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First-order nonequilibrium phase transitions observed in active matter, fluid dynamics, biology, climate
science, and other systems with irreversible dynamics are challenging to analyze, because they cannot be
inferred from a simple free energy minimization principle. Rather, the mechanism of these transitions
depends crucially on the system’s dynamics, which requires us to analyze them in trajectory space rather
than in phase space. Here, we consider situations where the path of these transitions can be characterized as
the minimizer of an action, whose minimum value can be used in a nonequilibrium generalization of the
Arrhenius law to calculate the system’s phase diagram. We also develop efficient numerical tools for the
minimization of this action. These tools are general enough to be transportable to many situations of
interest, in particular, when the fluctuations present in the microscopic system are non-Gaussian and its
dynamics is not governed by the standard Langevin equation. As an illustration, first-order phase
transitions in two spatially extended nonequilibrium systems are analyzed: a modified Ginzburg-Landau
equation with a chemical potential which is nongradient and a reaction-diffusion network based on the
Schlögl model. The phase diagrams of both systems are calculated as a function of their control parameters,
and the paths of the transitions, including their critical nuclei, are identified. These results clearly
demonstrate the nonequilibrium nature of the transitions, with differing forward and backward paths.
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I. INTRODUCTION

Materials with identical microscopic constitutions can be
found in very different macroscopic states when external
conditions, such as temperature or pressure, vary. A major
achievement of equilibrium statistical mechanics is to give
a first-principles explanation of these phase transitions.
The theory posits the existence of a distribution, for
example, of Boltzmann-Gibbs type, that gives the proba-
bility of finding the microscopic system in any of its
possible configurations. Macroscopic properties like the
system’s density, magnetization [1], population number
in the ground state [2], etc., can then be deduced by
enumerating all the microscopic configurations consistent
with a given value of the chosen macroscopic observable
and identifying which of these values is most likely. This
information is typically encapsulated in a free energy,
usually referred to as Landau’s [3], whose local minima
identify the system’s metastable phases and whose global
minimum is its thermodynamically preferred phase.

The statistical mechanics approach to phase transitions
rests on the assumption that the probability distribution of
the microscopic system is known. This information is
available for equilibrium systems, whose microscopic
dynamics is time reversible. In this work, however, we
are primarily interested in nonequilibrium systems, whose
dynamics is irreversible. Except for some special situations
where it can be computed exactly [4,5] or asymptotically,
e.g., via some thermodynamic mapping [6–9], the invariant
distribution of these systems is not known, in general.
Yet, these systems, too, can undergo phase transitions.
Examples include driven systems arising from active
matter [10–15], fluid dynamics [16,17], biology [18],
neuroscience [19–21], climate science [22,23], etc. The
description of such nonequilibrium phase transitions
requires a generalization of the equilibrium statistical
mechanics approach, in which we must consider the
probability of trajectories rather than configurations, see
Table 1 for a summary. Proposing such a generalization and
exploring its consequences is the aim of this paper.
More specifically, our approach is based on a minimum-

action principle in trajectory space that allows one to
characterize the pathways that some suitably chosen macro-
scopic variables follow with high probability. This principle
captures the effects of the microscopic fluctuations on the
macroscopic quantities of interest and applies for systems
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whose dynamics do not need to satisfy detailed balance.
Therefore, it offers a nonequilibrium generalization of
Landau’s free energy principle. In particular, the minimum-
action principle can be leveraged to estimate probability ratios
of state occupation as well as first-order phase transitions,
identified as the parameter manifold where metastable phases
are equally probable. The approach also lends itself naturally
to numerical computations, using the tailored-designed algo-
rithms developed here. The usefulness of these schemes is
demonstrated below via the thorough treatment on two non-
trivial examples of phase transitions with generic features.

A. Free energy principle at equilibrium

Let us beginwith a short summary of Landau’s free energy
approach to equilibrium phase transitions, as this will be
useful to contextualize the nonequilibrium approach intro-
duced below. If we denote by ϕ the variable used to
characterize themacroscopic state of the system, its statistical
weight at equilibrium is obtained by summing the system’s
probability distribution over all microscopic states consistent
with a given realization of ϕ. Performing this calculation
typically require sophisticated tools such as renormalization
group theory [24], the replica method, or the cavity method
[25,26], along with tools from large deviation theory [27]. It
generically shows that the statistical weight of ϕ is asymp-
totically given by exp½−VðϕÞ=ϵ�, where VðϕÞ is some free
energy to be calculated and ϵ is a small parameter that tends
to zero in the thermodynamic limit when the number of
microscopic constituents tends to infinity: As a result, the
theory predicts that the system will be found in the macro-
scopic state ϕ of minimum free energy with probability one
in this limit. This also explains equilibrium phase transitions:
They take place when the topology of the free energy VðϕÞ
changes as a control parameter, like the temperature or some
applied external field, is varied. For example, ifVðϕÞ has two
wells whose relative depths change with the control param-
eter, a first-order phase transition occurs when the deepest
well becomes more shallow than the other well, and, as a
result, the macroscopic state of the system changes from the
first to the second.

B. Minimum-action principle out of equilibrium

Even in situations where the stationary distribution of
nonequilibrium systems is not known in general, we can
often write down the probability distribution of their
trajectories, using, e.g., path-integral approaches such as
the Martin-Siggia-Rose-Janssen-De Dominicis [28] or the
Doi-Peliti formalism [29] or Girsanov theorem. This offers
the possibility to generalize the micro-to-macro mapping to
trajectory space rather than phase space: That is, enumerate
all the microscopic trajectories leading to the same evolu-
tion of a macroscopic variable and thereby deduce the
probability weight of these macroscopic trajectories. While
these calculations are again to be performed on a case-by-
case basis, by analogy with the equilibrium setup we can
deduce some of the generic features of the result. Let us
discuss those next.
Assuming again that the macroscopic state of the system

can be described by a variable or field ϕ in some differ-
entiable manifold M [for example Rd, Sd, or L2ðRdÞ],
working in trajectory space amounts to calculating the
probability weight of a macroscopic path fϕðtÞgt∈½0;T� by
enumerating the microscopic trajectories consistent with
fϕðtÞgt∈½0;T� and summingover their probability distribution.
Generically, we expect the result of this sum to indicate that
the weight of the macroscopic path fϕðtÞgt∈½0;T� is asymp-
totically given by the factor expð−ST ½ϕ�=ϵÞ, where ϵ is again
a small parameter that goes to zero as the number of
microscopic constituents in the system goes to infinity and
ST ½ϕ� is an action, that is, a functional of fϕðtÞgt∈½0;T�. The
specific form of this action depends on the problem under
consideration (examples are given below), but it typically
takes the form of an integral over a Lagrangian

ST ½ϕ� ¼
Z

T

0

Lðϕ; _ϕÞdt; ð1Þ

where _ϕ ¼ dϕ=dt ∈ TϕM. The action ST ½ϕ� is the non-
equilibrium generalization of the free energy VðϕÞ, and
minimization of ST ½ϕ� allows us to quantify the probability

TABLE I. Correspondence of formalisms.

Equilibrium approach in phase space Nonequilibrium approach in trajectory space

Microscopic weights Probability distribution (e.g., Boltzmann-Gibbs
distribution) of the microscopic variables in state
space

Probability distribution (e.g., path integral) of the
microscopic trajectories

Macroscopic variable Map from microscopic state space to coarse-
grained macroscopic space (e.g., spin values to
magnetization)

Map from microscopic trajectories in phase space
to macroscopic trajectories

Macroscopic weights Marginal distribution of the macroscopic variables
and associated free energy

Marginal distribution of the macroscopic
trajectories and associated action

Macroscopic predictions Free energy minimization Action minimization
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and mechanism of various macroscopic events in the limit
as ϵ → 0. In particular,

(i) The probability that the system started in state ϕa at
time t ¼ 0 ends up in state ϕb at time T is obtained
by summing expð−ST ½ϕ�=ϵÞ over all paths with
these end points. When ϵ ≪ 1, the path with mini-
mum action dominates this sum, which means that
the aforementioned probability is asymptotically
given by

P½ϕðTÞ ¼ ϕbjϕð0Þ ¼ ϕa� ≍ exp ð− inf ST ½ϕ�=ϵÞ;
ð2Þ

where the minimization is taken over all paths
fϕðtÞgt∈½0;T� such that ϕð0Þ ¼ ϕa and ϕðTÞ ¼ ϕb

and ≍ means exponential asymptotics; i.e., the ratio
of the logarithm of both sides in Eq. (2) tends to 1 as
ϵ → 0. The minimizer of the action also gives the
pathway by which the macroscopic transition event
occurs with probability one in this limit.

(ii) The nonequilibrium invariant distribution of the
system can be characterized similarly via the qua-
sipotential defined as

Vϕa
ðϕbÞ ¼ inf

T>0
inf ST ½ϕ� ð3Þ

where the inner minimization is again taken over
all paths fϕðtÞgt∈½0;T� such that ϕð0Þ ¼ ϕa and
ϕðTÞ ¼ ϕb. The quasipotential Vϕa

ðϕbÞ plays a role
analogous to the free energy barrier from state ϕa to
ϕb, and it can be used to identify the possible phases
and formulate an equivalent of the Arrhenius law.
More precisely, ϕa is a metastable phase if VϕðϕaÞ ≤
Vϕa

ðϕÞ for all ϕ in a vicinity of ϕa (i.e., ϕa is the
nonequilibrium equivalent of a local minimum on
the free energy); and, if ϕa and ϕb are the only
two metastable phases in the system, the asymptotic
rates of transition from ϕa to ϕb and ϕb to ϕa are,
respectively, given by

ka;b ≍ e−Vϕa ðϕbÞ=ϵ; kb;a ≍ e−Vϕb
ðϕaÞ=ϵ: ð4Þ

(iii) Equation (4) is a nonequilibrium generalization of
the Arrhenius law. It implies that the relative pro-
bability to find the system in states ϕa or ϕb on its
nonequilibrium invariant distribution is asymptoti-
cally given by

PðϕbÞ=PðϕaÞ ≍ e−½Vϕa ðϕbÞ−Vϕb
ðϕaÞ�=ϵ: ð5Þ

As a result, with probability 1 as ϵ → 0, the system is
in state ϕa if Vϕa

ðϕbÞ > Vϕb
ðϕaÞ and state ϕb if

Vϕa
ðϕbÞ < Vϕb

ðϕaÞ. By analyzing how the quasi-
potential varies in terms of the system’s control

parameters, we can thereby identify nonequilibrium
phase transitions that arise when Vϕb

ðϕaÞ¼Vϕa
ðϕbÞ

and characterize their mechanism—the details of
these calculations are given below. We also refer the
reader to Fig. 1 for a graphical illustration in a toy
system of nonequilibrium phase transition whose
detection requires the formalism above. The figure
shows the reaction paths for a particle subjected to a

(a)

(b)

FIG. 1. Example of nonequilibrium phase transition in a toy
two-dimensional system with two metastable states (black
disks) and action ST ½x;y�¼ 1

2

R
T
0 ½j _x−fðx;yÞj2þj _y−fðy;xÞj2�dt,

where fðx; yÞ ¼ Dðy − xÞ þ x − x3 þ hþ νðx − yÞ2. The param-
eters D and h are fixed to 0.5 and −0.1, respectively, while ν is
used as a control parameter. The flow of the vector field f for
ν ¼ 0.5 is shown in the (a) and ν ¼ 1.5 in the (b). This flow is
nongradient (i.e., the deterministic dynamics is not steepest
descent over an energy) and has two stable fixed points ϕa
and ϕb, which solve fðx; yÞ ¼ fðy; xÞ ¼ 0 and which are the
possible phases in this toy example. The blue line represents the
most probable transition path (i.e., the minimizer of the action)
from ϕa to ϕb, and the orange line is the most probable path from
ϕb to ϕa. The thickest line indicates the path with the larger rate:
That is, ϕa is the stable phase when ν ¼ 0.5 (a), while ϕb is the
stable phase when ν ¼ 1.5 (b). The transition paths are calculated
with the method developed in this paper and cross-checked using
GMAM [30].
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Langevin additive noise in some nongradient force
field with two stable fixed points. The reaction paths
from ϕa to ϕb and from ϕb to ϕa do not coincide,
confirming the nonequilibrium nature of the system.
The relative stability of the fixed points is given by the
numerical computation of the quasipotential.

C. Hamiltonian formalism

The minimum-action principle described in the last
section offers a way to study transition events and phase
transitions in nonequilibrium systems. Concrete predic-
tions, however, rest on our ability to (i) derive the
Lagrangian used in the action (1) and (ii) minimize this
action as needed in Eqs. (2) and (3).
Like in the equilibrium case, resolving the first issue is

again complicated, in general, and requires to be handled
on a case-by-case basis. When these calculations can be
done (see Sec. II for a list of examples), one often deduces
that Lðϕ; _ϕÞ is given as the Legendre-Fenchel transform of
a Hamiltonian Hðϕ; θÞ:

Lðϕ; _ϕÞ ¼ sup
θ∈TϕM

½hθ; _ϕi −Hðϕ; θÞ�; ð6Þ

where h·; ·i denotes the scalar product in TϕM and θ is a
field conjugate to ϕ whose physical meaning is explained
below. The form of the Hamiltonian Hðϕ; θÞ is also
problem dependent, but it is known in some instances;
see Sec. II A.
Using Eq. (6), the minimization of the action can then be

formulated as a min-max problem:

inf
ϕ
STðϕÞ ¼ inf

ϕ
sup
θ

Z
T

0

½h _ϕ; θi −Hðϕ; θÞ�dt; ð7Þ

where the supremum is taken over all fθðtÞgt∈½0;T� and the
infimum over all fϕðtÞgt∈½0;T� such that ϕð0Þ ¼ ϕa and
ϕðTÞ ¼ ϕb. To get the quasipotential, we must also con-
sider an extra minimization over all T > 0 to Eq. (7), while
other applications may require adding terms to Eq. (7) or
modifying the boundary conditions for this min-max
problem. In most cases, these calculations must be per-
formed numerically. One of the main goals of this paper
is to develop robust numerical methods for these com-
putations. These methods aim to be general enough to
be applicable to a wide variety of systems that fit the
framework above; here, we also use them to solve some
nontrivial examples involving spatially extended systems
undergoing nonequilibrium phase transitions.

D. Related works

The Euler-Lagrange equations associated with the min-
max problem (7) are Hamilton’s classical equations:

_ϕ ¼ ∂θH; _θ ¼ −∂ϕH: ð8Þ

What makes the problem nonstandard, however, are the
boundary conditions imposed on ϕðtÞ at t ¼ 0 and t ¼ T.
The nature of these boundary conditions suggests to use
shooting methods [31], as proposed, e.g., in Ref. [32], but
such methods scale badly with dimension or can even be ill
posed for the problems we are interested in, for which the
equation for θ in Eq. (8) cannot be integrated forward in
time. Shooting methods are also hard to use when T ¼ ∞,
which typically arises when we consider infT>0 inf ST ½ϕ�.
To get around this difficulty, the minimum-action method

(MAM) proposed in Ref. [33] evolves the whole trajectory
fϕðtÞgt∈½0;T�while keepingϕð0Þ ¼ ϕa andϕðTÞ ¼ ϕb fixed.
This amounts to performing gradient descent (GD) on
the action in the landscape of all authorized paths satisfying
these boundary conditions. Introducing the artificial opti-
mization time τ, GD results in the following evolution
equation for fϕðτ; tÞgτ≥0;t∈½0;T�:

∂τϕ ¼ −
δST ½ϕ�
δϕðtÞ ; ϕðτ; 0Þ ¼ ϕa; ϕðτ; TÞ ¼ ϕb; ð9Þ

or using the Lagrangian formulation of the action

∂τϕ ¼ −
�
∂L
∂ϕ

−
d
dt

�
∂L

∂ _ϕ

��
; ð10Þ

with the same boundary conditions at t ¼ 0; T. The main
drawback ofMAM is that it involves the LagrangianLðϕ; _ϕÞ
rather than the Hamiltonian Hðϕ; θÞ, and there are many
problems of interest where the latter is explicitly available
but the former is not. Solving Eq. (10) then requires one
to perform maxθ½h _ϕ; θi −Hðϕ; θÞ� for all t ∈ ½0; T� at each
iteration step in τ to numerically get an estimate of the
function ϑðϕ; _ϕÞ such that

Lðϕ; _ϕÞ ¼ h _ϕ; ϑðϕ; _ϕÞi −H½ϕ;ϑðϕ; _ϕÞ�: ð11Þ

Proceeding similarly, we can also obtain numerical estimates
for the derivative ∂L=∂ϕ and ðd=dtÞ∂L=∂ _ϕ appearing on
the right-hand side of Eq. (10). This approach is used in
Ref. [34]. The downside is that Eq. (10) is a partial differential
equation in physical time t, optimization time τ, and possibly
space as well when ϕ and θ are fields; writing efficient
numerical solvers for such equations typically requires one to
use implicit schemes for numerical stability and/or effi-
ciency, and such schemes are hard to design without explicit
knowledge of ϑðϕ; _ϕÞ. This is why here we want to bypass
the computation of ϑðϕ; _ϕÞ and solve the min-max problem
in Eq. (7) concurrently by treating the minimization over ϕ
and the maximization over θ on equal footings.
If we now turn our attention to the quasipotential (3), an

extra minimization over all T > 0 must be added to the
min-max problem (7). The MAM can be generalized to
handle this problem by using a reparametrization of the
path fϕðtÞgt∈½0;T� by arclength rather than physical time.
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This formulation leads to the geometric minimum-action
method (GMAM), in which the minimization over T is
performed explicitly beforehand [30]. GMAM is further
developed and used in Ref. [34,35], and a variant of it is
also recently proposed in Ref. [36] to compute the quasi-
potential by a spectral decomposition of paths and an
optimization of basis coefficients. However, these methods
are Lagrangian based, with the issues discussed before. We
show below how to use the ideas behind GMAM in a
Hamiltonian approach and, thereby, get an efficient method
to solve infT>0infϕST ½ϕ�.
On the analytical side, the quasipotential is related to the

solution VðϕÞ of the Hamilton-Jacobi equation [37,38]

0 ¼ Hðϕ; ∂V=∂ϕÞ: ð12Þ
This equation can be used to deduce some structural
properties of the quasipotential. It is a central object in
problems that can be tackled through macroscopic fluc-
tuation theory (MFT), and the review in Ref. [39] provides
numerous examples and useful insights. Reference [40]
also discusses how to perturbatively solve this equation in
systems that are close to equilibrium. In general, however,
Eq. (12) needs to be solved numerically, which is non-
trivial, since it is a complicated partial differential equa-
tion (or even a functional equation when ϕ is a field). In
dimension 2 or 3, this can be done globally using fast
marching methods like the one discussed in Ref. [41]. In
dimension higher than 3, these methods become inappli-
cable, and Eq. (12) must be solved locally by the method of
characteristics using the variational formulation of this
equation: This brings us back to solving infT>0infϕST ½ϕ�.

E. Organization and main contributions

The remainder of this paper is organized into theory,
numerics, and applications.

1. Theoretical results

In Sec. II, we give more details about the minimum-
action principle that is at the core of our approach. To this
end, in Sec. II A, we first present typical classes of
stochastic dynamical systems that display metastability
and nonequilibrium phase transitions and are amenable
to analysis via action minimization. For illustration, we also
use our method to compute the transition paths between
metastable states in two low-dimensional benchmark mod-
els, namely, the Maier-Stein model [32] and the Schlögl
model [42]. In Sec. II B, we discuss the features of the
minimum-action framework in a general setup and sum-
marize the main outputs of the approach.

2. Numerical contributions

In Sec. III, we present a numerical method for solving the
min-max problem (7). The scheme is based on performing
gradient descent-ascent (GDA) on the objective, which has

the advantage that it can be formulated directly in the
Hamiltonian setup. The main issue we need to address is
that, in our context, the GDA equations are partial differ-
ential equations of hyperbolic type in some optimization
time τ and physical time t, to be solved with boundary
conditions at t ¼ 0 and t ¼ T. In Sec. III A, we show that a
simple linear change of variables in these equations allows
us to reformulate them in a way that is convenient for
numerical solution via Strang splitting. In Sec. III B, we
then generalize this scheme to compute the quasipotential
when an extra minimization over T is added to Eq. (7). This
is done by using a geometric formulation in which the paths
fϕ; θgt∈½0;T� are reparametrized using normalized arclength.
This allows us to handle the minimization of T efficiently
and calculate paths whose duration in physical time is
infinite but whose length remains finite.

3. Applications

In Secs. IV and V, we then use the methods we propose
to analyze two spatially extended nonequilibrium systems
that display first-order phase transitions. The method is
relevant in regimes far from critical points but close to the
first-order transition line. In Sec. IV, we study a modified
Ginzburg-Landau (GL) dynamics subject to an additive
Gaussian white noise. The noiseless evolution of the field
is nongradient with two stable fixed points; the noise
makes these points metastable, and we must resort to
minimum-action algorithms to compute the nonequili-
brium transition pathways between them. The action
along these paths allows us to estimate the relative
probability of the metastable states. We use this procedure
to compute the phase diagram of the system in function of
two control parameters. In Sec. V, we study a spatially
extended version of the Schlögl model, in which the
fluctuations are driven by both diffusion of the micro-
scopic molecules and reactions between them. This
system displays a first-order nonequilibrium phase tran-
sition in terms of the diffusivity of the molecules, which
we characterize. We also show that the predictions of the
minimum-action approach explain the transition events
observed in the microscopic system.
Some other possible applications of our approach are

discussed in Sec. VI, and concluding remarks are given in
Sec. VII. Technical developments are deferred to several
Appendixes.

II. PROBLEM SETUP AND INTERPRETATION

The aim of this section is to provide a better motivation
of the minimum-action principle introduced in the intro-
duction and pinpoint some of its key predictive features.
For the reader’s convenience, we begin by listing a
collection of motivating problems where the formalism
applies. In Sec. II B, we then put the approach in a broader
context and explain how to use it to analyze metastability.
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A. A collection of motivating problems

The first two examples (a and b) involve no coarse-
graining from micro-to-macro and are included because
they are simple and transparent; the last three examples
(c–e) require one to define proper macroscopic variables to
derive the minimum-action principle and its Hamiltonian.
(a) Diffusion in detailed balance.—Consider the motion

of a particle xðtÞ ∈ Rd whose evolution is governed by
the overdamped Langevin equation

_x ¼ −∇UðxÞ þ
ffiffiffiffiffiffiffiffi
2kT

p
ηðtÞ; ð13Þ

where UðxÞ is some potential, kT is the product of
Boltzmann constant k and the temperature T, and ηðtÞ
is a white noise. The dynamics (13) is in detailed
balance with respect to the Boltzmann-Gibbs proba-
bility density function ρðxÞ ¼ Z−1e−UðxÞ=kT , where
Z ¼ R

Rd e−UðxÞ=kTdx. If the potential UðxÞ has multi-
ple local minima and the temperature kT is much
smaller than the barriers between them, Eq. (13)
displays metastability: The system stays confined
for a long time in the well around a minimum of
UðxÞ before finally hopping to another well where the
process repeats. In this example, we can use a WKB
expansion to analyze the Fokker-Planck equation
associated with Eq. (13). The eikonal equation ob-
tained at leading order in kT is a Hamilton-Jacobi
equation whose Hamiltonian is given by

Hðx; θÞ ¼ −hθ;∇UðxÞi þ jθj2: ð14Þ

This Hamiltonian is the one to be used in the min-max
problem (7), as can also be proven rigorously using
Freidlin-Wentzell large deviation theory (LDT) [37].
In this example, the quasipotential VxaðxbÞ can be
calculated explicitly. If xa and xb are the locations of
two local minima ofUðxÞwith adjacent wells, the path
minimizing the action (3) is the minimum energy path
between these two points, and VxaðxbÞ is given by

VxaðxbÞ ¼ UðxsÞ −UðxaÞ; ð15Þ

where UðxsÞ is the energy of the saddle point of
minimum height (also known as mountain pass)
between xa ad xb. Thus, we recover the Arrhenius
law for the rate of transition from xa to xb:

ka;b ≍ e−Vxa ðxbÞ=kT ¼ e−½UðxsÞ−UðxaÞ�=kT: ð16Þ

(b) Diffusion out of equilibrium.—The picture above can
be generalized to systems whose evolution is de-
scribed by the stochastic differential equation (SDE)

_x ¼ bðxÞ þ ffiffiffi
ϵ

p
σðxÞηðtÞ; ð17Þ

even if this equation is not in detailed balance; i.e., it is
not possible to write the drift bðxÞ as −DðxÞ∇UðxÞ þ
kT∇ ·DðxÞ for DðxÞ ¼ ðσσTÞðxÞ and some potential
UðxÞ. Metastability is observed with Eq. (17) in
situations where the noiseless deterministic system
_x ¼ bðxÞ has multiple stable fixed points and the noise
amplitude is small but finite: The system hovers for
long times in the basin around one of these fixed
points, but a noise-driven transition to another basin
eventually occurs. These transitions can be described
by the minimum-action principle using the Hamilto-
nian which can again be obtained via WKB analysis of
the Fokker Planck equation associated with Eq. (17).
It is given by

Hðx; θÞ ¼ hbðxÞ; θi þ 1

2
jσðxÞθj2: ð18Þ

Given two stable fixed points xa and xb of _x ¼ bðxÞ
with adjacent basins of attraction, it is no longer
possible, in general, to solve Eq. (3) analytically
and calculate VxaðxbÞ—to do so requires numerical
tools of the type developed below. Still, we know that
the rates of transition from xa to xb and xb to xa satisfy,
respectively,

ka;b ≍ e−Vxa ðxbÞ=ϵ; kb;a ≍ e−Vxb
ðxaÞ=ϵ; ð19Þ

and, with probability 1 as ϵ → 0, the system per-
forms the transition by following the optimal path
minimizing Eq. (3)—for an illustration in the context
of Maier-Stein model [32], see Fig. 2. The results in
SDE with small noise of this type can be made
rigorous using the Freidlin-Wentzell theory of large
deviations (LDT) [37].

(c) Reaction networks.—Consider a well-stirred chemical
network between M chemical species, where the
quantity of species i is denoted Xi. Define the
population vector X ¼ ðX1;…; XMÞT, and assume
that there are R reaction channels with rates wjðxÞ
and change (stoichiometric) vectors νj ∈ ZM, i.e.,

X⟶
wjðXÞ

X þ νj; j ¼ 1;…; R: ð20Þ

When the typical number of agents, Ω, tends to
infinity, the dynamics of x ¼ X=Ω is captured by
the mass-action law

_x ¼
XR
j¼1

wjðxÞνj; ð21Þ

and the minimum-action principle is useful to quantify
the effects of fluctuations when the number of
agents is large but finite. In particular, metastability
arises if Eq. (21) has multiple stable fixed points
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(see Refs. [43,44]), and it can be analyzed using the
Hamiltonian

Hðx; θÞ ¼
XR
j¼1

wjðxÞðehνj;θi − 1Þ: ð22Þ

Here, too, this Hamiltonian can be obtained rigorously
via Freidlin-Wentzell LDT, formally via WKB

analysis of the system’s master equation [43,45]
(see also the appendix in Ref. [13] for a pedagogical
derivation), or via a Doi-Peliti field theory computa-
tion [29,46–48]. If xa and xb denote two stable fixed
points of Eq. (21) with adjacent basins of attraction,
the rates of transition from xa to xb and xb to xa are,
respectively, given by

ka;b ≍ e−ΩVxa ðxbÞ; kb;a ≍ e−ΩVxb
ðxaÞ; ð23Þ

and with probability 1 as Ω → ∞, when the network
performs the transition, X=Ω follows the optimal path
minimizing Eq. (3). This minimization needs again to
be performed numerically, in general. As an illustrat-
ing example, Fig. 3 displays reaction paths in the
bistable Schlögl model with two reactive compart-
ments: This model belongs to the class of reaction-
diffusion networks that are properly introduced in
Sec. V. Note that if we reduce the number of compart-
ments to one, the quasipotential of this model can be
explicitly obtained from the Hamiltonian; see Fig. 4.

(d) Interacting particle systems.—Consider N particles
xi ∈ Λ ⊂ Rd, i ¼ 1;…; N, that evolve according to

_xi ¼ bðxiÞ þ
1

N

XN
j¼1

kðxi; xjÞ þ σðxiÞηiðtÞ; ð24Þ

where bðxÞ is a drift as in Eq. (17), kðx; yÞ is some
interaction kernel, and ηiðtÞ are independent white
noises. To analyze such interacting particle systems,
it is convenient to introduce the empirical density
of the particles: ρNðt; xÞ ¼ N−1PN

i¼1 δ½x − xiðtÞ�. As
N → ∞, this empirical density converges toward the
density ρðt; xÞ that satisfies McKean-Vlasov equation

∂tρ ¼ −∇ · ½Bðx; ½ρ�Þρ� þ 1

2
∇∇∶ ½DðxÞρ�; ð25Þ

whereBðx; ½ρ�Þ¼bðxÞþR
Rd kðx;yÞρðyÞdy andDðxÞ ¼

ðσσTÞðxÞ. Large fluctuations away from the mean-field
dynamics (25) can be captured by the minimum-action
principle, by using the Hamiltonian

Hðρ; θÞ ¼
Z
Rd

∇θðxÞ · bðxÞρðxÞdx

þ
Z
Rd×Rd

∇θðxÞ · kðx; yÞρðxÞρðyÞdxdy

þ 1

2

Z
Rd

jσðxÞ∇θðxÞj2ρðxÞdx: ð26Þ

This Hamiltonian can again be derived rigorously using
LDT [49], and it formally follows fromaWKBanalysis,
nowperformed on the functionalmaster equation for the
empirical particle density.

Heteroclinic orbit,
Minimizer,

(a)

(b)

FIG. 2. Optimal reaction path in the Maier-Stein model [32]:
The evolution of ðx; yÞ ∈ R2 is governed by the SDE _x ¼ x −
x3 − βxy2 þ ffiffiffiffiffi

2ϵ
p

η1, _y ¼ −ð1þ x2Þyþ ffiffiffiffiffi
2ϵ

p
η2, where η1;2 are

independent Gaussian white noises and β some parameter (here,
β ¼ 10). The flow lines of the noiseless model (ϵ ¼ 0) are shown
as gray lines in (a), and the background color indicates the
magnitude of the drift (darker means larger): There are two stable
fixed points xa ¼ ð−1; 0Þ and xb ¼ ð1; 0Þ (black disks) and one
unstable fixed point xc ¼ ð0; 0Þ (black cross). When ϵ is small but
finite, these two fixed points become metastable, and the noise
induces transitions between them: The most likely path from xa to
xb is the minimum-action path, which is shown as the blue line.
Also shown as a red dashed line is the heteroclinic orbit between
xa and xb: This orbit is different from the minimum-action path,
indicative of a nonequilibrium transition. (b) shows the increment
of the action along the minimum-action path and the heteroclinic
orbit, confirming that the former is more likely.
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(e) Fast-slow systems.—Consider a system made of a pair
of variables ðx; yÞ ∈ Rd×D whose evolution is gov-
erned by

_x ¼ fðx; yÞ;
_y ¼ α−1bðx; yÞ þ α−1=2σðx; yÞηðtÞ; ð27Þ

where α > 0 measure the separation of timescale be-
tween x and y. For small α, this separation is large, and y

evolves much faster than x. In particular, when α → 0,
the dynamics of x is effectively captured by the deter-
ministic limiting equation

_x ¼ FðxÞ; ð28Þ

(a)

(b)

FIG. 4. (a) Contour plot of the Hamiltonian Hðϕ; θÞ of the
bistable Schlöglmodel introduced in Sec. V [Eq. (71)] with a single
reactive compartment containing a large number of particlesΩ. The
two black disks show the stable fixed points ϕa (left disk) and ϕb
(right disk) of the law of mass action valid when Ω → ∞, and the
orange square shows its unstable fixed point at ϕs ¼ 1. The solid
and dashedwhite lines show the level setHðϕ; θÞ ¼ 0 onwhich the
solutions to Hamilton’s equations (8) evolve in the limit when
T → ∞. The horizontal dashed line at θ ¼ 0 corresponds to the
noiseless dynamics of the mass-action law by which the system
relaxes to one of the two stable fixed points ϕa or ϕb by moving in
the direction of the white arrows. The solid white line, to follow in
the direction of the black arrows, shows the solutions of Hamilton’s
equations onHðϕ; θÞ ¼ 0 at θ ≠ 0: These trajectories indicate the
most probable path by which the fluctuations can drive the system
away from ϕa and ϕb and induce transitions when reaching ϕs. In
this example, the action required to drive the system away from ϕa
to some ϕ ≤ ϕs in its basin of attraction is the area between the
white and the dashed solid lines, going from ϕa to ϕ: This area is
also the quasipotential Vϕa

ðϕÞ for ϕ ≤ ϕs, and Vϕb
ðϕÞ for ϕ ≥ ϕs

can be defined similarly. (b) Global quasipotential VðϕÞ obtained
by gluing the two quasipotentials Vϕa

ðϕÞ and Vϕb
ðϕÞ at ϕ ¼ ϕs

after vertical shifting; VðϕÞ is also the viscosity solution of the
Hamilton-Jacobi equation (12).

Forward minimizer,
Backward minimizer,

(a)

(b)

FIG. 3. Optimal reactions paths in the bistable Schlögl model
presented in Sec. V, with two reactive compartments and where
the particles are allowed to jump from one compartment to
another at rate γ. This system belongs to the class of reaction
networks. Here, the Hamiltonian is given by H ¼ HR þHD

with HR ¼ P
2
i¼1 w

þðxiÞðeθi − 1Þ þ w−ðxiÞðe−θi − 1Þ and HD ¼P
2
i¼1 γxiðeθi−1−θi þ eθiþ1−θi − 2Þ. The flow lines of the mass-

action law are shown in (a), along with its stable fixed points
(black dots) and unstable fixed points (black crosses). When the
number of agents is large but finite, these stable fixed points
become metastable states, and the most likely paths between them
are shown as full lines in blue and orange. Also shown as a
dashed red line is the heteroclinic orbit. All three paths differ,
indicative of a nonequilibrium transition. (b) shows the increment
along the action of the two minimum-action paths, indicating that
the bottom left state is most stable under random fluctuations.
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where FðxÞ is obtained by averaging fðx; yÞ over the
stationary distribution of the equation for y at x fixed,
assuming that it exists. This equation defines the so-
called virtual fast process, which on the fast timescale
τ ¼ αt reads

dyx=dτ ¼ bðx; yxÞ þ σðx; yxÞηðτÞ ðx frozenÞ: ð29Þ
Denoting by Ex the expectation over the stationary
distribution of yxðτÞ, the function F entering Eq. (28)
is given by

FðxÞ ¼ Exfðx; yxÞ: ð30Þ
If we want to analyze the effect of fluctuations on the
dynamics of x when α is small but finite, we can use
the minimum-action principle with a Hamiltonian that
can be derived from LDT [50–53]:

Hðx; θÞ ¼ logEx exp ½hθ; fðx; yxÞi�: ð31Þ
In general, this Hamiltonian needs to be calculated
numerically, which makes slow-fast systems of the type
above more difficult to treat than the models previously
discussed in this section. Still, provided that we can
design somenumerical routine to estimateH aswell as its
derivatives ∂xH and ∂θH, the numerical methods pre-
sented below are applicable in the context of slow-fast
systems, too. In models of this type, ϵ ¼ α.

B. General setup

The problems listed in Sec. II A all share a Hamiltonian
with the following features:
(A1) Hðϕ; 0Þ ¼ 0 for all ϕ ∈ M;
(A2) Hðϕ; θÞ is strictly convex in θ for all ϕ ∈ M;
(A3) Hðϕ; θÞ is twice differentiable in both its arguments.
Assumptions A1 and A2 follow from the fact that,

generically, the Hamiltonian can be expressed as a cumu-
lant generating function, i.e., in the form of an expectation
generalizing Eq. (31):

Hðϕ; θÞ ¼ logEϕ exp ½hθ; Fðϕ; yϕÞi�; ð32Þ
where F is problem dependent and the expectation is taken
over the statistics of some underlying process yϕ condi-
tional on ϕ being fixed. Assumption A3 is added for
simplicity, as it guarantees that Hamilton’s equations (8) are
well posed.
The aim of this section is to discuss at a generic level the

meaning we can give to the min-max problem (7) assuming
that the Hamiltonian satisfies these assumptions. In par-
ticular, we show that the conjugate field θ appearing in the
min-max problem (7) can be generically interpreted as
measuring the mean effects of the fluctuations in the system
dynamics needed to achieve some rare event and the
minimum of the action as the total cost of these fluctuations
from which the probability of the event can be estimated as

well as its mechanism and rate (if we add the minimization
over T > 0).

1. Mean behavior

To begin, notice that, for the interpretation that θ
measures the effects of the fluctuations to be consistent,
the stochastic system under consideration should, in some
appropriate limit in which the fluctuations disappear,
satisfy the deterministic evolution equation obtained by
setting θ ¼ 0 in Hamilton’s equations (8):

_ϕ ¼ ∂θHðϕ; θ ¼ 0Þ: ð33Þ
For example, returning to the problems mentioned in
Sec. II A, Eq. (33) reduces to the ordinary differential
equation _x ¼ bðxÞ as ϵ → 0 in the SDE (17) with
Hamiltonian (18); to the law of mass action (21) as
Ω → ∞ for the reaction network (20) with Hamiltonian
(22); to the McKean-Vlasov equation as N → ∞ for the
interacting particle system (24) with Hamiltonian (26); and
to Eq. (28) as α → 0 in the slow-fast system (27) with
Hamiltonian (31). More generally, under our assumptions,
the solution of Eq. (33) is indeed a special solution with
θðtÞ ¼ 0 of Hamilton’s equations (8), since assumptions
A1 and A3 imply that ∂ϕHðϕ; 0Þ ¼ 0 for all ϕ.

2. Impact of the fluctuations

At the same time, the solution to the deterministic evolu-
tion (33) with ϕð0Þ ¼ ϕa does not satisfy ϕðTÞ ¼ ϕb,
in general. Therefore, for general boundary conditions
ϕð0Þ ¼ ϕa and ϕðTÞ ¼ ϕb, the solution of Eq. (8) must
have θðtÞ ≠ 0—in the minimum-action framework, this is a
reflection that in the original system fluctuations are needed
to drive the system’s trajectory away from the solution of
Eq. (33), and the value of θðtÞ ≠ 0 allows us to quantify the
cost or probability of observing the event ϕðTÞ ¼ ϕb given
that ϕð0Þ ¼ ϕa. Specifically, under the strict convexity
assumption A2, we have

hθ; ∂θHðθ;ϕÞi −Hðϕ; θÞ ≥ −Hðϕ; 0Þ ¼ 0; ð34Þ
with equality if and only if θ ¼ 0. Since _ϕ ¼ ∂θHðϕ; θÞ
along the solution to Hamilton’s equations (8), we deduce
that along this solution

inf
ϕ
ST ½ϕ� ¼ inf

ϕ

Z
T

0

½hθ; ∂θHðϕ; θÞi −Hðϕ; θÞ�dt ≥ 0: ð35Þ

Thus, the action ST ½ϕ� can be indeed interpreted as a cost,
which is zero only if θðtÞ ¼ 0 (i.e., when the event can
occur without fluctuations) and is strictly positive other-
wise (i.e., when the event requires fluctuations). For the
problems listed in Sec. II A, the form of the integrand
hθ; ∂θHi −H is jσðxÞθj2 ≥ 0 for the SDE (17);P

R
j¼1 ajðxÞðhνj; θiehνj;θi − ehνj;θi þ 1Þ ≥ 0 for the reac-

tion network (20); 1
2

R
Rd jσðxÞ∇θðxÞj2ρðxÞdx ≥ 0 for the

MINIMUM-ACTION METHOD FOR NONEQUILIBRIUM PHASE … PHYS. REV. X 13, 041044 (2023)

041044-9



interacting particle system (24); and Exfðx; yxÞehθ;fðx;yxÞi=
Exehθ;fðx;yxÞi −H for the slow-fast system (27).
In this interpretation, minimizing ST ½ϕ� amounts to

minimizing the cost of the fluctuations or, equivalently,
finding the most likely fluctuation that drives the event
ϕðTÞ ¼ ϕb given that ϕð0Þ ¼ ϕa, leading to the asymptotic
estimate (2) for the probability of the event.

3. Long-time limit

Turning now our attention to the problem
infT≥0infϕST ½ϕ�, its interpretation is easiest if we assume
that the noiseless equation (33) has N stable fixed points
ϕ1, ϕ2, …, ϕN , and the basins of attraction of these fixed
points under Eq. (33), denoted respectively as B1;…; BN ,
partition M ¼ ∪N

i¼1 B̄i (note that Bi ∩ Bj ¼ ∅ if i ≠ j by
definition). In this case, we can calculate the quasipoten-
tials Vϕi

ðϕjÞ of every ϕi and ϕj with i ≠ j such that these
points have adjacent basins: These are defined as
Vϕi

ðϕjÞ ¼ infT>0infϕST ½ϕ� for all paths fϕðtÞgT∈½0;T� such
that ϕð0Þ ¼ ϕi, ϕðTÞ ¼ ϕj, and ϕðtÞ ∈ Bi ∪ Bj for all
t ∈ ½0; T�. Consistently, we also set Vϕi

ðϕjÞ ¼ þ∞ if Bi

and Bj have no common boundary. These quasipotentials
quantify the cost of the fluctuations needed to escape ϕi
conditional on entering ϕj next, and these costs can be used
to deduce the asymptotic rate of these transition events.
More precisely, as the parameter ϵmeasuring the amplitude
of the macroscopic fluctuations tends to zero, the system
dynamics can be approximated by a Markov jump process
(MJP) between the metastable states ϕ1;…;ϕN , with rates
given asymptotically by

ki;j ¼ e−Vϕi
ðϕjÞ=ϵ; i; j ¼ 1;…; N ði ≠ jÞ: ð36Þ

Questions about the asymptotic behavior of the system’s
dynamics can be answered by analyzing this MJP. Since the
rates are all vanishing exponentially at different rates as
ϵ → 0, this process is quite singular and can be analyzed by
the method of decomposition into cycles developed by
Freidlin andWentzell [37] (see also Ref. [38]). This method
is, however, rather intricate, and in practice it is often
simpler to solve specific questions in the MJP directly (e.g.,
what is its invariant distribution or what is the mean first
passage time from state i to state j) and take the limit as
ϵ → 0 afterward. Note also that the quasipotentials Vϕi

ðϕÞ
for i ¼ 1;…; N can be used to construct a global non-
equilibrium potential VðϕÞ, solution of the Hamilton-
Jacobi equation (12) [37,38]; since this construction is
not doable in practice for the high-dimensional examples
we are interested in, we do not dwell upon it here. We do,
however, look at the minimizers of infT≥0 inf ST ½ϕ�, which
can exist if the path fϕðtÞgt∈½0;T� is reparametrized using
arclength rather than physical time on any minimizing
sequence: These geometric paths give the mechanism of the
transition between ϕi and ϕj.

The statements made in this section summarize what can
be deduced from the minimum-action principle when it
applies.As stated earlier, the startingpoint is always an action
giving the weights of trajectories of the stochastic system,
whether in or out of equilibrium. This action can be obtained
rigorously in specific cases using, e.g., tools fromLDT, in the
small noise [37] and weak interaction limit [49], or in more
complicated setups involving hydrodynamic limits [54,55].
This is notably how the starting point of MFT can be
rigorously derived [56]. These approaches may directly
yield the Lagrangian of the dynamics, when the noise
structure allows for it. A second route to obtain the action
can be to start from the master equation and write the
probability density with a WKB approximation. This is
typically the route followed to study chemical networks
and population dynamics [45]. It leads to the Hamilton-
Jacobi equation, which is a convenient starting point to
derive analytical results on the quasipotential [7,39]. The
Lagrangian is then implicitly defined as the Legendre
transform of the Hamiltonian. Finally, one must mention
derivation based on the path-integral formulation. In parti-
cular, the Martin-Siggia-Rose-Jensen-De Dominicis formal-
ism [28] or the Doi-Peliti formalism [29] lead both to an
action that can be interpreted as above (with H satisfying
assumptions A1, A2, and A3). The search of the saddle
points of the action is similar to themin-max problem (7) and
gives again the most probable path between two system
configurations.
The numerical methods that we propose below are of

general purpose and are designed with such general
situations in mind.

III. COMPUTATIONAL ASPECTS

A. Min-max on the action as a
wave propagation problem

In this section, we discuss how to solve the min-max
problem stated in Eq. (7), i.e.,

inf
ϕ
ST ½ϕ� ¼ min

ϕ
max
θ

IT ½ϕ; θ�; ð37Þ

where we define the functional

IT ½ϕ; θ� ¼
Z

T

0

½h _ϕ; θi −Hðϕ; θÞ�dt ð38Þ

and the optimization is to be performed over trajectories
fϕðtÞ; θðtÞgt∈½0;T� subject to the boundary conditions
ϕð0Þ ¼ ϕa and ϕðTÞ ¼ ϕb. By assumption A2, the func-
tional IT is strictly concave in θ; assuming that it is also
locally convex in ϕ around the local minimizers of ST ½ϕ�, it
is established [57,58] that this min-max problem can be
solved by amortizing the minimization and maximization
over small alternating steps of steepest descent in ϕ and
steepest ascent in θ. If these alternating steps are infini-
tesimal in some artificial optimization time τ, this GDA
method leads to the evolution equation
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∂τϕ ¼ −αδIT=δϕ; α∂τθ ¼ δIT=δθ; ð39Þ

where for convenience we introduce a parameter α > 0 that
sets the relative timescales over which ϕ and θ evolve—in
the jargon of GDA, this is referred to as two-timescale
GDA [59]. Calculating the functional derivatives, the
system (39) is explicitly given by

∂τϕ ¼ α∂tθ þ α∂ϕH; α∂τθ ¼ ∂tϕ − ∂θH: ð40Þ

These equations for fϕðτ; tÞ; θðτ; tÞg are to be solved with
the boundary conditions (in physical time t)

ϕðτ; t ¼ 0Þ ¼ ϕa; ϕðτ; t ¼ TÞ ¼ ϕb ð41Þ

for some initial conditions (in optimization time τ)

ϕðτ ¼ 0; tÞ ¼ ϕ0ðtÞ; θðτ ¼ 0; tÞ ¼ θ0ðtÞ; ð42Þ

with ϕ0ðtÞ such that ϕ0ð0Þ ¼ ϕa and ϕ0ðTÞ ¼ ϕb.
It is easy to see that the fixed points (in τ) of Eq. (40) are a

solution to Hamilton’s equations (8) that satisfy ϕð0Þ ¼ ϕa
and ϕðTÞ ¼ ϕb. In Appendix A, we show that (i) there is a
one-to-one correspondence between the fixed points of
Eq. (40) and the critical points of the action ST ½ϕ�, and (ii) if
α is small enough, these fixed points are stable if and only if
they are localminimizers of the action. Thus, solvingEq. (40)
is indeed a way to perform infϕST ½ϕ�. For illustrative
purposes, we derive in Appendix B how the GDA converges
to the instanton for an Ornstein-Uhlenbeck process.
Let us now show how to put Eq. (40) in a form that is

convenient for numerical integration. Since Eq. (40) is a
hyperbolic system of partial differential equations (PDEs),
it is useful to diagonalize the problem, introduce the fields
u ¼ ϕþ αθ and v ¼ ϕ − αθ that propagate along charac-
teristics, and verify

∂τu ¼ ∂tuþ fðu; vÞ; ð43Þ
∂τv ¼ −∂tvþ gðu; vÞ; ð44Þ

where we define

fðu; vÞ ¼ α∂ϕH − ∂θH; ð45Þ
gðu; vÞ ¼ α∂ϕH þ ∂θH: ð46Þ

The boundary conditions now involve only the propagating
fields

vðτ; t ¼ 0Þ ¼ −uðτ; t ¼ 0Þ þ 2ϕa; ð47Þ
uðτ; t ¼ TÞ ¼ −vðτ; t ¼ TÞ þ 2ϕb: ð48Þ

This formulation shows that the system made of Eqs. (43)
and (44) is well posed under these boundary conditions (see
Ref. [60]), since the fields v and u propagate, respectively,
forward and backward in physical time t as the optimiza-
tion time τ increases. It also immediately suggests an
algorithm to solve Eqs. (43) and (44) based on Strang
splitting [61]: To update the fields at every iteration step in
τ, first update u at v fixed by propagating the final condition
at t ¼ T for u in Eq. (48) toward t ¼ 0 using Eq. (43) with
forward differentiation in t, and then update v at u fixed by
propagating the initial condition at t ¼ 0 for v in Eq. (47)
toward t ¼ T using Eq. (44) with backward differentiation
in t. Of course, the convergence does not change if the
algorithm starts by updating v before updating u.
In practice, the continuous paths ϕðτ; tÞ and θðτ; tÞ are

discretized in physical time on M þ 1 points with index
i ∈ I ¼ f0;…;Mg such that T ¼ MΔt, and we use index
n ∈ N0 to encode the evolution of the paths in optimization
time τ using steps of size Δτ, so that for any field ψðτ; tÞ,
ψn
i ≡ ψnðiΔtÞ. The details are given in Algorithm 1.

The stability of the code relies on two important features.

Algorithm 1. Action minimization by gradient descent-ascent.

1: Inputs: M ∈ N; a path fϕ0
i gi∈I with ϕ0

0 ¼ ϕa and ϕ0
M ¼ ϕb; the functions fðu; vÞ and gðu; vÞ; T > 0, Δτ > 0, α > 0.

2: Initialization: For every i ∈ I, take θ0i ¼ 0, and set u0i ¼ ϕ0
i þ αθ0i and v0i ¼ ϕ0

i − αθ0i ; set Δt ¼ T=M.
3: for n ≥ 0 do
4: Update u with an implicit upwind scheme; namely, solve funþ1

i gi∈I sequentially from i ¼ M to i ¼ 0 using

unþ1
M ¼ −vnM þ 2ϕb;

unþ1
i − uni
Δτ

¼ unþ1
iþ1 − unþ1

i

Δt
þ fðuniþ1; v

n
iþ1Þ; i ¼ M − 1;…; 0:

5: Update v with an implicit upwind scheme; namely, solve fvnþ1
i gi∈I sequentially from i ¼ 0 to i ¼ M using

vnþ1
0 ¼ −unþ1

0 þ 2ϕa;

vnþ1
i − vni
Δτ

¼ −
vnþ1
i − vnþ1

i−1
Δt

þ gðunþ1
i−1 ; v

n
i−1Þ; i ¼ 1;…;M:

6: Compute fϕnþ1
i ¼ 1

2
ðunþ1

i þ vnþ1
i Þgi∈I and fθnþ1

i ¼ 1
2
α−1ðunþ1

i − vnþ1
i Þgi∈I (if needed).
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First, advection of the fields is treated with an implicit
upwind scheme for both v and u. Second, reaction terms g
and f are also evaluated on an upwind grid point with respect
to the direction of advection. Reaction terms could also be
evaluated on site i, but we empirically find that the upwind
implementation strongly stabilizes the code when dealing
with spatially extended diffusive fields. The stability analysis
of the numerical scheme is detailed in Appendix C.
We should also emphasize that our interest resides in the

fixed point of the dynamics that solves Hamilton’s equation
in physical time t rather than in the details of the dynamics
in algorithmic time τ, which has no physical relevance. This
consideration enjoins us to look for the largest time step Δτ
that still provides a converging algorithm. The time stepΔt,
however, crucially needs to remain smaller than some
characteristic time tc needed to correctly resolve the
dynamics of the instanton. This issue is discussed in more
detail in Appendix C.
Finally, it is important tomention that a higher-order finite-

difference stencil for the advection of the fields can be
implemented while keeping the same algorithmic complex-
ity. Such a scheme can significantly improve computation
time, sincewe need a smaller number of grid points to get the
same accuracy as the first-order scheme, introduced in the
text for thepurpose of simplicity. The second-order scheme is
presented in Appendix D. The various implementations of
the algorithm are accessible in [62].

B. Geometric formulation on unbounded time intervals

Let us now turn to the min-max problem

Vϕa
ðϕbÞ ¼ inf

T>0
inf
ϕ
ST ½ϕ� ¼ inf

T>0
inf
ϕ
sup
θ

IT ½ϕ; θ�; ð49Þ

where IT ½ϕ; θ� is the functional defined in Eq. (38) and the
inner min-max is again to be performed over trajectories
fϕðtÞ; θðtÞgt∈½0;T� subject to the boundary conditions
ϕð0Þ ¼ ϕa and ϕðTÞ ¼ ϕb.
In general, a trajectory fϕðtÞ; θðtÞgt∈½0;T� of finite time

duration T cannot solve Eq. (49); i.e., we can always
reduce the value of the inner min-max by increasing T. This
lack of optimizer complicates the solution of Eq. (49). To
proceed, it is useful to follow the strategy of the GMAM
in Ref. [30] and parametrize the physical time as tðsÞ
for s ∈ ½0; 1�. Writing dt=ds ¼ λ−1ðsÞ and introducing
½ϕ̂ðsÞ; θ̂ðsÞ� ¼ fϕ½tðsÞ�; θ½tðsÞ�g, the minimization over T
in Eq. (49) can be turned into a minimization over λ:

Vϕa
ðϕbÞ ¼ min

λ≥0
min
ϕ̂

max
θ̂

Z
1

0

½hϕ̂0; θ̂i − λ−1Hðϕ̂; θ̂Þ�ds;

ð50Þ
where ϕ̂0 ¼ dϕ̂=ds and the min-max is to be performed
over the triple fϕ̂ðsÞ; θ̂ðsÞ; λðsÞgs∈½0;1� subject to the boun-

dary conditions ϕ̂ð0Þ ¼ ϕa and ϕ̂ð1Þ ¼ ϕb. Since we add
degrees of freedom by representing T by the function λðsÞ,
we can add a constraint on the parametrization of ϕ̂ðsÞ, e.g.,
by imposing that jϕ̂0j ¼ cst (in s), in which case s is the
normalized arclength along the path ϕ̂. This choice is
convenient numerically, as it guarantees that discretization
points in s are uniformly distributed along the path.
The min-max problem (50) is now in a form that can be

solved using GDA, similar to what we do for Eq. (37). As
shown in Appendix E, it is, however, convenient to treat λ
separately, and this leads to the following GDA equations
[compare Eq. (40)]:

Algorithm 2. Geometric action minimization by gradient descent-ascent.

1: Inputs:M ∈ N; two stable fixed points ϕa and ϕb of the noiseless dynamics whereHðϕa;b; 0Þ ¼ ∂θHðϕa;b; 0Þ ¼ 0; a path fϕ̂0
i gi∈I

with ϕ̂0
0 ¼ ϕa and ϕ̂0

M ¼ ϕb, such that jϕ̂0
iþ1 − ϕ̂0

i j is constant in i; the functions fðu; vÞ, gðu; vÞ, and λðu; vÞ; Δτ > 0, α > 0.
2: Initialization: For every i ∈ I, take θ̂0i ¼ 0, and set u0i ¼ ϕ̂0

i þ αθ̂0i and v0i ¼ ϕ̂0
i − αθ̂0i ; set Δs ¼ 1=M.

3: for n ≥ 0 do
4: Update u with an implicit upwind scheme, namely, solve funþ1

i gi∈I sequentially from i ¼ M to i ¼ 0 using

unþ1
M ¼ −vnM þ 2ϕb;

unþ1
i − uni
Δτ

¼ λiðun; vnÞ
unþ1
iþ1 − unþ1

i

Δs
þ fðuni ; vni Þ; i ¼ M − 1;…; 0:

5: Update v with an implicit upwind scheme, namely, solve fvnþ1
i gi∈I sequentially from i ¼ 0 to i ¼ M using

vnþ1
0 ¼ −unþ1

0 þ 2ϕa;

vnþ1
i − vni
Δτ

¼ −λiðunþ1; vnÞ v
nþ1
i − vnþ1

i−1
Δs

þ gðunþ1
i ; vni Þ; i ¼ 1;…;M:

6: Compute fϕ̄nþ1 ¼ 1
2
ðunþ1 þ vnþ1Þgi∈I and fθ̄nþ1 ¼ 1

2
α−1ðunþ1 − vnþ1Þgi∈I .

7: Interpolate fðϕ̄nþ1
i ; θ̄nþ1

i Þgi∈I onto a path fðϕ̂nþ1
i ; θ̂nþ1

i Þgi∈I such that jϕ̂nþ1
iþ1 − ϕ̂nþ1

i j is constant in i, as in the string method.

8: Set funþ1 ¼ ϕ̂nþ1 þ αθ̂nþ1gi∈I and fvnþ1
i ¼ ϕ̂nþ1

i − αθ̂nþ1
i gi∈I .
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∂τϕ̂ ¼ αλ∂sθ̂ þ α∂ϕ̂H; α∂τθ̂ ¼ λ∂sϕ̂ − ∂θ̂H; ð51Þ

with λ given by

λ ¼
jh∂θH; ∂sϕ̂ij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð0; h∂θH; ∂sϕ̂i2 − 4Hj∂sϕ̂j2Þ

q
2j∂sϕ̂j2

:

ð52Þ

Equations (51) are to be solved under the constraint that
j∂sϕ̂j ¼ cst (in s, not τ), with the boundary conditions (in s)

ϕ̂ðτ; s ¼ 0Þ ¼ ϕa; ϕ̂ðτ; s ¼ 1Þ ¼ ϕb; ð53Þ

for some initial conditions (in optimization time τ)

ϕ̂ðτ ¼ 0; sÞ ¼ ϕ̂0ðsÞ; θ̂ðτ ¼ 0; sÞ ¼ θ̂0ðsÞ; ð54Þ

with ϕ̂0ðsÞ such that ϕ̂0ð0Þ ¼ ϕa and ϕ̂0ð1Þ ¼ ϕb.
Similar to what we do with Eq. (40), the system of

equations (51) as well as the expression (52) for λ can be
put in a form suitable for numerical solution by rewriting
them in terms of the fields u ¼ ϕ̂þ αθ̂ and v ¼ ϕ̂ − αθ̂.
For brevity, we do not write these equations explicitly and
refer the reader to Algorithm 2 for their discretized version.
At convergence, ϕ̂ and θ̂ satisfy

λϕ̂0 ¼ ∂θH; λθ̂0 ¼ −∂ϕH: ð55Þ

If we insert the first of these equations in Eq. (52), we can
reorganize this equation into

λ ¼
λjϕ̂0j2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2jϕ̂0j4 − 4Hjϕ̂0j2

q
2jϕ̂0j2 : ð56Þ

This equation shows that at convergence we must also have

∀ s ∈ ½0; 1�; H½ϕ̂ðsÞ; θ̂ðsÞ� ¼ 0: ð57Þ

This is consistent with the fact that the term involving λ−1H
in Eq. (50) can also be interpreted as a Lagrangian
multiplier term added to the objective function to enforce
the constraint that H ¼ 0; see Ref. [30] for details.
In practice, the continuous paths ϕ̂ðτ; sÞ and θ̂ðτ; sÞ are

discretized in s on a grid of M þ 1 points with index i ∈
I ¼ f0;…;Mg such that 1 ¼ MΔs, and we use the index
n ∈ N0 to encode their evolution with step size Δτ in
artificial time τ so that for any field ψðτ; sÞ, ψn

i ≡ ψnðiΔsÞ.
The details are given in Algorithm 2, which is a modified
version of Algorithm 1 that includes the step of reparamet-
rization of the path. Note that we keep the implicit upwind
discretization for the advection term. Also, the reaction
terms f and g and the coefficient λ should be evaluated at

the same grid point as originating from the same term
λ−1Hðϕ̂; θ̂Þ in Eq. (50). We find that evaluating these terms
at the target grid point i is better for stability, in general.
Algorithms 1 and 2 are simple to implement and require

only evaluating the first derivative of the Hamiltonian
Hðϕ; θÞ with respect to its arguments, just as we would
have to do to solve Hamilton’s equations (8). It is used to
calculate the paths shown in Figs. 1–3. In the more
complicated examples we treat below, because the state
variable is a field that depends on space as well as time,
and as a result the PDEs (43) and (44) involve spatial
derivatives, some additional consideration must be given to
the way we discretize space and evaluate these derivatives
to ensure that the resulting scheme is numerically stable.
As usual with PDEs, this issue needs to be addressed on a
case-by-case basis, depending on the nature of the PDE.

IV. FIRST-ORDER PHASE TRANSITIONS
IN A NONEQUILIBRIUM GL SYSTEM

A possible starting point of the method borrows from
Landau’s theory of phase transitions where, relying on the
symmetries of the system, we postulate the free energy of
the macroscopic variable of interest ϕ rather than deriving it
from a microscopic distribution [3,63–65]. When the
system is in equilibrium, this procedure is well understood
[66,67]. For nonequilibrium systems, MFT [39,68,69]
offers a generalization of Landau’s approach where we
directly start from the action. In what follows, we apply a
similar approach to study phase transitions in a modified
Ginzburg-Landau system.

A. Nonequilibrium GL dynamics

Following the general framework introduced in
Refs. [70,71], the stochastic evolution of a nonconservative
field ρðt; xÞ can formally be described by the Langevin
equation

∂tρ ¼ −μð½ρ�; xÞ þ
ffiffiffiffiffi
2ϵ

p
η; ð58Þ

where the drift μð½ρ�; xÞ can be interpreted as a chemical
potential, ηðt; xÞ is a standard Gaussian white noise in space
and time whose amplitude is measured by ϵ > 0, and for
simplicity we set the mobility to 1. For a field ρ defined on a
one-dimensional domain, say, [0, 1], the action correspond-
ing to this equation is

ST ½ρ� ¼
1

2

Z
T

0

Z
1

0

j∂tρþ μð½ρ�; xÞj2dxdt; ð59Þ

and it is the subject of our investigations.
The dynamics (58) is in detailed balance when μ ¼ μE,

with μE such that it can be written as a derivative of a free
energy functional F ½ρ�:
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μEð½ρ�; xÞ ¼
δF ½ρ�
δρðxÞ : ð60Þ

In this case, at equilibrium, the field configurations are
distributed according to the Gibbs measure associated with
the free energy F, at temperature ϵ.
Here, we are mostly interested in the active version of

dynamics (58), when μ ¼ μE þ μA with μA that cannot be
cast into the form (60) or, equivalently, does not satisfy the
functional Schwarz relation [9,13]:

δμAð½ρ�; xÞ
δρðyÞ −

δμAð½ρ�; yÞ
δρðxÞ ≠ 0: ð61Þ

When μA ≠ 0, the stationary distribution of the field
configurations, if it exists, is a nonequilibrium distribution
which is not available in closed form.
For concreteness, we focus on the following example

that displays a nonequilibrium first-order phase transition:
We assume that the field ρðt; xÞ is one-dimensional, with
x ∈ ½0; 1� and periodic boundary conditions, and we use
chemical potentials given by

μEð½ρ�; xÞ ¼ −ðD∂
2
xρþ ρ − ρ3 þ hÞ; ð62Þ

μAð½ρ�Þ ¼ −κ
Z

1

0

ρ2ðyÞdy; ð63Þ

such that Eq. (58) becomes

∂tρ ¼ D∂
2
xρþ ρ − ρ3 þ hþ κ

Z
1

0

ρ2ðyÞdyþ
ffiffiffiffiffi
2ϵ

p
η: ð64Þ

Here, D > 0 is a diffusion constant which effectively
depends on the system size in the dimensionless variables
we use (reducing D is equivalent to enlarging the domain
size), h the strength of an externally applied field, and κ is
the strength of the nonequilibrium coupling. The chemical
potential μE is borrowed from the Ginzburg-Landau ϕ4

theory. For κ ¼ 0, Eq. (64) is referred to as the time-
dependent-Ginzburg-Landau model and is the space-
continuous version of the Ising model studied by
Glauber [72]. This dynamical equation is also referred to
as model A [66] and was studied by Allen and Cahn in the
context of front propagation in first-order phase transitions
in metallic alloys [73]. A direct functional integration
shows that μE ¼ δF=δρ with

F ½ρ� ¼
Z

1

0

�
1

2
Dj∂xρj2 þ

1

4
½1− ρ2ðxÞ�2 − hρðxÞ

�
dx: ð65Þ

The additional force μA we consider in Eq. (63) is nonlinear
and strongly nonlocal. Such terms can be found in dif-
ferent contexts (nonlinear optical systems [74], population
dynamics [75], and species competition [76]). We opt for

this particular choice of μA as it produces nonequilibrium
effects that are nontrivial. Specifically, μA acts as an
additional uniform applied field that is active and depends
nonlinearly on the value of ρ rather than being externally
imposed. While μE drives the system toward the minimizers
of the energy (65), which are homogeneous state solutions
of ρ − ρ3 þ h, μA homogeneously pushes the field upward
when κ > 0 and downward when κ < 0. Therefore, the
applied field h and μA have competing effects when h and κ
have opposite signs. Since there is a region in the ðκ; hÞ
space where the noiseless dynamics has two stable fixed
points (see Sec. IV B), this means that the system can
undergo a nonequilibrium first-order phase transition for
critical values of h and κ which we determine in Sec. IV C.

B. Phase boundaries for coexisting
homogeneous fixed points

Numerical evidence indicates that the stable fixed points
of the noiseless dynamics [i.e., Eq. (64) with ϵ ¼ 0] are
homogeneous states. As a result, they are solutions to
ρ − ρ3 þ hþ κρ2 ¼ 0. In the domain where this equation
has three real roots, ρ−, ρc, and ρþ with ρ− < ρc < ρþ, ρ−
and ρþ are stable fixed points of the noiseless dynamics,
whereas ρc is an unstable point. The coexistence region in
the parameter space ðκ; hÞwhere both ρ− and ρþ are present
is marked as region (ii) in Fig. 5; it is where h ∈ ½h−c ; hþc �,
with h−c and hþc given by

h−c ¼ −
1

27

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 3

p
þ κ

�
2
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 3

p
− κ

�
; ð66Þ

shown as a blue line in Fig. 5, and

hþc ¼ 1

27

�
κ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 3

p �
2
�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 3

p
þ κ

�
; ð67Þ

shown as a yellow line in Fig. 5. Exactly on these
boundaries, only two real roots coexist, and one state is,
thus, marginally stable. In regions (i) and (iii), only one
stable state exists.
Our next goal is to analyze the relative stability of ρ− and

ρþ under the effect of the noise, i.e., derive the phase diagram
of the system. Even though we lack a free energy that yields
the stationary measure, we expect ρþ to be the stable phase
for h, κ > 0 and ρ− for h, κ < 0. However, whenh and κ have
opposite signs (and, thus, opposite effects on ρ), determining
the most likely phase becomes nontrivial.

C. Extracting the minimum-action paths

To assess whether ρþ or ρ− is the stable phase in the
coexistence region, we compute the difference of the
minimal actions ΔS≡ Vρ−ðρþÞ − Vρþðρ−Þ, obtained from
the minimum-action paths from ρ− to ρþ and vice versa.
The Hamiltonian entering the action is the one associated
with Eq. (58):
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Hðρ; θÞ ¼ h−μ½ρ�; θiL2 þ hθ; θiL2 ; ð68Þ
where the scalar product of two functions f and g is given
by hf; giL2 ¼ R

1
0 fðxÞgðxÞdx. To obtain the phase diagram,

these calculations must be repeated for a set of values ðκ; hÞ
in the coexistence region to compute the minimal action
difference as a function of these parameters, ΔSðκ; hÞ:
From Eq. (5), the line of phase transition is then the curve
where ΔSðκ; hÞ ¼ 0.
In practice, we use Algorithm 2 with M ¼ 400 copies

along the path, Nx ¼ 64 points of space discretization,
Δτ ¼ 10−3, and α ¼ 0.33, and we monitor convergence by
looking at the decay of the action. The result of these
computations is shown in Fig. 5, where the purple dashed
line frontier in the phase diagram corresponds to
ΔSðκ; hÞ ¼ 0. The stable phase is ρ− below the line [region
(ii)(a)], and ρþ above it [region (ii)(b)].
For comparison, we also compute the phase diagram

under the (wrong) assumption that the escape paths are
given by the heteroclinic orbits followed in a time-reversed
way. This would have to be the case in equilibrium by time-
reversal symmetry. While these escape paths are incorrect,
in general, in nonequilibrium systems, their respective cost
in the action gives an upper bound on the actual minima
Vρ−ðρþÞ and Vρþðρ−Þ. Denoting by Shetρ− ðρþÞ and Shetρþ ðρ−Þ
the actions along the heteroclinic orbit, we compute, for
instance, Shetρ− ðρþÞ as

Shetρ− ðρþÞ ¼
Z

1

0

½h∂sρ̂; θ̂i − λ−1Hðρ̂; θ̂Þ�ds; ð69Þ

where the path ρ̂ðsÞ and the parametrization λðsÞ
(s ∈ ½0; 1�) are obtained by the string method [77,78] that
identifies the heteroclinic orbit between ρ̂ð0Þ ¼ ρ− and
ρ̂ð1Þ ¼ ρþ and θ solves

λ∂sρ̂ ¼ ∂θHðρ̂; θ̂Þ: ð70Þ

As a sanity check, we verify that one always has Vρ−ðρþÞ ≤
Shetρ− ðρþÞ and Vρþðρ−Þ ≤ Shetρþ ðρ−Þ, namely, that the mini-
mizer of the action is always smaller than the action along
the heteroclinic orbit. It is also worth noticing that these
bonds offer no information about the location of the phase
transition line: The line where ΔShetðκ; hÞ ¼ 0 is plotted as
the gray dashed line in Fig. 5, and it is different from the
actual transition line ΔSðκ; hÞ ¼ 0.
The minimum-action paths also give physical insights

about the mechanism of the transition: The contour plot in
ðs; xÞ space of these paths is shown in Fig. 6 for the specific
value ðκ; hÞ ¼ ð1;−0.5Þ [which is in region (ii)(a)]: Fig. 6(a)
shows the forward path from ρ− to ρþ and Fig. 6(b) the
reversed path from ρþ to ρ−. Also shown in Fig. 6(c) is the
heteroclinic orbit. The actual path fρ̂ðsÞgs∈½0;1� is shown in
the first row, while the second row displays the conjugate
momentum fθ̂ðsÞgs∈½0;1�, and the third the action increment

(i.e., the Lagrangian) hθ̂ðsÞ; ρ̂0ðsÞi along the path.
As can be seen in Fig. 6, the forward and the backward

minimum-action paths are different, and they cross the
separatrix (marked as a dashed black line in the figure) at
different places: That is, the critical nuclei for the forward
and backward transitions are different (for the backward
path, this “critical nucleus” is actually flat). This is a
signature of time-symmetry breaking that can be intuitively
explained as follows: When κ > 0, as in Fig. 6, the
nonequilibrium term κ

R
ρ2dx favors the movement from

ρ− to ρþ but opposes the one from ρþ to ρ−. In the forward
path from ρ− to ρþ, it is better to have

R
ρ2dx large, which

favors nucleation; conversely, in the backward path from
ρþ to ρ−, it is better to have

R
ρ2dx small, and the way to

minimize this quantity given the value of its changing mean
is to have ρ spatially uniform. Notice, however, that this is a
finite size effect: If D were decreased to even smaller
values, we would observe “classical” inhomogeneous
nucleation events in both directions (albeit different ones
in each). To further emphasize the impact of the

R
ρ2dx

term on the transition path, let us also analyze the behavior
of the conjugate field θ. The forward path of θ whose
contour plot is displayed in Fig. 6(a) shows the coexistence
of a region θðxÞ < 0 for x≳ 0.45with a region θðxÞ > 0 for
x≲ 0.45: This sign structure of θ enhances the inhomo-
geneities in ρ, which, in turn, helps the term

R
ρ2dx drive

the system to the separatrix. This effect is absent in an
equilibrium Allen-Cahn dynamics where the noise field θ
acts positively on ρ to drive it out of the state ρ−.
Conversely, along the backward path of θ displayed in

FIG. 5. Phase diagram of the modified Ginzburg-Landau
system. The phase diagram is divided in four regions. Region
(i): ρ− is the only phase. Region (ii): coexistence region where the
noiseless dynamics has two stable homogeneous fixed points ρ�
and one unstable homogeneous fixed point ρc. Region (ii)(a): ρ−
is the stable phase. Region (ii)(b): ρþ is the stable phase. Region
(iii): ρþ is the only phase. Yellow solid line: hþc ðκÞ. Purple solid
line: h−c ðκÞ. Purple dashed line: phase transition curve between
regions (ii)(a) and (ii)(b) obtained by the minimum-action
method. Gray dashed line: phase transition curve obtained by
treating the transition as if the system were in equilibrium (wrong
prediction).
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Fig. 6(b), the noise remains homogeneous and negative,
which homogeneously decreases ρ without breaking the
space-translational invariance.
Note also that the interesting part of these minimum-

action paths is their escape half, where the noise is needed
and the action increment is, therefore, positive: It is the first
half for the forward path in Fig. 6(a) and the second half for
the backward path in Fig. 6(b); for the heteroclinic orbit
shown in Fig. 6(c), we display both halves at once, since the
forward and reversed paths are symmetric. In all situations,
past the critical nucleus, the paths simply follow the
noiseless dynamics, and this half of the path may not be
unique if the critical nucleus has more than one unstable
direction. This nonuniqueness has no impact on the action,
however, since the Lagrangian is zero along the solution of
the noiseless dynamics. Finally, we check that the reaction
paths that we obtain do not depend on the initial paths:
Starting from the heteroclinic orbit or from a (strongly)
perturbed linear interpolation of the critical states, the
algorithm always finds the same instantons, up to transla-
tional symmetry (since periodic boundary conditions are
taken here). This result increases the confidence that the
path we find is the global minimizer of the action.
The effective nonequilibrium Ginzburg-Landau-like

dynamics we consider in this section can be modified to

include different nonequilibrium terms, like, for example,
μA ¼ κj∂xρj2, which naturally appears in the coarse-grained
field description of interface growth phenomena [79] and
active matter systems [12,70,80,81]. We could also use our
approach to compute the phase diagram of modified Cahn-
Hilliard systems, which naturally emerge in active matter
field theories [8,34,70,71,81,82].

V. PHASE TRANSITIONS IN A BISTABLE
REACTION-DIFFUSION SYSTEM

A. The Schlögl model

In 1972, Schlögl introduced the following chemical
reaction network [42]:

A⇌
k0

k1
X; 2X þ B⇌

2k2

6k3
3X; ð71Þ

with microscopic rates ki > 0 and where the concentra-
tion of A and B is held constant. In a certain regime of
the reaction rates, this system displays metastability
between a low-density and a high-density phase. Here,
we consider a spatially extended variant of this model
introduced by Tănase-Nicola and Lubensky [44], in which
a one-dimensional domain is split into L ∈ N well-stirred

(a) (b) (c)

FIG. 6. Nonequilibrium GL system for D ¼ 5 × 10−3, κ ¼ 1, h ¼ −0.5, and, hence, ρþ ¼ 1.45161 and ρ− ¼ −0.854638. For these
values, we have Vρ−ðρþÞ < Vρþðρ−Þ, indicating that ρþ is the stable phase. Upper: contour plots of the paths ρ̂ðs; xÞ; middle: contour

plots of the conjugate momentum θ̂ðs; xÞ; lower: Lagrangian along the paths. (a) Minimum-action path from ρ− to ρþ; (b) minimum-
action path from ρþ to ρ−. Notice the strong difference between the forward and backward paths. The black dashed line at s ¼ 0.5marks
the critical nucleus, past which θ and L are both zero as they should be. (c) Heteroclinic orbit joining ρ− and ρþ calculated by the string
method. Since the ascent is set as the reverse descent here, we plot on one graph the conjugate momentum and the Lagrangian in both the
forward and reversed directions.
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compartments: The molecules react only within their
compartment and randomly jump to neighboring ones with
rate γ > 0. We also impose periodic boundary conditions.
When the number ni of molecules in compartment i ∈

f1;…; Lg is large, it is convenient to introduce the rescaled
ρi ¼ ni=Ω, where Ω ≫ 1 is the typical number of mole-
cules per compartments. In the limit as Ω → ∞, the law of
mass action for ρi is a (discrete) reaction-diffusion equation

_ρi ¼ γðρiþ1 þ ρi−1 − 2ρiÞ þ wþðρiÞ − w−ðρiÞ; ð72Þ

where wþðρiÞ ¼ λ0 þ λ2ρ
2
i and w−ðρiÞ ¼ λ1ρi þ λ3ρ

3
i

are the rescaled reaction rates with λi ¼ kiΩi−1 (see
Appendix G). Equation (72) can be written as a gradient
flow:

_ρi ¼ −∂ρiEðρÞ; ð73Þ

where ρ ¼ ðρ1;…; ρLÞ and we introduce

EðρÞ ¼
XL
i¼1

�
1

2
γðρiþ1 − ρiÞ2 þ UðρiÞ

�
ð74Þ

with

UðρiÞ ¼ −λ0ρi −
1

3
λ2ρ

3
i þ

1

2
λ1ρ

2
i þ

1

4
λ3ρ

4
i : ð75Þ

We recognize a (discrete) Ginzburg-Landau free energy,
from which we conclude that the stable fixed points of
Eq. (72) are homogeneous states as long as γ is not too
small. For the value of ðλ0; λ1; λ2; λ3Þ that we consider
here, there are two such fixed points: ρi ¼ ρ� for all
i ∈ f1;…; Lg, where ρ− and ρþ are, respectively, the
smallest and the largest root of wþðzÞ − w−ðzÞ ¼ 0.
The gradient structure of Eq. (73) may suggest that ρ− is

the stable phase if Eðρ−Þ < EðρþÞ, whereas ρþ is if
Eðρ−Þ > EðρþÞ. This conclusion is, however, incorrect,
as already observed by Tănase-Nicola and Lubensky [44],
who show that the system undergoes a nonequilibrium first-
order phase transition when γ changes. Since Eðρ�Þ ¼
Uðρ�Þ and, therefore, is independent of γ, the phase
transition cannot be predicted by analyzing EðρÞ only:
The system is not in detailed balance with respect to the
Gibbs measure associated to EðρÞ. What is not determined
in Ref. [44] is the critical value γc at which the phase
transition occurs. This is the question we solve next, using
the approach introduced above.

B. Change of relative stability with increasing
jumping rate

The spatially extended Schlögl model is a reaction
network of the type considered in Sec. II A, and its
phase diagram can be analyzed by minimizing the action
associated with a Hamiltonian similar to Eq. (22). Using
the structure of the model, it is natural to decompose

H ¼ HR þHD, with HR accounting for the reaction and
HD for the jumps:

HRðρ; θÞ ¼
XL
i¼1

wþðρiÞðeθi − 1Þ þ w−ðρiÞðe−θi − 1Þ; ð76Þ

HDðρ; θÞ ¼ γ
XL
i¼1

ρiðeθi−1−θi þ eθiþ1−θi − 2Þ: ð77Þ

We use this Hamiltonian in the action that we minimize
using Algorithm 2 to calculate the quasipotentials Vρ−ðρþÞ
and Vρ−ðρþÞ. We repeat these calculations for different
values of the jump rate γ while keeping the rates fixed
at ðλ0; λ1; λ2; λ3Þ ¼ ð0.8; 2.9; 3.1; 1Þ, for which ρ− ¼ 0.5
and ρþ ¼ 1.6. We use L ¼ 40 compartments, and in
Algorithm 2 we set M ¼ 400 (Δs ¼ 2.5 × 10−3), α ¼ 1,
and Δτ ¼ 0.01. The graphs of Vρ−ðρþÞ and Vρ−ðρþÞ versus
γ are shown in Fig. 7. These results indicate that the
nonequilibrium first-order phase transition occurs at γc ≃ 5:
ρþ is the stable phase for γ > γc, while ρ− is the stable one
for γ < γc. We stress again that this result cannot be
deduced by looking at EðρÞ even though the law of mass
action can be written as the gradient flow (73). This is, of
course, not a contradiction: The Schlögl model is not in
detailed balance and lacks time-reversal symmetry, because
this property also depends on the nature of the noise.
The nonequilibrium nature of the phase transition can be

confirmed by looking at the transition paths from ρ− and ρþ
and vice versa. They are shown in Fig. 8, in which we
use the same plotting conventions as in Fig. 6. These results
are for γ ¼ 12, when ρ− is the stable phase. We can see that
the forward [Fig. 8(a)] and the backward [Fig. 8(b)] paths
are different and go through different critical nuclei
(marked as a dashed vertical black line on the graphs).

FIG. 7. Phase diagram of the Schlögl model in the limit of a
large number of particles jumping between well-stirred reactive
boxes. The parameters λi are fixed, and we vary the jump rate γ.
For γ < γc ¼ 5� 0.1, we have Vρþðρ−Þ > Vρ−ðρþÞ, which in-
dicates that ρþ is a stable state phase, whereas ρ− is for γ > γc.
We use the parameters from Ref. [34]—λ0 ¼ 0.8, λ1 ¼ 2.9,
λ2 ¼ 3.1, and λ3 ¼ 1—and take L ¼ 40.
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These paths are also different from the heteroclinic orbit
[Fig. 8(c)]. If we increase the value of γ, the forward path
eventually becomes homogeneous (results not shown):
This is consistent with the fact that, at high γ, the system
behaves essentially as one single well-stirred compartment.
In that limit, we can calculate the nonequilibrium steady
distribution of the system and use it to calculate Vρ−ðρþÞ
and Vρ−ðρþÞ: This is done in Appendix G, and it gives the
same values as the ones obtained by Algorithm 2 when γ is
large and the transition paths are both homogeneous.
Conversely, if we decrease the value of γ, the backward
path becomes inhomogeneous (results not shown). This
transition from homogeneous to inhomogeneous backward
path occurs around γ ¼ 7. How to gain intuition about these
changes of behavior is harder in this model than in the GL
model with additive noise in Sec. IV, because the noise is
non-Gaussian (and somehow multiplicative), and ulti-
mately the shape of the minimum-action paths depends
on a complex interplay between many effects in the
dynamics. Yet, once the instanton is known, the effect of
the noise θ on the density ρ can still be partially interpreted
recalling that the dynamics of the instanton is given by
∂tρi ¼ ∂θiH, which here reads

∂tρi ¼ wþðρiÞeθi − w−ðρiÞe−θi
þ γ½ρiþ1eθi−θiþ1 − ρieθi−1−θi

þ ρi−1eθi−θi−1 − ρieθiþ1−θi �: ð78Þ

While the contribution from diffusion has an effect which is
not easily amenable to interpretation, the reaction terms
clearly show that θi > 0 leads to particle creation through
wþ, while θi < 0 leads to particle destruction through w−.
This effect is displayed in Fig. 8, where the spatial maxima
of θi and ρi are both attained at the same site (correspond-
ing to maximal particle creation). The drive coming from
the diffusion noise is more difficult to explain. Clues can be
obtained by measuring the mean value of ρ along the path
(not shown), but elucidating the effect of the diffusion-
related noise is hard.
Finally, as with the previous example treated in Sec. IV,

we check that the reaction path we find is independent from
the initial condition, which again supports the claim that the
global minimizer of the action has been identified.

C. Comparison with microscopic simulations

In this section, we corroborate the conclusions in
Sec. V B by performing Markov chain Monte Carlo
(MCMC) simulations of the microscopic system.
For the parameters value used in Sec. V B, it is not

possible to calculate this way the phase diagram shown in
Fig. 7: This is because Ω needs to be large in order for the
phases ρ− and ρþ to be (meta)stable under the noise, and
the timescales of the forward or backward transition
between the phases ρ− and ρþ is of the order of the
nucleation times eΩVρ− ðρþÞ and eΩVρþðρ−Þ. These timescales
are too big to be accessible with MCMC. We can, however,

(a) (b) (c)

FIG. 8. Spatially extended Schlögl model for L ¼ 40 reactive boxes, ðλ0; λ1; λ2; λ3Þ ¼ ð0.8; 2.9; 3.1; 1Þ, and γ ¼ 12. For these values,
we have ρ− ¼ 0.5 and ρþ ¼ 1.6. The figure is organized as Fig. 6. As spatial coordinate, we use x ¼ i=L and plot the transitions paths
and associated momenta as if they were continuous in space.
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perform two types of experiments to test the results of the
minimum-action principle.
First, we can check that MCMC simulations of the

microscopic system initiated with some nonuniform profile
in the compartments behave as predicted by Eq. (72). The
results of these simulations are shown in Fig. 9, where we
compare the evolution of a step profile: The microscopic
system follows the deterministic dynamics (72), as expected.
To do these calculations, we fix Ω ¼ 1.6 × 105, set the
number of molecules in each compartment i ∈ f1;…; Lg to
be ni ¼ bρiΩc for all i, and simulate the microscopic
dynamics exactly with the Gillespie algorithm [83,84] using
the microscopic rates ki ¼ λiΩ1−i.
Second, to check the prediction of the minimum-action

principle in terms of nucleation times, we can change the
rates λi tomake one of two phases (say, ρþ) only veryweakly
metastable, i.e., such that Vρþðρ−Þ ≪ 1. We can then
calculate the mean escape time τþ;− from this state toward
ρ−, repeat this calculation for different values ofΩ, and check
that τþ;− ≍ eΩVρþðρ−Þ. The result is shown in Fig. 10, which
confirms that the prediction from the minimum-action
framework explains the microscopic simulations.

D. Continuous limit

Finally, let us consider the continuous-space limit of the
model by sending the number of compartments L → ∞. To
this end, let us set ρi ¼ ρ̃ðxiÞ=L and θi ¼ θ̃ðxiÞ, with xi ¼
i=L and where ρ̃ðxÞ and θ̃ðxÞ are fields on x ∈ ½0; 1�. Let us
also set γ ¼ DL2 for some diffusion coefficient D > 0 and
λi ¼ λ̃iLi−1 for some rescaled rates λ̃i. Assuming thatD and
λ̃i are Oð1Þ in L, in the limit as L → ∞, it is easy to verify

that the Hamiltonians HR and HD in Eqs. (76) and (77)
now become

H̃Rðρ̃; θ̃Þ ¼
Z

1

0

½w̃þðρ̃Þðeθ̃ − 1Þ þ w̃−ðρ̃Þðe−θ̃ − 1Þ�dx;

H̃Dðρ̃; θ̃Þ ¼ D
Z

1

0

½ρ̃∂2xθ̃ þ ρ̃ð∂xθ̃Þ2�dx; ð79Þ

where we define w̃þðρ̃Þ¼ λ̃0þ λ̃2ρ̃
2 and w̃−ðρ̃Þ¼ λ̃1ρ̃þ λ̃3ρ̃

3.
Note that in this limit the discrete Poisson jumps of the
molecules are approximated as a Gaussian noise on the
density: We recover the multiplicative Gaussian noise that
appears in the Dean-Kawasaki equation [48,85]. The struc-
ture of the Poisson noise of the reaction is, however,
left unaffected by the limit.
We use Algorithm 2 to calculate transition pathways at

continuous level by minimizing the action associated with
H̃ ¼ H̃R þ H̃D. The pathways (not shown) are not signifi-
cantly different from those shown in Fig. 8 when L ¼ 40:
This indicates that the system is already close to its
continuous limit at that value of L.

VI. PROSPECTS AND APPLICATIONS

The modified Ginzburg-Landau dynamics discussed in
Sec. IV and the reaction-diffusion system based on the
Schlögl model discussed in Sec. V are two nontrivial
examples involving spatially extended systems undergoing
nonequilibrium phase transitions, whose phase diagrams,
paths of the transitions, and critical nuclei can be calculated
by our approach. Below, we discuss other systems that can
be revisited numerically with the use of our method.

FIG. 9. Spatially extended Schlögl model: relaxation of the
microscopic system with a large number of particles per site
starting from a step profile at t ¼ 0. The microscopic dynamics
(dashed lines) closely follows the solution of Eq. (72) (solid lines)
with the same initial condition and converges to the stationary
fixed point ρ ¼ ρþ within the same physical time t ≃ 18.
Parameters: λ0 ¼ 0.8, λ1 ¼ 2.9, λ2 ¼ 3.1, λ3 ¼ 1, γ ¼ 4,
L ¼ 40, and Ω ¼ 16 × 104.

FIG. 10. Logarithm of the average nucleation time τþ;− needed
to reach the separatrix starting from a state metastable state ρþ
close to linear instability, as a function of the typical number
of particles Ω per site. In this regime, large deviation theory
can be tested with Monte Carlo simulations in reasonable time.
LDT does not predict the prefactor in front of the exponential
scaling. Blue dots: results of MC simulations. Dashed line:
slope predicted by theory Vρþðρ−Þ ¼ 9.931 × 10−4. Parameters:
λ0 ¼ 0.728, λ1 ¼ 2.9, λ2 ¼ 3.1, λ3 ¼ 1, γ ¼ 20, and L ¼ 40.
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First, the algorithm applies to many types of Langevin
dynamics in low dimension. For instance, the algorithm is
suited to compute escape rates of active particles in
mechanical traps, in two dimensions or more [86].
Because of the Hamiltonian formulation, the algorithm
offers a simple way to treat the common situation of
hypoelliptic noise, which naturally appears in under-
damped systems, or in active particle dynamics [87–89].
More generally, the Hamiltonian formulation avoids the
computation of the invert of the correlation matrix when the
noise is Gaussian, whether additive or multiplicative. More
than that, the Hamiltonian formulation allows one to
compute reaction paths in systems that are subject to noise
of non-Gaussian nature, as illustrated with the Schlögl
model on two or numerous sites.
Considering next infinite-dimensional systems, i.e.,

fields evolving according to some stochastic PDEs, the
two examples we treat in Secs. IV and V show how the
method can be implemented with finite-difference schemes
in space and time. In the Schlögl model notably, the
algorithm allows us to simultaneously treat the Poisson
noise coming from the chemical reactions and the multi-
plicative Gaussian noise coming from the diffusion when
the continuous-space limit is taken. Besides, the diffusive
noise is also subject to a mass conservation constraint that
the algorithm takes naturally into account. The method can
be exported to compute nucleation paths in various setups,
whenever the system may reach a stationary steady state,
like found in motility-induced phase separation [12] or in
the laning transition [90,91]. For active matter systems, in
particular, described by exact coarse-grainings [81,92] or
by effective field theories [12,71,93], the question of the
nucleation of a phase-separated state in the binodal is the
subject of strong investigations [94].
It is also worth stressing that our algorithm gives similar

roles to the boundary conditions, whether set for the
variable ϕ or for the conjugate variable θ, since the problem
is reformulated in terms of the new variables u and v.
Typically, this symmetry can be used to easily enforce a
final time condition on θ, which appears when computing
extreme realizations of an observable AT , a function of the
stochastic process fϕtgt∈½0;T� [95–98]. Typical choices for
AT can be some final time observable FðϕTÞ, with F some
function, or one can take AT ¼ R

T
0 fðϕtÞdt, which, for

instance, computes the residence time in state ϕi when
fð·Þ≡ δð· − ϕiÞ, or also AT ¼ R

T
0 hgðϕtÞ; dϕti, which

serves to compute dynamical currents or entropy produc-
tion for well-chosen function g.

VII. CONCLUSION

In summary, the analysis of first-order phase transitions
and other activated processes in nonequilibrium systems
can be reduced to the minimization of an action in
situations where these processes are rare and occur via

reproducible pathways. The approach can be justified
rigorously within the framework of LDT, and minimum-
action principles can also be derived formally in other
instances using, e.g., the Martin-Siggia-Rose-Janssen-De
Dominicis [28] or the Doi-Peliti [29] formalisms. The
minimum of the action can be used to generalize Arrhenius
law, and its minimizer to explain the mechanism of the
transitions, including the shape of the critical nucleus that
serves as transition state. Concrete predictions, however,
rest on our ability to solve this minimization problem,
which often needs to be done numerically.
Here, we develop algorithms to perform these calcula-

tions, in both finite and infinite times. These algorithms
are designed to be used directly within the Hamiltonian
formulation of the action, which leads to a min-max
problem, and do not require the user to calculate the
Lagrangian beforehand. In particular, it can be used for
systems where the fluctuations are non-Gaussian and the
Lagrangian is typically unavailable in closed form.
We hope that our work will pave the way for a systematic

approach to study activated processes. These applications
will depend on the possibility to derive an appropriate
minimum-action principle, potentially through coarse-
graining, which is a nontrivial question on its own.
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APPENDIX A: CONVERGENCE OF THE
MIN-MAX FOR α SMALL BUT FINITE

Wewould like to show that if a path is stable with respect
to the Lagrangian minimization, then the path is also stable
with respect to the Hamiltonian min-max algorithm, for α
small enough. We start from Eq. (39), but in this section,
we conveniently rescale artificial time τ ¼ τ̃=α, set α̃ ¼ α2,
and drop the tilde such that the evolution equations read

∂τx ¼ ∂tθ þ ∂xH;

α∂τθ ¼ ∂tx − ∂θH: ðA1Þ

We focus on the dynamical system subjected to an
additive Gaussian white noise, as presented in Eqs. (17)
and (18); i.e., the Hamiltonian takes the form

Hðx; θÞ ¼ hbðxÞ; θi þ 1

2
jθj2: ðA2Þ
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We assume that a minimum-action path fðx�; θ�Þgt∈½0;T� is
obtained. We look at a perturbed path ðx� þ X; θ� þ ΘÞ
with X ¼ ðx1;…; xPÞT and Θ ¼ ðθ1;…; θPÞT the pertur-
bations, and we assess the conditions for path relaxation
to the minimum-action path. The evolution of the pertur-
bation reads

∂τxp ¼ _θp þ θ�j
∂
2b�j

∂xk∂xp
xk þ θj

∂b�j
∂xp

;

α∂τθp ¼ _xp −
∂b�p
∂xk

xk − θp; ðA3Þ

where we use the Einstein convention for the sum on
repeated indices, and the shorthand notations ð∂b�p=∂xkÞ ¼
ð∂bp=∂xkÞjx� and ð∂2b�j=∂xk∂xpÞ ¼ ð∂2bj=∂xk∂xpÞjx� , for
any indices j, k, and p.
The evolution of the fields can now be cast into the

following form:

∂τX ¼ L1X þ L2Θ;

∂τΘ ¼ α−1ðL3X − ΘÞ; ðA4Þ

where

ðL1ÞðpkÞ ¼ θ�j
∂
2b�j

∂xk∂xp
; ðA5Þ

ðL2ÞðpkÞ ¼
�
δpk∂t þ

∂b�k
∂xp

�
; ðA6Þ

ðL3ÞðpkÞ ¼
�
δpk∂t −

∂b�p
∂xk

�
: ðA7Þ

In the Lagrangian algorithm, the equation Θ ¼ L3X is
always verified, so the evolution of the perturbation X is
simply given by

∂τX ¼ ðL1 þ L2L3ÞX: ðA8Þ

Any perturbation X vanishes if the eigenvalues of the
operator L ¼ L1 þ L2L3 are all of the negative real part.
The operator L is self-adjoint (since L is the Hessian of the
action S), and one can, thus, extract a basis of normalized
orthogonal eigenvectors XL

n . Let us denote by μn the nth
eigenvalue and XL

n the corresponding eigenvector. We have
LXL

n ¼ μnXL
n , with μn < 0.

Now, in the Hamiltonian algorithm, we would like to
find the conditions under which any perturbation ðX;ΘÞ
close to a path of minimum action vanishes when evolving
in artificial time τ. The perturbation vanishes if and only if
the eigenvalues λn of the linear operator given in Eq. (A4)
have a negative real part. The eigenvalue λn associated to
the eigenvector ðΘn; XnÞT should verify

L1Xn þ L2Θn ¼ λnXn;

α−1ðL3Xn − ΘnÞ ¼ λnΘn: ðA9Þ

The second equation in Eqs. (A9) yields
Θn ¼ ð1þ λnαÞ−1L3Xn, assuming that there exists α > 0
such that ð1þ λnαÞ ≠ 0 for every n. Injecting this result
into the first equation of Eqs. (A9) yields a closed equation
for Xn and λn:

ð1þ λnαÞðL1Xn − λnXnÞ þ L2L3Xn ¼ 0: ðA10Þ

For α ≪ 1, the system (A4) can be seen as a perturbation of
the Lagrangian problem, where an additional degree of
freedom Θ relaxes to L3X on a fast timescale 1=α.
This suggests to look for eigenvalues with a specific form:

(i) A first set of eigenvalues λð1Þn should be the perturbed
eigenvalues μn with perturbed XL

n as corresponding eigen-

vectors; (ii) a second set of eigenvalues λð2Þn is expected to
scale as Oðα−1Þ and encodes the fast relaxation of the
variable Θ to L3X.
Therefore, we look for eigenvalues of a general form:

λn ¼
ηn
α
þ νn þOðαÞ ðA11Þ

with ηn and νn ofOð1Þ. Expanding at leading orderOðα−1Þ
in Eq. (A10) yields

ηnð1þ ηnÞXn ¼ 0; ðA12Þ

implying that ηn ¼ 0 or ηn ¼ −1. The case ηn ¼ 0 leads us
to consider the first case (i) mentioned above, in which we

look for eigenvalues λð1Þn ¼ μn þ αξn, with ξn ¼ Oð1Þ, and
we expand Eq. (A10) to leading order. At order 0 in α, we
find that Xn must solve

ðL1 þ L2L3ÞXn − μnXn ¼ 0; ðA13Þ

where we recognize the operator L ¼ L1 þ L2L3, which
confirms that we expand around the eigenvalues XL

n of
the Lagrangian system. We write Xn ¼ XL

n þ αYn with
kYnk ¼ Oð1Þ. Now expanding Eq. (A10) at order 1 in α
and using the relation LXL

n ¼ μnXL
n , we get

LYn − μnYn ¼ ξnXL
n þ μnL2L3XL

n : ðA14Þ

By taking the scalar product with the eigenvector XL
n on

both sides of Eq. (A14), we obtain

ξn ¼ −μnhXL
n ;L2L3XL

n i: ðA15Þ

The brackets h·; ·i stand for the scalar product in
L2ð½0; T�;RPÞ, which is given by
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hϕ;ψi ¼
Z

T

0

ϕpðtÞψpðtÞdt: ðA16Þ

Using the fact that L�
2 ¼ −L3, we have

ξn ¼ μnkL3XL
nk2; ðA17Þ

where k · k is the norm associated with h·; ·i. Inserting this
result as well as ηn ¼ 0 in Eq. (A11), we deduce that

λð1Þn ¼ μn½1þ αkL3XL
n k2 þOðα2Þ�: ðA18Þ

This shows that, for α small enough, the signs of the real
part of λn and μn are the same.
Now, in case (ii), where ηn ¼ −1, at leading order 1 in α,

Eq. (A10) becomes

−νnXn ¼ L2L3Xn: ðA19Þ

Hence, using again the fact that L�
2 ¼ −L3, νn verifies

νn ¼
kL3Xnk2
kXnk2

; ðA20Þ

where Xn is an eigenvector of L2L3. Therefore, we have
another set of eigenvalues given by

λð2Þn ¼ −α−1 þ kL3X
L2L3
n k2 þOðαÞ; ðA21Þ

with XL2L3
n an eigenvector of L2L3. Since λð2Þn < 0 if α is

small enough, the associated eigenvectors are always
stable. Therefore, the stability of the fixed points of the

Hamiltonian system is determined by the sign of λð1Þn , which
is the same as the sign of the eigenvalues μn of the
Lagrangian system for α small enough.

APPENDIX B: CONVERGENCE OF THE GDA
IN AN ANALYTICALLY SOLVABLE CASE

To gain insight about the convergence of the GDA
algorithm, we consider an Ornstein-Uhlenbeck (OU)
process in one dimension for which the evolution equa-
tions of the GDA are amenable to analytic solution. The
example is also relevant since it is the dynamics verified by
each Fourier mode of a freely diffusive field in a one-
dimensional periodic box. The stability of the numerical
scheme associated with this example is analyzed in
Appendix C.
For an OU process, the Hamiltonian is given by

Hðx; θÞ ¼ −ζxθ þ 1

2
θ2; ðB1Þ

where ζ > 0 is the stiffness of the confining harmonic
potential. We look for the instanton joining xa to xb ≠ xa,

with xa possibly nonzero (i.e., not the stable point of the
deterministic dynamics). The GDA equations read

∂τx ¼ αð∂tθ − ζθÞ;
α∂τθ ¼ ∂txþ ζx − θ; ðB2Þ

subject to the boundary conditions

xðτ; 0Þ ¼ xa; xðτ; TÞ ¼ xb ðB3Þ

and to the initial conditions

xð0; tÞ ¼ x0ðtÞ; θð0; tÞ ¼ θ0ðtÞ: ðB4Þ

Again, as in the body of text, we introduce a scale α > 0
that controls the relative evolution of x and θ in time τ. By
taking the derivative with respect to τ of the first equation in
Eqs. (B2) and applying the operator ∂t − ζ to the second
equation, a closed PDE for the function xðτ; tÞ can be
obtained:

∂
2
τx ¼ −

1

α
∂τxþ ð∂2t x − ζ2xÞ: ðB5Þ

For α > 0, we set γðtÞ ¼ xað1 − t=TÞ þ xbt=T and define

φðτ; tÞ≡ xðτ; tÞ − γðtÞ ðB6Þ

such that φðτ; 0Þ ¼ φðτ; TÞ ¼ 0. To proceed, let us use the
Fourier decomposition of φ:

φðτ; tÞ ¼
X∞
q¼1

φqðτÞ sinðqπt=TÞ; ðB7Þ

where we take the convention

φqðτÞ ¼
2

T

Z
T

0

φðτ; tÞ sinðqπt=TÞdt: ðB8Þ

Inserting Eqs. (B6) and (B7) into Eq. (B5) and projecting,
we arrive at the equation verified by the modes φq (q ∈ N):

α∂2τφq þ ∂τφq þ αω2
qφq ¼ αζ2

2½xa − xbð−1Þq�
πq

; ðB9Þ

with ω2
q ¼ ζ2 þ ðπq=TÞ2. We recognize the equation for

the damped harmonic oscillator, implying that the modes
eventually decay exponentially in τ to their stationary
value. Setting

Δq ≡ 1 − 4α2ω2
q ðB10Þ

and defining
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φ̄q ¼
ζ2½xa − xbð−1Þq�

πqω2
q

; ðB11Þ

we have for Δq > 0,

φqðτÞ ¼ φ̄q þ C1qe−τ=ð2αÞe
ffiffiffiffi
Δq

p
τ=ð2αÞ

þ C2qe−τ=ð2αÞe
−

ffiffiffiffi
Δq

p
τ=ð2αÞ; ðB12Þ

for Δq < 0,

φqðτÞ ¼ φ̄q þ C1qe−τ=ð2αÞ cos
h ffiffiffiffiffiffiffiffiffijΔqj
p

τ=ð2αÞ
i

þ C2qe−τ=ð2αÞ sin
h ffiffiffiffiffiffiffiffiffijΔqj
p

τ=ð2αÞ
i
; ðB13Þ

and, for Δq ¼ 0,

φqðτÞ ¼ φ̄q þ ðC1q þ C2qτÞe−τ=ð2αÞ: ðB14Þ

In each case, the constants C1q and C2q are then determined
by the initial conditions x0ðtÞ and θ0ðtÞ.
This computation addresses the question of the con-

vergence rate, which is different for each mode q. For a
given q ≥ 1, the best decay rate λq is obtained when
choosing α ¼ 1=ð2ωqÞ, which corresponds to the damped
critical regime. In practice, we need to use the same α for
all modes q. The convergence to the final path is then
determined by the smallest rate, which must be chosen as
large as possible. Since the decay rates λq are ordered
according to λ1 ≤ λ2 ≤ � � � ≤ λq, this prescribes the choice
of α ¼ 1=ð2ω1Þ that maximizes the convergence rate of the
mode q ¼ 1, for which we have λ1 ¼ ω1. This also yields
identical rates λq ¼ ω1 for all modes q, and the modes
q > 1 display damped oscillations.

APPENDIX C: STABILITY OF THE
NUMERICAL SCHEME

In this section, we analyze the stability of Algorithm 1
for the Ornstein-Uhlenbeck system introduced in
Appendix B. Starting from Eq. (B2), where x is subject
to the boundary conditions (B3), we set u ¼ xþ αθ and
v ¼ x − αθ. The GDA equations in these variables become

∂τu ¼ ∂tuþ fðu; vÞ;
∂τv ¼ −∂tvþ gðu; vÞ ðC1Þ

with

fðu; vÞ ¼
�
ζ þ 1

α

�
v −

1

α
u; ðC2Þ

gðu; vÞ ¼
�
−ζ þ 1

α

�
u −

1

α
v ðC3Þ

and with the boundary conditions

vðτ; t ¼ 0Þ ¼ −uðτ; t ¼ 0Þ þ 2xa; ðC4Þ

uðτ; t ¼ 0Þ ¼ −vðτ; t ¼ 0Þ þ 2xb: ðC5Þ

Since Eqs. (C1) are linear equations, Algorithm 1 can be
expressed in terms of matrix multiplications. To this end,
let us define r ¼ Δτ=Δt, the ratio between the algorithm
evolution time step and the physical time step, and set
Un ¼ ðun0;…; unMÞT and Vn ¼ ðvn0;…; vnMÞT , such that
ðUn; VnÞT ¼ ðun0;…; unM; v

n
0;…; vnMÞT . The scheme we

prescribe in Algorithm 1, thus, writes in a block-matrix
form, where each block K, L, fGig1≤i≤4 is a ðM þ 1Þ ×
ðM þ 1Þ matrix and where 1 is the identity matrix: We
solve ðUnþ1; Vnþ1ÞT such that

�
K 0

0 1

��
Unþ1

Vn

�
¼

�
G1 G2

0 1

��
Un

Vn

�
þ R1; ðC6Þ

�
1 0

0 L

��
Unþ1

Vnþ1

�
¼

�
1 0

G3 G4

��
Unþ1

Vn

�
þ R2; ðC7Þ

with

K ¼

0
BBBBBBBB@

1þ r −r 0 � � � 0

0 1þ r −r . .
. ..

.

..

. . .
. . .

. . .
.

0

..

.
0 1þ r −r

0 0 1

1
CCCCCCCCA
; ðC8Þ

L ¼

0
BBBBBBBB@

1 0 0 � � � 0

−r 1þ r 0 . .
.

0

0 . .
. . .

. . .
. ..

.

..

.
−r 1þ r 0

0 0 −r 1þ r

1
CCCCCCCCA
; ðC9Þ

and, setting z≡ Δτ½ζ þ ð1=αÞ� and z̄≡ Δτ½−ζ þ ð1=αÞ�,

G1 ¼

0
BBBBBBBBB@

1 − Δτ
α 0 � � � 0

0 1 − Δτ
α

. .
. ..

.

..

. . .
. . .

. . .
.

0

..

.
0 1 − Δτ

α

0 0 0 0

1
CCCCCCCCCA
; ðC10Þ
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G2 ¼

0
BBBBBBBB@

0 z 0 � � � 0

0 0 z . .
. ..

.

..

. . .
. . .

. . .
.

0

..

.
0 0 z

0 0 0 −1

1
CCCCCCCCA
; ðC11Þ

G3 ¼

0
BBBBBBBB@

−1
z̄ 0 0

0 . .
. . .

.

..

.
z̄ 0

0 0 z̄ 0

1
CCCCCCCCA
; ðC12Þ

G4 ¼

0
BBBBBBBB@

0

− Δτ
α 1 0

0 . .
. . .

.

..

.
− Δτ

α 1

0 0 − Δτ
α 1

1
CCCCCCCCA
; ðC13Þ

and withR1 ¼ ð0M;2xb;0Mþ1ÞT andR2 ¼ ð0Mþ1;2xa;0MÞT
and where 0M indicates a list with M zeros.
The scheme is stable if the eigenvalues of the matrix Q

Q≡
�
1 0

0 L−1

��
1 0

G3 G4

��
K−1 0

0 1

��
G1 G2

0 1

�

ðC14Þ

are of module ≤ 1. To check the stability for different
values of Δτ and Δt, we prescribe a value of ζ, which
defines a typical relaxation timescale tζ ¼ 1=ζ of the
noiseless dynamics. We then either prescribe the final time
T and vary the number of pointsM along the path, or we fix
the number of points and vary Δt, which changes the final
time T. In particular, it is important to check the stability for
a final time T ≫ tζ, such that a transition from xa or xb to
the critical point x ¼ 0 can follow the deterministic flow on
most of the path (such transitions need noise only close to
the critical point that must be reached exactly at time
t ¼ T). To correctly resolve the instanton, we should then
typically take Δt < tζ.
In Fig. 11, we display the stability region of the scheme

in space ðΔt;ΔτÞ for some values of the parameters. The
result shows that the stability region depends on ζ and α.
Since the fixed point (the instanton) is independent of the
dynamical parameters Δτ and α, we should take the best
values that bring stability and convergence. Interestingly,
sending α → 0 is not the best choice for stability, even if it
looks appealing at first sight, since it corresponds to solving

the Legendre-Fenchel transform argmaxθ½h _x; θi −Hðx; θÞ�
for a given x. It is instead preferable to take α ¼ Oð1Þ to
update x and θ on similar timescales. It is also worth
noticing that the use of an implicit scheme for advection
relaxes the Courant-Friedrichs-Lewy (CFL) stability con-
dition; i.e., one can take Δτ > Δt and still have a stable
scheme. Unfortunately, it is clear from the graphs that the
limit Δτ → ∞ is not stable. This limit is, however,
interesting, since it corresponds to an infinitely fast update
of unþ1 at vn fixed, i.e., that unþ1 solves in the continuous
limit

0 ¼ ∂tunþ1 þ fðun; vnÞ ðC15Þ

at vn fixed, and, following, vnþ1 solves

0 ¼ −∂tvnþ1 þ gðunþ1; vnþ1Þ ðC16Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 11. Stability of the numerical scheme represented as the
shaded zone in the space ðΔt;ΔτÞ. The dashed line materializes
the usual CFL conditions for explicit advection scheme Δτ ¼ Δt,
which is relaxed here since the scheme is semi-implicit.
For (a)–(d), we fix the number of discretization points
M ¼ 100 and T varies according to T ¼ MΔt. For (e) and (f),
we fix T ¼ 10tk, and M is then given by M ¼ T=Δt.
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at unþ1 fixed. This greedy procedure would bring the
convergence to the fixed point in a few steps, when it
converges. Here, instead, Δτ must remain finite to guar-
antee convergence.
Finally, let us discuss the issue of preconditioning the

scheme for large values of ζ, which is relevant, e.g., if ζ
refers to the different relaxation rates of the different
Fourier modes of a diffusive field [we typically have
ζðkÞ ¼ Dk2 with D the diffusion coefficient of the field].
Specifically, we would like to choose time step Δτ for
which the numerical scheme remains stable when evolving
separately each Fourier component in a semispectral
method for solving PDEs. Preconditioning the evolution
(B2) aims at keeping the same Δτ for each mode and
allowing higher modes [large ζðkÞ] to relax slower than
lower modes [small ζðkÞ]. This procedure does not change
the final path, which still solves Hamilton’s equations. Such
preconditioning for the GDA reads

∂τu ¼
�
1þ 1

α
þ ζ

�
−1
½∂tuþ fðu; vÞ�;

∂τv ¼
�
1þ 1

α
þ ζ

�
−1
½−∂tvþ gðu; vÞ�: ðC17Þ

The shape of the matrices K, L, and fGig1≤i≤4 is
unchanged, but Δτ should be modified following the
substitution rule:

Δτ → Δτ
�
1þ 1

α
þ ζ

�
−1
; ðC18Þ

which also modifies r, z, and z̄. We find that this procedure
ensures the stability of the scheme up to Δτ ¼ 1, for all ζ,
assuming Δt is small enough.
The semianalytical proof presented here in the Ornstein-

Uhlenbeck setup provides insights on the behavior of the
system, but the problems we are usually interested in
display strong nonlinearities, and their stability cannot be
analyzed through the spectrum of a linear operator. We
keep in mind, however, that a few ingredients should be
reused and that they stabilize the code, in general: The
advection should be treated with an implicit upwind
scheme, the reaction terms can be evaluated upwind, and
preconditioning the dynamics allows us to take the same
time step Δτ for each Fourier mode in a semispectral
scheme.

APPENDIX D: HIGHER-ORDER SCHEME

In Algorithms 1 and 2 that we present in the text, the
derivative of u and v with respect to physical time t (or
with respect to parametrization s) is approximated with a
first-order finite-difference upwind derivative. This finite-
difference scheme is straightforward to implement, but it is
only first-order accurate; i.e., the error with respect to the

analytical solution decreases asOðM−1ÞwhenM increases,
M being the number of points used to discretize the interval
½0; T� (or interval [0, 1] if working with reparametrized
time s). Yet, it is possible to implement a higher-order
stable finite-difference scheme for the advection while
keeping large steps Δτ. This can be done by keeping the
implicit and upwind features of the scheme while approxi-
mating the derivatives with the second-order difference
stencil. The second-order stencil involves two upwind
grid points, which means that it can be used for points
i ¼ 2;…;M in forward advection for vi and for
i ¼ M − 2;…; 0 for backward advection for ui. The values
v1 and uM−1 are still computed with a first-order finite-
difference stencil. We checked that the higher-order scheme
indeed significantly improves the accuracy.
The higher-order implementation of Algorithms 1 and 2

is detailed in Algorithms 3 and 4, respectively. The
algorithmic complexity of the higher-order schemes is
the same as the algorithmic complexity of lower-order
ones. Indeed, in both cases, the implicit fields unþ1 and
vnþ1 simply solve a triangular system.

APPENDIX E: DETAILS ON THE CALCULATION
OF λ IN THE GEOMETRIC FORMULATION

We detail here the steps that lead us to consider the
geometric formulation of the GDA scheme with a specific
treatment to λ. We start from Eq. (50), and we notice that
the minimization of λ can be performed before the
minimization over ϕ̂. This reads

min
ϕ̂

min
λ≥0

max
θ̂

Z
1

0

½hϕ̂0; θ̂i − λ−1Hðϕ̂; θ̂Þ�ds: ðE1Þ

The max on θ̂ can be performed pointwise in s, and this
gives the following relation that the minimum-action path
should satisfy:

λϕ̂0 ¼ ∂θ̂H; ðE2Þ

which implicitly defines θ̂ðsÞ≡ ϑ½ϕ̂ðsÞ; ϕ̂0ðsÞ; λðsÞ�. Since
θðsÞ can be understood as a function of λðsÞ, the mini-
mization in λ of Eq. (E1) gives the equation

hϕ̂0; ∂λϑi þ λ−2H − λ−1h∂θ̂H; ∂λϑi ¼ 0; ðE3Þ

which, using Eq. (E2), simplifies intoHðϕ̂; ϑðϕ̂; ϕ̂0; λÞÞ ¼ 0.
This last equation, however, cannot be inverted, in general,
to obtain λðsÞ explicitly. Instead, as an update rule for λðsÞ,
we start back from Eq. (E3), and we replace ∂λϑ by its
value at convergence. Indeed, by taking the derivative of
Eq. (E2) with respect to λ, we get ϕ̂0 ¼ ð∂2

θ̂
HÞ∂λϑ, or

∂λϑ ¼ ð∂2
θ̂
HÞ−1ϕ̂0, since C−1 ≡ ð∂2

θ̂
HÞ is invertible under

assumption A3 that H strictly convex in θ. Inserting this
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expression for ∂λϑ in Eq. (E3), and extracting the root,
we get

λ ¼
h∂θ̂H;Cϕ̂0i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h∂θ̂H;Cϕ̂0i2 − 4Hhϕ̂0; Cϕ̂0i

q
2hϕ̂0; Cϕ̂0i : ðE4Þ

Equation (52) follows from this equation if we modify a
few terms to guarantee that λ ≥ 0 [which may not always

be satisfied, since Eq. (E2) holds only at convergence and
not during the optimization]. Note that Eqs. (E2) and (E4)
impose H ¼ 0 along the trajectory, for any definite
positive C. This enjoins us to consider replacing C by
the identity in our numerical algorithms in order to avoid
computing ð∂2

θ̂
HÞ and its inverse. Note also that the value

H ¼ 0 is the only possible value, since Hð0Þ ¼ Hð1Þ ¼ 0
(end points are critical points) and that HðsÞ ¼ Hð0Þ for
every s ∈ ½0; 1� (Hamiltonian system). In this sense, the

Algorithm 3. Action minimization by higher-order gradient descent-ascent.

1: Follow steps 1 and 2 in Algorithm 1.
2: for n ≥ 0 do
3: Update u with an implicit upwind scheme, namely, solve funþ1

i gi∈I sequentially from i ¼ M to i ¼ 0 using

unþ1
M ¼ −vnM þ 2ϕb;

unþ1
M−1 − unM−1

Δτ
¼ unþ1

M − unþ1
M−1

Δt
þ fðunM; vnMÞ;

unþ1
i − uni
Δτ

¼ −unþ1
iþ2 þ 4unþ1

iþ1 − 3unþ1
i

2Δt
þ fðuniþ1; v

n
iþ1Þ; i ¼ M − 2;…; 0:

4: Update v with an implicit upwind scheme, namely, solve fvnþ1
i gi∈I sequentially from i ¼ 0 to i ¼ M using

vnþ1
0 ¼ −unþ1

0 þ 2ϕa;

vnþ1
1 − vn1
Δτ

¼ −
vnþ1
1 − vnþ1

0

Δt
þ gðunþ1

0 ; vn0Þ;
vnþ1
i − vni
Δτ

¼ −
3vnþ1

i − 4vnþ1
i−1 þ vnþ1

i−2
2Δt

þ gðunþ1
i−1 ; v

n
i−1Þ; i ¼ 2;…;M:

5: Compute fϕnþ1
i ¼ 1

2
ðunþ1

i þ vnþ1
i Þgi∈I and fθnþ1

i ¼ 1
2
α−1ðunþ1

i − vnþ1
i Þgi∈I (if needed).

Algorithm 4. Geometric action minimization by higher-order gradient descent-ascent.

1: Follow steps 1 and 2 in Algorithm 2.
2: for n ≥ 0 do
3: Update u with an implicit upwind scheme, namely, solve funþ1

i gi∈I sequentially from i ¼ M to i ¼ 0 using

unþ1
M ¼ −vnM þ 2ϕb;

unþ1
M−1 − unM−1

Δτ
¼ λM−1ðun; vnÞ

unþ1
M − unþ1

M−1
Δs

þ fðunM−1; v
n
M−1Þ;

unþ1
i − uni
Δτ

¼ λiðun; vnÞ
−unþ1

iþ2 þ 4unþ1
iþ1 − 3unþ1

i

2Δs
þ fðuni ; vni Þ; i ¼ M − 2;…; 0:

4: Update v with an implicit upwind scheme, namely, solve fvnþ1
i gi∈I sequentially from i ¼ 0 to i ¼ M using

vnþ1
0 ¼ −unþ1

0 þ 2ϕa;

vnþ1
1 − vn1
Δτ

¼ −λ1ðunþ1; vnÞ v
nþ1
1 − vnþ1

0

Δs
þ gðunþ1

1 ; vn1Þ;
vnþ1
i − vni
Δτ

¼ −λiðunþ1; vnÞ 3v
nþ1
i − 4vnþ1

i−1 þ vnþ1
i−2

2Δs
þ gðunþ1

i ; vni Þ; i ¼ 2;…;M:

5: Follow steps 5–7 in Algorithm 2.
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coefficient λ−1 can also be seen as a Lagrange multiplier
enforcing H ¼ 0. Finally, the min on ϕ̂ brings the second
Hamilton equation

λθ̂0 ¼ −∂ϕ̂H: ðE5Þ

APPENDIX F: MODIFIED GINZBURG-LANDAU
DYNAMICS DISCRETIZED ON TWO SITES

To work in low dimensions, we discretize Eq. (64) on
two sites with periodic boundary conditions. Defining xðtÞ
and yðtÞ the values of the field on site 1 and site 2,
respectively, the system is now equivalent to studying a
particle at position ðx; yÞT subjected to a nonequilibrium
force. The dynamics read

_x ¼ bxðx; yÞ þ
ffiffiffiffiffi
2ϵ

p
ηx;

_y ¼ byðx; yÞ þ
ffiffiffiffiffi
2ϵ

p
ηy; ðF1Þ

where, following Eq. (64), we set

bxðx; yÞ ¼ 8Dðy − xÞ þ x − x3 þ κ

2
ðx2 þ y2Þ; ðF2Þ

byðx; yÞ ¼ 8Dðx − yÞ þ y − y3 þ κ

2
ðx2 þ y2Þ; ðF3Þ

and where ηx and ηy are Gaussian white noise of variance
unity. The term κðx2 þ y2Þ=2 is the two-site analog of κ R ρ2.
For simplicity, we take h ¼ 0, such that the noiseless system
has always two stable fixed points in ðx1; y1Þ ¼ ðq1; q1Þ
and ðx2; y2Þ ¼ ðq2; q2Þ, with q1 ¼ ð−κ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4

p
Þ=2 and

q2 ¼ ð−κ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ 4

p
Þ=2, and one unstable fixed point

at ðxu; yuÞ ¼ ð0; 0Þ. The system displays time-reversal

symmetry for κ ¼ 0, and we, therefore, know that the
dynamics follows a stochastic gradient descent on the land-
scape Vðx;yÞ¼−x2=2þx4=4−y2=2þy4=4þ4Dðx−yÞ2
and that the minimum-action path in this case corresponds
to the minimum energy path, which simply follows the
gradient ascent to escape the basin of attraction of one or
the other stable fixed point. For κ ≠ 0, however, we need to
resort to numerical algorithms to find the new minimum-
action paths between the stable fixed points. In this diffusive
system, as presented in Sec. II A, the Hamiltonian is
explicitly given by

H ¼ bxðx; yÞθx þ θ2x þ byðx; yÞθy þ θ2y; ðF4Þ

where θx and θy are the conjugated fields of x and y,
respectively. The solution to Hamilton’s equation of motion
is found via iteration of the gradient ascent-descent procedure
introduced above. The results can be found in Fig. 12. We
checked that the scheme perfectly recovers the prediction of
previous methods [36,37,39]. As expected, the action
decreases when the final time T increases; see Fig. 12(b).
Also, theHamiltonianH is conserved along thepath, since the
final path solves Hamilton’s equation of motion. In addition,
we notice that H → 0 when T increases.
Now,we know that theminimal action is reachedwhenwe

allow T → ∞; see Sec. III B. However, since the number of
points along the trajectory must remain finite, increasing T
translates into an increase of the physical time step Δt and
decreases the resolution of the path. To overcome this issue,
we use the geometric parametrization of the path presented in
Sec. III B. In Fig. 13, we see that the geometric para-
metrization allows us to reach the minimum of the action.
We also check that H ¼ 0 along the trajectory.
This example illustrates the approach on low-

dimensional systems subjected to an additive Gaussian

(a) (b) (c)

FIG. 12. Comparison between paths in the low-dimensional modified Ginzburg-Landau system for different values of the final time
T ¼ 2, 5, 10, and 20. Minimum-action paths (left), Lagrangian (middle), and Hamiltonian (right) along the paths. Orange squares (left):
unstable fixed points. Orange disks: stable fixed points. Background color: intensity of the force field; darker encodes stronger force. As
T increases, the action decreases. For large T, the Lagrangian plateaus in the vicinity of critical points. We notice that the final
Hamiltonian is constant along the trajectory. Parameters: N ¼ 400, D ¼ 0.03, κ ¼ 0.26, and Δτ ¼ 0.002.
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noise. The method yields the optimal paths of finite
duration but also the paths of infinite time length if the
geometric formulation is used. Note that the numerical
scheme can be adapted to determine transition paths
for spatially extended fields: This is what we do in
Secs. IV and V.

APPENDIX G: LARGE Ω EXPANSION AND
PROBABILITY DENSITY

In this section, we focus on the case of a unique well-
stirred compartment of fixed volume. We work in the limit
of a large number of particles, and we choose the micro-
scopic rates ki such that the mean-field equation always
displays two stable fixed points n− and nþ that solve
0¼k0−k1nþk2nðn−1Þ−k3nðn−1Þðn−2Þ and where n
is the number of particles in the compartment. When all the
particles coexist in the same compartment, the evolution of
the probability PðnÞ to find a number n of particles X at
time t is given by

∂tPðnÞ ¼ Wþðn − 1ÞPðn − 1Þ þW−ðnþ 1ÞPðnþ 1Þ
− ½WþðnÞ þW−ðnÞ�PðnÞ; ðG1Þ

where the rates are

WþðnÞ ¼ k0 þ k2nðn − 1Þ; ðG2Þ

W−ðnÞ ¼ k1nþ k3nðn − 1Þðn − 2Þ: ðG3Þ

The stationary probability Peq can be obtained explicitly:

PeqðnÞ ¼ K
Yn
i¼1

Wþði − 1Þ
W−ðiÞ

¼ K exp

�Xn
i¼1

ln
Wþði − 1Þ
W−ðiÞ

�
;

ðG4Þ

where K is a normalization constant. We are interested in
the case of a large number of particles per compartment,
such that we can extract a large deviation principle. We
denote Ω ≫ 1 the typical number of particles in the
compartment, we define the rescaled number of particles
ρ ¼ n=Ω, and we write the rates as

WþðnÞ ¼ Ω½wþðρÞ þOðΩ−1Þ�; ðG5Þ

W−ðnÞ ¼ Ω½w−ðρÞ þOðΩ−1Þ�; ðG6Þ

with wþðρÞ ¼ λ0 þ λ2ρ
2 and w−ðρÞ ¼ λ1ρþ λ3ρ

3 and
where the λi are now rescaled reaction rates verifying
λi ¼ kiΩi−1. This rescaling ensures that the deterministic
mean-field dynamics

∂tρ ¼ λ0 þ λ2ρ
2 − λ1ρ − λ3ρ

3 ðG7Þ

keeps the same fixed points ρ−, ρs, and ρþ when Ω → ∞,
with ρ− and ρþ stable, while ρs is unstable. Following
Refs. [43,44,97,99], using the WKB (or eikonal) approxi-
mation and the continuum limit, the probability now
becomes a probability density and can be cast into the
following form:

PeqðρÞ ¼ Kðρ;ΩÞe−ΩVeqðρÞ; ðG8Þ

where the equilibrium potential is given by

(a) (b)

FIG. 13. Comparison between paths in the low-dimensional modified Ginzburg-Landau system. Left: flow lines and paths. Right:
action increment along the paths parametrized by normalized arclength. (a) Dashed line: heteroclinic orbit obtained with the string
method. Purple line: forward minimizer obtained with the geometric algorithm. Orange line: backward minimizer obtained with the
geometric algorithm. Squares: unstable fixed points. Disks: stable fixed points. Background color: intensity of the force field; darker
encodes stronger force. Parameters: N ¼ 600, D ¼ 0.03, κ ¼ 0.26, and Δτ ¼ 0.01.
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VeqðρÞ ¼
Z

ρ
dy ln

wþðyÞ
w−ðyÞ

ðG9Þ

and where Kðρ;ΩÞ is a function with the property that, for
any ρ1 and ρ2, the fraction Kðρ1;ΩÞ=Kðρ2;ΩÞ is bounded.
As such, the ratio of the probabilities Pðρ1Þ=Pðρ2Þ is
completely determined by the difference ΔV ≡ Veqðρ1Þ−
Veqðρ2Þ, in the large Ω limit. We show in Fig. 14 that the
potential Veq and the naive Ginzburg-Landau potential
UðρÞ ¼ −λ0ρ − λ2ρ

3=3þ λ1ρ
2=2þ λ3ρ

4=4 display differ-
ent maxima and, thus, different predictions for the relative
stability of the states. In the large Ω limit, we check that the
probability converges as expected to the probability density
given by the function VeqðρÞ. We also notice that many
particles per box may be needed to observe the convergence
to the large deviation function.
In summary, for a well-stirred and unique compartment,

the analytical expression of the large deviation function
can be obtained explicitly. This is no longer the case
when spatial diffusion is taken into account, and this is
why one has to resort to other techniques to access the
quasipotential.
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