. We are able to extend
the coherent interrogation time TB out to 85 ms (with
TA ¼ 50 ms) without observing phase slips, and achieve a
factor of 1.2(1) reduction in instability when comparing the
four-ensemble phase estimation scheme to the two-ensem-
ble quadrature Ramsey scheme, and a factor of 2.08(6)
reduction with respect to standard Ramsey. We note that the
instabilities are slightly degraded over those shown in
Fig. 2(b) for the same interrogation times, which we
attribute to the added time required for the hyperfine state
preparation (250 ms), which contributes a total additional
dead time of 500 ms in the self-comparisons.

V. DISCUSSION AND OUTLOOK

We note that all the instabilities and Allan deviations
quoted in this work are the instabilities extracted from the

self-comparisons, and that the actual single clock insta-
bilities are expected to be at least a factor of 2 lower due to
the product of the factor of

ffiffiffi
2

p
from comparing two clocks

and the factor of
ffiffiffi
2

p
from the doubling in cycle time

for each clock due to the interleaved nature of the self-
comparison. While the instabilities demonstrated here are
not competitive with the state-of-the-art optical lattice
clocks to date [3,4,6,11,14], this is primarily due to the
relatively short coherence time of our LO (100 ms), which
is compounded by the need for a self-comparison as we do
not have another independent clock to compare with,
resulting in very low duty cycles (<2%). These factors
are not fundamental, and we anticipate that our multiple-
ensemble techniques can be extended to other existing
state-of-the-art Sr optical lattice clocks [6,11,14] in a
straightforward fashion and that similar reductions in clock
instability would be expected.
For example, with state-of-the-art optical cavities that

enabled atom-laser coherence time on the order of 600 ms
and duty cycle over 50% [19–23], a factor of 2 improve-
ment in the coherence time using quadrature Ramsey
spectroscopy with two ensembles should be fairly straight-
forward to implement (Appendix I), offering roughly a
factor of

ffiffiffi
2

p
reduction in instability. However, given the

resulting higher duty cycle (>50%), more of the frequency
drift of the local oscillator will take place during the
Ramsey interrogation time rather than during the dead
time, so the four-ensemble phase estimation scheme
employed here would likely be insufficient. We anticipate
that six ensembles split into three quadrature Ramsey pairs,
with one pair interrogated for 2T in parallel to two pairs
each interrogated back to back for T would be sufficient to
achieve a comparable enhancement of roughly a factor
of 4 in coherent interrogation time and a factor of 2
reduction in instability. However, this would require the
use of an additional hyperfine clock transition or an
alternative mechanism for achieving independent control
over three ensemble pairs.
It is also natural to consider scaling up to many more

atomic ensembles, which would eventually require an
alternative approach to achieving independent control that
does not require a unique clock transition for each pair of
ensembles. This approach could be achieved in optical
lattice clocks through the introduction of larger magnetic
field gradients to spectroscopically resolve each ensemble
on the same clock transition [48], or targeted light shifting
beams to bring individual ensembles in and out of
resonance with the global clock beam [49,50]. The
resulting scaling of clock instability with the number of
ensembles M will depend on the noise spectrum of the
LO, the number of atoms available, and the clock duty
cycle, but both the coherent interrogation time and clock
instability can be expected to continue to improve with the
addition of more ensembles as long as the coherent
interrogation time is limited by the LO.
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While we leave the determination of the optimal algo-
rithm and number of ensembles for a given optical atomic
clock for future work, a naive extension of the six-ensemble
algorithm discussed in the previous paragraph can be
expected to provide a scaling of the instability with
1=

ffiffiffiffiffi
M

p
for large M, so long as the clock remains Dick-

noise limited. If combined with nondestructive midcircuit
measurement [51–55], the use of multiple independently
controlled atom ensembles could ultimately offer expo-
nential reductions in clock instability with atom and
ensemble number using the scheme put forward by
Rosenband and Leibrandt [32]. Furthermore, we note that
similar multiensemble phase estimation algorithms have
been proposed to achieve Heisenber-limited clock perfor-
mance using maximally entangled atomic Greenberger-
Horne-Zeilinger states [38], hybrid coherent and squeezed
states [39], and Gaussian spin-squeezed states [40].
Although the multiple-ensemble protocols demonstrated

in this work improve the Ramsey interrogation time and
reduce the clock instability, they do come with some trade-
offs. First, in this work we incur an additional 100 ms of
dead time due to multiple-ensemble preparation, although
this could likely be further optimized and reduced. Second,
our approach introduces additional systematic shifts that
could impact the achievable clock accuracy. Examples of
potential effects include Zeeman shifts arising from the
magnetic field gradient applied to generate the π=2 differ-
ential phase shift for quadrature Ramsey spectroscopy, probe
shifts from the off-resonant clock pulses in the four-ensem-
ble phase estimation approach, and the servo error associated
with the differential phase shift in the quadrature Ramsey
decoder. Estimates of the magnitude of the associated
systematic shifts and potential mitigation strategies are
discussed in Appendix J. While a full systematic evaluation
with multiensemble protocols is beyond the scope of this
work, we estimate that the effects on achievable accuracy
will be manageable at the 10−18 level. The added systematic
effects therefore likely preclude the near-term adoption of
these techniques in optical clocks that are pushing the
ultimate limits of accuracy, such as for the redefinition of
the SI second. Instead, we expect that multiensemble
techniques will initially prove most useful in situations
where improved stability is beneficial and ultrahigh accuracy
is already either not critical or not possible, for example,
applications involving portable clocks such as positioning,
navigation, and communication [1,56–58].
Finally,we note thatwhile thiswork focuses exclusively on

protocols for extending the coherent interrogation times for
Ramsey spectroscopy, many state-of-the-art optical clocks
instead employ Rabi spectroscopy, and there are significant
trade-offs between the two approaches. To the best of our
knowledge, prior works have also focused on Ramsey-like
protocols to extend the interrogation times and perform phase
estimation both theoretically [32–34,38–40,42] and exper-
imentally [25,28,35,36], and we are not aware of similar

proposals for protocols making use of Rabi spectroscopy.
The closest example we are aware of is the combination of
high-resolution imaging and Rabi spectroscopy, as dem-
onstrated in Marti et al. [59], where imaging spectroscopy
serves as a multiplexed measurement of laser frequency
noise with a long Rabi pulse, but in this case many of the
atoms in the spatially extended ensemble contribute zero
information to the measurement. We therefore leave con-
sideration of extensions of our approaches to Rabi spec-
troscopy for future work.

VI. CONCLUSION

In conclusion, in this work we experimentally demon-
strate an optical lattice clock with enhanced Ramsey
interrogation times and reduce absolute clock instability
by harnessing multiple atomic ensembles in a single clock.
We first demonstrate quadrature Ramsey spectroscopy, a
simple protocol for jointly interrogating two atom ensem-
bles that are 90° out of phase in order to extend the phase
interrogation window from ½−π=2; π=2� to ½−π; π� [34],
extending the coherent interrogation time without
phase slips by roughly a factor of 2× and measuring a
corresponding reduction in clock instability by a factor of
1.36(5). We then leverage the hyperfine structure of 87Sr
and a linear magnetic field gradient to achieve independent
state preparation of multiple ensembles with only global
addressing. Finally, we demonstrate a combination of
quadrature Ramsey spectroscopy and enhance phase esti-
mation [32,33] with four ensembles to further extend the
coherent interrogation time by a factor of 1.7 compared to
the two-ensemble scheme, resulting in a factor of 2.08(6)
reduction in clock instability compared to a standard single-
ensemble clock with the same atom number, LO, and duty
cycle. Our multiensemble approach could be extended to
other existing optical lattice clocks with state-of-the-art
LOs [19–23], and similar reductions in instability would be
anticipated. In addition, we anticipate that multiensemble
phase estimation protocols like the ones demonstrated in
this work will be required to take full advantage of the
metrological gains offered by entanglement such as in the
use of spin-squeezed states [29–31,38–40].

Note added. Recently, we became aware of a related and
complementary work in Ref. [60].
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APPENDIX A: ATOMIC SAMPLE PREPARATION

The experiment begins with a standard two-stage
magneto-optical trap (MOT) trapping and cooling 87Sr
atoms to a temperature of 1 μK. We then load multiple
ensembles into a movable one-dimensional (1D) optical
lattice as described and demonstrated in prior works
[27,41], followed by spin-polarization and in-lattice cool-
ing both axially (sideband cooling) and radially (Doppler
cooling) on the narrow-linewidth 1S0 → 3P1 transition at
689 nm. The typical lattice trap depth for loading and
cooling is 70Erec, where Erec=h ≈ 3.5 kHz is the recoil
energy of a lattice photon at the magic wavelength around
813.4 nm. The lattice is then adiabatically ramped down to
the operational trap depth at 15Erec for state preparation and
clock interrogation, after which it is ramped back up to
70Erec for read out.

APPENDIX B: DIFFERENTIAL PHASE-SHIFT
GENERATION AND CALIBRATION

A magnetic field of roughly 5.5 G is applied along x̂ to
define the quantization axis using three pairs of orthogonal
Helmholtz bias coils (Bx, By, Bz). The coil set points are
optimized to zero out By and Bz at the waist of the lattice
z ¼ 0. To introduce the π=2 differential phase shift between
a pair of ensembles at z ¼ �0.5 cm, we employ a magnetic
field gradient which results in a differential Zeeman shift
between the two ensembles. The magnetic field gradient
can be tuned by scanning an offset voltage applied to both
Bz bias coils, as shown in Fig. 5. To take full advantage
of the magnetic field gradient, we interrogate on the
je; 7=2i → jg; 5=2i clock transition, which has a magnetic
field sensitivity of about γ ¼ 564 Hz=G. The differential
frequency shift is dominated by the differential first-order
Zeeman shift as

ΔfZS;1st ¼ γΔB; ðB1Þ

where ΔB is the magnetic field gradient. Under the typical
magnetic field gradient of ΔB ¼ 45 mG=cm, the differ-
ential frequency shift is 25 Hz.
The magnetic field gradient is then fine-tuned such that

the differential phaseΔϕ ¼ 2πΔfZS;1stT equals π=2 at each
interrogation time T. In particular, we scan the Bz offset
set points and map out Δϕ using synchronous Ramsey
spectroscopy [27], in which the two ensembles are prepared
in a 50∶50 superposition of 1S0 and 3P0, freely evolve for T,
and project using a final global π=2 pulse with its phase

(ϕ2nd) randomly sampled from ½−π; π�. An ellipse fitting is
then fit to the data using the least-squares method to extract
Δϕ, which has a typical uncertainty of approximately
10 mrad, limited by the QPN. The resulting Δϕ as a
function of the Bz offset voltage is fitted using a quadratic
function, and the intercept of the fit with π=2 is used as the
Bz offset set point for a specific Ramsey evolution time T,
as shown in Fig. 6.
We note that the ∂Bz=∂z gradient potentially rotates

the quantization axis along the lattice direction, which
would introduce a sizable tensor Stark shift gradient. In our

FIG. 5. Magnetic field gradient (ΔB) adjustment by tuning the
offset voltage of the Bz bias coils. The B field gradient is measured
on an ensemble pair separated by 1 cm via spectroscopy on the
1S0 → 3P1 transition. Each data point has a 1σ standard deviation
of roughly 0.7 mG=cm. The solid line is a linear fit to the data. The
fit residuals are shown in the lower panel.

FIG. 6. Differential phase-shift adjustment by fine-tuning the
Bz coils offset voltage applied to both z coils. The differential
phase shift Δϕ is measured via synchronous Ramsey spectros-
copy with free-evolution time of T ¼ 30 ms on the magnetically
sensitive je; 7=2i → jg; 5=2i transition. The solid line is a
quadratic fit to the data. The residuals are shown in the lower
panel. Error bars represent 1σ standard deviation.
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previous work [41], we have characterized the tensor
Stark shift gradient to be −8ð1Þ × 10−20=Erec/cm on the
j1S0; mF ¼ �5=2i ↔ j3P0; mF ¼ �3=2i transition. This
corresponds to a frequency gradient of −1.2ð2Þ ×
10−18=cm at the operational lattice depth of 15Erec. In
future work, it appears to be feasible to mitigate this effect
by generating a more uniform linear Bx gradient through
the addition of Golay coils [61] requiring an upgrade to our
experimental apparatus that is currently under way.

APPENDIX C: ILLUSTRATION OF THE
QUADRATURE RAMSEY DECODER

In Fig. 1(c), we perform synchronous Ramsey spectros-
copy by randomly sampling the phase (ϕ2nd) of the final
π=2 pulse from a uniform distribution within ½−π; π�. This
is equivalent to randomly sampling the LO detunings
corresponding to Δfi ∈ ½−1=2T; 1=2T� under a short
Ramsey free-evolution time (T ¼ 7.5 ms), where each
quadrature can be mapped to a specific region as shown in
Fig. 1(b). To quantify the accuracy of the decoder, we
perform a point-by-point comparison between the phase
shifts extracted using the quadrature Ramsey decoder
[Eq. (4)] and the known randomly sampled phase shifts
applied to the final π=2 pulse, as shown in the red points
in Fig. 7. The blue points in Fig. 7 correspond to
Monte Carlo simulations using QPN and the LO noise
spectrum as input parameters, and are in good agreement
with the experiment.

APPENDIX D: SELF-COMPARISON CLOCK
INTERROGATION WITH QUADRATURE

RAMSEY PROTOCOL

Before clock interrogation, the atomic population is
transferred from j1S0; mF ¼ 9=2i → j3P0; mF ¼ 7=2i (note
as jg; 9=2i → je; 7=2i) via a π pulse, followed by a cleanup
pulse on resonant with the 461-nm 1S0 → 1P1 transition to
blow out residual populations in the ground state.
Quadrature Ramsey spectroscopy is then performed by
interrogating the je; 7=2i → jg; 5=2i clock transition,
which has a first-order Zeeman shift sensitivity of
564 Hz=G. To generate an error signal for frequency
feedback, the phase of the final π=2 pulse is detuned by
π=2 with respect to the phase of the first π=2 pulse. After
spectroscopy, the lattice is adiabatically ramped back up to
full depth for read out. The populations in the ground and
excited clock states of both ensembles are read out in
parallel with imaging pulses along the lattice axis, with
scattered photons collected on an Electron Multiplying
Charge Coupled Device camera (Andor, iXon-888). The
excitation fraction is extracted through P ¼ ðNe − NBGÞ=
ðNg þ Ne − 2NBGÞ, where Ng, Ne, and NBG are the
ground-state population, excited clock-state population,
and background counts without atoms, respectively. The
excitation fractions from both ensembles are used as inputs
to the phase estimator to extract the clock laser detuning,
which is used to feed back to the acousto-optical modulator
on the clock laser path that addresses the atomic resonance.

FIG. 7. Point-by-point comparison between known randomly
applied phase shifts ϕ2nd ∈ ½−π; π� (to the phase of the final global
π=2 pulse in synchronous Ramsey spectroscopy) and the phase
shifts extracted from the decoder using quadrature Ramsey
spectroscopy [Eq. (4)]. The red scatter points correspond to
the experimental data shown in Fig. 1(c) for a short Ramsey free-
evolution time (T ¼ 7.5 ms). The blue scatter points correspond
to Monte Carlo simulations using the QPN and LO noise
spectrum as input parameters and are shown for comparison.

1000 ms 100 ms 100 ms 0 to 50 ms
461 nm + 689 nm MOT

Clock interrogation

Multiple-ensemble loading

Spin pol + in-lattice cooling

250 ms
Image + processing

25 ms
State preparation

Feedback

1.5 s 1.5 s

Servo (I)

Servo (II)

FIG. 8. Experimental sequence for the self-clock comparisons.
Two independent atomic servos (I) and (II) are interleaved and
compared to determine the clock comparison instability. The
typical experimental cycle is shown in the bottom (not to scale),
which takes about 1.5 s, and thus leads to roughly 3 s dead times
in each servo. An additional 250 ms is spent on nuclear-spin-state
initialization when probing four atom ensembles with phase
estimation protocol (not shown in the figure).
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Because of the lack of an additional independent optical
lattice clock to compare against, in order characterize
the clock instability we perform a self-comparison. Two
asynchronous independent servos sharing the same LO are
interleaved on a single experiment apparatus. Separate
digital servos correct the clock laser frequency independ-
ently for each servo and generate a difference frequency
signal which is used to extract the Allan deviation and
infer the clock instability. A typical experimental timing
sequence for the self-comparison is shown in Fig. 8. The
typical dead time is about 1.5 s within each servo, and thus
3 s per clock cycle when accounting for the other servo. The
primary contribution comes from sample loading, which
takes about 1 s to cool, trap, and optically pump the atoms,
with an additional 100 ms required to prepare multiple
ensembles rather than a single ensemble. The camera
imaging and data processing takes about 250 ms, while
an additional 250 ms is spent on the nuclear-spin-state
preparation when performing phase estimation with four
atom ensembles, which is not shown in Fig. 8.

APPENDIX E: PHASE ESTIMATION AND
QUADRATURE RAMSEY WITH FOUR

ATOM ENSEMBLES

1. Hyperfine state initialization

The experimental sequence used to initialize four atom
ensembles is shown in Fig. 3(a) in the main text. We
elaborate on some of the experimental details here. First,
we start with a sample of spin-polarized atoms in the
jg; 9=2i state with four ensembles spaced evenly over a
1-cm extent. A first π pulse on the 9=2-7=2 transition
transfers the population into je; 7=2i, followed by a cleanup
pulse on the 461-nm 1S0 → 1P1 transition. We then prepare
the atoms in a 50∶50 superposition of the je; 7=2i and
jg; 5=2i state with a clock π=2 pulse, and coherently
transfer the population in jg; 5=2i into je; 3=2i via a π
pulse on resonance with the 5=2-3=2 transition. This
creates a superposition of two nuclear spin states in the
excited clock-state manifold, je; 7=2i and je; 3=2i, which
freely evolve for roughly Tp ¼ 40 ms under a linear
magnetic field gradient tuned to about 45 mG=cm to
maximize the differential phase shifts between the adjacent
atom ensembles. We then coherently transfer the popula-
tions and close the interferometer via a π pulse on the
7=2-5=2 transition and a final π=2 pulse on 5=2-3=2
transition, respectively. Pulses on resonance with either
the 1S0 → 1P1 transition or the 3P0;2 → 3S1 transitions are
combined with clock π pulses to clean up residual pop-
ulations leftover in unwanted states in each pair of
ensembles. Tp and the laser phase of the last π=2 pulse
are fine-tuned such that the four atom ensembles accumu-
late 0, π, 2π, and 3π phase shifts, respectively, enabling
preparation of two ensemble pairs in distinct nuclear
spin states, pair (1, 3) in jg; 5=2i and pair (2, 4) in

je; 3=2i, using only global pulses without the need for
individual ensemble addressing.
Relevant transitions, their differential magnetic moments,

and the measured Rabi frequencies used for state initializa-
tion and clock interrogation are summarized in Table I.

2. Phase estimation algorithm

As described in Sec. IV of the main text, by probing
asynchronously on two hyperfine clock transitions, we
obtain two phases from the two quadrature Ramsey
measurements: θA ¼ RðP1; P3Þ and θB ¼ RðP2; P4Þ. We
constrain θA within ½−π; π� by choosing TA ≤ 50 ms, and
we have θA ¼ 2πΔfTA, in which Δf is the LO detuning.
Given that TB ¼ 1.7 × TA, the actual phase shift θact;B
accumulated during TB may exceed the range of ½−π; π�,
which cannot be handled by the quadrature Ramsey
decoder [Eq. (4)] due to the 2π ambiguity. Consequently,
this results in θB ¼ θact;B − k × 2πðk ¼ 0;�1Þ that could
lead to phase slips.
To ascertain θact;B, we utilize the following phase

estimator to determine the value of k that resolves the
2π ambiguity. In the limit that the LO noise is dominated by
low-frequency noise and for a low duty cycle, we can
assume that the frequency of the LO did not significantly
change during the second half of the interrogation period
TB, and we approximate the estimated phase shift accu-
mulated by ensembles (2, 4) as θest;B ¼ 1.7 × θA. In our
estimator, we compare θest;B with θB þ k × 2πðk ¼ 0;�1Þ
and identify the particular value of k that yields the smallest
difference. We then use θact;B ¼ θB þ k × 2π to feedback
on the LO according to Δf ¼ θact;B=ð2πTBÞ.

APPENDIX F: SCALING OF THE
DICK-NOISE-LIMITED CLOCK INSTABILITY

The instability of a clock limited by Dick noise is
given by [17]

σ2DickðτÞ ¼
1

τ

X∞
m¼1

�
gc2m
g20

þ gs2m
g20

�
SfLOðm=TcÞ; ðF1Þ

where Tc is the cycle time, m is the mth harmonic,
SfLOðm=TcÞ is the one-sided power spectral density of
the relative frequency fluctuations of the LO at Fourier
frequencies m=Tc, and the parameters g0, gsm, and gcm are
defined as

TABLE I. Relevant transitions used in state initialization of four
atom ensembles.

Transition B-field sensitivity Rabi frequency=ð2πÞ
jg; 9=2i → je; 7=2i 194 Hz/G 110 Hz
je; 7=2i → jg; 5=2i 564 Hz/G 125 Hz
jg; 5=2i → je; 3=2i −23 Hz/G 142 Hz
je; 3=2i → jg; 1=2i 340 Hz/G 166 Hz
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gsm ¼ 1

Tc

Z
Tc

0

gðξÞ sinð2πmξ=TcÞdξ;

gcm ¼ 1

Tc

Z
Tc

0

gðξÞ cosð2πmξ=TcÞdξ;

g0 ¼
1

Tc

Z
Tc

0

gðξÞdξ; ðF2Þ

with gðξÞ being the sensitivity function of the Ramsey
spectroscopy sequence.
In the limit that Tπ=2 ≪ T (where Tπ=2 is the duration of

π=2 pulse), we can approximate the sensitivity function of a
Ramsey spectroscopy with free-evolution time T as

gðξÞ ¼
�
1 0 < ξ < T;

0 T < ξ < Tc:

The LO noise is modeled as

SfLOðfÞ ¼
X0
k¼−2

bkfk; ðF3Þ

in which b0 corresponds to white frequency noise, b−1
corresponds to flicker frequency noise, and b−2 corre-
sponds to random-walk frequency noise.
Here we derive the scaling of Dick-limited clock

instability as function of the interrogation time T for an
arbitrary duty cycle. As pointed out in Refs. [17,18], for an
LO dominated by its flicker frequency noise floor
SfLOðfÞ ¼ σ2LO=ð2 ln 2Þf−1, where σLO is the LO flicker
frequency instability, the Dick-noise-limited clock insta-
bility can be approximated as

σDickðτÞ ≈
σLOffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
X∞
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs2m þ gc2m

g20

s ffiffiffiffiffiffi
Tc

mτ

r
; ðF4Þ

where Tc is the cycle time.
We then have the parameters g0;1 as

g0 ¼
1

Tc

Z
Tc

0

gðξÞdξ

¼ 1

Tc

Z
T

0

dξ

¼ T=Tc; ðF5Þ

gsm ¼ 1

Tc

Z
Tc

0

gðξÞ sinð2πmξ=TcÞdξ

¼ 1

Tc

Z
T

0

sinð2πmξ=TcÞdξ

¼ −
1

2πm
ðcosð2πmT=TcÞ − 1Þ; ðF6Þ

gcm ¼ 1

Tc

Z
Tc

0

gðξÞ cosð2πmξ=TcÞdξ

¼ 1

Tc

Z
T

0

cosð2πmξ=TcÞdξ

¼ 1

2πm
sinð2πmT=TcÞ; ðF7Þ

and thus after some algebraic manipulation, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gs2m þ gc2m

g20

s
¼
���� sinðπmT=TcÞ

πmT=Tc

����: ðF8Þ

Plugging this back into Eq. (F4), we arrive at

σDickðτÞ ¼
σLOffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
X∞
m¼1

���� sinðπmT=TcÞ
πmT=Tc

����
ffiffiffiffiffiffi
Tc

mτ

r
: ðF9Þ

It is worth noting that taking only the lowest-order term
m ¼ 1, we have Eq. (F9) as

σDick;m¼1ðτÞ ¼
σLOffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
���� sinðπT=TcÞ

πT=Tc

����
ffiffiffiffiffi
Tc

τ

r
; ðF10Þ

which matches the approximation given in Eq. (12)
of Ref. [18].
We can thus fit our data [as taken in Figs. 2(b) and 4(c) in

the main text] to the scaling in Eq. (F9). However, we need
to bound the maximum mmax in the actual numerical fitting
given limited computational resources and due to the finite
bandwidth of the Ramsey sensitivity function. The cutoff
mmax can be roughly bounded by the multiples of sine
waves within the minimum Ramsey free-evolution time
Tmin as

mmax ¼ mod ðnTc=TminÞ; ðF11Þ

in which we conservatively choose n ¼ 2. In our actual
data taking, we have a typical π=2-pulse duration of
Tπ=2 ¼ 1.5 ms, and a minimum Tmin ¼ 2 ms. To account
for the finite pulse duration, we can take the average of the
sensitivity function g0ðξÞ over the entire duration of
ð0; T þ 2Tπ=2Þ, where we have

g0ðξÞ¼

8>><
>>:
sinðΩξÞ 0< ξ<Tπ=2;

1 Tπ=2< ξ<TþTπ=2;

sin½ΩðTþ2Tπ=2−ξÞ� TþTπ=2< ξ<Tþ2Tπ=2;

where ΩTπ=2 ¼ π=2, with Ω being the Rabi frequency. For
Tπ=2 ¼ 1.5 ms and T ¼ 2 ms, this yields an effective
duration of T 0

min ¼ 3.9 ms, giving mmax ¼ 1700 in our
numerical fitting.
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In order to fit to the instability data shown in both
Figs. 2(b) and 4(c), we use a simplified expression for the
Dick noise that assumes only flicker frequency noise,
and treat the instability of the LO as a free parameter.
The extracted LO flicker frequency instability of σFF ¼
3.2ð2Þ × 10−15, which is roughly a factor of 2–3× larger
than the value provided by the manufacturer of the LO
(Menlo Systems). This discrepancy likely arises in part
from not including the contributions of random walk and
white frequency noise in the fit. In addition, the LO is now
in a relatively noisy vibration and thermal environment, and
we believe its noise spectrum is now degraded (see next
section for details).

APPENDIX G: REDUCING CLOCK INSTABILITY
BY INCREASING INTERROGATION TIMES

WITH MULTIPLE ENSEMBLES

1. Theoretically expected clock instability

The expected clock instability is given by the quadrature
sum of QPN and Dick noise,

σ2 ¼ σ2QPN þ σ2Dick: ðG1Þ

In particular, QPN scales with the Ramsey interrogation
time (T) and atom number (N, per ensemble) as (Eq. (1)

σQPN ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þ Td

NT2

r
: ðG2Þ

The Dick-noise-limited clock instability scales with T
roughly as [Eq. (F9)]

σDick ∝ σLO
X∞
m¼1

���� sinðπmT=TcÞ
πmT=Tc

����
ffiffiffiffiffi
Tc

m

r
; ðG3Þ

in whichmmax ≈ 1700 in our case. Both Eqs. (G2) and (G3)
suggest that increasing the interrogation time T reduces the
clock instability.
In our case, the clock instability is Dick-noise limited

due to the LO noise (σLO ≈ 10−15) and relatively low duty
cycle (T=Tc < 2%), and thus has no atom number depend-
ence given that N is sufficiently large (4000 atoms per
ensemble in quadrature Ramsey with two ensembles, and
2000 atoms per ensemble in phase estimation protocol with
four ensembles). However, we note that even in the case of
QPN limited, we are still taking advantage of the informa-
tion from all the atoms and should not suffer from reduced
atom numbers with the use of multiple ensembles.
For standard Ramsey spectroscopy with a single

ensemble, the interrogation time is T1, limited by requiring
that the phase of the LO remains within the range of
½−π=2; π=2�. For quadrature Ramsey protocol with two
ensembles, the interrogation time is increased to
T2 ¼ 2 × T1 by extending the interpretable LO phase shift

to ½−π; π�. Experimentally, we achieve a reduction of
1.36(5) in the measured clock instability that is roughly
consistent with theoretically expected reduction in the
Dick-noise limit [Fig. 2(b) in the main text].
For the phase estimation protocol with four ensembles

we demonstrate in Fig. 4, the interrogation time of the
second ensemble pair can be further extended by a factor
of 1.7 compared to the case of two ensembles as
T4 ¼ 1.7 × T2, or a factor 3.4 compared to the case of a
single ensemble as T4 ¼ 3.4 × T1. In addition, we achieve
a reduction of 1.2(1) in the measured clock instability when
compared to the quadrature Ramsey protocol, and a
reduction of 2.08(6) when compared to the standard
Ramsey approach—both are again roughly consistent with
the theoretical expectations [Fig. 4(c) in the main text].

2. Numerical calculations of the clock instability

The QPN limited instability (σQPN) for Ramsey spec-
troscopy is given in Eq. (1) in the main text. To calculate
σDick [Eq. (F9)], the LO frequency noise spectrum is
modeled with Eq. (F3), and the coefficients bm
(m ¼ 0;−1;−2) are extracted from the measured cavity
instabilities provided by the manufacturer by beating the
LO against another independent cavity-stabilized laser, and
are given as

σWHðτÞ ¼ 5.3þ2.2
−2.0 × 10−16=

ffiffiffi
τ

p
;

σFFðτÞ ¼ 1.3þ0.2
−0.1 × 10−15;

σRWðτÞ ¼ 1.0þ0.1
−0.1 × 10−15

ffiffiffi
τ

p
; ðG4Þ

where σWH, σFF, and σRW correspond to the estimated
fractional white, flicker, and random-walk frequency noise
instabilities, respectively. These instabilities (at τ ¼ 1 s) are
then converted into bm as

b0 ¼ 2σ2WH ¼ 5.7þ3.0
−2.5 × 10−31 Hz−1;

b−1 ¼
σ2FF
2 ln 2

¼ 1.3þ0.3
−0.3 × 10−30;

b−2 ¼
6σ2RW
ð2πÞ2 ¼ 1.6þ0.4

−0.3 × 10−31 Hz: ðG5Þ

The calculated single clock instability is shown in Fig. 9,
where the shaded regions represent uncertainties in the
calculation, primarily arising from the estimated frequency
noise spectrum of the LO. The scatter points represent
single clock instability corresponding to the data in
Fig. 4(c) in the main text, divided by

ffiffiffi
2

p
assuming equal

contribution from either atomic servo. The measured
instabilities are slightly greater than the numerical calcu-
lations using LO frequency noises provided by the manu-
facturer, which likely because our LO is now in a relatively
noisy vibration and thermal environment, and we believe its
noise spectrum is now degraded.
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APPENDIX H: CALCULATIONS OF PHASE SLIP
AND PHASE ESTIMATION FAILURE

PROBABILITIES

1. Generation of LO frequency time trace

In order to predict the likelihood of a phase slip and the
efficacy of the phase estimation algorithms we employ, we
first randomly generate a simulated time series of the LO
frequency using its power spectral density (PSD) following
Ref. [62], where the LO PSD is sampled with a discretized
frequency Δf. The amplitude AνðfÞ is given by

AνðfÞ ¼ eiη
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SνðfÞΔf

p
; ðH1Þ

where SνðfÞ is the PSD of frequency noise in units of
Hz2 × Hz−1, and η is a phase randomly drawn from a
uniform distribution within ½0; 2π� at each f. The amplitude
is then converted into a time trace νðtÞ via fast Fourier
transform

νðtÞ ¼ FfAνðfÞg: ðH2Þ

2. Phase-slip probability

To calculate the phase-slip probability, we first generate
a time trace for up to 1000 cycles with a dead time of 3.5 s
and a sampling rate of 10 kHz. We then compute the phase
evolution within T through the integral of the instantaneous
frequency for each cycle. The distributions of phase
evolution over 1000 cycles for various T are shown in

Fig. 10. Each distribution is then fitted to a Gaussian
function to extract the standard deviation σ.
The phase-slip probability P can be computed using the

Gaussian error function as

P ¼ 1 − erf

�
Φtffiffiffi
2

p
σ

�
; ðH3Þ

where Φt corresponds to π=2 (π) for standard (quadrature)
Ramsey protocol. The computed standard deviations and
the associated phase-slip probabilities for both the SR and
QR protocols are shown in Fig. 11. When bounding the
phase-slip probability below 10−4, we find the maximal
interrogation times of 26(3) and 52(3) ms for standard
Ramsey and quadrature Ramsey, respectively, consistent
with our experimental observations.
We note that measurements of clock instability using two

interleaved servos in a single clock are blind to both servos
simultaneously fringe hopping; e.g., the clock laser occa-
sionally takes sudden frequency steps (as opposed to slower
drifts of the LO) that would not be detectable in a self-
comparison. In our apparatus, such a large frequency step
would primarily come from excessive external vibrations
which can rail the active vibration isolation stage holding
the clock reference cavity, causing the cavity to experience
a large acceleration. We monitor several experiment
parameters throughout our data taking to rule this out.
First, the active vibration isolation stage is monitored
throughout the experiment to ensure it stays within its
dynamic range. Second, since we are preparing atoms onto
designated states via multiple π=2 and π pulses, any sudden

FIG. 9. Numerical calculations of the expected clock instability
using the manufacturer’s measurements of the LO instability as
inputs into Eq. (G5). The shaded region represents upper
and lower bound limits from the uncertainty in the LO noise
estimates. The experimental data are taken from Fig. 4(c) in the
main text, divided by

ffiffiffi
2

p
to infer the single clock instability. The

discrepancy between experimental data and numerical calcula-
tions is likely because the noise spectrum of our LO is degraded
in a relatively noisy vibration and thermal environment. Error
bars correspond to 1σ standard deviation.

FIG. 10. Distribution of LO phase evolution under various
interrogation time T. The distribution is computed with a time
trace of LO frequency at each T over the course of 1000
measurement cycles. The time trace is generated with a sampling
rate of 10 kHz using our experimental parameters, including the
LO noise PSD and a dead time of 3.5 s.
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frequency jumps on the order of >10 Hz (as compared to
the Rabi frequency of 2π × 100 Hz) would cause substan-
tial reduction in state transfer efficiency for both servos
simultaneously. Third, for quadrature Ramsey, the fre-
quency correction in each servo cycle is bounded within
ð−1=2T;þ1=2TÞ by the arcsine function. It would require
frequency jumps in multiple consecutive experimental
cycles to cause a fringe slip (corresponding to multiples
of j1=Tj). The recorded corrections in each cycle are also
monitored throughout the experiment.

3. Failure probability of the quadrature Ramsey
with phase estimation protocol

The failure probability for our four-ensemble quadrature
Ramsey with phase estimation protocol is given by

PQR&PE ¼ 1 − ð1 − PQR;AÞð1 − PPEÞ; ðH4Þ

where PQR;A is the quadrature Ramsey phase-slip proba-
bility during the shorter interrogation period TA, and PPE is
the phase estimation failure probability.
To compute PPE, we perform Monte Carlo simulations

by generating a LO frequency time trace over 1000 cycles.

In each cycle, we extract the actual accumulated phase shift
θact;A during TA, which yields a guessed phase shift at TB as
θest;B ¼ θact;A × ðTB=TAÞ, assuming a constant LO detun-
ing. θest;B is then compared with the actual phase shift θest;B
during TB to determine the phase estimation deviation as

ΔθPE ¼ θB − θest;B; ðH5Þ

where the phase estimation breaks down when jΔθPEj > π.
Figure 12 shows a distribution of the phase estimation

deviations computed over 1000 cycles under TA ¼ 50 ms
and TB ¼ 85 ms, which is experimentally demonstrated in
Fig. 4(c). A Gaussian fit yields in a standard deviation of
0.33(1) rad, corresponding to PPE < 10−10 calculated using
Eq. (H3) (withΦt ¼ π). After accounting for the phase-slip
probability during TA ¼ 50 ms (PQR;A ≃ 0.8 × 10−4), we
find a failure probability of PQR&PE < 1 × 10−4. We note
that due to the requirement of ð2kþ 1Þπ=2 phase shifts
ðk ¼ 0; 1; 2…Þ, the next available TB at TA ¼ 50 ms is
255 ms, which has a phase estimation failure probability of
>10% and is thus not experimentally feasible.

APPENDIX I: MONTE CARLO SIMULATION
FOR STATE-OF-THE-ART LOs

To connect our multiple-ensemble protocols to the state-
of-the-art optical lattice clocks that make use of higher-
quality LOs [19–23], we perform Monte Carlo simulations
to predict the phase-slip probabilities for these systems. In
our simulations, we assume LOs with a flicker noise floor
of <4 × 10−17 (coherence time >600 ms) and a duty cycle

FIG. 11. Calculation of phase-slip probability. Top: standard
deviation σ at various interrogation times T extracted via
Gaussian fit to the distributions in Fig. 10. Bottom: computed
phase-slip probabilities PSR (PQR) using Eq. (H3) under various
interrogation times for standard Ramsey (SR, Φt ¼ π=2) and
quadrature Ramsey (QR, Φt ¼ π), respectively. The shaded area
bounds the phase-slip probability below 10−4.

FIG. 12. Monte Carlo simulation of phase estimation failure
probability. Plot shows the simulated distribution of phase
estimation deviations computed over 1000 cycles under TA ¼
50 ms and TB ¼ 85 ms [the same interrogation times as exper-
imentally demonstrated in Fig. 4(c)]. The black curve is a
Gaussian fit to the distribution resulting in a standard deviation
of σ ¼ 0.33ð1Þ rad corresponding to a probability of PPE<10−10

using Eq. (H3) (Φt ¼ π). This phase estimation failure probability,
when accounting for the phase-slip probability during
TA ¼ 50 ms, results in a failure probability of PQR&PE < 10−4,
consistent with our experiment observation.
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above 50% [3,6]. Similar to Appendix H, we calculate the
phase-slip probability as a function of the interrogation
time under a fixed dead time of 600 ms and a flicker noise
floor of 4 × 10−17. Figure 13 shows the simulated phase-
slip probabilities for the SR and QR approaches, respec-
tively, for state-of-the-art LOs. Bounding the phase-slip

probabilities below 10−4, we predict that a factor of 2
enhancement in coherence times with QR protocol is
feasible for state-of-the-art LOs with a duty cycle >50%.
We then compute the failure probability four-ensemble

quadrature Ramsey and phase estimation (QR and PE)
protocol with higher-quality LOs, as shown in the black
scatter points Fig. 14. We assume a flicker noise floor of
4 × 10−17, a fixed dead time of 600 ms for interrogation
period TB, and we choose TB ¼ 1.7 × TA. By bounding
PQR&PE below 10−4, we find a maximal interrogation time
TB of around 2.45 s with four-ensemble QR and PE
protocol. As the four-ensemble QR and PE protocol does
not improve over the two-ensemble QR protocol (inter-
rogation time of around 2.7 s) for higher-quality LOs
and with >50% duty cycles, the simulations confirm the
intuition and arguments presented in Sec. Vof the main text
that a third pair of ensembles would be needed to keep track
of the phase evolution during TB − TA for a higher-duty-
cycle clock and benefit from multiensemble phase estima-
tion with >2 ensembles.

APPENDIX J: POTENTIAL SYSTEMATICS
ASSOCIATED WITH MULTIPLE-ENSEMBLE

PROTOCOLS

In this section, we consider potential sources of addi-
tional systematic shifts arising from the quadrature Ramsey
spectroscopy and phase estimation approaches using multi-
ple ensembles, and strategies to mitigate such effects.

1. Magnetic field gradient

In this work, we employ a magnetic field gradient to
introduce a π=2 differential phase shift between the
ensemble pairs, which is on the order of 20 mG=cm
depending on the interrogation time T and magnetic
moment of clock transition being used. Under a bias
magnetic field of approximately 5.5 G, the magnitude of
first-order Zeeman shift is about 3.1 kHz for the je; 7=2i →
jg; 5=2i transition and about 1.87 kHz for the je; 3=2i →
jg; 1=2i transition. While the first-order Zeeman shift is
typically canceled out by averaging transitions between
opposite spin states, to support sufficient suppression the
magnetic field needs to be stable within �0.1 mG between
experimental cycles for a coherence time of 100 ms
estimated using 10% of the Fourier-limited linewidth.
The addition of a magnetic field gradient also contributes

to the second-order Zeeman shift as well as potential
differential tensor Stark shifts due to spatially varying
B-field vectors across the lattice axis. As pointed out in
Appendix B, we find a fractional frequency gradient of
−1.2ð2Þ × 10−18/cm at our operational depth of 15 Erec.
In future work, we plan to mitigate this effect by employing
a more uniform linear gradient through the addition of
Golay coils [61], requiring an upgrade to our experimental
apparatus that is currently under way.

FIG. 13. Monte Carlo simulations of phase-slip probabilities
for state-of-the-art LOs. Computed phase-slip probabilities PSR
(PQR) under various interrogation times for standard Ramsey
(SR, Φt ¼ π=2) and quadrature Ramsey (QR, Φt ¼ π), respec-
tively. A fixed dead time of 600 ms and the flicker noise floor of
state-of-the-art LOs (4 × 10−17) are used as input parameters. The
shaded area bounds the phase-slip probability below 10−4.
A factor of 2 enhancement in coherence times is feasible with
the QR protocol.

FIG. 14. Simulated failure probability for state-of-the-art LOs.
We assume a flicker noise floor of 4 × 10−17, a fixed dead time
of 600 ms for interrogation period TB, and we choose
TB ¼ 1.7 × TA. The black scatter points correspond to the failure
probability PQR&PE. By bounding PQR&PE below 10−4, we find a
maximal interrogation time TB of around 2.45 s with four-
ensemble QR and PE protocol.
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For optical lattice clocks with higher-quality LOs that
enable coherence times approaching second scale, a smaller
magnetic field gradient and a magnetically less sensitivity
clock transition can be used to generate the π=2 differential
phase shift for quadrature Ramsey spectroscopy. For
example, with the 5=2-3=2 transition, which has a magnetic
field sensitivity of −22.4 Hz=G, only a magnetic field
gradient of 3 mG=cm is needed at T¼3 s interrogation
time for a pair of ensembles separated by 1 mm [16]. In
addition, spatially resolved readout can be carried out with
high-resolution imaging to better characterize the gradient,
as was demonstrated in Refs. [16,59,63], which can then be
used to account for and subtract off the inhomogeneous
shifts arising from the gradient.

2. Systematic shifts from off-resonant clock pulses

The additional clock π=2 pulses employed in the four-
ensemble phase estimation protocol will lead to additional
light shifts on the off-resonant ensembles. Given the
measured sensitivity of −13ð2Þ Hz ðWcm−2Þ−1 from prior
work [64], we estimate a probe light shift of 6 × 10−16

caused by the on-resonant clock pulse with a Rabi
frequency of 2π × 140 Hz. This sets an upper bound limit
below 1 × 10−15 for the shift arising from the off-resonant
clock pulses, after accounting for the detuning and Clebsh-
Gordan coefficient. While this is a sizable systematic shift
for the state-of-the-art clocks, given the large Rabi fre-
quency employed in this work, we note this effect can be
reduced by either lengthening the clock pulses or through
the adoption of more sophisticated composite pulse sequen-
ces such as hyper-Ramsey spectroscopy [65].

3. Servo errors from phase decoder

The phase decoder we employ here for quadrature
Ramsey spectroscopy assumes a differential phase shift
of Δϕ ¼ π=2. Inaccuracy in Δϕ could introduce a fre-
quency offset in the phase decoder [Eq. (4) in the main
text]. In the limit of δϕ ≪ Δϕ, the phase-shift error δϕ will
be converted into a decoder error of δϕ=2, and thus result in
a frequency offset of δϕ=2πT.
We note that the phase gradient across the lattice is

π=2/cm, which means that the phase difference across an
ensemble (1=e2 radius of 500 μm) is on the order of
100 mrad (between its top and bottom). However, as we
perform a spatial average over each ensemble, to first order
the phase gradient across each individual ensemble will
contribute to decoherence within each ensemble rather than
inaccuracy in the differential phase shift. The dominant
source of error will instead be inaccuracy in the differential
phase shift between ensemble pairs rather than the phase
gradient across each individual ensemble.
In our case, the differential phase error primarily comes

from drifts in the magnetic field gradient and any uncer-
tainty in separation between the center of mass of the

ensembles. We note that the magnetic field gradient was
characterized with synchronous differential comparison in
prior works [27,41], demonstrating long-term differential
instability and inaccuracy at 10−19 level. The ensemble
separations are well controlled with the data acquisition
card with a timing precision of 100 ns (10-MHz clock
reference), corresponding to a separation error less than
<0.1 μm (compared to cm-scale separation).
Assuming a phase error of 10 mrad, this would lead to

an error on the order of 1 × 10−17 at an interrogation time
of T ¼ 100 ms, which could be further suppressed well
below the 10−18 level using longer interrogation times with
a better LO. In addition, averaging interleaved measure-
ments on opposite hyperfine transitions, as is typically
employed to cancel the first-order Zeeman shift, will to
lowest order also cancel this error. Finally, measurements
of δϕ can be performed with higher precision if necessary
by taking advantage of the ability to probe well beyond the
LO coherence time using synchronous differential com-
parisons [16,27,41].

4. Crosstalk and line pulling

We observe crosstalk between the two hyperfine clock
transitions used for the four-ensemble phase estimator at
the level of roughly 3% [Fig. 3(c)], which could potentially
contribute to inaccuracy. We note that line pulling from off-
resonant excitation of unintended Zeeman transitions is not
unique to our protocol, and the same considerations apply
to existing optical lattice clocks [3,4,6,11,66], whether or
not other hyperfine clock transitions are employed. We also
note that the 3% crosstalk in our current demonstration is a
technical issue, primarily limited by clock pulse infidelity,
rather than a fundamental limit. The maximum off-resonant
excitation is given by the ratio of Clebsch-Gordon coef-
ficients squared and the off-resonant Rabi frequency as [4]

γCG ×
Ω2

Ω2 þ ð2πΔνsplitÞ2
; ðJ1Þ

where γCG corresponds to the ratio of Clebsch-Gordon
coefficient squared, Ω is the Rabi frequency, and Δνsplit is
the splitting between nearby transitions. There are multiple
ways to mitigate this effect: (a) reduce the Rabi frequency
of the clock pulse, (b) employ a larger-bias magnetic field,
or (c) improve the initial-state preparation to reduce
imperfections in spin polarization and thus crosstalk.
With these improvements, we expect it will be feasible
to achieve crosstalk below 0.1%, and to characterize and
control the corresponding systematic uncertainty arising
from line pulling at below the 10−18 level.

5. Residual tensor Stark shifts due to multiple mF states

For standard optical lattice clocks operating with tran-
sitions with a single mF state, the lattice laser frequency is

ZHENG, DOLDE, and KOLKOWITZ PHYS. REV. X 14, 011006 (2024)

011006-18



often detuned such that the scalar component and tensor
components null out the lattice Stark shift [67–70].
However, for our four-ensemble phase estimation protocol,
which makes use of two hyperfine clock transitions with
multiple mF states, such as the je; 7=2i → jg; 5=2i and
je; 3=2i → jg; 1=2i transitions as used in this work, the
lattice stark shift cannot be nulled out for both transitions at
any single frequency of the lattice. Here we estimate the
magnitude of this residual shift using the tensor coefficient
of −0.0058ð23Þ mHz=Erec from prior works [71,72], which
yields a residual tensor Stark shift of 2.6ð1.0Þ × 10−17

between the two clock transitions at 15 Erec, where the
uncertainty is limited by knowledge of the tensor coef-
ficient. However, we would like to point out that the
accuracy of the clock need not be limited by the systematic
uncertainty of the transition used to track the phase for
shorter interrogation times. The only requirement is that the
tensor Stark shift of the transition (je; 7=2i → jg; 5=2i in
our case) that has not been nulled should never be allowed
to drift off by enough to result in a phase shift on the order
of�π, and the lattice frequency can be set to null the tensor
Stark shift for the clock transition used for the longer
interrogation time (je; 3=2i → jg; 1=2i in our case) and to
actually lock the LO.

6. Running wave contamination due to lattice beam
intensity mismatch

To prepare multiple atom ensembles, we employ two
double-passing AOMs to detune the frequency of the
retroreflected lattice laser beam [27]. This results in
approximately 50% in an intensity mismatch between
the incoming and retroreflected lattice laser beams due
to the diffraction efficiency (90%) of the AOM, optical path
loss, and imperfect retroreflection. The mismatch could
lead to a running wave that introduces additional light
shifts, which would require precise modeling to constrain
at the level of 10−18 [73]. However, we note that this
systematic effect is not new or unique to our system. For
instance, McGrew et al. [3] constrains the systematic
uncertainty associated with a 15% intensity mismatch to
below 1 × 10−19. And we expect that this mismatch could
be further mitigated with the use of two phase-referenced,
counterpropagating lattice laser beams [74] or a bow-tie
cavity [14], by doing a handoff of the ensembles from a
loading and transportation lattice to a balanced spec-
troscopy lattice, or by loading multiple ensembles by
moving the location of the MOT field zero rather than
moving the lattice.
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