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Exotic quantum many-body states, such as Haldane and spin liquid phases, can exhibit remarkable
features like fractional excitations and non-Abelian statistics and offer new understandings of quantum
entanglement in many-body quantum systems. These phases are classified by nonlocal correlators that can
be directly measured in atomic analog quantum simulating platforms, such as optical lattices and Rydberg
atom arrays. However, characterizing these phases in large systems is experimentally challenging because
they are sensitive to local errors like atom loss, which suppress its signals exponentially. Additionally,
protocols for systematically identifying and mitigating uncorrelated errors in analog quantum simulators
are lacking. Here, we address these challenges by developing an error-correction method for large-scale
neutral atom quantum simulators using optical lattices. Our error-correction method can distinguish
correlated particle-hole pairs from uncorrelated holes in the Mott insulator. After removing the uncorrelated
errors, we observe a dramatic improvement in the nonlocal parity correlator and find the perimeter scaling
law. Furthermore, the error model provides a statistical estimation of fluctuations in site occupation, from
which we measure the generalized brane correlator and confirm that it can be an order parameter for Mott
insulators in two dimensions. Our work provides a promising avenue for investigating and characterizing
exotic phases of matters in large-scale quantum simulators.

DOI: 10.1103/PhysRevX.14.011003 Subject Areas: Atomic and Molecular Physics,
Quantum Physics

I. INTRODUCTION

Conventional phases of matter can be characterized by
measuring local order parameters, which represent the
degree of symmetry breaking. However, it has become
clear that the concept of “nonlocal order parameters”
(NLOs) is crucial to distinguish different types of exotic
quantum orders [1–5]. The Haldane chain [6] is a
paradigmatic example, where a string-type nonlocal
correlator [2] can reveal the hidden quantum phase.
Because of the direct accessibility of atomic distribution
with a single-site resolution [7,8], ultracold atoms in
optical lattices have provided an unprecedented oppor-
tunity to study NLOs. For example, the unity filling Mott

insulating (MI) phase has been a test bed for studying
NLOs [9,10] because the phase hosts bounded particle-
hole pairs as virtual excitations on top of the constant
density distribution due to a finite tunneling strength. The
string correlator has been measured in a one-dimensional
Mott insulating phase [11], and recent experiments using
Fermi gases have applied the string-type correlator to
reveal hidden antiferromagnetic correlations in doped
Fermi-Hubbard chains [12] and to probe the Haldane
phase in Fermi-Hubbard ladder [13]. Efforts have been
made to extend the NLO to higher dimensions, with the
recent suggestion of generalized brane correlators in two-
dimensional Hubbard models [14,15]. Moreover, Wilson
loops have been exploited to probe the topological Z2

spin liquid phase in Rydberg atom arrays [16,17].
However, these nonlocal correlators can be easily

destroyed by experimental imperfections, such as detec-
tion atom loss, limiting its practical usage. When meas-
uring the brane parity correlator for N sites, as an example,
each site may experience a small loss (error) rate η ≪ 1
during imaging process. The atom loss can occur in all
lattice sites independently, so this can exponentially
suppress the fidelity F of the N-site parity measurements
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F ∼ ð1 − ηÞN . Hence, to reliably evaluate the NLO in a
large-scale quantum simulator, it is essential to alleviate
the effect of the incoherent error as much as possible. In
literature, the systematic method to identify and reduce
the effect of various types of errors from the measurement
data is collectively called the error mitigation protocol
[18]. Unfortunately, there has been little progress [19,20]
on such protocols in ultracold atom simulators.
Here, we present a new error-correction (EC) method

for atomic quantum simulator and demonstrate its efficacy
by measuring nonlocal order parameters in the two-
dimensional Bose-Hubbard (BH) model. The EC method
is based on mapping the parity snapshot data of the Bose-
Hubbard system to the spin configurations of a 2D Ising
error model, enabling the identification of the correlated
particle-hole pairs and remove uncorrelated holes from the
snapshot. The brane parity correlators with error-corrected
snapshots then can successfully distinguish the Mott
insulator and superfluid phases in a large-scale system

containing more than 100 lattice sites. We further find that
the brane parity correlator satisfies the expected perimeter
scaling laws. Moreover, we are able to infer the fluctua-
tions in the site occupation number in the MI because the
EC method can assign the particle-hole pairs from the
parity snapshots. This enables us to evaluate the gener-
alized brane correlator and confirm recent predictions that
it can serve as an order parameter for the two-dimensional
Mott insulators [15].

II. BOSE-HUBBARD MODEL

As an experimental platform, we employ ultracold 7Li
atoms in a square optical lattice [Fig. 1(a)] to realize a two-
dimensional BH model [21,22]:
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FIG. 1. Schematic diagram of the error-correction protocol. (a) Mott insulating (MI) phase of neutral atoms in a two-dimensional
square optical lattice. The entangled particle-hole pairs (yellow circles) can be generated because of the finite tunneling amplitude. An
uncorrelated hole (purple dashed circle) can be found in the MI phase because of experimental imperfections. (b),(c) Correspondence
between the Ising error model and the Bose-Hubbard (BH) model. In the BH model, the particle-hole excitations can be created by the
tunneling operator b†i bj on the background of a unity filling. After the fluorescence imaging, atoms in the doubly occupied sites are lost,
resulting in an empty lattice site (dashed circles). These sites have the same even parity. In the Ising model, the Pauli-X correlator XiXj

creates a paired spin-up excitation along a link (red line). The particle-hole pairs after the parity projection can be considered as the
excitations in the Ising model. (d) Experimental snapshot image of MI phase. The correlated particle-hole pairs are not distinguishable
from the uncorrelated hole. (e) The error identification protocol. For a given single experimental image, we evaluate the probability
pðiE ↔ jEÞ for the pairs of the parity flips at the sites iE and jE. The pairs with higher (lower) probabilities are marked by dark (light)
red arrows. The uncorrelated hole at the site iE can be identified when the probabilities for all possible pairs pðiE ↔ jEÞ is smaller than
the (pair of) error rate η2. (f) Error-corrected image. Correlated particle-hole pairs (tied with yellow lines) and the uncorrelated hole (blue
shaded circle) are identified. To determine the fitting parameter β of the error model, we compare the brane correlator in the BH model
(gray box) and the domain wall operator in the Ising model (yellow box); see Appendix C 5.
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The bosonic creation (annihilation) operator at lattice site i
is b†i (bi), ni ¼ b†i bi is the site occupation number, J is the
tunneling strength, U is the on-site interaction energy, and
εi is the energy offset from harmonic confinement in the
lattice beam. Moreover, we employ a high-resolution
fluorescence imaging system [23] and detect the number
parity Pi ¼ ð−1Þni at lattice site i. Notably, we can prepare
a large-sized unity filling Mott insulator (40 sites diameter
with more than 1000 atoms) by tuning the scattering
length of the atoms using a Feshbach resonance. In this
study, we focus on the central area of the Dc ¼ 20 × 20
lattice sites to minimize trap inhomogeneity. For the brane
correlators, we take all the possible L × L domains within
Dc (Appendix A).
However, the detection of the parity and preparation of

MI states are not perfect because of the various errors, such

as particle loss during the imaging process or free holes
generated from the thermal fluctuations. Here, we attempt
to simulate the ground state of MI; the finite temperature is
also the source of errors. We will collectively call these
holes “uncorrelated errors” because the Mott insulator is
well below the melting temperature [8,24] so that they
occur independently at each site. It contrasts with the
correlated parity flips due to the virtual particle-hole
excitations over the MI. We estimate the rate η of such
uncorrelated errors to be ∼3% (Appendix A). Despite being
small, this can dramatically diminish the ability to measure
multipoint correlators in MI including the brane parity
correlator hODi ¼ hQi∈D Pii, where h� � �i refers to ensem-
ble average. For example, see Fig. 2(b) for hODi with
D ¼ 12 × 12, where the bare experimental data (open
circle) do not show any noticeable feature, regardless of
the various lattice depths or tunneling energy. We can
barely observe the brane parity correlator signal only for a
small system size with L ¼ 6 [Fig. 2(b) inset, open circle].
Hence, it is imperative to remove the effect of the
uncorrelated local errors in experiments to observe the
nonlocal correlators in noisy environments.

III. ERROR-CORRECTION METHOD

Our EC method is designed to circumvent the difficulty
efficiently and allow the calculation of nonlocal brane
correlators [14,15], which can accurately distinguish the
two phases of the BH model. It is based on mapping the
parity snapshots of the BH model to the spin configurations
of the 2D Ising error model:

jψðβÞi ¼ eβ
P

hi;jiXiXjffiffiffiffi
Z

p
Y
∀k
j0ik: ð2Þ

We map a bit σ ¼ 0, 1, which parametrizes the number
parity P ¼ ð−1Þσþ1 of the BH model, to the spin Z in the
Ising model; i.e., Zij0ii ¼ j0ii and Zij1ii ¼ −j1ii. Here,
hi; ji is a link in a 2D square lattice and Xi is the Pauli-X
operator, which flips the parity; e.g., Xij0i ¼ j1i. Z is a
normalization factor, and β is a single fitting parameter in
our EC. The properties of jΨðβÞi, including the phases and
phase transition, have been well investigated in the liter-
ature [26]. For example, jΨðβÞi is known to be in the
paramagnet phase for β < βc ≈ 0.22, and in the ferromag-
netic phase (spins are aligned along the X direction)
for β > βc.
Our key observation is that jΨðβÞi at small β < βc can be

naturally identified with the parity snapshots of MI. For
example, jΨðβ → 0Þi represents the uniform parity con-
figuration. It naturally corresponds to the MI with homo-
geneous site occupation, where the boson tunneling
strength J=U is strongly suppressed. When J=U is finite
but small, there are exponentially short-ranged, virtual
particle-hole excitations above the uniform background
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FIG. 2. Brane parity correlator. (a) The error-corrected image in
the experiment. The error-correction method detects and removes
the uncorrelated holes in the snapshots. (b) Brane parity corre-
lator in two-dimensional Bose-Hubbard model with the domain
size D ¼ 12 × 12. Without the EC (open circle), the brane
correlator hardly distinguishes MI and the superfluid phase.
The EC-assisted measurement (closed circle) shows a dramatic
signal increase and can identify the superfluid-to-Mott-insulating
phase transition. Inset shows the brane parity correlator with
L ¼ 6. Solid lines are the QMC simulation (Appendix B) at T ¼
0.083U and uncorrelated hole rate η ¼ 0.0277with EC (blue) and
without (light blue) the EC method. The experimental data agree
well with the QMC simulation. They can compare with the QMC
simulation with no uncorrelated error η ¼ 0 at the zero temper-
ature T ¼ 0 (dark blue dotted line). The zero-temperature data are
obtained by the extrapolation of the finite temperature data
(Fig. 7). The gray dotted line represents the quantum critical
point in 2D, estimated by the QMC simulation ðJ=UÞc ¼ 0.059
[25]. Each data point is obtained over 40 independent exper-
imental runs, and the shaded region denotes the maximum
standard error (Appendix A).
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[Fig. 1(b)]. They will appear as a pair of bit flips in the
snapshots. Such virtual excitations can be well captured by
a nonzero but small β in Eq. (2),

jΨðβÞi ≈
�
1þ β

X
hi;ji

XiXj þOðβ2Þ
�Y

k∈D

j0ik;

which allow the pair of parity flips above the uniform spin
configuration [Fig. 1(c)]. The higher-order terms in β
capture the longer-distance pair excitations, which are
however exponentially short-ranged in the paramagnetic
phase. Intuitively, β controls the strength of the virtual
particle-hole fluctuations, which approaches βc as J=U
approaches the transition toward superfluid (SF). In prac-
tice, β can be efficiently calibrated for the given exper-
imental snapshot data (Appendix C 5).
The error model allows us to extract the desired

information hidden in the snapshot data. In particular, it
can reveal the origin of the parity flips. The important
quantity in this task is the spin-spin correlator,

pðiE ↔ jEÞ ≈
1

4
hXiEXjEi2; ð3Þ

which approximates the probability for the two parity
flips at the sites iE and jE to appear from the virtual particle-
hole fluctuation. Intuitively, the virtual particle-hole pairs
in the BH model [Fig. 1(b)] correspond to XX operators
[Fig. 1(c)] in the Ising model, and thus pðiE ↔ jEÞ is
naturally related to the spin-spin correlator. A more
rigorous statement can be found in the Appendix C 2.
This provides a systematic route to identify the uncorre-

lated holes for a given experimental snapshot. The most
straightforward yet quite effective strategy is to perform the
maximum likelihood test between the two scenarios for
each pair of parity flips to occur. Specifically, for each
snapshot [Fig. 1(d)], we first calculate the probability
pðiE ↔ jEÞ for all the possible pairs of the parity flips
[Fig. 1(e)]. We then pair each parity flip at iE with another
at jE, which generates the maximum pðiE ↔ jEÞ among
many others [Fig. 1(e)]. When a parity flip at iE satisfies

max∀ jE≠iE
pðiE ↔ jEÞ < η2;

with the uncorrelated error rate η, then we conclude that the
error is not correlated with all the other parity flips. Hence,
it must be uncorrelated local errors, and we correct such
errors from the snapshot data [Fig. 1(f)] achieving our goal.
To demonstrate the effectiveness of our error-correction

protocol in removing uncorrelated errors, we utilize
numerical images generated from stochastic series expan-
sion quantum Monte Carlo (QMC) simulation [27,28]
After preparing a numerical image, we add random holes
with its population rate η and compare the error-corrected
images with the original image. In the Mott insulator phase,

we observe a negligible difference between the two
images (Fig. 8).
It is worth noting that all the calculations and data

processing involved in our EC procedure can be carried out
very efficiently on a classical computer. It is more efficient
than the classical simulation of the BH model, such as
QMC simulation of the ground state. Additionally, even if
one has a method that exactly simulates the ground state, it
is not a priori clear how to identify the local errors in
experimental parity snapshots. Only when one has a proper
error model for the system, the pairing of the parity flips
and identification of the incoherent local errors can be
correctly done.
A few minor remarks are in order. First, the input data of

our EC protocol, such as η, can be obtained within the
experiments. For instance, running the EC protocol does
not involve any extra QMC simulation of the BH model.
Second, it should also be remarked that our work does not
pursue achieving the quantum error correction (QEC) [29]
of logical qubits. Although our protocol is based on the
pair matching of errors as the quantum ECs in toric code
models [30,31], we solely focus on removing the errors from
measurement data and identifying correlations between the
parity flips. A comparison with previous quantum error-
correction protocols is provided in Appendix C 6. Last but
not least, our EC protocol is versatile enough to apply to
other lattice geometry beyond the square lattice like Lieb and
triangular lattices (Appendix E and Fig. 17).

IV. MEASUREMENT OF BRANE CORRELATORS

We turn our attention to the main result of this work,
where we implement the EC to the experimental data and
compute the brane parity correlator hODi across the MI-SF
phase transition (Fig. 2). Upon applying the EC, we
observe a dramatic increase of the hODi in the MI phase,
and the parity correlator can well distinguish two phases
even for the L ¼ 12. The experimental results also show
excellent agreement with QMC results after the error
corrections. Compared to hODi before EC, the error-
corrected values of the brane parity correlator are also
much closer to that of the correlator at the zero temperature
(obtained from QMC simulations) as expected. The free
holes from thermal fluctuations are part of the errors in
simulating the ground state of MI, which our EC method
targets to correct. Thus, our EC effectively lowers the
temperature of the snapshots. If the EC were perfect and
could have removed all the uncorrelated errors, then the
resulting brane parity correlator after the EC should agree
with the zero-temperature values of the system with η ¼ 0.
However, in Fig. 2, we observe a small but noticeable gap
between the error-corrected value (blue straight line) and
the zero-temperature value (dark blue dotted line). The
difference between the two is the result of the rare failure of
correcting uncorrelated errors in close proximity to other
parity flips (see Appendix D 1). The uncorrelated errors,
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which survived the EC, led to the underestimate of hODi.
Nonetheless, we observe that the EC significantly enhances
the signals of hODi, which consistently follows the trend of
the zero-temperature values.
The effect of EC is also reflected in the scaling behaviors

of hODi with respect to the domain length L. Consider the
case without the EC. In this case, hODi is expected to scale
as follows:

log ðhODiÞ ∼ −aL − bL2;

in which the first term ∝ L is the expected perimeter law
for hODi in MI [32]. Whenever the domain boundary
intersects the short-ranged particle-hole pairs, the brane
operator returns a value of OD ¼ −1 that exponentially
suppress its expectation value with the perimeter length.
The second term ∝ L2 is due to the uncorrelated holes.
Such holes are uncorrelated and randomly occur in each
site, and hence its overall effect on the hODi is propor-
tional to the area of the domain D. Indeed, our exper-
imental data (Fig. 3) are well fitted with a ≈ 0.21ð5Þ
and b ≈ 0.034ð9Þ. Note that the fitted value b is not
negligible compared to a. This explains why the bare
measurement of hODi (Fig. 2) does not show any signals
regardless of the underlying many-body states. On the
other hand, when EC is implemented, we immediately
find that the expected perimeter law is extremely well
followed (Fig. 3). Here, the EC-assisted data are fitted
with a ≈ 0.058ð1Þ ≫ b ≈ 0.0012ð1Þ. We also observe that
the decay coefficient a scales with tunneling energy
a ∝ ðJ=UÞ2. This observation indicates the correlated
particle-hole pairs in the MI phase from the quantum

fluctuations, which is also represented in the parity
correlation function Cði; jÞ ¼ hPðiÞPðjÞi − hPðiÞihPðjÞi
(Appendix A).
Although the scaling behaviors of hODi can distinguish

both MI and SF phases in a finite system size, the value of
hODi itself cannot be used as an order parameter in the
thermodynamic limit because of the perimeter law.
Recently the generalized brane correlator has been pro-
posed [14,15] to resolve this problem by considering the
fractional version of the brane parity correlator,

Oθ
Dðr; LÞ ¼

� Y
1≤x≤r

Y
1≤y≤L

Pðx;yÞ

�
θ

;

where the angle θ ¼ π=L−α depends on the domain length
with a power-law exponent α∈ ½0; 1�. When α ≥ 0.5, the
generalized brane correlator can have a finite value for MI
in the thermodynamic limit and become zero in SF, serving
as an order parameter for the MI [15].
The fractional parity correlator hOθ

Di, however, cannot be
evaluated from the standard parity-projected fluorescence
imaging system since it requires the information of the
number of occupations in each lattice site ni. By using our
EC method, we can evaluate the hOθ

Di even without
additional experimental techniques to resolve the site occu-
pation [33–36]. Since our error model can identify the
correlated particle-hole pairs, we can statistically
infer the site occupation ni in the domain D, and thus
estimate the generalized brane correlator in the MI regime. It
is based on the fact that the number fluctuations are small
inside the MI, such that the ni does not deviate much from its
average n̄ ¼ 1. To measure the generalized brane parameter,
we first assign the correlated particle-hole pairs for a given
parity snapshot with probability computed within our EC
model Eq. (2). Then, to a given pair, the site occupation
number is randomly specified by either a doubly occupied
site ni ¼ 2 or an empty site ni ¼ 0 and evaluate the hOθ

Di.
Although the number fluctuations can become large in the
SF phase, the generalized brane correlator is zero in the SF
so that we can statistically measure the hOθ

Di across the SF-
MI phase transition (Appendix F).
Figure 4 shows the EC-assisted measurements of gen-

eralized brane correlator. We observe that the error-
corrected values fit well with the zero-temperature values
inside deep Mott insulators [Fig. 4(a)], while the difference
between the two becomes noticeable as the system
approaches the SF. As in the case of brane parity correlators
(Fig. 2), this is attributed to the rare failure of correcting
uncorrelated errors in the EC, leading to the underestima-
tion of the generalized brane correlator. Despite this, the
fractional parity correlator with α ¼ 0.5, hOD

π=
ffiffiffi
L

p
i, can

well distinguish MI from SF and has a negligible depend-
ence on the domain length in MI [Fig. 4(a)]. These results
can be understood by noticing that the generalized brane
correlator in the MI becomes hOθ

Di ≃ e−ðπ2θ2=2ÞhδN2i within
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FIG. 3. Scaling of the brane parity correlator. Log plot of the
brane parity correlator with domain length L at MI phase with
J=U ¼ 0.0391. Without the EC method (open symbol), the brane
parity correlator drops quadratically with increasing domain
length. On the other hand, the brane correlator with the EC
method drops nearly linearly with the domain length. Inset: the
exponential decay parameter a as a function of J=U. Solid line is
a power-law fit curve with a ∝ ðJ=UÞ1.8, at an interval,
0.02 ≤ J=U ≤ 0.04. The data are obtained over 40 independent
experimental runs, and the error bar denotes one standard error.
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a Gaussian approximation. Since the number fluctuations
linearly increase with the domain length L in the MI (not
shown), the angle θ ¼ π=

ffiffiffiffi
L

p
can normalize the brane

correlator and remove the system size dependence. Indeed,
varying the exponent α, we find that hOθ

Di show a
negligible dependence on L for MI only for α ≥ 0.5
[Fig. 4(b)], which is consistent with the previous theory
prediction [15]. While in the superfluid phase, the number
fluctuations are much stronger, and the fractional parity
correlator rapidly vanishes over the domain length.
Consequently, the phase transition curve becomes sharper
with increasing the domain length, and the quantum critical
point can also be fairly well identified. The result confirms

the recent prediction that hOθ
Di can be an order parameter of

the MI phase in 2D [15].
Being extremely simple and computationally efficient,

our EC protocol significantly enhances the signals of the
brane parity correlators (Fig. 2) and the generalized brane
correlators (Fig. 4), which are otherwise challenging to
observe. On the other hand, we also noted that the error-
corrected values of the brane correlators are generally
smaller than the zero temperature values (Figs. 2 and 4)
because the current protocol fails to detect rare errors lying
close to other parity flips. This issue is actually easy to
resolve. In our current protocol, to decide if a given parity
flip is uncorrelated or not, we consider only a single
possible pair of the parity flip with the largest correlation
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FIG. 4. Generalized brane correlator. (a) The generalized brane
correlator with α ¼ 0.5 is drawn for different domain lengths
L ¼ 6–12. The generalized brane correlator for MI stays almost
constant even at large system size L ¼ 12. The solid lines
represent the error-corrected values of the BH model with η ¼
0.0277 and T ¼ 0.083U, and the dotted line represents the zero-
temperature values of the system with η ¼ 0. Both are obtained
by QMC simulations (Appendix B). The gray dotted line
represents the quantum critical point of the Bose-Hubbard model
in 2D, ðJ=UÞc ¼ 0.059 [25]. The data are averaged over 40
different experimental realizations, and the shaded area denotes
the maximum standard error. (b) Domain length dependence of
the generalized brane correlators at Mott insulating phase
(J=U ¼ 0.027) with different parameter α∈ ½0; 1�. The integer
parity correlator (α ¼ 0) decays with L, while the fractional
parity correlators are domain size independent when α ≥ 0.5 for
MI states.
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FIG. 5. Brane correlators with improved EC protocol. The
improved EC protocol (Appendix D) is used to evaluate the brane
parity correlator and generalized brane correlators. (a) Brane
parity correlator with the domain size D ¼ 12 × 12. The corre-
lator of the experimental data before the EC (open circle). The
error-corrected value of the experimental data (closed circle) well
agrees with the error-corrected value (blue solid line) of the QMC
simulation of the BH model at the experimental parameters T ¼
0.083U and η ¼ 0.0277. Notably, these error-corrected results
show an excellent agreement with the zero-temperature QMC
simulations of the BH model with η ¼ 0 (dotted line). (b) The
generalized brane correlators Oθ

D with α ¼ 0.5 are drawn for
different domain lengths L ¼ 6 and L ¼ 12 (green circles).
Notably, the solid lines represent the zero-temperature extrapo-
lations of the QMC simulations of Oθ

D (Appendix B), which fit
well with the error-corrected values of the experimental data. The
shaded area represents the maximum standard error at L ¼ 6.
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Eq. (3). The better way to detect the error is to consider the
multiple pairs of parity flips simultaneously in a single
snapshot. This simple change, which is detailed in
Appendix D, leads to further improvement of the brane
correlators (Fig. 5), which now agree surprisingly well with
the zero-temperature values. This signals that the improved
EC protocol can detect the rare uncorrelated errors, which
the original EC scheme could not detect. Of course, this
improvement is not free and comes with more computa-
tional cost. Compared to the original EC scheme, the
overall computational cost has a prefactor which is super-
exponential in the number of pairs to be considered in each
snapshot (but importantly not in the system size; see
Appendix D 2 for details). Finally, we note that this
improved protocol well exemplifies the flexibility of our
EC protocol. The error detection (if we use the single pair
or multiple pairing patterns) is only a single step in our full
protocol. Depending on one’s purpose and available com-
putational resources, one can change and improve various
specifics of our EC protocol to achieve the intended goals.

V. CONCLUSIONS AND OUTLOOKS

We present an error-correction method for a neutral atom
quantum simulator using an optical lattice, which enables
the measurement of nonlocal multipoint correlators in two
dimensions. Our method is based on mapping the parity
snapshot data of the Bose-Hubbard system to the spin
configurations of a 2D Ising error model, whose properties
can be calculated efficiently. The error model allows us to
systematically compute the probability for the two holes to
be paired, and thus to identify and remove uncorrelated
holes from the experimental image. Using the error-
corrected images, we can confirm that the brane parity
correlator shows a clear perimeter scaling law to the
relatively large scales. Moreover, we successfully measure
the generalized brane correlators with negligible depend-
ence on domain size L, which can serve as the order
parameter for MI. Our work opens up a number of
promising directions for further study. One possible exten-
sion is to explore the nonlocal order parameters of the
topological phases, such as a Haldane insulator in an
extended Hubbard model [10,37], gapped spin SUðNÞ
chain [38], and Kitaev-Heisenberg ladder [39]. In particu-
lar, it will be interesting to generalize our EC method to the
ultracold atom simulation of the Fermi-Hubbard model
[12,36,40]. In these systems, the correlations in snapshot
data between different spin species are essential in under-
standing the physics of many-body states. One may attempt
to build an analogous Z2 × Z2 error model to capture the
correlated virtual excitations and uncorrelated errors of the
Fermi-Hubbard model. Another immediate extension of
our work is to apply our EC model to enhance the visibility
of Wilson loop operators in quantum simulations of toric
codes [4,16,41] as in Refs. [42,43]. In the toric code, the
Wilson loop operators are nonlocal operators that can

detect and diagnose the topological order [4]. Given the
duality between the Z2 gauge theory and the Ising model
[44], it seems natural to use our approach to improve the
diagnosis of topological orders [16,41].

Note added. Recently, we became aware of an experiment
that measures brane parity correlator in 2D MI phase [45].
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APPENDIX A: EXPERIMENTAL SYSTEMS

1. Experimental sequence

Our experiments begin with loading the cold 7Li atoms
into a single plane of a blue detuned vertical lattice with
2.2 μm spacing [23]. Radial confinement is provided by an
optical dipole trap along a vertical axis. Then, the magnetic
field is ramped to B ¼ 730 G, tuning the scattering length
of the atoms to have a ¼ 400aB (aB is the Bohr radius), and
evaporative cooling is performed by lowering the radial
trap depth. To study the two-dimensional Bose-Hubbard
model, we increase the lattice potential in the horizontal
plane, where we observe a large-sized Mott insulator with
1200(100) atoms at 30Er. The Er ¼ h2=2ma2lat is the recoil
energy, where h is the Planck constant, m is the atomic
mass, and alat ¼ 752 nm is the lattice constant. Lattice
modulation spectroscopy is employed to calibrate the Bose-
Hubbard parameters. The interband transition (s-band to d-
band) spectroscopy determines the hopping matrix element
J, and the on-site interaction energy U is given by
measuring the Mott gap energy [46]. The temperature T
and the chemical potential μ are determined by the density
profile in the deep Mott insulator phase [8], which gives
kBT=U ¼ 0.08ð1Þ and μ=U ¼ 0.75ð5Þ, respectively. The
kB is the Boltzmann constant and U ≈ h × 10 kHz.
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2. Estimation of error rate η

To measure the loss during the imaging process, we
took two consecutive images with 1 s exposure and 0.1 s
interval. By comparing two images, we calculated the
image fidelity by the Raman sideband imaging. The error
during the imaging process mostly appears in the form of
the loss with probability ηfid ¼ 0.014ð7Þ. Another source
for the uncorrelated error is the thermal excitation of the
atoms. We measured the average filling of the Mott
insulator to be n̄ ¼ 0.9713. We compared it with
the QMC simulation (see below) and computed that
ηthermal ¼ 0.008ð3Þ. The total uncorrelated error rate is
η ¼ 0.028ð4Þ, consistent with ηthermal þ ηfid within the
experimental uncertainties.

3. Input data of EC procedure

We use only the central region of the harmonic potential
in the experiment, which can be regarded as the BH model
with the mean filling n̄ ¼ 1. For this, we first find the center
of mass of each parity snapshot. We set the mass of each
even or odd configuration by 1 or 0, respectively, in
computing the center of mass. We then take a central
region of each snapshot.
The size of the central region that we use varies

depending on purposes. When we compute the brane
correlators, we first take the central 20 × 20 size region
out of the full system snapshots. Within this region, to
compute the brane correlators of the size L × L, we
resample all possible L × L subpatches inside the 20 ×
20 size snapshots. We then compute the expectation values
of the brane correlators using these resampled subpatches.
When we perform the EC on the snapshots, we instead take
the center 23 × 23 snapshots to reduce the effect of the
boundary. We then correct errors in the central 20 × 20
region of each 23 × 23 snapshot. All the data and plots in

the main text are obtained by using ∼40 independent
snapshots in total.
We note that the statistical errors in the estimated brane

correlators should not be given by the standard error, the
standard deviation divided by the square root of the number
of samples. This is because each brane correlator OD is
estimated by the mean value of the brane correlators of
subpatches fDig; i.e., OD ¼ ð1=KÞPK

i ODi
with the

number of the subpatches K. We note that fODi
g are

mutually correlated due to their overlapping subpatches. In
this case, the error of OD exceeds the standard error.
Importantly, the error ofOD is bounded by the maximum of
the standard errors of fODi

g. Thus, we use the maximum
value as our estimation of the measurement error of OD in
the main text.

4. Two-site parity correlator

We measure the two-site correlator and the density
fluctuations with different values of J=U and demonstrate
the presence of particle-hole pairs in the Mott insulator. The
two-site correlation is maximized near the critical point at
J=U ¼ 0.059 (Fig. 6). The experimental result is well
matched with the numerical simulation result considering
the harmonic curvature. Using the error-correction method,
the two-site parity correlator is increased in the Mott
insulator phase where the error correction is successfully
done. In the SF phase, the error-correction method cannot
distinguish the uncorrelated holes from the correlated
holes, and the parity correlator remains the same.

APPENDIX B: QUANTUM MONTE CARLO
SIMULATION

1. Finite-temperature QMC simulation

We use the directed loop QMC simulation proposed in
Refs. [28,47]. The system size is set to be 50 × 50. The
maximum boson occupation is set to be nmax ¼ 3. The
harmonic curvature is set to be ω ¼ 3.156 × 10−2U with
the potential V ¼ 1

2
ωr2. For each J=U, we calibrate the

chemical potential so that the mean total boson number in
QMC simulation matches that of the experiment. The total
particle number is ∼1220. The temperature is calibrated to
T ¼ 1=12U so that we have ηthermal ≈ 0.018. We sample
3 × 104 snapshots to compute the expectation values of
brane correlators.

2. Zero-temperature limit QMC simulation

By calculating the zero-temperature values of the brane
parity correlator within the QMC simulation, we can test
the performance of the error-correction scheme. These
values are obtained by extrapolating the finite-temperature
values to the zero temperatures. In Fig. 7(a), we plot the
temperature dependence of the brane parity correlator for
the 12 × 12 square domain. Here, we evaluate the brane
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FIG. 6. Parity-projected density correlation. Experimental data
are drawn with the error correction (closed symbol) and without
the error correction (open symbol). The error bar represents the
standard error of mean. The QMC simulation with random noise
is drawn by using the error correction (solid line) and without the
error correction (dotted line). The density correlation is maximum
near the critical point.
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parity correlator at a sequence of the temperatures up to
β ¼ 1=T ¼ 64=U and extrapolate its values to the zero
temperature. The extrapolation to the zero temperature is
carried out with the least square error optimization for the
ansatz function fðβÞ ¼ ae−bβ þ c. We found that this
ansatz agrees well for J=U < 0.05 as shown in Fig. 7(b).
When J=U approaches the transition toward the superfluid
or inside the superfluid, the values of the brane parity
correlators are too small to perform a systematic extrapo-
lation. For such cases, the brane parity correlators coalesce
to zero within the statistical errors for the low temperatures.
For those cases, we instead adopt the values at extremely
low temperatures β ¼ 96=U.

3. Error investigation with QMC data

We investigated the type-1 and type-2 errors of the error-
correction method by correcting the added uncorrelated
errors with the QMC simulation in Fig. 8. The probability
of type-1 error is at most 1.2%, less than the experimental
error rate of η ≈ 0.03 from the thermal excitation and the
imaging loss. It implies that the measured brane correlator

in the MI is not from the overcorrection of the holes from
the incorrect error-correction method. Contrarily, the type-2
error in MI is much larger than the type-1 error. The error-
correction method prefers not to correct the incoherent error
when it is not certain.

APPENDIX C: DETAILS OF ERROR
CORRECTION

This appendix contains details of our EC methods, which
were schematically discussed in the main text. Let us start
with a brief note. If one wishes to develop a new EC
method, there are a few (natural) requirements. First, the
new EC scheme should be designed to reconstruct corre-
lations appropriately between holes in each parity snapshot.
In addition, it should be more efficient than the full
simulation of the BH model. In this appendix, we will
see that our error-correction scheme satisfies the two
requirements nicely.
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FIG. 7. Zero-temperature values of the brane parity correlators.
(a) QMC simulation of brane parity correlators hOi with the
domain size of 12 × 12 for various temperatures. (b) Extrapola-
tion of brane correlators with J=U ¼ 0.045 via the least square fit
of the ansatz function fðβÞ ¼ ae−bβ þ c. In (a), data points
marked by stars (J=U ¼ 0.0511, 0.0565, 0.0625) are the cases
where the brane correlators are too small to perform a systematic
extrapolation. For those cases, we adopt hOi at β ¼ 96=U.
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FIG. 8. (a) Error-correction estimation using the QMC data.
Uncorrelated holes can be successfully removed using the EC
method. From the QMC simulation, we estimate the incorrect
decision of the error-correction scheme. (b) Type-1 error of the
error-correction scheme. The type-1 error is the probability that
we correct the wrong hole that does not come from the incoherent
error source. We found that this probability is at most 1.2%, less
than the experimental error rate of η ≈ 0.03 from the thermal
excitation and the imaging loss. It implies that the measured brane
correlator in the MI is not from the overcorrection of the holes
from the incorrect error-correction method. (c) Type-2 error of the
error-correction scheme. The type-2 error represents the failure
to correct the uncorrelated errors, and its rate is presented. The
type-2 error in MI is much larger than the type-1 error. The error-
correction method prefers not to correct the incoherent error when
it is not certain. In the SF regime, the type-2 error is larger than
0.1 in the whole J=U values and it becomes 1.
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The rest of this appendix is organized as follows. First,
we define the correlation between holes in a snapshot in
Appendix C 1, which will be related to the spin-spin
correlation function of the transverse field Ising model
(TFIM) in Appendix C 3. We then show in Appendix C 2
that the correlation of TFIMcanbe classically and efficiently
estimated. We next present our detailed arguments as to
why the correlation of the BH model between two holes
can be approximated by that of TFIM in Appendix C 3. To
approximate the correlations of the BHmodel as that of the
TFIM, a single parameter of TFIM, which is the “temper-
ature” β of TFIM, should be calibrated. The calibration is
done by matching the expectation values of the brane
parity correlators of the BH model and TFIM, which is
discussed in Appendix C 5. In Appendix C 4, we introduce
how to efficiently compute the expectation values of the
brane correlators in TFIM. In Appendix C 5, we finally
discuss how to fix the parameter β of TFIM and complete
our EC protocol. As a remark, we also comment on the
relation of our EC method to the previous work in
Appendix C 6

1. Correlation between holes

Here, we define what the correlation between holes in a
snapshot means. Let us assume that we have a parity
snapshot σ of a wave function jψi. σ is a vector of 0 and 1
whose elements represent the parity of each site, i.e., Pi ¼
ð−1Þσi (0 and 1 represent odd and even parities of the
site occupation of the BH model, respectively). On top of
this parity snapshot pattern σ, we want to introduce two
parity flips (two holes) at i and j with σi ¼ σj ¼ 1. See
Fig. 9. We will write the relation between σ and σ0 as
σ0 ¼ σ ⊕ 1i ⊕ 1j. Here, ⊕ is the modulo two summation,
and 1i is the unit vector having the unit ith element.
Figure 9 illustrates the definition of σ ⊕ 1i ⊕ 1j.
The two parity flips 1i ⊕ 1j in σ0 can be introduced

either from a paired virtual excitation of jψi or uncorrelated
errors, e.g., free holes. The two holes are correlated if and
only if they are introduced by a paired virtual excitation.
The likelihoods of the two cases are given by

Lcorrði; jjσÞ ¼ pðσ0Þ; Lerrði; jjσÞ ¼ pðσÞη2; ðC1Þ

with the probability pðσÞ ¼ jhσiψ j2, the parity flipped
snapshot σ0 ¼ σ ⊕ 1i ⊕ 1j, and the error rate η.
For a given parity configuration σ0, we now ask

the origin of the two parity flip. We may answer this
question by comparing the two likelihoods. More pre-
cisely, we may conduct the maximum likelihood test: the
two holes originate from uncorrelated errors if and only if
Lcorr < Lerr. Equivalently, we may compare

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðσ0Þ=pðσÞp

with η. To simplify the notation, we will define
fði; jjσÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðσ0Þ=pðσÞp
. We interpret that fði; jjσÞ mea-

sures how easy it is to introduce a parity flip 1i or 1j on σ
via a virtual particle-hole pair excitation, which will be
compared to the uncorrelated errors.
In general, a snapshot σ has more than two holes, so each

hole can pair with one of the other holes or can be left
uncorrelated. In this case as well, we will conduct the
maximum likelihood test per each parity flip. More
precisely, for a given hole of σ at the site i, we first
compute fði; jjσ ⊕ 1i ⊕ 1jÞ for all the other holes at the
site j. We then compare its maximum value with the error
probability η. The hole at the site i is uncorrelated if and
only if

max
j
fði; jjσ ⊕ 1i ⊕ 1jÞ < η: ðC2Þ

Note that since the number of holes in a snapshot is
∼OðLxLyÞ, the number of computations of fði; jjσÞ for
each snapshot scales OðL2

xL2
yÞ. Thus, if fði; jjσÞ is hard to

compute, then we may not be able to conduct the maximum
likelihood test. In fact, the computation of fði; jjσÞ requires
the ratio between pðσÞ and pðσ ⊕ 1i ⊕ 1jÞ, which is
almost equivalent to the full computation of the ground
state wave function. Thus, the direct computation of
fði; jjσÞ for the error correction is not meaningful because
it is already as expansive as the full simulation of the BH
model. Hence, we instead approximate fði; jjσÞ by its
average:

fði; jjσÞ ≈ 1

2
E½fði; jjσÞ� ¼ 1

2

X
σ

pðσÞfði; jjσÞ: ðC3Þ

Before explaining the factor 1=2 in the above, we note that
the above quantity measures how easy, on average, it is to
introduce a parity flip at 0i or 0j on a typical snapshot of jψi
via a virtual particle-hole pair excitation. This can be
compared to the uncorrelated error rate η to perform the
maximum likelihood test. We will also regard this quantity
as the square root of the likelihood pði ↔ jÞ of the pair of
the parity flips at the two sites i and j being correlated. In
the next section, we will see that E½fði; jjσÞ� of the TFIM is
equivalent to the spin-spin correlator, which can be easily
computed. Hence, the maximum likelihood test can be
done classically efficiently.

Hole
Particle

FIG. 9. Definition of σ0 ¼ σ ⊕ 1i ⊕ 1j. We introduce spin flips
at the sites i and j.
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The factor of 1=2 in Eq. (C3) comes from the fact that we
always choose a pair of parity flips in a snapshot σ0 and try
to reconstruct σ via undoing the virtual particle-hole
excitation between the two sites. This introduces an
ordering between snapshots, and the ordering can be
approximately encoded by the condition pðσÞ > pðσ0Þ.
This condition comes from the fact that the introduction of
a virtual particle-hole excitation inMI requires finite energy
cost, so the probability assigned on σ0 is typically smaller
than that on σ. Then, the average of fði; jjσÞ over
configurations satisfying pðσÞ > pðσ0Þ is given by

X
pðσÞ>pðσ0Þ

pðσÞfði; jjσÞ

¼
X

pðσÞ>pðσ0Þ

ffiffiffiffiffiffiffiffiffiffi
pðσÞ

p ffiffiffiffiffiffiffiffiffiffiffi
pðσ0Þ

p

¼ 1

2

X
σ

ffiffiffiffiffiffiffiffiffiffi
pðσÞ

p ffiffiffiffiffiffiffiffiffiffiffi
pðσ0Þ

p
¼ 1

2
E½fði; jjσÞ�: ðC4Þ

Here, the sum over σ satisfying pðσÞ > pðσ0Þ is equivalent
to the sum over all possible σ with 1=2 factor.
The validity of our approximation above can be con-

firmed explicitly in the perturbative regime. Let us assume
that we have a snapshot σ0 of a MI state having a single pair
of particle-hole excitations in a local region (see Fig. 10).
Then, the probability of getting σ0 is much smaller than that
of the configuration σ. In addition, the probability of
getting the snapshot σ from the ground state is almost
equal to one. Also probabilities for getting other configu-
rations are negligibly smaller than pðσÞ in the same
reasoning. Thus,

X
pðσ̃Þ>pðσ̃0Þ

ffiffiffiffiffiffiffiffiffiffi
pðσ̃Þ

p ffiffiffiffiffiffiffiffiffiffiffi
pðσ̃0Þ

p
≈

ffiffiffiffiffiffiffiffiffiffiffi
pðσ0Þ

p
≈ fði; jjσÞ: ðC5Þ

In other words, we have fði; jjσÞ ≈ 1
2
E½fði; jjσÞ�.

2. Efficient calculation of correlation via TFIM

Here, we show how the correlation between the two
parity flips can be calculated efficiently via mapping to
transverse field Ising model. The ground state of TFIM that
we will consider is given by the following imaginary-time
evolved wave function:

jψi¼ 1ffiffiffiffi
Z

p eβ
P

hi;jiXiXj j0i; with Z¼h0je2β
P

hi;jiXiXj j0i:

ðC6Þ
Note that there is only one single free parameter β. The free
parameter will be tuned to match the statistical nature of the

parity snapshots of the BH model. Its parent Hamiltonian is
given as [26]

H ¼
X
i

Qi; with Qi ¼ −Zi þ e−2β
P

i∈ l
Xl1

Xl2 : ðC7Þ

For small β, it becomes the conventional TFIM. This model
also has the paramagnetic and ferromagnetic phases at
roughly 2βc ¼ 0.441, which is the critical temperature of
the classical 2D Ising model.
One particularly important property of jψi is that it is a

“classical” wave function; i.e., all the coefficients of jψi
can be set to be positive and are given by the square root of
the probability. Even more, a straightforward calculation
shows that E½fði; jjσÞ� becomes the two-point hXiXji
correlator:

E½fði; jjσÞ� ¼
X
σ

ffiffiffiffiffiffiffiffiffiffi
pðσÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðσ ⊕ 1i ⊕ 1jÞ

q
¼ hXiXji:

ðC8Þ

Here,
ffiffiffiffiffiffiffiffiffiffi
pðσÞp ffiffiffiffiffiffiffiffiffiffiffi

pðσ0Þp
with σ0 ¼ σ ⊕ 1i ⊕ 1j is the product

of the coefficients of jσi and jσ0i, and σ0 is a configuration
that can be obtained by applying spin flips on ith and jth
sites. Thus, the sum of

ffiffiffiffiffiffiffiffiffiffi
pðσÞp ffiffiffiffiffiffiffiffiffiffiffi

pðσ0Þp
over all configura-

tion σ is equivalent to 1
2
hXiXji.

Next we show that hXiXji is given by the two-point
correlator xixj of the classical 2D Ising model, which
can be efficiently computed from a single Monte Carlo
simulation [48]:

†

Parity 
projection

= 3

= =

= 2= 2

Unlikely

Particle occupation

FIG. 10. Illustration on the perturbative analysis. In the case of
BH model, when the two particle-hole pairs overlap, many of
them overlap in a way that does not excite multiple particles due
to the large energy penalty. Each parity snapshot of those low-
energy configurations can be obtained by applying spin-flip ∼XX
terms at the same locations.
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hXiXji¼
h0jeβ

P
hl;miXlXmXiXje

β
P

hn;piXnXp j0i
Z

¼
Q

kðhþjkþh−jkffiffi
2

p Þeβ
P

hl;miXlXmXiXje
β
P

hn;piXnXp
Q

qðjþiqþj−iqffiffi
2

p Þ
h0je2β

P
hi;jiXiXj j0i

¼
P

xxixje
2β
P

hi;jixixj

P
xe

2β
P

hi;jixixj
¼hxixjiIsing;2β:

3. Reasoning behind approximation by TFIM

Here, we provide intuition of why dynamics of virtual
particles of the BH model can be well mimicked by that of
TFIM. We summarize our mapping between the two
models in Table I. To support the mapping, we will first
show that the probability distribution of parity configura-
tions of BH model (with the mean filling of n̄ ¼ 1) and
TFIM can be matched within the perturbative regions
(away from the deep MI). This implies that E½fði; jjσÞ�
can also be matched for the two models. In addition, we
will also argue that the dynamics of virtual particles of BH
model and TFIM are qualitatively similar. Finally, we show
that expectation values of diagonal observables of the both
models, i.e., observables in Z or parity basis, can be
matched simultaneously by properly tuning β.
First, we note that the wave functions of both models at

the stable fixed points give the same probability distribution
for the spin σ or number parity P at each site:

MI in the BH; or paramagnet in the TFIM∶

pð0Þ ¼ 0 and pð1Þ ¼ 1;

SF in the BH; or ferromagnet in the TFIM∶

pð0Þ ¼ 1

2
and pð1Þ ¼ 1

2
: ðC9Þ

The spin and the number parity are related by
P ¼ ð−1Þσþ1. Second, the energy cost of introducing a
pair of two excitations XiXj or b†i bj to the fixed-point
configuration σ ¼ 0 or P ¼ 1 of MI is given by ΔE ¼ 2 in
TFIM or ΔE ¼ U in BH, respectively. Note that each

boson hopping operator has a direction, while each Ising
operator has no direction. Thus, one may expect that some
perturbative configurations made by boson hopping oper-
ators cannot be made by Ising operators. However, in the
deep MI, the energy cost of making such a configuration is
large. For example, j030i (written in the number basis) can
be made by applying b†2b1 and b†2b3 operators on j111i
(again written in the number basis). Obviously, the j030i
state does not have the corresponding state in TFIM.
However, its energy cost in the deep MI is 3U, so it is
unlikely to occur for large U. It means that their parity
distribution in deep MI can be matched with the spin
configurations in TFIM. Figure 10 illustrates this.
In addition, the two-point correlators hb†i bji (in BH

model) and hXiXji (in TFIM), which measure how easy it
is to introduce a pair of virtual particle-hole pairs,
behave similarly. First, they both exponentially decay in
the MI and paramagnetic phases; i.e., hb†i bji and hXiXji
follow ∼e−ji−jj=ξ with the correlation length ξ. Second, they
both converge to finite numbers in the SF and ferromag-
netic phases.
Based on these facts, we expect that the values of the

observables of both the models, which are diagonal in the
parity basis or spin-Z basis, can be well matched. A
particularly interesting observable in both sides is the
brane parity correlator

Q
i∈D Pi in BH model, which is

equivalent to the domain wall operator
Q

i∈D Zi in TFIM.
The brane parity correlator decays exponentially in j∂Dj in
MI (which corresponds to the paramagnetic phase in TFIM)
and superexponentially in j∂Dj in SF (which corresponds to
the ferromagnetic phase in TFIM). As the diagonal observ-
ables can be well matched in both sides, we may calibrate

TABLE I. Mappings between BH model and TFIM. The mapping is exact deep inside the MI phase.

BH (with the mean filling of n̄ ¼ 1) TFIM

Creation of virtual excitations Hopping term b†i bj Ising term XiXj
Energy of excitations in deep MI Interaction niðni − 1Þ Paramagnet term Zi
Snapshot variable On-site parity Pi Spin-z Zi
Nonlocal order parameter Brane correlator

Q
i∈D Pi Domain wall operator

Q
i∈D Zi
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the parameter β of TFIM by matching the expectation value
of the brane parity correlator in both sides. In the next
section, we will discuss how to efficiently compute the
expectation values of the domain wall operators of TFIM in
more detail. This will be used to calibrate β. Note that in
principle we can match expectation values of a set of brane
parity correlators with multiple domain sizes. By doing so,
we can expect to better match the scaling behaviors of the
brane parity correlators on both sides, which will eventually
lead to the better EC performance. However, we will use
only a single domain size of jDj ¼ 3 × 3 to calibrate for
simplicity.

4. Brane parity correlator of TFIM

Here, we discuss how to compute the brane parity
correlators, or equivalently domain wall operator of
TFIM. The brane parity correlator of the BH model is
computed from the parity snapshots generated by our
quantum simulator. The brane parity correlator of TFIM
is computed from classically generated spin-z snapshots.
Below, we discuss in more detail how to classically
generate spin-z snapshots of TFIM.
First, let us consider the expansion of the wave function

Eq. (C6):

jψi¼
X∞
n¼0

βn

n!

�X
hi;jiXiXj

�
n
j0i¼

Y
hi;ji

X∞
n¼0

βn

n!
ðXiXjÞnj0i:

ðC10Þ

We note that spin configurations of jψi can also be
described by link configurations:

jlilink ¼
Y
i

βli

li!
ðXli1

Xli2
Þli j0i: ðC11Þ

Here, li1 and li2 are sites connected by the link li. Each spin
σi at the ith site is given by the parity of the total number of
links connected with the site, i.e., σi ¼

P
l∈ i li (mod2).

These link configurations are redundant, and multiple link
configurations can give a single spin configuration. We will
refer to the set of all links that give rise to a spin
configuration σ as linkðσÞ. The probability for a configu-
ration jσi is then given by

pðσÞ ¼
� X

l∈ linkðσÞ

Y
i

βli

li!

�
2

¼
X

l;s∈ linkðσÞ

Y
i;j

βli

li!
βsj

sj!
:

ðC12Þ

We can think of it as products of two classical systems with
link variables l and s whose statistical weights are βn=n!,
where n is the degeneracy of each link. We note that since l
and s give the same spin configuration σ, they should be

related by a closed loop of links o, which does not change
the spin configuration.
Our next step is to develop a classical Monte Carlo

scheme simulating Eq. (C12). The classical MC protocol is
composed of two updates: the parity update and the loop
update. The parity update changes σ by adding or removing
one link term from a link. The statistical weight associated
with adding (removing) a link term to li and si is β2=ðnli þ
1Þðnsi þ 1Þ (nlinsi=β2). The loop update adds a closed loop
of links on either l or s. To do so, we first choose arbitrary
position and inject a worm which propagates along links. It
adds (removes) a link term on each link based on the
statistical weight β=ðnþ 1Þ. The worm moves until its head
and rear meet. We find that two update schemes are
sufficient to simulate pðσÞ of jψi.

5. Calibration of β

Here we elaborate on how to calibrate the parameter β of
the Ising wave function jψi. Overall, we calibrate β by
matching the expectation value of the domain wall operator
of jψi with the expectation value of the brane parity
correlator computed from error-corrected parity snapshots.
It consists of a few independent steps. First, for some
window of β, we compute the domain wall operator of jψi
at β. Second, for the same window of β, we perform the EC
on the parity snapshots using the correlator hXiXji. Then,
we choose the optimal β where the error-corrected brane
parity correlator agrees with the value of the domain wall
operators. The overall process of the calibration is illus-
trated in Fig. 11.
Step 1: Calculation of domain wall operator in TFIM. In

the calibration process, we need to find β that matches the
value of the brane parity correlator of BH model with the
value of the domain wall operator of TFIM. To accurately
determine the self-consistent β, it is crucial to explore β
with small intervals, even within the SF phase. However,

FIG. 11. Overall process of calibrating β. We attempt to find β
that matches hÔDi and hÔD;TFIMi. For each β, we compute hÔDi
from error-corrected parity snapshots of BH model and hÔD;TFIMi
from TFIM. We scan β and find the value that matches the two
optimally.
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this demands extensive Quantum Monte Carlo simulations
for computing the domain wall operators. This makes the
EC protocol less efficient. Thus, we perform a rough scan
of β to compute the domain wall operators and then
interpolate them using a (cubic) polynomial fðβÞ.
It is important to note that this approach inevitably

introduces a cutoff on β, i.e., it cannot be greater than a
certain value β�, which is a zero of f. This is particularly
important in SF phase due to the following reasons.
First, let us assume that we do not introduce any cutoff
and hODi is small, i.e., SF states. Then, β becomes
extremely sensitive to the exact numeric values of hODi.
It means that if hODi is not sufficiently accurate compared
to the experimental error bars, then β cannot be determined.
To fix β in this case, we introduce a cutoff on J=U and
corresponding β. This make β not exceed the cutoff even
when hODi is uncertain. Second, since we compute the
brane parity correlator to distinguish the two phases of BH
model, practically we do not need to increase β above βc ≈
0.22 if the brane parity correlator is already vanishing.
Step 2: Calculating hXiXji. We compute the two-point

correlator hXiXji using the classical Ising correlator
hxixjiIsing;2β as discussed in Eq. (C9). To compute the
Ising correlator, we perform the classical Monte Carlo
simulation proposed in Ref. [48] on 64 × 64 square lattice,
which is sufficiently larger than 20 × 20 experimental
parity snapshots. We note that a single Monte Carlo
simulation is sufficient to compute hxixjiIsing;2β for all i, j.
Step 3: Search for optimal β. We find the optimal β by

comparing expectation values of the brane parity
correlator in BH model and the domain wall operator
in TFIM. For typical J=U, we can find a unique β ≠ 0
that perfectly matches the two observables. In this case,
we can unambiguously fix β and error correction is self-
consistent. However, it is also possible that there are
multiple self-consistent solutions β ≠ 0 that perfectly
match the observables in the two sides. In this case, we
choose the minimum β, which maximally (but not
entirely) removes holes in a self-consistent way. In
addition, for small J=U, there could be no consistent
solution except the trivial one with β ¼ 0, which elimi-
nates all holes in snapshots. Although the trivial solution
is also a self-consistent solution, it is physically a wrong
choice since it removes all correlated holes. Thus, we do
not set β ¼ 0. Instead, we choose the optimal β that do not
remove all holes.

6. Relation with previous QEC methods

Here we present a brief comment on the relation of our
EC method to the previous works. We will mainly compare
our EC method to quantum EC protocols on the toric codes
[29–31]. We first briefly review the quantum error-correc-
tion protocols in the toric code. We then compare them with
our method. In the toric code, the errors always occur in
pairs, and they may propagate far from each other. The

QEC then attempts to pair these errors from the measure-
ment data and remove them from the wave functions by
performing proper quantum operations. In this process, it is
important to define properly how the pair of errors are
correlated. Dennis and Kitaev [29] assigned an error
probability on each link of the toric code and mapped
the QEC problem to the problem of finding the minimum
energy configuration of the random bond Ising model. The
(free) energy minimization problem is then mapped to other
mathematical problems, such as the minimal weight perfect
matching (MWPM) problem in graph theory, which can be
efficiently solved [30,31]. Note that these methods can be
used to detect correlated errors in our setup. One can also
identify uncorrelated measurement errors by repeated
measurements. In summary, QEC protocols target to
identify and correct both the uncorrelated and correlated
errors on quantum states. In this respect, one may find
certain similarity between our EC method and the QEC
protocols. However, there are several important differences.
First of all, we note that pairs of the parity flips in the

parity snapshots of the MI are not errors that should be
removed. Instead, we use this information to isolate and
remove the uncorrelated holes, which will have no partner
in the snapshot. The correlation between the parity flips
also provides an estimate for the number fluctuations, from
which we can evaluate the generalized brane correlators. In
this regard, the goal of our method and that of the QEC
protocols are different.
In addition, the QEC protocols for the toric code cannot

perform the tasks that we need to do in our setup. To better
appreciate this, we remind that the QEC protocols concern
how to find the single most probable pairing pattern
between the errors. This is legitimate for the QECs, which
have to determine a pairing configuration and correct them.
However, this does not take other probable patterns into
account, which may appear in our problem. On the other
hand, our EC method takes other probable patterns into
account by finding and keeping the probability of each pair
of holes in a parity snapshot to be correlated. By doing so,
our method can pair long-ranged parity flips, which are
hardly found by QEC protocols but relevant to our purpose.
Holes in a parity snapshot could be correlated even when
they are not nearby. In particular, such a long-ranged
correlation gives a scaling of the brane correlator super-
exponential in the perimeter of the membrane in the SF
phase. This scaling would not be well captured by QEC
protocols, for example, the MWPM, which pairs parity
flips locally. On the other hand, our method can capture the
scaling well as demonstrated in the main text.

7. Why does our EC protocol work?

The goal of the EC is to compute the “true values” of
brane correlator within a bounded domain. Here, true
values means the brane correlators of models without
errors at the zero temperature. In Appendix F, we
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argue that this is equivalent to computing the density of
paired parity flips crossing the boundary of the domain
without errors. We note that the paired parity flips can
originate from quantum correlation or uncorrelated errors
(when the EC wrongly assigns the pairing to the errors).
Unfortunately, no matter how technically advanced an EC
protocol can be, it is impossible to completely avoid true
negatives, decisions that interpret an uncorrelated error as
quantum correlation, and false positives, decisions that
interpret quantum correlation as uncorrelated errors. This is
because both uncorrelated error and quantum correlation
can, in principle, give the same parity configuration.
Despite this, there are two possible resolutions to over-

come this. First, one may design a proper strategy, i.e., a
map from a snapshot with errors to an error-corrected
snapshot, so that the frequencies of false-positive and true-
negative occurrences coincide with each other. Second,
instead of fixing the origin of each parity flip and perform-
ing removal of errors, it is also possible to give proper
weight to each source, such as likelihood based on
Bayesian analysis. In the main text, the former was chosen
to evaluate the true values of the brand correlator. Below,
we explain how the former method works.
To understand this, let us consider the simplest imple-

mentation: an error correction by introducing a cutoff
length on each pair of parity flips. If the two parity flips
are closer than the cutoff length l, then they are considered
“correlated.” Otherwise, they are “uncorrelated.” We note
that this method is simple in the sense that it examines only
a single pair of parity flips at once. In this setup, an
increment of the cutoff length l generally results in a
decrement in the number of true-negative pairs. Conversely,
considering parity flips caused by uncorrelated errors, we
can also see that increasing the cutoff length leads to the
increased number of false-positive pairs. Thus, there is a
cutoff length that matches the occurrences of true negatives
and false positives, Fig. 12, when η is small enough. Hence,
the only task left for us to do is to find this appropriate
cutoff l for the given experimental error rate and correlation
length, from which we can evaluate the density of paired
parity flips (crossing the boundary) and also the true values
of the brane correlators. This is achieved by an appropriate
error model, i.e., Ising model in our case, and the maximum
likelihood test.
In deciding the appropriate cutoff length l, there are two

important scales to consider: the error rate and the corre-
lation length of the Bose-Hubbard model. The error rate is a
value that can be estimated independently in the experi-
ment. However, the direct measurement of the correlation
length of the BH model is as difficult as estimating the true
brane correlator. Therefore, to find the correlation length,
we initially assume some suitable correlation length and
then check whether the calculated pair density within the
EC scheme is consistent with the assumed correlated
length. To perform this test, we employ the Ising model

as a proxy to find the cutoff length with which the pair
density, equivalently the brane correlator, estimated within
the EC method aligns with those of the Ising model.

APPENDIX D: IMPROVEMENT OF ERROR
CORRECTION

Here, we discuss the limitations of the most straightfor-
ward implementation of the EC protocol and the ways to
improve it. Specifically, we will present why the EC
scheme underestimates the brane correlator in Mott insula-
tors and the upper bound for the error-corrected values of
the brane parity correlators. We then suggest their possible
improvements.
In terms of notation, here is a small note. In this

appendix, our original EC protocol (explained in the main
text) will be called the “single-pair EC scheme” and the
improved EC protocol (that we will introduce in this
section) will be called the “multipair EC scheme” for
obvious reasons, as will be seen soon. If not mentioned
explicitly, the EC protocol always means the original
scheme, namely the single-pair EC.

1. Limitation of original EC and upper bound
of brane parity correlators

There are two main limitations in our original EC
scheme. We will separately discuss them below.

a. Discreteness of lattice model

The first limitation arises from the discrete nature of our
EC scheme. As discussed in Appendix C 7, the EC method

False positive True negative

= Parity flip

Correlated

Uncorrelated

FIG. 12. Pictorial representation of false positives and true
negatives in EC. Here, l is the cutoff length of the pair distance,
which is roughly the order of the correlation length. Pairs having
a length greater than l are regarded as uncorrelated. The empty
circles are the uncorrelated errors, originating from various
imperfections like thermal fluctuations or measurement errors.
The circles linked by lines are parity flips generated by quantum
fluctuations. The left-hand figure shows the false-positive deci-
sion where pairs generated by uncorrelated errors are judged to be
correlated. Here, η is the uncorrelated error probability. The right-
hand figure shows the true-negative decision where a pair
generated by quantum correlation is judged to be uncorrelated.
pξðrÞ is the probability of pairs with the length r generated by
quantum fluctuations with the correlation length ξ. The error-
correction method attempts to find the cutoff length l that
balances the occurrences of false positives and true negatives.
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attempts to find the cutoff length that matches the number
of true negatives and false positives. However, since we are
considering a lattice model, the length of the pair should be
discrete in unit cell size. For example, the nearest neighbors
are spaced by 1, and the second nearest neighbors are spaced
by

ffiffiffi
2

p
, etc. On the other hand, the tuning parameter β in our

Ising error model is continuous, resulting in the optimal
cutoff length also being continuous. Thus, balancing
between these two tensions, instead of finding the optimal
cutoff length (which may not be discrete), what we can do at
best is to adopt the discrete cutoff length closest to the
optimal one. There is another related, important point to this
discreteness of the lattice model: the minimum allowable
cutoff length, which is set to be unity. The rationale behind
this is that if the cutoff lengthwere allowed to be less than the
unit lattice spacing, then theEC invariably removes all parity
flips for whatever the ratio of the Hubbard parameter J=U
and the error rate, which is undoubtedly wrong.
These together lead to a mismatch between the number of

true negatives and false positives. Notably, in deep Mott
insulators, the discrete nature of the cutoff length results in
the overestimation of false-positive pairs. This is because of
two reasons. First, the density of true-negative pairs is
vanishingly small. The correlated pair excitations are
typically closest (within several unit cell scale) to each
other, and hence the event that the ECwrongly regards them
to be uncorrelated is unlikely. Second, the density of false-
positive pairs is, however, finite η2 with the error rate η. This
is because there can be very rare events, where the
uncorrelated errors accidentally occur right next to each
other. If such occurs, then our EC would regard them as
correlated because they are within the cutoff length. One
important consequence of this mismatch is the underesti-
mation of the brane parity correlators, whose upper bound
can be derived analytically. Let us comment on this first
before we move to the second limitation of our EC protocol.

b. Upper bound for brane parity correlator

The mismatch leads to an underestimation of the brane
correlator because the false-positive pairs crossing the
boundary give parity fluctuations within the domain. The
degree of the underestimation is determined by the occur-
rence nfalse pos;∂D of such false-positive pairs cη2j∂Dj with
the length of the domain boundary j∂Dj and the link
multiplicity constant c which depends on lattice geometry.
For the square lattice, the multiplicity constant is given by
one. More precisely, the value of the reconstructed brane
correlator is upper bounded by w times the value of the true
brane correlator, where w is given by

w ¼ E½ð−1Þnfalse pos;∂D �: ðD1Þ

Notably, this upper bound is always satisfied and almost
saturated deep inside the Mott insulator. See, for example,
Figs. 13 and 17.

c. Insufficient information of single-pair EC protocol

The second limitation of our EC is that it determines
whether a pair is correlated or not by examining only a
single pair of parity flips. It is easy to see that the original
single-pair EC protocol used in the main text is valid when
there is only one parity flip nearby, which can be potentially
paired with. When there are more flips, one needs special
care. In Fig. 14, there are three parity flips f0a; 0b; 0cg.
Here, we assume that 0a and 0b originate from the pair
creation of particle and hole while 0c originates from the
measurement error. 0a and 0b form a true-negative pair that
should be removed to correctly recover the density of the

1.00

0.75

0.50

0.25

0.00

0.02 0.04 0.06 0.08

Br
an

e 
co

rre
la

to
r,

Tunneling energy, J(U)

Error corrected (Experiment)
Zero temperature
Upper bound

FIG. 13. The upper bound of error-corrected brane parity
correlators with 12 × 12 domain recovered by the single-pair
error-correction scheme. The blue circles represent error-
corrected brane correlators estimated from experimentally
measured parity snapshots. The green solid line represents the
zero-temperature extrapolated brane correlator from QMC sim-
ulations (see Appendix B). The dashed line is an upper bound of
error-corrected brane correlators, which are given by w times of
the values of the zero-temperature brane correlators. Here, w is
given by 0.93 for the square lattice with the uncorrelated error rate
η ¼ 0.0277.

0

0

0 Correlated

Uncorrelated

FIG. 14. A limitation of the original single-pair EC scheme.
The figure illustrates a situation with three parity flips
f0a; 0b; 0cg. Among them, 0a and 0b are correlated, and 0c is
an uncorrelated error. The pair made by 0a and 0b is a true
negative as its length is greater than l, the cutoff length. However,
due to 0c, both parity flips are judged as “correlated.” In addition,
0c is also judged as correlated even without nearby uncorrelated
parity flips. These decrease the occurrence of true negatives and
increase the occurrence of false positives compared to what the
single-pair scheme expects, leading to a mismatch between them.
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pair of parity flips. However, since each of all three can
find at least another flip within the cutoff length, they will
be regarded as correlated within our EC protocol. This
prevents true-negative identifications of 0a and 0b, while it
also leads to false-positive identification of 0c. Eventually,
this results in an imbalance between true negatives and
false positives in our EC protocol. Consequently, the
brane correlator is underestimated by this process. For
small J=U and η, obviously this issue is not significant
because each parity flip is rarely located nearby other
parity flips. In this regime, the single-pair EC method
recovers the true values of the brane correlator well.
However, as J=U and η increase, a parity flip will more
likely have several neighbor flips and could be correlated
with more than one other parity flip. This increases the
occurrence of false positives and decreases the occurrence
of true negatives, which results in the underestimation of
the brane correlator.

2. Improved protocol: Multipair EC scheme

We introduce a generalization of our original single-
pair EC method, which greatly improves its performance.
The original EC method, as explained in the main text and
above, utilizes information about the correlation of a
single pair. On the other hand, the multipair EC method
generalizes it to consider all possible pairing and uncor-
related error configurations of locally clustered parity flips
(see Fig. 15). We first present a basic picture of how this
improved scheme works and then present the technical
implementation.

a. Basic picture

Even though here we will develop a new EC protocol
which takes multiple pairs of parity flips into account, the
goal is the same as the original single-pair EC protocol:
we want to identify whether a given parity flip is an
uncorrelated error or not. If it is not an error, then we also
need to determine with which parity flip it is correlated.
Nonetheless, there is an important difference: In this
improved EC scheme, we will also consider how the
nearby flips are paired and take this into account when
we assign the probability for a given parity flip to be
correlated or not.
Let us illustrate how this improved EC works in an

example parity snapshot Fig. 15(a), where four adjacent
parity flips σ ¼ f01; 02; 03; 04g appear simultaneously.
Imagine that we attempt to ask if 01 is an uncorrelated
error or not. It is not difficult to see that, to determine this,
we also need to estimate well if the other flips f02; 03; 04g
are paired or uncorrelated. For example, if f03; 04g are
paired and 02 is uncorrelated, then 01 is also uncorrelated.
See the right-hand panel in Fig. 15(d) for this possibility.
Hence, to decide if a parity flip 01 is correlated or not, we
will need to know if the other nearby flips are correlated or
not, and how they are paired if they are correlated. Notably,
there are multiple possible scenarios [Fig. 15(d)] that can
give the same final parity snapshot configuration. They
have different probabilities to occur.
Now, we note the following: We can estimate the

likelihood if the given parity flip is correlated or uncorre-
lated, if we can evaluate the probabilities for each of these
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FIG. 15. Comparison of our original and improved EC protocols. (a) Input parity configuration for the EC protocols. Purple circles
represent parity flips. There are four nearby parity flips f01; 02; 03; 04g. (b) Types of parity flips. Each parity flip is either correlated with
another parity flip or uncorrelated. The first parity flip 01 is tested whether it is correlated or not by (c) the original protocol and (d) the
improved protocol. (c) The original protocol examines the likelihoods of single pairs including 01 to estimate its correlation. (d) The
improved protocol examines the likelihoods of all possible pairing patterns of the input parity flips to reconstruct the correlation of 01.
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pairing configurations. For example, for the given parity
flip 01 in Fig. 15, if the sum of the probabilities for
configurations in the left-hand side of Fig. 15(d) is larger
than the sum of the probabilities for configurations in the
right-hand side of Fig. 15(d), then 01 is naturally regarded
as correlated. Even more, from the same information, we
can also infer the probabilities for the flip 01 to be
correlated with other flips. Note that this is the same
information as the number fluctuations as explained in the
main text, and it is the necessary information for evaluating
the brane parity correlators.
Thus, to perform the EC task, we only need to calculate

the probabilities for the parity snapshot configurations for
various possible pairings and uncorrelated errors. Note
that this is readily done, because we already know from
the single-pair EC protocol that the probability for each
pairing between two parity flips is given by the Ising spin-
spin correlator ∼hXiXji2=4 and the probability for each
uncorrelated error is η. All we need to do is to multiply
these factors properly to correctly evaluate the probability
for each configuration.

b. Relation with the original single-pair EC scheme

The above discussion makes it clear that the multipair
EC scheme is just a generalization of the original single-
pair EC scheme. The only difference between the two is the
way to compute the probability of a given parity flip. In the
single-pair EC scheme, we consider the probability of one
pairing associated with the given parity flip. In the multipair
EC scheme, we take the possible pairing configurations of
other nearby flips into account, too. This is summarized in
Fig. 15. Note that this is only a single step in EC and
independent from other steps, e.g., specific Ising error
model and calibration of β.

c. Detailed implementation

Having seen the basic pictures of how the multipair EC
works, here we write out the detailed formalism and
implementation of the pictures. We start with a reminder
that the multipair EC protocol attempts to identify uncorre-
lated errors based on the likelihood pðσEjσÞ for having
errors σE in a given snapshot σ. In addition, using this
likelihood, it estimates the number fluctuation within a
domain, which is essential for computing the brane
correlators. Below, we discuss how to compute pðσEjσÞ
and the number fluctuation.
We first discuss how to compute pðσEjσÞ. Let us assume

that we get a parity snapshot σ from noisy measurement.
We define σ as a set of parity flips. Some parity flips of σ
are incoherent errors, and we want to remove their effect.
Next, let us define the set of all possible uncorrelated error
configurations that can occur in the snapshot as SðσÞ. Then,
the probability of σ has an error σE ∈ SðσÞ is given by
Bayes’ rule:

pðσEjσÞ ¼
ηjσEjpðσ − σEÞP

σi ∈ SðσÞηjσijpðσ − σiÞ
; ðD2Þ

where η is the error probability, jσj is the number of parity
flips of σ, and σ − σE is the difference of the two sets σ and
σE. Here, pðσiÞ is the probability of getting the snapshot σi
from a parity measurement, which is given by the square of
the coefficient of the parity configuration σi of the under-
lying many-boson wave function. To compute pðσEjσÞ,
we need to know pðσiÞ. However, direct computation of
pðσiÞ requires simulation of the full ground state wave
function, which is computationally demanding. Below, we
discuss how to approximately estimate pðσiÞ, using the
Ising error model as we did in the original single-pair EC
protocol.
In Mott insulators, pðσiÞ can be well approximated by

the Ising error model, whose probabilities for each con-
figuration can be obtained by the perturbative expansion of
the link terms. Each link term of the Ising model (or BH
model) generates a pair of parity flips. In addition, a given
set of parity flips can be generated by sequentially flipping
a set of parity pairs Q through perturbations, starting from
the background uniform configuration which has no parity
flip. For example, we consider the parity configuration
Fig. 15 where four adjacent parity flips σ ¼ f01; 02; 03; 04g
appear. In such configuration, the four flips f01; 02; 03; 04g
could be generated by applying three different link
terms: Q1 ¼ fX1X2; X3X4g, Q2 ¼ fX1X3; X2X4g, or
Q3 ¼ fX1X4; X2X3g. Because the initial uniform parity
configuration is a product state, each weight in the lowest
orders in perturbation can be approximated by a spin-spin
correlator as in the single-pair case. Even more, the total
weight for each Q is given by

WQ ¼
Y
l∈Q

1

2
hXl1Xl2i: ðD3Þ

This weight will be used to compute pðσiÞ. Note that
there are several ways to cover a set of parity flips with
pairs of parity flips. Thus, the coefficient for a parity
configuration σ is given as the sum of the weights of all the
possible pairings, which gives rise to the same parity
configuration σ:

jψi ¼
X
σ

cσjσi ¼
X
σ

� X
Q∈CðσÞ

WQ

�
jσi: ðD4Þ

Here, CðσÞ is the set of all possible pairings of parity
flips of σ. In the above example Fig. 15, we have CðσÞ ¼
fQ1; Q2; Q3g. In other words,
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pðσiÞ ¼
� X
Q∈CðσiÞ

WQ

�
2

: ðD5Þ

Next, we discuss how to estimate the number fluctuation
of a domainD of interest. Below, we will first show that the
number fluctuation is related to the mean number of
boundary-crossing pairs nσ;∂D of a snapshot σ. We then
discuss how to compute nσ;∂D.
As we discussed in Appendix C 3, the link term XiXj of

the Ising model corresponds to the hopping term b†i bj of the
BH model. In addition, perturbation by a hopping term
crossing the boundary of a domain gives unit number
fluctuation in the domain. In this regard, the expectation
value of the number of boundary-crossing pairs can serve
as a proxy of the number fluctuation. As we noted before,
for a given snapshot σ, there could be multiple true parity
configurations σ0 ¼ σ − σE (generated purely from the
quantum fluctuations) with σE ∈ SðσÞ. For each σ0, its
mean number of boundary-crossing pairs is given by

nσ0;∂D ¼
P

Q∈Cðσ0ÞnQ;∂DW2
QP

Q∈Cðσ0ÞW
2
Q

; ðD6Þ

where nQ;∂D is the number of boundary-crossing pairs
of the pairing pattern Q. Finally, the mean number of
boundary-crossing pairs of the snapshot σ is given by

nσ;∂D ¼
X

σE ∈ SðσÞ
nσ−σE;∂DpðσEjσÞ: ðD7Þ

Finally, here and Fig. 5 in the main text, we calibrated β
of the Ising model by fitting the pair fluctuations, instead
of the brane parity correlators Appendix C 5. This
change is independent of the choices on the multipair
or single-pair error detection schemes. Of course, if one
wishes, one can stick to the original calibration method of
β by the brane parity correlators as in Appendix C 5.
However, we find that the calibration via the pair
fluctuation works better outside of the Mott insulator
than the original EC scheme.

d. Results

We can confirm that the proposed multipair EC method
improves the brane correlators further, compared to the
original EC protocol. Figure 16 shows the performance of
the multipair method with up to 10 local parity flips. One
can see that it does not underestimate the values of brane
correlators, when compared with the zero-temperature
values of models with η ¼ 0. In addition, it shows more
robust performance near the critical points than the origi-
nal EC.

e. Remarks

We conclude this section by making a few remarks on
the improved scheme. First, this method becomes the
single-pair method used in the main text by setting the
maximum number of parity flips to two and performing
error correction deterministically. Second, the multipair EC
protocol is more computationally demanding, as the num-
ber of pairing and error patterns increases superexponen-
tially as the number of parity flips considered in each step
of the multipair EC protocol. Thus, based on the available
computational resources, one needs to properly bind the
number of parity flips considered at once. However, we
note that this factor does not scale with the system size and
thus the scalability of our original EC scheme remains the
same here. Finally, as shown in the main text, even if only
two parity flips are considered at once, i.e., our original
single-paired EC scheme, the EC greatly improves the
brane correlator compared to the uncorrected value. Thus,
one could reconstruct the brane correlator extremely
efficiently and effectively.

APPENDIX E: DIFFERENT LATTICE
GEOMETRY

We demonstrate that our EC method can be applied to
different lattice geometries such as triangular and Lieb
lattices. To show this, we perform QMC simulation of BH
model on the triangular and Lieb lattices and produce parity
snapshots with uncorrelated error rate η ¼ 0.03. We then
conduct our EC protocol and estimate the error-corrected
brane correlator. Figure 17 shows the values of brane
correlator with and without the EC method. In both the
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FIG. 16. Performance of multipair error-correction scheme.
(a) J=U dependence of 12 × 12 brane correlators in a square
lattice before EC (orange circles), after EC (green circles), and
without errors (blue circles). The data without errors are the zero-
temperature extrapolations of the brane correlators (see Appen-
dix B) except points marked by stars which are data at β ¼ 96=U.
Parity snapshots are generated by quantum Monte Carlo simu-
lations with the inverse temperature of β ¼ 96=U. The chemical
potential is set to be the value used to fit the experiment data.
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lattices, we used both the original EC protocol (single-pair
correction scheme) and improved EC protocol (multipair
correction scheme). Figure 17 shows that our EC method
indeed greatly improves the values of the brane correlators,
which are otherwise difficult to measure.

APPENDIX F: GENERALIZED BRANE
CORRELATOR

Here we will discuss the detailed definition of the
statistical estimation of the generalized brane correlator,
which was proposed in Ref. [15].
In this appendix, we will assume that we have already

removed all uncorrelated holes via the error correction.
Then, for a given parity flip at the site i, the probability
that the flip is correlated with another flip at the site j is
given by

pði ↔ jjiÞ ¼ pði ↔ jÞP
k≠ipði ↔ kÞ : ðF1Þ

Note that it can be regarded as the mean number of particle-
hole pairs connecting i and j.
For a given snapshot σ and a regionD (embedded within

Dc), let E be the positions of parity flips. Then, the mean
number of pairings NðD → Dc=DÞ crossing ∂D is

NðD → Dc=DÞ ¼
X

i∈E∩D;j∈Dc=D

pði ↔ jjiÞ: ðF2Þ

Let us consider two parity flips: i∈D and j∈Dc=D.
Since the probability of the two flips i and j being paired is
given by pði ↔ jjiÞ, we may assign the site occupation
numbers ðni; njÞ ¼ ð0; 2Þ or ðni; njÞ ¼ ð2; 0Þ (because the
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FIG. 17. Brane correlator of the Bose-Hubbard model with the error-correction method in triangular and Lieb lattices. The brane
correlators hODi are evaluated on (a) a triangular lattice on the 12 × 12 domain and (b) a Lieb lattice with the 11 × 11 domain,
respectively. We plot the J=U dependence of the hODi without the EC (orange circles), after single-pair EC (green circles), and without
errors (blue circles). Here, we set the chemical potential μ ¼ 0.6U in the model and the error rate η ¼ 0.03 for the model with errors. For
the model without error (blue circles), we computed the brane correlators at a fairly low temperature, namely β ¼ 96=U. The dashed
blue line indicates an upper bound of the reconstructed brane correlator for the original EC scheme, i.e., single-pair error-correction
scheme. More details can be found in Appendix D 1. The critical point in the triangular lattice is at ðJ=UÞc ≈ 0.03. The slight mismatch
between the point where the brane correlator vanishes and the quantum critical point is attributed to the finite size of the domains. (c),(d)
The brane correlators hODi in the triangular and the Lieb lattices after the improved error-correction scheme with up to 8 local parity
flips (see Appendix D 2). Notably, the error-corrected values of the brane parity correlator nicely agree with the zero-temperature limit
values without error.
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mean occupation number is n̄ ¼ 1 in the MI) with the
probability of pði ↔ jjiÞ=2. The number fluctuation due to
this assignment is given by VarðNÞ ¼ E½ðni − 1Þ2� ¼
pði ↔ jjiÞ. Here, VarðXÞ means the variance of X.
Thus, the total number fluctuation in D is given by

VarðNDÞ ¼ NðD → Dc=DÞ; ðF3Þ

with ND ¼ P
i∈D ni.

We then consider the generalized brane correlator of BH
model defined on a region D [15]:

O1=j∂Dj
D ¼ eðiπ=

ffiffiffiffiffiffi
j∂Dj

p
Þ
P

i∈D
ni : ðF4Þ

Here, j∂Dj is the length of a side of the square region D.
Within the Gaussian approximation, the expectation value
of the generalized brane correlator is given by

hO1=j∂Dj
D i ≈ eð−π2=2j∂DjÞVarðNDÞ: ðF5Þ

Note that the number fluctuation VarðNDÞ can be sta-
tistically approximated by NðD → Dc=DÞ. Thus, we define
an expression for statistical evaluation of the generalized
brane correlator [15]:

hO1=j∂Dj
pair;D i ¼ eð−π2=2j∂DjÞNðD→Dc=DÞ: ðF6Þ

We numerically find hO1=j∂Dj
pair;D i ≈ hO1=j∂Dj

D i; see Fig. 18.
Furthermore, this statistically evaluated generalized brane
correlator inherits nice properties of the original proposal
[15], such as negligible scaling on the domain size.

1. Proof of constant hO1=j∂Dj
pair;Di in the MI phase

Here, we show that hO1=j∂Dj
pair;D i remains constant in the MI

phase even if we increase j∂Dj. We assume that all
uncorrelated errors are removed already so that all the
remaining flips are correlated.
Let the probability of having one of the paired parity flips

be ε=2. It means that if we find a parity flip with the
probability of ε=2, then there must be another flip corre-
lated with the one we found. In the MI phase of BH model,
or interchangeably the paramagnetic phase of the TFIM,
the off-diagonal two-point correlator decays exponentially,
i.e., hXiXji ∼ e−ji−jj=ξ for some small ξ. We then try to
compute the total number of pairings, which is the
denominator of Eq. (F2). We assume that we pick a parity
flip at i. Then, its pair will be at another site j with the
probability proportional to e−ji−jj=ξ. Since it is exponen-
tially decaying, we may neglect its tail and assume that its
partner is inside the ξ neighborhood of the parity flip at i.
Now, we consider other possible parings: pairings with

other correlated parity flips. The probability of having
another pair of errors at the distance l is ð2πlÞ × ðε=2Þ.
Then, the total weight due to other pairs would be

X∞
l¼0

e−l=ξ × ð2πlÞ × ðε=2Þ × 2 ≈ 2πεe−l=ξ: ðF7Þ

Thus, the total weight is ð1þ 2πεÞe−1=ξ. Then, let us
assume that we pick a parity flip near (< ξ) ∂D inside
of D and the probability of the other parity flip being
outside of D is pcross. If the parity flip is adjacent to the
boundary, then pcross ∼ 1=4. It decays exponentially (e−l=ξ)
as the parity flip becomes farther away. We may neglect
contributions from them. Then, the mean number of
parings crossing the boundary is

NðD → Dc=DÞ ¼ εj∂Dj
4ð1þ 2πεÞe−1=ξ ; ðF8Þ

which is vanishing for small ε.

2. Proof of vanishing hO1=j∂Dj
pair;Di in the SF phase

Let us assume that jDc=Dj ≫ jDj. In addition, let us also
assume that hXiXji ∼m2 þ ð1 −m2Þe−ji−jj=ξ for some
small ξ. Since the correlation between parity flips remains
a finite constant for large ji − jj, one can expect that the
probability of a parity flip D being paired with another
parity flip in Dc=D converges to unity as jDc=Dj increases.
Thus, NðD → Dc=DÞ converges to the number of parity
flips in D, meaning that it is proportional to jDj. Note that
since the probability of having a parity flip on a site is
1=2 − ε for small ε, we have NðD → Dc=DÞ ¼ jD=2j
approximately.

FIG. 18. Tunneling energy (J=U) dependence of the general-
ized brane correlator computed by three different ways: explicit

computation of O1=j∂Dj
D in Eq. (F4), computation via the number

fluctuation exp½−aVarðNDÞ� in Eq. (F5), and computation via the
reconstructed number fluctuation exp½−aNðD → Dc=DÞ� in
Eq. (F6). Here, D is 32 × 32 square region, and a is the constant
of π2=2j∂Dj.
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3. Numerical demonstration

Here, we numerically show that the generalized brane
correlator can indeed be well captured by the reconstructed
number fluctuation NðD → Dc=DÞ [Eq. (F2)]. As a dem-
onstration, we consider the BH model on 64 × 64 square
lattice under the periodic boundary condition with the
sufficiently low temperature (1=T ¼ 32U). We collect
number snapshots from QMC simulations, and using the
snapshots, we compute the generalized brane correlator
[Eq. (F4)]. More precisely, we compute it in three different
ways: (1) direct computation from number snapshots,
(2) approximated computation from the number fluctuation
[Eq. (F5)], and (3) approximated computation from the
reconstructed number fluctuation [Eq. (F6)]. Figure 18
compares expectation values of the generalized brane
correlator with D ¼ 32 × 32 computed from the three
different ways. The total system size is Dc ¼ 64 × 64.
One can see that the Gaussian approximated generalized
brane correlator agrees with the directly computed gener-
alized brane correlator for all J=U. In addition, the gener-
alized brane correlator computed from NðD → Dc=DÞ
also agrees well with the values computed from QMC
simulation.
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