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We derive field theory descriptions for measurement-induced phase transitions in free fermion systems.
We focus on a multiflavor Majorana chain, undergoing Hamiltonian evolution with continuous monitoring
of local fermion parity operators. Using the replica trick, we map the dynamics to the imaginary time
evolution of an effective spin chain and use the number of flavors as a large parameter for a controlled
derivation of the effective field theory. This is a nonlinear sigma model for an orthogonal N × N matrix, in
the replica limit N → 1. (On a boundary of the phase diagram, another sigma model with higher symmetry
applies.) Together with known results for the renormalization-group beta function, this derivation
establishes the existence of stable phases—nontrivially entangled and disentangled, respectively—in
the physically relevant replica limit N → 1. In the nontrivial phase, an asymptotically exact calculation
shows that the bipartite entanglement entropy for a system of size L scales as ðln LÞ2, in contrast to findings
in previously studied models. Varying the relative strength of Hamiltonian evolution and monitoring, as
well as a dimerization parameter, the model’s phase diagram contains transitions out of the nontrivial phase,
which we map to vortex-unbinding transitions in the sigma model, and also contains separate critical points
on the measurement-only axis. We highlight the close analogies as well as the differences with the replica
approach to Anderson transitions in disordered systems.
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I. INTRODUCTION

This paper develops field theory descriptions for systems
of free fermions that are continuously monitored. We may
imagine a chain of fermions evolving under a quadratic
hopping Hamiltonian (perhaps time dependent) and an
experimentalist who makes repeated measurements of local
fermion bilinears [1–3] at all positions throughout the
chain. The evolving state of the fermions then depends
on the specific random outcomes of these measurements,
but we can ask about the statistical ensemble of evolving
states (quantum trajectories). To answer the question “what
are the universal properties of this ensemble?” we need
appropriate long-wavelength descriptions.
The effect on local expectation values can often be

understood in terms of an effective Markovian dyna-
mics [1,2]. But the entanglement structure of an evolving
quantum state can also change qualitatively when the rate

of measurement is increased. Monitored interacting sys-
tems show a volume-law entangled phase at low measure-
ment rate and an area-law entangled phase at high
measurement rate [4,5]. For free fermions, the volume-
law phase is generically destroyed even by very weak
measurement [3], but there can be critical points, and even
critical phases, with (logarithmically) super-area-law entan-
glement [6–24]. Such phases and transitions have been
found in a quantum circuit for a Majorana chain with
projective measurements [6], in a more generic continuous-
time process in Ref. [7], and in simulations of many other
models [8–12,14,15,17–23,25].
It is clear that there is a landscape of phases and critical

points to explore here (and these quadratic models are
much more accessible numerically than generic interacting
systems [3,26]). There are also intriguing connections with
other low-dimensional critical phenomena. Here, we con-
struct effective field theories that allow universal results. As
we show, these effective field theories are close cousins of
familiar models from magnetism and disordered systems
but with differences reflecting the state-dependent random-
ness of quantum measurements.
So far, however, free fermion measurement transitions in

generic models have been established only numerically.
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Majorana circuits with “SWAP” operations and projective
measurements [6,27] are solvable by a classical mapping,
but that mapping does not extend to general circuits or
Hamiltonians. (Many qualitative features of this model are,
nevertheless, shared with generic models [22], as we
discuss later.) Models in which the randomness of quantum
measurements is eliminated by complete “postselection” of
outcomes can also be solvable [9,18,21,28] but are in a
different regime.
A more general approach is to derive an effective model

by using the replica trick to average over the randomness, in
analogy to monitored interacting circuits [29,30] (cf. also
unitary circuits [31], tensor networks [32], and related
mappings [33–35]). This approach works with an effective
dynamics for N identical replicas of the system. Since the
dynamics is anyway random due to the random measure-
ment outcomes, a natural simplification is to take the
Hamiltonian also random in space and time, so that the
averaging is over both types of randomness.
The replica trick introduces a symmetry: In the interact-

ing case, this involves discrete permutations of replicas, but
for free fermions it is possible to make continuous rotations
between replicas [8,10,25,35]. As we discuss, this is in
close analogy to other disordered free fermion systems
[8,36], but a distinctive feature of the measurement prob-
lems is that the required replica limit is N → 1 rather than
N → 0 as in more familiar disordered systems. The “addi-
tional” replica of the system is used to express the Born-
rule probability of a quantum trajectory, which must be
included in averages.
Reference [25] examines a simplequantumcircuit for a 1D

Majorana chain involving weak measurements of fermion
parity iγiγiþ1 for adjacent sites and by averaging over
randomness obtains an effective model that is analyzed for
the caseN ¼ 2. (See also Ref. [10], where a different kind of
effective model is derived.) However, obtaining an effective
theory for the physically relevant case N → 1 requires the
replica limit to be addressed, and this has proved challenging.
Building on the models of Refs. [6,25] (cf. also

Refs. [22,37,38]), our starting point is a generalized
Majorana chain with continuous-time evolution and with
an arbitrary number NF of “flavors” at each site (not to be
confused with the number of replicas). In this context, it is
possible to obtain a continuum description in a controlled
way, using 1=NF as the control parameter. On symmetry
grounds, we expect the resulting field theories to extend to
all NF (including the case NF ¼ 1, which is dual to a
monitored Ising chain). The actions we obtain have the
schematic form

S ¼ 1

2g

Z
dxdtTrð∂μQÞTð∂μQÞ þ ð� � �Þ; ð1Þ

where the matrixQ lives on an appropriate manifold. In the
most generic case that we discuss, Qabðx; tÞ is an N × N

orthogonal matrix, where N → 1 is the number of replicas.
[The “� � �” in Eq. (1) stands for a topological term that
appears for the distinct theory that applies on a boundary of
the model’s phase diagram.]
These NLσMs yield universal results for classes of

monitored free fermion systems, as we discuss. The
monitored Majorana chain (and other models with the
same symmetry) has a stable phase in which the nth Rényi
entanglement entropy across a cut, in a system of size L,
has the universal form

Sn ∼
nþ 1

96n
ðln LÞ2: ð2Þ

Note that, unusually, this model allows an exact result for
the von Neumann entropy (n ¼ 1). We also check this
scaling numerically. The model shows phase transitions out
of the stable phase whose exponents are not known exactly
but which can be understood qualitatively using the
renormalization group (RG). The model also has disen-
tangled phases, which are disordered phases for the sigma
model field, driven by proliferation of topological defects
(though, unlike the transitions in the N ¼ 2 model [25],
these are not Kosterlitz-Thouless transitions). In Fig. 1, we
indicate schematically the topology of the phase diagram in
the simplest case NF ¼ 1.

FIG. 1. Structure of the phase diagram for the model with
NF ¼ 1, superimposed with a schematic illustration of the RG
flows. Here, J2 is the strength of the stochastic nearest-neighbor
hopping term. Weak measurements are performed on odd and
even bonds with strength Γð1� ΔÞ, respectively. The pink region
is a stable phase with nontrivial entanglement scaling [Eq. (2)]. It
is separated by continuous phase transitions (green lines) from
two area-law phases (white regions), where the steady states are
dressed versions of the fully dimerized states depicted at the
bottom left and right of the diagram. The nontrivial phase is
governed by marginal flow to the g ¼ 0 fixed point of the SOðNÞ
NLσM [Eq. (1)], and the green lines represent disordering
transitions of this model. The J ¼ 0 axis (blue) has a higher
symmetry and has an unstable critical point at Δ ¼ 0 (blue dot).
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An interesting feature of these effective field theories is
the close analogy to Anderson localization, where the same
hierarchies of NLσMs describe the eigenfunctions of
disordered 2D Hamiltonians [36,39–43]. In particular,
the two NLσMs that we discuss correspond at N ¼ 0 to
the Anderson localization classes DIII and D, describing
localization of Majorana fermions [39–41,44–51].
In a notable step, Ref. [8] made a symmetry classification

of Gaussian random tensor networks (these can also be
interpreted as evolution operators, though they do not
correspond to monitored dynamics with Born’s rule).
The authors show that the most generic Gaussian networks
have symmetry matching that of network models [52] in
symmetry class DIII [53] and propose that the DIII NLσM
at N → 0 should apply to such networks on grounds of
symmetry. This is consistent with the symmetry we find in
our explicit derivation of a field theory for a generic
continuous-time model. The universal behavior we find
is, however, different, most importantly because of the
change in N arising from Born’s rule (this agrees with the
claim in Ref. [35] and answers a question raised in
Ref. [8]). Analyzing the field theory also shows that the
scaling of entanglement in “metallic” phases differs from
the scale-invariant form assumed previously in the tensor
network context [8].
The different value of N in the NLσM leads to different

amplitudes and exponents and in some cases to a different
topology for phase diagram. However, key ideas from
localization carry over to the N → 1 theories. (The locali-
zation field theory involves two spatial coordinates rather
than a space and a time coordinate, so the analogy is with
“Anderson localization in spacetime.”) Very loosely, entan-
glement in the measurement problem plays a similar role to
conductance in the localization problem, because in the
measurement problem the inverse of the running sigma
model coupling, gðLÞ−1 [cf. Eq. (1)], is a measure of the
strength of entanglement at a certain length scale L,
whereas in the localization context gðLÞ−1 is proportional
to a conductivity.
A well-known phenomenon in localization is that the

coupling can flow the “wrong way” in the replica limit,
with gðLÞ−1 ∝ ln L, so that the flow approaches the
“ordered” fixed point at g ¼ 0 [54], contrary to conven-
tional 2D models with continuous symmetry. In the present
context, this flow leads to the bipartite entanglement
scaling as in Eq. (2). As a result of the flow of 1=g (the
increase in the “strength of entanglement” with scale), this
entanglement is larger than the ln L that holds in scale-
invariant theories [56]. The more standard scale-invariant
behavior holds at critical points (as opposed to the stable
phase) that we find in the phase diagram of the measure-
ment model.
It is interesting that the structure of the phase diagram in

Fig. 1 for the fairly generic chain studied here is similar to
that in the much simpler quantum circuit that maps to a

classical loop model [6]. This robustness of that phase
diagram was previously found numerically in Ref. [22],
which explored a different (but also relatively generic)
model. We explain this similarity by close structural
similarities between the sigma models describing the loop
model and those describing more generic Majorana chains.
However, the two kinds of problems are in different
universality classes.
The recipe outlined in this paper, for deriving continuum

nonlinear sigma model descriptions, can be applied to
models with other symmetries or with other dimension-
alities and opens the way to a more general classification of
monitored free fermion systems. (It could also be used to
address other phenomena such as boundary decoherence
[57,58].) A panoply of critical behaviors are shown by
NLσMs for Anderson localization [42]: It will be very
interesting to explore the corresponding landscape at the
“N → 1” level that describes monitored dynamics.
This paper is organized as follows. Section II introduces

our model and its hybrid dynamics and derives the replica
Hamiltonian. In Secs. III and IV, we carry out the mapping
to an effective spin chain and derive the effective SOðNÞ
NLσM description in the limit of large flavor index. In
Sec. V, we discuss the qualitative features of the phase
diagram, while in Sec. VI we use this theory to compute the
basic universal properties of the stable critical phase, which
we verify in Sec. VI D. In Sec. VII, we discuss the
transition out of this phase via proliferation of Z2 instan-
tons. In Sec. VIII, we discuss the different NLσM, on the
manifold SOð2NÞ=UðNÞ, that we propose for the meas-
urement-only version of the model, and the RG flows
between models with different symmetries. Finally, we
conclude in Sec. IX with an outlook. The most technical
parts of our work are consigned to several appendixes.

II. MODEL AND REPLICA APPROACH

A. Definition of the model

We consider a chain of Majorana fermions subject to
continuous monitoring—in other words, to repeated weak
measurement in the limit where the measurements are very
frequent and very weak. We expect the universal results
also to apply to a larger family of monitored quantum
circuit models [22,25], but the continuous-time formulation
simplifies the subsequent mappings.
Let us start with the Hamiltonian that generates the

unitary part of the dynamics:

HðtÞ ¼
XL
j¼1

XNF

μ;ν¼1

Jμνj ðtÞiγj;μγjþ1;ν: ð3Þ

Here, γj;μ are standard Majorana operators satisfying

fγj;μ; γk;νg ¼ 2δj;kδμ;ν: ð4Þ
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The fermions carry a site index j ¼ 1;…; L, and we also
give them a flavor index μ ¼ 1;…; NF. Flavors are a tool to
aid the derivation of the NLσM, which is controlled at large
NF. However, we also expect this continuum theory to
apply for NF ¼ 1, when there is just a single Majorana at
each site. This case is also dual to a monitored Ising chain.
We consider the limit in which the couplings Jμνj ðtÞ are

white noise, i.e., are random variables with vanishing mean
and with variance

EG½Jμ1ν1j ðtÞJμ2ν2k ðt0Þ� ¼ J2

NF
δj;kδ

μ1;μ2δν1;ν2δðt − t0Þ: ð5Þ

EG½·� denotes the Gaussian average. Note that J2 has the
units of a rate.
We now include monitoring of all the fermion-

parity operators iγj;μγjþ1;ν for adjacent sites. Physically,
continuous-time monitoring can be thought of as the limit
Δt → 0 of a discrete-time process, with the strength of the
measurements simultaneously approaching zero. A nice
feature is that the resulting dynamics in the limit Δt → 0 is
independent of essentially all the details of the discrete-time
measurement protocol and is characterized solely by a
measurement rate for each measured operator iγj;μγjþ1;ν.
We take this rate to be independent of the flavor indices,
but we allow for a staggered dependence on the spatial
position [6]:

Γj ¼ ½1þ ð−1ÞjΔ�Γ: ð6Þ

We include the dimerization Δ in order to be able to drive a
phase transition into a disentangled phase. In the regime
where Γ ≫ J2 and where Δ is close to either þ1 or −1, the
dynamics consists almost entirely of measurements of a
single sublattice of bonds. When NF ¼ 1, this manifestly
leads at long times to area-law states of the forms shown in
Fig. 1. In Fig. 1, we anticipate the schematic phase diagram
for NF ¼ 1 that results from our analysis (we discuss the
NF dependence in later sections). When Δ ¼ 0, the model
has translation symmetry by one site: We find that whenNF
is odd this symmetry guarantees that the model is non-
trivially entangled, consistent with Fig. 2.
The evolution of the density matrix that results from the

combined dynamics can be written down in many ways. In
this section, it is convenient for us to define it directly in
continuous time, using a loose notation [59] analogous to
Eq. (3), in terms of a non-Hermitian extension of the
Hamiltonian. This formulation is equivalent to the (perhaps
more familiar) stochastic Schrödinger equation formalism
[60–62] (we use the latter for simulations in Sec. VI D). In
Appendix A, we give a more careful definition of the
evolution as theΔt → 0 limit of a discrete-time process and
explain how the non-Hermitian evolution below arises.
The required non-Hermitian extension of the Majorana

Hamiltonian is

HJ;MðtÞ ¼
XL
j¼1

XNF

μ;ν¼1

½Jμνj ðtÞ þ iMμν
j ðtÞ�iγj;μγjþ1;ν: ð7Þ

Schematically, the mapping to non-Hermitian Hamiltonian
evolution arises because a discrete weak measure-
ment of iγj;μγjþ1;ν involves conjugating the density
matrix with a Kraus operator that is proportional to
expð−dMμν

j γj;μγjþ1;νÞ. Here, dMμν
j is proportional to the

measurement outcome multiplied by an infinitesimal meas-
urement strength: See Appendix A. In Eq. (7),Mμν

j ðtÞ is the
“continuum limit” of the list of measurement outcomes
(indexed by t) of the associated observable iγj;μγjþ1;ν. In
the following, we define Mμν

j ðtÞ in the continuum limit
through its statistics. While Jμνj ðtÞ is simple white noise, the
statistics of Mμν

j ðtÞ are nontrivial as a result of Born’s rule.
First, however, consider the evolution of the state ρJ;MðtÞ

conditioned on a given realization of the couplings J and
given measurement outcomes M (i.e., on a given quantum
trajectory) and starting in some initial state ρð0Þ. It is
convenient first to define the evolution for an unnormalized
version of the density matrix, which we denote by ρ̌ðtÞ:

ρ̌J;MðtÞ ¼ KJ;MðtÞρð0ÞKJ;MðtÞ†: ð8Þ

This has the same structure as for unitary evolution, but the
time-evolution operator KJ;MðtÞ is nonunitary:

KJ;MðtÞ≡ T exp

�
−i

Z
t

0

dt0HJ;Mðt0Þ
�
: ð9Þ

FIG. 2. Schematic phase diagram for NF ¼ 1 (see also Fig. 1).
The RG fixed points governing the phases and transitions are
indicated by red, green, and blue points, with a description of the
associated field theory. Furthermore, two special points in
the phase diagram are at ðΔ; JÞ ¼ ð�1; 0Þ, denoted by black
dots. Here, unitary dynamics is absent, and the measurements are
fully dimerized. For NF ¼ 1, the wave function then tends to an
eigenstate of iγjγjþ1 for odd (even) j at Δ ¼ −1 (Δ ¼ þ1).
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(T is time ordering.) Note that ρ̌J;MðtÞ depends on Jðt0Þ and
Mðt0Þ over the full time interval ½0; t�, i.e., on the complete
trajectory. The physical density matrix is obtained by
normalizing ρ̌ðtÞ, i.e., as ρJ;MðtÞ ¼ ρ̌J;MðtÞ=trρ̌J;MðtÞ.
To complete the definition of the continuous-time

dynamics, we must specify how to average over Mμν
j ðtÞ.

To be concrete, let us consider the physical average E½·� of
some quantity that depends on the state ρJ;MðtÞ and,
therefore, on Jðt0Þ and Mðt0Þ for t0 ∈ ½0; t�. We may define
these expectation values in two steps.
First, we define Gaussian averages, denoted EG½·�, in

which both J andM are treated as white noise. The variance
of J is given in Eq. (5), and the variance of M is set by the
measurement rate:

EG½Mμ1ν1
j ðt0ÞMμ2ν2

k ðt00Þ� ¼ Γj

NF
δj;kδ

μ1;μ2δν1;ν2δðt0− t00Þ: ð10Þ

The correct measure for M is related to this white-noise
measure by a factor that comes from Born’s rule. In outline,
the probability for a given measurement record fMμν

k ðt0Þg is
proportional to trρ̌J;MðtÞ. [See Eq. (8) for the definition
of ρ̌.] This modifies expectation values by the same factor
of trρ̌J;MðtÞ:

E½·� ¼ EG½ð·Þ × Trρ̌J;MðtÞ�
EG½Trρ̌J;MðtÞ�

: ð11Þ

The denominator here is a trivial constant ensuring that the
measure on trajectories is normalized. For notational
simplicity, we can set this denominator to 1 simply by
absorbing an additive constant into H, so that

E½·� ¼ EG½ð·Þ × Trρ̌J;MðtÞ�: ð12Þ

For details of the mappings above, see Appendix A, where
we make the formulas more precise by starting with a
discrete-time measurement process defined in terms of
Kraus operators.
Equation (12) is convenient, because it expresses aver-

ages of physical quantities in terms of simple Gaussian
averages. In particular, the basic object in the replica
approach is the following Gaussian average of N copies
of the unnormalized density matrix:

ρðNÞðtÞ≡ EG½ρ̌J;MðtÞ⊗N �: ð13Þ

Formally, this can be viewed as a density matrix for N
copies of the Majorana chain. We use two properties of this
object. First, it has a simple time evolution, specified by an
effective Hamiltonian that we derive shortly. Second, by
taking the replica limit N → 1, all the physical averages of
interest can be expressed as traces of ρðNÞðtÞ [29].

B. Review of replica formalism

In this section, we recall how the replica approach works
for an illustrative class of observables. We simplify the
discussion with respect to standard expositions by focusing
on generating functions for the entropy instead of averages
involving logarithms.
The full probability distribution of the nth Rényi entropy

is encoded in the generating function

E
h
e−kðn−1ÞSnðtÞ

i
¼ E

h
ðTrρðtÞnÞk

i
: ð14Þ

In particular, the behavior near k ¼ 0 gives the mean of Sn.
Here, it is sufficient to treat k and n as positive integers,
since we can analytically continue to real values at the
very end. We suppress the subscripts on ρðtÞ ¼ ρJ;MðtÞ to
avoid clutter.
Using Eq. (12), the expectation value above becomes

EG

h
ðTrρ̌ðtÞnÞkðTrρ̌ðtÞÞ1−nk

i
; ð15Þ

where the factors of Trρ̌ðtÞ arise both from the normali-
zation of ρðtÞ and from the nontrivial factor in Eq. (12). We
now write this as

lim
N→1

EG

h
ðTrρ̌ðtÞnÞkðTrρ̌ðtÞÞN−nk

i
: ð16Þ

We then study the limit by analytically continuing from
integer values of N with N ≥ nk [63]. The utility of this is
that the density matrices then appear only to positive
powers, so that the above average can be written in terms
of ρ̌ðtÞ⊗N :

E
h
e−kðn−1ÞSnðtÞ

i
¼ lim

N→1
EGTr½ρ̌ðtÞ⊗NðC⊗k

n ⊗ IÞ�: ð17Þ

The trace is now taken in the Hilbert space of N copies of
the system. Cn is an operator that cyclically permutes n out
of the N copies of the system: See Appendix C for an
explanation of this notation. While the notation on the
right-hand side of (17) may appear formal, it is just a way of
expressing the pattern of index contractions needed to give
the traces in Eq. (16).
Finally, we can push the expectation value in Eq. (17)

inside the trace, so that the generating function for the
entropies is written in terms of a trace of the object ρðNÞðtÞ
defined in Eq. (13).

C. Effective replica Hamiltonian

In order to write the evolution of ρðNÞðtÞ in a concise way,
it is convenient to implement a standard operator-to-state
mapping. Instead of thinking of ρðNÞðtÞ as a density matrix
for N copies of the Majorana chain, we think of it as a wave
function (a ket) for 2N copies of the Majorana chain:

ρðNÞ → jρðNÞi: ð18Þ
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This is a standard transformation for bosonic Hilbert spaces
and can be adapted to fermionic ones by mapping them to a
bosonic one first. Here, we follow the convention of
Ref. [64], which we summarize in Appendix B.
Under this operator-state mapping, traces of the replicated

density matrix (which we need to compute entanglement
entropies) are mapped to state overlaps: Schematically,

Tr½ρðNÞC� → hCjρðNÞi; ð19Þ
whereC is any operator on theN-copyHilbert space and jCi a
corresponding state in the 2N-copy space. FromEq. (17), we
then see that the generating function forSnðtÞ becomes such a
transition amplitude, hCk;njρðNÞi, for a state jCk;ni that we
define precisely later.
After this mapping, the evolution of the state jρðNÞi (for

any fixed natural number N) has the form of conventional
imaginary time evolution with a Hamiltonian H:

jρðNÞðtÞi ¼ exp ð−NFtHÞjρðNÞð0Þi: ð20Þ
More precisely, there is a separate Hamiltonian H for each
value of N, acting on the Hilbert space of 2N copies of the
Majorana chain. Since the random quantities J and M are
averaged out,H is nonrandom and independent of time (so
depends only on N).
The evolution (20) of the replicated state follows from

Eq. (8) and is of the form [65]

exp ð−NFtHÞ ¼ EG

h
K⊗N

J;M ⊗ ðK�
J;MÞ⊗N

i
: ð21Þ

The term inside the average involves the exponential of 2N
copies of the original Hamiltonian (7):

HðNÞ
J;M ¼

X
σ¼�

XN
a¼1

X
j;μ;ν

½Jμνj ðtÞ þ iσMμν
j ðtÞ�iγðσaÞj;μ γðσaÞjþ1;ν: ð22Þ

Here, for each physical Majorana operator γj;μ, we now
have 2N “replicated” Majoranas. We label these replicas
by an index σ ¼ � which distinguishes the first N copies
in Eq. (21) from the last N copies, together with an
index a ¼ 1;…; N.
The Gaussian average (21) yields

H ¼ 1

2

X
j;μ;ν

½J2ðHUÞμνj − ΓjðHnon-UÞμνj �: ð23Þ

We separate terms coming from the unitary and nonunitary
parts of the dynamics:

ðHUÞμνj ¼ 1

N2
F

�X
σ;a

iγðσaÞjμ γðσaÞjþ1ν

�
2

;

ðHnon-UÞμνj ¼ 1

N2
F

�X
σ;a

σiγðσaÞjμ γðσaÞjþ1ν

�
2

: ð24Þ

This interacting fermion Hamiltonian is much more con-
veniently written as a spin model. We describe this next.

III. MAPPING TO A SPIN CHAIN

This Hamiltonian takes a much simpler form when
reinterpreted in terms of generators of SOð2NÞ rotations.
Above, we have used normalization conventions so that NF
appears explicitly in Eq. (20): This is convenient because
1=NF plays the role of ℏ in the semiclassical treatment.
There is a natural action of soð2NÞ at each site of the

chain [25]. For a moment, let us write the replica multi-
index ðσaÞ as a single index α ¼ 1;…; 2N. Then, the
soð2NÞ rotations are generated by the quantum operators

Sαβj ¼ i
2NF

X
μ

h
γαj;μ; γ

β
j;μ

i
: ð25Þ

The generator Sαβj corresponds to an infinitesimal rotation
between Majoranas γα and γβ from distinct replicas. They
have commutation relations

½Sαβ; Sα0β0 � ¼ i
NF

h
δβ;α0Sαβ

0 − δα;α0Sββ
0 − ðα0 ↔ β0Þ

i
: ð26Þ

Apart from the factor of 1=NF arising from our normali-
zation convention, these are the standard commutation
relations of rotation generators in 2N dimensions.
The set of generators Sαβj at a site j makes up an

antisymmetric 2N × 2Nmatrix of quantumoperators, which
we denote by Sj (since it plays a role analogous to the spin
operator Sj in a Heisenberg antiferromagnet). Returning to
the notation ðσaÞ that distinguishes forward and backward
replicas, we order the replicas as ðþ1Þ;…; ðþNÞ; ð−1Þ;
…; ð−NÞ. Then, we denote the blocks of Sj as

Sj ¼
� Lj Qj

−QT
j Rj

�
; ð27Þ

so that L ¼ −LT , R ¼ −RT , and Q are N × N matrices
whose entries are operators.
In terms of these operators, the Hamiltonian is (up to an

additive constant that we neglect)

H ¼ −
X
j

tr½JkðLT
j Ljþ1 þ RT

j Rjþ1Þ þ 2J⊥QT
j Qjþ1�: ð28Þ

We use “tr” to denotes traces for 2N × 2N (and later
N × N) matrices, reserving “Tr” for the many-body Hilbert
space. The couplings in H are

Jk ¼
J2 − Γ

2
; J⊥ ¼ J2 þ Γ

2
: ð29Þ

For now, we have specialized to the undimerized case,
Γj ¼ Γ; we return to the effect of dimerization later.
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For generic J, Γ the symmetry of this Hamiltonian is
only a subgroup of SOð2NÞ [30], because the Q generators
and the L, R generators appear with different coefficients in
Eq. (28). This is analogous to the fact that the Hamiltonian
of the XXZ spin chain, which is written in terms of the so
(3) generators Sx, Sy, and Sz, is invariant only under a
subgroup of SO(3). The symmetry of H is enlarged when
either J2 ¼ 0 or Γ ¼ 0, as we discuss in Sec. VIII.
To complete the definition of the spin chain, we must

specify which representation of SOð2NÞ the generators in
H act on: We do this in the next section. In the XXZ chain
analogy, this corresponds to specifying the magnitude of
the spin at each site.
In Sec. IV, we show that the low-energy dynamics of the

spin chain are described by the SOðNÞ nonlinear sigma
model (NLσM). The limit of large NF allows a quantita-
tively controlled derivation (but, on grounds of symmetry,
this continuum theory may be extended to small values of
NF). We see from Eq. (26) that the commutators of the S
operators vanish when “ℏ” ≔ 1=NF → 0, so that at large
NF there is a regime where semiclassics is accurate. This is
analogous to large spin in an su(2) spin chain.

A. Symmetries and local conserved quantities

The effective Hamiltonian H above possesses a large set
of symmetries. We can split them into global symmetries,
which are present in the NLσM, and an extensive number of
local integrals of motion, which are completely fixed by the
temporal boundary conditions for the evolution. For con-
creteness, we take the physical initial state to be the
maximally mixed state, though, as we discuss, the specific
choice is not crucial.
H is invariant under an ½OðNÞ × OðNÞ�⋊Z2 global

replica symmetry. The two orthogonal groups correspond
to rotations among Majorana operators within the same
sector (i.e., within the σ ¼ þ or σ ¼ − sector), and the
corresponding symmetry generators are

P
j Lj and

P
j Rj,

respectively (replica indices omitted). The Z2 operation is
an exchange of forward and backward replicas: γþa

j;μ ↔ γ−aj;μ.
In addition, each site possesses local integrals of motion

that label choices of symmetry representation. The on-site
Hilbert space splits into different representations of soð2NÞ,
and the choice of representation is conserved in time. This
conservation is due to the fact that H is written entirely in
terms of local soð2NÞ generators Sαβj . In fact, since Sαβj is
itself a sum of generators acting on different flavors [see
Eq. (25)], the choice of representation is separately con-
served for each site j and for each flavor μ.
Fortunately, boundary conditions greatly simplify the

Hilbert space, by isolating a unique choice of representa-
tion at each site. The states that are in other representations
can be discarded, since they have no overlap with the initial
state that we have chosen. In fact, the same choice of
representation is also fixed by the boundary states that we

impose at the final time in order to compute entanglement
entropies (Sec. VI), which is why the specific choice made
for the initial state is not crucial.
It suffices to consider a single site j. First, for a given

flavor index μ, the matrices 1
2
½γαj;μ; γβj;μ� form a representa-

tion of soð2NÞ, isomorphic to the spin representation or its
complex conjugate, with highest weight ωs or ωs̄, respec-
tively, depending on the value of the fermion parity number
Rj;μ ¼ �1. In our case, the initial state fixesRj;μ ¼ þ1 for
every site and flavor index, so that we are dealing with spin
representations, as we explain in Appendix D.
Next, the operators (25) act on the tensor product of

those representations, so that the NF flavors combine into
various possible irreducible representations of soð2NÞ.
Among those, the relevant irreducible representation is
that with maximal highest weight, namely, with weight
NFωs; cf. Appendix D. This is analogous to combining NF
spin-1=2’s into a state with maximum possible spin NF=2.
This choice of representation is an invariant of the
dynamics.
This representation is the one that maximizes the value of

the quadratic Casimir on each site:

Cj ¼ tr½LT
j Lj þ RT

j Rj þ 2QT
j Qj�: ð30Þ

By a direct computation, this is (see Appendix D)

Cj ¼ 2N
�
1þ 2ðN − 1Þ

NF

�
; ð31Þ

with Cj ≃ 2N at large NF.

IV. MAPPING TO NONLINEAR σ MODEL

Next, we show that the low-energy dynamics of the spin
chain (28) is captured by a NLσM for a field Qðx; tÞ that
lives on the compact manifold SOðNÞ. More precisely, this
applies for the generic case with nonzero J2 and Γ: The case
J ¼ 0 has a higher symmetry and is discussed separately
in Sec. VIII.
An intuitive way to obtain the continuum theory is via

the equations of motion that arise in the semiclassical (large
NF or small ℏ) limit [66]. These equations of motion allow
us to deduce the Lagrangian, which may then be used to
“requantize” the theory by writing the path integral. This is
the route we follow in this section. (An alternative route is
to start with a coherent states path integral on the lattice;
cf. Appendix E.) We expect that our derivation of the
continuum field theory, including the values of nonuniver-
sal constants, is quantitatively controlled at large NF.
Let us outline the steps in a little more detail. First, in

Sec. IVA, we identify the “ultraviolet” degrees of freedom
as antisymmetric matrices in SOð2NÞ. These are the fields
(either in a path integral or in the semiclassical equations of
motion) corresponding to the spin Sαβ that appears in H.
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Next, by analyzing the classical ground-state manifold
(i.e., at large NF), we see that only the field “Q” in the
block decomposition (27) of the matrix S is a massless
degree of freedom. This suggests that we should eliminate
the modes L and R to obtain an effective Lagrangian LðQÞ.
This can be done at the level of the equations of motion.
We obtain the semiclassical equations of motion fromH

in the usual way in Sec. IV B (the Heisenberg equation of
motion for the operator S becomes a classical differential
equation at large NF). The large NF limit also allows us to
take a controlled spatial continuum limit and then to
eliminate L, R. This gives a simple equation of motion
for Q, from which we can identify the Lagrangian.

A. Degrees of freedom and classical ground states

In the limit NF → ∞, the matrix of quantum operators
Sαβ on a site becomes an antisymmetric matrix of classical
phase space coordinates. In this limit, we also have the
constraint

STS ¼ 1; ð32Þ

or, in terms of the N × N block decomposition (27),

LQþQR ¼ 0; QTQ − R2 ¼ QQT − L2 ¼ 1: ð33Þ

Equation (32) follows from applying the quantum operator
ðSTSÞαβ to an arbitrary state in the representation deter-
mined in the previous section and taking the large NF limit.
We provide further details in Appendix D.
Equation (32) shows that the appropriate semiclassical

degree of freedom S lives on the space of antisymmetric
orthogonal matrices. More precisely, S lives on the part of
this space which is continuously connected to the point
Q ¼ 1, L ¼ R ¼ 0, as can be seen by noting that the
Pfaffian of S—fixed by the soð2NÞ representation—is
PfS ¼ ð−1ÞNðN−1Þ=2 for NF → ∞. Such matrices form a
compact symmetric space isomorphic to SOð2NÞ=UðNÞ;
cf. Appendix E.
We note that it is possible to formulate a coherent-state

path integral for the spin chain as a functional integral over
the local degrees of freedom S living in the same symmetric
space, as we discuss in Appendix E [67]. This is reassuring,
as it confirms that the field theory degrees of freedom that
we identify in the semiclassical limit also make sense at
finite NF.
Next, consider the classical ground states that are

obtained by minimizing our Hamiltonian H (28) with
the relevant on-site representation. If the rates J2 and Γ
for the unitary and nonunitary parts of the dynamics are
both nonzero, then J⊥ > jJkj in Eq. (28). In this case the
energy is minimized by taking [69] L;R ¼ 0 and Qj

independent of j. By the constraints described above,
the “order parameter” Q is then a (proper) rotation matrix:

Q∈SOðNÞ: ð34Þ

In passing, we note that there are more general ground
states, with the same energy in the semiclassical limit, but
which do not satisfy the constraint on the on-site repre-
sentation imposed by the boundary conditions [70].

B. Equations of motion and continuum limit

The Heisenberg evolution of an operator O is [71]

dO
dt

¼ iNF½H; O�: ð35Þ

The factor of NF plays the role of an effective “1=ℏ” and is
consistent with the normalization of the Hamiltonian in
Eq. (20). In the NF → ∞ limit, Eq. (35) yields classical
equations of motion for the variables Lab

j , Rab
j , and Qab

j .
Using the commutation relations in Eq. (26) yields

dQj

dt
¼ −2Jk½ðLj−1 þ Ljþ1ÞQj −QjðRj−1 þ Rjþ1Þ�
þ 2J⊥½LjðQj−1 þQjþ1Þ − ðQj−1 þQjþ1ÞRj�;

dLj

dt
¼ −2Jk½ðLj−1 þ Ljþ1ÞLj − transp�
þ 2J⊥½ðQj−1 þQjþ1ÞQT

j − transp�; ð36Þ

where “transp” denotes the transpose of the previous terms
(ensuring Lj and Rj remain antisymmetric matrices). The
equation for dRj=dt is obtained from that for dLj=dt by the
exchanges L → R and Q → −QT , as required by the Z2

symmetry exchanging forward and backward replicas.
These equations of motion simplify in the continuum

limit, i.e., after keeping only lowest orders in a derivative
expansion. Taking this limit amounts to isolating low-
momentum fluctuations of the fields. This is quantitatively
accurate at large NF [72].
If we denote the lattice spacing by a, then the continuum

limit is formally equivalent to an expansion in a, so that a
lattice operator Oj�1 is expanded as OðxjÞ � a∂xOðxjÞ þ
ða2=2Þ∂2xOðxjÞ. Retaining the leading terms in a in the
equations of motion and making the rescaling L ↦ L=a
and R ↦ R=a, we find

∂tQ ¼ 2aΓ½LðxÞQðxÞ −QðxÞRðxÞ�; ð37Þ

∂tL ¼ 2aJ⊥½ð∂2xQÞQT − transp�; ð38Þ

∂tR ¼ 2aJ⊥½ð∂2xQTÞQ − transp�: ð39Þ

We used the fact that 2ðJ⊥ − JkÞ ¼ Γ is the measurement
rate. The rescaling of L and R is possible because their
value is zero in the ground-state manifold. In the following,
we return to units where a ¼ 1.
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In passing, we note that the continuum equations of
motion could have been equivalently obtained, following
Ref. [66], by first taking the continuum limit at the level of
the Hamiltonian

H¼
Z

dxTr

�
J⊥ð∂xQTÞð∂xQÞ þ Γ

2
ðLTLþRTRÞ

�
; ð40Þ

up to a constant, and noting that only the commutation
relations which involve L or R remain nontrivial in the
continuum limit, while ½QðxÞ; Qðx0Þ� → 0.
The equations above should be supplemented with the

kinematic condition arising from the STS ¼ 1 constraint,
which in terms of the rescaled variables gives

QTQ ¼ 1; LQþQR ¼ 0: ð41Þ

Using these constraints, we can eliminate L and R from the
equation of motion for ∂

2
t Q that is obtained by differ-

entiating Eq. (37). The terms with dL=dt and dR=dt can be
eliminated using the relevant equations of motion (38) and
(39), respectively, and the terms L and R can be eliminating
using the identities

L ¼ ð4ΓÞ−1ð∂tQÞQT; R ¼ −ð4ΓÞ−1QTð∂tQÞ; ð42Þ

which follow from Eq. (37) together with the constraint
(41). Finally,

∂
2
t Q −Qð∂2t QÞTQ ¼ v2ð∂2xQ −Qð∂2xQÞTQÞ ð43Þ

with v ¼ 4
ffiffiffiffiffiffiffiffiffi
ΓJ⊥

p
. Equivalently, we can rewrite this equa-

tion in the more suggestive form

QTðv−1∂2t Q − v∂2xQÞ − transp ¼ 0: ð44Þ

As we see in the next section, this is the equation of motion
of the NLσM.

C. SOðNÞ NLσM Lagrangian

The equation of motion above arises from a nonlinear
sigma model action for Q, which, after rotating back to
imaginary time, is

S½Q� ¼ 1

2gB

Z
dxdtTr

�
1

v
∂tQT

∂tQþ v∂xQT
∂xQ

�
ð45Þ

subject to the constraint QTQ ¼ 1 at each point. The
equations of motion can be recovered by noting that the
allowed variations of Q are of the form Q ↦ Qð1þ δqÞ,
with δq antisymmetric, and requiring δS=δq ¼ 0.
The coupling constant gB does not appear in the

equations of motion, but it is fixed by noting that the
coefficient of the Trð∂xQT

∂xQÞ term in the action is
inherited directly from the Hamiltonian in Eq. (40) [see,

e.g., Eq. (E5)]. Together with the result of the previous
section for the velocity, this gives

gB ¼ 2

NF

ffiffiffiffiffiffi
Γ
J⊥

s
; v ¼ 4

ffiffiffiffiffiffiffiffiffi
ΓJ⊥

p
: ð46Þ

This is the bare value of the coupling g: Below, we consider
its RG flow.
This almost completes our derivation of the effective

Lagrangian for smooth Q configurations. The final point is
that π2ðSOðNÞÞ ¼ 0, which means that there is no topo-
logical Θ term that can be added to L [73,74]. (Topological
Θ terms do not affect the equations of motion and so could
not be detected from them.) In Sec. VIII, we need another
NLσM, where a Θ term does play a role.
From now on, we rescale time units so that v ¼ 1, so

L½Q� ¼ 1

2gB
Tr½∂μQT

∂μQ�; ð47Þ

where μ ¼ x, t is summed over and again Q∈SOðNÞ.
One final point is crucial for understanding the phase

diagram once we turn on the dimerization parameter.
Above, we discussed the regime of small gB, where Q
can be treated as smooth at the lattice scale. However, since
the fundamental group of the target space is

π1ðSOðNÞÞ ¼ Z2 ðfor N > 2Þ; ð48Þ

we can, in principle, have pointlike Z2 vortices where
the order parameter Q is singular [75,76]. These vortices
are irrelevant at small g—this is analogous to the XY model
at low temperature—so they do not affect the universal
physics of the stable nontrivial phase, which we discuss in
Sec. VI. However, vortices are responsible for the transition
into a disentangled phase. We discuss this in Sec. VII.
Remarkably, the Lagrangian in Eq. (47) gives access to

exact universal results for the entanglement structure of the
physical state. This is due to a special feature of the replica
limit: The coupling g flows to smaller and smaller values at
large scales, so that semiclassical calculations become
better and better controlled. This flow gives rise to non-
trivial scaling forms that can be computed exactly by
combining the perturbative beta function with a saddle-
point analysis of the field theory.
The two-dimensional SOðNÞ NLσM appears in the

context of Anderson localization, where the two dimen-
sions are two spatial directions (i.e., there is no time
coordinate). There, it describes Bogoliubov–de Gennes
excitations of disordered superconductors in symmetry
class DIII [53]. The main difference, apart from the
physical interpretation, is that in the Anderson localization
problem one is interested in the limit N → 0, whereas here
we need N → 1; cf. Sec. II A.
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The perturbative beta function has been computed for
arbitrary N [77–79]:

dgR
d ln L

¼ 1

8π
ðN − 2Þg2R þOðg3RÞ: ð49Þ

The result is available up to Oðg5RÞ, but the form above
suffices for now. The key point is the sign change at N ¼ 2,
which means that for each N < 2 there is a stable phase
governed by the gR ¼ 0 fixed point [80].
Within this phase for N ¼ 1, solving Eq. (49) gives

gRðlÞ−1 ¼ g−1B þ 1

8π
ln Lþ � � � : ð50Þ

The universal constant of ð8πÞ−1 in front of the logarithm
appears in the scaling of entanglement entropies. The bare
value gB is nonuniversal, but we have determined its value
for large NF [Eq. (46)].
The explicit derivation of the sigma model in the

previous section guarantees that for large NF we are in
the basin of attraction of the gR ¼ 0 fixed point. But, in fact,
we can argue on symmetry grounds that if NF is odd, and if
the measurement rates are not dimerized, it is impossible
for the NLσM to be in a disordered phase. The simplest
scenario is that (in the absence of dimerization) the models
with odd NF flow to the gR ¼ 0 fixed point for any nonzero
values of J2 and Γ > 0. This is consistent with the picture
for the RG flows that is proposed in the following sections.
For NF even, we expect flow to this fixed point for large
enough J2=Γ, as we discuss briefly in Sec. V.
The fixed point is also completely stable (so long as

replica symmetry is retained), since the only possible per-
turbations have larger numbers of derivatives. Therefore,
gR ¼ 0 governs a stable phase of the monitored dynamics,
whose properties we discuss in Sec. VI. In particular, this
phase is stable to perturbation by sufficiently weak dime-
rization Δ.
Of course, it is possible to drive the dynamics into a

disentangled phase with an appropriate perturbation that is
large enough. In our model, this can be done by sufficiently
strong and sufficiently strongly dimerized measurement (at
least for NF ¼ 1 and, according to our proposed RG flows,
for all NF). The corresponding critical fixed point, driven
by proliferation of vortices, is outside the range of validity
of the perturbative beta function in Eq. (49) and is
discussed in Sec. VII.
We also emphasize that the measurement-only line

J2 ¼ 0 is described by a different field theory, as a result
of the enhanced replica symmetry [25] there: We defer
discussing this theory to Sec. VIII.
Next—before describing the physical consequences of

the above NLσM for the stable phase or phase transitions
out of this phase—let us preview the broader phase diagram
of the monitored model.

V. PHASE DIAGRAM FOR NF = 1

In Fig. 2, we sketch our proposed phase diagram for the
model with NF ¼ 1. In this section, we give a schematic
overview of the basic features. The full justification for
various features of this phase diagram is given in later
sections: The phase transition lines at J > 0 are discussed
in terms of the SOðN → 1Þ NLσM in Sec. VII, while the
line J ¼ 0 is related to the SOð2NÞ=UðNÞjN→1 NLσM in
Sec. VIII, which also contains a conjecture about RG flows
in that model. Figure 2 is also consistent with symmetry
considerations for the lattice model.
For most of this section, we focus on the simplest case

NF ¼ 1, which corresponds to a chain with a single
physical Majorana at each site. When NF > 1, so that
each site hosts multiple Majoranas, we expect that the
stable (pink) phase “touches” the J ¼ 0 axis at a larger
number of points: We comment on this briefly in Secs. V D
and VIII. But, while the phase diagram for NF > 1 is
slightly more intricate, all the phase transition lines (at
J > 0) remain in the same universality class (described by
the same bulk conformal field theory) as the phase
transition lines in Fig. 2, and all critical points (at
J ¼ 0) remain in the same universality class as the J ¼ 0
critical point in Fig. 2. The phase boundaries are symmetric
underΔ → −Δ for any value of NF. For NF odd, symmetry
ensures that the model is nontrivially entangled everywhere
on the vertical axis Δ ¼ 0.

A. Disentangled phases

A basic feature of the phase diagram is the existence of
two distinct—stable—disentangled phases at large Γ, one
for each sign of the dimerization Δ. These phases also
appear in a Majorana model with discrete measurements [6]
(or its Ising dual [11,27,81,82]) and in Refs. [22,25], where
more general circuits are studied.
The extreme limits of these phases at J ¼ 0, Δ ¼ �1

have Majoranas dimerized in pairs, as shown in Fig. 2. In
other words, at late times the state is a (random) eigenstate
of the operators iγjγjþ1 for either even j or odd j,
depending on whether Δ ¼ 1 or Δ ¼ −1. On a finite chain,
the former case has unpaired boundary Majoranas, as
shown in Fig. 2. The fermion parity iγ1γL of these two
modes remains “hidden” from measurements, giving one
“bit” that is not purified. These disentangled phases are
stable (we have checked this numerically using the tech-
nique described in Sec. VI D).
In terms of the NLσM, the disentangled phases are dis-

ordered phases, obtained by proliferating vortices [75,76,83].
Anticipating Sec. VII, we find that the two disordered phases
are distinguished by the sign of the vortex fugacity (and the
line Δ ¼ 0 is forced to be nontrivially entangled, because the
vortex fugacity vanishes there).
The picture of paired Majoranas has a close analog in the

effective spin chain H [8]: The spins are dimerized, and at
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Δ ¼ 1 there are gapless boundary spins that are not
involved in any dimer [84].

B. Stable nontrivial phase and transition lines

Next, the phase diagram in Fig. 2 features a stable phase
(shaded in pink) which, in the sigma model language, flows
to gR ¼ 0. Scaling properties of the entanglement inside
this phase are discussed below in Sec. VI. The logarithmic
flow of the NLσM coupling implies that entanglement
entropies are larger at large scales than they would be at a
conformal fixed point (Sec. VI).
Since the line Δ ¼ 0 is necessarily gapless, the simplest

hypothesis is that this entire vertical axis, for J > 0, is in
this phase. We expect the boundary of the gapless phase to
meet the lines Δ ¼ �1 at a finite value of J: That is, we
expect that the dynamics is entangling whenever the
measurements are sufficiently weak, regardless of whether
they are dimerized. (There is nothing special about the lines
Δ ¼ −1, 1 from the point of view of replica symmetry.)
The phase boundary lines between the nontrivially

entangled phase and the disentangled phases are governed
by an RG fixed point that we discuss in Sec. VII. Figure 1
above shows the schematic RG flow, which involves two
copies of this fixed point, one for positive and one for
negative dimerization (green dots). This fixed point is
straightforwardly scale invariant, so that, for example,
the bipartite entanglement entropy is expected to scale
as ln L on the phase boundary lines as opposed to the
ðln LÞ2 in the stable nontrivial phase (see the discussion
just above Sec. VI A).

C. Measurement-only axis (J = 0)

The final aspect of the phase diagram is what happens to
the transition lines as J2=Γ → 0. To answer this, it is
necessary to consider the distinct NLσM, with target space
SOð2NÞ=UðNÞ, that applies on the J ¼ 0 axis, as a result of
higher replica symmetry there. This is discussed in Sec. VIII.
There, we conjecture that the SOð2NÞ=UðNÞjN→1 sigma
model (which admits a Θ term) has an unstable fixed point
withΘ ¼ π that gives rise to a critical point at the origin of the
phase diagram. We note that this critical point was already
studied numerically in Ref. [12]. The above conjecture for
the sigmamodel gives theRG flow topology shown in Fig. 1.
This fixed point is again scale invariant, so that bipartite
entanglement scales as ln L.

D. Phase diagram for general NF

The discussion of the Θ angle in Sec. VIII leads to the
conjecture that, for a general number of flavors, NF critical
points appear on the J ¼ 0 axis. These critical points are
due to Θ cycling NF times through πðmod 2πÞ as Δ varies
from −1 to 1. This is in close analogy to the sequence of
phase transitions between dimerized and Haldane-like

ground states in an antiferromagnetic chain with spin
S ¼ 2NF [87–90].
Each of the NF critical points is in the same (bulk)

universality class as the J ¼ 0 critical point in Fig. 2, so that
the local topology of the phase boundaries is also the same
near each critical point. As in the NF ¼ 1 case, we expect
that the chain is in the nontrivial phase when J2=Γ is
sufficiently large, regardless of the value of Δ. These
considerations give a simple conjecture for the phase
diagram, shown in Fig. 3 for the case NF ¼ 2.

E. Aside: Majorana loop model

The topology of the phase diagram is very similar to that
of a Majorana quantum circuit model with discrete mea-
surements and discrete unitary SWAP operations which
maps to a classical loop model [6,76] (let us call this the
“Majorana loop model”). Like Fig. 2, the Majorana loop
model shows a stable nontrivial phase where the entangle-
ment scales as ln2 L [6] (see Ref. [27] for an in-depth
discussion of this phase). The similarity of the two phase
diagrams is consistent with the numerical results in
Ref. [22], which found previously that the phase diagram
topology of the Majorana loop model was robust when
more general unitary gates were allowed (and we expect
that the gapless phase found here for J > 0 is the same as
that found in Ref. [22] when generic unitaries are allowed).
But, despite the similar phase diagram topology, the

relevant universality classes are different in the loop model
and in the “generic” models studied here. The similarity of
the phase diagrams may be understood in terms of close
similarities between the relevant field theories (which we
discuss briefly in Sec. VIII). The RG flows have a similar
topology, and a similar role is played by both vortex defects
in the bulk of the phase diagram and a Θ term on the lower
axis [91]. However, there are also significant differences
between the Majorana loop model and more general

FIG. 3. Schematic phase diagram for NF ¼ 2 with the same
color coding as Fig. 2; i.e., areas, lines, and points with the same
colors are represented by the same infrared field theory in
the bulk.
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models. In the former, Majoranas are only ever entangled in
pairs: This is an additional structure that is more con-
straining than Gaussianity. This results in a larger replica
symmetry and a different NLσM.

VI. ENTANGLEMENT IN THE STABLE
NONTRIVIAL PHASE

We now turn to the universal properties of the stable
nontrivial phase (shaded pink in Fig. 2), where entangle-
ment entropies have nontrivial scaling with time and
system size L. Asymptotically, the scaling depends only
on the RG flow near the gR ¼ 0 fixed point discussed in
Sec. V and so is independent of the value of NF. In the
following subsections, we discuss both the purification of
the state over time in a given quantum trajectory [94] and
the entanglement of the pure states that arise at very long
times. We first summarize the main results of this analysis.
Our initial state ρð0Þ ∝ 1 has maximal entropy:

Snðt ¼ 0Þ ¼ NFL
2

ln 2; ð51Þ

for all Rényis. However, measurements tend to purify the
state as t increases. We find that when L and t are both
asymptotically large, and if t≲ L,

Sn ∼
πðnþ 1Þ

48n
L ln t
vt

; ð52Þ

with the von Neumann entropy obtained as the n → 1 limit.
The velocity v appearing here is nonuniversal: In Sec. IV,
we calculate it for large NF and Δ ¼ 0.
The above formula holds for Sn and not only for its mean

Sn: We find that the entropies and entanglement entropies
are self-averaging (fluctuations are subleading compared to
the mean). Note that the numerical prefactors in Eq. (52)
and in Eq. (54) below are universal [ultimately arising from
the RG flow in Eq. (50)] and so apply to a larger class of
monitored systems with the same symmetries.
At times t≳ L, we find a crossover after which Sn decays

exponentially. The typical time of decay gives us a
“purification timescale”

τP ∼ L ln L; ð53Þ

after which the entropy becomes of order 1. The logarithms
in this formula and the previous one are due to the marginal
flow of the coupling g. In a model where the flow is to a
fixed point at finite coupling, they are absent; cf. Sec. VIII
(the two kinds of flow can also be found in the Majorana
loop model [6,22,27,35]).
When t=τP → ∞, we have a pure state, which we may

characterize by its bipartite entanglement. For a region A
including the leftmost L=2 sites (with nonperiodic boun-
dary conditions), we find that

Sn;A ¼ nþ 1

96n
ðln LÞ2 þ o½ðln LÞ2�: ð54Þ

Again, the additional logarithm, compared to the single
power of ln L that would be dictated by scale invariance
[32,56], is due to the marginal flow. Fluctuations are again
subleading.
The above formulas are asymptotic formulas that hold

for any fixed NF in the limit that minðt; LÞ becomes large.
A factor ð8πÞ−1 lnminðt; LÞ that contributes to these for-
mulas arises from the asymptotic form of the inverse
coupling 1=gRðLÞ. If the number of flavors NF is large,
we see from Eqs. (50) and (46) that there is a very large
length scale below which the “bare” term in 1=gRðLÞ is
larger than the logarithmic term. Consequently, for large
NF a much better formula is given by replacing ð8πÞ−1 ln L
by the flowing inverse coupling 1=gRðLÞ—for example, for
the purification protocol

SnðtÞ ≈
π2ðnþ 1Þ

6n
L
vt

g−1R ðtÞ ð55Þ

with g−1R given by Eq. (50) (subleading terms in the beta
function could also be taken into account to obtain more
precise fits to data).
As mentioned in the introduction, the flow of 1=g to

larger values as a function of the length scale means that the
entanglement structure of the state is not scale invariant (at
least in the usual sense [95]). In a scale or conformally
invariant theory [32,56], the bipartite entanglement scales
as ln L, which may be thought of heuristically (in the spirit
of real space RG) as a sum of equal contributions from all
logarithmically spaced scales up to ln L. Here, the con-
tribution instead increases with scale.
While here we discuss the NLσMwith N → 1 relevant to

measurements, the considerations in this section carry over
to the metallic phase of the theory with N → 0 which is
proposed in Ref. [8] to describe Gaussian random tensor
networks. Applied to this limit, our calculation gives the
same ðln LÞ2 entanglement scaling as in Eq. (54) but with a
universal coefficient larger by a factor 2 as a result of
Eq. (49). This result differs from the form proposed in
Ref. [8], where scale invariance is assumed (cf. the dis-
cussion above about scale invariance).
We now describe how the results above may be obtained

by minimizing the effective action S½Q� with the appro-
priate boundary conditions. This approach could be
straightforwardly generalized to many other settings to
study, for example, the entanglement of multiple intervals
or, say, other spatial boundary conditions [96].

A. Boundary conditions in the effective theory

We sketched in Secs. II B and II C how the generating
function for any Rényi entropy SnðtÞ may be written as a
transition amplitude in the spin chain:
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E
h
e−kðn−1ÞSnðtÞ

i
¼ hCk;nj exp ð−tNFHÞjρðNÞð0Þi: ð56Þ

Recall that in the replica approach, as we formulate it,
we initially take N > kn and then continue to N ¼ 1. We
leave the limit N → 1 implicit in Eq. (56): Since we are
always interested in the limit N → 1, we often simplify the
notation by leaving the N dependence implicit, for exam-
ple, in the state jCk;ni above.
The initial and final states appearing above are discussed

in Appendix C. They are precisely (products of) coherent
states jSi of the form mentioned in Sec. IVA, which are
labeled by a choice of expectation value for the matrix S.
Since the states of interest have vanishing expectation
values for L and R, they are parametrized by a value for the
Q matrix:

E
h
e−kðn−1ÞSnðtÞ

i
¼ hQk;nj exp ð−tNFHÞjQ ¼ 1Ni: ð57Þ

We have labeled the initial and final states by their
expectation values of Q (which are translation invariant
in the present setting). In Appendix C, we show that the
initial maximally mixed state corresponds (after replica-
tion) to Q ¼ 1N (the N × N identity matrix), as indicated
above, and that the final state jCk;ni ¼ jQk;ni corresponds to
an N × N matrix with a block structure:

Qk;n ≡ qn ⊕ � � � ⊕ qn
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{k times

⊕ 1N−nk: ð58Þ

The nontrivial n × n block has a cyclic form:

qn ≡

0
BBBBBB@

0 0 � � � 0 þ1

−1 0 � � � 0 0

0 −1 � � � 0 0

� � �
0 0 � � � −1 0

1
CCCCCCA ð59Þ

with −1 on the subleading diagonal and þ1 in the top
right entry.
These Q matrices are closely related to the permutation

matrices that can be used to express the pattern of index
contractions at the boundary (in the language of a bosonic
tensor network). However, they are not equivalent to these
objects due to their sign structure (see Appendix C). The
signs (which are absent in a permutation matrix) are crucial
to ensure that detQ ¼ 1 and Q∈SOðNÞ.
When we pass to the field theory, coarse graining over

microscopic scales, the initial and final states above set the
boundary conditions for the field:

E
h
e−kðn−1ÞSnðtÞ

i
¼

Z
Qðx;tÞ¼Qk;n

Qðx;0Þ¼1
DQe−S½Q�: ð60Þ

These boundary conditions (BCs) are shown in Fig. 4 (left).
We have omitted a normalization constant in Eq. (60), since
it drops out automatically in the saddle-point calculation.
In the simplest case, we are able to approximate the

right-hand side of Eq. (60) simply by the exponential of
minus the action for the saddle-point solution Qclðx;tÞ. In
cases where the saddle-point configuration has variation on
many length scales, we must separate out contributions to
the free energy from different length scales, since the value
of gR renormalizes nontrivially as a function of the scale.
Crucially, these calculations are asymptotically exact, since
the theory flows to weak coupling (gR → 0).
Note that if the resulting action is simply proportional to k,

then the generating function becomes that of a deterministic
(nonrandom) variable. This is what we find in our leading-
order calculation, indicating that fluctuations in the entan-
glement entropy are parametrically smaller than the mean.
The BCs above apply for the entropy of the entire

system. A simple generalization gives the entropy of a
subsystem A. Schematically, we must trace out region A
from the physical density matrix: This means that the
needed “index contractions” in region Ā at the final time are
the same as at the initial time (here, we are using the
language of the equivalent bosonic system). As a result, the
final time boundary condition becomesQ ¼ 1N in region Ā
and Q ¼ Qk;n in region A. These BCs are shown in Fig. 4
(right). We focus on the case where t → ∞, so that we are
computing the entanglement entropy of a pure state.
Next, we apply the above to compute the entropy of the

full state: Because of the uniform boundary condition at
time t, this is the simplest case. Then we build on these
results to compute the bipartite entanglement in Sec. VI C.

B. Purification of mixed state

To compute the entropy of the final state, we need [by
Eq. (60)] the minimal action configuration for the boundary
conditions shown in Fig. 4 (left), with Q ¼ 1N at the initial
time and Q ¼ Qk;n at the final time. Let us assume to begin
with that t≲ L, and for simplicity let us choose units so that
the nonuniversal velocity is v ¼ 1.
We first run the RG up to a scale that is comparable with

(but somewhat less than) t, integrating out modes with
shorter wavelengths. We expect the RG up to this scale to
be approximately insensitive to the boundary conditions
and to produce a renormalized stiffness g−1R ðtÞ described by
Eq. (50) [97]. We now have a system which, measured in
units of the new UV cutoff, is of length approximately L=t
in the spatial direction and approximately 1 in the time
direction. Since the stiffness is large and the cutoff is
comparable with the temporal extent, we can neglect
further renormalization effects and simply compute the
path integral using saddle point.
We need the lowest-action configuration Qcl

k;n which
interpolates between Q ¼ 1N and Q ¼ Qk;n. Denoting the
rescaled coordinates by x̃, t̃ (so that t̃∈ ½0; 1�), we assume
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that the optimalQcl
k;nðx̃; t̃Þ is x̃ independent. The equation of

motion then implies that Qcl
k;n has the form

Qcl
k;nðx̃; t̃Þ ¼ exp ðt̃Ak;nÞ; ð61Þ

where the antisymmetric matrix Ak;n (the logarithm [98] of
Qk;n) also has a block structure:

Ak;n ¼ lnQk;n ¼ an ⊕ � � � ⊕ an
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{k times

⊕ 0N−nk; ð62Þ

where, as usual, we leave the N dependence of Ak;n

implicit. The gradient term in the renormalized action is
then

trð∂t̃Qcl
k;nÞTð∂t̃Qcl

k;nÞ ¼ ktraTnan ¼
π2kðn2 − 1Þ

3n
; ð63Þ

where the second equality is explained in Appendix I.
Therefore, the minimal action in the renormalized theory is

S½Qcl
k;n� ¼

π2

6

kðn2 − 1Þ
n

L
gRðtÞt

: ð64Þ

Comparing with Eq. (60) for the generating function then
gives us the result for purification in Eq. (52) (where we
have restored the nonuniversal velocity).
Finally, for t > L, we can proceed in a similar fashion.

We first run the RG up to scale L, which renormalizes the
coupling constant to g−1R ðLÞ ∼ ln L. At this stage, it is
convenient to use coordinates that are rescaled by a factor
of L, so that the system has size 1 in the spatial direction
and size t=L in the time direction (and a UV cutoff on the
frequencies of order 1 in the rescaled units). The RG from
this point onward is very different, as the system has
become effectively one-dimensional. In 1D, the stiffness

g−1R is not dimensionless anymore, but rather it defines a
correlation time t̃� ∝ g−1R . Returning to the original units,
this gives us the purification timescale in Eq. (53):

τP ∼
L

gRðLÞ
: ð65Þ

The action cost S, imposed by boundary conditions, scales
as expð−t=τPÞ (to leading order in the exponential),
implying exponential decay of the entropies at very long
times. Note that once t is larger than τP, so that fluctuations
become important in the effective 1D model, the (small)
value of Sn in a realization is no longer close to the mean.

C. Bipartite entanglement in the pure state

At times t ≫ τP, the dynamics generates an ensemble of
random pure states that is independent of the initial state
(pure or mixed). As discussed in Sec. VI A, the bipartite
entanglement in this ensemble can be computed using the
BCs shown in Fig. 4 (right). We take t → ∞, so only the
final-time BCs are important.
In contrast to the previous section, these BCs have a

discontinuity. Taking A to be the right half of the chain and
A to be the left,

Qðx; tÞ ¼ 1 for x < L=2; Qðx; tÞ ¼Qk;n for x > L=2:

It is convenient to employ polar coordinates ðr; θÞ centered
at the discontinuity, with θ∈ ½0; π�. It is possible to find a
vortexlike solution of the saddle-point equations that
depends only on θ:

Qcl
k;nðr; θÞ ¼ eðθ=πÞAk;n ; ð66Þ

where Ak;n is described above. We neglect the spatial
boundary conditions at large jx − L=2j, which affect the
solution on the largest scales but do not affect the leading
term in the free energy.
The above solution has variations on all scales up to L.

Since the effective coupling varies (albeit slowly) with
scale, it would not be correct simply to approximate the
path integral by the saddle-point action. However, this is
simply remedied.
We split the free energy F into contributions from nested

annuli at sequentially larger radius [99,100]. Consider the
additional contribution F½l;les� from an annulus r∈ ½l; les�.
Within this region, the typical length scale for variation of
the expectation value of Q is l. A simple coarse-graining
argument shows that F½l;les� may be approximated by the
part of the saddle-point action for this annulus but weighted
by the coupling for this scale, gRðlÞ [101].
Taking a small enough s, we obtain a differential form

that may be integrated:

FIG. 4. Boundary conditions for the computation of the entropy
of the whole state at finite time (left) and the bipartite entangle-
ment entropy at asymptotically late times (right). Dashed lines
denote the direction along which ∇Qcl is nonzero, with Qcl

denoting the classical configuration minimizing the energy.
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F ¼ ktraTnan
2π

Z
ln L

ln a

d ln L
gRðlÞ

: ð67Þ

[We may also think of e−F as a correlation function
involving a boundary-condition-changing operator [102]
at r ¼ 0. In this language, Eq. (67) comes from the Callan-
Symanzik equation for this correlator.]
Using the form of the coupling [Eq. (50)] as L → ∞, the

relation in Eq. (60) between the partition function Z ¼ e−F

and the entanglement entropy, and the value of traTnan in
Appendix I gives the ðln LÞ2 scaling stated in Eq. (54).
However, if NF is large, then there is a very large range of
scales where the bare term in 1=gR dominates, and in this
intermediate range the entanglement entropies are propor-
tional to NF ln L.

D. Numerical test of the entanglement scaling

We now proceed to numerically test the theory and, in
particular, Eq. (54) for the bipartite entanglement. For
numerical convenience, we restrict ourselves to NF ¼ 1, so
that larger system sizes can be reached. For the purpose of
the simulation, it is convenient to reexpress the dynamics as
a quantum state-diffusion equation [60–62]

djψðtÞi ¼ −iHðtÞdtjψðtÞi þ
X
j

ðiγjγjþ1 −BjðtÞÞdξjjψðtÞi

−
dt
2

X
j

Γjðiγjγjþ1 −BjðtÞÞ2jψðtÞi; ð68Þ

where HðtÞ is the Hamiltonian generating the unitary part
of the evolution,

HðtÞ ¼ i
XL−1
j¼1

JjðtÞγjγjþ1 ð69Þ

(we use open boundary conditions for our numerics), and
BjðtÞ depends on jψðtÞi itself:

BjðtÞ ¼ hψðtÞjiγjγjþ1jψðtÞi: ð70Þ

The big advantage of this approach is that dξj is now
simply the differential of a Brownian motion, i.e., dξj ¼ 0

and ðdξjÞ2 ¼ Γjdt, while higher-order cumulants vanish in
the dt → 0 limit. Note that, therefore, we do not need to
sample measurement outcomes explicitly—computing
BjðtÞ at each time step automatically takes Born’s rule
into account.
We discuss how Eq. (68) can be efficiently implemented

for Gaussian states in Appendix F. An important aspect is
that Eq. (68) reproduces Born-rule sampling only in the
dt → 0 limit, whereas the numerical simulations are nec-
essarily performed using a finite time step dt. However, the
deviation tends to zero as dt → 0. In the following, we
show the convergence of our results with respect to dt.
Initializing the state in the vacuum state j0i associated

with the fermions cj ¼ ðγ2j−1 − iγ2jÞ=2, we consider the
evolution of the bipartite Rényi entropies Sn;A of the
evolved state as a function of time—see Appendix G for
a plot as a function of time. After Sn;A plateaus at long-
enough times, the prediction Eq. (54) is expected to hold.
Averaging over a time window after the plateau and over
quantum trajectories, we can study the dependence of Sn;A
on the system size L.
Figure 5 shows the result for Sn;A at Γ ¼ 1 and Δ ¼ 0

(we set J ¼ 2). In the left-hand panel, we see that Sn;A

Theory

FIG. 5. Simulations of Eq. (68) for Γ ¼ 1, Δ ¼ 0, and J ¼ 2. For a given quantum trajectory, we average Sn;A over the time interval
t∈ ½40; 80�, and we also average over more than 400 independent quantum trajectories. The error bar is the standard error over the set of
distinct quantum trajectories. Dashed faded lines and solid lines are data obtained with time step dt ¼ 5 × 10−3 and dt ¼ 2.5 × 10−3,
respectively. Left: steady-state entanglement Sn;AðLÞ versus ln L. Right: ½n=ðnþ 1Þ�ΔSn;A versus ln L. The dashed gray line shows the
predicted universal slope [Eq. (72)].
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appears to have a positive curvature as a function of ln L.
Equation (54) on its own is not a good fit, because
subleading terms (neglected there) are still large at the
system sizes we have access to. However, taking the
discrete logarithmic derivative

ΔSn;AðLÞ ¼ Sn;Að2LÞ − Sn;AðLÞ ð71Þ

suppresses some of the contributions from short scales (for
example, a constant term cancels out). Equation (54) gives
the scaling

n
nþ 1

ΔSn;A ¼ ln 2
48

ln Lþ oðln LÞ: ð72Þ

Plotting the lhs against ln L (Fig. 5, right), we indeed see a
linear scaling with a universal slope compatible with that by
predicted by the analysis in the previous sections.
In Fig. 6, we check that, for a much smaller measurement

rate Γ ¼ 0.1, the slope of ΔSn;A versus ln L remains
compatible with the predictions, though with larger
finite-size effects, presumably due to crossover from the
unitary behavior [103]. Finally, in Appendix G, we show
data testing the universal dependence on the Rényi index,
Sn;A ∝ ðnþ 1Þ=n, finding (at these sizes) agreement at the
level of a few percent.

VII. DIMERIZATION AND VORTICES

Having discussed the stable phase, it remains to analyze
the transitions out of this phase (for J > 0) and also the
separate universal behavior in the measurement-only model
(J ¼ 0). We discuss the first of these issues here and the
second in the next section.
To capture the transition into the area-law phase, which

is a disordered phase for the Q field, we need to take into

account vortices (which proliferate in the disordered phase)
[104]. Vortices introduce an additional coupling in the
(crudest approximation to the) RG flows, which is the
vortex fugacity. We begin by discussing the symmetry
properties of this coupling. In this section and the next, we
draw heavily on the analogy with instantons in the XXZ
spin chain and related systems [105–107].
Following a standard heuristic picture (see, e.g.,Ref. [99]),

we may imagine an expansion of the partition function in
terms of the number n of vortices. Schematically,

Z ≃
X
n

1

n!

X
x1;…;xn

yx1…yxn

Z
dt1…dtn

Z
DQe−S½Q�: ð73Þ

The kth vortex is located at position ðxk; tkÞ:We take x to be a
lattice coordinate taking values x∈Z [108]. Each vortex
costs a fugacity yx. Themagnitude of this fugacity is sensitive
to the way the theory is cut off near the vortices (this
magnitude is independent of x, by translation invariance, if
Δ ¼ 0). However, the sign structure of yx carries universal
information. We argue that

yx ∝ ð−1ÞxNF : ð74Þ

The same kind of alternation holds for vortices (instantons) in
the easy-planeXXZ chain, with the sign factor being ð−1Þ2Sx.
Theminus sign arises from theBerry phase terms in the lattice
action (for the coherent state path integral) when we consider
configurations with vortex singularities. The argument is of a
standard kind and is given in Appendix H. Importantly, the
argument applies independently of the microscopic structure
near the core of the vortex.
Next (in a standard argument [109]), we may imagine

coarsegraining pairs of sites to define a coarse-grained vortex
fugacity y. Heuristically, y ∝ yx þ yxþ1. In the case where
NF is odd, this leads to a cancellation. The cancellation is
perfect ifΔ ¼ 0, but ifΔ ≠ 0 (so that translational symmetry
by one lattice spacing is broken, and yx ≠ yxþ1), it is not
perfect. At small Δ, we, therefore, expect

y ¼ bΔþ � � � ðNF oddÞ; ð75Þ

where b is a constant. Conversely, for even NF, the fugacity
of a vortex is independent of its lattice position j. Therefore,
in this case y ≠ 0 even when Δ ¼ 0, and by symmetry

y ¼ cþ dΔ2 þ � � � ðNF evenÞ ð76Þ

(where the discussion in Sec. VIII suggests that c is negative
and d is positive for NF ¼ 2). The expansions above are for
small Δ and do not rule out a nonmonotonic dependence at
larger Δ.
We see that, in the NF-odd models with Δ ≠ 0 and in the

NF-even models with generic Δ, it is possible for the bare
vortex fugacity to be nonzero. In order to address the

Theory

FIG. 6. The analog of the right panel in Fig. 5 but for the
smaller measurement rate Γ ¼ 0.1 (with Δ ¼ 0 and J ¼ 2).
Averages are performed in the time interval t∈ ½100; 150�. See
the caption of Fig. 5 for further details.
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transition out of the stable nontrivial phase, let us now
consider an approximate RG involving y and g.
For N ¼ 1, the critical fixed point is not at small g or

small y, preventing a controlled perturbative calculation.
However, the topology of the flows can be determined in a
limit where 2 − N is treated as a small parameter, in the
spirit of the epsilon expansion. This is discussed for the
SN−1 sigma model [the classical ferromagnet with OðNÞ
symmetry] near N ¼ 2 and d ¼ 2 in Ref. [110] and for
replica NLσMs in Refs. [75,76] (where sign effects for y
like those discussed above are relevant). The key point is
that, in all these hierarchies of models, the point N ¼ 2 is
an XY model, with the well-known Kosterlitz-Thouless RG
equations in which y ¼ 0 is a fixed line. Assuming
analyticity in N, the beta functions can then be expanded
in ε ¼ 2 − N [110]:

dgR
d lnl

¼ y2R þ εFðgRÞ þOðy4R; ε2Þ;
dyR
d lnl

¼ ð2 − πg−1R ÞyR þOðεyR; y3RÞ: ð77Þ

Here, FðgRÞ is the derivative of the beta function for g with
respect to ε at ε ¼ 0 and y ¼ 0. At small gR, it is given by
the perturbative result quoted in Eq. (49). The values of gR
of interest now are not necessarily small, but for a
qualitative picture of the flows what matters is the sign
structure of FðgRÞ, which we take to be as suggested by the
perturbative beta function [110].
Figure 7 shows the schematicRGflowobtained from these

equations. The structure of these flows matches the “upper”
part of the phase diagram in Fig. 2 (the limit J → 0 is

discussed in the next section). The axes are in heuristic
correspondence between the two figures: Recall from
Eq. (46) that g−1B increases with J2=Γ and from Eq. (75)
that the sign of y is equal to that of Δ (at least for small
enough Δ).
For large g−1R , a small vortex fugacity y is irrelevant,

and the couplings flow toward the stable fixed point at
ðg−1R ; yRÞ ¼ ðþ∞; 0Þ that we have already discussed. There
are phases where g−1R flows to small values and y flows
to large positive or negative values, which we identify
with disordered phases. The analysis in Sec. VI makes
clear that a disordered phase corresponds to an area-law
entangled phase.
The transitions between the nontrivial and trivial

phases are controlled by a pair of unstable fixed points
(at positive and negative y), shown in red in Fig. 7. When
N → 2, these fixed points approach the y ¼ 0 line, giving
the conventional Berezinskii-Kosterlitz-Thouless flow dia-
gram. For N < 2, the flow structure is different, and, for
example, the fixed points at finite y have a finite value for
the correlation length exponent ν [111]. By contrast, an
“annealed” approximation to the Majorana dynamics gives
a Kosterlitz-Thouless transition with ν ¼ ∞ [25].
Finally, given that at this fixed point there are no

marginal flows, we expect a model that is on the phase
transition line to exhibit the entanglement scaling dictated
by conformal invariance [32,56], i.e., Sn;A ∝ ln L, rather
than ðln LÞ2; cf. Sec. VI.

VIII. MEASUREMENT-ONLY MODEL (J = 0)

The soðNÞ × soðNÞ replica symmetry of the Majorana
chain is generic, in the sense that it is the minimal continuous
symmetry shared by any model of free fermions [112].
However, a larger soð2NÞ replica symmetry is present both in
the measurement-only limit Γ ¼ 0 and in the unitary limit
J ¼ 0 [25]. In this section, we explore the consequences of
this symmetry for the measurement-only line [113].
The feature responsible for the additional symmetry on the

J ¼ 0 line is not the absence of unitaries but rather a bipartite
structure:By examining the replicatedHamiltonian, onemay
check that soð2NÞ is present whenever it is possible to group
the physical Majoranas into two subsets, A and B, such that
the unitary hopping involves only pairs iγγ from the same set,
and measurements are only of pairs iγγ from opposite sets
(see Endnote [114] for examples).
In the present model, the symmetry is made manifest by a

sign change γðσaÞj;μ ↦ ðσÞjγðσaÞj;μ , so that, in the block decom-
position of the local 2N × 2N matrix degree of freedom Sj
[Eq. (27)], the off-diagonal blocks are redefined as Qj ↦
ð−1ÞjQj while Lj and Rj are unaffected. The Hamiltonian
is then

H ¼
X
j

Γj

2
TrðSTj Sjþ1Þ: ð78Þ

FIG. 7. Schematic RG flow for N ¼ 2 − ε; cf. Eq. (77). Two
green points denote the fixed points (unstable in one direction)
which control the transitions from the nontrivial phase (the pink
region, which flows to y ¼ 0, g−1R ¼ ∞) to the disordered phases
(note that the lower boundary of this figure corresponds to an
arbitrary value of g−1R and does not correspond to the J ¼ 0
boundary of the fermion model phase diagram).
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SOð2NÞ transformations act on S by conjugation. This is an
antiferromagnet. For N ¼ 2, one can check that it reduces
to the conventional SU(2) Heisenberg chain with spin
S ¼ 2NF. We allow for dimerization in the measurement
rates, Γj ¼ Γ½1þ ð−1ÞjΔ�.
In the semiclassical limit, or in a coherent-state repre-

sentation of the path integral, S becomes an antisymmetric
orthogonal matrix that lives in the manifold SOð2NÞ=UðNÞ
(see Sec. IVA). In the model with J > 0 discussed in
Sec. IV, the Hamiltonian favors ordered states in which
only Q is nonzero, thus L and R can be integrated out to
obtain a theory for Q only. Here, the larger symmetry
means we must retain the full target space for the low-
energy theory, which is, therefore, an NLσM on
SOð2NÞ=UðNÞ [39–41].
By symmetry, theLagrangian for such a theory is expected

to take the standard form with two couplings, namely, the
inverse stiffness g and aΘ angle. The bulkphysics is invariant
under Θ → Θþ 2π [115]. The values of these couplings
should, in principle, be obtained at large NF by taking a
continuum limit of the coherent states path integral [73,105].
We do not perform this calculation here, instead conjecturing
the form of Θ on the basis of the N ¼ 2 special case. The
latter reduces to the SU(2) chain with spin NF=2, for which
the NLσMmapping at large spin is well known and gives the
sphere sigma model with a Θ term.
The simplest assumption that matches with this case

is that Θ ¼ NFπ in the undimerized model, with
Θ ¼ NFðπ þOðΔÞÞ for weak dimerization Δ. Finally, if
Δ is varied all the way from −1 to 1, the topological angle
varies monotonically from 0 to 2πNF [87].
The SOð2NÞ=UðNÞ model with N → 0 arises as a

description of Anderson localization problems in symmetry
class D [39–41,44–46,48–51]. Localization models in this
class have a rich phase diagram with various kinds of
transition [36]: In addition to a nontrivial dependence on
the Θ angle, there is a stable metallic phase when N → 0
(also, two slightly different models arise [116]). Here, we
expect a simpler phase diagram, in particular, because
the perturbative beta function [36] shows that, unlike the
N → 0 case, theN → 1 case does not have a metallic phase.
Instead, the simplest conjecture, given the instability of

the g ¼ 0 fixed point, is that the flows in the ðΘ; gÞ plane at
N → 1 resemble those of various other replica NLσMs,
including the Pruisken sigma model for the integer quan-
tum Hall transition (a celebrated example of the effect of a
Θ term [36,117]). If so, then the theory is gapped for all g,
except on the lines with Θ ¼ π mod 2π (which are pre-
served under RG, by parity symmetry). On these lines, the
model flows, for any initial g, to a critical fixed point that is
unstable in the Θ direction.
At NF ¼ 1, this leads to a single critical point on the

J ¼ 0 axis, at Δ ¼ 0. This is consistent with the numerical
results in Ref. [12]. In general, it leads to NF critical points
on this axis, as varying Δ causes the Θ angle to cycle NF

times through the value π mod 2π (in analogy to the spin-
NF=2 chain [87–90]).
We also conjecture that the Θ ¼ π fixed point is unstable

to the symmetry-breaking perturbation induced by turning
on J. The considerations above then yield the phase
diagram structure for small J that is proposed in Sec. V
[118]. However, we emphasize that these are conjectures:
In particular, it is not ruled out that the stability properties
of the Θ ¼ π fixed point could be different (we will return
to this in the future).
Finally, let us briefly note the analogy between the RG

flows described above and those in theMajorana loop model
[6,22,27,119] (see Sec. V). The Majorana loop model has a
measurement-only line described by theCPM−1 NLσMwith
a Θ term in the limitM → 1 [120,121]. If the measurements
are undimerized, then Θ is equal to π, and this is a critical
point between two disentangled phases. Adding SWAP

unitaries gives a symmetry-breaking perturbation in the
NLσM, which induces a flow to the RPM−1 NLσM, which
has a metallic phase [76,122]. TheRPM−1 NLσM allowsZ2

vortex defects, and the sign of the vortex fugacity is inherited
from the sign of Θ − π in the parent CPM−1 model. These
vortices can drive a phase transition to a trivial phase. This
structure of flows is similar to that proposed above, with the
SOð2NÞ=UðNÞ NLσM at Θ ¼ π playing the role of the
CPM−1 NLσM and the SOðNÞ NLσM playing the role
of the RPM−1 NLσM. However, there are also basic
differences between the two kinds of measurement model;
cf. Sec. V E.

IX. CONCLUSIONS

In the context of a simpleMajoranaHamiltonian, we have
argued that monitored free fermions give rise to problems in
critical phenomena that can be viewed formally as sitting
(at replica number “N” equal to 1) in between two well-
studied classes of critical points: zero-temperature phase
transitions in spin chains, described by NLσMs with values
of “N” that are greater than one, and Anderson transitions in
eigenstates of disordered Hamiltonians, described by the
limit N → 0. Our aim in this paper has been to give an
analytically controlled derivation of an effective field theory
for a generic model and to use it to analyze the entanglement
properties of the phases and transitions.
Concretely, our approach is to map the generator of the

dynamics for moments of the density matrix (prior to
normalization) to an soð2NÞ spin chain, which at large NF
is in a semiclassical limit, allowing a controlled reduction to
a long-wavelength theory.
The nonlinear sigma model is particularly useful in the

stable nontrivial phase, where the calculation of the entan-
glement is asymptotically exact, and agrees with numerical
simulations madewith the quantum-state-diffusion method.
The calculation illustrates that the nonlinear sigma model
stiffness 1=g (analogous to a conductivity in a localiza-
tion problem) functions as a scale-dependent strength of
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entanglement. The NLσM also gives a picture for the
structure of critical points, via an ϵ ¼ 2 − N expansion in
the generic case or via transitions between different Θ
vacua in Majorana models with a certain bipartite structure
for interactions and measurements, in particular, in a model
in which the dynamics involves only noncommuting
measurements [6,123]. This structure of RG flows for
these sigma models explains the previously observed [22]
similarity between the phase diagram of the Majorana loop
model and more generic models, despite these problems
being in distinct universality classes.
We emphasize that various kinds of connection between

either free monitored [10] or free non-Hermitian [8,124]
dynamics and replica Lagrangians have been developed
previously. Reference [10] mapped a regime of monitored
Dirac fermions in the spatial continuum onto a non-
Hermitian sine-Gordon theory. A Majorana model closer
to ours was considered in Ref. [124] in the context of the
SYK2 model, with a non-Hermitian Hamiltonian rather
than measurements. There, a different regime was consid-
ered, where fluctuations were suppressed, so that the
effective description was different. Most relevant to our
work is Ref. [8], which provided a symmetry classification
of Gaussian random tensor networks (observing the con-
nection with nonunitary time-evolution operators) and
proposed the DIII sigma model withN → 0 as a description
of generic Gaussian tensor networks on grounds of
symmetry.
The relevant limit of the target space for NLσMs for

monitored systems is N → 1. It will be interesting to
explore the RG fixed points [42] relevant to these
N → 1 sigma models (with various symmetries), using
simulations with Born’s rule or with the state diffusion
formalism to compute exponents and flow diagrams,
and to map out the relation to different monitored models
[3,125–129]. For the specific models studied here, it also
remains to perform a fuller numerical analysis of the phase
diagrams in order to check the conjectured structure for
general NF.
In this work, we have focused on a simple case where the

Hamiltonian couplings fluctuate as white noise, since this
leads to a particularly simple effective model. In the future,
it will be interesting to study models where the hopping
amplitudes either have a deterministic part (nonzero mean)
or are nonrandom (so that the randomness is only from
measurements, as, for example, in Ref. [10]). In these
cases, the model does not reduce microscopically to a
purely bosonic model. However, one could employ tools
from Anderson localization to derive NLσMs in the long-
wavelength limit [73,130].

Note added.— Recently, a closely related work appeared
on the arXiv [131], studying monitored free fermions
dynamics with the same symmetry, albeit using a different
microscopic model.
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APPENDIX A: WEAK MEASUREMENTS,
CONTINUUM LIMIT, AND AVERAGING

In this appendix, we derive the effective non-Hermitian
Hamiltonian (7) as the continuum limit of a discrete
time-evolution alternating unitary evolution and weak
measurements. This discretization gives a more precise
justification of the scheme to compute averages presented
in the main text.
We start from unitary dynamics of Majorana fermions

with the time-dependent Hamiltonian (3). It is useful to
think of the dynamics generated by Eq. (3) as the
continuous limit of the discrete process

UðtÞ ¼ UðtnÞUðtn−1Þ…Uðt1Þ
¼ e−iΔtHðtnÞe−iΔtHðtn−1Þ…e−iΔtHðt1Þ; ðA1Þ

where Δt ¼ t=n and tj ¼ jΔt, while the delta function in
Eq. (5) is regularized as

EG½Jμ1ν1j ðtrÞJμ2ν2k ðtsÞ� ¼
J2

NFΔt
δr;sδμ1;μ2δν1;ν2 : ðA2Þ

To this, we add measurements. After each time step, we
make weak measurements of all the fermion parity oper-
ators of the form iγj;μγjþ1;ν for adjacent sites, with the
strength of the measurements approaching zero as Δt → 0.
For a given bond j and pair of flavors ðμ; νÞ, we may
describe this process by a continuous family of Kraus
operators k̂ðMμν

j Þ indexed by a real number Mμν
j :

k̂ðMμν
j Þ ¼ N Γj

exp ðiΔtMμν
j γj;μγjþ1;νÞ; ðA3Þ

and a measure dμG over Mμν
j , which we choose to be a

normalized Gaussian measure with mean 0 and variance

Γj=ðNFΔtÞ; viz. dμGðMμν
j Þ ∝ e−ðM

μν
j Þ2ΔtNF=ð2ΓjÞdH. The

normalization factor N is chosen such that the Kraus set
is properly normalized, i.e., [132]Z þ∞

−∞
dμGðMμν

j Þk̂ðMμν
j Þ†k̂ðMμν

j Þ ¼ 1: ðA4Þ

The condition above arises by requiring that, averaging
over the measurement outcomes, the quantum channel
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obtained is trace preserving. From the normalization
condition, we can explicitly find N Γj

¼ e−ΓjΔtN−1
F .

The overall measurement process across the whole chain
can then be described as a two-step process, where first all
odd bonds are measured and then all even ones are
measured; viz.

K̃ðfMμν
j gÞ ¼

Y
j

k̂ðMμν
2jÞ

Y
j

k̂ðMμν
2jþ1Þ: ðA5Þ

A set of couplings Jμνj ðtkÞ and measurement outcomes
Mμν

j ðtkÞ defines a quantum trajectory. Putting everything
together, we have that in a specific quantum trajectory, for a
given time step, the unnormalized density matrix of the
system evolves according to

ρ̌J;Mðtk þ ΔtÞ ¼ K̃½fMμν
j ðtkÞg�UðtkÞρ̌J;MðtkÞU†ðtkÞ

× K̃†½fMμν
j ðtkÞg�; ðA6Þ

in terms of which the normalized density matrix is

ρJ;MðtÞ ¼
ρ̌J;MðtÞ
Trρ̌J;MðtÞ

; ðA7Þ

which can be equivalently expressed in the form of Eq. (8)
with

KJ;MðtnÞ ¼
Yn
k¼1

h
K̃½fMμν

j ðtkÞg�UðtkÞ
i
: ðA8Þ

In the limit Δt → 0, KJ;M is given by Eq. (9) with

HJ;MðtÞ¼
XL
j¼1

XNF

μ;ν¼1

½Jμνj ðtÞþ iMμν
j ðtÞ�iγj;μγjþ1;ν−NF

X
j

Γj;

ðA9Þ

which, except for the additive constant arising from the
normalization N Γj

, agrees with Eq. (7). The fact that this
constant is neglected is adjusted through the denominator
in Eq. (11), since if we neglectN , as done in the main text,
we ultimately obtain

EG½ρ̌J;MðtÞ� ¼ exp

�
2NFt

X
j

Γj

�
: ðA10Þ

We explicitly checked this in the long-time limit by
computing the energy of the classical ground state polar-
ized along Q and seeing that it is 2

P
j Γj for N → 1 [133].

Finally, the most elementary objects we are interested in
computing are averages of replicas of ρ⊗nðtÞ. (As the tensor
product of fermionic Fock spaces is ill defined, here we
have in mind that the fermionic Fock space is first mapped

to a bosonic one; see Appendix B.) According to the Born
rule, these are given by

E½ρ⊗nðtÞ� ¼
Z

dμGðJ;MÞ ρ̌⊗n
J;MðtÞ

ðTrρ̌J;MðtÞÞn
Trρ̌J;MðtÞ

¼ EG

h
ρ̌⊗n
J;MðtÞðTrρ̌J;MðtÞÞ1−n

i
; ðA11Þ

where ρ̌ is the unnormalized density matrix along one
trajectory (8) and, with a slight abuse of notation, we are
writing dμGðJ;MÞ to denote the product of the various
Gaussian measures at different positions and time steps.
Here, the last factor of Trρ̌J;M ensures that quantum
trajectories are chosen according to Born’s rule. The key
of the replica trick lies in the observation that the average
over J and M can be most easily performed by computing

EG

h
ρ̌⊗n
J;MðtÞðTrρ̌J;MðtÞÞN−n

i
ðA12Þ

for N ≥ n and finally performing an analytic continuation
to N → 1. In this approach, the fundamental object is
ρðNÞ ¼ EG½ρ̌⊗N

J;MðtÞ� [Eq. (13)], which through appropriate
contractions can yield all terms of the form (A12).
Averages are most simply computed in the “folded”

representation (via the Choi-Jamiołkowski isomorphism).
Fixing a basis fjkig of the Hilbert spaceH, we can identify
any operator Ô with a state jOi in H ⊗ H via

jOi ¼
X
k;l

hkjOjlijki ⊗ jli: ðA13Þ

In this formalism,

jρðNÞðtÞi ¼ EG½ðKJ;M ⊗ K�
J;MÞ⊗N �jρ⊗Nð0Þi: ðA14Þ

At this stage, the average can simply be taken using the
cumulant expansion at each time step. It is straightforward
to see that this yields results consistent with the averaging
rules given in the main text [Eqs. (5) and (10)]. However,
in order to write an explicit expression for KðNÞ, we
need to define the tensor product by mapping to a bosonic
Fock space.

APPENDIX B: REPLICA FORMALISM
FOR MAJORANA FERMIONS

The convention that we use to define replicated
Majorana operators is an extension of the one used in
Ref. [64], which for the reader’s convenience we summa-
rize here. For simplicity, in our treatment, we assume that
LNF is a multiple of 8.
While the tensor product of fermionic Fock spaces is not

well defined, due to the anticommutation relations, we can
construct a bosonic Hilbert space by means of a Jordan-
Wigner transformation. For this purpose, we impose some
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ordering on the indices ðj; μÞ of the Majoranas operators
and label them with a single index k, e.g., by defining jk ¼
bðk − 1Þ=NFc þ 1 and μk − 1 ¼ ðk − 1Þðmod NFÞ. We
can then identify the LNF Majorana fermions with spin
operators of a spin-1=2 chain with LNF=2 sites:

γ2kþ1 ¼
�Y

k0<k

Zk0

�
Xk; γ2kþ2 ¼

�Y
k0<k

Zk0

�
Yk: ðB1Þ

In terms of the bosonic (spin) Hilbert space HB, tensor
products are well defined, and we can consider replicas
H2N ¼ ðHBÞ⊗2N and Pauli operators acting on them:

VðþaÞ
k ¼ I⊗2a ⊗ Vk ⊗ I⊗2N−2a−1; ðB2Þ

Vð−aÞ
k ¼ I⊗2aþ1 ⊗ Vk ⊗ I⊗2ðN−a−1Þ ðB3Þ

with V ¼ X, Y, Z and I denoting the identity on the space
HB. We then proceed to define replicated Majoranas
operators in the extended space. As an intermediate step,
we introduce the operators χσak , where a (1 < a < N) and
σ ¼ � label the different replicas:

χðþaÞ
k ¼ I⊗2a ⊗ γk ⊗ I⊗2N−2a−1; ðB4Þ

χð−aÞk ¼ I⊗2aþ1 ⊗ γ�k ⊗ I⊗2ðN−a−1Þ: ðB5Þ

Here, γk denote the Majorana operators, which act on the
bosonic Hilbert space according to Eq. (B1). Finally, γ�k
denotes the complex conjugate of γk with respect to some
basis—the actual basis choice is inconsequential.
Note that the operators χðσaÞk cannot be interpreted as

Majorana operators in the enlarged space, as χ operators
acting on different replicas commute. This can, however, be
fixed, by adding a Klein factor among different replicas.
We define the Klein factors as

FðσaÞ ¼
YLNF

k¼1

χðσaÞk ¼
YLNF=2

k¼1

ZðσaÞ
k ðB6Þ

and the replicated Majoranas as

γðþaÞ
k ¼ i

�Y
a0<a

Fðþa0ÞFð−a0Þ
�
FðþaÞχðþaÞ

k ; ðB7Þ

γð−aÞk ¼
�Y

a0<a

Fðþa0ÞFð−a0Þ
�
FðþaÞχð−aÞk : ðB8Þ

One can then verify that the operators γðαÞk with α ¼ σa

indeed form a set of Majorana operators, i.e., ðγðαÞk Þ† ¼ γðαÞk

and fγðαÞk ; γðα
0Þ

k0 g ¼ δk;k0δα;α0 . The specific choice of
Majorana operators above turns out to be very convenient

both to compute averages of ðK ⊗ K�ÞN , as we now
discuss, and to characterize the boundary states needed
to write the entanglement entropies (see Appendix C).
We are now set to compute the average evolution for N

replicas EG½ðKJ;M ⊗ K�
J;MÞ⊗N �. We can start by observing

that in the replicated space the time evolution along a
quantum trajectory can be expressed in terms of a new
continuum Hamiltonian playing a role analogous to Eq. (7):

ðKJ;M ⊗ K�
J;MÞ⊗N ¼ T exp

�
−i

Z
t

0

dt0HðNÞ
J;Mðt0Þ

�
: ðB9Þ

In terms of the χ operators, this takes the form

HðNÞ
J;MðtÞ¼ i

X
j

X
σ¼�

½Jμνj ðtÞþ iσMμν
j ðtÞ�χðσaÞj;μ χðσaÞjþ1;ν: ðB10Þ

Note that σ multipliesMμν
j ðtÞ and not Jμνj ðtÞ, viz. the part of

the Hamiltonian produced by weak measurements and not
the one produced by unitary evolution. This is unlike what
happens in replicas of real bosonic Hamiltonians, and it
happens because the complex conjugation of the Majorana
operators is absorbed in the definition of the operators χ.
[However, it is possible to move the σ from one term to
the other in the replicated Hamiltonian Eq. (22) by a sign
redefinition of γ operators on a sublattice.] By working
separately on the case σ ¼ �, one can then show that

χðσaÞj;μ χðσaÞjþ1;ν ¼ γðσaÞj;μ γðσaÞjþ1;ν, therefore obtaining Eq. (22).
Finally, integrating over J and M, as explained in the
previous appendix, and using the cumulant expansion, we
arrive at Eqs. (21) and (23).

APPENDIX C: BOUNDARY STATES
AND THEIR STABILIZERS

In this section, we introduce the boundary states relevant
for the study of entanglement entropies reported in the main
text. Finally, we characterize them in terms of quadratic
Majorana stabilizers. More of their properties, related to the
SOð2NÞ irrep they belong to, are reported in Appendix D.
We begin with the simplest one, corresponding to the

initial density matrix, which we take to be

ρðt ¼ 0Þ ¼ 2−LNF=2I: ðC1Þ

After taking N replicas ρ⊗Nðt ¼ 0Þ and mapping operators
to states of a doubled Hilbert space [see Eq. (A13)], this
gives us as initial state jIi, which can be defined in terms of
its bosonic stabilizers. The identity operator satisfies
VkIVk ¼ I, where V ¼ X, Y, Z and k labels sites j and
flavors μ. This then translates into

VðþaÞ
k ðVð−aÞ

k ÞT jIi ¼ jIi: ðC2Þ

This implies that
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iγðþaÞ
k γð−aÞk jIi ¼ jIi; ðC3Þ

as can be verified by rewriting the γ operators in terms of
Pauli matrices and using that for Pauli matrices VT ¼ V�.
The relevant boundary states at the final time can be

characterized in a similar fashion. For concreteness, we
discuss the boundary state for the computation of

e−kð1−nÞSn;A ¼ ðTrAρ⊗n
A ðtÞÞk; ðC4Þ

where A includes the sites from j ¼ lþ 1 to j ¼ L and
ρAðtÞ ¼ TrĀρðtÞ is obtained by tracing the density matrix
over Ā—the complement of A. (Note that the computation
of the entropy of the overall state is obtained by setting
l ¼ 0.) The computation above can be written as

e−kð1−nÞSn;A ¼ Tr
�
ρ⊗nkðtÞC⊗k

A;n

	
; ðC5Þ

where CA;n is defined in terms of its action on bosonic
operators. For any operator VĀ supported in Ā, CA;n behaves
like I. Instead, for operators VA supported in A, CA;n acts as
a cyclic permutation. Equivalently, after mapping operator
to states through Eq. (A13), we have

e−kð1−nÞSn;A ¼
�
hCA;nj⊗k

	�
jρðtÞi⊗nk

	
: ðC6Þ

Here, jCA;ni can be described by its stabilizers of Pauli
matrices

VðþaÞ
k Vð−aÞ

k jCA;ni ¼ jCA;ni; k∈ Ā; ðC7Þ

VðþaÞ
k V−ða−1 mod nÞ

k jCA;ni ¼ jCA;ni; k∈A: ðC8Þ

Finally, by reexpressing the Majoranas in terms of Pauli
operators, we have the following relations:

iγðþaÞγð−aÞjCA;ni ¼ jCA;ni; k∈ Ā; ðC9Þ

and

iγþ1γ−njCA;ni ¼ jCA;ni; ðC10Þ

iγ−aγþðaþ1ÞjCA;ni ¼ jCA;ni ðC11Þ

for a < n and k∈A.
We can equivalently characterize the boundary states by

the expectation value of S on each site. For all boundary
states jB⟫ discussed above, we have that hLi ¼ hRi ¼ 0.
Finally, the expectation value of Q depends on the
boundary state. For the initial state jIi, we have that the
expectation value of Q is the N × N identity matrix.
Finally, for jCA;ni and a site in A, the structure is
Q ¼ qn, reported in Eq. (59).

APPENDIX D: PROPERTIES OF THE
BOUNDARY STATES

We now proceed to show that the set of stabilizers above
fix the soð2NÞ irrep on every site, and within this it holds
that STS ¼ 1þOð1=NFÞ.
We begin by observing that it is enough to characterize

the state jIi, since the other boundary states can be obtained
through local rotations from jIi, e.g., by rotating the γþ as
specified by the orthogonal matrix hQi.
To characterize the irrep of jIi, we begin by considering

the NF ¼ 1 case, where we show that the state lies within
the spin representation. For this purpose, we recall that the
Dynkin diagram of soð2NÞ (viz. DN) is given by

with each dot associated to a simple root αn. Given an
orthonormal basis (with respect to the Killing form) feng,
the simple roots can be chosen to be αj ¼ ej − ejþ1 for
j < N and αN ¼ eN−1 þ eN . For a single site and flavor,
such an orthonormal basis is naturally represented by the
set en ↦ Xn ¼ iγþnγ−n=2. We can then note that the state
jIi has weight 0 in all αn with n < N and weight 1 in αN .
Finally, we show that jIi is an highest-weight state; i.e., it is
annihilated by all raising operators Ek defined by

½Xn; Ek� ¼ ðen · αkÞEk: ðD1Þ

For the purpose of verifying this, we write the Ek explicitly
in terms of Majorana bilinears:

Ek<N ¼ iγþkγþðkþ1Þ þ γ−kγþðkþ1Þ

þ iγ−kγ−ðkþ1Þ − γþkγ−ðkþ1Þ; ðD2Þ
EN ¼ iγþkγþðkþ1Þ þ γ−kγþðkþ1Þ

− iγ−kγ−ðkþ1Þ þ γþkγ−ðkþ1Þ: ðD3Þ
Rewriting Eq. (C3) as

γ−ak jIi ¼ −iγþa
k jIi; ðD4Þ

it is immediate to see that EkjIi ¼ 0 for all k. This,
therefore, proves that jIi lies in the spin representation.
Note that this irrep is 2N−1 dimensional and corresponds
to the states with R ¼ þ1. (The remaining 2N−1 states,
which are not involved in the physics of the problem, have
R ¼ −1 lie in the conjugate representation.)
The case of larger NF follows immediately from the case

NF ¼ 1. Given the tensor-product structure of jIi across
different flavors, we have that in this case jIi is a highest-
weight state with weights 0 with respect to all αn (n < N)
and weight NF with respect to αN .
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Finally, we show that for states jψi within this irrep we
have

ðSTSÞαβjψi ¼ ½δab þOð1=NFÞ�jψi; ðD5Þ

To this end, we show that Eq. (D5) holds when acting on
the state jψi ¼ jIi. From this state, the property can be
lifted to the whole irrep, by noting that an arbitrary state jψi
within the irrep can be written as WjI⟫ for some W
representing a rotation O∈SOð2NÞ; then

STSjψi ¼ WOTðSTSjIiÞO ¼ 1jψi þOð1=NFÞ: ðD6Þ

To show that the property above holds for jψi ¼ jIi, we
express STS as

STS ¼
�−L2 þQQT −LQ −QR

LQT þ RQT −R2 þQTQ

�
: ðD7Þ

Then, using Eq. (D4), we can transform any polynomials in
γþ and γ− into ones involving only γþ. By doing this, we
obtain

LQþQR≡ N − 1

NF
ðLþ i1Þ; ðD8Þ

QTQ − L2 ≡ 1

�
1þ 2N − 1

NF

�
− 2i

N − 1

NF
L; ðD9Þ

QQT − R2 ≡ 1

�
1þ 2N − 1

NF

�
þ 2i

N − 1

NF
L; ðD10Þ

where the equivalence above means that the lhs and rhs
are equal when applied on the state jIi. This, therefore,
concludes the proof of Eq. (D5). The quadratic Casimir
of the representation can be obtained as TrSTS, which
yields Eq. (31).
In addition, we can further analyze higher-order Casimir.

Most of these are already specified by the condition (D5);
however, the space of orthogonal antisymmetric matrices is
split in two disconnected components distinguished by
the Pfaffian of PfðSÞ: a polynomial of degree 2N of its
entries that is invariant under S ↦ OTSO for O∈SOð2NÞ.
Because of its invariance properties, PfðSÞ commutes with
all the generators of soð2NÞ and, therefore, withH. At large
NF, we can see that

hIjPfðSÞjIi ¼ PfðhIjSjIiÞ þOð1=NFÞ ðD11Þ

as it is true for any polynomial in the entries of S of degree
≤ 2N, so that

PfðSÞ ¼ ð−1ÞNðN−1Þ=2 þOð1=NFÞ ðD12Þ

in the irrep of interest.

APPENDIX E: PATH INTEGRAL FROM
COHERENT STATES

In Sec. IV, we use a semiclassical (large NF) analysis to
argue that there exists a path-integral representation in
terms of a field Sðx; tÞ that lives in the space of antisym-
metric SOð2NÞ matrices. Here, we confirm, using gener-
alized coherent states (see, e.g., Ref. [68] and references
therein) that the representation of the path integral in terms
of the field Sðx; tÞ makes sense for any value of NF, not
necessarily large (with x initially taking values on the
spatial lattice). This is consistent with our expectation that
the same infrared field theories and universality classes
apply at both small NF and large NF, even though for small
NF we do not have quantitative control over nonuniversal
constants when we take the continuum limit.
We consider a single site j. Here, our starting point is the

state jIi. By definition, acting on jIi with O∈SOð2NÞ
rotations generates the whole irreducible representation
the state belongs to. More precisely, we act on jIi with a
unitary transformation ŴO that is the image ofO∈SOð2NÞ
matrices under the representation map. The states ŴOjIi,
commonly called coherent states, form an overcomplete
basis of the irrep and can, therefore, be used to construct a
path-integral representation of the problem at hand. It is a
standard result that the identity (on the irrep) can be
represented as an integral of the form

1 ∝
Z

dμHðOÞŴOjIihIjW†
O; ðE1Þ

where dμHðOÞ is the Haar measure on the group SOðNÞ,
with some proportionality constant that is irrelevant for the
subsequent treatment. To see this, we can note that the
integral commutes with any unitary ÛO in the representa-
tion; therefore, by Schur’s lemma, the integral is propor-
tional to the identity on the irrep.
We further note that the states ŴOjIi can be identified,

up to a phase, by

S ¼ hIjŴ†
OŜŴOjIi ¼ OTJ0O; ðE2Þ

viz. the expectation value of the spin operator Ŝ on them. In
this appendix only, we distinguish between operators and c-
numbers by putting a hat on the former. Here, J0 is the
matrix

J0 ¼
�

0 1

−1 0

�
: ðE3Þ

The value of S uniquely defines the state up to a phase,
given that the states in the same irrep of I are Gaussian by
construction and are, therefore, uniquely specified by the
expectation values of quadratic Majorana operators, which
are contained in Ŝ.
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Since the coherent states are definedbyS, up to a phase,we
can write the resolution of the identity as an integral over S:

1 ∝
Z

dμðSÞjSihSj; ðE4Þ

where jSi is defined by fixing some choice of phase
convention and μðSÞ is the SOð2NÞ-symmetric measure
for S induced by μHðOÞ.
The path-integral representation forH can then be obtained

through conventional means by Trotterizing the time-
evolution operator and inserting resolutions of the identity
(E4). The degrees of freedom in this path integral are
orthogonal antisymmetric matrices, i.e., whose blocks satisfy
Eq. (33), continuously connected to J0, i.e., with PfðSÞ ¼
ð−1ÞNðN−1Þ=2. This path integral has the schematic formZ Y

j

DSj exp

�
iNF

X
j

Ω½Sj� − NF

Z
dt0H½fSjðt0Þg�

�
:

ðE5Þ
Here,NFΩ½Sj� is theBerry phase term for the jth site; see, e.g.,
Refs. [68,74] (it is proportional toNF because the states jSi are
product states over the flavors, and, therefore, the Berry phase
is additive for the flavors). The quantityH½fSjðt0Þg� appearing
above is obtained by replacing the spin operators Ŝj with the c-
number fields SjðtÞ. We do not need the explicit form of the
Berry phase, but it is important that the lattice action above is
proportional toNF. Ultimately, this iswhat allows a controlled
derivation of a continuum theory at large NF (Sec. IVB).
The second important point is the precise target space for

S. We show that it is isomorphic to the quotient space
SOð2NÞ=UðNÞ, where the isomorphism is given by the
map O ↦ S ¼ OTJ0O with O∈SOð2NÞ=UðNÞ. Here, we
think of UðNÞ as a subgroup of SOð2NÞ. For this purpose,
we use a standard embedding of UðNÞ in SOð2NÞ (see, e.g.,
Ref. [134])

U ¼ X þ iY ↦
�
X −Y
Y X

�
; ðE6Þ

where X and Y are the real and imaginary parts of the UðNÞ
matrix U, respectively. One can explicitly verify that the
image of a unitary matrix is orthogonal. By continuity of
the determinant and connectedness of UðNÞ, then the image
lies within SOð2NÞ. From these observations, we can see
that the image of UðNÞ is the set of O∈SOð2NÞ such
that OTJ0O ¼ J0.
Finally, from this, one can see that the map O ↦ S ¼

OTJOO is bijective. In fact, any matrix S, which is anti-
symmetric, admits a spectral decomposition of the form

OT

�
0 Λ
−Λ 0

�
O; ðE7Þ

with Λ diagonal and O∈ SOðNÞ. S being orthogonal and
with Pfaffian 1, we can further choose Λ ¼ 1. Finally,
it is immediate to verify that the matrices O are unique
up to multiplication by a matrix in the image of UðNÞ,
therefore showing that the manifold of S is isomorphic
to SOð2NÞ=UðNÞ.
One route to the continuum theory is via a derivative

expansion of the lattice action Eq. (E5)—see, e.g., Ref. [74]
for similar derivations for spin chains. In the main text, we
instead obtain the continuum theory by analyzing the
equations of motion. The ultimate result should be the same.

APPENDIX F: DETAILS OF THE NUMERICAL
SIMULATIONS

In this appendix, we provide details about the numerical
simulations of the monitored dynamics. Our approach
follows that in Ref. [9], which, in turn, is a generalization
of the method introduced in Ref. [3] for free-fermionic
dynamics with conserved particle numbers.
Throughout this section, we consider a single fermionic

species and setNF ¼ 1. Given that there are no flavor indices,
we use Greek and Latin indices interchangeably to label
physical sites. We further assume that the number of sites is
even and define M ¼ L=2. We begin by recalling that the
monitored dynamics described in Appendix A can be for-
mulated within the so-called quantum-state-diffusion formal-
ism [60–62], yielding the stochastic differential equation

djψ ti ¼ −iHðtÞdtjψ ti þ
X
j

dξjðiγjγjþ1 − hiγjγjþ1itÞjψ ti

−
dt
2

X
j

Γjðiγjγjþ1 − hiγjγjþ1itÞ2jψ ti; ðF1Þ

where HðtÞ ¼ P
L−1
j¼1 JjðtÞiγjγjþ1 (for our numerical simu-

lation, we choose open boundary conditions). Here, dξj are
real random variables satisfying

dξ2j ¼ Γjdt; ðF2Þ
where we employ Itô notation [135], while

hγjγjþ1it ¼ hψ tjγjγjþ1jψ ti: ðF3Þ
In the following, we also set

Γo ¼ ½1 − Δ�Γ; Γe ¼ ½1þ Δ�Γ; ðF4Þ
for the staggered value of Γj at odd and even position,
respectively. Using a standard derivation [136], one can show
thatEq. (F1) describes the continuous-time limit of the discrete
dynamics discussed in Appendix A. This formulation is
convenient from the numerical point of view, because one
does not need to sample measurement outcomes according to
the Born rule. Note that, at the first relevant order in Itô
calculus, we may split the infinitesimal time evolution into
three parts: a unitary step
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djψ ti ¼ −iHðtÞdtjψ ti ðF5Þ
and the measurements at even and odd pairs of Majoranas

djψ ti ¼ þ
X
j∈ e=o

dξjðiγjγjþ1 − hiγjγjþ1itÞjψ ti

−
dt
2

X
j∈ e=o

Γjðiγjγjþ1 − hiγjγjþ1itÞ2jψ ti; ðF6Þ

where j∈ e (j∈ o) means that the sum is restricted to j even
(j odd).
For an initial Gaussian state [26], the state of the system

remains Gaussian at all times, and the dynamics can be
simulated efficiently. Indeed, Gaussian states satisfy the
Wick theorem and can be described entirely in terms of the
covariance matrix

Ωab½ϕ� ¼
i
2
hϕj½γa; γb�jϕi: ðF7Þ

In our numerics, we initialize the system in the vacuum state
j0i associated with the fermions cj ¼ ðγ2j−1 − iγ2jÞ=2. Its
covariance matrix reads

Ω0 ¼
�

0 1

−1 0

�
: ðF8Þ

Here and throughout this appendix, we order the Majoranas
as γ ¼ ðγ1; γ3;…; γ2M−1; γ2; γ4;…γ2MÞ. Given a Gaussian
state jϕi, its covariancematrix can be computed if we know a
Gaussian unitary operator O such that

jϕi ¼ Oj0i: ðF9Þ
Indeed, denoting by O the single-particle orthogonal matrix
corresponding to O, viz. O†γjO ¼ Oijγi, we have

Ω½ϕ� ¼ OTΩ0O: ðF10Þ
For what follows, it is important to note that the state (F9) is
annihilated by the operators

aμ ¼ ðOcμO†Þ ¼
X
j

Uj;μcj þ Vj;μc
†
j ; ðF11Þ

where the M ×M matrices U and V are defined by�
UT VT

V† U†

�
¼ 1

2

�
1 −i1
1 i1

�
O

�
1 1

i1 −i1

�
: ðF12Þ

Note that the matrices U and V in the lhs are well defined,
since O is a real matrix. In addition, because of unitarity, it
must be

V†U� þ U†V� ¼ 0; U†U þ V†V ¼ 1: ðF13Þ
The algorithm works as follows. We first discretize

time, and, for all time steps, we compute the orthogonal
matrix OðtÞ corresponding to an operator OðtÞ such that

jψ ti ¼ OðtÞj0i [clearly, Oð0Þ ¼ 1]. The infinitesimal time
interval dt is replaced by a finite Trotter time Δt, which is
taken to be sufficiently small (we always check robustness
of our data with respect to decreasing Δt).
Let us first consider the unitary step (F5). Denoting by

jψ ti the state of the system at time t and by OðtÞ the
corresponding orthogonal matrix, the state of the system is
updated as

jψ ti ↦ Wjψ ti; ðF14Þ
where W ¼ expð−iHΔtÞ, with Jj;jþ1ðtÞ drawn from the
random Gaussian distribution with average 0 and variance
J2=ðΔtÞ. Therefore, the matrix OðtÞ is updated as

OðtÞ ↦ OðtÞW; ðF15Þ
where

W ¼ e2
P

j;jþ1
Jj;jþ1ðtÞðEj;jþ1−Ejþ1;jÞΔt ðF16Þ

and we introduce the matrices Ej;k defined by ðEj;kÞα;β ¼
δj;αδβ;k. Note that in Eq. (F15) we have right matrix
multiplication.
Next, we consider the nonunitary step (F6) correspond-

ing to weak measurements of the odd Majorana pairs.
Again, we denote by jψ ti the state of the system right
before this step and by OðtÞ the corresponding orthogonal
matrix. After this step, the state is updated as

jψ ti ↦ jψ 0
ti ¼

Djψ ti
kDjψ tik

; ðF17Þ

where

D ¼ exp


X
j

nj½2dξj þ 4ΓoΔtð2hnji − 1Þ�
�
; ðF18Þ

where nj ¼ c†jcj and cj ¼ ðγ2j−1 − iγ2jÞ=2. Note that here
dξj are random numbers with average zero and variance
equal to ΓoΔt. It is immediate to show that this state is
annihilated by the operators

bμ ¼ ðDOcμO†D−1Þ ¼
X
j

Ũj;μcj þ Ṽj;μc
†
j ; ðF19Þ

where

Ũ ¼ D−1U; Ṽ ¼ DV; ðF20Þ
and

D ¼ diagðe−ε1 ; e−ε2 ;…; e−εMÞ; ðF21Þ

where

εj ¼ ½2dξj þ 4ΓoΔtð2hnji − 1Þ�: ðF22Þ
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In Eq. (F20), U and V are defined as in Eq. (F12), where O
is the orthogonal matrix OðtÞ.
Since D† ¼ D� ¼ D, we have

Ṽ†Ũ� þ Ũ†Ṽ� ¼ V†U� þU†V� ¼ 0: ðF23Þ

However, because D is not a unitary operator, Ũ and Ṽ in
Eq. (F20) do not satisfy the second relation in Eq. (F13)
and, therefore, do not define an orthogonal matrix.
However, since jψ 0

ti is annihilated by bμ, it is also
annihilated by different operators that can be written as
b̃μ ¼ Tμνbν as long as T is a nonsingular matrix. This
condition can be most conveniently formulated as

b̃μ ¼
XM
j¼1

Xμ;jcj þ
X2M

j¼Mþ1

Xμ;jc
†
j ; ðF24Þ

where X is any M × 2M matrix, whose rows form a basis
for the row space of the M × 2M matrix�

ŨT; ṼT
	
: ðF25Þ

By definition, we can find such a matrix by performing a
QR decomposition:�

Ũ

Ṽ

�
¼

�
Q11R11

Q21R11

�
: ðF26Þ

Indeed, the rows of the matrix�
QT

11; Q
T
21

	
ðF27Þ

form a basis for the row space of theM × 2M matrix (F25).
It follows that the state jψ 0

ti is also annihilated by

b̃μ ¼
XM
j¼1

½QT
11�μ;jcj þ ½QT

21�μ;jc†j

¼
XM
j¼1

½Q11�j;μcj þ ½Q21�j;μc†j : ðF28Þ

Next, we show that Q11 and Q21 satisfy both the relations
(F13). First, by the property of the QR decomposition, we
immediately have

Q†
11Q11 þQ†

21Q21 ¼ 1: ðF29Þ

Next, plugging Eq. (F26) into Eq. (F23), we have

R†
11ðQ†

21Q
�
11 þQ†

11Q
�
21ÞR11 ¼ 0: ðF30Þ

Because the matrix (F26) is full ranked, R11 is invertible
and so necessarily

Q†
21Q

�
11 þQ†

11Q
�
21 ¼ 0: ðF31Þ

It follows that we can update the orthogonal matrix

OðtÞ ↦ O0ðtÞ; ðF32Þ

where

O0ðtÞ ¼ 1

2

�
1 1

i1 −i1

��
QT

11 QT
12

Q†
12 Q†

11

��
1 −i1
1 i1

�
: ðF33Þ

By construction, O0ðtÞ is orthogonal and jψ 0
ti ¼ O0ðtÞj0i.

Finally, let us consider the nonunitary step (F6) corre-
sponding to weak measurements of the even Majorana
pairs. This can be implemented by simply shifting the
covariance matrix by one and repeating the step described
above for the nonunitary step (F6) corresponding to weak
measurements of the odd Majorana pairs. The shift corre-
sponds to the matrix multiplication

Õt ¼ OtST; ðF34Þ

where

S ¼

0
BBBBBB@

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. . .
.

0

0 0 0 � � � 1

1 0 0 � � � 0

1
CCCCCCA: ðF35Þ

After the QR-decomposition step described above is
applied, yielding an orthogonal matrix, we finally shift
back by performing a right multiplication by the matrix S.
For completeness, we also briefly recall how the Rényi

entropies can be obtained from the covariance matrix [137].
Let us denote by Γl the matrix obtained by selecting the
rows and columns j; k ¼ 1;…2l from Eq. (F7). Γl is real
and antisymmetric, and its 2l eigenvalues form l pairs of
imaginary numbers �iνj, with νj ∈R. The Rényi and von
Neumann entanglement entropies of the subsystem asso-
ciated with the first 2l Majoranas read

Sn ¼
1

1 − n

Xl
j¼1

ln
��

1 − νj
2

�
n
þ
�
1þ νj

2

�
n
�
; ðF36Þ

S1 ¼ −
Xl
j¼1

��
1 − νj
2

�
ln

�
1 − νj
2

�

þ
�
1þ νj

2

�
ln

�
1þ νj

2

��
: ðF37Þ
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APPENDIX G: FURTHER NUMERICAL DATA

In this appendix, we report further plots related to the
data presented in Sec. VI D. First, we show Sn;AðtÞ as
a function of t averaged over quantum trajectories in
Fig. 8. We see that, for Γ ¼ 1 and Γ ¼ 0.1, the entropy
has already reached a plateau at times t ¼ 40 and t ¼ 100,
respectively, therefore justifying the time interval we use to
compute the average.
Finally, as a further test of the theory developed in Sec. VI,

we verify that Sn;A is proportional to ðnþ 1Þ=n. For the
purpose of verifying this explicitly, we define the ratio

Rn;AðLÞ ≔
ΔSn;AðLÞ
ΔS1;AðLÞ

; ðG1Þ

which, according to our theory, should converge to
ðnþ 1Þ=ð2nÞ in the limit of large ln L. Indeed, Fig. 9 shows

that there is a reasonable agreement between the theory and
the numerics, and the numerical data appear consistent with
convergence to the theoretical curve as ln L increases.

APPENDIX H: VORTICES AND BERRY PHASE

In this appendix, we complete the argument in Sec. VII
by showing that the fugacity of a vortex depends on
position as

yj ∝ ð−1ÞNFj: ðH1Þ
The argument is a standard one in the context of magnets—
see, e.g., Ref. [109] [indeed, the N ¼ 2 case of the model is
simply an SU(2) chain]—butwe spell it out for completeness.
For simplicity, we imagine expressing the amplitude

Z ¼ hIje−HtjIi ðH2Þ

FIG. 8. Bipartite von Neumann entanglement entropy S1;A as a function of time for different system sizes L. The data in this plot are
obtained with dt ¼ 2.5 × 10−3.

Theory Theory

FIG. 9. The ratio Rn;AðLÞ [Eq. (G1)] for Δ ¼ 0 and, respectively, Γ ¼ 1 (left) and Γ ¼ 0.1 (right). The main plot shows the ratio of
Rn;AðLÞwith the theoretical prediction of ðnþ 1Þ=ð2nÞ, highlighting that as L increases the ratio becomes closer to 1 (also note the scale
of the y axis). For comparison, an inset shows the value of Rn;A and the theoretical curve. The plot is obtained from the same data used in
Figs. 5 and 6. For graphical convenience, only data obtained with a time step dt ¼ 2.5 × 10−3 are reported. Errors are estimated using
jackknife resampling after blocking quantum trajectories into 20 subsets.
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using the microscopic coherent state path integral: We
wish to isolate sign factors associated with vortex con-
figurations in this integral. Equation (H2) gives boundary
conditionsQðx; tÞ ¼ Qðx; 0Þ ¼ 1 for all x: These boundary
conditions are convenient below for defining winding
numbers, but, since we are ultimately interested in a bulk
property of the field theory, this choice of boundary
conditions is not crucial. Similarly, it is convenient to set
Qð0; t0Þ ¼ QðL; t0Þ ¼ 1 for all t0 ∈ ½0; t�, which can be done
by imposing boundary fields. Finally, we assume that, in
order to fix the phase factor of interest, it is sufficient to
consider configurations of a simple form where vortices are
well separated in space and, far away from the vortex cores,
the field S is slowly varying and lives in the “Q” subspace;
i.e., L and R are zero. However, the structure of the field
configuration close to the vortex core can be arbitrary.
Recall that, given a continuum field configurationQðx; t0Þ,

we can define awindingnumberw∈ π1 × ½SOðNÞ� ¼ Z2 for
a generic closed path γ in spacetime, with w ¼ 1 ifQ ∘ γ is a
noncontractible path in SOðNÞ. Equivalently, w ¼ 1 if γ
encloses an odd number of vortices.
On the lattice, we may define an integer winding number

wj for each site j, describing the winding of the field along
the path with fixed position j and t0 ∈ ½0; t�. For each bond
of the lattice between sites j and jþ 1, we define a vortex
number njþ1=2 by

njþ1=2 ¼ wjþ1 þ wj ðmod 2Þ: ðH3Þ

This definition is natural if we think of the vortices as
located at spacetime positions ðjþ 1=2; t0Þ associated with
bonds of the 1D chain sites [109]. However, the micro-
scopic centering is not crucial for the following, since we
need only the winding numbers far from the vortex cores.
On sites far from the vortex cores, we take the field

configuration to be of the form

QðtÞ ¼

0
B@

cosðθtÞ − sinðθtÞ 0

sinðθtÞ cosðθtÞ 0

0 0 1

1
CA; ðH4Þ

where θt is a smoothly evolving function with θðt ¼ 0Þ ¼ 0
and θðtÞ ¼ 2πm for somem∈Z. SinceL ¼ R ¼ 0 for these
sites, the configuration ofQ fully specifies the coherent state
in terms of fermions (see Appendix E). Thewinding number
associated with such a site is then w ¼ mðmod 2Þ.
The imaginary part of the action comes from a Berry

phase for each site; cf. Eq. (E5). Below, we show that for a
configuration of the above form the Berry phase is of the
form expðiNFΩ½w�Þ ¼ ð−1ÞNFw.
We can then ask how the total action for the entire

configuration changes when a vortex is translated by one
lattice spacing, say, from jþ 1=2 to jþ 3=2. Let the
winding number of the sites to the left of this vortex
(sufficiently far from the core) be w, and let the winding

number of the sites to the right (sufficiently far from the
core) be wþ 1ðmod 2Þ. The shift is done in such a way that
the configuration in a region of some large spatial width R
around the core is simply translated. As a result, the
contribution to the action from this core region is unaltered.
However, outside this core region, the effect of the trans-
lation is that there is one additional site with winding
number w and one fewer site with winding number wþ 1.
Therefore, translating a vortex changes the overall weight
e−S in the path integral by ð−1ÞNF. Translated into the
effective field theory picture (73), this implies that the vortex
fugacity yj alternates in sign with position if NF is odd.
Note that we have fixed only the position dependence of

the sign of the fugacity: The prefactor may have either sign.
After coarse graining, we obtain the position-

independent fugacity y as described in Sec. VII. Using
standard ideas from the spin chain context, one can argue that
reversing the sign of y exchanges a disordered phase with
gapless projective modes at the boundary for a disordered
phase without such modes. In terms of Majoranas, this is the
presence or absence of undimerized boundary Majoranas.
For example, at NF ¼ 1, we have the two oppositely
dimerized gapped phases (discussed in Sec. V) which are
related by translation (since, forNF odd, translation changes
the sign of y). ForNF ¼ 2, we expect twogapped phases, one
at y > 0 that is trivial and one at y < 0 that is analogous to the
Haldane or Affleck-Kennedy-Lieb-Tasaki phase.
Computing the Berry phase for a given winding reduces

to the spin-1=2 problem. First, we note that the relevant
coherent states factorize between different flavors, so NF

just appears as an exponent in the form eiNFΩ½w�. (From now
on, we consider a single site and so suppress the site index.)
Next we note that, for the specified QðtÞ, the coherent state
spans a two-dimensional subspace. We can see this by
explicitly by choosing the orthogonal matrix O and its
unitary representationWO appearing in the definition of the
coherent states jSi ¼ ŴOjIi. We choose

O ¼

0
B@

cosðθÞ þ sinðθÞ 0

− sinðθÞ cosðθÞ 0

0 0 12N−2

1
CA: ðH5Þ

(We denote the dimension of the identity matrix
as a subscript.) This can be represented by the unitary
transformation

WO ¼ exp

�
−
θ

2
γþ1γþ2

�
: ðH6Þ

We can then map the space of the 2N Majorana modes into
a collection of N − 1 spin-1=2; e.g., we can identify
iγþðaþ1Þγ−ðaþ1Þ with Xa, the X Pauli matrix on the ath
site. The fact that we can encode the 2N Majorana modes
into N − 1 spins rather than N is due to the conservation of
R ¼ Q

aðiγþaγ−aÞ, which halves the dimension of the
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Hilbert space. Through this mapping,WOjIi corresponds to
a two-dimensional space where Xa ¼ 1 for all a > 1,
whereas the state of the first spin depends on O. For the
first spin, we have X1 ¼ iγþ1γ−1 ¼ iγþ2γ−2, with the
second equality originating from R ¼ 1. Given that
iγþ1γ−2 ¼ −iγþ2γ−1 anticommutes with X1 but commutes
with all other Xa, we can identify it with Y1.
From the mapping above, we now recognize that the

coherent states WOjIi correspond to states of a spin-1=2.
Computing the expectation values of X1, Y1, and Z1 ¼
−iX1Y1 as a function of θ, we have that the Berry phase
associated with QðtÞ is equal to that of a spin-1=2 coherent
state trajectory with0

B@X

Y

Z

1
CA ¼

0
B@ cos θt

sin θt
0

1
CA: ðH7Þ

Using the explicit form of the Berry phase for spins [73],
we see that the Berry phase depends on only the winding
number m of the angle modulo 4π and that eiΩð1Þ ¼ −1,
thus completing our argument.

APPENDIX I: FROBENIUS NORM OF an

In this section, we report a detail related to Sec. VI: the
computation of the Frobenius norm of the matrices
an ¼ lnðqnÞ, defined in Eq. (59). We recall that the branch
of the ln should be chosen in such a way that kank is
minimum.We start by writing the characteristic polynomial
for qn, by noting that

ðqnÞn ¼ ð−1Þnþ11: ðI1Þ
This fixes the eigenvalues of an to be

λj¼
2π

n
j; j¼−

n−1

2
;…;

n−1

2
; for n odd; ðI2Þ

λj¼
2πj−π

n
; j¼−

n
2
þ1;…;

n
2
; for n even: ðI3Þ

Then, the Frobenius norm is given by

kank2 ¼
π2ðn2 − 1Þ

3n
ðI4Þ

independently of the parity of n.
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