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A number of commercially available quantum computers, such as those based on trapped-ion or
superconducting qubits, can now perform mid-circuit measurements and resets. In addition to being crucial
for quantum error correction, this capability can help reduce the number of qubits needed to execute many
types of quantum algorithms by measuring qubits as early as possible, resetting them, and reusing them
elsewhere in the circuit. In this work, we introduce the idea of qubit-reuse compilation, which takes as input
a quantum circuit and produces as output a compiled circuit that requires fewer qubits to execute due to
qubit reuse. We present two algorithms for performing qubit-reuse compilation: an exact constraint
programming optimization model and a greedy heuristic. We introduce the concept of dual circuits,
obtained by exchanging state preparations with measurements and vice versa and reversing time, and show
that optimal qubit-reuse compilation requires the same number of qubits to execute a circuit as its dual.
We illustrate the performance of these algorithms on a variety of relevant near-term quantum circuits, such
as one-dimensional and two-dimensional time-evolution circuits, and numerically benchmark their
performance on the quantum adiabatic optimization algorithm (QAOA) applied to the MaxCut problem
on random three-regular graphs. To demonstrate the practical benefit of these techniques, we exper-
imentally realize an 80-qubit QAOA MaxCut circuit on the 20-qubit Quantinuum H1-1 trapped-ion
quantum processor using qubit-reuse compilation algorithms.
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I. INTRODUCTION

Current quantum computers are limited by the number
of qubits available for computation. To conclusively
demonstrate the computational advantage of these devi-
ces compared to their classical counterparts on a variety
of practical applications, researchers need to make
efficient use of qubits.
Generally, the process of submitting a quantum circuit to

solve a problem of interest consists of devising a quantum
algorithm, generating the associated quantum circuit,
performing circuit optimization for a quantum device of
interest, submitting to the quantum device, and retrieving
the results. The step of circuit optimization is key on noisy
intermediate-scale quantum (NISQ) devices. Circuit opti-
mization takes many different forms but typically consists
of modifying the gate structure of a quantum circuit to

increase the fidelity of results. Some examples of circuit
optimizations include reducing gate count by simplifying
Clifford subcircuits [1–4], removing redundant gates [3–5],
and using the Cartan decomposition of two-qubit gates [6],
or mapping circuits to a specific quantum device archi-
tecture to decrease potential transport or SWAP gate
costs [3,4,7,8].
An underexplored area of quantum circuit design is that of

qubit reuse. The ability of a quantum computer to perform
mid-circuit measurements and resets enables the reuse of
qubits after resets. Qubit reuse is an essential ingredient of
scalable quantum error correction protocols [9], which
require repeated mid-circuit measurements and resets of
ancilla qubits to measure error syndromes, and is already
available in trapped-ion [10] and superconducting [11] qubit
architectures. Recently, qubit-reuse techniques have been
used to experimentally prepare and time evolve large tensor
network states on trapped-ion quantum computers [12],
to study a nonequilibrium phase transition [13], to
extract critical scalings of quantum systems near a phase
transition [14], to build quantum machine learning models
for sequence classification [15], and to perform entangle-
ment spectroscopy of quantum systems [16].
In this paper, we investigate the qubit-reuse compilation

problem: the task of converting a quantum circuit into an
equivalent circuit that uses fewer qubits via qubit reuse. We
demonstrate two algorithms for performing qubit-reuse
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compilation. The first is an exact algorithm that uses a
constraint programming and satisfiability (CP-SAT) model.
Since this algorithm uses a general-purpose type of model
for solving combinatorial optimization problems, it does
not scale well with qubit number but provides a useful
benchmark for other methods at low qubit number. The
second algorithm is a greedy heuristic that runs quickly up
to large numbers of qubits and scales polynomially with
qubit number.
We benchmark these algorithms numerically on the

quantum approximate optimization algorithm (QAOA)
MaxCut circuits on random three-regular graphs. We also
investigate several examples of highly structured circuits,
including 1D and 2D time-evolution circuits and certain
quantum tensor networks, and solve the qubit-reuse
compilation problem analytically for these cases. Using
our algorithms, we are able to compress an 80-qubit QAOA
circuit into a 20-qubit circuit, which we then experimen-
tally execute on the Quantinuum H1-1 trapped-ion
quantum computer [17], which has high-fidelity and
low-crosstalk mid-circuit measurement and reset capabil-
ities [10], as well as the recently announced [18] support for
arbitrary angle two-qubit rotation gates.
Techniques for executing large quantum circuits on a

smaller number of qubits have been developed previously
in, for example, Refs. [19–24]. Many of these methods are
based on cutting the original circuits into smaller circuits
and specifying a protocol for “knitting” together the results
obtained from the subcircuits. Depending on the way in
which this is accomplished, there can be a number of
drawbacks to this approach. For instance, circuits corre-
sponding to graph problems can be cut by approximately
factorizing the graph by removing special edges. However,
the resulting measurements cannot sample from fully
entangled states and correspond only to approximate
solutions even in the limit of very deep circuits [25].
Methods based on inserting randomized measurements or
Pauli operators circumvent this problem but generally
proliferate the number of circuits exponentially in the
number of cut wires or require distributed networks of
quantum computers to run the resulting cut circuits. See
also Refs. [28,29] for work on compressing the MaxCut
problem by assigning multiple graph vertices to different
Pauli operators acting on the same qubit. Broadly speaking,
while circuit cutting has general applicability to any circuit,
one should expect its most effective use to be restricted to
circuits that nearly factorize, with only a small number of
gates coupling different subsets of qubits.
Our work is novel in that it provides a one-to-one

mapping of a quantum circuit into a single equivalent
circuit that uses fewer qubits and samples from the identical
measurement distribution as the original circuit. The key
underlying technique is not based on circuit cutting but
rather takes advantage of the causal structure of the circuit,
by executing the causal cones of output qubits in a

prescribed order. The causal cone of a measurement
operation consists of the set of operations in the circuit
that influence the distribution from which that measure-
ment samples; see Fig. 2. Causal-cone techniques have
been utilized before in the context of the MaxCut problem
[30,31] to run large graph instances on tensor network
simulators with distributed computing networks and/or
supercomputers. The concept of reusing physical qubits
after they are no longer needed during a computation has
also been discussed before, for example, in Ref. [32], which
selected the next qubit to reuse based on how many qubits
were required to measure it. This work provides a compi-
lation protocol for quantum programs in the circuit model
rather than classical tensor networks and, more importantly,
details sophisticated algorithms that specify optimized
orders in which to execute causal cones. We also use this
technique to execute the full QAOA optimization protocol
on hardware, demonstrating the near-term practical
application of qubit-reuse compilation. In Supplemental
Material [33], we provide visual examples of the effect of
qubit-reuse compilation on some sample application cir-
cuits, which demonstrates what the sequential execution
of causal cones looks like as a complete quantum circuit.
Similar to their use in the execution of classical tensor
networks, we expect causal-cone techniques for qubit reuse
to be most effective in shallow and wide circuits, and we
anticipate qubit reuse to be a useful general-purpose tool
for efficiently using qubit resources in that setting. This lies
in contrast to the general applicability of circuit cutting to
any circuit but is also similar to circuit cutting in the sense
that it is most effective or resource efficient for circuits with
a particular gate structure. Nonetheless, we emphasize that
qubit reuse and circuit cutting are not exclusive techniques
but may potentially be employed in conjunction with each
other to obtain even greater qubit resource reductions.
Two relevant works were posted concurrently with this

work, Refs. [34,35], which also focus on cominimizing
SWAP gate count along with required qubit resources on
IBM systems. Reference [34] presents an algorithm for
qubit reuse that appears functionally identical to our greedy
heuristic, which we show in this work is nonoptimal by
explicit computation of alternative orderings of causal-cone
execution (see Fig. 3 for a simple example of where a
greedy heuristic is not globally optimal). In contrast to
Ref. [34], this work is centrally focused on reducing qubit
resource overhead independent of considerations of the
architecture. In architectures with limited qubit connectiv-
ity, such as all current superconducting architectures,
maximally reducing the number of required qubits may
increase the SWAP gate overhead. Reference [35] also
presents a general-purpose algorithm for reducing qubit
resources from a different perspective. The algorithm in
Ref. [35] starts with an initial quantum circuit and iter-
atively chooses a qubit to reuse, reducing the required
number of qubits by one each time. This algorithm is a
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greedy method that attempts to reduce the size of a circuit
until it fits within a desired user-specified limit. Our work
can be viewed as additionally providing methods to specify
the order in which qubits should be iteratively chosen for
reuse such that the qubit resource savings can be maxi-
mized, although we take a perspective in which the qubit-
reuse compiled circuit is built up through sequential
execution of causal cones rather than obtained through
iterative reduction of the original circuit.
We emphasize that, although our experimental demon-

stration is performed on the Quantinuum H1-1 trapped-ion
quantum processor, the algorithms described in this work
are not architecture-specific. Our qubit-reuse compilation
can be applied to quantum programs targeting any archi-
tecture with any connectivity for the purpose of minimizing
required qubit number. In the case of limited connectivity,
the compilation simply must be applied before SWAP gate
insertion and other routing compilation passes.
Although our techniques are designed with the limita-

tions of current architectures in mind, we note that qubit-
reuse compilation is not limited to the NISQ era. Owing to
the large overhead of physical qubits required to encode a
single logical qubit in quantum error correction, early fault-
tolerant quantum computers are also starved for logical
qubits. Qubit-reuse compilation works equally well in that
setting, with physical qubits and gates replaced by their
logical equivalents. In any case, regardless of the physical
or logical qubit number supported by architectures in the
future, we envision that qubit reuse can generally provide
benefits analogous to the use of causal structure in classical
tensor network techniques to exchange time and memory
overheads. That is, at any fixed qubit count, qubit reuse can
potentially enable the solution of larger problems than
supported on hardware.
The rest of this paper is organized as follows. In Sec. II,

we introduce the concept of qubit-reuse compilation using
causal cones. In Sec. III, we present exact and heuristic
algorithms for determining the order in which to implement
causal cones in a quantum circuit, to attempt to minimize
the number of qubits needed to implement the compiled

circuit. We also introduce the concept of a dual circuit,
show that the same number of qubits are required to
implement the optimal compression of a circuit and its
dual, and describe how this can be used to potentially
improve heuristic algorithms for qubit reuse. In Sec. IV,
we study certain structured quantum circuits analytically,
providing exact results for the number of qubits required to
optimally compress these circuits. In Sec. V, we benchmark
the run-time and performance of our qubit-reuse algo-
rithms, applied to MaxCut QAOA circuits at different
depths as well as to computing local correlation functions
of some circuits that we study analytically in the previous
section. In Sec. VI, we experimentally demonstrate the
practical value of qubit-reuse compilation applied to
MaxCut QAOA by solving an N ¼ 80 MaxCut problem
using the 20 physical qubits available on the Quantinuum
H1-1 trapped-ion quantum computer. We conclude with
remarks in Sec. VII, in particular, focusing on the impacts
of noise in qubit-reuse compiled circuits.

II. QUBIT REUSE VIA MID-CIRCUIT
MEASUREMENT

The key principle underlying the ability to measure
and reuse qubits to reduce qubit number overhead is the
fact that in many cases only partial execution of a circuit
encoding a quantum program is required to measure a given
qubit, at which point that qubit can potentially be reset to
play the role of a different logical qubit elsewhere in the
circuit. Figure 1 demonstrates how a qubit that is no longer
required to implement the remainder of a circuit can be
measured, reset, and reused as a different logical qubit.
Specifically, the measurement of a given qubit’s quan-

tum state depends only on operations in its past causal
cone (defined in the previous section). Exploiting the
causal structure of quantum circuits in quantum simulation
is a technique frequently utilized in classical tensor net-
work methods, such as those based on the multiscale
entanglement renormalization Ansatz (MERA) [36], and
has been recently applied to numerous quantum extensions

FIG. 1. On the left, the lowermost qubit is not used until after crossing the shaded gray region, while the adjacent qubit is no longer
used after that region. The overall circuit can be executed using one fewer qubit using mid-circuit measurement and reset, as depicted on
the right.
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of tensor-network methods for both many-body physics
and machine learning [12,13,37–43] and to several exam-
ples of variational quantum algorithms in Refs. [44–46].
However, to the best of our knowledge, previous

examples of compression based on qubit reuse executed
on hardware have proceeded by inspection of circuits with
particularly simple structure, without a general framework
for automating the compilation of a circuit to run on fewer
qubits. In this work, we develop algorithms that determine
an order for measuring and reusing qubits based on their
causal cones within a quantum circuit. Figure 2 illustrates
how a given output qubit depends causally on a restricted
subset of input qubits.
The process of compiling a given quantum circuit into a

circuit with fewer qubits is performed in two steps. (i) We
determine an order in which to measure and reset the
qubits in the original circuit. This order can be determined
numerically by the algorithms we describe below, which
aim to globally minimize the number of qubits required to
run the final circuit, or can be determined analytically.
(ii) We use the determined measurement order to rewrite
the original circuit into a smaller circuit by measuring and
resetting the qubits in the desired order. We emphasize
that any measurement order can be used in (ii), so one
does not need to restrict oneself to minimizing the qubit
number but can instead determine measurement orders
that optimize more complicated objectives, e.g., objec-
tives that strike a balance between minimizing hardware
errors and minimizing qubits on a noisy qubit-limited
device. Both (i) and (ii) are fully automated and integrated
into a software package used to produce the numerical
results discussed in this work.
We note that a circuit C and any version of that circuit

obtained by compression via qubit-reuse compilation,
RðCÞ, do not generate equivalent operators on a set of
qubits (they do not even act on qubit sets of the same size).
Rather, their equivalence is in the restricted sense that they
produce measurement data drawn from identical distri-
butions, which we denote as RðCÞ ≅ C. This equivalence

is fairly strong, in that no classical postprocessing of the
circuit output can distinguish RðCÞ from C. However,
quantum postprocessing of the state generated prior to
measurement in C (i.e., extending the circuit C to include
more gates) cannot generally be carried out in an
equivalent fashion on RðCÞ, since RðCÞ never actually
produces the quantum state generated by C immediately
prior to measurement.
We also point out that a given quantum circuit C and its

compressed version RðCÞ contain an identical set of gates
only in the case that the target device architecture supports
interactions between arbitrary qubits, i.e., is fully con-
nected. In architectures that support only nearest-neighbor
or similar interactions, both the circuit and its compressed
version generally require the insertion of SWAP gates to
execute, and the location and number of these SWAP gates
might not be the same in both the circuit and its compressed
version. See Refs. [34,35] for some considerations of
SWAP-aware qubit reuse.

III. ALGORITHMS FOR OPTIMIZING
QUBIT REUSE

A. Exact solution by constraint programming

The problem of minimizing the required number of qubits
to execute a given quantum program can be formulated in the
language of a CP-SAT problem. The optimization version
of CP-SAT is formulated as the minimization of an objective
function subject to a set of equality and inequality constraints
as well as (potentially) a set of conditional constraints.
By formulating the qubit-reuse compilation problem as a
CP-SAT problem, we can use existing solvers to find
globally optimal solutions. While in the worst case these
solvers run in time superpolynomial in the problem size, they
can be used to obtain exact solutions for small quantum
circuits or to find approximate solutions for larger circuits by
constraining the run-time.
Suppose that we are given a quantum circuit defined

on N qubits and wish to determine a measurement order of

FIG. 2. Identification of the causal cone of the output qubit q2 in the displayed quantum circuit, consisting of the set of operations that
influence the distribution sampled by measurements of q2. Measuring and resetting q2 requires only gates executed between the four
input qubits fq1; q2; q3; q4g, after which q2 can be reset and reused as q5.
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the N qubits that allows us to execute the program on
(possibly) fewer than N qubits by measuring, resetting, and
reusing certain qubits.Wedefine the followingproblem input
data:

q∈Q∶ qubits in the circuit;

t∈T∶ indexes the order in which the qubit causal cones

are executed and measured;

Cq∶ set of qubits initialized in the causal cone of

the measurement of qubit q:

Here, q∈Q ¼ f1;…; Ng indexes the original set of N
qubits Q, while t∈T ¼ f1;…; Ng indexes the order in
which each of the causal cones of the measurements of the
N original qubits are implemented. At each step t, one qubit
is measured and reset. Note that t is not necessarily related
to any notion of time in quantum circuits like the number of
layers of two-qubit gates applied to the input state. To “run
the circuit up to step t” means to apply only the operations
in the causal cones of all measurements performed in
steps 1; 2;…; t.
The optimization model for the qubit-reuse problem is

defined in terms of two sets of N2 binary variables and an
integer-valued cost function C to be minimized:

mqt∈f0;1g∶ qubit q is measured at step t or not;

cqt∈f0;1g∶ qubit q is initialized in a causal cone of any

measurement performed at t0 ≤ t and qubit q

has not been measured yet before step t;

otherwise not

C∈Zþ∶ maximum number of qubits used to execute

the circuit:

The variable mqt tracks when qubits are measured.
The variable cqt keeps track of which qubits are required
to execute the circuit up to step t. The above descriptions
of the variables mqt and cqt and the cost function C are
enforced by the constraints in the model.
In words, the constraints are

(C.1) The number of qubits required to run the circuit is
the maximum over the number of qubits required to
execute the causal cones up to any given step.

(C.2) If qubit q is measured at step t, then all of the qubits
in the causal cone of q must be active at or before
step t.

(C.3) If a qubit is required to run the circuit up to step
t − 1, it is either measured at step t − 1 or remains an
active qubit at step t.

(C.4) If qubit q is measured at step t, it is initialized in at
least one causal cone of a measurement performed at
or before step t [47].

(C.5) If qubit q is measured at step t, then it is no longer
needed to run the circuit subsequently [48].

(C.6) Each qubit is measured exactly once.

(C.7) Only one qubit is measured at each step.

The technical statement of each of these constraints can be
found in Supplemental Material [33]. We emphasize that,
without the constraints, the binary variablesmqt and cqt have
no meaning; the purpose of the constraints is to provide a set
of equality, inequality, and conditional constraints on these
variables that correspond to the physical problem of interest.
For example, constraint (C.1) defines the cost function C in
terms of a certain sum of cqt variables that corresponds to the
number of qubits you need to implement the circuit up to a
certain step t. The cost function of interest is the number of
qubits you need to run the circuit, which, in turn, is the size of
the worst-case (maximum) number of qubits needed to run
the circuit at any step.
We solve the model specified by minimization of the

objective function subject to the constraints (C.1)–(C.7)
using the CP-SAT solver provided by Google’s open-
source OR-Tools package [49]. This solver employs con-
straint programming techniques combined with SAT solv-
ing techniques to solve the problem exactly and is well
suited for problems with binary variables [50]. It is also
possible for the solver to return the best value of the
objective found respecting the constraints within a given
time limit and to seed the solver with a “hint” solving the
constraints at a nonoptimal value of the objective. However,
our numerical experiments indicate that for this particular
problem the search space is sufficiently large that typically
either (a) the solver produces an exact solution or (b) the
solver cannot find a feasible solution or improve upon a
hint in a reasonable amount of time, depending on the size
of the problem instance. Using the output of the CP-SAT
model, it is straightforward to extract the prescribed
measurement order of the output qubits by examination
of the variables mqt: At step t (index t in the measurement
order), measure the unique qubit q for which mqt ¼ 1.

B. A local greedy heuristic algorithm

Although the CP-SAT model furnishes an exact solution
to the qubit-reuse compilation problem, it scales poorly
with qubit number, as it involves OðN2Þ variables and
OðN4Þ constraints with nontrivial structure, which becomes
prohibitive in the N ≈ 100–1000 qubit regime that will be a
near-term proving ground for quantum computers. For
practical purposes, it is, therefore, important to develop
heuristic algorithms that can produce useful approximate
solutions in a reasonable amount of time. In this section, we
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describe a local greedy algorithm that accomplishes this.
Later, we show that this greedy heuristic is extremely
effective (and often exact) for many circuit structures of
near-term relevance.
Using the variables defined in the previous section, the

local greedy algorithm proceeds as follows:
(1) First, measure the qubit q with the fewest number of

input qubits in its causal cone Cq.
(2) Next, measure the qubit q0 whose causal cone Cq0

adds the fewest new input qubits to Cq.
(3) Repeat step (2), successively choosing the next qubit

q00 to measure as the qubit whose causal cone Cq00

adds the fewest new input qubits to the union of all
causal cones of qubits measured so far.

A simple improvement of this heuristic algorithm that we
also study employs a brute-force search over the possible
choices of first qubit, at the expense of a multiplicative
OðNÞ time complexity. That is, instead of first choosing the
qubit with the fewest number of input qubits in its causal
cone, consider all possible choices of initial qubit. For each
possible initial qubit, use steps (2) and (3) above to
iteratively construct the full measurement order. Then,
select the ordering that required the fewest number of total
qubits to execute the program. As numerical results
substantiate, this small modification significantly improves
the amount of compression achieved by qubit reuse with
only a modest performance penalty. Though we do not
explore it in this work, one could also perform a brute-force
search over the first k qubits in the measurement order,
which would multiply the run-time overhead by OðNkÞ.

C. Dual circuits

Consider any circuit C that involves quantum gates, state
preparations, and measurements, where the state prepara-
tions and measurements can be interspersed arbitrarily
within the circuit (qubits can also be traced out at the
end of the circuit, which we regard as measurement with
the result discarded). A circuit C⋆ that can be written by
replacing all state preparations in C with measurements
and all measurements in C by state preparations, and then
reading the circuit from right to left, is referred to as dual
to C. In this section, we describe an additional potential
optimization that can be applied on top of any heuristic
algorithm for causal-cone execution order, using the dual
circuit to a given circuit. This optimization is optional, and
the previously described algorithms are independent of its
utilization. Namely, for any quantum circuit, one can apply
any given algorithm for qubit reuse to both a circuit as well
as its dual. In some cases, including the case in Fig. 3, it is
possible for better compression of the dual circuit to be
achieved, and, since dualization commutes with compres-
sion, this provides an ordering of the causal-cone execution
that yields a better compression of the original circuit.
The compression of C via qubit reuse into RðCÞ can be

understood as the following procedure: (i) move all state

preparation operations as late in time as possible, (ii) move
all measurement operations as early in time as possible, and
(iii) for each measurement, optionally connect the asso-
ciated qubit wire to a state preparation occurring later in
time, thus reducing the number of required qubits. Note that
the only rule one must obey in this procedure is to never
move two operations past each other in time if they have
shared support. Performing this compression from C to
RðCÞ using the greedy heuristic is shown as Figs. 3(a)–3(c).
We can also compress the dual circuit C⋆ into RðC⋆Þ
[Figs. 3(b)–3(d)], at which point we are free to replace all
measurements and state preparations inRðC⋆Þ according to
the replacements mapping C⋆ → C in order to generate
a new circuit RðC⋆Þ⋆ [Fig. 3(e)]. Note that RðC⋆Þ⋆ could
have been obtained directly from C by obeying the
compression rules, since respecting time ordering allows
all the same rearrangements and rewiring for either a circuit
or its dual. As a result, we have the general relation

RðCÞ ≅ RðC⋆Þ⋆:

TimeTime

FIG. 3. (a) A five-qubit quantum circuit C. (b) The dual circuit
C⋆ of circuit C, with time flowing in the opposite direction and
with exchanged measurements and resets. (c) The compressed
version RðCÞ of circuit C, after applying the greedy qubit-reuse
heuristic, which involves four qubits. (d) The (greedily) com-
pressed version RðC⋆Þ of circuit C⋆. (e) The dual circuit of
RðC⋆Þ, which involves only three qubits as opposed to the four in
RðCÞ [see (c)].
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Note that this equivalence implies that the optimally
compressed version of C must always contain the same
number of qubits as the optimally compressed version of
C⋆. However, nonoptimal techniques, such as the greedy
heuristic described above, need not necessarily return the
same level of compression on a circuit and its dual, as
evidenced by comparing Figs. 3(c) and 3(d). This implies
an immediate optimization for any heuristic: One should
always apply it to both the circuit in question and its dual,
and if its dual is more compressible, one should accept
RðC⋆Þ⋆ [Fig. 3(e)] over the less efficient direct compres-
sion RðCÞ [Fig. 3(c)].

IV. ANALYTIC RESULTS FOR QUBIT-REUSE
COMPILATION

For certain classes of circuits, it is possible to analytically
write down measurement orders that achieve significant
compression of the circuit by exploiting its underlying
structure and symmetries. We emphasize that these meas-
urement orders can, in principle, achieve better compression
than the approximate numerical algorithms discussed above
in certain cases. For several of the circuits discussed below,
the analytical measurement order is identical to that pro-
duced by the local greedy heuristic and can be shown to be
optimal. This demonstrates that in many cases of practical
interest the greedy heuristic is exact and quantifies the
scaling (with qubit number) of the compression it achieves.

A. Local brickwork circuits in 1D

The first class of circuits we consider are one-
dimensional brickwork circuits, composed of k alternating

even-odd layers of two-qubit gates acting with periodic
boundary conditions on N qubits, shown in Fig. 4.
These circuits appear naturally when simulating local 1D
Hamiltonians, and qubit reuse in such linear circuits has
been explored previously in the context of quantum matrix
product states [37,41,51–53] and their time evolution [12].
For this particular circuit, we show that the optimal

measurement order is the simple linear order mqt ¼
δq;ðq0þtÞ mod N with an arbitrary initial qubit q0. After k
layers (where here each “layer” includes successive appli-
cation of both a row of “even” gates and a row of “odd”
gates), each qubit’s causal cone is of size 4k, as illustrated
in Fig. 4 for k ¼ 3. For example, the causal cone of qubit
q ¼ 2k includes input qubits 1;…; 4k. For the linear
measurement order with q0 ¼ 2k, we first measure qubits
q ¼ 2k and q ¼ 2kþ 1, which participate in the same final
gate and have the same past causal cone consisting of the 4k
qubits q ¼ 1;…; 4k. As already mentioned, measuring any
single output qubit requires 4k qubits (to initialize the past
causal cone of any single output), so the circuit cannot be
compressed to less than 4k qubits. It is now easy to show
that a linear measurement order uses exactly 4k qubits,
implying optimality: After measurement of q ¼ 2k and
q ¼ 2kþ 1, we can reset and reuse these two qubits as
input qubits 4kþ 1 and 4kþ 2. Then, we are free to
execute the green gates in Fig. 4 and then measure qubits
q ¼ 2kþ 2 and q ¼ 2kþ 3 at the output. We then reset
and reuse them as input qubits 4kþ 3 and 4kþ 4, execute
the purple gates, and proceed this way until we measure
qubits q ¼ 2k − 2 and 2k − 1, never needing additional
qubits beyond the initial 4k used to measure the first two
qubits. Note that we assume that 4k < N, since otherwise

FIG. 4. Qubit reuse in one-dimensional brickwork circuit with k ¼ 3 layers, where time flows upward by convention. The output
qubits labeled 2k and 2kþ 1 (blue) are measured first and reused as input qubits 4kþ 1 and 4kþ 2. Those input qubits are subsequently
used to implement the green causal cone and measure the green output qubits 2kþ 2 and 2kþ 3, which are reused as the purple input
qubits, and so on.
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each qubit’s causal cone spans the entire chain and it is not
possible to reuse qubits. We assume periodicity in this
section to enforce translation symmetry, which allows the
initial qubit q0 to be chosen arbitrarily. However, there is no
substantial change in the result by relaxing this symmetry;
the initial qubit in this case must be chosen at one edge of
the linear chain.
In general, for the one-dimensional brickwork circuits,

there are many degenerate measurement orders that pro-
duce the same result of 4k qubits required to execute the
compressed circuit. This is because, for any pair of qubits i
and iþ 1 that are measured, the next causal cone can be
chosen to measure iþ 2 and iþ 3 or i − 1 and i − 2,
proceeding to the right or left down the linear chain,
respectively. We expect that this choice can have an impact
on the memory errors incurred on qubits which have not yet
been measured. For example, proceeding linearly down the
chain results in qubits at the beginning remaining live for
the entire duration of the circuit, whereas alternating back
and forth measuring qubit pairs on either side of the initial
pair avoids this but slightly increases the average active
time of each qubit. Examining the consequences of such
trade-offs is a subject of future study.

B. Local brickwork circuits in 2D

It is instructive to understand how the compression
of local brickwork circuits generalizes to interactions in
higher dimensions. We now examine two-dimensional
local brickwork circuits, that is, brickwork circuits where
gates are applied between adjacent qubits laid out on a
square grid. The analysis in two dimensions demonstrates a
general result that OðNd−1Þ qubits are required to execute
a circuit that is originally defined on OðNdÞ qubits in d
dimensions, which becomes substantially harder to visu-
alize and analyze in d > 2.
Consider a two-dimensional brickwork circuit composed

of k layers of gates staggered horizontally and vertically
with periodic boundary conditions on an N × N grid of
qubits as shown in Fig. 5. Here, as in the one-dimensional
case, a “layer” refers to the 2d ¼ 4 total rows of oddþ even
gates in each dimension. For this circuit, the causal cone of
each output qubit can be interpreted as a pyramid contain-
ing 4k × 4k ¼ 16k2 input qubits (Fig. 5). Here, we describe
a particular measurement order that performs the optimal
qubit reuse for the 2D brickwork circuit. For simplicity, we
assume that N is even and that 4k < N; we explain how to
generalize the result to nonsquare lattices without this
bound on k at the end.
Again, due to translational symmetry, the first qubit q0 to

be measured is arbitrary. Furthermore, it is straightforward to
check that the qubits on the lattice can be partitioned into
groups of four that all share the same causal cone (Fig. 6).
Consequently, a greedy approach again is optimal, since
adjacent qubits either share identical causal cones or their
causal cones are simply geometrically shifted along the

lattice and heavily overlapping. The most straightforward
strategy to count the number of qubits required to implement
the greedy algorithm in this case is to tile the lattice column
by column, by measuring blocks of four adjacent input
qubits. After completing a column, one measures a block of
four output qubits in the adjacent column and proceeds to tile
that column. This process repeats until the entire lattice has
been measured; see Fig. 6 for a clarifying depiction.
We now proceed to count the number of qubits required

to implement the brickwork circuit on the 2D lattice
according to the process detailed above. As discussed,

FIG. 5. The causal cone of a single qubit after k ¼ 1 layer of
local gates is applied in two dimensions. Read with time flowing
from top to bottom, the red coloring of the qubits indicates how
causal influence propagates between qubits after each row or
column of two-qubit gates is applied. After k layers, the causal
cone of the initial qubit expands to a size of 16k2 at the bottom.
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the first causal cone requires 16k2 input qubits to measure
the first four output qubits (Fig. 6, top left). The next causal
cone reclaims another four output qubits and requires an
additional 8k inputs, of which four are reused from the
previous step (Fig. 6, top right). This process repeats until
an entire column has been tiled by causal cones, and the
last sets of four output qubits in the column are obtained
for free, since their causal cones fully overlap with causal
cones of previously measured qubits (Fig. 6, bottom left).
After the very first causal cone, one requires N=2 − 2k
additional causal cones to tile a single column before the
subsequent causal cones are completely overlapping.
Consequently, the last 2k − 1 causal cones each reclaim
four qubits for free, which yields 4ð2k − 1Þ þ 4 ¼ 8k
qubits available for reuse in the next column after complet-
ing a single column, where the extra 4 comes from the last
causal cone before overlaps occur.
In total, therefore, measuring the 2N output qubits

corresponding to a single column of causal cones requires
the following number of simultaneously active input qubits:

16k2 þ ð8k − 4ÞðN=2 − 2kÞ ¼ ð4k − 2ÞN þ 8k: ð1Þ

When we proceed to the next column and repeat this
process, the next causal cone requires 8k input qubits
(Fig. 6, bottom right). This conveniently exactly matches
the number of qubits reclaimed for reuse at the end of
the previous column, so no new qubits are required.
Furthermore, this causal cone reclaims four output qubits,
and each subsequent causal cone in the new column
requires only four additional input qubits, not 8k (see
Fig. 6, bottom right—the reason is that the causal cones
now overlap on two sides). Therefore, the entire column
can be measured without use of any additional input qubits,
as can all subsequent columns. The last few columns
overlap, but this can only reduce the required overhead.
In summary, therefore, the number of qubits required to

execute the circuit containing only the causal cones that
tile the first column is the same as the number of qubits
required to execute the entire circuit. This number is, from
Eq. (1), ð4k − 2ÞN þ 8k.
In the slightly more general case that the lattice is not

square and is instead Nx × Ny with both Nx, Ny even, the
same argument applies where N in Eq. (1) should be
replaced with the dimension that you first choose to tile

FIG. 6. Top left: the 16 input qubits in the shared causal cone (light blue) of the four white qubits, for k ¼ 1 layer of gates. Top right:
The greedy algorithm dictates that the next four output qubits to be measured are the four white qubits directly below the first four. Their
causal cone extends the required set of input qubits downward by two (light blue). Bottom left: The four qubits in the middle of the last
causal cone in a complete column can be measured for free without any additional qubits. Bottom right: Extending to the next column
over requires eight new qubits (light blue, right-hand side), but eight qubits are available for reuse from the previous column.
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with causal cones. To minimize the overhead, therefore,
you should choose the shorter dimension first, replacing N
with minðNx; NyÞ above.
In the case that 4k > minðNx; NyÞ, the counting argu-

ments above are slightly modified, since the size of each
causal cone already spans one or more dimensions.
Performing the same counting procedure taking this into
account yields the following general formula for the
compiled qubit number:

ð4k − 2Þ minðNx; NyÞ þ 8k; 4k < minðNx; NyÞ
NxNy; 4k > maxðNx; NyÞ
4kminðNx; NyÞ; otherwise:

C. Matrix product state preparation

We continue by studying circuits implementing quantum
tensor networks, which provide broadly useful Ansätze for
representing various types of entangled quantum states.
The simplest example of applying qubit reuse to a quantum
tensor network circuit occurs in the context of matrix
product state (MPS) preparation.
As shown in Ref. [54], by restructuring an N-site MPS

into a suitable canonical form, it can always be interpreted
as a quantum circuit in which a register with Hilbert space
dimension χ (representing the bond space of the MPS)
sequentially interacts with N qubits (representing the
physical legs of the MPS). Therefore, an MPS can always
be constructed using N þ ⌈ log2 χ⌉ qubits, as displayed in
Fig. 7. As discussed in Refs. [39–41], owing to the
sequential nature of the interactions between the ancilla
register and the N physical qubits, the full output of an
MPS can be sampled with only 1þ ⌈ log2 χ⌉ qubits by
resetting and reusing a single physical qubit after each local
measurement.

D. Tree tensor networks

A more complex generalization of the one-dimensional
entanglement generated by an MPS is provided by the tree

tensor network (TTN), defined by placing isometries on the
nodes of a binary tree, shown in Fig. 8. A depth-D binary
TTN generates a state of 2D qubits and can be written as a
circuit by embedding the isometries into unitaries. To
determine how many qubits are required to sample the
output of a general binary TTN, we suppose that N qubits
are required to sample the output of a depth D TTN and
proceed inductively, as suggested in Ref. [39]. A depth
Dþ 1 TTN is built by introducing a new top tensor and
attaching a depth D TTN to each of its two outputs.
Assuming for simplicity a bond-dimension of 2 (though
this argument can extended to higher bond dimension), the
output of the full depth Dþ 1 TTN can be sampled by first
inputting two qubits into the unitary representing the top
tensor, after which point one qubit is idly waiting at the top
of both depth D TTNs sitting immediately below it. By
assumption, the output of one depthD TTN can be sampled
with N − 1more qubits, since one qubit is already provided
by the output of the top tensor. After sampling one of the
two depth D TTNs, the same N − 1 qubits can be reused to
sample the output of the second. Thus, the full depthDþ 1
TTN can be sampled using 2þ N − 1 ¼ N þ 1 qubits.
Since a D ¼ 1 TTN can be sampled using two qubits, by
induction it follows that the output of a depthD TTN can be
sampled using Dþ 1 qubits.
Any TTN circuit can also be viewed as a coarse-graining

procedure that converts an N-qubit input into a small
number of qubits at the top of the network; in this mode
of operation, TTNs form natural classifiers [39]. For
classical (product state) input data, the TTN classifier
circuit is dual to the TTN generator circuit and, thus,
can also be executed using Dþ 1 qubits.

E. Multiscale entanglement renormalization Ansatz

The MERA extends the treelike architecture of a TTN by
adding unitary disentanglers between neighboring branches

FIG. 7. The MPS preparation circuit onN qubits, using an MPS
with nb ¼ ⌈ log2 χ⌉ bond qubits, where χ is the bond dimension.
Since the state preparation circuit consists of sequential gates
applied to each of the physical qubits, the circuit can be rewritten
using only 1þ nb qubits by sequentially measuring and resetting
each physical qubit.

FIG. 8. A depth-4 TTN generating a state on 16 output qubits,
read top to bottom. Each of the two legs of the topmost tensor
connects to a depth-3 TTN as referenced in the text. Dots
correspond to qubits initialized to j0i and squares to unitary gates.
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of the tree. Read from top to bottom as shown in Fig. 9 and
interpreting the isometries as unitaries acting on additional
initialized input qubits, one can view a MERA as a circuit
that takes in N qubits initialized in j0i and outputs the
N-qubit state at the bottom of the MERA. It is known to be
a compact and efficiently contractible TN ansatz for critical
states of matter [36].
For a MERAwith open boundary conditions, the greedy

measurement order is optimal for compressing the circuit.
To see this, begin by executing the past causal cone of the
leftmost qubit, which requires only Dþ 1 input qubits and
returns one to the “reuse queue” of qubits that have already
been measured and are available for reset and reuse. The
next step in a greedy approach is to implement the non-
evaluated portion of the causal cone of the next two qubits
from the left, which requires only D − 1 qubits, one of
which is borrowed from the reuse queue. In this way, the
first three outputs can be measured using 2D − 1 qubits,
leaving two qubits in the reuse queue. It can be checked
that any other choice of the first measured qubit would
have required at least 2D − 1 qubits. Sequential qubits are

measured in pairs going down the line, which we index
starting with the fourth and fifth qubit being P1, and we
denote the queue size at prior to measuring P1 byQ1. If one
proceeds greedily from left to right evaluating the causal
cones of pairs Pn¼2;3;…, the minimal required set of
isometries for each pair is shown in Fig. 9 using color
coding. We denote the size of the set of isometries required
to measure Pn by Sn, which sets the number of qubits
required to measure that pair. The sequence S is known as
the ruler function [55], and each value Sn can be interpreted
as the positions of the most significant bit (reading the least
significant as the first) that gets flipped when incrementing
from the binary representation of n − 1 to that of n. Denote
by Δn the number of qubits added to the reuse queue by
measuring all pairs up to the one corresponding to the first
instance of nþ 1 in the sequence S. For example, Δ1 is
obtained by executing the causal cone of pair P1, which
requires one qubit, and then returning P1 to the reuse
queue, such that Δ1 ¼ −1þ 2 ¼ 1. One can show that Δn
obeys the recursion relation Δn ¼ 2ðΔn þ 1Þ − n, which is
satisfied (with proper boundary condition Δ1 ¼ 1) by the

FIG. 9. A section of an open boundary MERA circuit, with time going from top to bottom. Dots correspond to qubits initialized to j0i
and squares to unitary gates (gates with an incoming j0i are isometries, while the others are disentanglers). Different colors of gates
correspond to different causal cones of the output qubits at the bottom of the diagram. Output qubits come in pairs, which we label from
left to right, with the fourth and fifth qubits from the left corresponding to pair P1. The Sn values indicate how many new isometries (and,
therefore, new j0i qubits) need to be added to produce the causal cone of the qubits in pair Pn. The Qn values specify how many qubits
are available for reuse from previously prepared causal cones.
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solution Δn ¼ n. Given thatQ1 ¼ 2 qubits are in the queue
prior to the evaluation of P1 ’s causal cone, this ensures that
there will always be nþ 1 qubits in the reuse queue at the
first occurrence of n in S (e.g., Q2j−1 ¼ jþ 1, black arrows
in the figure), such that we always have enough qubits in
the reuse queue to execute the next causal cone without
adding new qubits. As we approach the right boundary of
the MERA, there are times when fewer qubits are needed
than suggested by this argument, but that only works in our
favor. Thus, we can sample the full output with only the
2D − 1 qubits required to measure the first three qubits.

F. Quantum convolutional neural networks (QCNN)

By embedding each isometry into a unitary and either
postselecting on or discarding the padded outputs, any
MERA can be read from bottom to top as a circuit that
coarse grains an N qubit state, outputting a small number of
qubits at the top. This view lends itself naturally to the
problem of classifying quantum data and forms a natural
quantum generalization of the convolutional neural net-
work [56]. Note that the QCNN, as originally defined,
involves classical feed-forward on measurements of padded
qubits exiting the isometries; this does not change the
causal structure of the MERA and can be ignored for our
purposes. More generally, the conditional probabilities for
measurement outcomes at the top of the QCNN do not
change if we replace the measurement conditioned gates
with quantum controlled gates, compile those gates into the
unitary embedding of the isometry, and trace out the control
qubit(s). Assuming product-state inputs, this construction
of a QCNN is exactly the dual circuit of the corresponding
MERA and, thus, can also be executed using 2D − 1 qubits
in the worst case. However, we point out that the practical
use of the QCNN to classify quantum data typically
assumes the initial existence of a global many-body
quantum state defined on N ¼ 2D qubits rather than
product-state inputs; in this case, the extent of qubit
compression that can be accomplished depends on the
entanglement structure of the input state.

G. Bernstein-Vazirani algorithm

The Bernstein-Vazirani (BV) algorithm solves the fol-
lowing problem: Given a function f∶f0; 1gN → f0; 1g
which is defined by a hidden bit string s by fðxÞ ¼ s · x
(mod 2), find the bit string s. The algorithm relies on the
ability to query an oracle for the function f, so that
classically N function calls (on the N unique bit strings
which are zero everywhere except for one register) are
required to learn f. In the quantum case, the physical
implementation of the unitary operator encoding the oracle
typically requires knowledge of the hidden bit string in
advance, in which case the BV algorithm implemented
as such is not a practical demonstration of quantum
supremacy but rather a theoretical demonstration that given

access to a true oracle only one query suffices in the
quantum case (see Fig. 10).
It is well known [11,57] that the BV algorithm can be

implemented using only two qubits using mid-circuit
measurement and reuse. In this section, we simply state
how this known result follows from the causal-cone
framework presented in this paper. Namely, none of the
register qubits interact in the BV algorithm in the typical
realization of the unitary oracle. Consequently, the causal
cone of every register qubit contains input qubits that
consist only of itself and of the shared ancilla qubit.
Consequently, the BV algorithm defined on any number
of qubits can always be executed using only two physical
qubits. One physical qubit is used as the ancilla qubit and
persists for the duration of the computation, while the other
physical qubit represents a single register qubit. After the
unitary oracle function is applied to the two qubits, the
register qubit can subsequently be measured and reused as
the next register until all registers are exhausted.
The analytic results of this section are summarized in

Table I. The general effect of qubit-reuse compilation can
be described as a sort of generalized holographic quantum
dynamics for local physics and tensor network circuits, in

FIG. 10. The Bernstein-Vazirani circuit on eight qubits, with
the unitary oracle explicitly decomposed for the example of the
hidden bit string 11101011. Note that, following the standard
convention for encoding measurement bit strings, the bottommost
qubit represents the leftmost bit in the string.

TABLE I. The minimum number of qubits required to execute
certain structured quantum circuits after qubit-reuse compilation.
For the k-layer brickwork circuits, we assume that 4k is smaller
than all dimensions.

Algorithm Original qubit no. Compiled qubit no.

k-layer brickwork 1D N 4k
k-layer brickwork 2D N2 ð4k − 2ÞN þ 8k
MPS, bond dim. χ [41] N þ ⌈ log2 χ⌉ 1þ ⌈ log2 χ⌉
Depth-D binary TTN 2D Dþ 1

Depth-D binary MERA 2D 2D − 1

Depth-D binary QCNN 2D 2D − 1

Bernstein-Vazirani N 2
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that the scaling of the compiled qubit number is parametri-
cally less than that of the original circuit.

V. NUMERICAL EXPERIMENTS AND
BENCHMARKING

We expect many practical examples of circuits on which
qubit reuse may be helpful to lie outside of the analytically
tractable categories discussed in the previous section. To
this end, in this section, we numerically study the amount
of compression that can be achieved in the QAOA. We
study the algorithmic time complexity (run-time) and
solution quality (compiled qubit number) for QAOA
MaxCut circuits at various depths on random unweighted
three-regular (U3R) graphs. MaxCut on random U3R
graphs is a standard benchmarking case for QAOA on
near-term quantum devices (see Refs. [58–60] for some
recent investigations of QAOA on hardware), since the
number of gates matches the number of edges in the graph
and scales only linearly with the number of vertices. In
general, MaxCut QAOA is an ideal near-term algorithm
for qubit reuse, as it is a shallow, wide circuit with fairly
sparse gate connectivity, so the typical size of causal
cones can be expected to be small relative to the size of
the original set of qubits.
The QAOA unitary [61] takes the form of alternating

applications of a mixing unitary UBðβnÞ ¼ e−iβnHB and a
phase-splitting cost unitary UCðγnÞ ¼ e−iγnHC :

Uðβ⃗; γ⃗Þ ¼
Yp

n¼1

UBðβnÞUCðγnÞ; ð2Þ

where HB ¼ P
i Xi and HC encodes the cost Hamiltonian

of the combinatorial problem. The unitary depends on 2p
parameters β1;…; βp and γ1;…; γp and the product is
conventionally ordered so that the terms with β1 and γ1 are
applied first. For the MaxCut problem, the cost
Hamiltonian HC has a standard encoding as a quadratic
unconstrained binary optimization (QUBO) Hamiltonian,
taking the form

HC ¼ 1

2

X

ði;jÞ∈E

wijð1 − ZiZjÞ; ð3Þ

where the coefficient wij is the weight of edge ði; jÞ.
Since we take the graph to be unweighted in all cases, all
coefficients wij ¼ 1.

The QAOA protocol finds the parameters β⃗ and γ⃗
by variational minimization. A classical optimization
algorithm is used to search for parameters β⃗� and γ⃗� that
minimize

hHCi ¼ hψ0jUðβ⃗; γ⃗Þ†HCUðβ⃗; γ⃗Þjψ0i ð4Þ

with jψ0i ¼ jþi⊗N by convention. For the purposes of
studying qubit reuse, the circuits we consider evaluate
Uðβ⃗; γ⃗Þjþi⊗N and measure all qubits at the end.
Throughout this section, we are primarily concerned

with comparing three different algorithms for compiling
circuits with qubit reuse: the local greedy algorithm, the
local greedy algorithm with an additional brute-force
search over the first measured qubit, and the exact CP-
SAT solution where it is viable. Depending on the circuit
structure and the amount of compression that is possible, it
becomes impractical to execute the CP-SAT model at
around N ∼ 30–50 qubits in the original circuit, so we
also compare only the heuristic algorithms at significantly
larger N. The time benchmarking presented in this section
is evaluated on a small personal laptop, effectively as a
model of the realistic computation time that can be
expected by a typical user desiring to use qubit-reuse
compilation for algorithm development; it is possible that
high-performance computing techniques can slightly
extend the regime in which the algorithms presented herein
are feasible.
We begin by examining the performance of the three

algorithms for p ¼ 1 (Figs. 11 and 12) and p ¼ 2 (Figs. 13
and 14) MaxCut QAOA. For each fixed qubit number, we
evaluate the qubit-reuse algorithms on 100 random U3R
graphs generated using the NetworkX package [62].
As expected, it is clear from Fig. 11 that the CP-SAT

model is superpolynomially scaling and rapidly becomes
impractical for circuits of more than a few dozen qubits.
Furthermore, from Fig. 12, it is apparent that the perfor-
mance of the heuristics is only slightly worse than optimal
at these small qubit numbers, especially when the addi-
tional brute-force search is employed on the first qubit
measured.

FIG. 11. The time required in seconds to execute each qubit-
reuse algorithm as a function of the number of qubits in the
original circuit, averaged over 100 instances of random U3R
graph MaxCut p ¼ 1 QAOA circuits. The plotted uncertainties
correspond to the error on the mean in this and all below plots.
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In Figs. 13 and 14, one can see that, for p ¼ 2, although
the run-time of the heuristic algorithms slightly increases
from p ¼ 1, the CP-SAT model runs about an entire order
of magnitude more quickly. This can be explained by the
behavior of the classical optimization techniques under-
lying the CP-SAT solver, which iteratively rule out sections
of the solution search space. Because the causal cones in
p ¼ 2 QAOA are larger than that of p ¼ 1 QAOA, the CP-
SAT model is more highly constrained [see (C.2)] in the
p ¼ 2 case, allowing more of the search space to be ruled
out faster. We further see that all three algorithms perform
nearly comparably and achieve significantly less compres-
sion of the original circuit in the p ¼ 2 case.
The CP-SAT model also permits seeding with an initial

“hint” solution that satisfies the provided constraints,
attempting to improve upon this solution. This suggests

an obvious method to improve upon the heuristic solutions
at larger N by handing off the heuristic solution as input to
the CP-SAT model. In Fig. 15, we compare the amount of
compression achieved in p ¼ 1 MaxCut QAOA by the
local greedy algorithm to that produced by the CP-SAT
model both with and without the hint. To realistically
bound the amount of time available for attempting qubit-
reuse compilation, the CP-SAT model is limited to 10 min
to attempt to find a solution both with and without the hint.
Figure 15 displays several different regimes owing to the

time limit placed on the CP-SAT model. At sufficiently
small N, the CP-SAT model solves the qubit-reuse problem
exactly in under 10 min, so the hint provides no added
value. Around N ∼ 40 there is a transition, where 10 min is
no longer sufficient for CP-SAT to optimally solve the
qubit-reuse problem. In this case, seeding with the hint may
produce a better solution than either the heuristic or

FIG. 12. The compiled qubit number as a function of the
number of qubits in the original circuit, averaged over 100
instances of random U3R graph MaxCut p ¼ 1 QAOA circuits.

FIG. 13. The time required in seconds to execute each qubit-
reuse algorithm as a function of the number of qubits in the
original circuit, averaged over 100 instances of random U3R
graph MaxCut p ¼ 2 QAOA circuits.

FIG. 14. The compiled qubit number as a function of the number
of qubits in the original circuit, averaged over 100 instances of
random U3R graph MaxCut p ¼ 2 QAOA circuits.

FIG. 15. The compiled qubit number as a function of the
number of qubits in the original circuit, for one instance of
random U3R graph MaxCut p ¼ 1 QAOA at each point.
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CP-SAT solutions without the hint, though the point atN ¼
38 shows that it is also possible to get stuck in a local
optimum when starting from the hint that does not beat the
unseeded model. Finally, at N ≳ 60, 10 min is clearly
insufficient for the CP-SAT model to find an optimal
solution, since it is beaten by the local greedy algorithm,
and it is also insufficient for the CP-SAT model to improve
on the heuristic solution.
Looking ahead, it is of interest to determine how well

qubit-reuse compilation performs when algorithms are
scaled to several hundred or several thousand qubits in
size. To this end, we study the performance of the two
heuristic algorithms outside of the regime in which the CP-
SAT model is practical. The results (Figs. 16 and 17) show
that enhancing the local greedy algorithm with the

brute-force search is viable out to at least N ∼ 500, where
the qubit-reuse compilation takes about a minute for the
improved local greedy algorithm and fractions of a second
for the local greedy algorithm without this improvement.
Furthermore, the brute-force search over the first qubit
results in a 13% reduction on average in the number of
qubits required to execute the circuit compared to the
greedy algorithm with no brute-force search, requiring only
about one-quarter of the original number of qubits on
average. The upshot is that, for near-term applications with
dozens or at most hundreds of qubits, it is essentially
always preferable to include this improvement when
executing the local greedy algorithm.
It is prudent to test the limits of the local greedy

algorithm (with no brute-force search improvement) in
terms of both time expenditure and how well it scales with
deeper circuits. To this end, in Figs. 18 and 19, we display

FIG. 16. The time required in seconds to execute each qubit-
reuse algorithm as a function of the number of qubits in the
original circuit for random U3R graph MaxCut p ¼ 1 QAOA
circuits. The data are averaged over 100 instances for N < 100
and 20 instances for N > 100.

FIG. 17. The compiled qubit number as a function of the
number of qubits in the original circuit for random U3R graph
MaxCut p ¼ 1 QAOA circuits. The data are averaged over 100
instances for N < 100 and 20 instances for N > 100.

FIG. 18. The compiled qubit number as a function of the number
of qubits in the original circuit, averaged over ten instances of
random U3R graph MaxCut QAOA circuits at different depths p.

FIG. 19. The time required in seconds to execute the local
greedy algorithm as a function of the number of qubits in the
original circuit, averaged over ten instances of random U3R
graph MaxCut QAOA circuits at different depths p.
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the performance and efficiency of the local greedy
algorithm out to several thousand qubits in the original
circuit. The results show that the local greedy algorithm
scales quite well, running efficiently in under a minute on
circuits with several thousand qubits. The amount of time
required also increases with the circuit depth (number of
iterations p), although we expect both the time and
amount of achievable compression to plateau at suffi-
ciently large p, once the causal cones are the size of the
entire set of qubits. In particular, we expect no compres-
sion of the circuit to be achievable at sufficiently large
depth, and already by p ¼ 4 there is relatively little
savings in the overhead required to execute the circuit
achieved by the compilation. We note that the causal-cone
size for depth p MaxCut QAOA on a d-regular graph is
bounded by dp and that, as long as dp is smaller than N,
some number of qubits can always be saved with qubit
reuse. With more substantial overlap between different
causal cones, one can obtain a greater savings in qubit
number, since each causal-cone execution makes available
another qubit for subsequent reuse while requiring only a
number of new qubits that depends on the degree of
overlap with previously implemented causal cones. Thus,
while the amount of compression is relatively limited at
p ¼ 4 in Fig. 18 owing to the larger causal-cone size of 34,
this is still fairly small compared to several thousand, and
one can still save a few hundred qubits owing to the
amount of overlap between the various causal cones.
The analysis thus far in this section primarily focuses on

MaxCut QAOA, as stated, because it is a shallow, wide
circuit with a sparse graph of interactions. However, we
note that, in fact, dynamics on d-regular graphs such as
the case of QAOA are in a sense as difficult as possible for
qubit-reuse techniques. In general, for these graphs, the
typical causal-cone size grows to the size of the entire set of
qubits after only circuit depth OðlogNÞ, which is as fast as
possible. Consequently, MaxCut QAOA essentially quan-
tifies worst-case behavior for applications in which we
expect qubit reuse to be useful.
Nonetheless, it is important also to emphasize the benefit

of our automated qubit-reuse compilation strategy even
for the structured applications studied analytically in the
previous section. Therefore, in Figs. 20–22, we utilize
compilation via our local greedy heuristic to compress 1D
brickwork circuits, 2D brickwork circuits, and MERA
circuits, respectively. To illustrate a variety of settings,
we choose to display results for very deep 1D circuits with
k ¼ 100 circuit layers, relatively shallow 2D circuits with
k ¼ 3, and a variety of MERA sizes. The agreement with
analytics for these structured applications illustrates the
power of the greedy heuristic, which can also be applied
automatically to more complex structured applications that
would be laborious to derive by hand, such as complicated
lattice geometries or higher bond dimension MERA
or QCNN.

Throughout this work, we assume that the reader is
generally interested in sampling the full output of a given
quantum circuit. Figures 20–22 display the qubit resource
overhead associated with measuring the full output for
these three applications and demonstrate that the results
obtained by compilation with the greedy heuristic agree
precisely with the scalings obtained analytically. In many
circumstances, one is interested only in calculating a few-
body correlation function of the output qubits. In this case,
a further reduction in the number of qubits required to
execute the circuit in order to measure this restricted set of
output qubits is typically possible. One simply constructs
the modified circuit consisting of only the gates belonging
to the causal cones of the desired output qubits and utilizes
the same algorithms for qubit reuse on this restricted
circuit. In Figs. 20–22, we also display the qubit resource

FIG. 20. The compiled qubit number as a function of the
number of qubits in the original circuit for one instance at each
point of a 1D brickwork circuit with depth 100.

FIG. 21. The compiled qubit number as a function of the
number of qubits in the original circuit for one instance at each
point of a 2D brickwork circuit with depth 3.
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overhead associated with measuring just the output of two
adjacent qubits q0 and q1, as well as with measuring the
two most distant qubits q0 and qN=2. In the limit of large
N, this overhead effectively scales as a constant, after a
short transient period where competing effects like the
size of the causal cones compared to the total system size
as well as possible intersection between the causal cones
exchange dominance.

VI. EXPERIMENTAL DEMONSTRATION

We now experimentally demonstrate the practical
functionality of qubit reuse by solving an 80-qubit
combinatorial problem with QAOA, using circuits
executed on only 20 qubits. We study a specific U3R
MaxCut instance by generating a random U3R graph on
80 vertices using the NetworkX PYTHON package, for which
the corresponding direct QUBO encoding requires 80
qubits. We expect qubit reuse to be most effective in
shallower circuits, so p ¼ 1 iteration of QAOA is chosen
for this demonstration. A histogram of the typical amount
of compression that can be achieved for such 80-qubit
p ¼ 1 QAOA circuits is displayed in Fig. 23 for 1000
instances of random U3R graphs, which demonstrates
that the typical 80-qubit U3R MaxCut instance can be
expected to compress to a circuit with 21.1� 1.5 qubits
on average. In particular, 32% of instances compress to
20 qubits or less, so this amount of compression is a
reasonable expectation for a typical instance. As a result,
the first random U3R graph that was sampled allowed for
compression to the Quantinuum H1-1 hardware limita-
tion of 20 qubits. In order to compute the minimal number
of qubits required to execute these circuits, we execute
the local greedy algorithm with the additional improve-
ment of brute-force search over the first qubit as
described above.

For this random U3R graph, we generated the p ¼ 1
QAOA circuit as a function of parameters β1 and γ1 that are
initialized at a random point. Owing to the expense of
numerically approximating derivatives with many function
calls, we choose a derivative-free optimizer that performs
the best comparatively in simulations, the BOBYQA
optimizer (bound optimization by quadratic approxima-
tion) [63] as implemented in the PY-BOBYQA package [64].
This optimizer computes interpolating points to generate a
quadratic approximation to the objective function within a
trust region of a particular size. We use the out-of-the-box
settings for this optimizer, wherein the convergence cri-
terion is taken to be the size of the trust region becoming
smaller than 10−8 [65].
Starting from the random initialization we choose,

the full QAOA optimization procedure is run on the
Quantinuum H1-1 trapped-ion quantum computer [17].
Each circuit is run for 100 shots, for a total of roughly 3 min
per circuit of machine time. This number of shots is chosen
by simulation of the optimization procedure as sufficiently
large enough to statistically measure decreases in the
objective function while remaining small enough to make
the machine time feasible. A total of 78 circuits are run
before the convergence criterion of the optimizer is met.
In Fig. 24, we show the progress of the objective as

evaluated at the best point selected by the optimizer so far.
As in Eq. (4), the expectation value is used as the objective
function for the optimizer, but we also plot the progress of
the best sampled cut value among all of the shots taken.
In Fig. 25, we display the full data taken from all circuits

evaluated on the machine. After a short period of explora-
tion in the parameter space, the optimizer converges rapidly
around the tenth circuit evaluation. The subsequent circuits,
during which the size of the trust region is decreased until
meeting the convergence criterion of the optimizer, essen-
tially end up providing extra samples at near-optimal

FIG. 23. The number of qubits required to execute N ¼ 80,
p ¼ 1 MaxCut circuits for 1000 instances of random U3R
graphs, using the local greedy heuristic algorithm with brute-
force search on the first qubit.

FIG. 22. The compiled qubit number as a function of the
number of qubits in the original circuit for one instance at each
point of a MERA circuit.
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parameters, increasing the probability of a high-quality
solution (Fig. 26). In Fig. 27, we confirm this interpretation
with the full optimization trace overlaid on the energy
landscape for this QAOA problem, generated by both
noiseless and noisy simulation of the circuits over a lattice
of parameter values.
The best cut value measured in any shot throughout the

optimization procedure is 101. For comparison, the exact
MaxCut value is computed to be 110 using the Gurobi
solver [66] built into the QISKIT Optimization package [3].
This exact solver takes only 0.12 s to execute on a laptop,
unsurprisingly since N ¼ 80 is well within the purview of
exact classical solvers. Given this exact value, the approxi-
mation ratio achieved by the QAOA run is 91.8%, which
requires about 11 h of wall-clock time to execute on H1-1.
In Fig. 26, we study the probability of obtaining a cut value
of 101 to assess how this value compares to the typical cut

value that could be expected from a repetition of the
experiment. As mentioned, from Figs. 24, 25, and 27, it is
apparent that the last 50 circuits essentially serve only to
provide extra samples at nearly optimal parameters, for a
total of 5000 additional shots. Therefore, we take 100
circuits evaluated with 5000 shots each as a proxy for the
full optimization procedure and in Fig. 26 display the
cut value obtained for the best shot for each circuit. It is
clear that, although 101 is slightly better than the average
expected result, the distribution of results is fairly narrow
and indeed the most likely cut value, 98, is only margin-
ally worse.
We also implement the best-known classical approxi-

mation algorithm for MaxCut, the poly-time semidefinite-
programming-based Goemans-Williamson (GW) algorithm
[67], using the cvxpy solver [68,69]. This algorithm
provides a more scalable quantum-classical comparison,
since at sufficiently large N exact classical methods time
out and one must rely on approximate algorithms to obtain
the best possible solution in a reasonable time frame. The
GW algorithm achieves a cut value of 104, or an approxi-
mation ratio of 94.5%, and requires approximately one
second of computation time on a laptop. Note that the GW
algorithm guarantees a lower bound for the approximation
ratio of 87.8% [70].

VII. DISCUSSION

In this work, we present a method (“qubit-reuse
compilation”) for executing quantum circuits using
fewer qubits than naively required using mid-circuit
measurements and resets. We detail several algorithms
that attempt to minimize the number of qubits required in
the new circuit and benchmark their performance both
numerically on MaxCut QAOA and analytically for
certain structured circuits. Finally, we demonstrate the
practical application and automated software im-
plementation of these techniques by compressing and

FIG. 24. Progress of the objective function over the course of
the BOBYQA optimization (blue), overlaid on the cumulative
best sample for all circuits submitted so far (orange). The first six
circuits are used to seed the quadratic approximation in the
optimizer, which does not record progress before that point.

FIG. 25. Full experimental data for all circuits submitted to the
H1-1 machine. These data differ from Fig. 24 in that data for all
circuits are displayed, not merely those that improve the
objective.

FIG. 26. The probability of obtaining a particular cut value as
the final QAOA solution, extracted from 100 circuits with 5000
shots each.
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experimentally running the full optimization procedure
for an N ¼ 80, p ¼ 1 MaxCut QAOA instance on the
Quantinuum H1-1 device using 20 qubits.
Since qubit reuse preserves the total number of gates

in the original circuit, compressing a circuit using qubit-
reuse compilation generally increases circuit depth.
Consequently, some qubits in the compressed circuit
may experience more memory errors by the time they
are measured, since they may be active for the duration
of a larger number of gates. Therefore, it is most likely
beneficial to compress circuits only down to the number of
qubits required to execute the circuit on a desired target
device. A simple way to accomplish this when iteratively
constructing a compiled circuit from a given measurement
order is to prioritize using new qubits over reusing
measured qubits at the beginning of the procedure, until
the desired minimum number of qubits has been used, and
has already been implemented in software.
Because both the total number of gates and their causal

structure remain unchanged before and after compressing a
circuit, the impact of gate errors is identical between the
two (although on superconducting architectures, the sub-
sequent qubit placement onto the connectivity of the
architecture may have different impacts in terms of number
of SWAP gate insertions; see Refs. [34,35]). Regardless of
architecture, there are two new potential sources of error in
the compiled circuit: The first is mid-circuit measurement
and reset crosstalk, while the second, as mentioned above,
is increased memory error associated to the larger depth
circuit. On the Quantinuum H1-1 device used in this work,
the typical mid-circuit measurement and reset crosstalk is
on the order of 10−5 or less, suppressed by at least 2 orders
of magnitude compared to two-qubit gate errors (2 × 10−3)
which are presently the primary limiting factor for overall
circuit fidelity [72]. Architectures with more difficult-to-
control mid-circuit measurement crosstalk may not be able

to take full advantage of qubit reuse. On the H1-1 device,
the typical memory error per qubit in a given circuit layer
(“depth-1 circuit”) is currently approximately 2 × 10−4,
suppressed by an order of magnitude relative to two-qubit
gate errors. If there is a substantial increase in circuit depth
after qubit-reuse compilation, this contribution to the error
may become appreciable.
The H1-1 device can execute five gates in parallel, so, at

least for sufficiently large circuits where some degree of
parallelizability remains after qubit reuse, it is possible
that there is little change in the overall circuit time and the
corresponding memory error. In the worst case, with no
parallelizability remaining in the compiled circuit, we
expect this to lead to a factor of about 5 times longer
for total circuit time. Comparing the memory and gate
errors, we see that the net effect in this worst case should
result in a memory error contribution roughly comparable
to the two-qubit gate error. One should expect this to lead to
a measurable but not overwhelming impact on the overall
circuit fidelity, depending on the application of interest.
This finding is substantiated by, e.g., Refs. [14,15], which
employ our qubit-reuse compilation strategies to execute
useful and interesting experiments without introducing
intolerable amounts of noise. The former, Ref. [14], uses
the strategy discussed above to reduce the impact of
memory errors by compressing MERA circuits down only
to the hardware limitation of 20 qubits on the Quantinuum
H1-1 device, which increases the amount of parallelization
possible in the compiled circuit.
It is important to note the sense in which a compressed

circuit produced by qubit-reuse compilation is equivalent
to the original circuit. Experiments performed on the
compressed circuit (in the absence of errors) produce bit
string samples from the same probability distribution as
the original circuit. This is true even though the com-
pressed circuit may have mid-circuit measurements,

FIG. 27. The energy landscape for the N ¼ 80, p ¼ 1 MaxCut instance discussed in the main text as a function of ðβ; γÞ, where the
optimum corresponds to minimum energy (indigo). Left: the noiseless landscape, generated using 30 × 30 ¼ 900 ideal simulations of
the QAOA circuit. Right: the noisy landscape, generated using 30 × 30 ¼ 900 simulations of the QAOA circuit with an appropriate error
model for the Quantinuum H1-1 device. The actual optimization trajectory from the experimental data is overlaid in pink.
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while the original circuit does not, and that the com-
pressed circuit does not implement the same overall
operator and, in fact, acts on a Hilbert space of different
dimension. While in a particular experimental realization
a mid-circuit measurement collapses the quantum state to
a particular quantum trajectory dependent on the meas-
urement outcome, upon averaging over such realizations
the estimated reduced density matrices on the measured
qubits are equivalent to the reduced density matrices
produced by the original circuits. This is because, before
any qubit is measured in the compressed circuit, all of the
operations in that qubit’s causal cone are executed, and,
therefore, all of the necessary information for producing
that qubit’s reduced density matrix has been prepared.
All of the other gates in the circuit not in this causal cone
do not affect this qubit’s density matrix and so can be
delayed into a later section of the compressed circuit after
this qubit has been reset and reused. Another perspective
of this explanation comes from considering the tensor
network formulation of the circuit. In this case, the qubit-
reuse compiled circuit can be obtained from the original
circuit simply from diagrammatic manipulations of the
tensor network reinterpreting the locations of input and
output qubits, so they must sample from the same
distributions.
In many cases of interest, the original circuit is not

unique but can be expressed using a different ordering and
possibly different set of gates. One of the simplest possible
examples of this occurs in both QAOA and in Hamiltonian
simulation of Ising models, where many commuting ZZðθÞ
gates are applied in a nonunique order that determines the
resulting causal structure of the circuit. For this commuting
gates problem, it is always possible to implement the block
of commuting gates in a number of layers that is at most
one more than the maximal degree of the interaction graph,
by mapping the problem to edge coloring and using
Vizing’s theorem [73,74]. Preliminary study indicates that
minimizing the original circuit depth in this way also
improves the amount of compression obtainable by qubit
reuse, but, in general, the effects of the original circuit
depth and gate ordering on causal structure merit further
consideration.
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