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Individuals involved in common group activities or settings, e.g., college students that are enrolled in the
same class and/or live in the same dorm, are exposed to recurrent contacts of physical proximity. These
contacts are known to mediate the spread of an infectious disease; however, it is not obvious how the
properties of the spreading process are determined by the structure of and the interrelation among the group
settings that are at the root of those recurrent interactions. Here, we show that reshaping the organization of
groups within a population can be used as an effective strategy to decrease the severity of an epidemic.
Specifically, we show that when group structures are sufficiently correlated, e.g., the likelihood for two
students living in the same dorm to attend the same class is sufficiently high, outbreaks are longer but
milder than for uncorrelated group structures. Also, we show that the effectiveness of interventions for
disease containment increases as the correlation among group structures increases. We demonstrate the
practical relevance of our findings by taking advantage of data about housing and attendance of students at
the Indiana University campus in Bloomington. By appropriately optimizing the assignment of students to
dorms based on their enrollment, we are able to observe a twofold to fivefold reduction in the severity of

simulated epidemic processes.
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I. INTRODUCTION

From the Black Plague in the 13th century to the recent
COVID-19 pandemic, epidemics have always represented
significant threats for humanity [1]. Network science has
been at the core of many advances made in epidemic
modeling, given that the fate of an epidemic process is
fundamentally determined by the structure of the social
network where spreading occurs [2-5]. Notably, network
structural properties play nontrivial roles in shaping not
only the dynamics of spreading, but also mitigation
strategies [2,6—10].

Contacts of physical proximity that mediate spreading
among individuals often occur in group activities or
settings [5,11,12]. For example, in a college, two students
can get in contact because they are enrolled in the same
class and/or live in the same dorm. Similarly, physical
proximity between school-going children happen in
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classroom or family settings. Realistic models of epidemic
spreading are informed by data accounting for the existence
of multiple types of group interactions that individuals are
exposed to [13]. This aspect is also accounted for in some
recent theoretical metapopulation models of epidemic
spreading [5,11,12,14-16].

A common feature of the above-mentioned studies is
considering the exposure of individuals to multiple types of
group interactions as an input rather than a free, or tunable,
parameter of the spreading model. For example, Granell
and Mucha assume that the groups of a population are
given and then analytically study how the threshold
value of an epidemic spreading in the group-structured
population depends on the mobility of individuals among
groups [11]. In this paper, we change perspective by
focusing our attention on the effects that group structure
and interrelation among groups have on the properties of a
susceptible-infected-recovered epidemic process. To this
end, we represent interaction patterns among individuals of
a population as edge-colored graphs [17] with block or
community structure [18]. Each color or layer in these
graphs represents a specific social setting where two
individuals may get in physical proximity, e.g., a classroom
or a dorm in the case of college students. Blocks or
communities are instead used to model group interactions
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in the layers. In the example of a population of college
students, blocks represent specific classes attended by
students or specific dorms where students reside. The
framework allows us to control for the strength of the
block structure of the layers, e.g., the likelihood that two
students in the same class or dorm have a proximity
contact, as well as for the similarity of groups across
layers, e.g., the likelihood that two students live in the
same dorm and attend the same class. We study the
importance of these two factors in determining the fate of
epidemic processes.

A study that is immediately related to ours is the one
by Fan et al. [19]. They consider epidemic spreading in
edge-colored graphs that are embedded in geometric space.
They numerically estimate the epidemic threshold for
graphs with variable levels of correlation between the
layers’ embeddings, and find that such a quantity grows
as geometric correlation increases. In other words, the
severity of an epidemic is reduced in a network with
geometrically correlated layers compared to a network
whose layers are not correlated.

As there exists a tight analogy between geometric
embedding and community structure [20], the work by
Fan et al. directly relates to ours. In our work, however,
we go well beyond the state of the art by expanding the
analysis by Fan et al. in two main, fundamental respects.
First, we provide a full characterization of the importance
of group strength and correlation in epidemic spreading
by monitoring not only static quantities such as the size of
the outbreak and the epidemic threshold, but also dynami-
cal quantities such as the duration and intensity of the
epidemic. Looking at dynamical metrics of epidemic
severity turns out to be essential for a full understanding
of how topological correlations affect spreading dynamics.
In particular, there are cases where changes in group
correlation do not lead to any variations in outbreak size
and epidemic threshold, but to apparent variations of both
duration and intensity. In addition, we consider the role of
correlation in interventions for disease containment, an
aspect that is not considered by Fan et al., but that actually
displays a marked dependence on the topological correla-
tions that characterize a network. We find that herd
immunity in a network with correlated group structure
can be achieved by immunizing a fraction of individuals
that is even fivefold smaller than in the case of a network
with noncorrelated group structure. Second, and more
important, Fan er al. do not apply their approach to the
analysis of real-world systems. The method is in fact
limited by a series of challenges in practical applications.
The approach requires knowledge of the network topology
of the layers to perform the embedding in the hyperbolic
space, but detailed network data are in many cases not
readily available. Also, once the embedding is performed,
manipulating the network to reduce the severity of a disease
outbreak is not an intuitive task as it requires changing

coordinates of nodes in the hyperbolic space. Our approach
instead does not require knowledge of the network of
contacts. We simply use information about groups’ com-
position. This information is generally available in real
systems. Further, interventions on the network are easy to
formulate or implement as they require only changing the
group assignments of nodes. In this paper, we actually
demonstrate the utility of our proposed framework in the
analysis of a real-world scenario of data concerning enroll-
ment and housing of college students at the Indiana
University campus in Bloomington. We show that a simple
strategy of reassigning students to housing facilities can
(i) dramatically reduce the severity of an epidemic out-
break, both in terms of intensity and duration, as well as
(ii) greatly enhance the effectiveness of interventions for
disease containment.

II. RESULTS
A. Synthetic graphs

In Fig. 1, we provide an example of our modeling
framework, see Sec. IV for details. Continuous-time
susceptible-infected-recovered (SIR) dynamics happens
on an edge-colored graph with N nodes [2,17]. For
simplicity, in most of our analysis we assume that there
are only two layers of interactions. To have a concrete
example in mind, think of a population of college students,
where layer # =1 represents interactions in housing
facilities and layer £ = 2 represents classroom interactions.
Individual layers of the network have preimposed block or
community structure constructed according to the rules of
the stochastic block model (SBM) [18]. Once more for
simplicity, we assume the model to be homogeneous both
in terms of degree and block sizes. Specifically, nodes’
degrees in layer ¢ obey a Poisson distribution with average
(k“)). Also, each individual i is associated to a group

@)

o; ' =1,...,

Q) in layer #, with all groups having the
same size ¢(¥). The mixing parameter x quantifies the
fraction of connections that each node has toward other
nodes outside its own group. Please note that we use the
same mixing parameter for both layers just for conven-
ience, but this is not a requirement of our model. The
correlation between the community structure of two layers
is measured in terms of normalized mutual information
(NMI) [21]. Perfectly aligned communities generate large
NMI values, whereas uncorrelated block structures have
low NMI values. Concerning SIR dynamics, the recovery
rate is set equal to one, whereas spreading events occur in
both layers at rate B. The choice of using identical
spreading rates for both layers is made for simplicity;
the effective rate of spreading is anyway also a function of
(k'“)). Initial conditions of the dynamics are such that all
nodes are in the susceptible state, except for a single
random node that is set in the infected state.
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FIG. 1. Modeling framework and metrics of epidemic se-
verity. (a) As a basic illustration of the modeling framework, we
consider an edge-colored graph composed of N = 200 nodes
and two layers of interactions. Nodes are organized in four
groups of size ¢/*) = 50 for both layer # = 1 and # = 2. Colors
of the nodes (i.e., orange, purple, blue, green) represent the
community structure in layer £ = 1; shapes (i.e., circle, square,
triangle, diamond) indicate the community memberships in
layer £ = 2. Here, the community structures of the layers are
maximally correlated (NMI = 1.0, with NMI standing for
normalized mutual information), meaning that there is a one-
to-one map from shapes to colors. Connections among pairs of
nodes are created such that the average degree is (k¥)) = 3; a
fraction u = 0.025 of these edges connects a node to other
nodes outside its own community. Using these parameters,
we generate edges in layer £ = 1 (full gray lines) and in layer
¢ = 2 (dashed red lines). (b) Same as in (a), but for uncorrelated
community structure (NMI = 0.0); i.e., colors and shapes are
assigned to nodes randomly. (c) We run V = 1000000 simu-
lations of the SIR model on top of the graphs of panels (a) and
(b) by setting the spreading rate f = 0.4, i.e., setting the basic
reproduction number Ry = B((kV) 4 (k?))) = 2.4. We display
the fraction of infected nodes in the population as a function of
time. We consider bins of size 0.05 and report only the average
values over at least 100 surviving runs. (d) Same as in (c), but
here we are displaying the fraction of recovered nodes in the
population as a function of time.

In the example of Fig. 1, we play with only one
ingredient, that is the correlation of the community struc-
ture of the layers. Individual layers have a neat block
structure, as they are generated for y = 0.025. However, the
two structures are in one case maximally correlated
(NMI = 1.0) and in the other case completely uncorrelated
(NMI = 0.0). In the example of the population of college
students, correlated blocks occur when the conditional
probability for two students to attend the same class given
that they live in the same dorm is higher than the probabi-
lity of two random students to attend the same class;

uncorrelated community structure indicates that the two
probabilities are equal.

The effect that correlation has on the outcome of SIR
spreading is particularly interesting even for a small
population like the one considered in Fig. 1. Outbreaks
are comparable in size between the correlated and uncor-
related cases; however, graphs with correlated community
structure display milder and longer epidemics than graphs
with uncorrelated groups. In essence, topological corre-
lations among the layerwise community structure of the
network may have an impact on how the epidemic
unfolds, but not on its magnitude. This is a fundamentally
important aspect that was not captured in the analysis by
Fan et al. [19].

We study in a systematic manner the effect that the
correlation among the community structure of the graph
layers has on SIR spreading. To this end, we employ a
simple algorithm that allows us to generate block structures
anywhere between the maximally correlated and the uncor-
related configurations, see Sec. IV for details. In Fig. 2, we
display results for a graph with N = 10000 nodes. Model
parameters are (k1)) = 3, (k®) = 10, ¢V = 5, ¢/® =25,
and y = 0.025. We consider three distinct values of the SIR
spreading rate, f = 0.2, 0.4 and 0.6, all of them correspond-
ing to the endemic regime of the dynamics. As the figure
clearly displays, increasing the correlation between the block
structure of the layers reduces the severity of the epidemic.
There is no apparent reduction in terms of outbreak size,
unless the layer community partitions are very close to
the configuration corresponding to maximum correlation.
Severity reduction is instead mostly visible in terms of
intensity and duration. Essentially, spreading slows down as
the correlation of the partitions is increased, with a clear
reduction in the peak value of the fraction of infected and an
apparent increase in the total duration of the epidemic.

The above findings are valid for network layers that are
sufficiently modular. When the strength of the community
structure varies, nothing happens if the layers’ partitions
are uncorrelated, see Figs. 2(d)-2(f). However, if partitions
are correlated, we observe an increase of epidemic severity
as the community structure progressively becomes loose.
Further, we observe an interesting trend in the metrics of
epidemic severity as the number or size of communities
is varied [see Figs. S1 and S2 in Supplemental Material
(SM) [22] ]. The trend is visible only if partitions are
correlated, and community structure is sufficiently strong.
In such a case, the outbreak size, the duration, and the peak
of infected nodes grow as the size of the blocks decreases.
Once more, if partitions are not correlated, then no change
in the values of metrics of epidemic severity is visible as
the size or number of clusters is varied. All the above
considerations are still valid even if we consider models
with heterogeneous community sizes (Fig. S3 [22]) and
node degrees (Fig. S4 [22]). Further, results for edge-
colored graphs composed of three layers are almost
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FIG. 2. Epidemic spreading in synthetic group-structured populations. (a) We consider edge-colored graphs with N = 10 000 nodes
and parameters (k1)) = 3, g(1) = 5, (k¥)) = 10, ¢!® = 25, and u = 0.025. We tune the correlation among the community structure of
the layers by swapping community memberships of nodes as explained in Sec. IV. We simulate SIR dynamics, and measure the size of
the outbreak. We plot it as a function of the NMI between the layers’ partitions. Results are averaged over V = 5000 repetitions.
Different colors and symbols refer to results valid for different choices of the spreading rate f, i.e., f = 0.2, 0.4, and 0.6, all
corresponding to supercritical spreading rates [see inset in (c)]. The values of the reproduction number are Ry = 2.6, 5.2, and 7.8,
respectively. (b) Same as in (a), but for the peak value of the fraction of infected. (c) Same as in (a), but for the duration of the epidemic.
(d) We consider only the configurations corresponding to maximum (full curves, solid symbols) and minimum (dashed curves,
transparent symbols) correlation among layers’ partitions, and generate networks with variable mixing parameter y. We plot the size of
the outbreak as function of y. Results represent averages over V = 5000 realizations of the model. (e) Same as in (d), but for the peak of
the fraction of infected. (f) Same as in (d), but for the average duration of the epidemic.

identical to those obtained on two-layer edge-colored
graphs (Fig. S5 [22]).

Also, we analyze how the two main ingredients of our
network model, i.e., the strength of the community struc-
ture of the individual layers and the correlation among
the community partitions of the layers, influence the
effectiveness of immunization in suppressing an epidemic,
see Fig. 3. To this end, we simply change the initial

conditions of the dynamics by imposing that a fraction of
randomly chosen nodes is set to the recovered state. All
other nodes are in the susceptible state, except for one
randomly chosen initial spreader that is set in the infected
state. The effectiveness of random immunization is greatly
enhanced when communities are correlated: at parity of
spreading rate f3, correlating the group structures leads to
even a fivefold reduction in outbreak size and peak of
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FIG. 3. Immunization in synthetic group-structured populations. (a) We consider the same experimental setting as in the bottom row of
Fig. 2. We set the mixing parameter ¢ = 0.025 and consider three values of the spreading rate f, i.e., 0.2, 0.4, and 0.6, corresponding to
the reproduction number Ry = 2.6, 5.2, and 7.8, respectively. We change, however, the initial condition of the dynamics, by immunizing
a random fraction of nodes. We then plot the size of the outbreak as a function of the fraction of immunized nodes. Results are obtained
by averaging the outcome of V = 5000 repetitions of the epidemic process. (b) Same as in (a), but for the peak fraction of infected nodes.
(c) We rescale the abscissa values of (a) by the outbreak size that is observed when a null fraction of nodes is immunized.
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infection compared to the uncorrelated case; also, the
overall behavior of the system obtained for f = 0.6 in
the presence of group correlation is almost identical to the
one observable for # = 0.2 in a population with uncorre-
lated group structure. A similar conclusion is reached by
measuring the site-percolation thresholds of the networks,
see Fig. S6 [22]. The site-percolation model is closely
related to immunization, as the immunized nodes and their
connections are effectively removed from the system and
the spreading dynamics is governed by the network formed
by the edges between the nonimmunized nodes.

All the above results are obtained by means of numerical
simulations. In the Supplemental Material [22], we describe
the derivation of two theoretical approximations: the
individual-based mean-field approximation (IBMFA) and
the group-based mean-field approximation (GBMFA).
IBMFA is a standard theoretical approach that uses as
input the topology of the network [2]. GBMFA is an
approximation introduced in this paper, inspired by the so-
called degree-based mean-field approximation where
nodes with identical degrees are treated as indistinguishable
elements [2]. The main difference in GBMFA is that classes
of indistinguishable nodes are defined based on the layer-
wise community structures. IBMFA and GBMFA generate
similar predictions; one of these predictions is that the

epidemic threshold equals f. = ({(k)) + (k@))~! for any
level of correlation existing between the layers’ community
structures, see Fig. S7 [22]. Qualitatively, this theoretical
prediction supports our numerical findings on the weak
dependence of the long-term metrics of epidemic severity
from topological correlations among the network layers,
highlighting once more fundamental differences existing
between our results and those by Fan et al. [19]. From the
quantitative point of view, however, we find the mean-field
approximations to be accurate enough only for populations
with sufficiently large communities or sufficiently large
average degree, see Figs. S8-S11 [22]. These regimes,
however, are of little importance in realistic settings where
groups are generally much smaller than the size of the
entire population and the average degree of individual
nodes is small.

B. College housing and attendance network

The paper has thus far presented simulations on synthetic
group-structured populations aimed at understanding
the fundamental principles of epidemic spreading in these
systems. In this section, we demonstrate the significance
and effectiveness of these principles in a real-world
scenario. We examine data about housing and attendance
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FIG. 4. Epidemic spreading in the student population of the Indiana University Bloomington (IUB). (a) We use data about housing and
attendance for the Fall 2019 semester at the [UB campus to generate edge-colored graphs with block structure. The community partition
in one layer reflects housing assignments; the partition in the other layer serves to group students based on their program and education
level. Different graphs are generated depending on whether network partitions are (i) those directly observed from the data,
(i1) randomized, or (iii) optimized for maximum correlation. We then simulate SIR dynamics on the graphs and measure the average size
of the outbreak as a function of the spreading rate /3. Results are averaged over V = 5000 repetitions. (b) Same as in (a), but for the peak
fraction of infected. (c) Same as in (a), but for the duration of the spreading process. (d) We plot the size of the outbreak as a function of
the fraction of individuals that are initially immunized. We consider three values of the spreading rate f, i.e., 0.2, 0.4, and 0.6,
corresponding to the reproduction number R, = 2, 4, and 6, respectively. Different symbols correspond to different $ values; full curves
and solid symbols indicate the optimized configuration considered in (a); dashed curves and transparent symbols refer to graphs created
using ground-truth partitions. Results are averaged over V = 5000 repetitions. () Same as in (d), but for the peak fraction of infected.
(f) Same as in (d), but with abscissa values rescaled by the outbreak size observed when zero individuals are initially immunized.
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at Indiana University Bloomington (IUB), see Sec. IV
for details. There were N = 10 132 individuals in the IUB
dataset, each representing a student who resided in one
of the campus facilities during the Fall 2019 semester. We
use layer Z = 1 to represent contacts between students in
housing settings. We form Q') = 396 groups composed
of students living in the same floor of a large dormitory, or
in the same Greek house. The average size of these groups
is (1)) = 25.58. Layer # = 2 is used to represent class-
room interactions. We form Q(®) = 600 groups of students
based on their enrollment program (e.g., computer science,
finance, mathematics, physics) and their education
level (from freshman to Ph.D.). The average size of these
groups is (¢'*)) = 16.86. Note that the partitions within the
classroom and residential layers are disjoint. Moreover,
the group sizes in the two partitions are not homogeneous,
see Fig. S12 [22].

The ground-truth community partitions display a corre-
lation level similar to that of the uncorrelated case.
Specifically, the NMI between the partitions obtained
from the data is 0.389, which is comparable with the
one obtained by randomizing the dormitory assignment of
students, which is 0.327. We also create an artificial
configuration, where students are reassigned to residences
so that the NMI between the partitions of the two layers
is maximized. The optimization technique we employ is
described in Sec. IV. The optimized configuration corre-
sponds to the NMI value 0.934.

Given the three configurations described above, we
generate modular network layers using the Lancichinetti-
Fortunato-Radicchi (LFR) model [23], see Sec. IV for
details. Nodes’ degrees obey Poisson distributions with
average equal to (k(V)) = (k(®)) = 5. The strength of the
community structure is controlled by the value of the
mixing parameter, set here to y = 0.025. We stress that
the sizes of the communities in the two layers is always set
equal to the one learned directly from the real data.

In Figs. 4(a)—4(c), we display the metrics of epidemic
severity as functions of the spreading rate. No difference
between the ground-truth and randomized configurations
is noticeable. The optimized configuration displays instead
a less severe epidemic compared to the other two configu-
rations. Also, we notice that random immunization
becomes more effective when communities are correlated
than when no correlation among the layers’ partitions is
present, Figs. 4(d)—4(f). Qualitatively similar results are
obtained also for u = 0.1, see Fig. S13 [22].

ITI. DISCUSSION

In this paper, we studied SIR spreading in group-
structured populations. The real system that inspired our
work is a population of college students that reside on
campus during an academic semester. Recurrent inter-
actions among students are due to group activities or

settings, e.g., housing and class enrollment; each setting
is responsible for the formation of network layers with
modular structure. At the level of individual layers,
modular structure is characterized by the strength and size
of the blocks or communities that are present in the layer. In
the example of the population of college students, these
correspond to the size of classes or dorms, and to the level
of mixing between students depending on their enrollment
or housing assignment. Correlation among the layerwise
community structures is indicative instead for the like-
lihood of two nodes to belong to the same community in
both layers, i.e., the conditional probability of two students
to attend the same class given that they live in the same
dorm. All these parameters play fundamental roles for the
determination of properties characterizing the spread of an
infectious disease within the population.

In the first part of the paper, we considered synthetic
populations where the above ingredients can be finely
tuned. By means of extensive numerical simulations, we
showed that SIR dynamics is characterized by mild and
long spreading processes if the communities of the indi-
vidual layers are neat, and the correlation among the
layerwise community structure is sufficiently high. On
the contrary, weak and/or uncorrelated community struc-
tures generally correspond to short and intense outbreaks.
Immunization in populations with correlated communities
is also greatly more effective than in populations with
uncorrelated layerwise community structures.

In the second part of the paper, we took advantage of real
data about housing and attendance of students at the
Indiana University Bloomington campus, and numerically
simulated SIR dynamics in this population. Ground-truth
data correspond to layerwise partitions that are uncorre-
lated. By appropriately reassigning students to housing
facilities on the basis of their enrollment profiles, we were
able to show that the severity of an epidemic can be
significantly reduced compared to the case in which no
reassignment is performed. The reassignment strategy also
enhances the effectiveness of random immunization in
suppressing disease spreading.

The above results are obtained under the assumption that
the layerwise group structure is sufficiently neat, i.e., for
sufficiently low values of the mixing parameter p. This
assumption can be empirically justified by analyzing
publicly available datasets concerning contact networks
within group-structured populations. First, we consider a
contact network for a primary school. The dataset consists
of events of physical proximity between students and
teachers [24]. Each event of physical proximity is asso-
ciated to a duration. The system contains 242 individuals
and 11 communities (10 classrooms plus teachers). Two
days of observation are included in the dataset: day one
consists of 37414 contact events and day two of 40188
contact events. We find that the values of the weighted
mixing parameter (u), i.e., the average fraction of contact
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time spent by the students outside their classrooms, are
(u) = 2.3 x 107 and (u) = 2.6 x 107>, respectively. Next,
we look at a dataset concerning physical proximity in an
office building [25]. The dataset consists of 9827 contact
events between 92 individuals organized in 5 departments
(communities). We find (i) = 9.1 x 107,

Our findings stem from the basic principle that the
severity of an epidemic is proportional to the overall level
of mixing between individuals of a population. Correlated
modular structure in our framework corresponds to redun-
dant interactions among subsets of individuals, which
speeds up the propagation of a disease within a subset,
but also slows down the diffusion across subsets thus in the
overall population. Although having a radically different
implementation, the mechanism of reducing the severity of
an epidemic by enhancing group correlation is similar to
the one at the basis of the mitigation strategy proposed by
Meidan et al., consisting of an alternating lockdown policy
that involves half of the population at a time [26].

A very important remark is that our findings are apparent
only from numerical simulations of SIR dynamics, but they
do not emerge from the numerical integration of mean-field
equations aimed at approximating SIR dynamics. The
mismatch between ground-truth dynamics and its approx-
imations is particularly apparent in realistic settings where
groups are small compared to the population size; also, the
mismatch mostly concerns early and mid stages of SIR
dynamics, rather than its long-term features.

All our results are based on important simplifications
concerning the spreading dynamics of realistic diseases
as well as the contact networks that are the basis of the
spread of infectious diseases within real-world populations.
Nonetheless, we believe they provide some easy-to-
implement principles to reduce the severity of real epi-
demics that managers can take under consideration when
planning group activities in schools, colleges, or other large
organizations.

IV. METHODS
A. Edge-colored block-structured graphs

We consider edge-colored graphs where N nodes are
connected via L different types or layers of inter-
actions [17]. We use L = 2 in most of our analysis; some
results for L =3 are presented in the SM [22]. The
topology of the layer # = 1,2, ..., L is fully specified by
the adjacency matrix A(“). The generic element of this

matrix A( ) = Aﬁ? = l if nodes 7 and j are connected, and
Afjf) = AE'? = 0 otherwise.

1. Synthetic graphs

In the majority of our experiments on synthetic graphs,
network layers are instances of the version of the stochastic
block model (SBM) [18] named planted partition model

[27]. Inputs for the generation of the network layer £ are

the average degree (k“)), the mixing parameter u'?), the

size ¢Y) of each community, and the vector ) =

( ) ) @ ag\,f)) denoting the community mem-

0,05 ,...,0; ', ...,
bership of individual nodes, i.e., node i belongs to
community agf) =1,...,09, with Q9 total number of

blocks in layer #; the output is the adjacency matrix A,
The element Agf) is a Bernoulli random variate equal to

one with probability p\”) = (k) (1 —u®)/(q"9 = 1) if

o) =4\, and with probability pl) = (k))u(®)/

1

(N = q) if 6 )+ 0 . Note that this is the only model
used to generate edge colored graphs with L = 3 layers.

In some of our experiments on synthetic graphs, we
generate network layers using the Lancichinetti-Fortunato-
Radicchi (LFR) model [23], i.e., a variant of the SBM
designed to deal with heterogeneous community sizes
and/or nodes’ degrees. More specifically, in the set of
experiments where we consider power-law distributed

community sizes, we first generate the community sizes

qgf), qéf), ...,qgl). These are integer numbers randomly

extracted from the distribution P(g)~¢q™ " for
4 € [qmin> dmax] and P(g) =0 otherwise, with 7, gy,
and qmax input parameters of the model. Clearly, we have

that Zl 1 ql = N. Please note that the same sequence for
the community sizes is used for all layers of the network.
Nodes are assigned to communities according to their sizes
to form the community vector 5“). For the generation of the
topology of the graph layer #, we first set the degree of each
node to be a random variate extracted from a Poisson
distribution with average (k()). We then connect pairs of
nodes at random, taking care of preserving for each node its
preassigned degree value, as well as the ratio u(*) between
intercommunity and total connections. Here the average
degree (k(f )> and the mixing parameter u(“) are input
parameters of the model. In the set of experiments where
we consider power-law degree distributions, the size of all
communities in layer # is equal to ¢“), an input parameter
of the model. We then assign degrees to nodes by extracting
random numbers from the power-law distribution P(k) ~
k77 for k € [kpin, kmax) and P(k) = 0 otherwise, with y,
kmin» and k., input parameters of the model. The degree
sequence of each layer is generated independently. We then
connect pairs of nodes at random, taking care of preserving
for each node its preassigned degree value, as well as the
ratio u') between intercommunity and total connections,
with the mixing parameter 4(*) being an input parameter of
the model.

2. College housing and attendance network

Also, we consider a dataset containing information about
class attendance of students who resided in the Indiana
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University Bloomington (IUB) campus during the Fall
2019 semester [28]. The dataset is composed of N =
10132 students. We use layer £ = 1 to represent housing,
and group together students living in the same floor of a
dormitory building or in the same Greek house. We form
QD) = 396 groups of average size (¢!)) = 25.58. Please
note that the size of the various groups is not constant, see
Fig. S12 [22]. We use layer £ =2 to represent class
interactions. Each student in the dataset is associated to
one of the 218 degree programs (e.g., law, mathematics,
physics) and 6 education levels (i.e., freshman, sophomore,
junior, senior, master, and Ph.D.). On the basis of our data,
we form Q®) = 600 blocks of average size (¢?)) = 16.86,
by grouping together students belonging to the same degree
program and education level. Note that not all possible
compartments defined by the pairs degree program and
education level contain at least one student. Also for layer
¢ = 2, the size of the various groups is not a constant, see
Fig. S12 [22]. Network layers considered in the analysis of
the IUB dataset are generated according to the LFR model.
Inputs required for the generation of the topology of layer £
are the average degree <k(f )>, the mixing parameter (),
and the community-membership vector ). For the gen-
eration of the topology of the graph layer £, we first set the
degree of each node to be a random variate extracted from a
Poisson distribution with average (k(*)). We then connect
pairs of nodes at random, taking care of preserving for each
node its preassigned degree value, as well as the ratio u(?)
between intercommunity and total connections.

B. Measuring and tuning correlation among
the community structures of the layers

We measure the similarity between the community
structure of two network layers, namely (1) and (%), in
terms of normalized mutual information (NMI) [21]. By
definition, NMI values are in the range [0, 1]; however, the
actual minimum and maximum values that NMI can
assume depend on the size and number of clusters in the
two partitions. Small values of the NMI are associated to
uncorrelated partitions, whereas large NMI values indicate
correlated partitions.

1. Synthetic graphs

In our systematic tests on synthetic network models
that are constructed using the SBM, we generate perfectly
correlated partitions as follows. First, we fix the size ¢(!)
of the clusters in layer £ = 1, then we determine the size
of the clusters in layer # = 2 as ¢® = dg("), where d is a
tunable integer parameter. For simplicity, we appropri-
ately choose ¢! and d so that both ¢(") and ¢® are
divisors of N. For example, in many of our tests we have
N =10000, ¢V =5, d =5, and ¢® = 25. Finally, we

set agf) =1i/¢"] +1 for all i=1,...N and for
¢ =1, 2, with |-] floor function.

In the tests where we take advantage of the LFR model,
the size of the communities is identical in both layers.

We thus generate perfectly correlated partitions by setting

o) — 6@

; for all nodes i in the network.

Starting from the partitions () and &2 that are
maximally correlated, their NMI is reduced by considering
each node, and swapping with probability r its community
membership in layer £ = 1 with that of another randomly
selected node. For r = 0, no swaps are actually performed
so that the correlation of the community partitions is
preserved; for r =1, community labels in layer £ =2
are completely randomized compared to the initial con-
figuration so that correlation between the layers’ commu-
nity memberships becomes minimal.

In the set of experiments where we consider edge-
colored graphs composed of L =3 SBM-generated net-
work layers, all communities have the same size; thus
we set o-El) = 0_1(2) = 0'53) for all nodes i in the network to
generate perfectly correlated partitions. To decrease corre-
lation, we consider each node and swap with probability r
its community membership in layers £ =1 and £ =2
with that of another randomly selected node. Note that we
only consider the cases r = 0 and r = 1 for this specific
set of experiments.

2)

2. College housing and attendance network

To create completely uncorrelated partitions, we simply
swap the housing assignment of each student with that of
another randomly selected student.

To create a configuration with highly correlated
partitions, we take advantage of the following greedy
optimization technique. We define the tuple P) =

(ng), ...,zg)f)), where sz”) denotes the remaining avail-
ability of group v in layer . We initially set z(vf) = q(f) for

v=1,..., Q(f), where qy), i.e., the size of group v in layer
Z, is imposed by the IUB housing or attendance data. We
set M = 0 denoting the number of elements that have been
assigned to groups in the layers. We then iterate the
following operations:

(1) We find the group label ) corresponding to
the largest element in P(£). We can have either
rD > 2 or @ > (1), We indicate with ) the
larger of the two values, where ¢, is the label of
the corresponding layer; we use r(“s) to indicate
the smaller of the two values, with # denoting the
label of the corresponding layer.

@) We set o) =7 and 6\ =) for all

) ()

. £) .. .
i=M+1,....M + z(m); Le., we assign z ) nodes

to coherent groups in both layers.
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(3) We update M - M + zi@, zifﬂ;,)) - Zgi’r)) - Z(f;;)),
52(/2)) - 0.

(4) Until all the individuals have been assigned to a
group, i.e., M < N, we go back to point 1, other-
wise, we end the iterative procedure.

In the above step 2, we maximize the overlap of the
largest groups still available in the layers. This greedy
choice is iterated multiple times until all individuals have
been assigned to groups in both layers. At the end of the
algorithm, all groups of a given layer will have the desired
size. Since the labels of the nodes are completely arbitrary,
the obtained partitions can be thought as equivalent to
reassigning students to dorms based on their enrollment.

and 7

C. SIR dynamics on edge-colored graphs

We consider continuous-time SIR dynamics on an edge-
colored graph [19]. Without loss of generality, we assume
that the rate of recovery equals one. This is a standard
setting as the behavior of SIR models is determined by the
ratio of the spreading and recovery rates rather than their
raw values. We indicate with p;(t) = S, I, or R the state of
node i at time ¢. Our initial conditions are generally such
that all nodes are in the S state, except for a randomly
selected node v that is in state /, i.e., p;(t =0) = S for
i=1,...,Nand i # v, while p,(r = 0) = I. In some of our
experiments, we also impose that a fraction f of randomly
selected nodes is in the recovered state, i.e., p;(f = 0) = R
with probability f forall i =1,...,N.

Starting from an initial condition, the rules of SIR
dynamics are as follows. A generic node i can change
its state in the infinitesimal time interval [t,7+ df] if
(i) node i is in the infected state and recovers with
probability dt, i.e., p;(t) = I — p;(t + dt) = R with prob-
ability dt, (ii) node i is in the susceptible state and gets
infected with probability p(“)dt by its infected neighbor j
on layer 7, i.e., p;(t) =S — p;(t + dt) = I with proba-
bility #“)dr if p;(r) = I and A7 = 1. Note that spreading
events of type of (ii) can happen for all individual edges
in all layers in the graph; thus if node i is in the S state at
time ¢, the overall probability to get infected in the time
interval [7,7+ dt] is Problp;(t) =S — p;(t+dt) = 1] =

L= TTe, (1 = pdiy” where g = 57, A 6(p;(1). 1)
is the number of infected neighbors that node i has in layer
¢ at time ¢ with 6(x,y) =1 if x =y and &(x,y) =0
otherwise. The dynamics proceeds until no nodes are in
the infected state. The model is efficiently implemented via
the Gillespie’s algorithm [29].

1. Metrics of epidemic severity

We characterize the behavior of the SIR model on a
given edge-colored graph by measuring the values of the
following metrics:

(i) The outbreak size, i.e., the fraction of nodes that are
in state R at the end of the epidemic.

(ii) The peak of infection, i.e., the maximum value of the
fraction of infected nodes that are simultaneously
present in the network.

(iii) The epidemic duration, i.e., the instant of time when
the last infected node recovers.

Given an edge-colored graph and the parameters () of
the epidemic model, we simulate multiple times SIR
dynamics. Values of the above metrics displayed in our
figures correspond to their sample averages.

In the inset of Fig. 2(c), we approximate the pseudo-
critical epidemic threshold of the given edge-colored graph
as the value of the spreading rate f# corresponding to the
maximum of the ratio between the sample standard
deviation and the sample average of the outbreak size.

The code and data used in this study are available
at Ref. [30].
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