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Motivated by advances in the field of active matter where nonequilibrium forcing has been shown to
activate new assembly pathways, here we study how nonequilibrium driving in prototypical memory
formation models can affect their information processing capabilities. Our results reveal that activity can
provide a new and surprisingly general way to dramatically improve the memory and information processing
performance of the memory-forming systems without the need for additional interactions or changes in
connectivity. Nonequilibrium dynamics can allow these systems to have memory capacity, assembly or
pattern recognition properties, and learning ability, in excess of their corresponding equilibrium counterparts.
Our results demonstrate the generality of the enhancement of memory capacity arising from nonequilibrium,
active dynamics when compared to noise sources characteristic of equilibrium dynamics. These results are of
significance to a variety of processes that take place under nonequilibrium dynamics, and involve information
storage and retrieval, as well as in silico learning and memory-forming systems for which nonequilibrium
dynamics may provide an approach for modulating memory formation.
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I. INTRODUCTION

Biological systems ranging from neuronal circuits in
multicellular organisms, to biological circuits responsible
for immune memory, display a remarkable array of informa-
tion storage and retrieval dynamics [1–5]. The olfactory
system is involved in storing information about a wide array
of smells and retrieving them accurately even with a low
signal-to-noise ratio arising from mixed odors [6,7]. The
immune system is responsible for storing memory from a
previous infection throughB-cell populations and using them
to elicit responses during new infections [8]. Biological
assemblies, for example, those connected to the cytoskeleton,
have been shown to possess information processing abilities
that allow them to respond in a desired manner to external
stimuli [9,10]. All these processes involve some form of
information storage across large timescales aswell as retrieval
of the same, which is inherently dynamic in nature. The
foundational paradigms used to understand information

storage and retrieval, however, are arguably rooted in the
principles of equilibrium statistical mechanics. These prin-
ciples provide a prescription to understand how interactions
between constituent particles (in the case of molecular
recognition or assembly problems) or connectivity (in the
case of neural network computation problems) determines an
overall energetic or free-energetic landscape in the space of a
relevant order parameter. In turn, the characteristics of such
landscapes are employed to rationalize information storage
and retrieval processes. Here, motivated in part by advances
in the field of active matter [11–16] where nonequilibrium
forcing has been shown to activate new assembly and
organization pathways,we studyhowmodulating the dynam-
ics of systems through nonequilibrium activity can affect their
information processing capabilities.
We investigate prototypical models of associative

memory [17,18], pattern recognition and assembly [19],
and neural networks [20]. Our results reveal that activity
can provide a new and surprisingly general way to
dramatically improve memory and information processing
performance. In particular, nonequilibrium dynamics can
allow these systems to have memory capacity, assembly
or pattern recognition properties, and learning ability, in
excess of their corresponding equilibrium counterparts.
First, we motivate our approach using an adaptation of a

particle moving in a double-well potential. Results obtained
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from this minimal model show how strategies based on
modifying the dynamics with active terms may result
broadly in improved memory storage and recall. Next,
we demonstrate our results using a version of the Hopfield
model [18], a paradigmatic model for associative memory
[21–23]. By studying a version of the Hopfield model with
nonequilibrium dynamics, we show how the associative
memory characteristics of a system may be enhanced far
beyond the bounds placed by equilibrium dynamics. Our
model of nonequilibrium dynamics is motivated by choices
commonly made in the field of active matter [24,25].
The observed connection between nonequilibrium forc-

ing and the promotion of specific ordered states in active
matter problems and the general nature of our analytical
results suggests that our conclusions may apply more
broadly. Exploring this possibility, we demonstrate how a
model elastic material endowed with associative memory-
like properties [19] can be made to store configurations
far in excess of what is allowed under equilibrium
dynamics. Insight gleaned from studies of this elastic
material may be directly relevant for the design of various
bioinspired materials and molecular recognition proc-
esses. It is also relevant for understanding how desired
structures may be self-assembled even in systems with
highly promiscuous interactions. Our work shows how
nonequilibrium activity can provide a new route to control
the properties of such systems [19].
As a final example we show how nonequilibrium activity

may also help improve the performance of neural networks
as illustrated in Fig. 1. We do so by considering a simple yet
prototypical “phase retrieval” problem in which a neural
network attempts to reconstruct a signal from a set of
measurements [20]. The effectiveness of this network may

be measured by a loss function that is minimized when the
signal is retrieved with complete accuracy. The landscape
of the loss function (as the weights of the neural network
are tuned) can, however, be highly nonconvex leading to
imperfect signal recovery. Intuition from the above
described examples suggests that activity may provide a
route to deepen (or make more convex) landscape around
desired memories or self-assembled structures. Here we
show that adding nonequilibrium activity to the dynamical
equations of motion dictating how the weights of the neural
network change can dramatically improve the performance
of the network. Like in the previous examples, nonequili-
brium activity provides a new route to modulate the “loss”
landscape of our model neural network and improve its
performance without the need for additional layers or
connectivity. Our results are consistent with recent work
in Ref. [20] where the accuracy of the phase retrieval
algorithm was improved by introducing a persistent mini-
batch sampling procedure. Taken together, our work opens
up general strategies for enhancing memory capacity and
classification properties in nonequilibrium materials.

II. PRIMER: INSIGHTS FROM
A MINIMAL MODEL

In order to elucidate how activity may provide a general
route to modulating memories, we first discuss a highly
simplified minimal model of a single particle in a double-
well potential, VðxÞ ¼ −ða=2Þx2 þ ðb=4Þx4, with over-
damped Brownian motion dynamics,

ẋ ¼ −
∂V
∂x

þ ηðtÞ; ð1Þ

where ηðtÞ is a white noise source with zero mean and
variance hηðtÞηðt0Þi ¼ 2Tδðt − t0Þ, and T is a temperature
scale. The kinetics of escape rates across the energy barrier
follow an Arrhenius-like form, with barrier crossing rates
that are exponentially suppressed as the barrier height is
increased or the temperature of the system is decreased.
Replacing the white noise source with an exponentially
correlated noise source, ξðtÞ with zero mean and with
correlations hξðtÞξðt0Þi ¼ T=τ expð−jt − t0j=τÞ where τ is a
timescale, breaks the condition of detailed balance and
drives the system away from equilibrium. Indeed in this
case, fluctuations in the exponentially correlated noise
source are not dissipated through a corresponding friction
source. The effect of such nonequilibrium activity on
barrier crossing times can be inferred following the
works of Ref. [26] in the limit τ ≪ 1. Adapting the
calculations in Ref. [26], we show in Appendix A how
nonequilibrium activity can lead to an increase in the
escape time of a system over the barriers (Fig. 2).
Specifically, as we describe in Appendix A, the ratio
of the average escape times in and out of equilibrium, τp
and τa, respectively, satisfies

FIG. 1. Activity can be used to improve the information
processing properties of a large class of systems, including an
associative memory exhibiting spin-based Hopfield network
which stores patterns, an elastic material with promiscuous
interactions which can store certain configurations, and finally
neural network used for the prototypical phase retrieval problem.
In all the three cases, our work shows how nonequilibrium
activity can (in some cases dramatically) improve the desired
information processing capacity of the system. Viewed in the
commonly used landscape caricature, our work suggests that
activity (red) can generically improve the stability of the desired
states or outcomes while suppressing undesirable outcomes.
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ln

�
τa
τp

�
¼ 1

2
τa: ð2Þ

We note that, in general, the effect of activity on
barrier crossing times cannot be simply described by
an effective potential or temperature and that it depends
on the details of the nonequilibrium forcing and the
underlying potential [26,27].
This minimal calculation motivates us to consider

whether similar phenomena might happen for highly
disordered systems when subjected to detailed balance
breaking colored noise. In the context of associative
memory and neural network systems, where memories
and solutions are stored in attractor basins, such effects
might result in improved memory storage and information
processing capacity.

III. SPHERICAL HOPFIELD MODEL WITH
NONEQUILIBRIUM DYNAMICS

The Hopfield model is an interacting spin system with a
Hamiltonian which is fully connected; i.e., every spin is
connected to every other spin. We work with a version of
the Hopfield model [18] where the spins are continuous and
obey the constraint

P
N
i¼1 σ

2
i ¼ N, where σi denotes the

value of the ith spin and N is the total number of spins in
the system:

H0 ¼ −
1

2

X
i≠j

Jijσiσj −
u0
4

X
ijkl

Jijklσiσjσkσl; ð3Þ

Jij ¼
1

N

X
μ

ξμi ξ
μ
j ; Jijkl ¼

1

N3

X
μ

ξμi ξ
μ
jξ

μ
kξ

μ
l : ð4Þ

Henceforth, repeated indices would mean a summation
over that index. The pattern variables are denoted as ξμi ,
where μ denotes the pattern index and i denotes the site
index. The N components of the patterns are drawn from

independent identically distributed (IID) normal distribu-
tions, ξμi ∼N ð0; 1Þ. The pattern loading of the system is
denoted by α, which is the ratio of the number of stored
patterns (P) to the total number of spins (N) in the system.
In the model, the coupling strengths between spins Jij and
Jijkl depend on the patterns through the Hebbian rule [28].
Quartic terms are included in the Hamiltonian following
Ref. [18], where it was demonstrated that such higher-order
terms are a necessary requirement for associative memory-
like properties in a system with continuous spins. The spins
evolve according to the following equations of motion,

∂tσi ¼ −μðtÞσiðtÞ −
δH0ðσÞ
δσiðtÞ

þ ηiðtÞ: ð5Þ

Here, μðtÞ is the Lagrange multiplier which ensures the
normalization of the spins and δH0=δσ is the relaxational
term. Finally, ηðtÞ models the effect of various thermal and
athermal fluctuations,

ηiðtÞ ¼ ηw;iðtÞ þ ηa;iðtÞ; ð6Þ

hηw;iðtÞi ¼ 0 ¼ hηa;iðtÞi ∀ i; t; ð7Þ

hηw;iðtÞηw;jðt0Þi ¼ 2Tpδijδðt − t0Þ; ð8Þ

hηa;iðtÞηa;jðt0Þi ¼
Ta

τ
δij exp

�
−
jt − t0j

τ

�
; ð9Þ

where the thermal fluctuations (thermal noise) are modeled
using a δ function correlated white noise η⃗w, and the
exponentially correlated η⃗a is a so-called active or a colored
noise source. As mentioned earlier, the addition of colored
noise into the system without a corresponding change in
dissipation breaks detailed balance as has been demon-
strated in Refs. [11,29,30]. Thus, even in the limit τ ≪ 1,
the system will still be forced away from equilibrium. In
what follows, we report results from our numerical and
analytical calculations in terms of two parameters, namely,
the passive fraction, f ≡ Tp=ðTp þ TaÞ, and the so-called
effective temperature, Teff ≡ Tp þ Ta [24,25]. Note that
such an effective temperature prescription does not hold
in general—indeed, the effective temperature Teff is most
appropriate in the low persistence time limit [24,25]—Teff
provides a convenient way to characterize the strength of
the nonequilibrium forcing [31].

lim
τ→0

hηa;iðtÞηa;jðt0Þi ¼ 2Taδijδðt − t0Þ: ð10Þ

We perform numerical simulations in which a system
with N ¼ 200 spins is evolved forward in time using
Eq. (5). In these numerical simulations, we probe the
ability of the system to retrieve a stored pattern by
initializing the spin system in configurations close to those

FIG. 2. A minimal landscape model for improved associative
memory recall due to activity. The addition of activity can
modulate the landscape in specific ways leading to longer
residence times in portions of the landscape corresponding to
associative memory. Here τa and τp denote the average escape
times in the active and passive case, respectively.
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corresponding to the stored memory states. We choose
an initial overlap of 0.9–0.93. This is in accordance with
Ref. [17] where similar error limits are considered.
Retrieval is considered successful if the dynamics are able
to recover the full stored pattern as it reaches its steady
state. Quantitatively, the retrieval ability is measured by
tracking the steady state value of the overlap of the final
spin configuration of the system with the pattern it was
initialized near [17,21]. For a particular pattern μ,
this overlap can be measured as mμ ≡ ð1=NÞPi ξ

μ
i σi.

Following Refs. [18,32] we look at the condensation of
a single pattern [33]. Figure 3 describes results from
numerical simulations using Eq. (5).
The phase portrait in Fig. 3(a) shows the regimes under

which the different dynamics are able to successfully
retrieve the stored patterns. To construct this phase portrait,
multiple numerical simulations were performed at various
values of α and Teff for both equilibrium and nonequili-
brium dynamics. Here, equilibrium dynamics implies Ta is
set to zero and Teff ¼ Tp while nonequilibrium dynamics
implies Tp is set to zero and Teff ¼ Ta. The phase
boundaries themselves were obtained using a mean field
technique described in Sec. IV B. As can be clearly seen in
Fig. 3(a), the ability of the spin system to retrieve patterns
is markedly increased due to nonequilibrium driving.

Specifically, the orange shaded region demarcates the
parameter combinations under which associative memory
or memory retrieval is possible under equilibrium
dynamics [21]. Our nonequilibrium simulations demon-
strate memory retrieval in the red shaded region in addition
to the orange shaded region. The nonequilibrium dynamics
chosen for the simulations in Fig. 3(b) were performed
with Teff ¼ 0.4; τ ¼ 5. Qualitatively similar results can
be obtained for other choices of the nonequilibrium
parameters.
In the subsequent sections, we explore the theoretical

basis of this improved associative memory due to non-
equilibrium dynamics. First, in Sec. IVA we perform a
perturbative analysis in the limit of small persistence time τ.
In this limit the nonequilibrium distribution function can be
approximated using Boltzmann statistics with an effective
Hamiltonian and an effective temperature. Our calculations
show how the effective Hamiltonian supports enhanced
interactions between spins as well as new higher-order
interactions at first order in τ. A replica calculation reveals
that as a consequence of these enhanced interactions—
these emerge due to the nonequilibrium forcing—the spin
system possesses enhanced associative memory recall.
Then in Sec. IV B we perform a Martin-Siggia-Rose
(MSR) calculation which describes our system in a mean
field limit and provides an analytically tractable route to
quantify how the robustness of pattern retrieval increases
away from equilibrium.

IV. RATIONALIZING IMPROVED ASSOCIATIVE
MEMORY UNDER NONEQUILIBRIUM

DYNAMICS

The equilibrium Hopfield model can be solved analyti-
cally using the replica method [21]. Since our model is out
of equilibrium, a direct application of the replica method is
not possible. Through unified active noise approximation
(UCNA) [34] and following recent work by Ref. [24], we
show that our active system can be described using an
effective Hamiltonian and a new effective temperature. We
then use the standard replica technique with this effective
Hamiltonian to show how the addition of activity enhances
associative memory recall. In Sec. IV B we derive an exact
mean field set of evolution equations for our active system
using the Martin-Siggia-Rose generating functional for-
malism [18,32,35] and further illustrate how memory recall
is improved by the introduction of activity.

A. Effective interactions due to nonequilibrium
forcing provide a mechanism for improved

associative memory recall

UCNA suggests [11,34] suggests that at small τ our
nonequilibrium system can be described by an effective
Hamiltonian with an effective temperature. As outlined
in Appendix B, we show that at first order in τ, the

(a) (b)

FIG. 3. Memory retrieval in an associative memory model with
equilibrium and nonequilibrium dynamics. (a) A phase diagram
demarcating regions exhibiting associative memory. The orange
region represents the parameter space where retrieval is possible
in both the passive (equilibrium) and active (out-of-equilibrium)
case, the red region is where the active case shows retrieval
whereas the passive system does not, and in the blue region
memory retrieval is lost altogether. The phase boundaries were
obtained using a mean field technique described in Appendix D.
Parameters used are τ ¼ 5 and the passive temperature Tp ¼ 0
for active simulations. (b) As an example, we show the retrieval
dynamics of a pattern stored at α ¼ 0.1, Teff ¼ 0.4 in the phase
diagram. For illustrative purposes, the pattern is arranged such
that it spells out Chicago. Simulations with equilibrium dynam-
ics, when initialized in the vicinity of this pattern, fail to retrieve
it. On the other hand, this pattern is successfully retrieved with
nonequilibrium dynamics at the same effective temperature. The
“Chicago” pattern simulation was performed with N ¼ 150 spins
and 10 patterns encoded in the interactions.
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perturbed Hamiltonian and the effective temperature (Teff )
are given by

H ¼ H0 þ
τTa

Teff

�
1

2
j∇σH0j2 − Teff∇2

σH0

�
; ð11Þ

Teff ¼ Tp þ Ta: ð12Þ

Substituting the Hopfield Hamiltonian, Eq. (3), into
Eq. (11) yields

H ¼ −
ṽ
2
Jijσiσj −

ũ
4
Jijklσiσjσkσl

þ k
6
Jijklmnσiσjσkσlσmσn þOð1=NÞ terms; ð13Þ

ṽ≡ 1þ τTað2μ̃ − sþ 2αÞ
Teff

;

ũ≡ u
�
1þ 2τTað2μ̃ − 2sþ αÞ

Teff

�
; ð14Þ

k¼3τTau2s
Teff

; s¼hðξμi Þ2i; Jijklmn¼
ξμi ξ

μ
jξ

μ
kξ

μ
l ξ

μ
mξ

μ
n

N5
; ð15Þ

where, as outlined in Appendix B, μ̃ is approximated as
the average value of the Lagrange multiplier, μ̃ ≈ hμðtÞi.
Numerically we find that for values of μ̃ close to the
observed average in the simulations, hμðtÞi ≈ 2, the results
from the replica approach (described below) lead to
qualitatively similar results to those obtained from explicit
numerical calculations [36]. We see that activity enhances
the strength of the quadratic and quartic terms. It also
generates higher-order coupling between spins; for in-
stance, at first order it gives rise to a sextic term. The
enhanced strength of the quadratic and quartic terms in
Eq. (11) may potentially offer a route to stabilize associa-
tive memory recall by modifying the effective free-energy
landscape supporting pattern retrieval [Fig. 3(a)]. We now
confirm this picture by performing a replica calculation on
this effective Hamiltonian. Our calculation identifies
regimes where the nonequilibrium model can exhibit
associative memory whereas an equivalent equilibrium
model fails to have associative memory properties. The
details of the calculation are provided in Appendix C and
follow standard calculations performed on the equilibrium
Hopfield model [22].
The replica calculation provides an estimate of the order

parameterm that characterizes the degree of polarization of
the system toward one of the stored patterns:

mμ ¼ 1

N
ξμi σi: ð16Þ

A nonzero value of this order parameter, along with con-
ditions on an additional order parameter that characterizes
the spin-glass nature of the system, identify regimes in which

memory retrieval is possible. In Fig. 4 we plot the results
from our replica calculation and demarcate regimes in which
memory retrieval is possible both in and out of equilibrium.
The specific calculation in Fig. 4 was performed with the
passive fraction, f held a constant at f ¼ 0.2 and τ ¼ 0.05
and shows that nonequilibrium dynamics permit memory
retrieval even in regions with higher effective temperatures.
While the presence of sixth-order terms in Eq. (13)might lead
to the formation of spurious energy minimas, our replica
calculation reveals that the system can robustly retrieve the
original patterns stored in it.
While this is only an approximate result as the perturba-

tion is valid only for small τ and we ignore the higher-order
corrections to the effective Hamiltonian, our results none-
theless show how the strengthening of stabilizing inter-
actions in the effective Hamiltonian due to nonequilibrium
activity results in improved associative memory recall.

B. Mean field approach using the Martin-Siggia-Rose
generating functional Lagrangian to explain
improvement in nonequilibrium associative

memory recall

The results of the previous section analytically show
how associative memory can be improved in the low
persistence time limit. In order to probe the effects of

FIG. 4. Phase diagram of the spherical Hopfield system using
replica calculation in equilibrium and nonequilibrium regimes.
The region to the left of the lines labeled as “Memory” represents
the retrieval phase. With a passive fraction, f ¼ 0.2, τ ¼ 0.05,
s ¼ 1.0, and Lagrange multiplier μ ¼ 2.4, and taking into
account the first-order corrections, the phase diagram shows
an enhancement in memory; i.e., the overlap parameter m is
nonzero over a larger region. Note that the replica calculation can
be performed only in the small τ limit as explained in the main
text. Consequently, the enlargement of the region with associative
memory is relatively low in this theoretical phase diagram. More
substantial improvement in the associative memory properties
occurs in regimes with larger τ.

ENHANCED ASSOCIATIVE MEMORY, CLASSIFICATION, AND … PHYS. REV. X 13, 041043 (2023)

041043-5



activity in other limits, we use the Martin-Siggia-Rose
generating functional approach to write down and study
mean field coarse-grained equations for the evolution of the
order parameter mðtÞ.
In the MSR approach, the statistics of the evolution path

of the system are captured by the disorder averaged
generating functional [Eq. (17)]:

Z½ψ ; θ�

¼
Z

DσDηPðηÞexp
�
i
XN
i¼1

Z
dtψ iðtÞσiðtÞ

�

×
YN
i¼1

δ

�
∂tσiðtÞ þ μðtÞσiðtÞ þ

δHðσÞ
δσiðtÞ

− θiðtÞ− ηiðtÞ
�
:

ð17Þ

Here θiðtÞ is the external field on a spin which is
eventually set to 0. When we perform the disorder average
over Z in Eq. (17) we decouple the spins but couple
different times. This is similar to the coupling of different
replicas in the replica approach. The entire procedure is
described in Appendix D. We obtain an equation of motion
for the decoupled spins following the procedure. Using the
decoupled equation of motion for single spins, Eq. (D35),
we can easily write down the equations of motion for the
macroscopic variable m [Eq. (D46)].
These equations can be simulated numerically and

memory retrieval phase diagrams can be constructed based
on the steady state values of m. In Fig. 5(a) we plot the
evolution of m as a function of time, for various values of
the passive fraction f ¼ Tp=Teff (at fixed α, Teff , and τ).
These trends clearly demonstrate how nonequilibrium
forcing improves memory recall. For a fixed Teff , memory
can be markedly improved if the fluctuations are mainly
due to detailed balance violating noise.
To more comprehensively characterize the improved

memory recall due to nonequilibrium dynamics in our
system, we use the MSR mean field framework to obtain
steady state values of the memory order parameter m at
various values of Teff , f, α, and τ in Fig. 5(b). We observe
that at constant Teff ¼ 1.0 and f ¼ 0, the capacity of the
system increases with increasing the persistence time as
shown in Fig. 5(b). Note that at Teff ¼ 1.0 at equilibrium
(i.e., τ ¼ 0), this Hopfield model has no retrieval capacity
[inset in Fig. 5(b)]. We have also provided a comparison
between the full numerical simulations by evolving Eqs. (5)
for a system with N ¼ 200 spins and the MSR equations in
Fig. 11(b). Finally, analogous to the replica calculation
enhancement in Fig. 4, we also computed phase boundaries
between regimes with memory and regimes without
memory in both active and passive cases. The resultant
Teff − α phase boundaries from MSR calculation is pre-
sented in Fig. 3(a). This also shows how activity can vastly

increase the conditions under which memory retrieval is
possible. Together, these results further show how increas-
ing the nonequilibrium forcing may enhance the associative
memory recall of a system.

V. ELASTIC MATERIALS WITH MEMORY:
ENHANCED ASSOCIATIVE MEMORY RECALL

DUE TO NONEQUILIBRIUM ACTIVITY

In Ref. [19] it was shown that nonlinear spring networks
can be engineered to posses associative memory properties.
Specifically, the interactions between a system of N
particles can be programmed such that specific desired
spatial configurations sit at metastable minima in the
energy landscape. Akin to the Hopfield model, these
configurations can be recovered if the system of particles
is initialized in its vicinity. The learning rule used to encode
the memory configurations has features similar to the Hebb
rule used in the Hopfield case with the important distinction
being that the interactions are all local. Specifically, the
process of encoding memory proceeds in the following
way. The particles are arranged so that their positions
overlap with the first target two-dimensional configuration
to be stored as memory, fðx⃗μ; y⃗μÞg, where the label μ
identifies the pattern. Nonlinear springs are then “grown”
between neighboring nodes such that their rest length is
equal to the distance between the nodes in the pattern.
Mathematically, this can be represented as

kμij ¼ k0ΘðRc − jr⃗iμ − r⃗jμjÞ; ð18Þ

lμij ¼ jr⃗iμ − r⃗jμj; ð19Þ

(a) (b)

FIG. 5. Enhanced retrieval region from MSR calculations.
(a) Evolution of m as a function of t from the MSR formalism
[Eqs. (D46), (D48), (D47)]. Here, τ ¼ 5 and Teff ¼ 1.0 for the
simulations. (b) Retrieval is improved when the amount of
activity is increased by tuning the persistence time τ. At τ ¼ 0
and Teff ¼ 1, the system is effectively at equilibrium, and as per
the equilibrium phase diagram of our spherical Hopfield model,
the system has no memory retrieval at this temperature (inset).
When τ ≠ 0, the system is out of equilibrium and we start
observing memory phase. The parameter f was held fixed at
f ¼ 0 for this phase plot.
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where Rc is the cutoff for two nodes to be considered
neighbors,Θ is the Heaviside function, r⃗iμ is the position of
particle “i” in pattern μ, kr⃗iμ;r⃗jμ and lr⃗iμ;r⃗jμ are the spring
constant and rest length of the spring connecting particle
“i” with particle “j” in pattern μ. The energy due to the
nonlinear springs is given by

H ¼ 1

2

X
μ;i;j

kμij
ðsμijÞ2

½σ2 þ ðsμijÞ2�1−ð1=2Þξ
; ð20Þ

sμij ¼ jjr⃗i − r⃗jj − lμijj; ð21Þ

where ξ ≠ 2 sets the extent of nonlinearity and σ is a
length scale. Analogous to the Hopfield model, this net-
work also has a critical number of patterns that the
system can remember after which its memory capacity
degrades rapidly.
Here, we investigate if activity can provide a route to

improve the memory capacity of this system. The system is
evolved according to the following equations of motion:

∂tri ¼ −
∂H
∂ri

þ ηi: ð22Þ

Here the noise η has the same statistics as Eqs. (6)–(9).
Following Ref. [19] all the configurations considered were
two dimensional. The simulations were carried out in a
two-dimensional box with linear dimension L. The initial
state is a stored pattern configuration, i.e., r⃗0 ¼ r⃗μ. We
calculate the average local displacement (dμL) of a given
state from the specific pattern configuration it was initial-
ized near, in the following fashion. For every node in the
system, we calculate the average displacement of all other
nodes connected to it in the specific pattern. Then we
average over all these local displacements for all the nodes.
Mathematically, dμL ≡ ð1=Nμ

SÞ
P

ij s
μ
ij, where Nμ

S is the
number of springs in pattern μ. The parameter σ was used
to specify our numerical memory retrieval criteria.
Specifically, if dμL ≤ σ, we say that the system can retrieve
the patterns. For this system Ref. [19] discusses how the
effectiveness of memory retrieval is determined by the
radius of attraction around the pattern configurations,
i.e., the maximum displacement from the minima for
which the system still relaxes to the desired configuration.
Reference [19] shows that the radius of attraction around
the patterns is comparable to the length scale set by σ. We
choose σ to be 1% the box length following the choices
made in Ref. [19]. As outlined in Ref. [19], σ and ξ can also
set a so-called threshold energy scale for the stability of
stored patterns. Hence, modulating the value of σ may also
potentially affect the maximum effective temperature at
which memory storage is possible. In the following
we simply focus on numerical simulations with the

aforementioned value of σ and leave a more comprehensive
exploration to future work [37].
This system is not analytically tractable due to the

presence of the nonlinearities in springs. Thus we resorted
to using numerical methods for obtaining a phase diagram.
Specifically, we used a fixed-time step second-order
Runge-Kutta integrator for numerically evolving the sys-
tem using Eq. (22). The zero temperature capacity for the
set of parameters mentioned in Fig. 6 is α ≈ 0.15.
This capacity decreases as the temperature is increased.
Similar to the spherical Hopfield model, we find that the
capacity of the system to store patterns—at the same
effective temperature—is increased if the passive noise
source is replaced with an active noise source (Fig. 6).
Following the construction in Ref. [19], we also con-

structed a test to study the classification ability of the elastic
network under passive and active dynamics. For this, we
used data from the MNIST dataset, a set of 60 000 training
and 10 000 test images of handwritten digits. The training
dataset is transformed in the following fashion: Each
28 × 28 pixel image is first truncated to a 20 × 20 image
with 400 pixels. Then for every label, the average over all
its training images is taken. The grayscale image is then
interpreted as a configuration of 400 nodes in a 1D box of
length L ¼ 10 with the node displacements given as the
pixel values scaled between 0 and 10. Thus we have a set of
configurations, one for every label, which we call “pattern”
in accordance with the terminology being used for elastic
networks. Using the above described procedure, we store
these patterns into the 1D network of nodes with a critical
radius of Rc ¼ L.
For this work, we store the configurations from training

dataset corresponding to labels “0” and “1.” After this we
initialize the system with one of the test images corre-
sponding to labels 0 or 1, truncated and transformed as
before. In Fig. 7 we characterize the classification ability by
initiating the system at a test configuration corresponding
to the 0 label with the dynamics prescribed by Eq. (22).
When evolved with passive dynamics (τ ¼ 0), a test pattern
diverges away from the stored 0 label state (Fig. 7). Under
active dynamics (at the same effective temperature), how-
ever, the designed attractor around the 0 state is more stably
accessed (Fig. 7). In effect, the active system manages to
classify the test pattern as a 0 label correctly while the
passive variant does not.

VI. IMPROVING SIGNAL RECOVERY AND
PERFORMANCE OF A PHASE RETRIEVAL

NEURAL NETWORK USING ACTIVE DYNAMICS

In this section, we show that the addition of active
dynamics may also improve the performance of a model
neural network. We illustrate this by considering the
prototypical problem of phase retrieval where the task is
one of recovering a signal from a set of measurements.
This is achieved using a single-layer perceptron network.
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Specifically, we consider, M IID Gaussian measurements
of dimension N, ξ⃗μ for μ∈ 1…M from which we
want to recover an N-dimensional weight vector w⃗ such
that it provides the best approximation for the labels
yμ ¼ jð1= ffiffiffiffi

N
p Þξ⃗μ · w⃗0j. Here w⃗0 is the target weight or

“signal” that corresponds to the right measurements. In the
typical implementation of the phase retrieval problem,
the weights w⃗ are evolved such that a loss function
given by L ¼ P

M
μ¼1 L

μ ¼ 1
4

P
M
μ¼1½ðŷμÞ2 − ðyμÞ2�2, where

ŷμ ¼ jð1= ffiffiffiffi
N

p Þξ⃗μ · w⃗j, is minimized.
Dynamical equations with gradient descent are typically

used to evolve the weights to their optimal values. One of
the most popular implementations is the stochastic gradient
descent (SGD) algorithm, where a minibatch is sampled
from the available data and a gradient descent is performed,

wiðtþ ηÞ − wiðtÞ

¼ −
1

b
η

"XM
μ¼1

sμðtÞ∂wi
Lþ brwiðtÞ

#
; ð23Þ

where η is the learning rate, r is a ridge regularizer,
P½sμðtÞ ¼ 1� ¼ b denotes the probability associated with
including a certain point from the data in the minibatch,
and sμ is an indicator for the examples which are a part of
the minibatch. The weights w⃗ hence evolve on a landscape
dictated by the loss function, L. This landscape (i.e., the
dependency of the loss function on the weights w⃗) can be
highly nonconvex leading to instances where the SGD
algorithm gets trapped in regimes far from the globally
optimal point. This leads to errors in recovery and degrades
the performance of the network.

FIG. 7. Enhancement of MNIST classification due to non-
equilibrium activity in elastic materials. Unlike standard MNIST
classification which takes place using a deterministic scheme
with randomness arising only from minibatch sampling, here we
consider a case where we have an additional randomness arising
due to noise. After the training images have been averaged and
stored into elastic networks, the test images are evolved either
with passive white noise or active correlated noise. At higher
temperatures, with active noise, the test image reduces its
“distance” from the stored image or “error” thus improving
the parameter used for classification. The parameters used for the
simulation are Teff ¼ 8.0, τ ¼ 0.05, ξ ¼ 0.5.

(c)(b)(a)

FIG. 6. Enhancement of associative memory recall due to nonequilibrium activity in elastic materials. (a) Memory storage and
retrieval in elastic associative memory system. (b) Characteristic retrieval dynamics for patterns in the active and passive cases. The
system configuration is initialized near one of the patterns stored in the system. Two simulations are then performed, one in which the
system is evolved at Teff ¼ 0.04 with passive noise (Tp ¼ 0.4, Ta ¼ 0) and another in which it is evolved at the same effective
temperature but with active noise (Tp ¼ 0, Ta ¼ 0.4). Shown is a single trial for a specific pattern. The y axis denotes the absolute
value of average displacement of the nodes. The insets show the configurations at two time instants, t ¼ 1.0 and t ¼ 2.0 for the active
and passive cases. The yellow circles represent the stored patterns. The displacement order parameter tracks the loss of overlap
between the stored patterns and the instantaneous configuration of the system. The active dynamics are able to stabilize the system
close to the stored configuration, whereas in the passive case about 10 nodes suffer large displacements leading to no recovery.
(c) A phase portrait describing memory retrieval in the elastic associative memory system. The yellow region denotes recovery in
both passive and active cases. The light red region is where active case alone shows recovery. This phase diagram was built by
averaging over 10 different systems with 100 nodes (particles), ξ ¼ 0.4, box length ðLÞ ¼ 10.0, and σ ¼ 0.1. Four trials were run per
pattern at a every given temperature. Data obtained from numerical simulations were used to generate the smoothened phase
boundaries using a 2D Gaussian interpolation.
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Inspired by recent work by Mignacco and co-workers
[20,38] where they reported that adding persistence asso-
ciated with resampling data, i.e., data sampled in one
minibatch is retained with a certain probability for the
subsequent minibatch, can provide a route to improve the
performance of the phase retrieval problem, and following
the results from the previous sections, we investigated if
the performance of such systems could be improved by
modulating the dynamics. To make progress, we move
away from the SGD equations of motion in Eq. (23) and
consider instead a simpler Langevin-equation-like motion
for the evolution of the weights:

∂twiðtÞ ¼ −∂wi
L − rwiðtÞ þ χðtÞ: ð24Þ

Similar to the previous examples, we compared the
performance of networks with weights evolving according
to this equation for both passive and active (or persistent)
choices of noise χðtÞ. Here r is the Lagrange multiplier that
ensures the normalization of weights to 1. In our case we
have also tried a simple ridge regularizer. Both approaches
give similar results. In order to find ⃗ŵ, we first perform a
warm initialization of ⃗ŵ, i.e., ⃗ŵinit ¼ cðm0w⃗0 þ ζ⃗Þ, where
w⃗0 is the true weight vector, m0 denotes how close to the
true weight we want the initial guess, ζ⃗ is a vector of
random numbers drawn from IID standard normal distri-
bution, and c is just a normalization constant such that
⃗ŵ · ⃗ŵ ¼ N, where N is the dimension of each measurement
ξ⃗μ. We then evolve the system and track the loss L and the
“magnetization,” m ¼ ð1=NÞ ⃗ŵ · w⃗0.
One important distinction between the previous two

models and this model is the fact that previously we were
navigating the energy landscape by adding activity to the
“physical” degrees of freedom, i.e., spins in the Hopfield

(a) (b) (c)

FIG. 8. (a) A schematic outline of the phase retrieval problem. Here we attempt to construct the weight vector ⃗ŵ which is the best
approximation of the true weight w⃗0 which provides labels to a set of measurements ξ⃗μ. Once initialized, we let the system evolve
through Eq. (24) and we track the loss L and the “magnetization” m ¼ ð1=NÞ ⃗ŵ · w⃗0. This is shown in (b) and (c). The active case
outperforms the passive case. All the numerical simulations were carried out with N ¼ 100, α ¼ 3. Parameters for (b) and (c) are
Teff ¼ 1.0, τ ¼ 1.0, m0 ¼ 0.5.

FIG. 9. Effectiveness of phase retrieval under passive and active
dynamics. This figure shows the difference between the final
overlaps of the predicted signal with the true signal in the active
and the passive case. The active case performs better than the
passive case in most regions, and thus mactive −mpassive is
positive. The blue contours correspond to values of overlap in
the active case and the black ones correspond to the passive case.
Note that even if we start with a small warm initialization (e.g.,
m0 ¼ 0.2), the active case can reach overlaps up to 0.75 whereas
the passive case cannot. Indeed, the “0.75” active contour is
present atm0 ¼ 0.2 even for higher temperatures. For a particular
value of Teff and m0, the overlap was averaged over 20 different
systems with 10 trials run for every system. The active and
passive simulations are run for the same amount of time, i.e., from
t ¼ 0 to 200 with dt ¼ 0.001 using spherical normalization. The
simulation is stopped at t ¼ 200 since we observed no significant
changes in the overlaps thereafter. An average is taken over the
last 50 time steps.
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model and the particle positions in the elastic material,
whereas here we will navigate the loss landscape by adding
activity to the “learning” degrees of freedom.
As shown in Fig. 8, there is a marked improvement in

the performance of the phase retrieval network. The signal
recovery is markedly higher and the loss is lowered. In
Fig. 9, we compare the performances of the active and
passive phase retrieval dynamics for various different initial
conditions. In general, for extremely small values of m0

the system gets lost and is unable to recover the signal in
both the active and passive cases. For slightly higher m0

(m0 ≈ 0.2), however, active case starts to outperforms the
zero temperature as well as passive case. This trend is
maintained for larger m0. On the whole, active dynamics
provide a more effective strategy to find close to optimal
solutions for the phase retrieval problem. Following intu-
ition from the previous examples, we expect this improved
performance to be due to activity deepening, or making
more convex, the loss landscape in the vicinity of the
optimal solution. While we have focused on a highly
simplified and idealized learning problem, our collection
of results suggests that similar advances may be possible in
more complex deep neural networks.

VII. DISCUSSION AND CONCLUSIONS

Our work here shows that the storage capacity of a
system which uses a Hopfield-like strategy to store memory
as well as that of a system with promiscuous interactions
can be increased significantly compared to equilibrium
dynamics through the introduction of activity into the
system. It also provides a way to improve classification
and phase retrieval at the same “effective” temperature
through the introduction of activity. While we have
explored the improved associative memory capacity using
specific numerical and analytical tools, it may become
possible to develop broader principles for improved asso-
ciative memory [39]. While these qualitative results suggest
that nonequilibrium activity may provide a general route to
enhance the information processing abilities of a material,
we note that there are important caveats. Associative
memory recall away from equilibrium is dictated by a
balance between two competing factors. On the one hand,
as our theoretical analysis suggests, nonequilibrium forcing
may generate deeper minima in the effective landscape.
On the other hand, nonequilibrium forcing also has the
potential to generate many spurious minima and hasten
the transition to a glassy regime where associative
memory properties are lost. Future work will explore
these trade-offs more comprehensively. Note also that our
findings in the previous two sections (spring based
associative memory and phase retrieval) are mainly based
on numerics and we have explored limited ranges of
various parameters such as τ. Future work will also
explore these systems more rigorously.

The stored memory patterns or configurations in the
associative memory models considered in this work are
thought to be point attractors of the dynamics of the model.
Associative memory phenomena can also be achieved with
stored memory patterns resembling continuous attractors.
The self-assembly of desired patterns from building blocks
with multifarious interactions [40] and associative memory
models of spatial learning in the place cells of the
hippocampus provide two illustrative examples of this
class [41]. We expect that the memory capacity of such
models can also be increased using active noise sources.
Further, in this class of systems and materials, it may be
possible to robustly achieve regimes where the addition of
activity leads to an increase in capacity beyond the capacity
of the zero temperature passive system. Indeed, in the
context of associative memory models of spatial learning
in place cells, Ref. [41] shows how the capacity may be
already improved in the presence of thermal noise. Active
noise sources can potentially lead to a further improvement
in the memory capacity. We have also restricted our
attention to models with two body connectivity. p-spin
associative memory models [42], with p ≫ 2, should also
show phenomenology similar to that discovered here when
driven by active sources.
Memory in physical systems can occur in a multitude of

forms [43]. There is also precedent from driven systems
with transient memories wherein noise can lead to better
memory formation [44,45]. In such systems, memory of the
driving amplitudes is encoded in the self-organization of
particles into configurations that eliminate collisions within
a range determined by the training amplitudes, and thus
memory of all but the largest amplitude is transient. The
presence of noise enables retention of memory of addi-
tional, smaller, amplitudes of training. The associative
memory systems we explore here are different as the
memories are encoded as point attractors in a free-energy
landscape. Future work can explore how different noise
sources can help transient memory as well as other systems.
Our work might also have broader implications for the

design of artificial neural networks. Indeed, as discussed
above, recent work in Ref. [20] has shown that learning
tasks using stochastic gradient descent with a certain
persistence time for minibatch sampling can lead to better
performance. It may be possible to connect the persistence
time in such methods to the persistence time introduced in
the context of nonequilibrium activity here. Such a con-
nection might help us understand how the performance of
deep neural networks can be improved [38,46].
Finally, in the limit of small persistence time, it may

become possible to express the change in the effective
energetic landscape in terms of the rate of work done by the
active forces. Similar insights have proven useful in the
context of active matter systems [25,47] to establish
connections between dissipation and assembly or organi-
zation. Such connections may suggest how nonequilibrium
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forcing might provide a general mechanism to enhance
memory recall [48,49].
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APPENDIX A: INSIGHTS FROM A
MINIMAL MODEL

Consider a particle in 1D executing dynamics on a
double-well potential given by VðxÞ ¼ −ða=2Þx2 þ
ðb=4Þx4, in the presence of active noise,

ẋ ¼ fðxÞ þ ξðtÞ; ðA1Þ
hξðtÞi ¼ 0; ðA2Þ

hξðtÞξðt0Þi ¼ T
τ
exp

�
−
jt − t0j

τ

�
; ðA3Þ

fðxÞ ¼ −
∂V
∂x

¼ ax − bx3: ðA4Þ

Note that we are implicitly working in units where the
friction constant associated with the overdamped dynamics
has been set to unity. This choice implicitly sets the
timescales in the equations that follow. Our calculations
below are based on Ref. [26]. This is a special case of the
more general case discussed in Ref. [26]. In case the white
noise is present along with colored noise, the temperature
gets replaced by an effective temperature. Under these
conditions the average escape time of the particle from a
well is given as

τa ¼ ½jð1 − τf0Þjxb jð1 − τf0Þjxt �1=2 exp
�
ΔΦðτÞ

T

�
: ðA5Þ

ΔΦðτÞ ¼ −
Z

xt

xb

fðyÞ½1 − τfðyÞ0�dy; ðA6Þ

where xb is the bottom of the well and xt is the top of the
well. Using the identity 1 − x ≈ e−x for small x in the above
expression for when τ ≪ 1, we obtain

τa ¼ τ0 exp

�
ΦeffðτÞ

T

�
; ðA7Þ

Φeff ≡ fVðxÞ þ τa½∂xVðxÞ�2gjxtxb
þ 1

2
τT½∂2xVðxÞjxb þ ∂

2
xVðxÞjxt �: ðA8Þ

Note that ∂xVðxÞjxb ¼ 0 and ∂xVðxÞjxt ¼ 0 since the force
is zero at the top and bottom of the well. We can now
compare the average escape times in the equilibrium τ ¼ 0
and the nonequilibrium τ ≠ 0 limits, τp and τa respectively,

ln

�
τa
τp

�
¼ 1

2
τa: ðA9Þ

APPENDIX B: EFFECTIVE HAMILTONIAN
IN PRESENCE OF ACTIVE NOISE

The equations of motion for the spins and the active
field are given by

Γ−1
0

∂σi
∂t

¼ −
δH
δσi

þ χiðtÞ þ ξiðtÞ; ðB1Þ

τ
∂ξi
∂t

¼ −ξi þ ηiðtÞ; ðB2Þ

hχiðtÞi ¼ 0 ¼ hηiðtÞi; hχiðtÞχjðt0Þi ¼ 2Tδijδðt − t0Þ;
hηiðtÞηjðt0Þi ¼ 2Taδijδðt − t0Þ: ðB3Þ

Here, Γ−1
0 sets the microscopic processing time and for

simplicity it is taken to be 1. χðtÞ is the δ correlated white
noise, ξðtÞ is the active colored noise, and τ is the persistence
time. Thus the Fokker-Planck equation is given by

∂ρ

∂t
¼ ∂

∂σi

�
hiρ − ξiρþ T

∂ρ

∂σi

�
þ 1

τ

∂

∂ξi

�
ξiρþ

Ta

τ

∂ρ

∂ξi

�
;

ðB4Þ

hi ¼
δH
δσi

: ðB5Þ

It is important tonote thathere theprobabilitydistribution is a
function of both the spin degrees and the active
degrees of freedom as well. In order to recover the marginal
distribution with respect to only the spins, we need to
integrate out the active degrees of freedom. We reproduce
the procedure outlined in Ref. [24] and extend it for the
general case. First let us define the quantity R:

RðnÞi1i2…in ¼
Z

Dξξi1ξi2…ξinρ: ðB6Þ
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The properties of R are derived through integration by
parts and by setting the boundary term to 0. Now from the
Fokker-Planck equation in (B4) we can write down a
hierarchy of equations for RðkÞ, where the equation for Rk

depends on Rðkþ1Þ. We can truncate the hierarchy at any k
of our choosing.

∂iJð1Þi − ∂iRð1Þi ¼ 0; ðB7Þ

∂iJð2Þij − ∂iRð2Þij −
Rð1Þj
τ

¼ 0; ðB8Þ

∂iJð3Þijk − ∂iRð3Þijk −
2Rð2Þjk

τ
þ 2Ta

τ2
Sð2Þjk ¼ 0; ðB9Þ

where

δjkRð0Þ ≡ Sð2Þjk; δijRð1Þk þ δikRð1Þj þ δjkRð1Þi ≡ Sð3Þijk;

hi1Rðn−1Þi2…in þ T∂i1Rðn−1Þi2…in ≡ JðnÞi1…in : ðB10Þ

As a generalization, SðnÞi1…in is defined as the combina-
torial sum of ðn

2
Þ terms of the form δijRðn−2Þi1…in−2 .

Now to ease the readability, we introduce a few more
definitions. Indices implicitly exist for RðnÞ and Sðnþ1Þ for
n ≥ 1.

RðnÞi1i2…in ≡ RðnÞ; SðnÞi1i2…in ≡ SðnÞ: ðB11Þ

Continuing the recursion from Eq. (B9), we obtain

∂iJðnÞ − ∂iRðnÞ −
ðn − 1ÞRðn−1Þ

τ
þ 2Ta

τ2
Sðn−1Þ ¼ 0: ðB12Þ

For example, we want to truncate at Rð2Þ, we compare
the terms at O(τ) in Eq. (B9), i.e., Rð2Þ ¼ ð2Ta=τÞSð2Þ, and
substitute it in the previous equation and continue this up
to Eq. (B7). Generalizing this, after some algebra, we can
write the following:

∂i½ðhi þ TeffÞR0� ¼ 2Ta

X∞
n¼1

ð−1Þnþ1τn

ðnþ 2Þ! ∂
nþ2Snþ2

þ
X∞
n¼1

ð−1Þnþ1τn

n!
∂
nþ1Jnþ1; ðB13Þ

Teff ¼ T þ Ta; ðB14Þ

∂
n ≡ ∂i1∂i2…∂in ; i1 ≠ i2 � � � ≠ in; ðB15Þ

∂i∂i ≡ ∂
2
i : ðB16Þ

Now we can simplify this expression further:

∂
nSn ≡ ∂i1∂i2…∂inSni1i2::in ðB17Þ

¼
�
n
2

�
∂
2
i1
∂i3∂i4…∂inRðn−2Þi3i4…in

¼
�
n
2

�
∂
2
i ∂

n−2Rðn−2Þ; ðB18Þ

∂
nJn ≡ ∂i1∂i2…∂inJni1i2::in ðB19Þ

¼ ∂in∂in−1…∂i2∂i1hi1Rðn−1Þi2i3…in

þ T∂i1Rðn−1Þi2i3…in ðB20Þ

¼ ∂
n−1

∂iðhiRnÞ þ T∂n−1∂2i Rðn−1Þ: ðB21Þ

Substituting these results in Eq. (B13) and after some
algebra, we obtain

∂i½ðhi þ Teff∂iÞR0�

¼ −
X∞
n¼1

ð−τÞn
n!

½Teff∂
2
i ∂

nRn þ ∂
n
∂iðhiRnÞ�: ðB22Þ

Using this relation we can express R0 as R0 ¼ R0
0 þ

τR1
0 þ τ2R2

0 þ � � �, where R1
0 is the first-order correction

in τ to R0, R2
0 the second-order correction, and so on. Now

we will use the notation Rk
n to denote the kth-order

correction to Rn. At the zeroth-order correction for R0,
we have

∂i½ðhi þ Teff∂iÞR0
0� ¼ 0 ðB23Þ

⇒ R0
0 ¼ exp

�
−

H
Teff

�
: ðB24Þ

At first-order correction, we have

∂i½ðhi þ Teff∂iÞR1
0� ¼ ½Teff∂

2
i ∂jR

0
1j þ ∂j∂iðhiR1jÞ�

−
τ

2
½Teff∂

2
i ∂j∂kR

0
2jk þ ∂j∂k∂iðhiR−1

2jkÞ�:
ðB25Þ

From Eq. (B9) we have R−1
2jk ¼ ðTa=τÞS2jk ¼

ðTa=τÞδjkR0
0, and from Eq. (B8) we have R0

1j ¼
−Ta∂kS2kj ¼ −Ta∂jR0

0. Substituting these in the equation
above and after some algebra, we obtain
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∂i

�
exp

�
H
Teff

�
R1
0

�
¼ Ta

Teff

�
hijj −

1

Teff
hijhj

�

¼ Ta

Teff
∂i

�
hjj −

1

2Teff
jhjj2

�
: ðB26Þ

Thus we can now express R0 including the first correc-
tion term and from there we can compute the effective
Hamiltonian.

R0 ¼ R0
0

�
1þ τTa

Teff

�
hjj −

1

2Teff
jhjj2

��
þOðτ2Þ; ðB27Þ

R0¼ exp

�
−

H
Teff

�
exp

�
τTa

Teff

�
hjj−

1

2Teff
jhjj2

��
; ðB28Þ

R0 ¼ exp

�
−
Heff

Teff

�
;

Heff ¼ H − τTa

�
hjj −

1

2Teff
jhjj2

�
: ðB29Þ

This is the same expression as derived in Ref. [24].
Now we turn back to the Hopfield Hamiltonian, and

using this expression for the effective Hamiltonian, write
down the new terms which arise due to activity. The
effective Hamiltonian procedure cannot be readily carried
out in the presence of a Lagrange multiplier. Hence, we
include in the Hamiltonian a term that simulates the
presence of a Lagrange multiplier:

H0 ¼ H0 þ
κ

4
ðσ2i − NÞ2: ðB30Þ

In practice, setting κ ≫ 1 will impose a spherical con-
straint. Simulations or calculations carried out with this
extra term in the Hamiltonian should mimic the presence of
a Lagrange multiplier. We now carry out the procedure
detailed above for this Hamiltonian and find the following
effective Hamiltonian. We first consider the term hii:

hii ¼
XN
i¼1

κ∂i

��X
j

σ2j − N

�
σi

�
−
3u
N3

X
μ;i;k;l

ξμi ξ
μ
i ξ

μ
kξ

μ
l σkσl:

ðB31Þ

We begin by considering the first term. Recall that the force
on each spin due to the extra field we have added is
fc ¼ −κðPj σ

2
j − NÞσi. This has a form close to the force

that would have been exerted by a Lagrange multiplier μðtÞ,
fl ¼ −μðtÞσi. Numerically, we find that hμðtÞi≡ μ̃ ≈ 2 in
regimes with recovery. Given this, in the limit κ ≫ 1 where
our constrain force is expected to mimic a Lagrange
multiplier, we can reasonably expect κðPj σ

2
j − NÞ≈

μ̃ ≈ 2. Numerical simulations bear out this expectation.
In the replica calculations that will follow—performed in

the limit of κ ≫ 1—we will replace κðPj σ
2
j − NÞ with

μ̃ ≈ 2. With this replacement, the first term in the above
equation is simply a constant and can be ignored.

hii ¼ rN −
3u
N

X
μ

XN
i¼1

ðξμi Þ2ðmμÞ2; ðB32Þ

where r≡P
j σ

2
j − N. The second term is substantially

simplified in the limit where only one of the pattern is
condensed, i.e., mμ ¼ mμδμ;ν, where ν is the condensed
pattern. Putting this back, we see that it is O(1), thus not
extensive.
Now we look at jhij2. After some algebra and taking

into consideration that only one pattern has condensed,
we obtain

jhij2 ¼ ðrσi − Jijσj þ Jiiσi − JijklσjσkσlÞ2 ðB33Þ

¼ ðmνÞ2
"XN

j¼1

ðξμj Þ2 − 2rN − 2α

#

þ 2uðmνÞ4
"XN

i¼1

ðξνÞ2 − rN − α

#

þ u2ðmνÞ6
XN
i¼1

ðξνi Þ2; ðB34Þ

here r≡ κðPj σ
2
j − NÞ ≈ μ̃ following the reasoning given

above. Note that the pattern variables ξμi are IID normal
random variables. Thus

P
N
i¼1ðξνi Þ2 form a χ-squared

distribution with N → ∞ degrees of freedom which essen-
tially becomes a Gaussian distribution with mean N and
variance 2N. Thus

P
N
i¼1ðξνi Þ2 ∼OðNÞ. With these approx-

imations, and simplifications, we recover the effective
Hamiltonian written down in the main text.

APPENDIX C: REPLICA CALCULATION

In the following calculations we follow Refs. [32,50]. As
detailed in the previous appendix, the effective Hamiltonian
calculation for our Hopfield-like network in the presence of
active noise leads to the following energy function which
dictates the evolution of the spins:

HðσÞ ¼ 1

2
μ̃σ2i −

v
2
Jijσiσj −

u
4
Jijklσiσjσkσl

þ k
6
Jijklmnσiσjσkσlσmσn þOð1=NÞ terms; ðC1Þ

v ¼ 1þ τTa

Teff
ð2μ̃ − 1Þ; u ¼ u

�
1þ 2τTa

Teff
ð2μ̃ − 1Þ

�
;

ðC2Þ
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k ¼ 3τTa

Teff
u2; Jijklmn ¼

1

N5
ξμi ξ

μ
jξ

μ
kξ

μ
l ξ

μ
mξ

μ
n; ðC3Þ

where μ̃ is related to the average force exerted by the
constraint potential as explained in the previous appendix.
From numerical calculations with κ ¼ 0.25 and N ¼ 200
with 10 stored patterns, we find μ̃ ≈ 2.4. For other
values of number of stored patterns, the value of μ ranges
from 1.9 to 2.5.
The partition function is given by

ZðβÞ¼
Z

∞

−∞

�YN
i¼1

dσi

�
δ

�XN
i¼1

σ2i −N

�
exp½−βHðσÞ�: ðC4Þ

We use A to denote the quenched average of macroscopic
variable A. Now using the replica trick,

βNf¼−lnZðβÞ¼−lim
n→0

1

n
½ZnðβÞ−1�¼ lim

n→0

1

n
lnZn; ðC5Þ

ZnðβÞ ¼
Z

∞

−∞

�YN
i¼1

Yn
γ¼1

dσγi

�Yn
γ¼1

δ

�XN
i¼1

ðσγi Þ2 − N

�

× exp
�
−β

Xn
γ¼1

Hðσγi Þ
�

ðC6Þ

where γ is the replica index and goes from 1;…; n.
Henceforth, repeated indices imply summation. Only in
certain cases will the summation be explicitly denoted.

ZnðβÞ ¼
Z

DσDξ exp

�
β

�
v
2N

ξμi ξ
μ
jσ

γ
iσ

γ
j

þ u
4N3

ξμi ξ
μ
jξ

μ
kξ

μ
l σ

γ
iσ

γ
jσ

γ
kσ

γ
l

−
k

6N5
ξμi ξ

μ
jξ

μ
kξ

μ
l ξ

μ
mξ

μ
nσ

γ
iσ

γ
jσ

γ
kσ

γ
lσ

γ
mσ

γ
n

−
v
2N

X
μ;i;γ

ðξμi Þ2ðσγi Þ2
��

×
Yn
γ¼1

δððσγi Þ2 − NÞ exp
�
−
ðξμi Þ2
2

�
: ðC7Þ

Now we introduce the overlap parameter mμγ ¼
ð1=NÞξμi σγi . For simplicity, we assume that only one
pattern, pattern no. 1, is condensed, i.e., mμ ∼Oð1Þ for
μ ¼ 1 and Oð1=NÞ for μ ≠ 1. Using this we can separate
the partition function into a condensed and a noncondensed
part. We introduce this macroscopic variable through a δ
function and express the δ function as an exponential.
Henceforth it is implicitly assumed that m denotes the
overlap with only pattern 1. This yields

Z
DmδðNmγ − ξ1i σ

γ
i Þ ¼ 1; ðC8Þ

Z
DmDm̃ exp½im̃γðNmγ − ξ1i σ

γ
i Þ� ¼ 1; ðC9Þ

ZnðβÞ¼
Z

DσDξDmDm̃expðUÞ
Y

δ½ðσγÞ2−N�; ðC10Þ

U ¼ Nβ½vðmγÞ2 þ uðmγÞ4 − kðmγÞ6�

þ βv
2N

X
μ≠1;i;j;γ

ξμi ξ
μ
jσ

γ
iσ

γ
j −

ðξμÞ2
2

þ im̃γðNmγ − ξ1i σiÞ þOð1Þ: ðC11Þ

We ignore the higher-order contributions ofP
μ≠1i1::ip ξ

μ
i1
::ξμipσ

γ
i1
::σγip for p > 2 as they scale as

OðN1−p=2Þ [42].
Now we first carry out integration over the quenched

disorder ξ. The relevant terms in U are

−
1

2

X
μ≠1;i;j

ξγi

�
δij −

βv
N

X
γ

σγiσ
γ
j

�
ξμj −

X
i

ðξ1i Þ2
2

− i
X
γ

m̃γ
X
i

ξ1i σ
γ
i : ðC12Þ

The μ ¼ 1 (here μ refers to the pattern index) integral yields

exp

�
−
1

2

X
γ;κ

m̃γ

�X
i

σγiσ
κ
i

�
m̃κ

�

¼
Z

DQδ

�
NQγκ −

X
i

σγiσ
κ
i

�
exp

�
−
N
2

X
γ;κ

m̃γQγκm̃κ

�
;

ðC13Þ

Qγκ ¼ δγκ þ ð1 − δγκÞqγκ; ðC14Þ

qγκ ¼ 1

N

X
i

σγiσ
κ
i ∀ γ ≠ κ: ðC15Þ

Thus the correlation of spins between different replicas
arises naturally just as in other spin-glass systems. The
μ ≠ 1 integral yields

YαN
μ¼2

�
det

�
δij −

βv
N

X
γ

σγiσ
γ
j

��
−1=2

¼ ½detð1 − βvQÞ�−αN=2:

ðC16Þ
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This step can be carried out through the Weinstein-
Aronsazn theorem. After all this, we have

ZnðβÞ ¼
Z

Dσ

Z
Dm̃

Z
∞

−∞
Dm

Z
∞

−∞
Dq

Z
i∞

−i∞
Dλ̃

Z
i∞

−i∞
Dq̂

× ½detð1 − βvQÞ�−αN=2eU: ðC17Þ

U ¼ Nβ

�
vðmγÞ2

2
þ uðmγÞ4

4
þ kðmγÞ6

6

�

−
N
2
m̃γQγκm̃κ þ iNmγm̃γ þ

X
γ;κ;γ≠κ

q̃γκðNqγκ − σγiσ
κ
i Þ

þ
X
γ

λ̃γ½N − ðσγi Þ2�: ðC18Þ

Here we have expressed the δ functions for the constraints
and that for q as exponentials. Now we integrate over m̃.
The relevant terms are

−
N
2
m̃γQγκm̃κ þ iNmγm̃γ: ðC19Þ

Integration yields

detðQÞ−1=2 exp
�
−
1

2
mγQγκmκ

�
: ðC20Þ

Finally, we carry out integration over the spin variables σ.
The relevant terms are

−
X
γ;κ;i

σγi Q̃
γκσκi ðC21Þ

Q̃γκ ¼ λ̃γδγκ þ ð1 − δγκÞq̃γκ: ðC22Þ

Integration yields

½det Q̃�−N=2: ðC23Þ

Combining everything, we have

βf ¼ lim
N→∞

lim
n→0

−1
n

ln
1

N

�Z
∞

−∞
Dm

Z
∞

−∞
Dq

Z
i∞

−i∞
Dλ̃

Z
i∞

−i∞
Dq̂e−Ng

�
; ðC24Þ

Dm¼
Yn
γ¼1

dmγ; Dq¼
Y
γ≠κ

dqγκ; Dλ̃¼
Yn
γ¼1

dλ̃γ; Dq̂¼
Y
γ≠κ

dq̂γ≠κ;

g¼−
βv
2

Xn
γ¼1

m2
γ −

βu
4

Xn
γ¼1

m4
γ þ

βk
6

Xn
γ¼1

m6
γ þ

1

2

Xn
γ;κ¼1

mαq−1γκ mκþ
α

2
lndetð1−βQÞþ1

2
lndetQ̃−

1

2

Xn
γ;κ¼1

Q̃γκQγ;κ: ðC25Þ

This integral can be evaluated through the saddle
point method. First, finding the saddle point with respect
to Q̃ gives us

Q̃−1
ij ¼ Qij ⇒ Q̃ ¼ Q−1: ðC26Þ

Extremizing with respect to the other variables will be
done later. Now we need to assume a form for the matrixQ
and formγ. Let us assume thatQ is replica symmetric (RS),
i.e., Qγκ ¼ qþ ð1 − qÞδγκ and mγ ¼ m ∀ γ. We will find
the free energy for this form of Q and check for its stability
against RS-breaking fluctuations. As it turns out, for our
purposes, the RS form is stable for the retrieval and the
paramagnetic phase. It becomes unstable only at extremely
low temperatures.

Qγκ ¼ qþ ð1 − qÞδγκ; ðC27Þ

Q−1
γκ ¼ Aδγκ þ B; A ¼ 1

1 − q
;

B ¼ q
ð1 − qÞ½1þ ðn − 1Þq� ; ðC28Þ

lim
n→0

B ¼ − q
ð1 − qÞ2 ; ðC29Þ

detðQÞ ¼
�
1þ n

q
1 − q

�
det½ð1 − qÞ1�; ðC30Þ

ln detðQÞ ¼ ln

�
1þ n

q
1 − q

�
þ n lnð1 − qÞ; ðC31Þ

lim
n→0

1

n
ln detðQÞ ¼ q

1 − q
þ lnð1 − qÞ: ðC32Þ
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Similarly,

lim
n→0

1

n
ln detð1 − βvQÞ

¼ −βqv
1 − βvð1 − qÞ þ ln½1 − βvð1 − qÞ�: ðC33Þ

All this was found using the matrix determinant lemma.
Putting all this back in the expression for f, we finally
obtain

βf ¼ extr

�
−
βv
2
m2 −

βu
4
m4 þ βk

6
m6

þ α

2

�
ln½1 − βvð1 − qÞ� − βvq

1 − βvð1 − qÞ
�

−
1

2

�
lnð1 − qÞ þ q −m2

1 − q

��
: ðC34Þ

The saddle point equations for variation across m and q
are thus given by

∂f
∂m

¼ 0 ⇒ m

�
1þ um2 − km4 −

1

χ

�
¼ 0; ðC35Þ

∂f
∂q

¼ 0 ⇒
αq

ð1 − χÞ2 ¼
q −m2

χ2
; ðC36Þ

χ ¼ βð1 − qÞ: ðC37Þ

We can investigate the stability of the RS solution by
adding RS-breaking fluctuations to Q. We denote the RS
broken matrix as QB:

QB
ij ¼ Qij þ ηij; ηij ¼ ηji; ηii ¼ 0: ðC38Þ

ðQBÞ−1 ¼ ½Qþ η�−1 ¼ Q−1 −Q−1ηQ−1 þQ−1ηQ−1ηQ−1:

ðC39Þ

We ignore terms linear in η as the first-order variation is
set to 0 while taking extrema.

fðm;Q̃B;QBÞ−fðm;Q̃;QÞ¼T1þT2þT3þT4; ðC40Þ

T1 ¼
X
γ;κ

mγ½ðQBÞγκ −Qγκ�mκ; ðC41Þ

T2 ¼
α

2
ln
det½1 − βðQþ ηÞ�

detð1 − βQÞ ; ðC42Þ

T3 ¼
1

2
ln
detQB

detQ
; ðC43Þ

T4 ¼
1

2

X
γκ

½ðQγκ þ ηγκÞQ̃γκ −QγκQ̃γκ�: ðC44Þ

After some algebra, it can be easily shown that

T1 ¼ m2ðaþ bnÞ2
�
a
X
ikz

ηikηkz þ b

�X
ik

η1k

�
2
�
; ðC45Þ

T2 ¼ −
α

4

�
c2
X
ij

η2ij þ 2cd
X
ijk

ηijηjk þ d2
�X

ij

ηij

�
2
�
;

ðC46Þ

T3 ¼
1

4

�
a2
X
ik

η2ik þ 2ab
X
ijk

ηijηjk þ b2
�X

ij

ηij

�
2
�
;

ðC47Þ

T4 ¼ 0; ðC48Þ

a ¼ 1

1 − q
; b ¼ −

q
ð1 − qÞ2 ;

c ¼ β

1 − βð1 − qÞ ; d ¼ β2q
½1 − βð1 − qÞ�2 ; ðC49Þ

fðm; Q̃B;QBÞ − fðm; Q̃;QÞ

¼ A
X
ij

η2ij þ B
X
ijk

ηijηjk þD

�X
ij

ηij

�
2

; ðC50Þ

A ¼ −
1

4
ðαc2 − a2Þ; ðC51Þ

B ¼ −
α

2
cdþ 1

2
abþ am2ðaþ bnÞ2; ðC52Þ

D ¼ −
1

4
ðαd2 − b2Þ þ bm2ðaþ bnÞ2: ðC53Þ

In order for the solution to be stable, we need the
eigenvalues of the quadratic form Eq. (C50) to be positive.
The eigenvalues of the quadratic form are eigenvalues of
the equation

Aηij þ
B
2

X
k

ðηik þ ηkjÞ þD

�X
kl

ηkl

�
¼ Ληij: ðC54Þ

The eigenvalues for this equation are

Λ1 ¼ A; ðC55Þ

Λ2 ¼ Λ1 þ ðn − 2ÞB
2
¼ A − Bþ nB

2
; ðC56Þ
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Λ3 ¼ Λ2 þ
nB
2

þ nðn − 1ÞD ¼ A − Bþ nðB −DÞ þ n2D:

ðC57Þ
Following Ref. [23], the relevant eigenvalue is Λ1 ¼ A.

A > 0 gives us the region of stable solutions as shown
in Fig. 10.

APPENDIX D: MARTIN-SIGGIA-ROSE
APPROACH TO DYNAMICS IN PRESENCE

OF ACTIVE NOISE

For working out the decoupled dynamics of the spins
in the spherical Hopfield model, we shall be following
Refs. [18,32,35,51]. The Langevin equation for the spins is
given by

∂tσi ¼ −μðtÞσiðtÞ þ θi −
δHðσÞ
δσiðtÞ

þ ηiðtÞ; ðD1Þ

where μ is the Lagrange multiplier that ensures that the
spins obey the spherical constraint, θi is the external field at
each site, HðσÞ is the Hamiltonian, and ηiðtÞ is the noise
in the system. The noise includes both white noise and
active noise.

ηiðtÞ ¼ ηw;iðtÞ þ ηa;iðtÞ; ðD2Þ

hηw;iðtÞi ¼ 0 ¼ hηa;iðtÞi ∀ i; t; ðD3Þ

hηw;iðtÞηw;jðt0Þi ¼ 2Tpδijδðt − t0Þ;

hηa;iðtÞηa;jðt0Þi ¼
Ta

τ
δij exp

�
−
jt − t0j

τ

�
;

hηw;iðtÞηa;jðt0Þi ¼ 0 ðD4Þ

⇒ hηiðtÞηjðt0Þi ¼ 2Tpδijδðt − t0Þ þ Ta

τ
δij exp

�
−
jt − t0j

τ

�
¼ Dðt; t0Þ; ðD5Þ

where we have labeled the entire function as Dðt; t0Þ.
Now we can write the probability of noise η as

PðηÞ ∼ exp

�
−
1

2

Z
dtdt0ηðtÞD−1ðt; t0Þηðt0Þ

�
: ðD6Þ

Now we write the generating functional for the system as

Z½ψ� ¼
Z

DσDηPðηÞ exp
�
i
XN
i¼1

Z
dtψ iðtÞσiðtÞ

�YN
i¼1

δ

�
∂tσiðtÞ þ μðtÞσiðtÞ þ

δHðσÞ
δσiðtÞ

− ηiðtÞ − θiðtÞ
�
: ðD7Þ

The various physical quantities, such as overlap with a
pattern (m), correlations between spins (C), and the
response of the spins to an external field (G), can be
obtained from differentiating Z with respect to the con-
jugate fields ψ and θ.

mμðtÞ ¼
XN
i¼1

ξμi hσiðtÞi ¼ −iξμi lim
ψ→0;θ→0

δZ½ψ ; θ�
δψ iðtÞ

; ðD8Þ

Cijðt; t0Þ ¼ hσiðtÞσjðt0Þi ¼ lim
ψ→0;θ→0

δ2Z½ψ ; θ�
δψ iðtÞδψ jðt0Þ

: ðD9Þ

Gijðt; t0Þ ¼
δhσiðtÞi
δθjðt0Þ

¼ −i lim
ψ→0;θ→0

δ2Z½ψ ; θ�
δψ iðtÞδθjðt0Þ

: ðD10Þ

We now express the δ functions as exponentials and
integrate out the noise using the definition of probability
given in Eq. (D6). This yields

Z½ψ ; θ� ¼
Z

D½σ; σ̂� exp
"XN

i¼1

Z
dtψ iðtÞσiðtÞ

þ
XN
i¼1

Z
dtθiðtÞσ̃iðtÞ þ A½σ; σ̂�

#
; ðD11Þ

A½σ; σ̂� ¼ −
1

2

XN
i¼1

Z
dtdt0σ̂iðtÞDðt; t0Þσ̂iðt0Þ

þ i
XN
i¼1

Z
dtσ̂iðtÞðL0;i þ Lξ;iÞ; ðD12Þ

(a) (b)

FIG. 10. Region of stability of solutions. The yellow region
denotes regions where the RS solution is stable. (a) Region of
stability for the equilibrium case. (b) Region of stability for
passive fraction, f ¼ 0.2, τ ¼ 0.05, s ¼ 1.0.
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L0;i ¼ ∂tσiðtÞ þ μðtÞσiðtÞ; ðD13Þ

Lξ;i ¼
δHðσÞ
δσi

ðD14Þ

¼ −
X
j

Jijσj −
X
j;k;l

Jijklσjσkσl ðD15Þ

¼ −
1

N

X
μ;j;j≠i

ξμi ξ
μ
jσj −

u0
N3

X
μ;j;k;l

ξμi ξ
μ
jξ

μ
kξ

μ
l σjσkσl: ðD16Þ

Henceforth we will omit θ because it does not affect
further calculations and just leads to cumbersome notation.
It is understood that θ will always be to taken to 0
eventually. Now we need to take the average of Z over
the quenched disorder ξ. Henceforth, A will denote the
quenched average of A over the pattern variables.

Ā ¼
Z

Dξ exp

�
−
ξ2

2

�
AðξÞ; ðD17Þ

Z½ψ � ¼
Z

D½σ; σ̂� exp
�XN
i¼1

Z
dtψ iðtÞσiðtÞ þ A½σ; σ̂�

�
:

ðD18Þ

But we observe that the only part in the entire expression
that depends on the pattern variables is the part associated
with Lξ. Thus the quenched average needs to be taken
only over Lξ. Henceforth, the integrals over time will be
implicitly assumed and Einstein summation convention
will be used.
We assume that only a single pattern, the first pattern

(μ ¼ 1), is condensed, i.e., the overlap of the spin state
with pattern 1 is O(1) at long times and large N. For other
patterns it is Oð1=NÞ and decays to 0 for large N. We define
a few macroscopic variables:

mðtÞ ¼ 1

N
ξ1i σiðtÞ; δm ¼ δ½NmðtÞ − ξ1i σiðtÞ�; ðD19Þ

wðtÞ ¼ 1

N
ξ1i σ̂iðtÞ; δw ¼ δ½NwðtÞ − ξ1i σ̂1ðtÞ�; ðD20Þ

J ¼ exp ½iσ̂i · Lξ;i� ¼ exp

�
−iσ̂i ·

�
1

N
ξμi ξ

μ
jσj þ

u0
N3

ξμi ξ
μ
jξ

μ
kξ

μ
l σjσkσl −

1

N
ðξμi Þ2σi

��
ðD21Þ

¼ exp

�
−iNwðtÞðmðtÞ þ u0mðtÞ3Þ − i

1ffiffiffiffi
N

p ξμi σ̂i
1ffiffiffiffi
N

p ξμjσj þ i
1

N
ðξμi Þ2σ̂iσi þOð1=NÞ

�
δmδw: ðD22Þ

We define a few two-time quantities (which will emerge naturally further down the calculation):

Kðt; t0Þ ¼ 1

N
σiðtÞσ̂iðt0Þ; qðt; t0Þ ¼ 1

N
σiðtÞσiðt0Þ; Qðt; t0Þ ¼ 1

N
σ̂iðtÞσ̂iðt0Þ; ðD23Þ

Z½ψ � ¼
Z

D½σ; σ̂�DKDK̂DmDm̂DwDŵDQDQ̂DqDq̂ exp

�
−
1

2

XN
i¼1

Z
dtdt0σ̂iðtÞDðt; t0Þσiðt0Þ þ i

XN
i¼1

Z
dtσ̂iðtÞL0;i

�

× exp½N½Ψðm; m̂;w; ŵ;q; q̂;Q; Q̂;K; K̂Þ þΦðm;w;q;Q;KÞ þ Θðm̂; ŵ; q̂; Q̂; K̂Þ��; ðD24Þ

where Ψ, Φ, and Θ are defined as follows:

Ψ ¼ i½mðtÞm̂ðtÞ þ wðtÞŵðtÞ þ qðt; t0Þq̂ðt; t0Þ þQðt; t0ÞQ̂ðt; t0Þ þ Kðt; t0ÞK̂ðt; t0Þ�; ðD25Þ

Φ ¼ −iwðtÞ½mðtÞ þ u0mðtÞ3� − α

2
ln fdet½1 − 2iδt;t0Kðt; t0Þ�g

þ α ln

�Z
Dx̂Dŷ exp

�
−
1

2

Z
dtdt0½x̂ðtÞqðt; t0Þx̂ðt0Þ þ 2x̂ðtÞKðt0; tÞŷðt0Þ þ ŷðtÞQðt; t0Þŷðt0Þ − 2ix̂ðtÞδðt − t0Þŷðt0Þ�

��
;

ðD26Þ

Θ ¼ −i
1

N
½m̂ðtÞξ1i σiðtÞ þ ŵðtÞξ1i σ̂iðtÞ þ q̂ðt; t0ÞσiðtÞσiðt0Þ − iQ̂ðt; t0Þσ̂iðtÞσ̂iðt0Þ þ K̂ðt; t0ÞσiðtÞσ̂iðt0Þ − ψ iðtÞσiðtÞ�: ðD27Þ
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Equation (D24) is of the form where we can use the saddle point approximation to calculate the integral. For the saddle
point equations we set ∂vðΨþΦþ ΘÞ ¼ 0, where v is one of the macroscopic variables, m; m̂;…; K; K̂. This yields

wðtÞ ¼ m̂ðtÞ ¼ 0; ŵðtÞ ¼ ½mðtÞ þ u0mðtÞ3�; ðD28Þ

Kðt; t0Þ ¼ iGðt0; tÞ; Gðt0; tÞ ¼ lim
ψ→0

hσðtÞσ̂ðt0Þi�; ðD29Þ

qðt; t0Þ ¼ −
1

2
αi

R
dx̂dŷ x̂ðtÞx̂ðt0Þ expð− 1

2
½x̂qx̂þ 2ŷKx̂ − 2ix̂ ŷþŷQŷ�ÞR

dx̂dŷ expð− 1
2
½x̂qx̂þ 2ŷKx̂ − 2ix̂ ŷþŷQŷ�Þ ¼ 0; ðD30Þ

Qðt; t0Þ ¼ −
1

2
αi

R
dx̂dŷ ŷðtÞŷðt0Þ expð− 1

2
½x̂qx̂þ 2ŷKx̂ − 2ix̂ ŷþŷQŷ�ÞR

dx̂dŷ expð− 1
2
½x̂qx̂þ 2ŷKx̂ − 2ix̂ ŷþŷQŷ�Þ ¼ −

1

2
αi½ð1 −GÞ−1Cð1 −G†Þ−1�ðt; t0Þ; ðD31Þ

Kðt; t0Þ ¼ −αi
R
dx̂dŷ ŷðtÞx̂ðt0Þ expð− 1

2
½x̂qx̂þ 2ŷKx̂ − 2ix̂ ŷþŷQŷ�ÞR

dx̂dŷ expð− 1
2
½x̂qx̂þ 2ŷKx̂ − 2ix̂ ŷþŷQŷ�Þ − α½1 − δt;t0Kðt; t0Þ�−1δðt; t0Þ ðD32Þ

¼ αð1 −GÞ−1ðt; t0Þ − α1 ¼ αGð1 −GÞ−1: ðD33Þ

Substituting these results in Eq. (D24), we obtain the final result,

Z½ψ � ¼ K
Z

D½σ; σ̂� exp
�
−
1

2
σ̂ifDþ α½ð1−GÞ−1Cð1−G†Þ−1�gσ̂i þ iσ̂if∂tσi þ μσi − ½mþ u0m3�ξ1i − αGð1 −GÞ−1σig

�
;

ðD34Þ

where K is a constant. From here we can write the effective
equation of motion of a single spin which is decoupled
from all other spins as

∂tσiðtÞ ¼ −μðtÞσiðtÞ þ ½mðtÞ þ u0mðtÞ3�ξ1i
þ
Z

dt0αGð1 −GÞ−1ðt; t0Þσiðt0Þ þ χiðtÞ; ðD35Þ

hχiðtÞχjðt0Þi¼δijDðt;t0Þ
þδijα½ð1−GÞ−1Cð1−G†Þ−1�ðt;t0Þ; ðD36Þ

Dðt; t0Þ ¼ 2Tpδðt − t0Þ þ Ta

τ
exp

�
−
jt − t0j

τ

�
; ðD37Þ

Cðt; t0Þ ¼ hσðtÞσðt0Þi�; ðD38Þ

Gðt; t0Þ ¼ ∂hσðtÞi
∂θðt0Þ : ðD39Þ

Using this we can write the equations for m, C, and G as
follows:

�
∂

∂t
þ μðtÞ

�
mðtÞ

¼ ½mðtÞ þ umðtÞ3� þ
Z

t

−∞
dt0Rðt; t0Þmðt0Þ; ðD40Þ

�
∂

∂t
þ μðtÞ

�
Gðt; t0Þ ¼ δðt− t0Þ þ α

Z
t

t0
dt1Rðt; t1ÞGðt1; t0Þ;

ðD41Þ

�
∂

∂t
þ μðtÞ

�
Cðt; t0Þ ¼ ½mðtÞ þ umðtÞ3�mðt0Þ þ α

Z
t

−∞
dt1Rðt; t1ÞCðt0; t1Þ þ 2TpGðt0; tÞ

þ α

Z
t0

−∞
dt1

�
Sðt; t1ÞGðt0; t1Þ þ

Ta

τ
exp

�
−
jt − t1j

τ

�
Gðt0; t1Þ

�
; ðD42Þ
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Rðt; t0Þ ¼ ½ð1 − GÞ−1G�ðt; t0Þ; ðD43Þ

Sðt; t0Þ ¼ ð1 −GÞ−1Cð1 −G†Þ−1ðt; t0Þ: ðD44Þ

In case the spins follow a non-Markovian Langevin
equation due to the presence of a drag kernel, the equations
of motion for the spins are given by

∂tσi þ
Z

t

−∞
dsγdðt − sÞ∂sσðsÞ

¼ −μðtÞσiðtÞ þ θi −
δHðσÞ
δσiðtÞ

þ ηiðtÞ; ðD45Þ

where γdðtÞ is the drag kernel. When the kernel satisfies
Tpγdðt − sÞ ¼ hηaðtÞηaðsÞi, then fluctuation-dissipation
theorem is satisfied and the system is at equilibrium at

an effective temperature of Tp. Any deviation from this
results in nonequilibrium behavior. In this case, the
equations for m, C, and G get modified to

�
∂

∂t
þ μ0ðtÞ

�
mðtÞ

¼ ½mðtÞ þ umðtÞ3�

þ
Z

t

−∞
dt0½αRðt; t0Þ þ ∂t0γdðt − t0Þ�mðt0Þ; ðD46Þ

�
∂

∂t
þ μ0ðtÞ

�
Gðt; t0Þ

¼ δðt − t0Þ þ
Z

t

t0
dt1½αRðt; t1Þ þ ∂t0γdðt − t0Þ�Gðt1; t0Þ;

ðD47Þ

�
∂

∂t
þ μ0sðtÞ

�
Cðt; t0Þ ¼ ½mðtÞ þ umðtÞ3�mðt0Þ þ

Z
t

−∞
dt1½αRðt; t1Þ þ ∂t0γdðt − t0Þ�Cðt0; t1Þ þ 2TpGðt0; tÞ

þ α

Z
t0

−∞
dt1

�
Sðt; t1ÞGðt0; t1Þ þ

Ta

τ
exp

�
−
jt − t1j

τ

�
Gðt0; t1Þ

�
: ðD48Þ

The numerical integrations are carried out using a simple
explicit nonadaptive time stepping method. The Cðt; t0Þ
matrix is not time-translation invariant and is initialized as a
1 × 1 matrix with entry 1. The Gðt; t0Þ matrix is initialized
as a 1 × 1matrix with entry 0 andmðtÞ is initialized as 0.95.
The time step size is chosen to be 0.1. At every step,
inverses and matrix products are computed and the equa-
tions are propagated forward. At each step, the side length
of C and G matrices increase by 1. We carry this procedure
for a long time till m is constant for > 100 time steps. We
stop our procedure here. We have verified our procedure for
the equilibrium case where exact results exist in the
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