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Detection and parameter inference of gravitational-wave signals from compact mergers rely on the
comparison of the incoming detector strain data dðtÞ to waveform templates for the gravitational-wave
strain hðtÞ that ultimately rely on the resolution of Einstein’s equations via numerical relativity
simulations. These, however, commonly output a quantity known as the Newman-Penrose scalar ψ4ðtÞ
which, under the Bondi gauge, is related to the gravitational-wave strain by ψ4ðtÞ ¼ d2hðtÞ=dt2.
Therefore, obtaining strain templates involves an integration process that introduces artifacts that need
to be treated in a rather manual way. By taking second-order finite differences on the detector data and
inferring the corresponding background noise distribution, we develop a framework to perform
gravitational-wave data analysis directly using ψ4ðtÞ templates. We first demonstrate this formalism,
and the impact of integration artifacts in strain templates, through the recovery of numerically simulated
signals from head-on collisions of Proca stars injected in Advanced LIGO noise. Next, we reanalyze
the event GW190521 under the hypothesis of a Proca-star merger, obtaining results equivalent to
those previously published [Phys. Rev. Lett. 126, 081101 (2021)], where we used the classical strain
framework. We find, however, that integration errors would strongly impact our analysis if GW190521
was 4 times louder. Finally, we show that our framework fixes significant biases in the interpretation
of the high-mass gravitational-wave trigger S200114f arising from the usage of strain templates. We
remove the need to obtain strain waveforms from numerical relativity simulations, avoiding the
associated systematic errors.
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I. INTRODUCTION

The observation of the gravitational-wave (GW) event
GW150914 in 2015 by the Advanced LIGO detectors [1]
opened a new window to explore the Universe [2]. In barely
half a decade, and after the addition of the Advanced
Virgo [3] and KAGRA [4] detectors, the number of
detections has grown to 90 events, all consistent with
the merger of compact objects such as black holes (BHs)
and neutron stars [5–8]. These events have provided us with
invaluable knowledge about the BH population of our
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Universe [9,10] and their environments, star formation,
tests of strong gravity [11–19], and the observation of new
strong-field phenomena [20–24] to name a few. The
retrieval of this information relies on an accurate extraction
of the parameters of the GW source. This is commonly
carried out through the comparison of the incoming strain
detector data dðtÞ to precomputed waveform templates for
the gravitational-wave strain hðt; θÞ [25–29] that span a
continuous range of possible source parameters θ such as
the masses and spins of merging compact objects. In this
process, it is crucial that waveform templates are faithful
representations of the incoming GWs. For the case of the
GWs emitted during the early inspiral, these templates can
be obtained through analytical approximated techniques
such as post-Newtonian approximations [30] or effective-
one-body formalisms [31,32]. However, modeling the full
space-time dynamics taking place during the merger and
ringdown stages of compact binary mergers requires solving
the full Einstein equations for the system, which can only be
done through numerical simulations using numerical rela-
tivity (NR) [33–44]. Consequently, approximated models are
commonly calibrated to these simulations during the merger
and ringdown stages [45–51]. Alternatively, “surrogate”
models can also be constructed by interpolating through a
given set of NR simulations [52–54].
When available, NR provides the most accurate pre-

diction for the GW emission of a given source. Therefore,
if simulations are available in the parameter space of
interest, a direct comparison of GW data to NR simulations
is fundamental to—at least—check the robustness of
the results provided by approximated models [55,56].
Furthermore, in some cases such as highly eccentric or
precessing sources, continuous semianalytical models may
not exist, leaving NR as the only option to analyze the data.
Consequently, several studies have directly compared some
of the existing signals to NR templates [55–58] and even
used the latter as simulated signals to evaluate the efficacy
of parameter estimation and detection algorithms [59–63].
Continuous models that include the entire inspiral-

merger-ringdown process can only be built for regions
of the parameter space densely covered by the available
numerical simulations, namely sources with small orbital
eccentricity and relatively equal masses. While these
examples have sufficed to explain all GW signals detected
to date, we are entering an era in which comparison with
more exotic scenarios, for which only NR waveforms exist,
is in order. Moreover, as of now, NR provides the only way
to accurately model the dynamics of exotic compact objects
and search for new physics beyond the neutron-star and
Kerr black hole paradigm. For example, in Ref. [64] we
recently compared GW190521 to numerical simulations of
head-on mergers of exotic horizonless objects known as
Proca stars, demonstrating that the latter scenario is slightly
more consistent with the data than the standard one based
on BBH mergers.

II. EXTRACTION OF GRAVITATIONAL-WAVE
STRAIN FROM NUMERICAL SIMULATIONS VIA

THE NEWMAN-PENROSE (NP) SCALAR ψ4

While current GW detectors output a quantity known as
GW strain hðtÞ, the most extended type of NR simulations,
which are based on the 3þ 1 formulation (or Cauchy
evolution), return the so-called Newman-Penrose (NP)
scalar ψ4ðtÞ [65,66]. Under the Bondi gauge, the scalar
ψ4ðtÞ is related to the strain by ψ4ðtÞ ¼ d2hðtÞ=dt2 [67].
Obtaining hðtÞ therefore requires a double time integration,
which is a nontrivial process involving fundamental diffi-
culties. Awell-known effect is the appearance of nonlinear
drifts in the resulting strain waveform arising from the
time-domain integration of finite length, discretely sampled
and noisy data streams. These are independent of the
parameters of the simulation, such as gauge or numerical
method used [68].
Frequency-domain integration methods can avoid the

effects arising from time-domain integration but at the cost
of modifying the original data. One of the best-known
effects is the impact of spurious low-frequency modes in
the strain waveform. It is known that the effect of these
modes, resulting from either spectral leakage or aliasing
effects, can be significantly suppressed through the usage
of high-pass signal filters [68,69] that can reduce the
energy within frequencies lower than a chosen cutoff ω0.
This technique is commonly known as “fixed-frequency
integration” (FFI). A common and well-motivated choice
for ω0 is that corresponding to the lowest instantaneous
frequency of the GW emission. This is, for instance, the
strategy used by the existing parameter-estimation code
RIFT [57] to directly compare GW data to NR templates. In
practice, however, the choice of ω0 requires a certain
amount of tuning. On the one hand, a small value will
amplify nonphysical low-frequency components during the
integration process. On the other hand, a large value may
suppress the physical frequencies of the waveform. In some
cases, such a choice can be clearly guided by the known
features of the “true” signal. For instance, in the case of
quasicircular binaries, the inspiral GW “chirp” frequency is
a monotonically increasing function of time, which pro-
vides a natural way to associate a given choice of ω0 with a
given starting time for the strain waveform.
This choice, however, is not obvious or even well defined

for cases where the GW frequency is not a monotonic
function of time. On the one hand, this makes FFI itself
a potential source of error that, as we will show, can
qualitatively impact the interpretation of the source. On the
other hand, in the best-case scenario, a “correct” obtention
of the strain data requires an artisan and time-consuming
trial-and-error process adapted to each particular type of
source. This is the case of some of the most interesting
sources that the astrophysical community is trying to detect
for the first time in the next observing run of LIGO and
Virgo. Such cases include eccentric mergers [58], highly
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precessing mergers, dynamical captures [70], or even
cases in which an inspiral stage does not exist at all.
This is also the situation for the (academic) case of head-on
collisions [71] that we will address in this work or for core-
collapse supernovae waveforms, for which the bounce GW
signal consists essentially of a burst [72–74]. Finally, the
act of integrating involves a choice of integration constants
that can cause fundamental changes in the properties of the
waveform. For instance, it is typically imposed that the
average of the GW strain should be zero, which automati-
cally removes or changes the effect of GW memory [75].
Integration-free extraction methods. While in this work

we focus on numerical waveforms obtained through the NP
formalism, whose use is much generalized in the numerical
relativity community, we note that there exist alternative
methods that can directly extract the GW strain. First,
within the Cauchy evolution framework, the GW strain can
also be directly extracted at finite radii through the so-
called Regge-Wheeler-Zerilli (RWZ) method [76–78]. Just
as in the NP case, waveforms can then be extrapolated to
null infinity through, e.g., polynomial expansions [40,79].
RWZ extraction has been long employed by the SXS
Collaboration [40], producing extensive catalogs of BBH
waveforms that include the largest number of inspiral
cycles in the literature. These waveforms have been
consistently used to inform continuous waveform models
(see, e.g., Ref. [53]), often in combination with wave-
forms obtained through the NP formalism (see, e.g.,
Refs. [49,50]), and to directly analyze several GW events
[55,56]. Second, within the so-called Cauchy characteristic
extraction framework [80], waveforms can be directly
extracted at future null infinity. While early simulations
were limited to output the Bondi news function [81] [given
by N ðtÞ ¼ dhðtÞ=dt], later developments made possible
the direct extraction of the GW strain [82–84], including
some simulations in the SXS catalog [84].
While the above approaches present advantages with

respect to the NP formalism, there are reasons that motivate
the generalized use of the latter. First, the master wave
equations of the RWZ approach are obtained under the
assumption that the background metric can be described by
a Schwarzschild space-time where perturbations are
applied. Also, it has been found that the relative accuracy
of RWZ and NP methods depends on the case of appli-
cation; see, e.g., Refs. [85,86]. Second, while the Cauchy
characteristic extraction can deliver extremely accurate
waveforms, it involves specific complications that have
so far prevented its widespread use, on top of its intensive
computational cost. For instance, recent studies have
discussed the weak hyperbolicity of the characteristic
evolution equations [87–89]. Also, initial spurious emis-
sion known as junk radiation has been found to last
significantly longer in these simulations [84]. In addition,
characteristic evolution (based on null foliations) is known
to be limited to describe BBH systems, as null surfaces may

focus and form caustics [81]. This triggered the design of
so-called Cauchy characteristic matching methods [89,90].
Finally, we note that NP presents several advantages of its
own, as enumerated in Ref. [66]. (a) It provides a first-
order, gauge-invariant description of the radiation field (see
Koop and Finn [91] for a fully gauge-invariant derivation of
the detector response), (b) it does not rely on any frequency
or multipole decomposition, and (c) the Weyl scalars (ψ4

among them) are defined in the full nonlinear theory. A
one-parameter perturbative expansion of this theory was
proved to provide a reliable account of the problem [92].
And (d), finally, the NP formulation provides a simpler
framework to organize higher-order perturbation schemes.
For an overview of different waveform extraction methods,
we refer the reader to Ref. [93].
In this work we remove from GW data analysis the

fundamental problems related to waveform integration by
avoiding such a step. We present a framework, schemati-
cally summarized in Fig. 1, to perform GW data analysis
directly using ψ4ðtÞ. This provides a uniquely defined way
to obtain GW waveforms for data analysis—free of human
choices—which are by definition free of the systematic
errors related to waveform integration. We showcase our
framework in the context of parameter inference and model
selection performed on both synthetic signals injected in
LIGO-Virgo noise and on real GW signals.

III. OUR CASE OF STUDY:
MERGERS OF PROCA STARS

A. Proca stars and dark matter

Proca stars belong to a family of theoretical exotic
compact objects (ECOs) known as bosonic stars [94–97].
These are part of the wider family of objects known as
“BH mimickers” which, lacking the characteristic event

FIG. 1. Schematic comparison of our proposed data analysis
framework and the currently used one. To date, the ψ4 magnitude
outputted by numerical relativity simulations is converted to the
strain h outputted by gravitational-wave detectors via a double
integration that is subject to systematic errors (red path). Instead,
we transform both the simulation ψ4 and the detector h (and
power spectral density Sn) into a third quantity that we label by
Ψ4, avoiding the integration process and the corresponding
systematic errors (green paths).
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horizon of BHs, can reproduce many of their properties,
see, e.g., Refs. [98–100], avoiding issues related to the
black hole singularity, as well as poorly understood issues
related to quantum fields near event horizons [101]. ECOs
have been proposed, e.g., as dark matter candidates [102],
in particular in models invoking the existence of hypo-
thetical ultralight (i.e., sub-eV) bosonic particles, often
referred to as fuzzy dark matter [103]. One common
candidate is the pseudo-scalar QCD axion [104], but other
ultralight bosons arise, e.g., in the string axiverse [105]. In
particular, vector bosons are also motivated in extensions
of the standard model of elementary particle [106] and can
clump together forming macroscopic entities dubbed
vector boson stars or Proca stars.
Bosonic stars are among the simplest and dynamically

more robust ECOs proposed so far and their dynamics have
been extensively studied; see, e.g., Refs. [71,107–109].
Scalar boson stars and their vector analogs, Proca stars
[95,110], are self-gravitating stationary solutions of the
Einstein (complex, massive) Klein-Gordon [94] and of
the Einstein (complex) Proca [95] systems, respectively.
These consist of complex bosonic fields oscillating at a
well-defined frequency ω, which determines the mass and
compactness of the star. Bosonic stars can dynamically
form without any fine-tuned condition through the gravi-
tational cooling mechanism [111,112].
While spinning solutions have been obtained for both

scalar and vector bosons, the former are unstable against
nonaxisymmetric perturbations, in the simplest models
wherein the bosonic field is free [113,114]. Hence, we
will focus on the vector case in this work. For non-
self-interacting bosonic fields, the maximum possible
mass of the corresponding stars is determined by the
boson particle mass μB. In particular, ultralight bosons
within 10−13 ≤ μB ≤ 10−10 eV can form stars with maxi-
mal masses ranging between ∼1000 and 1 solar masses,
respectively. In Ref. [64], we showed that GW190521 was
consistent with the head-on collision of two Proca stars
with μB ¼ 8.7 × 10−13 eV.

B. Numerical simulations of Proca-star mergers

We will demonstrate our ψ4 data analysis making use
of NR simulations of head-on collisions of spinning Proca
stars. In addition to the quadrupole ðl; mÞ ¼ ð2;�2Þ
modes dominant for circular mergers, our simulations also
yield the (2, 0) mode, codominant for the case of head-on
collisions, and the much weaker ð3;�3Þ and ð3;�2Þ
modes. Our set of waveforms is obtained from simulations
of the collisions of two spinning Proca stars with aligned
spin axes [64,115,116]. Although starting from rest, the
trajectories of the two stars are eccentric rather than strictly
head-on due to frame dragging. In our study’s region of
parameter space, all Proca-star progenitors are sufficiently
massive and compact to trigger the gravitational collapse of
the remnant. Therefore, the outcome of the collision always

leads to BH formation after the merger. The simulations are
performed with the EINSTEIN TOOLKIT infrastructure
[117,118], together with the CARPET package [119,120]
for mesh refinement. The Proca evolution equations are
solved via a modified Proca thorn [71,113,121,122] to
include a complex field. We consider both equal-mass and
unequal-mass cases, as reported in our numerical Proca
catalog [116]. The initial data consist of the superposition
of two equilibrium solutions separated by D ¼ 40=μ
[64,71,109,123], in geometrized units, guaranteeing an
admissible initial constraint violation. The equilibrium
stars are numerically constructed using the solver fidisol/
cadsol for nonlinear partial differential equations of elliptic
type, via a Newton-Raphson method (see Refs. [95–97] for
more details).

IV. DATA ANALYSIS WITH ψ4

Consider an observation model,

dðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ þ nðtÞ
¼ sðtÞ þ nðtÞ; ð1Þ

where sðtÞ ¼ FþhþðtÞ þ F×h×ðtÞ is the GW strain, Fþ
and F× are the beam pattern functions of the þ and ×
polarization states, i.e., hþðtÞ and h×ðtÞ, respectively, and
nðtÞ is the detector noise. Here we only consider a transient
signal; therefore, the beam pattern functions are approxi-
mated to be constant over the duration of the signal for a
given sky localization and polarization angle. We can
rewrite Eq. (1) as follows:

dðtÞ ¼ RefðFþ þ iF×Þ½hþðtÞ − ih×ðtÞ�g þ nðtÞ
¼ Re½ðFþ þ iF×ÞhðtÞ� þ nðtÞ; ð2Þ

where hðtÞ¼hþðtÞ− ih×ðtÞ. Taking second-time derivative
on both sides yields

d2dðtÞ
dt2

¼ Re½ðFþ þ iF×Þψ4ðtÞ� þ
d2nðtÞ
dt2

¼ sψ4
ðtÞ þ d2nðtÞ

d2t
; ð3Þ

where ψ4ðtÞ ¼ d2hðtÞ=dt2 and sψ4
ðtÞ ¼ d2sðtÞ=dt2. Now

we have obtained the observation model with ψ4ðtÞ directly
involved. Since in practice we analyze the digital strain data
which are discrete, we have to replace the second-order
differential operator d2=dt2 by the second-order difference
operator δ2 defined by

ðδ2xÞ½m� ≔ x½mþ 1� − 2x½m� þ x½m − 1�
ðΔtÞ2 ; ð4Þ
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where x½m� is a discrete-time series (labeled by index m)
with a sampling interval Δt. We then have

ðδ2dÞ½m� ¼ RefðFþ þ iF×Þðδ2hÞ½m�g þ ðδ2nÞ½m�: ð5Þ

To express the above observation model with a closer
notation connection to ψ4ðtÞ, i.e., the second derivative
of hðtÞ, we put a subscript Ψ4 to represent a second-order
differenced time series, i.e., xΨ4

½m� ≔ ðδ2xÞ½m�. And we
also reserve Ψ4½m� as a special notation for ðδ2hÞ½m�, in
analogy with ψ4ðtÞ. With the new set of notations, we
rewrite Eq. (5) as

dΨ4
½m� ¼ RefðFþ þ iF×ÞΨ4½m�g þ nΨ4

½m�
¼ sΨ4

½m� þ nΨ4
½m�; ð6Þ

where sΨ4
½m� ¼ RefðFþ þ iF×ÞΨ4½m�g is the second dif-

ference of the GW strain signal. In practice, parameter
estimation is often performed on the data in the Fourier
domain due to the more efficient evaluation of the like-
lihood function as compared to that in the time domain (see,
e.g., Ref. [14]). Applying Fourier transform on Eq. (6)
yields

d̃Ψ4
½k� ¼ ðFþ þ iF×ÞΨ̃4½k� þ ðFþ − iF×ÞΨ̃�

4½−k�
2

þ ñΨ4
½k�:
ð7Þ

We note, however, that since the ψ4ðtÞ extracted from
NR simulations is sampled from the second derivative
of hðtÞ, ḧ½m�, but not the second-order finite difference of
the discrete strain ðδ2hÞ½m�, we cannot directly use ψ4 as
templates for our analysis. Instead, as represented on the
left-hand side of Fig. 1, we need to transform these
following the relation

Ψ̃4½k� ¼
1 − cosð2πkΔfΔtÞ

2π2ðkΔfΔtÞ2 ψ̃4ðkΔfÞ; ð8Þ

for which we provide the proof in Appendix A. In the above
equation, Δf ¼ 1=ðMΔtÞ and M is the length of the
discrete Ψ4½m�. We finally obtain the observation model
in the Fourier domain with ψ̃4 directly involved as follows,

d̃Ψ4
½k� ¼ s̃Ψ4

½k; θ� þ ñΨ4
½k�; ð9Þ

where

s̃Ψ4
½k; θ ¼ fα; δ;ψ ; tevent; θ0g�

¼ 1 − cosð2πkΔfΔtÞ
4π2ðkΔfΔtÞ2 ½ðFþ þ iF×Þψ̃4ðkΔf; θ0Þ

þ ðFþ − iF×Þψ̃�
4ð−kΔf; θ0Þ�; ð10Þ

where Fþ and F× are functions of the sky location of the
source, i.e., the right ascension α, the declination δ, the
polarization angle ψ , and the event time tevent, and θ0 are
other source parameters.
Another crucial ingredient for parameter estimation is

the distribution of the second-differenced noise ñΨ4
½k� in

order to obtain the likelihood function. It can be shown (see
Appendix B) that if nðtÞ follows the stationary Gaussian
distribution with power spectral density SnðfÞ, then nΨ4

½m�
also follows the stationary Gaussian distribution with
power spectral density SnΨ4 ½k� as

SnΨ4 ½k� ¼
1

ðΔtÞ4
�
6 − 8 cos

�
2πk
M

�
þ 2 cos

�
4πk
M

��
Sn½k�;

ð11Þ

where S½k� is understood to be SðkΔfÞ.
The likelihood function for source parameters θ given

the second-differenced strain data dΨ4
in the Fourier

domain is, therefore,

LðdΨ4
jθÞ ∝ exp

�
−
1

2
½dΨ4

− sΨ4
ðθÞjdΨ4

− sΨ4
ðθÞ�

�
; ð12Þ

where sΨ4
ðθÞ is the second-differenced template with

parameters θ, and ðajbÞ denotes the noise-weighed inner
product defined as [124]

ðajbÞ ¼ 4Re
Z

fmax

fmin

ã�ðfÞb̃ðfÞ
SnΨ4 ðfÞ

df; ð13Þ

with SnΨ4 ðfÞ the power spectral density of the second-

differenced detector noise given in Eq. (11).

A. Summarized recipe for a ψ4 analysis

We summarize here our method to perform GW data
analysis with ψ4. Consider the canonical situation where
we have detector strain data dðtÞ, the corresponding power
spectral density (PSD) SnðfÞ, and strain templates sðt; θÞ
for source parameters θ. Then, an analysis based on the
Newman-Penrose scalar can be implemented by just
replacing the following:

Data: dðtÞ → dΨ4
ðtÞ≡ ðδ2dÞðtÞ ½Eq:ð4Þ�;

PSD: SnðfÞ → SnΨ4 ðfÞ ½Eq:ð11Þ�;
Templates: s̃ðf; θÞ → s̃Ψ4

ðf; θÞ ½Eq:ð8Þ�: ð14Þ

Above, we assume that Ψ4 templates are obtained from
the ψ4 outputted by NR simulations through Eq. (8), i.e.,
following the right path of Fig. 1, and are therefore free of
integration systematics present in the strain templates.
Consequently, both sides of Eq. (14) generally lead to
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different results, which is the point of our work.
Nevertheless, one can also check that obtaining Ψ4 as
δ2h following the left-hand side of Fig. 1 (taking second-
order finite differences on the strain templates) makes both
sides of Eq. (14) return identical results.

V. RESULTS: DATA WHITENING

GW data analysis ultimately relies on whitened data;
that is, the detector data divided by the amplitude spectral
density of the background noise d̃ðfÞ= ffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

. This is
then matched filtered [25] with the whitened waveform
templates h̃ðfÞ= ffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

. Here we show that the trans-
formations we perform on both the strain data and PSD
to obtain their Ψ4ðtÞ versions lead to identical whitened
data and templates. Therefore, these lead to a completely
equivalent analysis where the only difference is that
Ψ4ðtÞ templates are free of systematic errors introduced
during the obtention of the hðtÞ templates through
integration.

A. Analytic case: Sine-Gaussian waveform

We start by considering the case of an analytical function
hðtÞ for which we can analytically compute ψ4ðtÞ ¼
d2hðtÞ=dt2 ≡ ḧðtÞ. This way, we have a “controlled”
experiment where the “strain” hðtÞ and the corresponding
“Newman-Penrose scalar” ψ4ðtÞ at hand are free of
potential differences introduced by systematic errors
arising from the double integration of the former. In
particular, we consider the case of a sine-Gaussian strain
time series:

hðtÞ ¼ A0e−ðt−t0Þ
2=τ cosðωtþ ϕ0Þ: ð15Þ

For this strain, we compute the corresponding ψ4ðtÞ and
obtain a corresponding finite sampling time series ψ4½m�.
Next, we obtain a finite sampling time series of the strain
h½m� and compute the corresponding second-order differ-
ence Ψ4½m�≡ ðδ2hÞ½m�. Finally, we also obtain δ2h½m� by
“correcting” the discretized second derivative ḧ½m�, via the
transformation in Eq. (8). The left-hand panel of Fig. 2
shows these three time series. The inset therein shows that
while the two finite-differenced time series are identical,
ḧðtÞ differs from them.
Next, we compare the result of whitening the strain time

series h½m� by a given strain PSD Sn and that of whitening
δ2h½m� by the corresponding transformed PSD SnΨ4 . The
inset of the right-hand panel of Fig. 2 shows the difference
between the whitened Fourier transforms of h½m� and
δ2h½m�. As before, we obtain the latter both by taking
second-order finite differences on h½m� and by correcting
ḧ½m� via Eq. (8), which we denote ḧcorr. These differences
are below 1 part in 1012. The main panel shows the
differences between the whitened h½m� and ḧ½m�, “wrongly”
whitened by SnΨ4 , which are 9 orders of magnitude larger.
The above shows that given a continuous strain hðtÞ and

its corresponding ψ4ðtÞ≡ ḧðtÞ, the processes of (a) taking
second-order finite differences on the finite-sampling
time series of h½m� and (b) correcting ḧ½m� via Eq. (8)
lead to identical time series that we call Ψ4ðtÞ. Second, it
shows that given the PSD of a stochastic Gaussian and
stationary strain time series h½m� and the corresponding
ðδ2Þh½m� ¼ Ψ4½m�, our estimation of the PSD SnΨ4 cor-

rectly whitens the latter. In the following, in order to
adapt to common literature, we drop the discrete notation,
e.g., replacing h½m� by hðtÞ.

FIG. 2. Demonstration of our transformation and whitening scheme on sine-Gaussian pulses. The left-hand panel shows the analytical
second derivative ḧðtÞ of a sine-Gaussian strain time series hðtÞ and its second-order finite-difference time series δ2hðtÞ. We obtain the
latter both directly and from correcting ḧðtÞ via Eq. (8). The inset shows that ḧ differs from the other two curves. The inset of the right-
hand panel shows the difference between the latter two time series, whitened with a PSD SnΨ4 , and the original strain hðtÞ whitened by

the corresponding Sn. These are of the order of 1 part in 1012. The main right-hand panel shows the (much larger) difference between the
whitened strain and second derivative ḧðtÞ whitened with SnΨ4 .
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B. Whitening of detector data

The left-hand panel of Fig. 3 shows the whitened strain
dðtÞ and dΨ4

ðtÞ time series of the Livingston detector at the
time of the event GW190521. Their differences, shown in
the right-hand panel, are well below 1 part in 1012. Again,
this shows that our formalism correctly whitens the data and
that, therefore, both types of analyses are totally equivalent
provided that no artifacts are picked during the construction
of the strain templates from the ψ4 templates.

1. Whitening waveform templates: Impact of the choice
of ω0 during fixed-frequency integration

The left-hand panels of Figs. 4 and 5 show raw strain
templates obtained from two simulations of a Proca-star

merger hðtÞ. These, respectively, correspond to a waveform
consistent with GW190521 and to a larger mass ratio and
rather edge-on configuration with multimodal structure
[21,125,126] that, in a separate paper [127], we find consistent
with the GW trigger 200114_020818 (S200114f in the
following) [128] (see the specific parameters in Appendix C).
In both cases, the strain hðtÞ has been obtained from ψ4ðtÞ
through an FFI using a givenω0 cutoff. Overlaid, we show the
corresponding Ψ4ðtÞ obtained both as ðδ2hÞðtÞ and by
correcting ψ4ðtÞ outputted by NR, which in the following
we simply call Ψ4ðtÞ. We scale hðtÞ by a suitable amplitude
factor so that bothwaveformscanbeplotted together. The right-
hand panel shows the corresponding whitened waveforms.
First, we note that while (as expected) the raw hðtÞ

widely differs from the two Ψ4ðtÞwaveforms, the whitened

FIG. 3. Whitening of strain and Ψ4 detector data. Left: whitened strain and Ψ4 gravitational-wave time series from the Livingston
detector around the time of GW190521. Right: difference between the absolute values of the corresponding Fourier-domain data. These
are at the level of 1 part in 1012, so that both whitened detector data are equivalent for all practical purposes.

FIG. 4. Whitening of strain and Ψ4 templates. Left: we show the raw time-domain data for the case of (a) Ψ4 directly coming from a
numerical relativity simulation [through Eq. (8)] of a head-on Proca-star merger consistent with GW190521 (black), (b) the strain
obtained from ψ4 through double integration (blue), and (c) the Ψ4 obtained from the latter through second-order finite differencing,
denoted by δ2hðtÞ. The strain in the left-hand panel has been conveniently scaled to note the obvious morphological differences with
respect to Ψ4. Right: corresponding whitened time series. The enlarged boxes show how the hðtÞ and δ2hðtÞ are exactly identical while
very small differences can be observed with respect to the original Ψ4.
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hðtÞ and ðδ2hÞðtÞ waveforms are identical but differ from
the “direct”Ψ4. This is due to the impact of the choice of ω0

used to obtain hðtÞ from ψ4ðtÞ. As we will show later, for
the case shown in Fig. 4, these differences are not large
enough to have a significant impact on parameter inference
or model selection. However, for the case shown in Fig. 5,
the choice of ω0 removes enough “true” signal power to
cause clear morphological alterations that impact both
parameter estimation and model selection.

VI. PARAMETER INFERENCE AND MODEL
SELECTION ON SIMULATED SIGNALS

A. Summary of Bayesian parameter inference
and model selection

We test our framework by performing full Bayesian
parameter estimation and model selection on simulated
signals injected in zero noise using the Bayesian inference
library PARALLEL BILBY. We consider a reference signal
or “injection” hMðθTrueÞ with source parameters θTrue
computed by a waveform model M. In our case, the model
M corresponds to either Ψ4ðtÞ, hðtÞ, or ðδ2hÞðtÞ. Next, we
recover the posterior distributions of the parameters
pM� ½θjhðθTrueÞ� using a different model M� as the signal
template. This is given by

pM� ½θjhMðθtrueÞ� ¼
LM� ½hMðθTrueÞjθ�πðθÞ

ZMM�
: ð16Þ

Here, πðθÞ denotes the prior probability of the param-
eters θ while LM� ½hMðθTrue�jθÞ represents the likelihood
of the data hMðθTrueÞ under the waveform model M�
with the given parameters θ. We use the canonical like-
lihood for GW transients in Eq. (12). Finally, the term
ZMM� denotes the Bayesian evidence for the data hM
assuming the template model M�. This is equal to the

integral of the numerator over the explored parameter
space Θ, given by

ZMM� ¼
Z
Θ
πðθÞLM� ½hMðθTrueÞjθ�dθ: ð17Þ

Given two template modelsM1 and M2 being compared to
some data d, or some simulated signal hMðθÞ, the relative
probability for those models, or relative Bayes factor BM1

M2
,

is given by

BM1

M2
¼ ZM1

ZM2

: ð18Þ

Expressing these in terms of natural logarithms, it is
commonly considered that the model M1 is strongly
preferred with respect to M2 when logðBM1

M2
Þ ¼

logðZM1
Þ − logðZM1

Þ ≥ 5. Finally, since the Bayesian
evidence Z represents the Bayes factor for the “model
vs noise” hypotheses, we will commonly refer to it as
simply the “Bayes factor,” denoting it as B.
As it will become relevant later, it is important to note

that the evidence ZMM� is bounded above by the maximum
value of the likelihood LM� ½hMðθTrueÞjθbest�, achieved
for the best fitting parameters θbest, this is, by the best
fit that the model M� can provide for hMðθÞ. At the
same time, in the absence of noise, such maximum like-
lihood is capped by the “optimal maximum likelihood”
LM½hMðθTrueÞjθTrue�.
To anticipate the expected consequences of respectively

analyzing and modeling a true GW using a template
affected by integration errors, let us consider two scenarios.
First, consider that we model the true GW, i.e., our
injection, as hMðθTrueÞ ¼ Ψ4ðθTrueÞ and try to recover it
using templates ðδ2hÞðθTrueÞ which carry integration

FIG. 5. Whitening of strain and Ψ4 templates. Impact of aggressive choice of ω0. Same as in Fig. 4 but for a waveform template
consistent with S200114f [127,128]. In this case, the differences between the Ψ4 directly extracted from the numerical simulation and
the other two waveforms are significantly more noticeable.
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artifacts. Since such artifacts will change the frequency
content of the templates, these will not perfectly match the
injection, leading to a drop in the maximum likelihood and,
therefore, of the corresponding Bayesian evidence in favor
of the model. Second, any choice of the integration
frequency cutoff ω0 will remove some true power from
the waveform. This will consequently lead to an under-
estimation of the signal loudness for a given source
distance, yielding a bias toward lower distances. Third,
for this last reason, if we model the true signal using either
hðθTrueÞ or ðδ2hÞðθTrueÞ, this will cause an underestimation
of the signal loudness, the optimal maximum likelihood
and, therefore, an intrinsic decrease of the maximum
Bayesian evidence achievable in the analysis.

B. Specific setup

We perform parameter estimation on injections gener-
ated in terms ofΨ4ðtÞ, hðtÞ, and ðδ2hÞðtÞ. For the latter two,
we consider two cases. In the first case, we obtain the strain
through FFI using a frequency cutoff Mω0 ≃ 0.27, in
geometric units [129]. In the second case, we simply apply
a regularization at the pole given by ω0 ¼ 0, which we
replace by the value for the lowest frequency multiplied
by 10−4. We respectively label the resulting waveforms by
F and NF subindexes, i.e., hF ðδ2hFÞ and hNF ðδ2hNFÞ.
We recover these injections using different types of

templates, as shown in Table I. We make two choices for
the parameters θ, corresponding to the two cases shown in
Figs. 4 and 5. These correspond to parameters consistent
with GW190521 and the trigger S200114f under our Ψ4

formalism. The most relevant difference between the
corresponding simulations is the aggressiveness of the
ω0 used to obtain hðtÞ.
As mentioned in the previous section, in the case of the

simulation consistent with GW190521, we find that this
does not subtract significant power from the portion of the

signal falling into the Advanced LIGO sensitive band while
in the second case (the S200114f-like simulation) it does.
The expectation is that for the first case, results obtained
through Ψ4 and all hF-based analyses will be very similar;
while in the second, those based on filtered waveforms will
differ significantly. In particular, two types of differences
are expected. First, if the frequency content of the wave-
forms is altered by the integration errors, this will limit
the ability of the resulting strain waveforms [or rather,
ðδ2hÞðtÞ] to fit the original Ψ4. This will translate into both
a reduction of the Bayes factor that may bias model
selection and into potential parameter biases. Second, since
any choice of ω0 will remove a certain amount of signal
power, this will result in an underrating of the strain-signal
loudness. On the one hand, for identical parameters, this
will lead to an underestimation of the signal SNR. On the
other hand, this will cause a bias in the distance estimate.
The significance of the above effects in model selection

and parameter inference depends on the signal loudness, as
louder signals require more accurate templates in order to
avoid analysis biases. We evaluate the impact of these
biases under various observing scenarios; we consider three
types of signal loudness, characterized by the optimal
signal-to-noise ratio of the injection modeled by Ψ4. In
the first case, we use the parameters best fitting GW190521
and S200114f, making the Ψ4 injection have an SNR of
≃15 across the whole detector network, typical of current
GW detections. Next, reducing the distance by a factor of 2,
we study the case of signals with SNR ≃ 30, similar to the
maximum SNR observed to date. Finally, we consider
the case where the injection has an SNR of ≃60. For
simplicity, in what follows, we will use “¼” signs to refer to
these cases.
Finally, as shown in the previous section, if our Ψ4

formalism is equivalent to the classical one based on strain,
results obtained through the injection and recovery of

TABLE I. Summary of injection recovery with different waveform models. We report the log Bayes factor (for model M� vs noise
hypotheses) obtained from our different waveform models, together with the corresponding maximum log-likelihood values. We show
results for two types of injections of Proca-star merger signals, respectively consistent with the GW190521 signal and with the S200114f
trigger, both with SNRs around 15. To show the increasing impact of ψ4 integration errors as the SNR raises, we further scale our
injections by factors of 2 and 4, corresponding to SNRs of approximately 30 and 60. Log Bayes factors have typical uncertainties of
≃0.1. with maximum values of 0.5.

Waveform model GW190521-like injection S200114f-like injection

SNR ¼ 15 SNR ¼ 30 SNR ¼ 60 SNR ¼ 15 SNR ¼ 30 SNR ¼ 60

Injection M Template M� logB logLmax logB logLmax logB logLmax logB logLmax logB logLmax logB logLmax

Ψ4 Ψ4 94.1 123.2 477.2 514.3 2033.7 2063.8 90.0 124.2 475.9 517.8 2042.7 2074.4
Ψ4 δ2hNF 93.9 123.2 477.0 514.4 2033.4 2063.7 89.9 124.0 475.7 517.6 2041.7 2073.4
δ2hNF δ2hNF 93.8 123.1 476.5 513.7 2030.8 2061.3 89.2 123.9 475.0 516.8 2038.1 2070.1
hNF hNF 93.6 123.8 476.5 513.7 2031.0 2061.3 89.2 123.1 474.5 516.8 2038.3 2070.1
Ψ4 δ2hF 93.6 122.9 475.7 512.7 2027.0 2057.3 83.9 117.8 451.0 492.3 1940.5 1971.9
δ2hF δ2hF 92.4 121.5 470.7 507.3 2005.1 2035.5 64.1 98.2 372.7 414.1 1634.5 1665.8
hF hF 92.2 121.5 470.1 507.3 2005.3 2035.5 64.1 98.3 372.7 414.1 1634.1 1665.7
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ðδ2hF=NFÞðtÞ and hF=NFðtÞ should be exactly equal, modulo
the uncertainty associated to the sampling of the likelihood
throughout the parameter space. In fact, Table I shows that
the evidences obtained by such pairs of analyses differ at
most by 0.5 (which would not impact our conclusions
regarding model selection), even in the highest SNR cases
where convergence is harder to achieve, with most cases
ranging between 0 and 0.2.
When sampling the likelihood, we fix the mass ratio and

spins of the templates to those of the injection and sampling
only over the total redshifted mass of the source Mtotal,
the luminosity distance dL, and orientation angles ðι;φÞ, the
sky-location angles ðα; δÞ, the polarization angle ψ , and
the time of arrival. The power spectral densities used for our
two injections are those of the Advanced LIGO and
Virgo detectors at the times of GW190521 and
S200114f. When analyzing the corresponding Ψ4 or δ2h
injections, we applied the correction factor in Eq. (11)
to obtain the appropriate PSDs. We sample the parameter
space using the nested sampler DYNESTY [130] with 4096
live points for the cases with SNR ¼ 15 and 30, and 8192
live points for the cases with SNR ¼ 60.

C. Results on simulated signals

Table I shows the natural log Bayes factor (logB) and
the maximum log-likelihood (logLmax) recovered by each
of our analyses for each of our two types of injections.
First, we note that in both cases, the analyses making use of
strain waveforms hFðNFÞ and the corresponding second-
order finite-differenced waveforms δ2hFðNFÞ yield equiv-
alent results even for SNRs of 60, corroborating that our
formalism does not introduce any artifacts. This means
there is no fundamental reason to prefer an analysis based
on strain. Therefore, given that the Ψ4 waveforms, directly
obtained from ψ4, avoid a complete layer of systematic
errors, in the following we use the results based on the
injection and recovery of Ψ4 itself as our reference results.
Since we checked above that sampling errors introduce
maximal uncertainties in the Bayes factors of ≃0.5 (irrel-
evant for the purpose of model selection), we will assume
that any significant difference between our reference
analysis and the remaining ones is due to artifacts arising
from the integration of ψ4ðtÞ to obtain hðtÞ.
Figure 6 shows posterior parameter distributions for all

injection-template combinations in Table I, for the case of

FIG. 6. Posterior parameter distributions for our GW190521-like injection, when scaled to a signal-to-noise ratio of 15. Posterior
parameter distributions for our different analyses in Table I together with the true value represented by a dashed line. The color code
denotes the type of injection used [Ψ4, strain hðtÞ, or strain-derived Ψ4 denoted by δ2hðtÞ] and the type of template. All analyses yield
equivalent results. In particular, no significant difference is observed when filtered or nonfiltered injections and templates are used. The
parameter θJN describes the angle formed between the total angular momentum of the source and the line of sight. We note that since our
sources do not precess, this is equal to the parameter ι.
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our GW190521-like signal scaled to an SNR of 15. The
vertical bars show the true injection values. Similarly,
Fig. 7 shows the same for our S200114f-like injection. In
the first case, all distributions yield equivalent results. In
particular, since our choice of ω0 barely affects the signal
morphology, there is no significant difference between the
posteriors obtained when injecting either Ψ4ðtÞ, hFðtÞ, or
hNFðtÞ and recovering with any of the relevant template
models. We find the same is true when we raise the SNR to
30 and 60. In particular, the top contours of Fig. 8 show
the symmetric 90% credible intervals around the median
obtained for the total mass as a function of the SNR of the
Ψ4 injection when this is recovered with Ψ4 itself (blue)
and δh2F, which carries potential integration and ω0-choice
artifacts. Both these contours are essentially equal and
converge to the true value for increasing SNR, indicating
that, in this case, the aforementioned artifacts are mild
enough to not bias parameter estimation. However, the
likelihoods reported in Table I and in the left-hand panel
of Fig. 9 show that the runs involving injections [hFðtÞ and
ðδ2hFÞðtÞ] reach slightly lower log-likelihoods due to
the (small) power eliminated by the choice of ω0, which
reduces the SNR of the injection. Nevertheless, as Table I
shows, for the cases with SNR ¼ 15 and 30 such missing

power does not cause changes in the Bayes factors that
can lead to qualitatively different conclusions when
performing model selection. Accordingly, we will later
show that the analysis of GW190521 is not impacted at all
by the usage of hF templates. This is, however, not the
case when the SNR is raised to 60. In this situation, while
parameter estimation is unaffected, we observe that
analyzing a true GW with our filtered waveforms causes
a drop of ≃6 in the Bayesian evidence, sufficient to lead to
model selection biases.
The situation is quite different for the case of our second

injection. In this case, the choice of ω0 does significantly
affect both the morphology and signal power of the
waveform. As a consequence, Fig. 7 shows clear shifts
of the posteriors for the total mass and the polarization
angle when we recover the Ψ4 injection with the δ2hF
templates at an SNR of only 15, even if these are not
completely inconsistent with the others. Figure 8 shows,
however, that such shifts bias the estimate of the total mass
when the SNR is above 30. This turns even more dramatic
when evaluating the impact on the recovered log-likelihood
and on model selection. The yellow distribution in the
right-hand panel of Fig. 9 shows that the “F” templates
[e.g., ðδ2hFÞ] fail to recover a significant amount of power

FIG. 7. Posterior parameter distributions for our S200114f-like injection, when scaled to a signal-to-noise ratio of 15. Posterior
parameter distributions for our different analyses in Table I together with the true value represented by a dashed line. The color code
denotes the type of injection used [Ψ4, strain hðtÞ, or strain-derived Ψ4 ≡ ðδ2hÞðtÞ] and the type of template. Recovering nonfiltered
injections with filtered waveforms leads to visible shifts in some posteriors. This is due to the excessive aggressiveness of the integration
filter.
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from Ψ4, therefore dramatically reducing the maximum
log-likelihood. This leads to a significant drop in the Bayes
factor, as shown in Table I, that can change qualitative
conclusions concerning model selection even when the
SNR is only of 15. In fact, as we will show later, using hF
templates has strong consequences for the analysis of
S200114f. Finally, as expected, injecting any of the “F”
waveforms leads to a significant drop in the power present
in the injection and, therefore, in the recovered power and
Bayes factor.

VII. RESULTS ON REAL DATA I:
GW190521 AS A BOSON-STAR MERGER

We now demonstrate our framework on real GW data.
In Ref. [64] we performed parameter estimation and model
selection on 4 sec of data around the time of GW190521,
comparing this event to a “vanilla” quasicircular BBH
model employed by the LIGO-Virgo-KAGRA (LVK)
Collaboration [131] and to a set of numerical simulations
for Proca-star mergers. Here we reproduce this analysis
both using the classical strain formalism and our new ψ4-
based framework. We obtain our Ψ4 input data by applying
the transformations in Eqs. (4) and (11) to the public strain
data and the corresponding strain PSDs.
We compare GW190521 to a family of numerical

simulations for head-on mergers of Proca stars with equal
mass and spin. The spin of the Proca stars can be directly
mapped onto the bosonic field frequency, which is
uniformly distributed in ω=μB ∈ ½0.80; 0.93� with a reso-
lution of Δω=μB ¼ 0.0025. In addition, as in Ref. [64],
we use a secondary exploratory family of unequal-mass
mergers in which the frequency of one of the stars is fixed
to ω1=μB ¼ 0.895 and the other varies uniformly in
ω2=μB ∈ ½0.80; 0.93�. We perform model selection with
respect to the classical circular BBH case for which we
choose the waveform model NRSur7dq4 [53] implemented
in the LALSuite library [132]. This model includes all
gravitational-wave modes with l ≤ 4 and is directly
calibrated to precessing NR simulations with mass ratio
q¼ m1=m2 ∈ ½1; 4� and individual spin magnitudes ai ∈
½0; 0.8�. Moreover, the model can be extrapolated to q ¼ 6
and ai ¼ 0.99. In our original study [64], we made use of
the parameter estimation software BILBY [28] and sampled
the likelihood across the parameter space using nested
sampler CPNest [133]. In this work, however, we switch to
the parallelizable version of BILBY, known as PARALLEL

BILBY [134], and the sampler DYNESTY [130]. Owing to this

FIG. 8. Total mass bias due to ψ4 integration and filtering as
function of signal loudness. The blue and orange contours denote
the 90% credible intervals for the total mass for the case of our
GW190521-like and S200114f-like injections as a function of the
injection signal-to-noise ratio. The injection is always modeled
by Ψ4, free of integration errors. The blue and orange contours
denote, respectively, the result of analyzing the injection with Ψ4

itself and with the ðδ2hFÞ, which inherits the ψ4-integration errors
together with the power loss due to the choice of an integration
low-frequency cutoff ω0.

FIG. 9. Likelihood posterior distributions for our two sets of parameter inference runs. Left: posterior distributions for the case of our
GW190521-like injections. Right: same for our S200114f-like injections.
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change in software, we also repeat our original analysis
based on strain data. We impose the same parameter priors
as in Ref. [64], as detailed below.
Bayesian priors. For the intrinsic source parameters, we

consider uniform priors on the field frequency ω=μB ∈
½0.80; 0.93� and the total redshifted massM∈ ½50; 500�M⊙.
For the extrinsic parameters, we impose a distance prior
uniform in comoving volume with dL ∈ ½10; 10000� Mpc,
flat priors on the polarization angle and time of arrival, and
isotropic priors on the source orientation and sky location.
For the BBH model, we set identical priors in all of the
parameters shared with the Proca-star merger (PSM)
model. In addition, we set uniform priors on the dimen-
sionless spin magnitudes and isotropic priors on their
orientations. As in Ref. [64], we set a uniform prior on
the mass ratio q∈ ½1=6; 1�. Finally, we note that as in
Ref. [127], and as in the analysis of S200114f we describe
later, we have tried an alternative prior uniform on the
(inverse) mass ratio Q∈ ½1; 6�, and we have also tried to
restrict the mass-ratio ranges to Q∈ ½1; 4� and q∈ ½1=4; 1�.
All of these yield evidences that differ, at most, by 0.2,
therefore leading to identical conclusions regarding model
selection.

A. Model selection

Figure 10 shows the whitened data of the Hanford,
Livingston, and Virgo detectors at the time of GW190521,
for both the case of hðtÞ and Ψ4ðtÞ. Together, we overlay
the maximum likelihood waveforms returned by the BBH
model and by both our strain and ψ4-based analyses when
using our equal-mass Proca-star mergers. First, we note that
the two latter analyses return essentially identical wave-
forms, once again showing that both analyses are equiv-
alent modulo systematic errors coming from the obtention
of hðtÞ.
Table II shows the natural logarithm of the Bayes factor

(logB) for our different models under different choices of
the distance prior. First, we note that for the same prior and

waveform model, the Ψ4 and strain analyses produce
almost identical results. Second, consistently with
Ref. [64], the first column shows that when attaching to
the standard distance prior which is uniform in comoving
volume, both the equal and unequal-mass models yield
logB only slightly larger than the BBH model. In particu-
lar, using Ψ4 as our reference analysis, the equal (unequal-
mass) model is e0.8 ≃ 2 (e1.7 ≃ 5.5) times more probable
than the BBH model. The second column shows results
obtained under the assumption of a uniform distance prior.
Although this can be considered to be rather nonphysical,
this prior effectively removes the intrinsic bias toward
louder sources (as circular BBHs) that can be observed
from much farther away than much weaker head-on
mergers, which was induced by the previous prior.
Alternatively, results obtained under the uniform prior
can be considered as crude estimates of what would happen
once numerical simulations for (intrinsically louder) less
eccentric configurations of Proca-star mergers become
available [135]. Once again, using our Ψ4 analysis as a
reference, the equal and unequal-mass models are favored
with probabilities e3.3¼27∶1 and e4.2 ¼ 67∶1 with respect
to the BBH case. These results are perfectly consistent with
those obtained from the analysis of strain data and with
those reported in Ref. [64].

FIG. 10. Whitened detector data and maximum likelihood waveforms for GW190521. We show the whitened strain hðtÞ (light blue)
and Ψ4ðtÞ (gray) detector data around the time of GW190521 together with the maximum likelihood waveforms returned by the BBH
model NRSur7dq4 (blue) and by our equal-mass Proca-star merger simulations obtained through strain (brown) and Ψ4ðtÞ analyses
(orange).

TABLE II. Model selection for GW190521. We report the
natural log Bayes factor obtained for our different waveform
models. For the Proca-star merger model, analyses done under the
classical strain formalism and our Ψ4 formalism are equivalent.

logB

Waveform model Comoving volume Uniform

BBH (NRSur7dq4) 89.6 89.7
Proca q ¼ 1 hðtÞ 90.6 93.2
Proca q ≠ 1 hðtÞ 91.4 94.0
Proca q ¼ 1 Ψ4ðtÞ 90.4 93.0
Proca q ≠ 1 Ψ4ðtÞ 91.3 93.9
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B. Parameter estimation

Table III shows our parameter estimates for GW190521.
We report median values together with symmetric 90%
credible intervals. The q ¼ 1 rows correspond to results
obtained with our equal-mass simulations while the q ≠ 1
rows correspond to those obtained with our exploratory
unequal-mass simulations. For each of these, we report
results from the analysis of both strain and Ψ4 data.
First, we note that, as expected from the previous section,

strain and Ψ4 produce almost identical results. Consistent
with Ref. [64], and taking Ψ4 analysis using q ¼ 1 wave-
forms as a reference, we find that GW190521 can be
interpreted as a head-on merger of two Proca stars with
masses 117þ5

−8M⊙ that left behind a black hole with a final
mass of Mf ¼ 233þ12

−16M⊙ and spin of af ¼ 0.70þ0.04
−0.03 ,

observed at a distance of 544þ296
−163 Mpc. Because of the

much lower intrinsic loudness of head-on mergers, the
inferred distance and total mass are in large contrast
with those inferred by the LVK Collaboration, respec-
tively, ≃5 Gpc and ≃150M⊙. For the Proca stars, we
infer a field frequency ω=μB ¼ 0.895þ0.15

−0.15. Combined with
the total mass, this yields an ultralight boson mass of
8.60þ0.63

−0.62 × 10−13 eV. Our analysis making use of unequal-
mass stars yields consistent conclusions. In particular, it
yields a boson mass of 8.57þ0.64

−0.67 × 10−13 eV.

VIII. RESULTS ON REAL DATA II:
THE TRIGGER S200114f

Finally, we show a real data example for which our
framework makes an important difference. The trigger

S200114f is a LIGO-Virgo high-mass trigger detected by
a model agnostic search that identifies coherent excess
power across the detector network, known as coherent
WaveBurst [136], with a highly significant false-alarm rate
of 1=17 yr [128]. This trigger has, however, challenged
existing waveform models. In particular, while the LVK
Collaboration analyzed S200114f under three BBH wave-
form models, no pair of these models returned consistent
parameter estimates. Far from indicating that this trigger
is not of astrophysical origin, this a symptom that the
mentioned waveform models disagree in the regions of the
parameter space where they best reproduce the signal.
However, this trigger is morphologically consistent with a
type of noise transients known as Tomte glitches [137]. In
this situation, the LVK decided not to classify it as a
confident or cataloged detection but, importantly, nor was it
classified as a noise trigger.
The above characteristics make S200114f a tantalizing

candidate to compare to our simulation catalog of Proca-
star mergers, in the same way we previously treated
GW190521. We note, however, that because we find that
S200114f was poorly reproduced by the small simulation
sets mentioned above, here we use an enhanced bank of
nearly 759 simulations spanning a grid across the two-
dimensional space defined by the field-oscillation frequen-
cies of the two stars, which range in ω1;2=μB ∈ ½0.80; 0.93�.
Because of this enhancement, we use priors that slightly
differ from those of the GW190521 analysis, which we
specify below. Just as for the case of GW190521, we
perform our comparison to the BBH model NRSur7dq4

within the strain framework while for the Proca-star case
we use both the strain and Ψ4 formalisms. Unlike in the

TABLE III. Parameters of GW190521 as a head-on Proca-star merger. We report median values together with
symmetric 90% credible intervals under the scenario of an equal-mass, equal-spin merger and under our exploratory
unequal-mass model. Columns labeled by hðtÞ correspond to a “classical” analysis performed with strain data and
templates, while those labeled by ψ4ðtÞ make use of Ψ4ðtÞ data and templates. We quote results corresponding to a
distance prior uniform in comoving volume.

Parameter

Waveform model

q ¼ 1 q ≠ 1

hðtÞ ψ4ðtÞ hðtÞ ψ4ðtÞ
Total mass ðM⊙Þ 258þ12

−10 260þ8
−9 260þ9

−10 262þ8
−7

Total source-frame mass ðM⊙Þ 232þ12
−17 233þ12

−16 232þ14
−15 232þ14

−15
Primary source-frame mass ðM⊙Þ 116þ6

−9 117þ5
−8 120þ10

−9 120þ9
−10

Secondary source-frame mass ðM⊙Þ 116þ6
−9 117þ5

−8 111þ8
−7 111þ8

−7

Luminosity distance (Mpc) 541þ305
−176 544þ296

−163 592þ358
−262 618þ360

−244

Inclination (rad) 0.83þ0.23
−0.45 0.85þ0.23

−0.36 0.67þ0.36
−0.45 0.67þ0.33

−0.45

Final spin 0.69þ0.04
−0.04 0.70þ0.04

−0.03 0.70þ0.03
−0.05 0.71þ0.02

−0.05
Primary field frequency ω1=μB 0.890þ0.018

−0.018 0.895þ0.015
−0.015 0.895 0.895

Secondary field frequency ω2=μB 0.890þ0.018
−0.018 0.895þ0.015

−0.015 0.900þ0.018
−0.018 0.905þ0.015

−0.018

Boson mass μBð10−13 eVÞ 8.80þ0.76
−0.93 8.60þ0.63

−0.62 8.63þ0.70
−0.68 8.57þ0.64

−0.67
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case of GW190521, however, we find that both methods
return significantly different results that arise from the fact
that integration or filtering issues affect the best-fitting
strain waveforms.
Bayesian priors. For the PSM model, we impose

the same priors as in our GW190521 study, with the
exception of the field frequencies. For these, we impose a
prior uniform across the triangle defined by ω1;2=μB ∈
½0.80; 0.93�, with ω1=μB ≥ ω2=μB. Finally, for the BBH
model, we impose the same priors as for the GW190521
case. However, from the four mass-ratio priors we discuss
we retain the one yielding the largest Bayesian evidence
for the Ψ4 run. The goal of this is to be as conservative
as we can in our statements in favor of the existence of
Proca stars. These priors are identical to those imposed in
Ref. [127], where we refer the reader to for further details.

A. Model selection

Figure 11 shows the whitened time series from the three
detectors around the time of S200114f. Overlaid, we show
the maximum likelihood waveforms for the BBH case and
for the Proca-star merger case, the latter in terms of both
strain and Ψ4. Unlike for the case of GW190521, the latter
two (brown and orange lines) clearly differ. This difference
is particularly visible in the early premerger part of the
signal, which is most prone to be affected by integration
artifacts and choices of the integration frequency cutoff.
Additional differences are also observable in the late ring-
down part. While visually mild, such disagreement drives
dramatically different values of the corresponding like-
lihood, which is 6e-folds larger in the Ψ4 case. This, in
turn, has a great impact on model selection, as shown in
Table IV. While under the Ψ4 formalism we obtain
logB ¼ 2.0, this is reduced to logB ¼ −7.6 when using
strain templates, in the case where we use our distance prior
uniform in comoving volume. In other words, while the
trigger is slightly preferred as a Proca-star merger under the

artifact-free Ψ4 analysis, such an option is conclusively
discarded under the strain analysis due to the artifacts arisen
during the waveform integration process. We note that this
result is qualitatively consistent with that returned by the
noise-free injection study described in Sec. VI C. In par-
ticular, the logB reported in the first (Ψ4 vsΨ4) and fifth (Ψ4

vs δ2hF) rows of the fourth column of Table I differ by 6.1
units, as compared to the 9.2 units we obtain in real data.
Finally, a similarly dramatic effect is observedwhenwe use a
prior uniform in distance. In this case, the usage of strain
waveforms causes a reduction from logB ¼ 5.3 to logB ¼
−0.3, i.e., froma strong preference for theProca-star scenario
to rather equal preference for both scenarios.

B. Parameter estimation

Finally, for the sake of completeness, Table V shows our
parameter estimates for S200114f under both the strain and
Ψ4 analyses. First, clear differences arise in the estimated
luminosity distance, total redshifted mass, star frequency,
and spin parameters. These translate into biases in the
boson mass and source-frame mass estimates. In particular,
the boson-mass estimate from the strain formalism is
highly consistent with that of GW190521 while it becomes
highly inconsistent if using the integration-error-free Ψ4

waveforms.

FIG. 11. Whitened detector data and maximum likelihood waveforms for S200114f. We show the whitened strain hðtÞ (light blue) and
Ψ4ðtÞ (gray) detector data around the time of GW190521 together with the maximum likelihood waveforms returned by the BBH model
NRSur7dq4 (blue) and by our equal-mass Proca-star merger simulations obtained through strain (brown) and Ψ4ðtÞ analyses (orange).
Unlike in Fig. 9 for the case of GW190521, in this case, the brown and orange waveforms show visible differences particularly visible in
the early part of the waveforms. These translate into a worse fit to the data in the brown case and qualitatively different conclusions in
terms of model selection.

TABLE IV. Model selection for S200114f. We report the
natural log Bayes factor obtained for our different waveform
models under different signal models and distance priors.

logB

Waveform model Comoving volume Uniform

BBH (NRSur7dq4) 69.1 71.0
Proca hðtÞ 61.5 69.7
Proca Ψ4ðtÞ 71.1 76.3
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IX. DISCUSSION OF RESULTS: INTEGRATED
STRAIN VS NEWMAN-PENROSE SCALAR

Given our results, both on synthetic signals and on real
data, the question arises of what is special about the
waveforms reproducing S200114f that makes strain wave-
forms problematic, as opposed to the case of GW190521.
The answer is, nothing in principle. As stated throughout

this paper, obtaining “integration-error-free” strain wave-
forms depends on a series of human choices (in particular
that of ω0) that are only reasonably well guided for the case
of quasicircular mergers. In other cases, obtaining clean
strain waveforms through FFI (if possible at all) involves a
much more convoluted trial-and-error process. Moreover,
we understand that in the absence of a “true” reference
strain waveform, concluding that the obtained waveform is
correct can only be done through the comparison to the
Newman-Penrose waveform, similarly to what we do in the
right-hand panels of Figs. 4 and 5.
In this situation, we can only make the everything but

scientific argument that the integration choices that hap-
pened to work correctly for the waveforms best fitting
GW190521 (making our results in Ref. [64] safe from
integration artifacts) did not work for the waveforms best
fitting S200114f. This is, at least partially, explained by the
fact that our choice of Mω0 does remove more true signal
power for S200114f than for the GW190521-like injection.
In this situation, it could be argued that better strain
waveforms may have been obtained if further exploration
of ω0 choices was performed, although there is no
guarantee that this process would lead to a driftless

waveform containing all the true signal power. In fact,
FFI does by definition eliminate some true signal power
even in quasicircular cases. In our view, this exactly
exemplifies the huge advantage that the usage of the
Newman-Penrose scalar has over that of the integrated
strain: the resulting waveforms are “uniquely defined,”with
no choices to be made beyond those pertaining to the
specific configuration of the numerical simulation itself.

X. CONCLUSIONS

Extracting the properties of GW sources requires accu-
rate waveform templates that can be compared to detector
data. NR provides the most precise way to obtain such
templates and it is often the only way. Computing GW
strain waveforms from ψ4 outputted by NR simulations that
can be compared to the strain detector data is a nontrivial
process subject to well-known systematics that can impact
the physical interpretation of the source. Moreover, easing
these errors is a rather artisan process subject to human
choices that are not always obvious or even well motivated
depending on the considered type of source. This is
particularly problematic for some of the most astrophysi-
cally interesting sources LIGO and Virgo are starting to
observe, like precessing mergers [7,138], or may observe in
the future observing runs, like eccentric mergers or
dynamical captures, for which there is no monotonic
relation between GW frequency and time. We note that,
even in cases where such relation exists, typical systematic
errors of ∼1% in amplitude will always exist. Moreover,
these are in practice impossible to know because the true
waveform is not known [68]. By taking second-order finite
differences on the detector strain data, we have presented a
data analysis framework that allows us to directly compare
GW data to ψ4, removing the need to extract the GW strain
from numerical simulations and the associated systematic
errors. We have shown that our framework is equivalent to
the traditional strain one modulo the potential systematic
errors present in the strain waveforms. Therefore, given that
Ψ4 waveforms have one less layer of systematic errors than
strain waveforms, classical strain analyses will, at best, be
as faithful as Ψ4-based waveforms.
As a demonstration of our framework in real data

analysis, we have first repeated our previous study compar-
ing GW190521 to numerically simulated strain waveforms
from Proca-star mergers presented in Ref. [64], but using
the direct Ψ4 outputted by our numerical simulations.
We obtain results completely consistent with the original
ones, which is indicative that our strain waveforms best
fitting GW190521 suffered, at most, from mild integration
errors that did not impact our original analysis. Second, we
have analyzed the high-mass trigger S200114f using
an enhanced catalog of Proca-star merger simulations
reported in Ref. [127]. In this case, we find that the usage
of strain waveforms—affected by integration errors—has a
huge impact in the interpretation of this signal, yielding

TABLE V. Parameters of S200114f as a head-on Proca-star
merger. We report median values together with symmetric 90%
credible intervals. The column labelled by hðtÞ corresponds to a
“classical” analysis performed with strain-data and templates;
while that labeled by ψ4ðtÞ makes use of Ψ4ðtÞ-data and
templates. We quote results obtained under a distance prior
uniform in co-moving volume.

Parameter

Waveform model

hðtÞ ψ4ðtÞ
Total mass ðM⊙Þ 233þ15

−29 215þ18
−15

Total source-frame mass ðM⊙Þ 228þ17
−29 207þ16

−14
Primary source-frame mass ðM⊙Þ 123þ8

−14 119þ9
−14

Secondary source-frame mass ðM⊙Þ 107þ7
−17 88þ16

−7
Luminosity distance (Mpc) 88þ109

−28 152þ73
−61

Inclination (rad) 1.03þ0.32
−0.45 0.91þ0.50

−0.24
Final spin 0.63þ0.07

−0.01 0.66þ0.03
−0.04

Primary field frequency ω1=μB 0.887þ0.033
−0.019 0.919þ0.006

−0.043
Secondary field frequency ω2=μB 0.833þ0.040

−0.025 0.810þ0.062
−0.010

Boson mass μBð10−13 eVÞ 9.67þ0.67
−0.49 10.20þ0.68

−0.55

logBProca-star
BBH −7.6 2.0
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conclusions that differ dramatically with respect to those
obtained by using error-free Ψ4 waveforms.
Our framework removes the need to obtain strain wave-

forms from numerical relativity simulations, removing a
complete layer of systematic errors. We note that while we
have focused on the case of short numerical relativity
simulations with rather “exotic” dynamics, the integration
errors worsen with increasing waveform length. In particular,
this makes such errors particularly troublesome in the task of
constructing hybrid numerical-relativity post-Newtonian
waveforms [139] that are matched at early times [68].
While we have discussed our procedure under the

prevalent scenario where the transverse-traceless gauge is
considered, its application to alternative gauge-independent
formulations [91] is, in principle, straightforward. Simi-
larly, while we have demonstrated our framework in the
context of parameter inference and model selection [140],
this is trivially applicable to the case of actual matched-
filter searches for GW signals [143–148]. Finally, we note
that since LVK results have so far been obtained under the
assumption of quasicircular mergers, we have no reason to
believe such results may be affected by the errors we have
discussed here.
We plan to publish and maintain our code to perform

gravitational-wave data analysis using the Newman-
Penrose scalar, within the software BILBY [28,134] at
Ref. [149]. The analyzed LIGO-Virgo data and the corre-
sponding power spectral densities, in their strain versions,
are publicly available at the online Gravitational-Wave
Open Science Center [150,151].
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APPENDIX A: RELATION BETWEEN
THE FOURIER TRANSFORM OF THE

SECOND-ORDER DIFFERENCE AND THE
SECOND DERIVATIVE OF A TIME SERIES

Theorem A.1. Given a continuous-time time series xðtÞ
where t∈ ð0; TÞ of duration T and the sampled time series
x½m� of sampling interval Δt where m ¼ 0; 1;…;M − 1,
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i.e., MΔt ¼ T, if the Fourier transform of the continuous-
time time series and the discrete Fourier transform of the
sampled time series are equivalent, i.e., x̃ðkΔfÞ ¼ x̃½k�,
where

x̃ðfÞ ¼
Z

T

0

xðtÞe−i2πftdt; ðA1Þ

x̃½k� ¼ Δt
XM−1

m¼0

x½m�e−i2πmk=M; ðA2Þ

and Δf ¼ 1=T, and the second derivative of xðtÞ exists at
every point in ð0; TÞ, then the Fourier transform of the
second derivative of xðtÞ and the discrete Fourier transform
of the second difference of x½m� are related by

fδ2x½k� ¼ 1 − cosð2πkΔfΔtÞ
2π2ðkΔfΔtÞ2

ex00ðkΔfÞ; ðA3Þ

where x00ðtÞ is the second derivative of xðtÞ, and δ2x½m� is
the second difference of x½m� defined by

δ2x½m� ¼ x½mþ 1� − 2x½m� þ x½m − 1�
ðΔtÞ2 : ðA4Þ

Proof. The Fourier transform of xðtÞ and x00ðtÞ are
related by

ex00ðfÞ ¼ −4π2f2x̃ðfÞ: ðA5Þ

The discrete Fourier transform of x½m� and ðδ2xÞ½m� are
related by

gðδ2xÞ½k� ¼ 2½cosð2πk=MÞ − 1�
ðΔtÞ2 x̃½k�: ðA6Þ

If x̃ðkΔfÞ ¼ x̃½k�, from Eqs. (A5) and (A6), we have

fδ2x½k� ¼ 1 − cosð2πkΔfΔtÞ
2π2ðkΔfΔtÞ2

ex00ðkΔfÞ: ðA7Þ

▪
When assuming x̃ðkΔfÞ ¼ x̃½k�, it is important to note

that aliasing and spectral leakage are intrinsic to discrete
Fourier transforms. These issues also arise in “regular”
GW data analysis when computing the discrete Fourier
transform of strain data. Proper data windowing, such as
employing a Tukey window as we do, mitigates these
errors by tapering data to zero at the ends of the segment
while preserving the GW signal segment. Importantly, our
method does not introduce any new sources of systematic
errors. Therefore, the errors discussed above are equivalent
to those encountered in regular GW data analysis and are
considered for the sake of rigor.

In this context, the discrete Fourier transform of the
sampled time series closely approximates the Fourier trans-
form of the continuous-time series, validating Eq. (A3).
Nevertheless, accuracy depends on precise discrete Fourier
transform usage, necessitating caution regarding aliasing and
spectral leakage. Appropriate data windowing is essential
when applying the discrete Fourier transform.

APPENDIX B: DISTRIBUTION OF
SECOND-DIFFERENCED NOISE

Theorem B.1. Let x∈RM be a discrete-time Gaussian
process such that the mean is E½x� ¼ μ and the covariance
is E½ðx − μÞðx − μÞT � ¼ Σ. Let δ2x∈RM be the second
difference of x defined by

ðδ2xÞ½m� ¼ x½mþ 1� − 2x½m� þ x½m − 1�
ðΔtÞ2 ; ðB1Þ

where x½m� is the mth element of x, andM > 2 and Δt are,
respectively, the total length and the sampling interval of
the discrete-time process, respectively. A periodic boun-
dary condition is imposed such that x½0� ¼ x½M� and
x½M þ 1� ¼ x½1�, then δ2x is a discrete-time Gaussian
process with mean μ2 ¼ Tμ and covariance Σ2 ¼ TΣT,
where T is a M ×M matrix with entries Tj;j ¼ −2=ðΔtÞ2,
Tj;jþ1 ¼ Tj;j−1 ¼ 1=ðΔtÞ2 with a periodic boundary con-
dition imposed on the matrix index; i.e., index 0 implies
index M and index M þ 1 implies index 1, and other-
wise zero.
Proof. The probability density function of the discrete-

time stationary Gaussian process is

pðxÞ ¼ 1

ð2πÞM=2jΣj1=2 exp
�
−
1

2
ðx − μÞTΣ−1ðx − μÞ

�
:

ðB2Þ

The second difference of x can be regarded as a linear
transformation of x. Since

2
666664
ðδ2xÞ½1�
ðδ2xÞ½2�

..

.

ðδ2xÞ½M�

3
777775¼

2
6666664

1
ðΔtÞ2 ðx½2�− 2x½1� þ x½M�Þ

1
ðΔtÞ2 ðx½3�− 2x½2�þ x½1�Þ

..

.

1
ðΔtÞ2 ðx½1�− 2x½M� þ x½M− 1�Þ

3
7777775

¼ 1

ðΔtÞ2

2
666664
−2 1 0 � � � 0 1

1 −2 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

1 0 0 � � � 1 −2

3
777775

2
666664

x½1�
x½2�
..
.

x½M�

3
777775;

ðB3Þ
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we can write δ2x ¼ Tx, where

T ¼ 1

ðΔtÞ2

2
666664
−2 1 0 � � � 0 1

1 −2 1 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

1 0 0 � � � 1 −2

3
777775; ðB4Þ

or Tj;j ¼ −2=ðΔtÞ2, Tj;jþ1 ¼ Tj;j−1 ¼ 1=ðΔtÞ2, and a periodic boundary condition is imposed on the matrix index; i.e.,
index 0 implies index N and index N þ 1 implies index 1, and otherwise zero. The probability density function of δ2x is
then

qðδ2xÞ ¼ pðT−1δ2xÞ
���� ∂ðT−1δ2xÞ

∂ðδ2xÞ
����

¼ pðT−1δ2xÞjT−1j

¼ 1

jTj
1

ð2πÞM=2jΣj1=2 exp
�
−
1

2
ðT−1δ2x − μÞTΣ−1ðT−1δ2x − μÞ

�

¼ 1

ð2πÞM=2jTΣTj1=2 exp
�
−
1

2
ðT−1δ2x − μÞTΣ−1ðT−1δ2x − μÞ

�

¼ 1

ð2πÞM=2jTΣTj1=2 exp
�
−
1

2
ðδ2x − TμÞTðT−1ÞTΣ−1T−1ðδ2x − TμÞ

�

¼ 1

ð2πÞM=2jTΣTj1=2 exp
�
−
1

2
ðδ2x − TμÞTðTΣTTÞ−1ðδ2x − TμÞ

�

¼ 1

ð2πÞM=2jTΣTj1=2 exp
�
−
1

2
ðδ2x − TμÞTðTΣTÞ−1ðδ2x − TμÞ

�
; ðB5Þ

where we have used TT ¼ T since T is a symmetric matrix. Therefore, δ2x is a discrete-time Gaussian process with mean
Tμ and covariance TΣT. ▪
Lemma B.2. Let x∈RM be a stationary discrete-time Gaussian process such that the mean of each discrete

point is E½x½m�� ¼ μ and the autocovariance is KXX½τ� ¼ E½ðx½m� − μÞðx½mþ τ� − μÞ�, then δ2x is also a stationary
discrete-time Gaussian process with mean μ2 ¼ 0 and autocovariance KXX½τ�:

KXX;2½τ� ¼
1

ðΔtÞ4 ð6KXX½τ� − 4KXX½τ − 1� þ KXX½τ − 2� − 4KXX½τ þ 1� þ KXX½τ þ 2�Þ: ðB6Þ

The power spectral density S2½k� of δ2x is related to the power spectral density S½k� of x by

S2½k� ¼
1

ðΔtÞ4
�
6 − 8 cos

�
2πk
M

�
þ 2 cos

�
4πk
M

��
S½k�: ðB7Þ

Proof. By Theorem B.1, δ2x is a discrete-time Gaussian process with mean μ2 ¼ Tμ and covariance Σ2 ¼ TΣT. The
mean of δ2x is then

μ2 ¼ Tμ ¼ 1

ðΔtÞ2

2
666664
μ − 2μþ μ

μ − 2μþ μ

..

.

μ − 2μþ μ

3
777775 ¼ 0: ðB8Þ

The covariance matrix is
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Σ2ðn;mÞ ¼
XN
k;l¼1

Tn;kΣk;lTl;m

¼ 1

ðΔtÞ2
XN
l¼1

ðΣn−1;l − 2Σn;l þ Σnþ1;lÞTl;m

¼ 1

ðΔtÞ4 ½ðΣn−1;m−1 − 2Σn−1;m þ Σn−1;mþ1Þ − 2ðΣn;m−1 − 2Σn;m þ Σn;mþ1Þ þ ðΣnþ1;m−1 − 2Σnþ1;m þ Σnþ1;mþ1Þ�

¼ 1

ðΔtÞ4 ð6KXX½jn −mj� − 4KXX½jn −m − 1j� þ KXX½jn −m − 2j� − 4KXX½jn −mþ 1j� þ KXX½jn −mþ 2j�Þ;

ðB9Þ

which depends on the time difference only. δ2x is therefore also a stationary discrete-time Gaussian process. The
autocovariance of δ2x is therefore

KXX;2ðτÞ ¼
1

ðΔtÞ4 ð6KXX½τ� − 4KXX½τ − 1� þ KXX½τ − 2� − 4KXX½τ þ 1� þ KXX½τ þ 2�Þ: ðB10Þ

Since the power spectral density S½k� is related to the autocorrelation function RXX½m� by

S½k� ¼
XM
m¼1

RXX½m�e−i2πmk=M; ðB11Þ

the power spectral density of the stochastic process δ2x is therefore

S2½k� ¼
XM
m¼1

RXX;2½m�e−i2πmk=M

¼
XM
m¼1

ðKXX;2½m� þ μ2μ2Þe−i2πmk=M

¼
XM
m¼1

KXX;2½m�e−i2πmk=M

¼ 1

ðΔtÞ4
XM
m¼1

ð6KXX½m� − 4KXX½m − 1� þ KXX½m − 2� − 4KXX½mþ 1� þ KXX½mþ 2�Þe−i2πmk=M

¼ 1

ðΔtÞ4 ð6S½k� − 4S½k�e−i2πk=M þ S½k�e−i4πk=M − 4S½k�ei2πk=M þ S½k�ei4πk=MÞ

¼ 1

ðΔtÞ4 ½6 − 8 cosð2πk=MÞ þ 2 cosð4πk=MÞ�S½k�; ðB12Þ

where S½k� is the power spectral density of the stochastic process x. ▪

APPENDIX C: PARAMETERS OF SIMULATED SIGNALS

Table VI shows the parameters of the two injections discussed in Sec. VI.
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Alejandro Bohé, Frequency-domain gravitational waves
from nonprecessing black-hole binaries. II. A phenom-
enological model for the advanced detector era, Phys. Rev.
D 93, 044007 (2016).

[46] Sascha Husa, Sebastian Khan, Mark Hannam, Michael
Pürrer, Frank Ohme, Xisco Jiménez Forteza, and
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