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(Received 22 November 2022; revised 29 August 2023; accepted 19 October 2023; published 21 December 2023)

We calculate quantum corrections to the entropy of four-dimensional de Sitter space induced by higher-
derivative terms in the gravitational action and by one-loop effects. Employing the intertwinement in
semiclassical gravity of Euclidean de Sitter and anti–de Sitter saddles, we embed effective de Sitter gravity
theories in M theory and express the entropy in terms of the regularized Euclidean anti–de Sitter action on
an auxiliary EAdS4 × S7=Zk background.We conjecture that the partition function of the holographically
dual 3D Aharony-Bergman-Jafferis-Maldacena CFT determines the explicit form of the corrections to the
de Sitter entropy. This includes a logarithmic term, the coefficient of which, we show, agrees with an
independent one-loop calculation around the −S4 × S7=Zk Euclidean de Sitter saddle. This provides
evidence that the microscopic degrees of freedom behind the entropy of four-dimensional de Sitter space in
gravitational theories with a holographic dual description are encapsulated by the path integral of the
Euclidean CFT on the three-sphere.
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I. INTRODUCTION

Ever since the seminal work of Gibbons and Hawking
[1,2], a microscopic understanding of de Sitter (dS) entropy
has remained elusive. What are the quantum states or the
degrees of freedom that the entropy supposedly counts, if it
does count anything?
Gibbons and Hawking calculated the entropy SdS of dS

space in semiclassical gravity. They put forward an expres-
sion for the quantum gravitational partition function Z in
terms of a Euclidean path integral and conjectured that [2]

SdS ¼ logZ: ð1Þ

Working in Einstein gravity with a positive cosmological
constant, they found that the on-shell Euclidean action IEdS of
the round four-sphere saddle yields the familiar area law
relating the entropy to one-quarter of the dS horizon area in
Planck units.
But what is this calculation telling us? The dS horizon is

observer dependent, so it is not clear where the quantum
microstates that the entropy might count could be located.
Furthermore, the absence of a spatial boundary in dS space
means that it is difficult to even define a thermodynamic

ensemble. In fact, given that the Hamiltonian vanishes for
cosmological spacetimes like dS space, the partition
function simply reduces to the trace of the identity operator,
leading some to wonder whether the entropy contains much
physical information at all.
Here, we employ a chain of dualities to advance a

microscopic interpretation of dS entropy, at least in some
theories. Along the way, we show that the entropy encodes
more information about the theory than what one might
have thought at first sight.
We start by considering general four-derivative, purely

gravitational theories in four dimensions with a positive
cosmological constant. We view these, in an effective field
theory spirit, as corrections to general relativity. Applying
Wald’s formalism [3,4], we calculate the corrections to the
dS entropy induced by the higher-derivative (HD) terms in
the action, namely, a Weyl-squared, Gauss-Bonnet, and
Ricci scalar squared term. The resulting expression for the
entropy agrees with that obtained from a semiclassical
evaluation of the Euclidean path integral on the four-sphere
saddle in these HD theories.
Next, we take a closer look at the four-sphere saddle. It is

well known that there is an intricate geometric connection
in semiclassical gravity between Euclidean saddles that
describe the birth of a dS universe in the Hartle-Hawking
state and asymptotically Euclidean anti–de Sitter (EAdS)
space [5–8]. In fact, as advocated in Refs. [7,9,10], this
connection forms the basis of a particularly promising route
toward a dS=CFT correspondence. At the heart of it lies the
observation that Euclidean dS (EdS) and EAdS can be
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thought of as two real sections of a single complex geometry.
In effect, all saddle points defining the semiclassical Hartle-
Hawking wave function admit a geometric representation in
which their interior involves part of a deformed EAdS space,
possibly with a complex matter profile [7]. Working in this
asymptotic EAdS representation of the wave function, the
regularized asymptotic EAdS action of the saddles specifies
the tree-level no-boundary measure.
The context we consider in this paper is similar in that the

Euclidean form of the gravitational partition function in
Eq. (1) is essentially the product of the complex conjugate
branches of the Hartle-Hawking wave function, with no
operators inserted anywhere. In particular, we can conceive
of the four-sphere saddle in Eq. (1) as two copies of (part of)
EAdS glued together through a complex transition region.
Figure 1 attempts to evoke these two alternative representa-
tions of the saddle. Even in the presence of HD terms in the
action,we find that the correctedEuclidean action IEdS of the
round four-sphere can be obtained from the two regularized
EAdS actions in the AdS representation of the saddle.
Moreover, in the AdS domain, the HD gravity theory in
dS we begin with manifests itself as the bosonic action of
four-dimensional gauged supergravity with four-derivative
corrections. Indeed, the four-derivative Lagrangian for the
propagating degrees of freedom of the N ¼ 2 gravity
multiplet involves two extra real dimensionless constants,
multiplying the Weyl-squared and Gauss-Bonnet terms,
with the Ricci scalar squared term set to zero [11,12].
This brings us to the final step: Embedding thismodel inM

theory on EAdS × S7=Zk yields a third vantage point on the
entropy in terms of the partition function of the holographic
dual superconformal field theory (SCFT)on the three-sphere.

This third form, we conjecture, provides an exact quantum
expression for the dS entropy. That is, we conjecture that the
partition functions of dual CFTs on the three-sphere yield an
exact expression for the dS entropy in certain four-dimen-
sional gravitational theories. To make this concrete and
provide evidence for this conjecture, we use supersymmetric
localization results in the 3D holographic SCFT to determine
the two coefficients of the four-derivative terms in the
supergravity action following Ref. [12]. In fact, working
through the chain of dualities just described, the explicit form
of the dual Aharony-Bergman-Jafferis-Maldacena (ABJM)
partition function also predicts the next-order (logarithmic)
corrections to the dS entropy in these (embedded) HD
theories, as well as all higher-order corrections.
Expressed in dS language, the embedding in M theory

on EAdS × S7=Zk elevates the four-sphere saddles to a
−S4 × S7=Zk saddle in M theory, where the minus sign
refers to the overall signature with which the four-sphere
enters. The upshot of our analysis, therefore, is that M
theory on backgrounds of this kind may well play a crucial
role in cosmological applications of the theory.
Now, one might worry that the connection between

EAdS and EdS space that we exploit holds on shell only.
One might suspect that this is a mere property of the tree-
level path integral, albeit with HD corrections included, and
dismiss this as a fancy way of repackaging an “analytic
continuation” from EAdS to EdS. However, we show there
is more to it. In the bulk, the logarithmic correction to the
dS entropy arises from the one-loop determinants of kinetic
operators of massless fields. Our conjectural relation
between the S3 partition function of the ABJM theory
and the dS entropy yields a specific prediction for the
coefficient of this logarithmic term. A gravitational calcu-
lation of this one-loop effect is performed in Ref. [13] for
the EAdS × S7=Zk background and shown to agree with
the field theory result. Along the same lines, we perform an
independent calculation of the logarithmic correction to the
dS entropy in M theory on −S4 × S7=Zk and show that
the result is twice that of the EAdS answer in perfect
nontrivial agreement with our holographic conjecture for
the dS entropy. We are, therefore, led to conclude that the
intertwinement in quantum cosmology between EAdS and
EdS space holds truth beyond tree level.
We continue our presentation in the next section with a

discussion on how four-derivative corrections to general
relativity modify the dS entropy. In Sec. III, we discuss an
alternative description of the EdS saddle by exhibiting the
saddle-point geometry along a complex time contour. Based
on this analysis, we formulate our holographic conjecture for
the exact dS entropy in terms of the S3 partition function of a
dual 3D SCFT in Sec. IV. A nontrivial one-loop test of this
conjecture is presented in Sec. V. We conclude with some
comments in Sec. VI. The Appendix is devoted to some
details on the calculation of regularized on-shell EAdS
actions in the four-derivative gravity theory we study.

FIG. 1. The round four-sphere saddle (red) can equally well be
thought of as two copies of EAdS space (blue) emerging from
both poles and connected through a complex transition
region (gray).
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II. HIGHER-DERIVATIVE CORRECTIONS TO DE SITTER ENTROPY

We start by considering the most general four-derivative extension of general relativity in four dimensions, without matter
but with a cosmological constant. The action S� reads, in Lorentzian signature,

S� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGN

�
�R −

6

L2

�
þ ðc1 − c2ÞCμνρσCμνρσ þ c2ðRμνρσRμνρσ − 4RμνRμν þ R2Þ þ c3R2

�
: ð2Þ

Here, Cμνρσ is the Weyl tensor and ðc1; c2; c3Þ are real
constants that parametrize the three independent combina-
tions of HD terms. At this stage, in an effective field theory
spirit, we allow these to take arbitrary values, although they
should, of course, be thought of as small compared to the
dimensionless ratio L2=GN . That is, we view the above
theory as a general gravitational correction to general
relativity in the presence of a cosmological constant which
we take to be positive, i.e., Λ ¼ 3=L2 > 0.
The two actions S� in Eq. (2) describe the same theory

expressed in different signatures, respectively, mostly plus
and mostly minus, i.e., Sþ½gμν� ¼ S−½−gμν�. This is merely
a convention, of course, and it may seem needlessly
confusing to write down both choices. However, we are
interested in saddle-point solutions of the semiclassical
theory which tend to have Euclidean or even complex
sections and, hence, intermingle various signatures. In the
hope of clarifying what follows, we keep track of both
signature conventions here.
The HD terms in the action (2) do not modify the

Lorentzian dS solution of the two-derivative theory. In fact,
neither the Gauss-Bonnet nor the Weyl-squared and R2

terms induce corrections to any solution of the two-
derivative equations of motion. This being said, the HD
terms do, of course, give rise to additional sets of solutions,
as is well known, e.g., from inflationary cosmology.
Working in global coordinates, the line element of the

Lorentzian dS solution of the theories above is given by

ds2 ¼ �½−dt2 þ L2 cosh2ðt=LÞdΩ2
3�; ð3Þ

where the overall sign corresponds to the sign choice in S�.
In static-patch coordinates, we have

ds2¼�
�
−
�
1−

r2

L2

�
dt2þ

�
1−

r2

L2

�
−1
dr2þ r2dΩ2

2

�
; ð4Þ

which makes apparent the presence of a cosmological
horizon located at r ¼ L.
The existence of a horizon suggests that one should

associate an entropy to dS space [1]. At leading order in the
derivative expansion, this entropy is simply given by the
area of the horizon divided by 4GN. However, the HD
couplings in Eq. (2) modify the entropy formula, even
though they do not affect the dS solution itself.
In asymptotically Minkowski and AdS spacetimes with

bifurcate horizons, Wald’s formalism [3,4] provides a
natural way to account for HD corrections to the entropy
associated with horizons. We lack a rigid derivation of this
formalism in cosmological spacetimes [14], but we never-
theless find it a useful starting point for our analysis. In the
context at hand, Wald’s formalism holds that the dS entropy
is given by the following integral:

SdS ¼ ∓2π

Z
H
d2x

ffiffiffi
γ

p δL�
δRμνρσ

ϵμνϵρσ; ð5Þ

where the integral is taken over the cosmological horizon
H, γ is the determinant of the metric induced on H, and ϵμν
denotes the binormal to H normalized such that
ϵμνϵ

μν ¼ −2. The overall sign on the right-hand side of
Eq. (5) reflects again the two signature choices we keep in
our basket. Since physical quantities are obviously inde-
pendent of the choice of signature, the entropy SdS on the
left-hand side does not need a similar subscript. Using
Eq. (2), a straightforward calculation gives

SdS ¼ πL2

GN
þ 64π2ðc2 þ 6c3Þ: ð6Þ

We now compare this result with the entropy obtained
from the on-shell action of the corresponding Euclidean
solution. The Euclidean counterparts of the Lorentzian
actions in Eq. (2) are given by

SE� ¼
Z

d4x
ffiffiffi
g

p �
−

1

16πGN

�
�R −

6

L2

�
− ðc1 − c2ÞCμνρσCμνρσ − c2ðRμνρσRμνρσ − 4RμνRμν þ R2Þ − c3R2

�
: ð7Þ
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Formally, these specify the quantum gravitational par-
tition function Z in terms of a Euclidean path integral [2]:

Z ¼
Z

Dgμνe−S
E
�½gμν�: ð8Þ

Of course, the very meaning of the path integral (8) is
obscure in a full quantum theory of gravity. It is one of our
goals indeed to elucidate its meaning.
For now, we consider this quantity in a semiclassical

approximation. The Einstein equations derived from Eq. (7)
admit a EdS solution with line element, in global coor-
dinates, given by

ds2 ¼ �½dτ2 þ L2 cos2ðτ=LÞdΩ2
3�; ð9Þ

where the coordinate τ lies in the range

−
πL
2

≤ τ ≤
πL
2

: ð10Þ

We denote by S4 the closed, conformally flat manifold
specified by themetric with the upper sign in Eq. (9), andwe
denote by −S4 its “all-minus” representation. Note that the
all-minus metric satisfies the criteria for a background in the
gravity theory described by the action SE− to be consistently
coupled to a matter quantum field theory [17–19], as the all-
plus metric does for SEþ.
Evaluating the actions SE� on their respective saddles (9)

yields

IEdS ¼ −
πL2

GN
− 64π2ðc2 þ 6c3Þ; ð11Þ

where the second term represents the HD correction to the
Euclidean action of EdS in general relativity. Hence, in the
saddle-point approximation, the entropy is given by

SdS ¼ logZ ¼ πL2

GN
þ 64π2ðc2 þ 6c3Þ: ð12Þ

Thus, we recover the Wald entropy (5) in Lorentzian
signature from a semiclassical evaluation of the Euclidean
path integral on the four-sphere saddle. In the context of
asymptoticallyMinkowski andAdS gravity, it is well known
that there is a relation between the entropy of gravitational
horizons computed using the Wald formalism and the
evaluation of a Euclidean on-shell action of the HD theory.
The upshot of our short calculation above is that, although the
Wald formalismmay not enjoy a proper rigorous formulation
in a cosmological setting, it can be applied to the dS horizon
to yield results for the entropy consistent with the on-shell
action of a general four-derivative gravitational theory with
positive cosmological constant.

III. A FRESH LOOK AT THE
OLD FOUR-SPHERE SADDLE

There is an alternative way to evaluate the Euclidean on-
shell action of the four-sphere saddle that yields further
insights. This involves deforming the contour for τ from the
segment (10) of the real line, to the path C in the complex
plane shown in Fig. 2. Because the integrand in Eq. (7) is
analytic when evaluated on Eq. (9), integrating along C
must yield the result (11). However, the deformation
exhibits an interesting geometric representation of the
four-sphere saddle [6,7]. Along the two vertical legs of
C, the metric (9) is given by

ds2 ¼ ∓ðdr2 þ L2 sinh2ðr=LÞdΩ2
3Þ; ð13Þ

where r ¼ ImðτÞ and the overall minus signature goes
together with the overall plus signature in Eq. (9) and vice
versa. That is, along these contour legs, the EdS saddle
behaves as EAdS.
Going around the entire contour C in Fig. 2 yields a

representation of the four-sphere saddle as two copies of
(part of) EAdSup to a large radius rb, glued together through
a complex transition region, establishing a connection—on
shell for now—between EdS and EAdS. The reason that
EAdS emerges in this context follows immediately from the
fact that the action (7) of the EdS theory, in whatever
signature, is closely related to the action of an EAdS theory
in the opposite signature. Classically, the EdS and EAdS
actions specify two distinct theories. Semiclassically, how-
ever, we see that they are connected and better viewed as two
sections of one complexified theory.
We now evaluate the on-shell action (7) by integrating

along C. Along this contour, there is a natural split between
the contributions from the vertical and horizontal parts of
the contour:

IEdS ¼ ILv
þ ILh

þ IRh
þ IRv

; ð14Þ
where the subscripts on the right-hand side label the four
legs of the contour in what we hope is self-explanatory

FIG. 2. Left: two different integration contours, the segment in
red and the blue solid contour C, to evaluate the Euclidean on-
shell action of the four-sphere saddle. Right: an illustration of the
saddle in which the horizontal blue segment in the left is
deformed to the dashed line. The black circle at the equator
corresponds to the point at the origin on the left figure.
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notation. Evaluating the action, we find for the first vertical
part

ILv
¼

�
πL2

16GN
þ 4π2ðc2 þ 6c3Þ

�

×

�
9 cosh

�
rb
L

�
− 8 − cosh

�
3rb
L

��
; ð15Þ

and the first half of the horizontal leg gives

ILh
¼
�

πL2

16GN
þ4π2ðc2þ6c3Þ

��
cosh

�
3rb
L

�
−9cosh

�
rb
L

��

−i

�
πL2

16GN
þ4π2ðc2þ6c3Þ

�

×

�
9sinh

�
rb
L

�
þsinh

�
3rb
L

��
: ð16Þ

Integrating over the second half of the contour produces the
complex conjugate of the above expressions. Combining all
contributions then yields

IEdS ¼ −
πL2

GN
− 64π2ðc2 þ 6c3Þ; ð17Þ

which matches Eq. (11), as it must.
The key point to glean from this alternative evaluation is

that the imaginary part of the action integral along the
horizontal leg does not contribute to the “net result” of the
action IEdS, while the real part performs the holographic
renormalization of the EAdS action resulting from the
integral along the vertical legs. We demonstrate this
explicitly for the Weyl-squared and Gauss-Bonnet terms
in the Appendix, where we show that the integration along
the horizontal part of the contour produces what are known
as the counterterms in the context of AdS=CFT and,
importantly, nothing else. The large radius rb in Fig. 2
acts as the radial cutoff of the EAdS region, and the
horizontal leg of C regularizes the on-shell EAdS action
from the vertical leg. In particular, expressed in the EAdS
language of the Appendix, the contributions (15) and (16)
can be written as

ILv
¼ −IregEAdS − IctðrbÞ þOðe−rb=LÞ;

ILh
¼ þIctðrbÞ − Ictðrb − iπL=2Þ þOðe−rb=LÞ; ð18Þ

where IregEAdS is the regularized on-shell action of the
effective EAdS theory along the vertical leg of C induced
by the theory (7) we started with and Ict are the standard
counterterms. Note that Ictðrb − iπL=2Þ is purely imagi-
nary. The above relations are well known from analogous
dS=CFT studies in Einstein gravity (see, e.g., Ref. [7]).

What we show here is that they continue to hold in the
presence of HD corrections.
Similar (complex conjugate) relations hold for the

second half of the contour. The upshot, then, is that we
can express the on-shell action (17) as

IEdS ¼ −2IregEAdS; ð19Þ

where the factor of 2 on the right-hand side arises from the
fact that we have two copies of EAdS4 along C, glued
together to yield a compact space with S4 topology. This, in
turn, yields yet another expression for the dS entropy:

SdS ¼ 2IregEAdS: ð20Þ

This formula paves the way toward a concrete proposal
for the microscopics behind the dS entropy using holog-
raphy. We turn to this next.

IV. THE MICROSCOPIC NATURE OF DE SITTER
ENTROPY: A CONJECTURE

To employ holography, we first embed the effective
gravitational theories we have so far considered in M theory.
This embedding allows us to think of the regularized EAdS
on-shell action in Eq. (20) as the saddle-point approximation
of the 11-dimensional, quantum gravitational path integral
around EAdS4 × SE7, where the internal space is a seven-
dimensional Sasaki-Einsteinmanifold. To endup in the usual
11D conventions, in which both EAdS4 and the internal
space have all-plus signatures, we continue with the lower
sign from the previous two sections.
When the internal space is taken to be a particular

smooth orbifold of the seven-sphere, holography predicts
that the path-integral of M theory around EAdS4 × S7=Zk
is given by the three-sphere partition function of the 3D
N ¼ 6 Chern-Simons-matter SCFT known as ABJM
theory [20]. This theory is a UðNÞk × UðNÞ−k Chern-
Simons-matter theory describing the low-energy limit of
N M2-branes probing a C4=Zk singularity. The partition
function of this theory on S3 can be computed by super-
symmetric localization in terms of matrix integrals [21]. In
the large-N limit (with k held fixed and finite), this partition
function can be computed in terms of an Airy function plus

nonperturbative corrections of the form Oðe−
ffiffiffiffiffiffi
N=k

p
Þ and

Oðe−
ffiffiffiffiffi
Nk

p
Þ [22–24]:

ZABJM
S3

ðN; kÞ

¼
�
π2k
2

�
1=3

eAðkÞAi
��

π2k
2

�
1=3

�
N −

k
24

−
1

3k

��

þ ZnpðN; kÞ: ð21Þ

The function AðkÞ is independent of N. Its explicit
expression is available (see Ref. [28]), but we do not need
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it in what follows. The free energy FABJM
S3

¼ − logZABJM
S3

can then be expanded at large N and fixed k using the
known asymptotics of the Airy function. This yields

FABJM
S3 ðN; kÞ ¼ π

ffiffiffiffiffi
2k

p

3
N3=2 −

πðk2 þ 8Þ
24

ffiffiffiffiffi
2k

p N1=2

þ 1

4
logN þOðN0Þ þ � � � ; ð22Þ

where the terms on the right-hand side can be explicitly
computed to arbitrarily high order in the 1=N expansion.
According to the AdS=CFT correspondence, this free

energy maps to the action of a dual EAdS4 saddle. The
duality provides a dictionary that specifies bulk gravitational
quantities in terms of the data ðN; kÞ that characterize the
microscopic UV-complete dual theory. To illustrate this, let
us recall how holography works in the large-N limit of the
field theory,which corresponds to the leading two-derivative
order in the bulk. In this limit, the length scale L of the dual
EAdS4 is determined by the number of M2-branes in the
11D theory as (see, e.g., Ref. [29] for a review)

ð2πlPÞ6N ¼ 6ð2LÞ6volðX7Þ; ð23Þ

wherelP is the 11DPlanck length and volðX7Þ is thevolume
of the internal space X7 ¼ S7=Zk. Similarly, the four-
dimensional Newton constant is expressed in terms of
lP by the standard Kaluza-Klein reduction of the two-
derivative 11D action, which leads to

1

GN
¼ 16πð2LÞ7volðX7Þ

ð2πÞ8l9
P

¼ 2π2
ffiffiffi
6

p

9L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
volðX7Þ

p N3=2: ð24Þ

Using that volðS7=ZkÞ ¼ ðπ4=3kÞ, we thus find that the
regularized two-derivative EAdS4 on-shell action is

πL2

2GN
¼ π

ffiffiffiffiffi
2k

p

3
N3=2; ð25Þ

which indeed matches the leading term in the free
energy (22).
Away from the strict large N limit, the holographic

dictionary (24) receives quantum corrections, and the
regularized on-shell action must now include contributions
from the four-derivative couplings. Both of these effects
combine at the subleadingOðN1=2Þ order, and the results in
Refs. [11,12] (see also the Appendix) show that, remark-
ably, the holographic dictionary to this order reads

L2

GN
þ 64πc2 ¼

2
ffiffiffiffiffi
2k

p

3
N3=2 −

k2 þ 8

12
ffiffiffiffiffi
2k

p N1=2 þ oðN1=2Þ;

c3 ¼ 0: ð26Þ

In fact, by considering the partition function of the ABJM
theory on a more general squashed three-sphere and
including mass deformations, it is possible to obtain the
1=N corrections to both L2=GN and c2 independently
rather than the specific linear combination appearing
above; see Refs. [30,31]. The results read, to all orders
in the 1=N expansion,

L2

GN
¼ 2

ffiffiffiffiffi
2k

p

3

�
N −

k
24

�
3=2

¼ 2
ffiffiffiffiffi
2k

p

3
N3=2 −

k2

12
ffiffiffiffiffi
2k

p N1=2 þOðN−1=2Þ;

c2 ¼ −
1

96π
ffiffiffiffiffi
2k

p
�
N −

k
24

�
1=2

¼ −
1

96π
ffiffiffiffiffi
2k

p N1=2 þOðN−1=2Þ: ð27Þ

This is, of course, compatible with Eq. (26). Note, in
particular, that there are no logN terms in the expressions
of the gravitational quantities L2=GN and c2 in terms of the
microscopic data ðN; kÞ. As explained in Ref. [13], the
logN term in the free energy (22) arises solely from a one-
loop effect around the EAdS4 saddle of the dual bulk
theory, to which we return in Sec. V below.
Turning now to the relation between the Wald entropy of

dS space and the regularized on-shell action of EAdS that
we derive in the previous section, the specific embedding of
the effective HD theories in M theory in combination with
the corrected dictionary (26) allows us to write the dS
entropy purely in terms of the ABJM data:

SdS ¼
2π

ffiffiffiffiffi
2k

p

3
N3=2 −

πðk2 þ 8Þ
12

ffiffiffiffiffi
2k

p N1=2 þ oðN1=2Þ: ð28Þ

This is so far meant to be valid up to the order of OðN1=2Þ,
but it is tempting to conjecture that the correspondence
holds to all orders in 1=N and, thus, that

SdS ¼ −2 logZABJM
S3

: ð29Þ

This conjecture, if true, provides a microscopic interpre-
tation of the dS entropy in terms of the degrees of freedom
of ABJM theory on the three-sphere.
Together with Eq. (22), our proposal (29) predicts a

logarithmic correction to the dS entropy that reads

ΔSdS ¼
1

2
logN: ð30Þ

In the next section, we show that this agrees with an
independent one-loop calculation around the −S4 × S7=Zk
background, which is the dS domain, along the real axis in
Fig. 2, that appears in our embedding in 11D gravity.
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This constitutes a nontrivial test of the conjecture (29) to
subsubleading order.
It is worth noting that logarithmic corrections to the

entropy of dS space induced by loop effects in semi-
classical gravity were recently studied in Refs. [34,35]. The
results in Ref. [34] for the coefficient of the log correction
to the entropy differ from ours. This is not surprising. As
emphasized by Sen in the context of black hole entropy
(see, for example, Ref. [41]), the calculation of log
corrections to the entropy is highly sensitive to the matter
content of the effective semiclassical gravitational theory.
Our setup has a natural embedding in a UV-complete
theory of quantum gravity provided by M theory, and, thus,
as we discuss in the next section, the log correction to the
dS entropy should be computed using the field content of
the low-energy effective 11D supergravity theory. In
contrast, the authors of Ref. [34] study the log corrections
to the dS entropy when de Sitter space is viewed as a
solution to 4D effective gravitational theory coupled to
various matter fields.

V. ONE-LOOP TEST

On dimensional grounds, the logarithmic correction to the
free energy of −S4 arises from the one-loop determinants of
kinetic operators for the massless fields. These operators can
have zero modes which must be treated with care when
computing such determinants. To do so, one usually splits the
contributions of massless fields to the logarithmic correction
into their nonzero mode and zero mode parts. An important
simplification occurs when we expand the gravitational
action to quadratic order around the −S4 × S7=Zk back-
ground of Euclidean 11D supergravity: It follows from the
theory of heat kernels (see Ref. [42] for a review) that
the contribution from the nonzero modes vanishes, because
the space is odd dimensional. Therefore, we have to compute
only the contribution from zero modes.
Themassless fields of the 11Dsupergravity theory, viewed

as a low-energy effective action of M theory, are the metric
gMN , the gravitino ψM, and the three-form CMNP. From the
four-dimensional perspective, these fields can give rise to the
4D graviton gμν together with a collection of p-forms with
p ¼ 0;…; 3 and spin-1=2 and−3=2 fermions. An important
role is also played by the ghost fields required for quantiza-
tion of the 11D physical fields, as we see below.
It is perhaps useful to be more explicit about the 11D

background that emerges in our setup. The 11D metric and
4-form on −S4 × S7=Zk are, respectively,

ds211 ¼ −
1

4
½dτ2 þ L2 cos2ðτ=LÞdΩ2

3�
þ L2ðdψ þ σÞ2 þ L2ds2CP3 ;

G4 ¼
3

8L
vol4; ð31Þ

where σ is a 1-form potential for the Kähler form on the
complex projective spaceCP3 with metric ds2CP3 , vol4 is the
volume form for themetric in square brackets on the first line
inEq. (31), and theZk orbifold acts on the angular coordinate
ψ which has period 2π=k. One can check that this back-
ground solves the equations of motion of Euclidean 11D
supergravity derived from the following action:

SE11D ¼−
1

16πGð11Þ
N

Z �
�R−

1

2
G4 ∧ �G4−

i
6
C3 ∧G4 ∧G4

�
;

ð32Þ

where G4 ¼ dC3, � is the 11D Hodge star in Euclidean

signature andGð11Þ
N is the 11DNewton constant. Importantly,

this Euclidean action also admits another saddle given by the
usual EAdS4 × S7=Zk Freund-Rubin solution of 11D super-
gravity. These two different saddles can then be related by the
11D analog of the contour presented in Fig. 2, which, in turn,
provides a 11D realization of the discussion in Sec. III.
On the 11D space −S4 × S7=Zk, the metric gMN does not

have zero modes. This follows from the fact that there is
no pure gauge mode with a non-normalizable gauge
parameter on −S4 × S7=Zk because the space is compact.
Quantization requires the introduction of a pair of vector
ghost and antighost associated with diffeomorphisms, and
no residual gauge invariance is left, which implies that there
are no ghost for ghosts (see, e.g., Ref. [43]). The vector
ghosts cannot have zero modes on spheres, since the first
Betti number vanishes, b1ðSd>1Þ ¼ 0. Similarly, there are
no gravitino pure gauge modes ψM ∼DMϵ with a non-
normalizable spinor ϵ due to compactness, which means
that the gravitino has no zero modes. Quantization requires
the introduction of a pair of spinor ghost and antighost,
together with an additional spin-1=2 ghost sometimes
called the Kallosh-Nielsen ghost [44,45]. Regular solutions
of the Dirac equation γμ∇μψ ¼ iλψ on spheres exist only
for jλj > 0 [46], and, therefore, the ghost fields associated
to the gravitino do not contribute to the logarithmic
correction to the free energy. Thus, the only contribution
comes from the 3-form CMNP.
In general, the logarithmic correction to the free energy

due to a p-form on a D-dimensional background charac-
terized by a length scale l is given by [13]

ΔF ¼
X
j

ð−1Þjðβp−j − j − 1Þn0Δp−j
log

l
lP

; ð33Þ

where Δp−j is the Hodge-Laplace kinetic operator for a
(p − j)-form, n0Δp−j

is the associated number of zero modes,

and βp−j is given by (see, e.g., Ref. [13])

βs ¼
D − 2s

2
: ð34Þ
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The above formula takes into account the ghosts required
for the quantization of p-forms. In our case, D ¼ 11 and
the background is −S4 × S7=Zk with a length scale l ¼ L
common to the two factors. The zero modes of the Hodge-
Laplace operator in the external space correspond to
harmonic forms on −S4. Thus, their number n0 is non-
vanishing only for 0-forms and 4-forms, since all Betti
numbers vanish on the four-sphere except for b0 ¼ b4 ¼ 1.
There are no 4-forms in the 11D field content discussed
above. The 0-forms arise from the quantization of the 11D
3-form CMNP, which produces two pairs of scalar ghost and
antighost fields [47]. This shows that, in the general
formula (33), the nontrivial contribution comes from
p ¼ 3 and j ¼ 3 with n0Δ0

¼ 2. Putting things together,

ΔFEdS¼−
�
11

2
−3−1

�
×2×log

L
lP

¼−3 log
L
lP

: ð35Þ

Lastly, we use the holographic dictionary (23) to relate the
scale L to the number of M2-branes as L=lP ∼ N1=6. This
shows that the logarithmic correction to the Euclidean path
integral around the −S4 × S7=Zk background is given by

Δ logZ ¼ 1

2
logN: ð36Þ

We emphasize that the coefficient of the logN term
obtained in this way is independent of the orbifold order
k, since the calculation above is valid for any choice of the
S7=Zk internal space. This result matches the logarithmic
correction obtained from the ABJM free energy (30).
Altogether, this amounts to a nontrivial one-loop test of
our general conjecture (29).

VI. DISCUSSION

Based on explicit calculations, we conjecture that the
microscopic degrees of freedom behind the entropy of four-
dimensional dS space can be encoded in the partition
function of a 3D CFTon the round three-sphere that is dual
to an auxiliary EAdS4 saddle. Our reasoning exploits—
and, indeed, advances—a chain of relations in semiclassical
gravity that entwines −S4 and EAdS4 saddles as two real
sections of a single complex geometry. We show that this
effectively allows one to embed certain semiclassical
de Sitter gravity theories in M theory on EAdS4 × SE7

backgrounds. In such embeddings, the dS entropy can be
neatly expressed in terms of the regularized action of the
EAdS domain. By AdS=CFT, the latter maps to the
logarithm of the partition function of a holographic dual
on the three-sphere which, we conjecture, encapsulates the
exact dS entropy.
To test our conjecture, we compute subleading and

subsubleading quantum corrections to dS entropy induced
by HD terms in the gravitational action and by one-loop

effects. We compare these with the expression for the ABJM
partition function dual to theM theory embedding on S7=Zk.
In effect, when the internal space is a smooth orbifold of the
seven-sphere, the explicit form of the dual ABJM partition
function as anAiry function yields detailed predictions for all
higher-order corrections to the dS entropy, up to nonpertur-
bative corrections. In the large-N expansion, the leadingN1=2

correction to the partition function corresponds to the effects
of the HD terms on the gravity side. The next-order, logN
logarithmic term in the partition function enters with a
specific coefficient which, we show, matches with an
independent one-loop calculation of this correction around
the −S4 × S7=Zk background.
One may wonder whether one can also study the

logarithmic correction to the dS entropy using a four-
dimensional effective gravitational theory instead of the full
11D supergravity we employ here. This is a subtle question,
since the 11D −S4 × S7=Zk supergravity background is not
scale separated which, in turn, means that the 4D effective
theory is not a standard EFT coupled to gravity due to the
presence of an infinite tower of Kaluza-Klein (KK) modes.
This is in contrast to the approach taken in Ref. [34], where
similar logarithmic corrections are studied in the frame-
work of general relativity coupled to a finite number of
matter fields. It will be very interesting to understand how
to reconcile these two alternative approaches to the calcu-
lation of the logarithmic corrections and, in particular, how
to regularize the infinities arising from the presence of the
tower of KK modes on S7=Zk.
It is natural to consider other internal spaces different

from S7=Zk to understand whether our conjecture extends
beyond the ABJM theory. These different M theory back-
grounds will correspond to other 3D SCFTs that, based on
the conjecture in Eq. (29), predict different corrections to
the dS entropy. It is possible indeed to extend our ABJM
analysis above to obtain explicit predictions for the dS
entropy in such holographic models.
As a concrete example, consider a particular orbifold of the

seven-sphere that is not freely acting but has fixed points. The
internal space is denoted by S7=ZNf

, and the corresponding
3D dual SCFT is known as the Atiyah-Drinfeld-Hitchin-
Manin (ADHM) theory. This is an N ¼ 4 UðNÞ gauge
theory with an adjoint hypermultiplet and Nf fundamental
hypermultiplets [48]. The partition function of the ADHM
theory on S3 also takes a form similar to Eq. (21) in terms of
an Airy function [49]. A holographic comparison between
the S3 free energy expanded to the order ofOðN1=2Þ and the
EAdS on-shell action, including four-derivative couplings,
yields the holographic dictionary [12]

L2

GN
þ 64πc2 ¼

2
ffiffiffiffiffiffiffiffiffi
2Nf

p
3

N3=2 þ N2
f − 4

4
ffiffiffiffiffiffiffiffiffi
2NF

p N1=2

þ oðN1=2Þ: ð37Þ
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By the chain of dualities discussed in Sec. IV, this determines
the subleading corrections to the entropy of dS space—
through its embedding in M theory as an −S4 × S7=ZNf

background—in terms of the microscopic data ðN;NfÞ.
Another model that can be treated with similar methods

corresponds to choosing as internal space the N0;1;0=Zk
manifold, which leads to an N ¼ 3 3D SCFT. Once again,
the partition function of this SCFT on the three-sphere is
controlled by an Airy function for a certain choice of
parameters specifying the quiver [23]. Using these results
together with the partition function of the SCFT on another
compact manifold, S1 × Σg, one can find that the relevant
holographic dictionary to the order of OðN1=2Þ reads (see
Ref. [50])

L2

GN
þ64πc2¼

8
ffiffiffi
k

p

3
ffiffiffi
3

p N3=2þ k2−4

12
ffiffiffiffiffi
3k

p N1=2þoðN1=2Þ: ð38Þ

Using the line of reasoning in Sec. IV, this directly
translates into a prediction for the quantum dS entropy
associated with the −S4 × N0;1;0=Zk saddle of 11D super-
gravity, again valid to all orders in the large-N expansion.
Notably, the asymptotic expansion of the Airy function

featuring in the ABJM, ADHM, and N0;1;0 SCFTs dis-
cussed above leads to a universal 1

4
logN term in the large-N

expansion of the S3 free energy. This can be combined with
our conjecture to deduce that the logarithmic correction to
the dS entropy of these M theory models is also universal
and given by Eq. (30). This nicely matches with our zero-
mode counting in Sec. V, which is insensitive to the details
of the internal space in the 11-dimensional embedding and,
thus, in harmony with the universality of the logarithmic
term. Given our conjecture (29) and the nontrivial evidence
for its validity presented above, it will be interesting to
revisit large-N supersymmetric localization calculations on
S3 for 3D N ¼ 2 SCFTs with a holographic dual descrip-
tion in M theory in order to arrive at additional explicit
examples for the microscopic dS entropy.
Another interesting avenue for future exploration is to

extend our result in the context of the 3D ABJ holographic
SCFT [51]. This model admits a limit in which it connects
with higher-spin gravity [52] and moreover allows for
explicit calculations with the tools of supersymmetric
localization; see, for instance, Ref. [53]. It will be very
interesting to understand whether our conjecture for the dS
entropy can be extended to this model. Such a higher-spin
dS=CFT would be distinct from the one discussed in
Ref. [54] and later in Ref. [55] which involves a nonunitary
CFT. More broadly, the CFT duals in all examples
discussed above are Euclidean counterparts of unitary
theories, unlike the duals featuring in some models of
dS=CFT based on the analytic continuation of theories in
AdS=CFT. This highlights the crux of the route toward
dS=CFT of Ref. [7], where complex saddles interlinking

EdS and EAdS render obsolete the continuation from one
classical background to another. The results in this paper
serve not only as a one-loop test of our conjecture about the
dS entropy, but also as an important off-shell test of that
approach more generally.
Our proposal that holographically dual 3D CFT path

integrals on the three-sphere encode the dS entropy yields a
rather formal identification of the microscopic degrees of
freedom that underpin this entropy. In particular, there is no
obvious Lorentzian interpretation. Quite to the contrary,
there is no obvious notion of time or even a Hamiltonian in
the holographic dual onS3, suggesting that it may be naive to
think of the dS entropy as counting some microstates. This
puzzling feature can bemade even sharper if the conjecture in
Eq. (29) is taken at facevalue andpushed to thevery quantum
regime of finite N and k. The ABJM partition function for
low values of N and k can be computed explicitly and
exactly; see Refs. [56,57]. Analyzing these results in the
context of the conjecture in Eq. (29), we are led to the
conclusion that the exponential of the dS entropy is not an
integer. This, in turn, strongly suggests that this entropy does
not purely arise from counting some microscopic degrees of
freedom but should rather be assigned a different interpre-
tation. One may be tempted to speculate that this analysis
points to the conclusion that the dS entropy is some kind of
entanglement entropy; see Refs. [34,40] for a discussion of
similar ideas. The presence of two holographically emergent
copies of EAdS in the integration contour sketched in Fig. 2
may also be viewed as circumstantial evidence for such an
entanglement entropy interpretation. It will be very interest-
ing to unpack these suggestive speculations further andmake
them more rigorous.
Finally, to get a better handle on dS space in Lorentzian

signature and deformations thereof, it would be very inter-
esting to extend our analysis to more tangible cosmological
observables. In this respect, it is worth noting that explicit
expressions are available for the large-N partition function of
theABJMtheory in thepresence of various deformations that
break conformal invariance, like squashings of the round S3

or the addition of mass terms for scalar operators; see
Refs. [30,32,33]. There are also corresponding semiclassical
Euclidean supergravity saddles asymptotic to EAdS that
are holographic duals to the deformed SCFT; see, e.g.,
Refs. [58–60]. These explicit results could presumably be
used to add nontrivial sources in the gravitational path
integral around a dS background in order to go beyond
the zero-point function presented in this paper. This would
pave the way to put earlier computations of cosmological
observables in dS=CFT based on an ancillary AdS back-
ground, like the ones in Refs. [5,61,62], on more solid
ground. We plan to report on this elsewhere.
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APPENDIX: REGULARIZED ON-SHELL
HIGHER-DERIVATIVE ACTION OF EAdS4

In this appendix, we evaluate the regularized on-shell
action of EAdS4 in a gravitational theory with a negative
cosmological constant and four-derivative couplings, by
supplementing the action of the theory with the appropriate
counterterms:

S ¼
Z

d4x
ffiffiffi
g

p �
−

1

16πGN

�
Rþ 6

L2

�
þ ðc1 − c2ÞCμνρσCμνρσ þ c2ðRμνρσRμνρσ − 4RμνRμν þ R2Þ

�

þ
Z

d3x
ffiffiffi
h

p �
1

8πGN

�
−K þ 2

L
þ L

2
R
�
þ ðc1 − c2ÞLCT

C2 þ 4c2ðJ − 2GabKabÞ
�
: ðA1Þ

In the second line, we include the counterterms needed
for a well-defined variational principle and to regularize the
divergences that arise in the large volume limit when one
evaluates Eq. (A1) on shell [12,63,64]. They are expressed
in terms of the induced metric on the conformal boundary
hab, the extrinsic curvature Kab, and the Riemann tensor
Rabcd of the induced metric. The quantity J is defined as
the trace of the tensor

3J ab ¼ 2KKacKc
bþKabKcdKcd−2KacKcdKdb−K2Kab;

while Gab ¼ Rab − 1
2
habR denotes the boundary Einstein

tensor. This theory admits an EAdS solution with line
element

ds2 ¼ dr2 þ L2 sinh2ðr=LÞdΩ2
3: ðA2Þ

Evaluating Eq. (A1) on the above solution gives rise to
divergences due to the noncompactness of the space, which
are regularized by the counterterms introduced in the
second line. As shown in Ref. [12], the divergences due
to the Weyl-squared invariant can be regularized by adding
a counterterm LCT

C2 that is a linear combination of the
Gibbons-Hawking and Gauss-Bonnet counterterms, but its
explicit form is not needed here, since EAdS4 is confor-
mally flat.
Introducing a radial cutoff at r ¼ rb and using the above

definitions, we collect the various pieces contributing to the
regularized on-shell action of EAdS4. From the first line in
Eq. (A1), we find

I1 ¼
�

πL2

16GN
þ 4π2c2

��
8 − 9 cosh

�
rb
L

�
þ cosh

�
3rb
L

��
:

ðA3Þ

From the counterterms on the second line, we find

I2 ¼
πL2

8GN
sinh

�
rb
L

��
4þ 2 cosh

�
2rb
L

�
− 3 sinh

�
2rb
L

��

þ 4π2c2

�
9 cosh

�
rb
L

�
− cosh

�
3rb
L

��
: ðA4Þ

In total, the regularized on-shell action can be written as

IEAdS ¼
πL2

8GN
ð4 − e−3rb=L − 3e−rb=LÞ þ 32π2c2: ðA5Þ

Thus, we see that the counterterms precisely cancel the
divergences that arise when the cutoff is sent to infinity, i.e.,
rb → þ∞, and we are left with

IregEAdS ¼
πL2

2GN
þ 32π2c2: ðA6Þ

We also note that the divergent pieces in the counterterm
contribution I2 are given by

Idiv2 ¼
�

πL2

32GN
þ 2π2c2

�
erb=Lð9 − e2rb=LÞ; ðA7Þ

which matches the divergent pieces in the real part of ILh
,

given in Eq. (16), with c3 ¼ 0 as we do not consider the R2

term in this appendix.
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