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Motivated by advances in the field of active matter where nonequilibrium forcing has been shown to
activate new assembly pathways, here we study how nonequilibrium driving in prototypical memory
formation models can affect their information processing capabilities. Our results reveal that activity can
provide a new and surprisingly general way to dramatically improve the memory and information processing
performance of the memory-forming systems without the need for additional interactions or changes in
connectivity. Nonequilibrium dynamics can allow these systems to have memory capacity, assembly or
pattern recognition properties, and learning ability, in excess of their corresponding equilibrium counterparts.
Our results demonstrate the generality of the enhancement of memory capacity arising from nonequilibrium,
active dynamics when compared to noise sources characteristic of equilibrium dynamics. These results are of
significance to a variety of processes that take place under nonequilibrium dynamics, and involve information
storage and retrieval, as well as in silico learning and memory-forming systems for which nonequilibrium
dynamics may provide an approach for modulating memory formation.
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I. INTRODUCTION

Biological systems ranging from neuronal circuits in
multicellular organisms, to biological circuits responsible
for immune memory, display a remarkable array of informa-
tion storage and retrieval dynamics [1-5]. The olfactory
system is involved in storing information about a wide array
of smells and retrieving them accurately even with a low
signal-to-noise ratio arising from mixed odors [6,7]. The
immune system is responsible for storing memory from a
previous infection through B-cell populations and using them
to elicit responses during new infections [8]. Biological
assemblies, for example, those connected to the cytoskeleton,
have been shown to possess information processing abilities
that allow them to respond in a desired manner to external
stimuli [9,10]. All these processes involve some form of
information storage across large timescales as well as retrieval
of the same, which is inherently dynamic in nature. The
foundational paradigms used to understand information
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storage and retrieval, however, are arguably rooted in the
principles of equilibrium statistical mechanics. These prin-
ciples provide a prescription to understand how interactions
between constituent particles (in the case of molecular
recognition or assembly problems) or connectivity (in the
case of neural network computation problems) determines an
overall energetic or free-energetic landscape in the space of a
relevant order parameter. In turn, the characteristics of such
landscapes are employed to rationalize information storage
and retrieval processes. Here, motivated in part by advances
in the field of active matter [11-16] where nonequilibrium
forcing has been shown to activate new assembly and
organization pathways, we study how modulating the dynam-
ics of systems through nonequilibrium activity can affect their
information processing capabilities.

We investigate prototypical models of associative
memory [17,18], pattern recognition and assembly [19],
and neural networks [20]. Our results reveal that activity
can provide a new and surprisingly general way to
dramatically improve memory and information processing
performance. In particular, nonequilibrium dynamics can
allow these systems to have memory capacity, assembly
or pattern recognition properties, and learning ability, in
excess of their corresponding equilibrium counterparts.

First, we motivate our approach using an adaptation of a
particle moving in a double-well potential. Results obtained
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from this minimal model show how strategies based on
modifying the dynamics with active terms may result
broadly in improved memory storage and recall. Next,
we demonstrate our results using a version of the Hopfield
model [18], a paradigmatic model for associative memory
[21-23]. By studying a version of the Hopfield model with
nonequilibrium dynamics, we show how the associative
memory characteristics of a system may be enhanced far
beyond the bounds placed by equilibrium dynamics. Our
model of nonequilibrium dynamics is motivated by choices
commonly made in the field of active matter [24,25].

The observed connection between nonequilibrium forc-
ing and the promotion of specific ordered states in active
matter problems and the general nature of our analytical
results suggests that our conclusions may apply more
broadly. Exploring this possibility, we demonstrate how a
model elastic material endowed with associative memory-
like properties [19] can be made to store configurations
far in excess of what is allowed under equilibrium
dynamics. Insight gleaned from studies of this elastic
material may be directly relevant for the design of various
bioinspired materials and molecular recognition proc-
esses. It is also relevant for understanding how desired
structures may be self-assembled even in systems with
highly promiscuous interactions. Our work shows how
nonequilibrium activity can provide a new route to control
the properties of such systems [19].

As a final example we show how nonequilibrium activity
may also help improve the performance of neural networks
as illustrated in Fig. 1. We do so by considering a simple yet
prototypical “phase retrieval” problem in which a neural
network attempts to reconstruct a signal from a set of
measurements [20]. The effectiveness of this network may

(<]
[=9
g - —
[ —LE
% Hopfield associative memory
—
= = = Elastic system associative memory
B H S w, e .
I/Vso — VVD
Phase retrieval using
neural networks
Configurations
FIG. 1. Activity can be used to improve the information

processing properties of a large class of systems, including an
associative memory exhibiting spin-based Hopfield network
which stores patterns, an elastic material with promiscuous
interactions which can store certain configurations, and finally
neural network used for the prototypical phase retrieval problem.
In all the three cases, our work shows how nonequilibrium
activity can (in some cases dramatically) improve the desired
information processing capacity of the system. Viewed in the
commonly used landscape caricature, our work suggests that
activity (red) can generically improve the stability of the desired
states or outcomes while suppressing undesirable outcomes.

be measured by a loss function that is minimized when the
signal is retrieved with complete accuracy. The landscape
of the loss function (as the weights of the neural network
are tuned) can, however, be highly nonconvex leading to
imperfect signal recovery. Intuition from the above
described examples suggests that activity may provide a
route to deepen (or make more convex) landscape around
desired memories or self-assembled structures. Here we
show that adding nonequilibrium activity to the dynamical
equations of motion dictating how the weights of the neural
network change can dramatically improve the performance
of the network. Like in the previous examples, nonequili-
brium activity provides a new route to modulate the “loss”
landscape of our model neural network and improve its
performance without the need for additional layers or
connectivity. Our results are consistent with recent work
in Ref. [20] where the accuracy of the phase retrieval
algorithm was improved by introducing a persistent mini-
batch sampling procedure. Taken together, our work opens
up general strategies for enhancing memory capacity and
classification properties in nonequilibrium materials.

II. PRIMER: INSIGHTS FROM
A MINIMAL MODEL

In order to elucidate how activity may provide a general
route to modulating memories, we first discuss a highly
simplified minimal model of a single particle in a double-
well potential, V(x) = —(a/2)x* + (b/4)x*, with over-
damped Brownian motion dynamics,

x = ax—l—n(l), (1)
where 7(t) is a white noise source with zero mean and
variance ((#)n(f')) =2T8(t—1'), and T is a temperature
scale. The kinetics of escape rates across the energy barrier
follow an Arrhenius-like form, with barrier crossing rates
that are exponentially suppressed as the barrier height is
increased or the temperature of the system is decreased.
Replacing the white noise source with an exponentially
correlated noise source, £(7) with zero mean and with
correlations (£(¢)&(¢')) = T/rexp(—|t —¢'|/7) where 7 is a
timescale, breaks the condition of detailed balance and
drives the system away from equilibrium. Indeed in this
case, fluctuations in the exponentially correlated noise
source are not dissipated through a corresponding friction
source. The effect of such nonequilibrium activity on
barrier crossing times can be inferred following the
works of Ref. [26] in the limit 7 < 1. Adapting the
calculations in Ref. [26], we show in Appendix A how
nonequilibrium activity can lead to an increase in the
escape time of a system over the barriers (Fig. 2).
Specifically, as we describe in Appendix A, the ratio
of the average escape times in and out of equilibrium, 7,
and 7,, respectively, satisfies
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FIG. 2. A minimal landscape model for improved associative
memory recall due to activity. The addition of activity can
modulate the landscape in specific ways leading to longer
residence times in portions of the landscape corresponding to
associative memory. Here 7z, and 7, denote the average escape
times in the active and passive case, respectively.

In {T—] = %m. (2)

T

We note that, in general, the effect of activity on
barrier crossing times cannot be simply described by
an effective potential or temperature and that it depends
on the details of the nonequilibrium forcing and the
underlying potential [26,27].

This minimal calculation motivates us to consider
whether similar phenomena might happen for highly
disordered systems when subjected to detailed balance
breaking colored noise. In the context of associative
memory and neural network systems, where memories
and solutions are stored in attractor basins, such effects
might result in improved memory storage and information
processing capacity.

III. SPHERICAL HOPFIELD MODEL WITH
NONEQUILIBRIUM DYNAMICS

The Hopfield model is an interacting spin system with a
Hamiltonian which is fully connected; i.e., every spin is
connected to every other spin. We work with a version of
the Hopfield model [18] where the spins are continuous and
obey the constraint Y ¥, 67 = N, where o; denotes the
value of the ith spin and N is the total number of spins in
the system:

1 &)
Ho=-3 ZJ ij%i%) = 4 ZJ 0000 (3)

i#j ijkl
1 1
Ji= g2 8G. J =) asad. @
i u

Henceforth, repeated indices would mean a summation
over that index. The pattern variables are denoted as &,
where y denotes the pattern index and i denotes the site
index. The N components of the patterns are drawn from

independent identically distributed (IID) normal distribu-
tions, & ~ N(0,1). The pattern loading of the system is
denoted by @, which is the ratio of the number of stored
patterns (P) to the total number of spins () in the system.
In the model, the coupling strengths between spins J;; and
Jijr depend on the patterns through the Hebbian rule [28].
Quartic terms are included in the Hamiltonian following
Ref. [18], where it was demonstrated that such higher-order
terms are a necessary requirement for associative memory-
like properties in a system with continuous spins. The spins
evolve according to the following equations of motion,

_ Hy(o)
So,(1)

Here, pu(t) is the Lagrange multiplier which ensures the
normalization of the spins and §H, /o is the relaxational
term. Finally, n(¢) models the effect of various thermal and
athermal fluctuations,

0,0; = —u(t)o;(1) +n;(1). (5)

1i(1) = i (£) + 1a4(2), (6)
(i(0) = 0= (na(t)) Vi, (7)
(i (O (1)) = 2T ,6;;6(t = '), (8)

/

o) = 25,00 (-12). o)
where the thermal fluctuations (thermal noise) are modeled
using a & function correlated white noise 7#,, and the
exponentially correlated 77, is a so-called active or a colored
noise source. As mentioned earlier, the addition of colored
noise into the system without a corresponding change in
dissipation breaks detailed balance as has been demon-
strated in Refs. [11,29,30]. Thus, even in the limit 7 < 1,
the system will still be forced away from equilibrium. In
what follows, we report results from our numerical and
analytical calculations in terms of two parameters, namely,
the passive fraction, f =T ,/(T, + T,), and the so-called
effective temperature, To =T, + T, [24,25]. Note that
such an effective temperature prescription does not hold
in general—indeed, the effective temperature 7 1S most
appropriate in the low persistence time limit [24,25]—T .4
provides a convenient way to characterize the strength of
the nonequilibrium forcing [31].

y_{%@a.i(t)’?a,j(ﬂ)) =2T,6,;6(t —t'). (10)

We perform numerical simulations in which a system
with N = 200 spins is evolved forward in time using
Eq. (5). In these numerical simulations, we probe the
ability of the system to retrieve a stored pattern by
initializing the spin system in configurations close to those
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FIG. 3. Memory retrieval in an associative memory model with
equilibrium and nonequilibrium dynamics. (a) A phase diagram
demarcating regions exhibiting associative memory. The orange
region represents the parameter space where retrieval is possible
in both the passive (equilibrium) and active (out-of-equilibrium)
case, the red region is where the active case shows retrieval
whereas the passive system does not, and in the blue region
memory retrieval is lost altogether. The phase boundaries were
obtained using a mean field technique described in Appendix D.
Parameters used are 7 =5 and the passive temperature 7, = 0
for active simulations. (b) As an example, we show the retrieval
dynamics of a pattern stored at @ = 0.1, Ty = 0.4 in the phase
diagram. For illustrative purposes, the pattern is arranged such
that it spells out Chicago. Simulations with equilibrium dynam-
ics, when initialized in the vicinity of this pattern, fail to retrieve
it. On the other hand, this pattern is successfully retrieved with
nonequilibrium dynamics at the same effective temperature. The
“Chicago” pattern simulation was performed with N = 150 spins
and 10 patterns encoded in the interactions.

corresponding to the stored memory states. We choose
an initial overlap of 0.9-0.93. This is in accordance with
Ref. [17] where similar error limits are considered.
Retrieval is considered successful if the dynamics are able
to recover the full stored pattern as it reaches its steady
state. Quantitatively, the retrieval ability is measured by
tracking the steady state value of the overlap of the final
spin configuration of the system with the pattern it was
initialized near [17,21]. For a particular pattern p,
this overlap can be measured as m* = (1/N)> ;& ;.
Following Refs. [18,32] we look at the condensation of
a single pattern [33]. Figure 3 describes results from
numerical simulations using Eq. (5).

The phase portrait in Fig. 3(a) shows the regimes under
which the different dynamics are able to successfully
retrieve the stored patterns. To construct this phase portrait,
multiple numerical simulations were performed at various
values of a and T for both equilibrium and nonequili-
brium dynamics. Here, equilibrium dynamics implies 7', is
set to zero and T = T, while nonequilibrium dynamics
implies 7, is set to zero and T =T,. The phase
boundaries themselves were obtained using a mean field
technique described in Sec. IV B. As can be clearly seen in
Fig. 3(a), the ability of the spin system to retrieve patterns
is markedly increased due to nonequilibrium driving.

Specifically, the orange shaded region demarcates the
parameter combinations under which associative memory
or memory retrieval is possible under equilibrium
dynamics [21]. Our nonequilibrium simulations demon-
strate memory retrieval in the red shaded region in addition
to the orange shaded region. The nonequilibrium dynamics
chosen for the simulations in Fig. 3(b) were performed
with T = 0.4,7 = 5. Qualitatively similar results can
be obtained for other choices of the nonequilibrium
parameters.

In the subsequent sections, we explore the theoretical
basis of this improved associative memory due to non-
equilibrium dynamics. First, in Sec. [IVA we perform a
perturbative analysis in the limit of small persistence time 7.
In this limit the nonequilibrium distribution function can be
approximated using Boltzmann statistics with an effective
Hamiltonian and an effective temperature. Our calculations
show how the effective Hamiltonian supports enhanced
interactions between spins as well as new higher-order
interactions at first order in 7. A replica calculation reveals
that as a consequence of these enhanced interactions—
these emerge due to the nonequilibrium forcing—the spin
system possesses enhanced associative memory recall.
Then in Sec. IVB we perform a Martin-Siggia-Rose
(MSR) calculation which describes our system in a mean
field limit and provides an analytically tractable route to
quantify how the robustness of pattern retrieval increases
away from equilibrium.

IV. RATIONALIZING IMPROVED ASSOCIATIVE
MEMORY UNDER NONEQUILIBRIUM
DYNAMICS

The equilibrium Hopfield model can be solved analyti-
cally using the replica method [21]. Since our model is out
of equilibrium, a direct application of the replica method is
not possible. Through unified active noise approximation
(UCNA) [34] and following recent work by Ref. [24], we
show that our active system can be described using an
effective Hamiltonian and a new effective temperature. We
then use the standard replica technique with this effective
Hamiltonian to show how the addition of activity enhances
associative memory recall. In Sec. IV B we derive an exact
mean field set of evolution equations for our active system
using the Martin-Siggia-Rose generating functional for-
malism [18,32,35] and further illustrate how memory recall
is improved by the introduction of activity.

A. Effective interactions due to nonequilibrium
forcing provide a mechanism for improved
associative memory recall

UCNA suggests [11,34] suggests that at small 7 our
nonequilibrium system can be described by an effective
Hamiltonian with an effective temperature. As outlined
in Appendix B, we show that at first order in 7, the
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perturbed Hamiltonian and the effective temperature (7 )
are given by

7T,
Teff

1
H="H,+ <§ IV, Hol* - TeffV§Ho), (11)

Teff - Tp + Ta. (12)

Substituting the Hopfield Hamiltonian, Eq. (3), into
Eq. (11) yields

v u
H = —EJUJiGj _Z‘]ijklgigjgkal

k
+ g.lijklmnaiajakaloman + O(1/N) terms, (13)

7,20 — s + 2a)

=1+ ,
Teff

2¢T, (21 —2
ﬁEul—i—Ta(ﬂ s—l—a)’ (14)

T s

3T, u*s & EEE Emén
kzi, s:<(§lil>2>7 Jijklmn: ! ksl ’ (15)
Teff N

where, as outlined in Appendix B, ji is approximated as
the average value of the Lagrange multiplier, i ~ (u(t)).
Numerically we find that for values of fi close to the
observed average in the simulations, (u(7)) ~ 2, the results
from the replica approach (described below) lead to
qualitatively similar results to those obtained from explicit
numerical calculations [36]. We see that activity enhances
the strength of the quadratic and quartic terms. It also
generates higher-order coupling between spins; for in-
stance, at first order it gives rise to a sextic term. The
enhanced strength of the quadratic and quartic terms in
Eq. (11) may potentially offer a route to stabilize associa-
tive memory recall by modifying the effective free-energy
landscape supporting pattern retrieval [Fig. 3(a)]. We now
confirm this picture by performing a replica calculation on
this effective Hamiltonian. Our calculation identifies
regimes where the nonequilibrium model can exhibit
associative memory whereas an equivalent equilibrium
model fails to have associative memory properties. The
details of the calculation are provided in Appendix C and
follow standard calculations performed on the equilibrium
Hopfield model [22].

The replica calculation provides an estimate of the order
parameter m that characterizes the degree of polarization of
the system toward one of the stored patterns:

1
= _E¢. 16
m' = &0 (16)
A nonzero value of this order parameter, along with con-

ditions on an additional order parameter that characterizes
the spin-glass nature of the system, identify regimes in which

—— Eq.case, u=1.0

1.0 ——— Noneq.case, f = 0.2
0.8
No memory
% 0.6
~
0.4 1

024 Memory

0.0 T T T T
0.00 0.05 0.10 0.15 0.20 0.25

a

FIG. 4. Phase diagram of the spherical Hopfield system using
replica calculation in equilibrium and nonequilibrium regimes.
The region to the left of the lines labeled as “Memory” represents
the retrieval phase. With a passive fraction, f = 0.2, 7 = 0.05,
s = 1.0, and Lagrange multiplier y = 2.4, and taking into
account the first-order corrections, the phase diagram shows
an enhancement in memory; i.e., the overlap parameter m is
nonzero over a larger region. Note that the replica calculation can
be performed only in the small 7z limit as explained in the main
text. Consequently, the enlargement of the region with associative
memory is relatively low in this theoretical phase diagram. More
substantial improvement in the associative memory properties
occurs in regimes with larger 7.

memory retrieval is possible. In Fig. 4 we plot the results
from our replica calculation and demarcate regimes in which
memory retrieval is possible both in and out of equilibrium.
The specific calculation in Fig. 4 was performed with the
passive fraction, f held a constant at f = 0.2 and 7 = 0.05
and shows that nonequilibrium dynamics permit memory
retrieval even in regions with higher effective temperatures.
While the presence of sixth-order terms in Eq. (13) might lead
to the formation of spurious energy minimas, our replica
calculation reveals that the system can robustly retrieve the
original patterns stored in it.

While this is only an approximate result as the perturba-
tion is valid only for small 7 and we ignore the higher-order
corrections to the effective Hamiltonian, our results none-
theless show how the strengthening of stabilizing inter-
actions in the effective Hamiltonian due to nonequilibrium
activity results in improved associative memory recall.

B. Mean field approach using the Martin-Siggia-Rose
generating functional Lagrangian to explain
improvement in nonequilibrium associative

memory recall

The results of the previous section analytically show
how associative memory can be improved in the low
persistence time limit. In order to probe the effects of
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activity in other limits, we use the Martin-Siggia-Rose
generating functional approach to write down and study
mean field coarse-grained equations for the evolution of the
order parameter m(1).

In the MSR approach, the statistics of the evolution path
of the system are captured by the disorder averaged
generating functional [Eq. (17)]:

Z[y. 0]
= / DoDnP(n)exp [i Z / dtl//i(t)ai(t)]
N H(o)
x | | d| 9,0 o = 0i(t) —n; :
H( () + 0l0)+ i1 =010 = (1))

(17)

Here 6;(z) is the external field on a spin which is
eventually set to 0. When we perform the disorder average
over Z in Eq. (17) we decouple the spins but couple
different times. This is similar to the coupling of different
replicas in the replica approach. The entire procedure is
described in Appendix D. We obtain an equation of motion
for the decoupled spins following the procedure. Using the
decoupled equation of motion for single spins, Eq. (D35),
we can easily write down the equations of motion for the
macroscopic variable m [Eq. (D46)].

These equations can be simulated numerically and
memory retrieval phase diagrams can be constructed based
on the steady state values of m. In Fig. 5(a) we plot the
evolution of m as a function of time, for various values of
the passive fraction f =T, /T (at fixed @, T, and 7).
These trends clearly demonstrate how nonequilibrium
forcing improves memory recall. For a fixed 7'z, memory
can be markedly improved if the fluctuations are mainly
due to detailed balance violating noise.

To more comprehensively characterize the improved
memory recall due to nonequilibrium dynamics in our
system, we use the MSR mean field framework to obtain
steady state values of the memory order parameter m at
various values of T, f, @, and 7 in Fig. 5(b). We observe
that at constant Ty = 1.0 and f = 0, the capacity of the
system increases with increasing the persistence time as
shown in Fig. 5(b). Note that at Ty = 1.0 at equilibrium
(i.e., 7 = 0), this Hopfield model has no retrieval capacity
[inset in Fig. 5(b)]. We have also provided a comparison
between the full numerical simulations by evolving Egs. (5)
for a system with N = 200 spins and the MSR equations in
Fig. 11(b). Finally, analogous to the replica calculation
enhancement in Fig. 4, we also computed phase boundaries
between regimes with memory and regimes without
memory in both active and passive cases. The resultant
Ty — a phase boundaries from MSR calculation is pre-
sented in Fig. 3(a). This also shows how activity can vastly

(a) 1.0

0.8

6 Memory
ﬁO.G‘
\‘é‘/ r
0.4 41
P— No memory
0.21 270 capacity af
0.01
o°t  10° 10t 10> 10° 0,00 0.05 0.10 015 0.20
t a
FIG. 5. Enhanced retrieval region from MSR calculations.

(a) Evolution of m as a function of # from the MSR formalism
[Egs. (D46), (D48), (D47)]. Here, = =5 and T = 1.0 for the
simulations. (b) Retrieval is improved when the amount of
activity is increased by tuning the persistence time 7. At 7 =0
and T = 1, the system is effectively at equilibrium, and as per
the equilibrium phase diagram of our spherical Hopfield model,
the system has no memory retrieval at this temperature (inset).
When 7 # 0, the system is out of equilibrium and we start
observing memory phase. The parameter f was held fixed at
f =0 for this phase plot.

increase the conditions under which memory retrieval is
possible. Together, these results further show how increas-
ing the nonequilibrium forcing may enhance the associative
memory recall of a system.

V. ELASTIC MATERIALS WITH MEMORY:
ENHANCED ASSOCIATIVE MEMORY RECALL
DUE TO NONEQUILIBRIUM ACTIVITY

In Ref. [19] it was shown that nonlinear spring networks
can be engineered to posses associative memory properties.
Specifically, the interactions between a system of N
particles can be programmed such that specific desired
spatial configurations sit at metastable minima in the
energy landscape. Akin to the Hopfield model, these
configurations can be recovered if the system of particles
is initialized in its vicinity. The learning rule used to encode
the memory configurations has features similar to the Hebb
rule used in the Hopfield case with the important distinction
being that the interactions are all local. Specifically, the
process of encoding memory proceeds in the following
way. The particles are arranged so that their positions
overlap with the first target two-dimensional configuration
to be stored as memory, {(x*,y*)}, where the label u
identifies the pattern. Nonlinear springs are then “grown”
between neighboring nodes such that their rest length is
equal to the distance between the nodes in the pattern.
Mathematically, this can be represented as

ki; = ko® (R, — | = rjt

): (18)

ly = I =, (19)
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where R, is the cutoff for two nodes to be considered
neighbors, O is the Heaviside function, 7# is the position of
particle “i” in pattern p, k;}_u,fju and l;l_u_;jy are the spring
constant and rest length of the spring connecting particle
“1” with particle “;” in pattern u. The energy due to the
nonlinear springs is given by

LR P L2k 20)
2 e ) [0.2 + (sll_tj)Z}l—(l/z)g’
sy = IFi = 7l = T, (21)

where £ # 2 sets the extent of nonlinearity and o is a
length scale. Analogous to the Hopfield model, this net-
work also has a critical number of patterns that the
system can remember after which its memory capacity
degrades rapidly.

Here, we investigate if activity can provide a route to
improve the memory capacity of this system. The system is
evolved according to the following equations of motion:

0.r, = —— . 22
T ari+’71 (22)

Here the noise 7 has the same statistics as Eqgs. (6)—(9).
Following Ref. [19] all the configurations considered were
two dimensional. The simulations were carried out in a
two-dimensional box with linear dimension L. The initial

state is a stored pattern configuration, i.e., ry = . We
calculate the average local displacement (d;) of a given
state from the specific pattern configuration it was initial-
ized near, in the following fashion. For every node in the
system, we calculate the average displacement of all other
nodes connected to it in the specific pattern. Then we
average over all these local displacements for all the nodes.
Mathematically, @] = (1/N%)>;;si;, where Nf is the
number of springs in pattern u. The parameter o was used
to specify our numerical memory retrieval criteria.
Specifically, if ; < o, we say that the system can retrieve
the patterns. For this system Ref. [19] discusses how the
effectiveness of memory retrieval is determined by the
radius of attraction around the pattern configurations,
i.e., the maximum displacement from the minima for
which the system still relaxes to the desired configuration.
Reference [19] shows that the radius of attraction around
the patterns is comparable to the length scale set by 0. We
choose o to be 1% the box length following the choices
made in Ref. [19]. As outlined in Ref. [19], ¢ and & can also
set a so-called threshold energy scale for the stability of
stored patterns. Hence, modulating the value of 6 may also
potentially affect the maximum effective temperature at
which memory storage is possible. In the following
we simply focus on numerical simulations with the

aforementioned value of ¢ and leave a more comprehensive
exploration to future work [37].

This system is not analytically tractable due to the
presence of the nonlinearities in springs. Thus we resorted
to using numerical methods for obtaining a phase diagram.
Specifically, we used a fixed-time step second-order
Runge-Kutta integrator for numerically evolving the sys-
tem using Eq. (22). The zero temperature capacity for the
set of parameters mentioned in Fig. 6 is a=0.15.
This capacity decreases as the temperature is increased.
Similar to the spherical Hopfield model, we find that the
capacity of the system to store patterns—at the same
effective temperature—is increased if the passive noise
source is replaced with an active noise source (Fig. 6).

Following the construction in Ref. [19], we also con-
structed a test to study the classification ability of the elastic
network under passive and active dynamics. For this, we
used data from the MNIST dataset, a set of 60 000 training
and 10 000 test images of handwritten digits. The training
dataset is transformed in the following fashion: Each
28 x 28 pixel image is first truncated to a 20 x 20 image
with 400 pixels. Then for every label, the average over all
its training images is taken. The grayscale image is then
interpreted as a configuration of 400 nodes in a 1D box of
length L = 10 with the node displacements given as the
pixel values scaled between 0 and 10. Thus we have a set of
configurations, one for every label, which we call “pattern”
in accordance with the terminology being used for elastic
networks. Using the above described procedure, we store
these patterns into the 1D network of nodes with a critical
radius of R, = L.

For this work, we store the configurations from training
dataset corresponding to labels “0” and “1.” After this we
initialize the system with one of the test images corre-
sponding to labels O or 1, truncated and transformed as
before. In Fig. 7 we characterize the classification ability by
initiating the system at a test configuration corresponding
to the O label with the dynamics prescribed by Eq. (22).
When evolved with passive dynamics (r = 0), a test pattern
diverges away from the stored O label state (Fig. 7). Under
active dynamics (at the same effective temperature), how-
ever, the designed attractor around the O state is more stably
accessed (Fig. 7). In effect, the active system manages to
classify the test pattern as a O label correctly while the
passive variant does not.

VI. IMPROVING SIGNAL RECOVERY AND
PERFORMANCE OF A PHASE RETRIEVAL
NEURAL NETWORK USING ACTIVE DYNAMICS

In this section, we show that the addition of active
dynamics may also improve the performance of a model
neural network. We illustrate this by considering the
prototypical problem of phase retrieval where the task is
one of recovering a signal from a set of measurements.
This is achieved using a single-layer perceptron network.
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FIG. 6. Enhancement of associative memory recall due to nonequilibrium activity in elastic materials. (a) Memory storage and
retrieval in elastic associative memory system. (b) Characteristic retrieval dynamics for patterns in the active and passive cases. The
system configuration is initialized near one of the patterns stored in the system. Two simulations are then performed, one in which the
system is evolved at T = 0.04 with passive noise (T, = 0.4, T, = 0) and another in which it is evolved at the same effective
temperature but with active noise (7', = 0, T, = 0.4). Shown is a single trial for a specific pattern. The y axis denotes the absolute
value of average displacement of the nodes. The insets show the configurations at two time instants, # = 1.0 and ¢ = 2.0 for the active
and passive cases. The yellow circles represent the stored patterns. The displacement order parameter tracks the loss of overlap
between the stored patterns and the instantaneous configuration of the system. The active dynamics are able to stabilize the system
close to the stored configuration, whereas in the passive case about 10 nodes suffer large displacements leading to no recovery.
(c) A phase portrait describing memory retrieval in the elastic associative memory system. The yellow region denotes recovery in
both passive and active cases. The light red region is where active case alone shows recovery. This phase diagram was built by
averaging over 10 different systems with 100 nodes (particles), £ = 0.4, box length (L) = 10.0, and ¢ = 0.1. Four trials were run per
pattern at a every given temperature. Data obtained from numerical simulations were used to generate the smoothened phase
boundaries using a 2D Gaussian interpolation.

Specifically, we consider, M IID Gaussian measurements  “signal” that corresponds to the right measurements. In the
typical implementation of the phase retrieval problem,

the weights w are evolved such that a loss function
given by £ =3 Lr =15 [(5#)* = (*)*]% where
$ = |(1/v/N)& - |, is minimized.

Dynamical equations with gradient descent are typically
used to evolve the weights to their optimal values. One of
the most popular implementations is the stochastic gradient
descent (SGD) algorithm, where a minibatch is sampled
from the available data and a gradient descent is performed,

of dimension N, E" for yel...M from which we
want to recover an N-dimensional weight vector w such
that it provides the best approximation for the labels

v = |(1/v/N)& -viiy|. Here W, is the target weight or

27

2.4

wi(t+1n) —wi(?)

Tefs = 8.0 active

1.5 Tetf = 8.0 passive

1 M
=70 leﬂ(t)awiﬁ—kbrwi(t) , (23)
=

0.000 0.075 0.100

FIG. 7. Enhancement of MNIST classification due to non-
equilibrium activity in elastic materials. Unlike standard MNIST
classification which takes place using a deterministic scheme
with randomness arising only from minibatch sampling, here we
consider a case where we have an additional randomness arising
due to noise. After the training images have been averaged and
stored into elastic networks, the test images are evolved either
with passive white noise or active correlated noise. At higher
temperatures, with active noise, the test image reduces its
“distance” from the stored image or “error” thus improving
the parameter used for classification. The parameters used for the
simulation are T = 8.0, 7 = 0.05, £ = 0.5.

where 7 is the learning rate, r is a ridge regularizer,
P[s,(t) = 1] = b denotes the probability associated with
including a certain point from the data in the minibatch,
and s, is an indicator for the examples which are a part of
the minibatch. The weights w hence evolve on a landscape
dictated by the loss function, £. This landscape (i.e., the
dependency of the loss function on the weights w) can be
highly nonconvex leading to instances where the SGD
algorithm gets trapped in regimes far from the globally
optimal point. This leads to errors in recovery and degrades
the performance of the network.
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FIG. 8. (a) A schematic outline of the phase retrieval problem. Here we attempt to construct the weight vector W which is the best

approximation of the true weight w, which provides labels to a set of measurements E” . Once initialized, we let the system evolve

through Eq. (24) and we track the loss £ and the “magnetization” m = (1/N )vg - Wwy. This is shown in (b) and (c). The active case
outperforms the passive case. All the numerical simulations were carried out with N = 100, @ = 3. Parameters for (b) and (c) are

Ter = 1.0, 7 = 1.0, my = 0.5.

Inspired by recent work by Mignacco and co-workers
[20,38] where they reported that adding persistence asso-
ciated with resampling data, i.e., data sampled in one
minibatch is retained with a certain probability for the
subsequent minibatch, can provide a route to improve the
performance of the phase retrieval problem, and following
the results from the previous sections, we investigated if
the performance of such systems could be improved by
modulating the dynamics. To make progress, we move
away from the SGD equations of motion in Eq. (23) and
consider instead a simpler Langevin-equation-like motion
for the evolution of the weights:

atwi(t) = _aw[‘c - I’Wl-<t) +)((t) (24)
Similar to the previous examples, we compared the
performance of networks with weights evolving according
to this equation for both passive and active (or persistent)
choices of noise y (). Here r is the Lagrange multiplier that
ensures the normalization of weights to 1. In our case we
have also tried a simple ridge regularizer. Both approaches

give similar results. In order to find v?z, we first perform a
warm initialization of W, i.e., Wiy = c¢(mowy + ¢), where
wy is the true weight vector, m denotes how close to the
true weight we want the initial guess, ¢ is a vector of
random numbers drawn from IID standard normal distri-
bution, and ¢ is just a normalization constant such that
w-w = N, where N is the dimension of each measurement
&". We then evolve the system and track the loss £ and the
“magnetization,” m = (1/N)W - w.

One important distinction between the previous two
models and this model is the fact that previously we were
navigating the energy landscape by adding activity to the
“physical” degrees of freedom, i.e., spins in the Hopfield

2.00 —
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FIG.9. Effectiveness of phase retrieval under passive and active
dynamics. This figure shows the difference between the final
overlaps of the predicted signal with the true signal in the active
and the passive case. The active case performs better than the
passive case in most regions, and thus myive — Mpagsive 18
positive. The blue contours correspond to values of overlap in
the active case and the black ones correspond to the passive case.
Note that even if we start with a small warm initialization (e.g.,
mg = 0.2), the active case can reach overlaps up to 0.75 whereas
the passive case cannot. Indeed, the “0.75” active contour is
present at my = 0.2 even for higher temperatures. For a particular
value of T and my, the overlap was averaged over 20 different
systems with 10 trials run for every system. The active and
passive simulations are run for the same amount of time, i.e., from
t = 0 to 200 with dt = 0.001 using spherical normalization. The
simulation is stopped at = 200 since we observed no significant
changes in the overlaps thereafter. An average is taken over the
last 50 time steps.
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model and the particle positions in the elastic material,
whereas here we will navigate the loss landscape by adding
activity to the “learning” degrees of freedom.

As shown in Fig. 8, there is a marked improvement in
the performance of the phase retrieval network. The signal
recovery is markedly higher and the loss is lowered. In
Fig. 9, we compare the performances of the active and
passive phase retrieval dynamics for various different initial
conditions. In general, for extremely small values of m
the system gets lost and is unable to recover the signal in
both the active and passive cases. For slightly higher m
(my =~ 0.2), however, active case starts to outperforms the
zero temperature as well as passive case. This trend is
maintained for larger m,. On the whole, active dynamics
provide a more effective strategy to find close to optimal
solutions for the phase retrieval problem. Following intu-
ition from the previous examples, we expect this improved
performance to be due to activity deepening, or making
more convex, the loss landscape in the vicinity of the
optimal solution. While we have focused on a highly
simplified and idealized learning problem, our collection
of results suggests that similar advances may be possible in
more complex deep neural networks.

VII. DISCUSSION AND CONCLUSIONS

Our work here shows that the storage capacity of a
system which uses a Hopfield-like strategy to store memory
as well as that of a system with promiscuous interactions
can be increased significantly compared to equilibrium
dynamics through the introduction of activity into the
system. It also provides a way to improve classification
and phase retrieval at the same “effective” temperature
through the introduction of activity. While we have
explored the improved associative memory capacity using
specific numerical and analytical tools, it may become
possible to develop broader principles for improved asso-
ciative memory [39]. While these qualitative results suggest
that nonequilibrium activity may provide a general route to
enhance the information processing abilities of a material,
we note that there are important caveats. Associative
memory recall away from equilibrium is dictated by a
balance between two competing factors. On the one hand,
as our theoretical analysis suggests, nonequilibrium forcing
may generate deeper minima in the effective landscape.
On the other hand, nonequilibrium forcing also has the
potential to generate many spurious minima and hasten
the transition to a glassy regime where associative
memory properties are lost. Future work will explore
these trade-offs more comprehensively. Note also that our
findings in the previous two sections (spring based
associative memory and phase retrieval) are mainly based
on numerics and we have explored limited ranges of
various parameters such as z. Future work will also
explore these systems more rigorously.

The stored memory patterns or configurations in the
associative memory models considered in this work are
thought to be point attractors of the dynamics of the model.
Associative memory phenomena can also be achieved with
stored memory patterns resembling continuous attractors.
The self-assembly of desired patterns from building blocks
with multifarious interactions [40] and associative memory
models of spatial learning in the place cells of the
hippocampus provide two illustrative examples of this
class [41]. We expect that the memory capacity of such
models can also be increased using active noise sources.
Further, in this class of systems and materials, it may be
possible to robustly achieve regimes where the addition of
activity leads to an increase in capacity beyond the capacity
of the zero temperature passive system. Indeed, in the
context of associative memory models of spatial learning
in place cells, Ref. [41] shows how the capacity may be
already improved in the presence of thermal noise. Active
noise sources can potentially lead to a further improvement
in the memory capacity. We have also restricted our
attention to models with two body connectivity. p-spin
associative memory models [42], with p > 2, should also
show phenomenology similar to that discovered here when
driven by active sources.

Memory in physical systems can occur in a multitude of
forms [43]. There is also precedent from driven systems
with transient memories wherein noise can lead to better
memory formation [44,45]. In such systems, memory of the
driving amplitudes is encoded in the self-organization of
particles into configurations that eliminate collisions within
a range determined by the training amplitudes, and thus
memory of all but the largest amplitude is transient. The
presence of noise enables retention of memory of addi-
tional, smaller, amplitudes of training. The associative
memory systems we explore here are different as the
memories are encoded as point attractors in a free-energy
landscape. Future work can explore how different noise
sources can help transient memory as well as other systems.

Our work might also have broader implications for the
design of artificial neural networks. Indeed, as discussed
above, recent work in Ref. [20] has shown that learning
tasks using stochastic gradient descent with a certain
persistence time for minibatch sampling can lead to better
performance. It may be possible to connect the persistence
time in such methods to the persistence time introduced in
the context of nonequilibrium activity here. Such a con-
nection might help us understand how the performance of
deep neural networks can be improved [38,46].

Finally, in the limit of small persistence time, it may
become possible to express the change in the effective
energetic landscape in terms of the rate of work done by the
active forces. Similar insights have proven useful in the
context of active matter systems [25,47] to establish
connections between dissipation and assembly or organi-
zation. Such connections may suggest how nonequilibrium
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forcing might provide a general mechanism to enhance
memory recall [48,49].

ACKNOWLEDGMENTS

Theory development, computational modeling, and con-
ception was supported by funds from DOE BES Grant
No. DE-SC0019765 to S. V. A.K.B. acknowledges sup-
port from a fellowship from the Department of Chemistry at
the University of Chicago. Earlier parts of the computa-
tional modeling and analytical calculations were supported
by funds from ARO under Grant No. W911NF- 720 14-1-
0403 to A.K.B.M.R. acknowledges support from the
Department of Atomic Energy (India), under Project
No. RTI4006, and the Simons Foundation (Grant
No. 287975). M. R. and S. S. (JBR/2020/000015) acknowl-
edge SERB, DST (India) for JC Bose Fellowships. We
gratefully acknowledge the helpful discussions we had with
Thomas Witten, Sidney Nagel, Arvind Murugan, Francesca
Mignacco, Pierfrancesco Urbani, and Giampaolo Folena.

APPENDIX A: INSIGHTS FROM A
MINIMAL MODEL

Consider a particle in 1D executing dynamics on a

double-well potential given by V(x) = —(a/2)x*+
(b/4)x*, in the presence of active noise,
&= f(x) +£(0), (A1)
(1)) =0, (A2)
ny L t-7
Gy =Ten(-210)
3
flx) = P bx (A4)

Note that we are implicitly working in units where the
friction constant associated with the overdamped dynamics
has been set to unity. This choice implicitly sets the
timescales in the equations that follow. Our calculations
below are based on Ref. [26]. This is a special case of the
more general case discussed in Ref. [26]. In case the white
noise is present along with colored noise, the temperature
gets replaced by an effective temperature. Under these
conditions the average escape time of the particle from a
well is given as

— ==l ep( 250 as
20 == [ -0y, (a0

where x,, is the bottom of the well and x, is the top of the
well. Using the identity 1 — x ~ ¢~ for small x in the above
expression for when 7 < 1, we obtain

T, = T eXp <—®e?(r)> , (A7)
@ = (V) + 70V (P}
T EV ), + V@), (A3)

Note that 9,V (x)l,, = 0 and 9,V (x)|, = 0 since the force

is zero at the top and bottom of the well. We can now
compare the average escape times in the equilibrium z = 0
and the nonequilibrium 7z # 0 limits, 7, and 7, respectively,

(A9)

APPENDIX B: EFFECTIVE HAMILTONIAN
IN PRESENCE OF ACTIVE NOISE

The equations of motion for the spins and the active
field are given by

1 an - _5H

O or 50;

51 L
T T &+ (1),

i) =0= (1)), Qilt)y; (1)) = 2T6,;6(1 = 1),
(i(0)n; (1)) = 2T 6;;0(¢ = 7). (B3)

(1) + &), (B1)

(B2)

Here, I';! sets the microscopic processing time and for
simplicity it is taken to be 1. y(¢) is the § correlated white
noise, &(7) is the active colored noise, and 7 is the persistence
time. Thus the Fokker-Planck equation is given by

» 0 P\ 10 T, dp
ar am( Pt >+ 2, (‘f‘p aa)
(B4)
n =0 (BS)
66i

Itisimportant to note that here the probability distributionis a
function of both the spin degrees and the active
degrees of freedom as well. In order to recover the marginal
distribution with respect to only the spins, we need to
integrate out the active degrees of freedom. We reproduce
the procedure outlined in Ref. [24] and extend it for the
general case. First let us define the quantity R:

R(n)i]iz...i,, = /D‘f‘filf:’z-nfz’nﬂ (B6)
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The properties of R are derived through integration by
parts and by setting the boundary term to 0. Now from the
Fokker-Planck equation in (B4) we can write down a
hierarchy of equations for R(;), where the equation for Ry
depends on R ). We can truncate the hierarchy at any k
of our choosing.

9iJ(1)i — OiR(1); = 0, (B7)
Ri;
ai-](z)ij - aiR(Z)ij - % =0, (B8)
2R 2)ik 2Ta
0iJ 3)ijk — iR 3)ijk — @k — S =0, (B9

T

where

0ijR1k + iR 1); + SR 1)i = S3)ijis
(B10)

SjeR(0) = Sk
hi R-1yiy...i, + T0i Rinzryiy..iy, = J ()i

'l”-.n'

As a generalization, S(,); . ; 18 defined as the combina-
torial sum of (3) terms of the form 6;;R(,_2);, _i_,-
Now to ease the readability, we introduce a few more

definitions. Indices implicitly exist for R, and S, for
n>1.

Ry (B11)

iyla...ip iyiy...ip

=R,  Sw = S

Continuing the recursion from Eq. (BY), we obtain

(I’l - 1)R(n—l) 2T,

a,-J(,,) - aiR(n) - + T—ZS("—I) =0. (BlZ)

T

For example, we want to truncate at R,), we compare
the terms at O(z) in Eq. (BY), i.e., Ry) = (27,,/7)S(2), and
substitute it in the previous equation and continue this up
to Eq. (B7). Generalizing this, after some algebra, we can
write the following:

&) (_1)n+lTn o
Oi[(hi + Ter)Ro) = 2T, ) 0"2S,.1n
n=1

(n+2)!

© (_1)n+11n
0", B13
+; n n+1 ( )
Tt =T+T,, (B14)
=0,0,...0,, i #ir-#i, (BIS)

Now we can simplify this expression further:

2"'S, = ai,aiz-'-ai,zsniliz‘.i,, (B17)
n
= <2) 5,2151'301‘4‘--ai,,R(n—z)i3i4...in
— ()20 2R0), (BIS)
2] "
O"Jn = ailaiz...ai”.]niliz”in (Blg)
= 0;,0i, ,-+-0,0i i, Rin_1)isiy...i,
+T0; Riu-1)iniy...i, (B20)
— 10, (hR,) + TOIER, ) (B21)

Substituting these results in Eq. (B13) and after some
algebra, we obtain

0;[(h; + Te0;)Ro)

== Z (_nT,) [Tetr070"R, + 0"0;(hiR,)].  (B22)
n=1 :

Using this relation we can express R, as Ry = R)+
TR} + 7R3 + - -+, where R} is the first-order correction
in 7 to R, R% the second-order correction, and so on. Now
we will use the notation RX to denote the kth-order
correction to R,. At the zeroth-order correction for R,
we have

0:[(h; + Tetr0;)RY] = 0 (B23)

" > (B24)

= R} = exp <_Tff
€

At first-order correction, we have

0i[(h; + Tee0;)RY] = [Tee070,RY; + 0,0;(hiRy ;)]
T
~3 [TeffazzajakR(Q)jk + ajakai(hiREjlk)]-
(B25)
From Eq. (B9) we have Ry = (T4/7)Sy =
(T./7)8;RG, and from Eq. (B8) we have R{, =

=T .0k S = —TaajRg. Substituting these in the equation
above and after some algebra, we obtain
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H T
5. RV =2 (him—hoh
’[exp (Teff> 0} Teff< i Tf i ’)
_na@ m@ (B26)
Teff ' M 2T eff

Thus we can now express R, including the first correc-
tion term and from there we can compute the effective

Hamiltonian.
0 T, 2
Ry =R; 1+ hj; — +0(7%), (B27)
Test 2T o5t
H T
R :exp(— )exp{ “<h~ h; 2)} B28
0 Teff chf M 2Teff | | ( )

H
RO = exp (_—eff)’
Teff
Heff - H—TTu (/’l]] 2T : |h |2>
eff

This is the same expression as derived in Ref. [24].

Now we turn back to the Hopfield Hamiltonian, and
using this expression for the effective Hamiltonian, write
down the new terms which arise due to activity. The
effective Hamiltonian procedure cannot be readily carried
out in the presence of a Lagrange multiplier. Hence, we
include in the Hamiltonian a term that simulates the
presence of a Lagrange multiplier:

(B29)

Ho = Ho + (62 = N)2. (B30)

4

In practice, setting x> 1 will impose a spherical con-
straint. Simulations or calculations carried out with this
extra term in the Hamiltonian should mimic the presence of
a Lagrange multiplier. We now carry out the procedure
detailed above for this Hamiltonian and find the following
effective Hamiltonian. We first consider the term #;;:

hii :é;«z[(%}?— > } 2N oo

ﬂlkl
(B31)

We begin by considering the first term. Recall that the force
on each spin due to the extra field we have added is

—«k(D_; 67 — N)o;. This has a form close to the force
that would have been exerted by a Lagrange multiplier y(¢),
f1 = —u(t)o;. Numerically, we find that (u(¢)) = ji~2 in
regimes with recovery. Given this, in the limit k > 1 where
our constrain force is expected to mimic a Lagrange
multiplier, we can reasonably expect K(D_; ? -N)~
fi % 2. Numerical simulations bear out this expectation.
In the replica calculations that will follow—performed in

the limit of x> I—we will replace k(}_; 07 — N) with

fi & 2. With this replacement, the first term in the above
equation is simply a constant and can be ignored.

=N S S)

where r=7}; o-? — N. The second term is substantially

simplified in the limit where only one of the pattern is
condensed, i.e., m* = m"j, ,, where v is the condensed
pattern. Putting this back, we see that it is O(1), thus not
extensive.

Now we look at |h;|*>. After some algebra and taking
into consideration that only one pattern has condensed,

we obtain

(B32)

|h |2 (mz Jijo'j +Jiio; — Jijk10j0k01)2 (B33)
N
= (m*)? lZ(f’;)z —2rN — 2a]
: N
+ 2u(m”)* [Z —rN — a]
N,
+ u?(m*)° Z(é”) (B34)

here r = k(37 ;07 — N) = ji following the reasoning given
above. Note that the pattern variables & are IID normal
random variables. Thus > ¥ (&)? form a y-squared
distribution with N — oo degrees of freedom which essen-
tially becomes a Gaussian distribution with mean N and
variance 2N. Thus >°Y | (&)% ~ O(N). With these approx-
imations, and simplifications, we recover the effective

Hamiltonian written down in the main text.

APPENDIX C: REPLICA CALCULATION

In the following calculations we follow Refs. [32,50]. As
detailed in the previous appendix, the effective Hamiltonian
calculation for our Hopfield-like network in the presence of
active noise leads to the following energy function which
dictates the evolution of the spins:

1~ v u
H(o) = Eﬂ EJijGin _ZJijklaiGijo'l
k
+6Jt]klmn5i0j0k016m0n +0(1/N) terms, (Cl)
T 27T
v:l+TT"(2ﬁ—1), w=u|l+402-1)],
eff eff
(€2)
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37T

_ a 2 _
k= T u-, Jijklmn =
eff

58888 Endn.  (C3)

where fi is related to the average force exerted by the
constraint potential as explained in the previous appendix.
From numerical calculations with x = 0.25 and N = 200
with 10 stored patterns, we find fi~?2.4. For other
values of number of stored patterns, the value of x4 ranges
from 1.9 to 2.5.

The partition function is given by

_/_: [ﬁda} <Za - >exp “BH(s)]. (C4)

We use A to denote the quenched average of macroscopic
variable A. Now using the replica trick,

1n7(R3) ; 1n4_' 1 7n
PNf =-InZ() =—lim- [Z7(f) 1] = lim-nZ", ~ (C5)
n N
208 [HHdc] H(S(Z(a{)Z—N>
~OLi=1 y= = i=1
xexp |43 M) (co
y=1
where y is the replica index and goes from 1,...,n

Henceforth, repeated indices imply summation. Only in
certain cases will the summation be explicitly denoted.

_ / DoDEexp {ﬂ (” geolo

4N35"4‘”5”5”"
_Wé 5’;5”5”5” &iolo akalamaz

z"(p)

Gkal

2’jvw<s”>2<a¥>2ﬂ
X H 5(( N)exp [ (52)2] . (C7)

Now we introduce the overlap parameter m*’ =
(1/N)&6". For simplicity, we assume that only one
pattern, pattern no. 1, is condensed, i.e., m* ~ O(1) for
u=1and O(1/N) for u # 1. Using this we can separate
the partition function into a condensed and a noncondensed
part. We introduce this macroscopic variable through a o
function and express the 0 function as an exponential.
Henceforth it is implicitly assumed that m denotes the
overlap with only pattern 1. This yields

/Dmé(Nm7 lel) =1, (C8)
/ DmDrnexplim! (Nm? — El6)] =1,  (C9)
7" (B) = / DoDEDmDinexp(U) [ [ 8[(e7)? - (C10)

U= N,B[v(my)2 + u(m?)* — k(m?)9]

HeH Y T §ﬂ>2
v > e
ﬂ#l i.jy

+ im’ (Nm" = Ele;) + O(1). (C11)

contributions  of
as they scale as

We ignore the
Zﬂ;eul..i,, f?, . lzl"ly, ‘7?,,
O(N'-7/?) [42].

Now we first carry out integration over the quenched
disorder & The relevant terms in U are

- Z§V<

u#lu

—q 4 157
zE m E Eiol.
14 i

higher-order
for p>2

Za?a?)fé‘ - Z("&—;)z

4 i

(C12)

The u = 1 (here u refers to the pattern index) integral yields
1 ~
exp {— = Zﬁﬂ (Za?a’f) mK]
2 ¥.K i
= / DQ$ (NQ” - Zda'f) exp {—EZW’ Q7’<ﬁ1’<]
— 1! 2 '
1 VK

(C13)

0" =5 + (1= 8%)q". (C14)
1

:NZQKU; Yoy #k. (C15)

Thus the correlation of spins between different replicas
arises naturally just as in other spin-glass systems. The
u # 1 integral yields

aN ﬂl) -1
H [det (5,-/- N Zai.'a;)}
4

u=2

— [det(1 - prQ)| "2,

(C16)
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This step can be carried out through the Weinstein-

N
— OIS + iNm Y
Aronsazn theorem. After all this, we have 2 QUM + INm (C19)
Integration yields
Z'(p) = /Da/Dm/ Dm/ Dq/ Di/ Dg
1
x [det(1 = fvQ)]~N/2¢V | (C17) det(Q)~"?exp <—§mVQ7”‘m">. (C20)
o(m? ) u(mty* k(m?)S Finally, we carry out integration over the spin variables o.
U= Np + + The relevant terms are
2 4 6
N 77K ~K
- EYWQYKW( + iNm'm? + Z g™ (Ng"™* — /o) _ZO{QV 0; (€21)
v e
WIN — (~7)2 - -
+ Ey:/l [N = (a7)7]- (C18) Qe = s 4 (1 — )" (C22)
) . Integration yields
Here we have expressed the 6 functions for the constraints
and that for ¢ as exponentials. Now we integrate over 7. [det O]/, (C23)
The relevant terms are
|
Combining everything, we have
Bf = hm 11[[(1)—111— {/ Dm/ Dq/ D/l/ Dge~ ], (C24)
N—-oo n— n
Dm = Hdi’ Dqg= Hd%m Dl= Hdﬂ},, Dg= qu#,(,
r=1 y#FK y#K
g:_ﬁ_ 2 — Z 4+ 6+2Zmaqykm += lndet(]] —BQ) += lndetQ——Z 0,0,  (C25)
=1
|
This integral can be evaluated through the saddle . 1
point method. First, finding the saddle point with respect Oy = Ay + B, A= m’
to Q gives us
q
~ B = , (C28)
7 =0,;,>Q=Q7". (C26) (1=g)[1+ (n—1)q]
Extremizing with respect to the other variables will be limB = — 4 5 (C29)
done later. Now we need to assume a form for the matrix Q n=0 (1—-q)
and for m”. Let us assume that Q is replica symmetric (RS),
e, " =g+ (1-¢q)F andm’ =m V y. We wil find det(Q) = (1 +n ) det[(1—¢)1],  (C30)
the free energy for this form of Q and check for its stability -
against RS-breaking fluctuations. As it turns out, for our
purposes, the RS form is stable for the retrieval and the B q
paramagnetic phase. It becomes unstable only at extremely Indet(Q) =1In{1+n -4 +nln(l —gq), (C31)
low temperatures.
1
lim - Indet(Q) = IL YIn(l—gq). (C32)
—4q

ka =q+ (] - Q)éyx’ (C27) n—0n
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Similarly,

!
}llil(l);hl det(1 — fvQ)
__ —hev
1—po(l —q)
All this was found using the matrix determinant lemma.

Putting all this back in the expression for f, we finally
obtain

+1In[1 — po(1 — q)]. (C33)

ﬁ”zﬂ_“m+ﬁ_k6

,Bf:extr(—? 1 6

[m[l ~po(1-q)] - #(?—q)]

[111(1 —q)+ ql__"jD.

The saddle point equations for variation across m and ¢
are thus given by

NI'—‘ NIQ

(C34)

af—O:>m[1—|—um — km* —1}20, (C35)
om X
af aq q—m2
=p(1-q). (C37)

We can investigate the stability of the RS solution by
adding RS-breaking fluctuations to Q. We denote the RS
broken matrix as Q%:

Qf; = Qij + 1ij. Nij = Nji» ni: =0. (C38)

(%)~ = -07"Q™" + 070 Q"

(C39)

Q+n"=0"

We ignore terms linear in # as the first-order variation is
set to 0 while taking extrema.

f(m,Q8,08) = f(m,0,0) =T, +T,+T5+T,, (C40)
— Zm7[(QB)7’< — Q"™|m (C41)
YK
_a det[l - B(Q +1n)
L= et po) (C42)
det O
Ty = 21 FRTIR (C43)

1 - ~
T4 = 52[(QVK + ”yK)Q]/K‘ - Q}/KQyK]'

YK

(C44)

After some algebra, it can be easily shown that

T, = m*(a+ bn)? {akankz +b (ka> 2] ., (C45)

ikz ik

-5 [ 2y () |

ijk
(C406)
= { 22’“ +2(1bZI’[UI’]}k +b? (Zn,,) }
ijk
(C47)
T, =0, (C48)
1 q
B A (el
B Pq
-2 =4 (a9
) T—pi-gp
f(m, 0%, Q%) — f(m, 0. 0)
= AZm . +BY nn+ D (Zm,) . (C50)
ijk
A= —%(ac2 —a®) (C51)
B = —gcd—ﬁ—%ab—f—amz(a—i-bny, (C52)
D= —i (ad* — b*) + bm*(a + bn)>.  (C53)

In order for the solution to be stable, we need the
eigenvalues of the quadratic form Eq. (C50) to be positive.
The eigenvalues of the quadratic form are eigenvalues of
the equation

B
Anij +5 D 0+ ) + D <me> = Agij. (C54)
k kl

The eigenvalues for this equation are

Al — A, (CSS)

B
—A-B+2,

:A1+(n—2) 3

0| &

(C56)
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Temperature (7)
Temperature (T)

0.0 0.1 0.2 0.0 0.1 0.2
Fraction of patterns (&) Fraction of patterns (a)

FIG. 10. Region of stability of solutions. The yellow region
denotes regions where the RS solution is stable. (a) Region of
stability for the equilibrium case. (b) Region of stability for
passive fraction, f = 0.2, 7 = 0.05, s = 1.0.

B
A3:A2+%+n(n—1)D:A—B+n(B—D)+n2D.
(C57)

Following Ref. [23], the relevant eigenvalue is A| = A.
A > 0 gives us the region of stable solutions as shown
in Fig. 10.

APPENDIX D: MARTIN-SIGGIA-ROSE
APPROACH TO DYNAMICS IN PRESENCE
OF ACTIVE NOISE

For working out the decoupled dynamics of the spins
in the spherical Hopfield model, we shall be following
Refs. [18,32,35,51]. The Langevin equation for the spins is
given by
|

Now we write the generating functional for the system as

Zlw] = / DoDnP(n) exp {IZN; / dn;/,-(t)ai(t)} llN_[l(S((),a,-(t)+ u(t)oi(1) +

The various physical quantities, such as overlap with a
pattern (m), correlations between spins (C), and the
response of the spins to an external field (G), can be
obtained from differentiating Z with respect to the con-
jugate fields y and 6.

() =S etla0) =it tim PO (s
i=1 : !
2
Colt.) = lo0joy(#)) = i ~TEWE - (po)
N Y
Gt 1) = @) ~ W Mosmmeo, iy PO

6H(o)
bo,(1)

where p is the Lagrange multiplier that ensures that the
spins obey the spherical constraint, 6; is the external field at
each site, H (o) is the Hamiltonian, and #;(¢) is the noise
in the system. The noise includes both white noise and
active noise.

0,0; = —u(t)o;(t) + 0; — +n;(2),  (D1)

1i(1) = M (1) + 1a(2), (D2)
i) =0= () Y it (D3)
OO (1)) = 2T,5,5(0 = 1),
asnas(1) = 2300 (= 11).
(i (0)1a5(1)) = 0 (D4)

= (ni(0)n; (7)) = 2T ,6,;6(t ~ 1) +%5’7 P <_ lt_rt/|>
= D(t,7), (Ds)

where we have labeled the entire function as D(z, ).
Now we can write the probability of noise # as

P() ~ exp (-% / drdt'n(1)D\ (1, z’)n(ﬂ)). (D6)

SH (o)
So;(1)

) —e,m). (D7)

We now express the ¢ functions as exponentials and
integrate out the noise using the definition of probability
given in Eq. (D6). This yields

Ziy.0) = [ Dlo.lexp [z_j [ it

N

+Z/dt9,-(t)6i(t)+A[a,6'] , (D11)
Alo, 8] = —%Z / dtdr 6,(6)D(t, 1)6:(¢')
N
+iZ/d;&i(r)(L0_i+L§,,-), (D12)
i=1
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Lo; = 0,04(1) + p(1)o;(1), (D13)
L, =) (D14)
= Z ijO;j Zszklo- i0KO| (DIS)
Juk,
1
=—~ D_&&o- Zé"é g&lojoro.  (D16)
HeJJFi ﬂ/kl

Henceforth we will omit @ because it does not affect
further calculations and just leads to cumbersome notation.
It is understood that 6 will always be to taken to 0
eventually. Now we need to take the average of Z over
the quenched disorder & Henceforth, A will denote the

Zly] = / o, 6] exp {Z/dtw, 0,(t) + Alo, 6]|.
(D18)

But we observe that the only part in the entire expression
that depends on the pattern variables is the part associated
with L:. Thus the quenched average needs to be taken
only over L:. Henceforth, the integrals over time will be
implicitly assumed and Finstein summation convention
will be used.

We assume that only a single pattern, the first pattern
(u = 1), is condensed, i.e., the overlap of the spin state
with pattern 1 is O(1) at long times and large N. For other
patterns it is O(1/N) and decays to O for large N. We define
a few macroscopic variables:

1
quenched average of A over the pattern variables. m(t) = Nf}"i(f), 8 = 8Nm(t) = &joy(1)],  (D19)

1

2 = —¢&lg, = — &g,
i /Dcfexp (—%)A(f), (D17) w(r) = Né’ 6(t), 8, = 8[Nw(t) — &j6(1)],  (D20)
|
7 . (1 u 1
J =exp [wi : Lg,i] = exXp [—lﬁi : (Nfl;'f’;ffj +N—2§¢§?§I1§§?0j0k01 N (g)26i>:| (D21)
1
=exp |—iNw(t)(m(t) + ugm(t)?) — 1—5” (gf,f)zlfioi +0(1 /N)] SOy (D22)
{ ’ VN \/_
We define a few two-time quantities (which will emerge naturally further down the calculation):
’ 1 N / 1 / / 1 A Ny

K(1.1) =5oi(0)é(t).  q(t.0) =Joi(oi(l).  Qt.1) = 56i(1)8,(1). (D23)

Zly| = /D[a 8|DKDKDmDmDwDWwDQDQDgD§ exp [——Z/dtdt

x exp[N[¥(m, 1, w, W, q,§,Q,Q, K,K) + ®(m,w, q,Q,K) + 0, W, §,Q, K)]], (D24)

where ¥, @, and © are defined as follows:

¥ = im(0)im(r) + w(t)w(0) + q(r.0)q(t.1) + Q(1.)0(1.7) + K(t.)K (1. )],

® = —iw(t)[m(t) + ugm(r)*] - gln {det[1 —2i8, /K (1.7)]}

(D25)

ﬂmqmmﬂgﬁwwmmm umwmww<nmmmwwmb

@zqimmw (1) + W(OEG(1) + (e, )oi (1)) -

iQ(1.1)6,(1)6;(1') + K(1.1)0;(1)6:(1')

(D26)

—yi(t)ei(1)].  (D27)
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Equation (D24) is of the form where we can use the saddle point approximation to calculate the integral. For the saddle
point equations we set 9, (¥ + ® + ©) = 0, where v is one of the macroscopic variables, m, i, ..., K, K. This yields

w(t) = m(r) =0, W(t) = [m(t) + ugm(r)?], (D28)
K(t,1)=iG(7, 1), G(r,1) = ulli_r{(l)<6(t)8(t’)>*, (D29)

1 [dzd95(0)2(7) exp(=1[Rg% + 29Kk — 2i2 § +509)) 0 (D30)
——al = )
2 [ dids exp(—1[kqx + 29K% — 2i% $ +909))

q(1,1) =

1 [dzxdp3(0)3(! —1[2q% + 29K% — 2i% 9 +903 1 .
1 [dR yyA( zy( )exF(A %[quA 2YKY - 2%y AyQy]):——ai[(l—G)‘IC(I—G')_]}(Z,I’), (D31)
2 J dxdy exp(—3 [Rqk + 29K% — 2ix § +909)) 2

o(r.1) =

dxd$ $(1)3(1') exp(— L [kqk + 29K% — 20k § +9 0P
K(t, t/) — —aif X y)i( Ex( )eXF(A a[quA ,\y x.,\ . ley AyQy]) _ 0![1] _ 5,J/K(t, t/)]_I(S(t, t/) (D32)
[ dxdy exp(—5 [Rqx + 29Kk — 2ix § +909))

= a(1-G)(t.7) - al = aG(1 - G)". (D33)

Substituting these results in Eq. (D24), we obtain the final result,

Ziy) = [ Dlo.élexp [_%@,{D +al(1= G) ' C(1 = G Y6, + i6,{0,0; + o — [m + ugm¥]E! —aG(1 — G) o},

(D34)
|
where K is a constant. From here we can write the effective 3(o(1)
equation of motion of a single spin which is decoupled G(t,1) = e (D39)
from all other spins as 20(1')
0,6:(t) = —u(t)o:(1) + [m(t) + ugm()?)€! Using this we can write the equations for m, C, and G as
l l l follows:
+/dt’aG(1] -GN t,7)o;(1') + xi(1), (D35)
0
L () )m(r)
i)y (1)) =6,;D(1.1') t
+68;a((1-G)~'c(1-G")")(¢,7),  (D36) = [m(t) + um(1)?] —i—/ dfR(t,?)m(¢), (D40)

, N Ty |t — 7|
D(t,1') = 2T ,6(t —t') +—exp | — . (D37)
T

T

<£+u(t)>G(t, 7)=96(t—1)+ altdth(t, 1)G(t,,7),
C(t,1) = (a(t)a(l)),, (D33) (D41)
|

(% + u(t)) C(t,7) = [m(t) + um(t)*)m(¢') + a/_; duR(t,1,)C(¢, 1) + 2T ,G(7'. 1)

ta /_ " {S(t, $)G( 1) + %exp <— @) Gt 1, )] , (D42)

(Se]
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FIG. 11.

(a) The simulation in this case has been run for # = 800. (b) Comparison between numerical simulation and MSR simulation

for a = 0.1, Tz = 0.4. (c) Comparison between the results in Fig. 2 of Ref. [18] and the integrator we used for MSR simulations.

R(1.f) = [(1-G)'G)(1.7), (D43)

S(t.¢) = (1=G)"'C(1 = G")"\(1./). (D44)

In case the spins follow a non-Markovian Langevin
equation due to the presence of a drag kernel, the equations
of motion for the spins are given by

t
0,01 + / dsy (1 = $)0,0(s)

) 6H(o)

= —u(0)oi() +0: =505

+ (1), (D45)

where y,(¢) is the drag kernel. When the kernel satisfies
Tyya(t=s) = (n,(t)n,(s)), then fluctuation-dissipation
theorem is satisfied and the system is at equilibrium at

an effective temperature of 7,. Any deviation from this
results in nonequilibrium behavior. In this case, the
equations for m, C, and G get modified to

(5440 iy
= (m(t) + um (1)}

+ /_ " dt[aR(1,0) + duyalt — O)m(t),  (D46)

(50 Gte.)

t
:5(t—t’)+/ dt[aR(t, 1)) + 0,y4(t — 1')]G(1, 1),
[/

(D47)

<2+ﬂ's(t)> C(t, 1) = [m(t) + um(t)’|m(¢) + /t dti[aR (1, 1)) + dpy.(t = 1)]C(F, 1) + 2T ,G(7', 1)

ot —o

! T t—t
+ a/ dr, [S(t, 0)G(?, 1) +—2exp (— u)G(t’, t])].
_ T

[Se]

The numerical integrations are carried out using a simple
explicit nonadaptive time stepping method. The C(z, )
matrix is not time-translation invariant and is initialized as a
1 x 1 matrix with entry 1. The G(z, ') matrix is initialized
asa | x 1 matrix with entry 0 and m(¢) is initialized as 0.95.
The time step size is chosen to be 0.1. At every step,
inverses and matrix products are computed and the equa-
tions are propagated forward. At each step, the side length
of C and G matrices increase by 1. We carry this procedure
for a long time till m is constant for > 100 time steps. We
stop our procedure here. We have verified our procedure for
the equilibrium case where exact results exist in the
literature [18,52].

(D48)
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