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Large interacting systems in biology often exhibit emergent dynamics, such as coexistence of multiple
timescales, manifested by fat tails in the distribution of waiting times. While existing tools in statistical
inference, such as maximum entropy models, reproduce the empirical steady-state distributions, it remains
challenging to learn dynamical models. We present a novel inference method, called generalized Glauber
dynamics. Constructed through a non-Markovian fluctuation dissipation theorem, generalized Glauber
dynamics tunes the dynamics of an interacting system, while keeping the steady-state distribution fixed. We
motivate the need for the method on real data from Eco-HAB, an automated habitat for testing behavior in
groups of mice under seminaturalistic conditions, and present it on simple Ising spin systems. We show its
applicability for experimental data by inferring dynamical models of social interactions in a group of mice
that reproduce both its collective behavior and the long tails observed in individual dynamics.
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I. INTRODUCTION

From collective information encoding in neurons [1–4]
to emergence dynamics in collective animal motion [5–8]
and population dynamics in ecological communities [9],
collective behavior emerges from dynamical interaction
among individual components. In recent years, large scale
data acquisition in precisely controlled experiments [10–14]
allow researchers to address these questions by constructing
statistical and dynamical data-based models that repro-
duce the correlated activity in spiking and nonspiking
neurons [15–18] and collective animal motion [19,20].
Living systems are intrinsically dynamic and out of

equilibrium, as manifested by the coexistence of multiple
timescales and the breaking of Markovian rule in animal
behavior [21–24] and neuron activities [25,26]. However,
most recent work focuses on inferring the static properties
of collective behavior: analyzing the joint probability

distributions of the interacting components and relating
these global states to functional behavior. In many cases,
inferred pairwise interaction models successfully reproduce
the correlation structure of the data [27–29], leading to
identifying the empirical rules for collective neuronal
encoding [2,15,30–32], the interaction structure of bird
flocks [19,33], or contact maps of proteins [34]. While
these approaches do not directly address the dynamics,
attempts have been made to reconcile them with dyna-
mical models of neurons [18,35] and flocks [36] by using
classical rules of equilibrium dynamics.
Recent methods to learn the dynamics of interacting

systems focus on extensions to second order dynamics for
continuous systems [37–40]. For discrete spiking neurons,
dynamical inference focuses on reproducing pairwise cor-
relation functions between different time points [41–44], or
inferring transition probabilities or causal dependencies [45].
The extension of maximum entropy to reproduce time-
delayed cross-correlations (called maximum caliber [46])
is computationally expensive and requires a lot of data to
train [41,42].However,manypossible dynamicalmodels can
generate the same steady-state distribution. More fundamen-
tally, in general the dynamics cannot be automatically related
to the steady-state distribution, especially if the learned
models are out of equilibrium. In transition models, the
transition rate of a component is given by the history of itself
and other inputs, stimuli, and interacting components in the
network. By incorporating autoregressively generated noise
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in the transition rate, recent developments in generalized
master equation (GME)models have introduced the capacity
to encode latent variables [47]. The generalized linear model
(GLM), a representative of this class used in neuroscience,
successfully reproduces different types of neuronal dynamics
and firing patterns in many brain regions [45]. However,
since GLMs are constructed by definition to predict only
the next time point forward, they often generate unstable
trajectories and produce inconsistent steady-state distri-
butions with respect to the training data [48–51]. To our
knowledge, no existing model tractably infers the collective
dynamics while also reproducing the observed steady-state
distribution.
We propose an inference method, called generalized

Glauber dynamics (GGD), that combines the power of
steady-state inference with dynamical inference. Construc-
ted through a non-Markovian fluctuation dissipation theo-
rem, the generalized Glauber dynamics tunes the dynamics
of an interacting system, while keeping the steady-state
equilibrium distribution fixed. In practice, this method
allows for the inference to be separated into two parts:
first, inference of the steady-state distribution using maxi-
mum entropy models, and then, tuning the dynamics to
match the data. The basic idea behind the GGD is similar

to generalized Langevin dynamics: coupled degrees of
freedom are integrated out to generate an effective memory
kernel, such that the dynamics of the system depends on its
history. Interestingly, the functional form of the GGD is
similar to the GLM but differs dramatically in its link to
the steady-state distribution. We demonstrate the power of
GGD to predict the colocalization pattern of groups of
socially interacting mice.

II. RESULTS

A. Collective behavior of social mice

We studied the interaction structure of groups of animals
in a controlled environment. We analyzed data genera-
ted from the Eco-HAB experiment [11] and presented in
Ref. [52], where a group of N ¼ 15 freely moving male
mice live in an artificial ecological environment resembling
natural burrows [Fig. 1(a)]. The Eco-HAB consists of four
chambers, two of them with food, connected by tunnels.
The experiment lasts for 10 days, with alternating light con-
ditions of darkness and brightness, each lasting 12 hours, to
simulate the day-night cycle. Mice are able to behave and
interact freely, without any experimental constraints or
manipulation. Each mouse is equipped with a unique radio

FIG. 1. Collective dynamics among social mice. (a) The Eco-HAB experimental setup (top view) with C57BL6/J male mice (N ¼ 15)
placed in four interconnected chambers. The two chambers with food are labeled by letter F. The location of each mouse is recorded
using mouse-embedded RFID and antennas at the edge of the tubes (indicated by black bars). (b) Example trace for the colocalization
patterns of a group of 15 mice over 10 full days, consisting of alternating dark and light cycles (12 h). The red vertical lines indicate the
beginning of each dark cycle. (c) Pairwise connected correlation function of mice colocalization Cij (with error bar computed by
bootstrap). Cyclically shuffled data show no correlation, while data shuffled within the same day show a strongly reduced correlation.
(d) Autocorrelation function for the number of mice in a given box CnðtÞ as a function of time difference, computed from the mice
position between 13∶00 and 19∶00 each day, a period of the intensified activity chosen for the presented analysis. Error bars are the
standard error from the mean across 10 days. (e) Mean waiting time for each mouse, defined to be the time a mouse spent staying in a
given box before exits. Each dot indicates a different day. (f) Distribution of waiting times normalized by their mean for each mice.
Distributions collapse across all mice, and decay slower than exponentially, indicating the existence of long timescales.
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frequency identification transmitting chip (RFID) that
allow for the detection of their position every time
they pass by the 8 recording antennas [marked in black
in Fig. 1(a)]. The data consist of time points with 1-ms
resolution at which each mouse passed a given recording
device, which allows us to identify the location of each
mouse as a function of time, σiðtÞ ¼ 1, 2, 3, or 4 [Fig. 1(b)].
Mice are nocturnal animals with increased activity

during dark periods. For the purpose of method develop-
ment we focus on dark periods and restrict our analysis to a
6 h period of stable activity, which consists of the first and
bigger of the two nocturnal activity peaks characterizing
the used strain of mice, C57BL6/J [see Supplemental
Material (SM) [53], Fig. S1(a)]. The individual dyna-
mics are characterized by a basal activity rate of moving
between boxes, and by the tendency to explore the next box
rather than come back to the previous one, which we term
“roaming” [see SM, Fig. S1(b)]. Dominant mice tend to
chase others more frequently [52], resulting in chaser-
chased dynamics that are significant within a short time-
scale of a few seconds [see SM, Fig. S1(c)].
To measure collective behavior at the group scale, we

examine the excess frequency of finding two mice in
the same box. The mean frequency of mouse i in box α
reads hδσi;αi, where δa;b ¼ 1 if a ¼ b, and 0 otherwise.
The excess pairwise frequency is given by the correlated
pairwise correlation Cij ¼ hδσi;σji−

P
αhδσi;αihδσj;αi, where

the first average is over all box combinations [Fig. 1(c)].
Nonzero correlations between mice strongly decrease when
the data are shuffled across time within the same day, and
completely go away when the data are shuffled across days.
This suggests that interactions between mice drive the
correlation, rather than the environment (i.e., the day).
To study the dynamics of that collective behavior,

one can look at the temporal autocorrelation of the total
number of mice in each box nαðtÞ, defined as CnðtÞ ¼P

αhnαð0ÞnαðtÞi − hnαi2. The excess of this autocorrela-
tion over its counterpart in the shuffled dataset [Fig. 1(d)] is
a signature of group behavior, which slows down the
overall dynamics of occupancy by keeping individuals in
heavily occupied boxes longer. This is confirmed by the
long tails in the distribution of the waiting time, i.e., the
duration between transitioning events [Figs. 1(e) and 1(f)].

B. Modeling the steady-state distribution

These experimental observations suggest collective
effects driven by direct interactions between mice that lead
to effective phenomena scanning a broad range of time-
scales. Our goal is to find a set of effective equations that
describe the evolution of the system and are consistent
with the properties of the observables in Fig. 1. Predicting
the full dynamical collective behavior requires defining
both the static distribution of box occupancies and the type
of dynamics that governs the transitioning of the mice
between boxes. We separate the inference problem into two

steps: First, we infer the steady-state distribution PsðσÞ for
the macrostates σ ¼ ðσ1;…; σNÞ (N ¼ 15), using a maxi-
mum entropy approach, and then we infer the dynamics
while keeping the steady-state distribution fixed.
The maximum entropy approach has been applied in a

wide range of biological contexts [2,15,16,19,34,54]. It
generates approximations to the steady-state distribution
that match the expectation values of a chosen set of
observables while keeping the model otherwise as random
as possible. Here we constrain the colocalization proba-
bilities of all pairs of mice, Cij, as well as the single-mice
box occupancy functions hδσi;αi. The maximum entropy
distribution then takes the form of a Boltzmann’s law:

PsðσÞ ¼
e−EðσÞ

Zs
; EðσÞ ¼−

X
i;α

�
hi;α −

X
j≠i

Jijδσj;α

�
δσi;α;

ð1Þ

where hi;α and Jij are Lagrange multipliers that must be
tuned to satisfy the constraints, EðσÞ is interpreted as
an energy by analogy with statistical mechanics, and Zs
enforces normalization. We fit this model to the Eco-HAB
and show that it correctly predicts collective statistics of
occupancy that were not fit in the model, such as triad
correlations and the probability of pairs of mice to be in a
specific box (see SM, Fig. S2 [53]).

C. Glauber dynamics fails to capture
the longtime behavior

The same steady-state distribution, Eq. (1), can be gen-
erated by many different dynamical models. The simplest
assumption inspired by statistical physics is to assume that
the transition rate of a mouse from one box α to an adjacent
one β (assuming that transition is instantaneous so that
two mice never transition at the same time) is a function of
the difference in energies between the ending and starting
states, ΔEi;α→βðσÞ. Writing the transition rate between
adjacent boxes as Wi;α→β ¼ μifðΔEi;α→βÞ, where μi is
the overall activity of mouse i and fðΔEÞ is a function,
a sufficient and necessary condition on f for these rates
to admit Eq. (1) as steady state is given by detailed
balance: fðΔEÞ=fð−ΔEÞ ¼ e−ΔE.
We tested some classical forms for fðΔEÞ on the data

[Fig. 2(a)].We found that the empirical normalized transition
rates Wi;α→β=μi are well reproduced by the form of the
Glauber dynamics, fðΔEÞ ¼ 1=ð1þ eΔEÞ, but not by the
Metropolis-Hasting prescription, fðΔEÞ ¼ minð1; e−ΔEÞ.
However, even the Glauber dynamics do not reproduce
the long tails in the waiting time distribution, nor does a
nonparametric form of transition dynamics fðΔEÞ directly
estimated from the data [Fig. 2(b); see alsoSM,Fig. S3 [53] ].
It did not have to be the case: While these dynamics
are Markovian and memoryless at the group level, long
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timescales may nonetheless emerge from interactions, as, for
example, during critical slowing-down. The failure of the
model suggests that, by themselves, these concurrent and
colocalized pairwise interactions are not strong enough for
such long timescales to emerge. Additionally, the transition
probability conditioned on the elapsed time after the last
transition exhibits tails (SM Fig. S4). Together, these results
suggest that the dynamics may have a Glauber form, but that
additional memory effects must be incorporated. Here, the
term “memory” describes how the dynamics depends on the
past location time series.

D. Generalized Glauber dynamics

Our goal is to add long-term memory effects to the
equilibrium dynamics described above, while keeping
maximum entropy distribution valid. For concreteness,
we start from Glauber dynamics, and call the method
the generalized Glauber dynamics, although the approach
can be generalized to other equilibrium dynamics.
Our approach is general and applies to any group of N

correlated, categorical variables taking q possible values,
σi ¼ 1;…; q (q ¼ 4 in the Eco-HAB). For simplicity of
exposition, here we outline the derivation for a single
binary (Ising) spin (N ¼ 1, q ¼ 2), σ ¼ �1 in spin con-
vention. Relating to the Eco-HAB, this is equivalent to a
single mouse placed in an experiment apparatus with two
connected chambers (denoted −1 and þ1). The general
derivation for arbitrary N and q is given in the SM [53].
The maximum entropy distribution is given by the

energy, EðσÞ ¼ −hσ, and the Glauber dynamics is defined
by the transition rates: Wðσ → −σÞ ¼ μe−hσ=ðeh þ e−hÞ.
To include memory, we take inspiration from multidi-
mensional Markov systems with equilibrium dynamics,
such as hidden Markov models and generalized Langevin

equations. The idea is to consider a larger equilibrium
system coupling both the observed spins and some hidden
degrees of freedom. While this augmented system is
Markovian, the subsystem formed by the observed spins
may exhibit memory.
In practice, we couple the spins to a heat bath of har-

monic oscillators [see Fig. 3(a) for schematics, Ref. [55] for
the standard derivation for continuous variables, and SM for
a detailed derivation for categorical variables [53] ]. After
integrating out the hidden degrees of freedom, the transition
rates of the GGD take a Glauber-like form, Wðσ→−σÞ ¼
μe−heffσ=ðeheff þ e−heff Þ, butwith an effective, time-dependent
field,

heffðtÞ ¼ hþΓð0ÞσðtÞ−
Z

t

0

dt0Γðt− t0Þdσðt
0Þ

dt0
þ ξðtÞ; ð2Þ

where the noise correlation satisfies the generalized
fluctuation-dissipation relation:

hξðtÞξðt0Þi ¼ Γðt − t0Þ: ð3Þ

FIG. 2. Glauber dynamics based on the inferred steady-state
distribution, Eq. (1), fails to predict the longtime dynamics of
mice. (a) The normalized mean transition rate is well reproduced
by Glauber dynamics with the parameters of the steady-state
model, but not by Metropolis-Hasting dynamics. (b) However,
Glauber dynamics with the parameters of the steady-state model
do not reproduce the long tails of the waiting time distribution.
The dynamics are also not reproduced by a nonparametric
estimation of the transition rates (see SM, Fig. S3 [53]).

FIG. 3. Toy models with generalized Glauber dynamics.
(a) Schematics of the GGD. In addition to classical couplings
Jij, by considering coupling to an oscillator bath, the observed
degrees of freedom are coupled to their own memory [through
kernel ΓiðtÞ], to that of their neighbors [through kernels GijðtÞ],
as well as to noise sources ξiðtÞ correlated across time and
variables. Panel (b) shows for a single Ising spin that adding an
exponentially decaying memory kernel can create long tails in the
waiting distribution. (c) A single four-state variable with memory
can create a bias in the tendency to continue transitioning in the
same direction as in the previous transition, versus going back to
the previous state. (d) In a multiple spin system, the dynamics can
depend on the history of other spins, illustrated by 10 Ising spins
arranged in a loop.
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ΓðtÞ is an arbitrary function that specifies how the spectrum
of oscillators couples to the spin (see SM, Sec. 1B). The
second and the third terms dependon thememory kernel, and
is defined to be hmemðtÞ.
The first term of Eq. (2) is the local field learned from the

maximum entropy model, already present in classical
Glauber dynamics. This terms generalizes readily to the
case of multiple interacting spins as the local field hiðσÞ
acting on spin i (defined as half the energy difference
between the configurations with σi ¼ −1 and σi ¼ þ1, the
other spins being fixed). The second and the third terms
depend on the history of the spin σðtÞ, and add memory to
the dynamics. The last term is the colored noise that results
from the coupling with the memory kernel. When extend-
ing to q states, the fields h and heff become vectors of
length q, and ΓðtÞ takes the form of a q × qmatrix coupling
the different states together. Memory kernels GijðtÞ may
also be added to couple different degree of freedom i to the
memory of j (see SM, Sec. 1C [53]). By construction, the
process is reversible, as a subsystem of a larger equilibrium
system including both spins and the oscillator bath, and
its steady state is still given by Boltzmann’s law, Eq. (1).
The choice for the memory kernel ΓðtÞ is general and can
be chosen from a large family of functions.

E. Range of possible dynamics of GGD

We now illustrate the range of possible dynamics gen-
erated by GGD, by simulating simple toy models of Ising
or Potts spins (see Sec. IV D for details on the simulations).
We start by asking whether our illustrative example of
a single spin variable with memory can generate non-
Markovian tails of the waiting time distribution, as
observed in the mice experiments [Fig. 2(b)]. We define
a GGD for a single spin with an exponentially decaying
memory kernel, ΓðtÞ ¼ A expð−t=τÞ, where τ is the time-
scale of the self-memory, and compare to the classical
Glauber dynamics (A ¼ 0). By construction, both dynam-
ics predict the same steady-state distribution, characterized
by hσi ¼ tanhðhÞ (see SM, Fig. S5 [53]). However, the
GGD predicts a long tail in the waiting time distribution,
whereas the naive Glauber dynamics yields an exponential
distribution of waiting times [Fig. 3(b)]. Thus, even a
simple form of the memory kernel can create long memory
effects similar to those observed in data.
Second, we illustrate the model’s ability to account for

non-Markovian flow between states. In the Eco-HAB data,
different mice have different levels of roaming—the ratio
of probabilities of moving forward versus moving back-
ward in two consecutive transitions. This effect is non-
Markovian and arises from memory effects. In the GGD,
this memory can be encoded in nondiagonal elements of
the 4 × 4 matrix ΓðtÞ. We define a GGD on a four-state
variable through a kernel ΓðtÞ with cyclic symmetry and
exponentially decaying terms (see detailed parametriza-
tion in SM, Sec. 1D [53]). The model can generate a bias

between transitioning to the next state (A→ B→C) rather
than coming back to the previous one (A → B → A), and
this tendency is tuned by the strength c of the off-diagonal
elements of the memory kernel with a maximum value of
PðA → B → CÞ ¼ 0.5 [Fig. 3(c); see also SM, Sec. 1D].
Mice tend to chase each other in the Eco-HAB experi-

ment [SM, Fig. S1(c)], suggesting that transitions also
depend on the history of other mice’s behavior. This can be
encoded in the GDD through cross-individual memory
kernels GijðtÞ. This memory coupling enforces the flipping
rate of a degree of freedom (in more general terms, called
the follower) to depend on the recent transition of another
degree of freedom (called the leader), such that the
transition rate of the leader-follower pairs has a distin-
guished characteristic timescale that is not visible in other
pairs [Fig. 3(d); see also SM, Sec. 1C, for the memory
kernel]. The symmetry of the memory kernel enforces the
memory dependence between a given pair to be symmetric.

F. Inference

How do we fit the GGD to data? Assuming that a
maximum entropy distribution has already been learned,
we need to solve the inverse problem of finding the memory
kernel Γ that reproduces the experimentally observed
dynamics. We assume an exponential form for the kernel,
ΓiðtÞ ¼ Ae−t=τ, which allows for rewriting ξiðtÞ as an
Ornstein-Uhlenbeck process. We maximize the likeli-
hood of the discretized data series σðtÞ (with some small
time bin) over the three parameters θ ¼ ðμ; A; τÞ, using
the expectation-maximization (EM) algorithm [56] to deal
with the hidden variables ξiðtÞ (see SM [53]). Specifically,
we adopt the EM algorithm used to infer neural firing
dynamics with hidden noise [47,57–59]. The key difference
is that for our inference problem of the GGD, the non-
Markovian fluctuation-dissipation relation [Eq. (3)] acts as
an extra constraint between the parameters generating the
noise ξðtÞ and the memory kernel ΓiðtÞ, while studies
applying EM algorithm to infer neural firing dynamics
do not assume the fluctuation-dissipation relation. In
addition, the transition dynamics are of the Glauber form
(i.e., logistic function, instead of exponential as in models
of neural spiking dynamics), which does not lead to simple
mathematical expressions and requires Monte Carlo sam-
pling in the computation (see SM).
Figure 4(a) shows an example of a single Ising spin

undergoing GGD with a single exponentially decaying
memory kernel. To mimic the situation of a spin within a
large interacting system subject to a changing external field
hiðtÞ, we consider a time-dependent field hðtÞ with sinus-
oidal form. With our EM algorithm, we are able to recover
the parameters with high accuracy (see SM, Fig. S6 and
Table S1 [53]), as well as estimate the hidden noise [see
Fig. 4(b)]. Trajectories simulated with the inferred set of
parameters reproduce the properties of the waiting time
distribution [Fig. 4(c)] and the autocorrelation function
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[Fig. 4(d)] observed in the data. The error of the EM
algorithm, measured as the percentage difference between
the EM inferred parameters and the ground truth param-
eters, scales with data length T as ∼T−1=2. This scaling is
expected from the Cramer-Rao bound [SM, Fig. S8 and
Fig. S10(a), top right], and therefore the same as one
expects from maximum caliber methods and generalized
linear models.
We can speed up the inference by heuristically minimiz-

ing the distance between the empirical and simulated
distributions of dynamical variables, which is defined as
the sum of the area between the empirical and model-
simulated waiting time cumulative distributions in double
logarithmic scale. Although the error in the inferred para-
meters is larger than when using EM (SM, Table S1), the
waiting time distribution and the autocorrelation function
are recovered correctly (SM, Fig. S7).
One can extend the parametrization of memory kernel

to sums of exponential decays, ΓðtÞ ¼ P
l Ale−t=τl , to

approximate more general forms of memory kernels which
decays at infinite time (Prony’s series; also see Ref. [47]).
The extension of the EM algorithm is straightforward,
as the noise can be written as a linear sum of Ornstein-
Uhlenbeck processes. For the Eco-HAB mice data, we
only used the heuristic method, because the EM algorithm
becomes unreliable and hard to converge for categorical
data with more possible states (see SM, Fig. S10 and
Sec. 3D [53]), due to a distortion of the optimization
landscape which leads to problems in convergence, which
is consistent with the literature (see Chap. 3.4 in Ref. [60]).

G. GGD of social mice

We now go back to our original problem of 15 mice
living in an Eco-HAB and ask if we can distinguish
properties of individual animals from emergent behavior
resulting from interactions. Atop the static maximum
entropy model we learned previously, we learn the GGD
model to fit the waiting time distribution. Since the
three non-Markovian features (self-memory, individual-
specific inertia, and chaser-chased dynamics) occur on
different timescales, in principle we should construct a
memory kernel whose diagonal and off-diagonal terms
have very different timescales. To simplify the task, in
addition to the activity prefactors μi, we only learn the
self-memory kernels ΓiðtÞ ¼ Aie−t=τi , as this memory
occurs on the longest timescale and contributes the most
to the observed fat tail in the waiting time distribution.
Recall from Fig. 1(f) that for all mice the waiting time
distribution collapses after we divide by its mean, so we
can further reduce the number of parameters by assuming
Ai ¼ A0, and μiτi ¼ const. We learn this reduced set of
dynamical parameters by minimizing the total distance
between the observed and predicted waiting time distribu-
tion for all mice, computed independently for each mouse
while fixing the trajectories of other mice to their exper-
imental values. The optimized parameters are found to be
Ai ¼ 2.75, μi ¼ 0.25� 0.08 s−1, τi ¼ 22� 9 s.
We then simulate the dynamics for all 15 mice, using the

static parameters learned by pairwise maximum entropy
model (hi;α; Jij) and the dynamical parameters learned by
GGD (μi, Ai, τi). Simulations correctly capture the tails of
the waiting time distribution [Figs. 5(a) and 5(b)]. By
construction, the GGD model reproduces the static observ-
ables [SM, Fig. S11(a) [53] ], which the GLM model fails
to reproduce [SM, Fig. S11(b)]. Since the memory kernel
consists of single exponential decays, it suggests a bio-
logically plausible mechanism for its encoding by mice
using an iterative leaky integrator of their internal state,
without the need to remember their entire past behavior.
As discussed previously, while the GGD for Potts spins

can tune the probability of consecutive forward transitions
within a certain range, the “roaming” effect exhibited by the
Eco-HAB mice is more pronounced than the GGD allows
for in its current form. Specifically, while GGD for a single

FIG. 4. Example of GGD inference with an expectation-
maximization (EM) algorithm on a single Ising spin under an
oscillating field hðtÞ ¼ sinð0.15tÞ. The memory kernel is ΓðtÞ ¼
A expð−t=τÞ, with true parameters A ¼ 0.8, τ ¼ 19.5 s, and the
baseline transition rate μ ¼ 4 s−1. The simulation was conducted
for a duration of T ¼ 300 s, using a time step of Δt ¼ 0.1 s.
(a) The combination of hðtÞ, the noise ξ, and the effective local
field due to history of spin flips, hmem [the second and third terms
of Eq. (2)] generates the sample spin trajectory st. (b) Given the
spin trajectory σðtÞ and hðtÞ, the EM algorithm recovers an
ensemble of possible realizations of the hidden noise ξðtÞ. With
parameters inferred using the EM algorithm, the simulated
trajectories recover the waiting time distribution (c) and the
autocorrelation decay (d) as the data. The envelope of the curve is
the standard deviation.
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Potts spin allows a maximum value of PðA→B→CÞ¼0.5,
in the Eco-HAB mice data, PðA → B → CÞmice is almost
always greater than 0.5.

III. DISCUSSION

Existing approaches for inferring collective behavior
focus on reproducing either the steady-state distribution
or the dynamics of the system. This study is motivated by
the need for a single model that describes both types of
observables while still being tractable and interpretable.
Inspired by data from the Eco-HAB experiment monito-
ring the spontaneous collective behavior of mice, we
developed the generalized Glauber dynamics (GGD)
approach, which infers the dynamics in a way that the
steady-state distribution is guaranteed to be reproduced.
GGD simplifies dynamical inference by separating the
learning of the steady-state distribution and the learning of
the dynamics. Steady-state inference is performed with the
well-developed method of maximum entropy models.
Then, a family of reversible dynamics is constructed by
adding both a memory kernel and a colored noise, which
are related through a non-Markovian fluctuation-dissipa-
tion theorem. In addition to providing detailed derivations
of the GGD, we presented, as a proof of principle, examples
of dynamics using toy models of Ising and Potts spins, and
described two protocols of inference.
Compared to existing approaches, GGD makes an

explicit and analytically tractable link between the dyna-
mical and steady-state properties of interacting systems.
It combines the notion of a probability landscape and
dynamics, allowing us to describe non-Markovian dynami-
cal transitions on a well-defined energy landscape. Prac-
tically, GGD has several advantages compared to existing
methods of dynamical inference—maximum caliber [46]
and generalized linear models [45]. In contrast to maximum
caliber methods, GGD is defined by an explicit form of the
transition matrix, making it easier to simulate and interpret.
Maximum caliber methods also require us to learn many
more parameters. For a system of size N, for each time

delay of Δt, maximum caliber needs to simultaneously fit
to NðN − 1Þ=2 equal time correlations, and the NðN − 1Þ
cross-time correlations. A total time lag of L will lead
to a total of NðN − 1Þ=2þ LNðN − 1Þ parameters to be
fitted simultaneously. In comparison, in GGD, we first fit
NðN − 1Þ=2 equal time correlations in the maximum
entropy learning step, then for each of the N components,
we fit the dynamics to a parametrized memory kernel with
a chosen number of parameters (three in the case we
considered). By separating the learning procedure into first
learning the static distribution, and then independently the
dynamics for each component, we have much fewer para-
meters to learn. In contrast to generalized linear models, it
is guaranteed to agree with the empirical steady-state dis-
tribution, and is immune to problems of blow-up diver-
gences that plague inferred state-transition models (see
Refs. [48–51]; see alsoSM,Fig. S11). Thus,GGD introduces
memory while guaranteeing the steady state.
GGD is a special case of the generalized master equation,

as the transition rate is a function of the current state and
past states through a memory kernel, and latent variables
can be encoded in autoregressively generated noise in the
transition rate. Compared to other GME models, the key
ingredient of the GGD is the non-Markovian fluctuation-
dissipation relation between the correlation function of the
colored noise and the memory kernel, which is essential
in restoring the same steady-state distribution for a wide
range of possible dynamics. The choice of the memory
kernels can be very general and is only constrained by
the reversibility constraint imposed by the fluctuation-
dissipation relation. The GGD can capture rich dynamics,
such as the effect of individual memory, inertia on discrete
dynamics, and dynamics which depends on other individ-
uals in the system. While we have focused on continuous-
time Glauber dynamics for concreteness, the approach can
be extended to any continuous or discrete dynamics (e.g.,
Metropolis-Hastings). Possible extensions and future appli-
cations of GGD include inferring dynamical models for
interacting spiking neurons.
By applying GGD to the colocalization pattern of groups

of socially interacting mice, we show how GGD can be
used on real biological data, where both dynamics and
steady-state collective behavior are of interest, and by
which it exposes the success and limitations of the current
GGD method. For the Eco-HAB mice data, GGD repro-
duces the collective dynamics, as recapitulated by the
waiting time distribution, which occurs on timescales of
minutes. The transition times are well predicted both on
average and at the distribution level. We also take note of
GGD limitations. Its dynamics are reversible by construc-
tion, precluding out-of-equilibirum effects. On the Eco-
HAB data, a GLM model that does not enforce detailed
balance shows asymmetry in the inferred interaction matrix
[SM, Fig. S12(d) [53] ], suggesting that the Eco-HAB mice
are indeed out of equilibrium. Nonetheless, we find a strong
correlation between the GLM interaction matrix and the

FIG. 5. The generalized Glauber dynamics on top of the static
maximum entropy model on Eco-HAB data reproduces the long
tail of both the shape (a) and the mean (b) of the waiting time
distributions. The Pearson correlation coefficient ρ is given in
the plot.
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GGD interaction matrix, with correlation coefficient of 0.70
for the asymmetric GLM interaction matrix, and 0.68 for
the symmetrized GLM interaction matrix [SM, Figs. S12(b)
and S12(c)], and the local fields h also correlate with a
coefficient of 0.69 [SM, Fig. S12(a)]. Despite these non-
equilibrium effects, GGD reproduces the relevant dynami-
cal observables well, and only fails at capturing some
behavior at very short timescales (around few seconds, such
as active chasing between pairs of mice) compared to the
total time of the experiments (around hours).
Because the memory kernel ΓðtÞ is also an autocorre-

lation function, it cannot take arbitrary forms. For example,
an abrupt suppression to simulate refractory period in
neurons would not be possible. In its current form, the
constraint on the memory kernel imposes a limit on the
maximum roaming effect possible, which is less than what
the Eco-HAB mice exhibit. On the technical side, we did
not manage to reliably infer the effect of memory between
individuals GijðtÞ from the data. This may be due to the
large number of parameters to consider, which scales with
the number of pairs. Another difficulty is that the memory
of histories of other individuals may happen on a shorter
timescale than self-memory (as suggested by the chaser-
chased dynamics [52]), confusing the inference procedure.
Interestingly, the autocorrelation of the box occupation
number decays more slowly than predicted by the model,
suggesting that these effect may play an important role
(SM, Fig. S13). In addition, because the GGD integrates
all memory from the past, it is unable to describe a full
memory reset. Finally, unlike the maximum entropy model,
GGD is not a minimal construction that one can use to build
dynamics with increasing complexity. One possible sol-
ution is to consider GGD with memory kernels built using a
complete basis of functions. Such an extension is likely
to be very useful, since it could capture phenomena on
different timescales, which we saw is relevant for behavior
in the Eco-HAB.
Living systems are often strongly out of equilibrium,

while GGD assumes microscopic reversibility by con-
struction. How widely applicable is GGD to biological
system beyond the case of social mice? Previous work has
demonstrated the usefulness of equilibriumlike approaches
for extracting effective interactions in strongly nonequili-
brium systems. For example, the dynamics that govern the
evolution of protein families are strongly out of equilib-
rium, yet simple equilibrium models have shown great
power at predicting contacts between residues [34]. In
the collective dynamics of bird flocks, it was shown that
while the overall dynamics is out of equilibrium, the local
dynamics when one looks at shorter timescales appears
to be well described by equilibrium dynamics [36]. In
flocking models, nonequilibrium effects were shown to be
dominant only around the ordering transition, but vanish
deep in the ordered and disordered phases [61]. In our
social mice example, nonequilibrium effects do exist, but

seem to be restricted to short-time chasing behavior. We
thus expect GGD to be of use in a variety of nonequilibrium
contexts where the relevant observables are effectively in
equilibrium. One hallmark of GGD is the inclusion of
memory effects. Such memory is expected to emerge in
partially observed systems, where the marginalization over
latent variables generates long-term memory, even in
equilibrium systems. The existence of such latent variables
is ubiquitous in biology, where only part of the system
(molecules in a biochemical network, neurons in the brain)
can be simultaneously measured. GGD provides a frame-
work to describe such interacting systems with implicit
memory.
In summary, GGD provides an essential step to bridging

the steady-state distribution with the collective dynamics
of living systems. Our model does not solve the complete
inference problem for all dynamical systems but fills a
niche of interpretable dynamical models that link to the
steady-state landscape. As a proof of principle that it is
possible to place the dynamics of models of interacting
systems on a probability landscape, GGD opens the door to
connecting static and dynamic inference of non-Markovian
interacting systems.

IV. MATERIALS AND METHODS

A. Eco-HAB mice data

The Eco-HAB system and the appropriate data analysis
tools are described in Ref. [11]. The particular experiment
and data used for analysis and methods development in this
manuscript are published in Ref. [52].

B. Compute normalized chasing rate
and rate of sequential flip

In a lead-and-follow pair, e.g., both the chaser-chased
pairs in the Eco-HAB system and the sequential spin flips
in multiple interacting Ising spins, we compute the nor-
malized following rate. For a given pair of mice (spins)
ði; jÞ and a fixed time period, we count the number of
consecutive transitions where mouse j leads mouse i to
leave the same box and to enter the same box, separated by
a time difference of Δt. We then divide this count by an
expected null value, computed by cyclically shuffling the
time series of all mice, to obtain the normalized lead-and-
follow rate.

C. Learning the static maximum entropy model

The static maximum entropy model is learned by
gradient descent, where at each optimization step, the
parameters Jij and hi;α are updated by the difference
between the empirical observable and Monte Carlo
sampled observables at the current estimation for each
parameter [62]. The initial condition is for hi;α to be that of
the independent model and all Jij set to zero. The stop
condition is when the square difference between the data
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and the simulation is less than the data variation, computed
by bootstrapping the data. Monte Carlo sampling of the
model and computing the mean and correlation are per-
formed using the UGM MATLAB package [63], while all
other steps are performed by customized MATLAB codes.

D. Simulate generalized Glauber dynamics

To simulate generalized Glauber dynamics with a given
memory kernel ΓðtÞ, we first generate noise ξðtÞ whose
correlation is hξðtÞξðt0Þi ¼ Γðt − t0Þ using methods of
Fourier transforms [64]. For systems with higher dimen-
sions, the noise is first independently generated in the
eigenbasis of the memory kernel, then transformed back to
the standard basis. Then, the dynamics is simulated by
discretizing time and using parallel updating. The time step
is chosen to be small to make sure at most one spin
transitions at any given time step.

E. Inference of dynamical parameters

The inference of the dynamical parameters is performed
with two methods. The first is an expectation-maximization
algorithm developed in detail in SM [53], and implemented
with customized MATLAB code. In the single Ising spin
example, we chose the stopping criterion such that the
absolute change in all three parameters (μ; a; σ2ε) must be
less than a threshold value of 0.01 over the last 100
iterations of the EM algorithm.
Alternatively, heuristic optimizations use two consecu-

tive grid searches followed by a Nelder-Mead algorithm
provided by the built-in MATLAB function pattern-
search to find the optimum.

F. Learning the generalized linear model

For comparison with the generalized Glauber dynamics,
we train a generalized linear model on the Eco-HAB data.
The model follows [45] and writes the transition probability
in Δt as

Pi;α→β ¼
W̃i;α→βΔt

Zi;α
;

Pi;α→α ¼
1

Zi;α
;

where the transition rate is

W̃i;α→β ¼ μ̃i exp

�
h̃iβ − h̃iα −

X
j

J̃ijδσiσj þ
Z

t

0

dt0Γ̃ðt0Þσiðt0Þ
�

for α ≠ β with a normalization factor

Zi;α ¼ 1þ
X

β≠α;β accessible

W̃i;α→βΔt:

For direct comparison with the GGD model, the memory
kernel is chosen to be parametrized by single exponential,
Γ̃iðtÞ ¼ Ãie−t=τ̃i . The parameters μ̃i; h̃iα; J̃ij; Ãi; τ̃i are esti-
mated using maximum likelihood.

ACKNOWLEDGMENTS

This work was partially supported by the European
Research Council Consolidator Grant No. 724208,
“BRAINCITY—Centre of Excellence for Neural Plas-
ticity and Brain Disorders” project of the Polish
Foundation for Science, and the National Science Center
Grant No. 2020/39/D/NZ4/01785. This work was also
supported by the Bettencourt Schueller Foundation. The
authors are grateful for the discussions and suggestions
from Giulio Biroli.

[1] C. Lee, W. H. Rohrer, and D. L. Sparks, Population coding
of saccadic eye movements by neurons in the superior
colliculus, Nature (London) 332, 357 (1988).

[2] G. Tkačik et al., Searching for collective behavior in a large
network of sensory neurons, PLoS Comput. Biol. 10,
e1003408 (2014).

[3] B. B. Averbeck, P. E. Latham, and A. Pouget, Neural
correlations, population coding and computation, Nat.
Rev. Neurosci. 7, 358 (2006).

[4] A. Puścian, H. Benisty, and M. J. Higley, NMDAR-
dependent emergence of behavioral representation in pri-
mary visual cortex, Cell Rep. 32, 107970 (2020).

[5] T. Vicsek and A. Zafeiris, Collective motion, Phys. Rep.
517, 71 (2012).

[6] M. Ballerini et al., Interaction ruling animal collective
behavior depends on topological rather than metric dis-
tance: Evidence from a field study, Proc. Natl. Acad. Sci.
U.S.A. 105, 1232 (2008).

[7] I. D. Couzin, Collective cognition in animal groups, Trends
Cognit. Sci. 13, 36 (2009).

[8] D. H. Kelley and N. T. Ouellette, Emergent dynamics of
laboratory insect swarms, Sci. Rep. 3, 1 (2013).

[9] A. Sanchez and J. Gore, Feedback between population and
evolutionary dynamics determines the fate of social micro-
bial populations, PLoS Biol. 11, e1001547 (2013).

[10] M. Ballerini et al., Empirical investigation of starling
flocks: A benchmark study in collective animal behaviour,
Anim. Behav. 76, 201 (2008).

[11] A. Puścian, S. Łęski, G. Kasprowicz, M. Winiarski, J.
Borowska, T. Nikolaev, P. M. Boguszewski, H.-P. Lipp, and
E. Knapska, Eco-HAB as a fully automated and ecologically
relevant assessment of social impairments in mouse models
of autism, eLife 5, e19532 (2016).

[12] R. Sarfati, J. C. Hayes, É Sarfati É, and O. Peleg, Spatio-
temporal reconstruction of emergent flash synchronization
in firefly swarms via stereoscopic 360-degree cameras, J. R.
Soc. Interface 17, 20200179 (2020).

[13] J. P. Nguyen, F. B. Shipley, A. N. Linder, G. S. Plummer,
M. Liu, S. U. Setru, J. W. Shaevitz, and A. M. Leifer,Whole-
brain calcium imaging with cellular resolution in freely

GENERALIZED GLAUBER DYNAMICS FOR INFERENCE IN … PHYS. REV. X 13, 041053 (2023)

041053-9

https://doi.org/10.1038/332357a0
https://doi.org/10.1371/journal.pcbi.1003408
https://doi.org/10.1371/journal.pcbi.1003408
https://doi.org/10.1038/nrn1888
https://doi.org/10.1038/nrn1888
https://doi.org/10.1016/j.celrep.2020.107970
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1016/j.tics.2008.10.002
https://doi.org/10.1016/j.tics.2008.10.002
https://doi.org/10.1038/srep01073
https://doi.org/10.1371/journal.pbio.1001547
https://doi.org/10.1016/j.anbehav.2008.02.004
https://doi.org/10.7554/eLife.19532
https://doi.org/10.1098/rsif.2020.0179
https://doi.org/10.1098/rsif.2020.0179


behaving Caenorhabditis elegans, Proc. Natl. Acad. Sci.
U.S.A. 113, E1074 (2016).

[14] A. L. Juavinett, G. Bekheet, and A. K. Churchland, Chroni-
cally implanted neuropixels probes enable high-yield re-
cordings in freely moving mice, eLife 8, e47188 (2019).

[15] E. Schneidman, M. J. Berry II, R. Segev, and W. Bialek,
Weak pairwise correlations imply strongly correlated net-
work states in a neural population, Nature (London) 440,
1007 (2006).

[16] S. Cocco, S. Leibler, and R. Monasson, Neuronal couplings
between retinal ganglion cells inferred by efficient inverse
statistical physics methods, Proc. Natl. Acad. Sci. U.S.A.
106, 14058 (2009).

[17] U. Ferrari, T. Obuchi, and T. Mora, Random versus
maximum entropy models of neural population activity,
Phys. Rev. E 95, 042321 (2017).

[18] X. Chen, F. Randi, A. M. Leifer, and W. Bialek, Searching
for collective behavior in a small brain, Phys. Rev. E 99,
052418 (2019).

[19] W. Bialek, A. Cavagna, I. Giardina, T. Mora, E .Silvestri, M.
Viale, and A.M. Walczak, Statistical mechanics for natural
flocks of birds, Proc. Natl. Acad. Sci. U.S.A. 109, 4786
(2012).

[20] Y. Shemesh, Y. Sztainberg, O. Forkosh, T. Shlapobersky, A.
Chen, and E. Schneidman,High-order social interactions in
groups of mice, eLife 2, e00759 (2013).

[21] B. J. Cole, Fractal time in animal behaviour: The movement
activity of drosophila, Anim. Behav. 50, 1317 (1995).

[22] G. J. Stephens, M. Bueno de Mesquita, W. S. Ryu, and W.
Bialek, Emergence of long timescales and stereotyped
behaviors in Caenorhabditis elegans, Proc. Natl. Acad.
Sci. U.S.A. 108, 7286 (2011).

[23] V. Alba, G. J. Berman, W. Bialek, and J. W. Shaevitz,
Exploring a strongly non-Markovian animal behavior,
arXiv:2012.15681.

[24] G. J. Berman, Measuring behavior across scales, BMC
Biol. 16, 23 (2018).

[25] J. C. Marques, M. Li, D. Schaak, D. N. Robson, and J. M.
Li, Internal state dynamics shape brainwide activity and
foraging behaviour, Nature (London) 577, 239 (2020).

[26] H. S. Kaplan, O. S. Thula, N. Khoss, and M. Zimmer,
Nested neuronal dynamics orchestrate a behavioral hier-
archy across timescales, Neuron 105, 562 (2020).

[27] W. Bialek and R. Ranganathan, Rediscovering the power of
pairwise interactions, arXiv:0712.4397.

[28] Y. Roudi, S. Nirenberg, and P. E. Latham, Pairwise maxi-
mum entropy models for studying large biological systems:
When they can work and when they can’t, PLoS Comput.
Biol. 5, e1000380 (2009).

[29] R. R. Stein, D. S. Marks, and C. Sander, Inferring pairwise
interactions from biological data using maximum-entropy
probability models, PLoS Comput. Biol. 11, e1004182
(2015).

[30] L. Meshulam, J. L. Gauthier, C. D. Brody, D. W. Tank, and
W. Bialek, Collective behavior of place and non-place
neurons in the hippocampal network, Neuron 96, 1178
(2017).

[31] A. Tang et al., A maximum entropy model applied to spatial
and temporal correlations from cortical networks in vitro,
J. Neurosci. 28, 505 (2008).

[32] I. E. Ohiorhenuan, F. Mechler, K. P. Purpura, A. M. Schmid,
Q. Hu, and J. D. Victor, Sparse coding and high-order
correlations in fine-scale cortical networks, Nature
(London) 466, 617 (2010).

[33] A. Attanasi et al., Information transfer and behavioural
inertia in starling flocks, Nat. Phys. 10, 691 (2014).

[34] M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and
T. Hwa, Identification of direct residue contacts in
protein–protein interaction by message passing, Proc. Natl.
Acad. Sci. U.S.A. 106, 67 (2009).

[35] S. Wolf, G. Le Goc, G. Debrégeas, S. Cocco, and R.
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