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We present a quantum algorithm for simulating the classical dynamics of 2n coupled oscillators (e.g., 2n

masses coupled by springs). Our approach leverages a mapping between the Schrödinger equation and
Newton’s equation for harmonic potentials such that the amplitudes of the evolved quantum state encode the
momenta and displacements of the classical oscillators. When individual masses and spring constants can be
efficiently queried, and when the initial state can be efficiently prepared, the complexity of our quantum
algorithm is polynomial in n, almost linear in the evolution time, and sublinear in the sparsity. As an example
application, we apply our quantum algorithm to efficiently estimate the kinetic energy of an oscillator at any
time. We show that any classical algorithm solving this same problem is inefficient and must make 2ΩðnÞ

queries to the oracle, and when the oracles are instantiated by efficient quantum circuits, the problem is
bounded-error quantum polynomial time complete. Thus, our approach solves a potentially practical
application with an exponential speedup over classical computers. Finally, we show that under similar
conditions our approach can efficiently simulate more general classical harmonic systems with 2n modes.
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I. INTRODUCTION

The efficient simulation of quantum dynamics is among
the most promising areas of quantum computing [1]. This is
due to having practical applications as well as universality
providing strong complexity theoretic evidence for expo-
nential quantum advantage [2,3]. Several other applications
with similarly favorable qualities are known (e.g., factoring
[4]), but the discovery of more compelling use cases
remains critical for understanding and motivating the value
proposition of quantum computers.
One approach for leveraging the power of Hamiltonian

simulation would be to consider the space of problems that
reduces to it. Hamiltonian dynamics is an example of a
homogeneous, first-order partial differential equation that
gives rise to unitary evolutions. Thus, it is natural to explore
whether other differential equations can be mapped to
Hamiltonian simulation. The goal would be a more natural
(albeit perhaps more narrow) alternative to solving differ-
ential equations compared with methods [5–7] leveraging

quantum linear systems algorithms [8–10]. Past work has
sought to develop Hamiltonian simulation approaches for a
limited set of other differential equations but thus far has
only succeeded in obtaining polynomial speedups [11–13].
In this paper, we discuss a rich set of problems in

classical dynamics that can be mapped to Hamiltonian
simulation and solved with exponential quantum advan-
tage. As a prominent example, our approach can simulate
the dynamics of exponentially many coupled classical
oscillators in polynomial time. Such systems describe a
variety of physical phenomena including networks of
masses and springs [14], circuits with capacitors and
inductors [15], models of neuron activity [16], and vibra-
tions in molecules [17], materials, and mechanical struc-
tures. More generally, the harmonic approximation (defined
by a quadratic potential) arises as the first-order correction
to equilibrium in bound systems.
That the dynamics of coupled classical oscillators can be

studied via Hamiltonian simulation is perhaps not too
surprising. Solutions to the Schrödinger equation contain
oscillatory terms and interference, and we are effectively
using these properties to simulate the same phenomena
in the classical system. This correspondence was also
presaged by the finding that Grover search can be imple-
mented (in the absence of errors) using mechanical wave
interference [18]. Similarly, the problem of simulating the
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(discrete) classical wave equation is a special case of the
oscillator dynamics problem considered here, and a quan-
tum algorithm to solve the classical wave equation via
Hamiltonian simulation has been studied in Ref. [11].
However, despite the seemingly natural connection, our
mapping involves a number of subtle technical features,
and modern quantum algorithms are required to efficiently
simulate the resultant Hamiltonians.
Besides providing a classical-to-quantum reduction,

another key to obtain exponential quantum advantage for
this problem is the way we encode physical quantities in
quantum states. In our case, this encoding is motivated by
energy conservation (being different from the one in
Ref. [11]). Specifically, we encode quantities related to
the displacements and momenta of the classical system in
the amplitudes of a quantum state. Thus, extracting the full
configuration of the classical system would scale poly-
nomially in the Hilbert space dimension, precluding a large
quantum speedup. Nevertheless, interesting global proper-
ties, like estimating the kinetic or potential energies at any
time, can still be computed efficiently. Likewise, our
methods only provide an exponential speedup for the
dynamics of sparsely coupled oscillator networks when
masses, spring constants, and initial states can be efficiently
computed. Fortunately, many interesting systems meet
those conditions.
Finally, we provide strong evidence that such simu-

lations cannot also be performed efficiently on a classical
computer. In particular, we are able to show that estimat-
ing the kinetic energy of simple instances of these systems
at any time that is polyðnÞ requires 2ΩðnÞ queries to the
oracles in the worst case and, when the oracles are
instantiated by quantum circuits of polyðnÞ size, the
problem is bounded-error quantum polynomial time
BQP-complete. Thus, all problems efficiently solved by
a quantum computer can be reduced to an instance of
simulating exponentially many coupled classical oscilla-
tors, which can also be solved efficiently by our approach.
The rest of the paper is organized as follows. In Sec. II

we describe classical systems of oscillators, define the
associated simulation problems of interest, and state our
main results. In Sec. III we show how these problems
reduce to instances of Hamiltonian simulation, giving rise
to an efficient quantum algorithm. We discuss some
applications of this algorithm in Sec. V, emphasizing the
problem of estimating the time-dependent kinetic (or
potential) energies of the oscillators. In Sec. VI Awe show
the exponential lower bound for classical algorithms for
this problem in the oracle setting, and in Sec. VI B we show
that this problem is BQP-complete when the oracles can be
accessed via efficient quantum circuits. Finally, in Sec. VII
we generalize our approach to efficiently simulating
classical systems under the harmonic approximation.
Detailed proofs of our claims are provided in the
Appendixes. We also provide a comparison of our results

with those of related work on quantum algorithms for
differential equations in Appendix G.

II. SIMULATING COUPLED OSCILLATORS:
MAIN RESULTS

We consider a classical system of coupled harmonic
oscillators, i.e., N ¼ 2n point (positive) masses m1;…; mN
that are coupled with each other by springs. At any
time t ≥ 0, the displacements (with respect to their rest
position) and velocities of the masses are given by x⃗ðtÞ¼
(x1ðtÞ;…;xNðtÞ)T∈RN and ˙⃗xðtÞ¼(ẋ1ðtÞ;…;ẋNðtÞ)T∈RN ,
respectively, where ȧðtÞ ¼ ðd=dtÞaðtÞ and ̈aðtÞ ¼
ðd2=dt2ÞaðtÞ. We let κjk ¼ κkj ≥ 0 be the spring constants
that couple the jth and kth oscillator, and κjj ≥ 0 is the
spring constant that connects the jth oscillator to a “wall.”
We have described it for dimension D ¼ 1 for simplicity,
i.e., we assigned one coordinate to each oscillator, but the
same formulation holds for arbitrary dimension D by using
D coordinates to represent the position of a single oscillator
(see Fig. 1 for an example).
In the harmonic approximation, the dynamics of

the oscillators can be determined from the initial values
x⃗ð0Þ and ˙x⃗ð0Þ and Newton’s equation (for all j∈ ½N� ≔
f1;…; Ng):

mjẍjðtÞ ¼
X
k≠j

κjk(xkðtÞ − xjðtÞ) − κjjxjðtÞ: ð1Þ

Inmatrix form, this isM ̈x⃗ðtÞ ¼ −Fx⃗ðtÞ, whereM is aN × N
diagonal matrix with entries mj > 0 and F is the N × N
matrix whose diagonal and off-diagonal entries are fjj ¼P

k κjk and fjk ¼ −κjk, respectively. (Observe that F is the
discrete Laplacian of a weighted graph.) Solutions to Eq. (1)
arewell understood and can be expressed in terms of normal
modes [14], which is essentially a way of describing the
system as N uncoupled harmonic oscillators in a different
basis. Classical algorithms that compute x⃗ðtÞ and ˙x⃗ðtÞ have

FIG. 1. An example system of N=2 oscillators in D ¼ 2
dimensions. We use x1ðtÞ for the first coordinate of the first
mass and x2ðtÞ for the second coordinate of the first mass, and so
on. Since the first and second mass now correspond to the same
original mass, m1 ¼ m2.
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complexity polyðNÞ or, equivalently, expðnÞ. [In this paper
we use expðmÞ, polyðmÞ, and polylogðmÞ to mean OðkmÞ,
OðmkÞ, and Oðlogk mÞ, respectively, for some constant k.
We use “log” to mean logarithm to base 2.]
Our goal is to provide a quantum algorithm for simulat-

ing the dynamics of the classical oscillators efficiently, in
time polyðnÞ. Doing so requires a particular notion of
“simulation,” since any algorithm that outputs the full
vectors x⃗ðtÞ or ˙x⃗ðtÞ would necessarily have complexity
at least linear in N. Specifically, we consider a problem
formulation where the output is a quantum state with
some amplitudes proportional to ffiffiffiffiffiffimj

p ẋjðtÞ and others toffiffiffiffiffiffi
κjk

p
(xjðtÞ − xkðtÞ) or ffiffiffiffiffiffi

κjj
p xjðtÞ, and the input masses and

spring constants are provided through oracles in the usual
way; see Appendix A. (Here and throughout this paper,

ffiffiffi
x

p
is the principal square root of x ≥ 0 and

ffiffiffiffi
X

p
is the principal

square root of a positive semidefinite matrix X ≽ 0.) The
formal problem is as follows:
Problem 1. Let K be the N × N symmetric matrix of

spring constants κjk ≥ 0 and assume it is d-sparse (i.e.,
there are at most d nonzero entries in each row). Let M be
theN × N diagonal matrix of massesmj > 0 and define the
normalized state

jψðtÞi ≔ 1ffiffiffiffiffiffi
2E

p
� ffiffiffiffiffi

M
p ˙x⃗ðtÞ
iμ⃗ðtÞ

�
; ð2Þ

where E>0 is a constant, and μ⃗ðtÞ∈RM [M≔NðNþ1Þ=2]
is a vector withN entries ffiffiffiffiffiffi

κjj
p xjðtÞ andNðN − 1Þ=2 entriesffiffiffiffiffiffi

κjk
p

(xjðtÞ − xkðtÞ), with k > j. Assume we are given
oracle access to K and M, and oracle access to a unitary
W that prepares the initial state, i.e., Wj0i ↦ jψð0Þi.
Given t ≥ 0 and ϵ > 0, the goal is to output a state that
is ϵ-close to jψðtÞi in Euclidean norm.
Our main result is a quantum algorithm that prepares

jψðtÞi efficiently.
Theorem 1. Problem 1 can be solved with a quantum

algorithm that makes Q ¼ O(τ þ logð1=ϵÞ) queries to the
oracles for K and M, uses

G ¼ O(Q × log2
�
Nτ

ϵ

mmax

mmin

�
) ð3Þ

2-qubit gates, and uses W once, where τ ≔ t
ffiffiffiffiffiffi
ℵd

p
≥ 1,

ℵ ≔ κmax=mmin, mmax ≥ mj ≥ mmin > 0, and κmax ≥ κjk
for all j; k∈ ½N� are known quantities.
In the O notation above, the asymptotically large

parameters are N, τ, 1=ϵ, and mmax=mmin. This complexity
has explicit dependence on n ¼ logðNÞ that is polynomial.
If τ, logð1=ϵÞ, and logðmmax=mminÞ are polyðnÞ, and all
oracles (including W) can be performed with cost polyðnÞ,
then the entire algorithm has complexity polyðnÞ. An
interesting feature of this complexity is that it scales as
the square root of the sparsity d, whereas Hamiltonian

simulation complexities are usually linear in d. The
complexity is also linear in τ, which bounds the maximum
number of oscillations of the normal modes after time t.
Our algorithm can be used to determine properties of the

system at time t. For example, the state jψðtÞi encodes the
velocities and displacements of the oscillators in a way that
makes it easy for the estimation of the kinetic or potential
energies, as we discuss below. We discuss in Appendix F
that other encodings are also possible, and the choice of
encoding may determine which initial states and properties
(observables) are efficient to prepare and measure.
Nevertheless, our main goal is to establish results for this
particular encoding.
The constant in Eq. (2) is E ¼ KðtÞ þUðtÞ, where

KðtÞ ¼ 1
2
˙x⃗ðtÞTM˙x⃗ðtÞ is the kinetic energy, i.e.,

KðtÞ ¼ 1

2

X
j

mjẋjðtÞ2; ð4Þ

and UðtÞ ¼ 1
2
μ⃗ðtÞT μ⃗ðtÞ is the potential energy, i.e.,

UðtÞ ¼ 1

2

�X
j

κjjxjðtÞ2 þ
X
k>j

κjk(xjðtÞ − xkðtÞ)2
�
: ð5Þ

Hence, E is the total energy of the system, which is time
independent as the system is closed. The support of jψðtÞi
on the subspace spanned by the first N basis vectors is
KðtÞ=E, which can be estimated via a simple measurement
on jψðtÞi; see Sec. V. The support on the other subspace is
UðtÞ=E. As an example of the type of problem that can be
solved by preparing jψðtÞi, consider the following.
Problem 2. Given the same inputs as Problem 1 and an

oracle for V ⊆ ½N�, which is a subset of the oscillators,
output an estimate k̂VðtÞ∈R such that

jk̂VðtÞ − KVðtÞ=Ej ≤ ϵ; ð6Þ

where KVðtÞ ≔ 1
2

P
j∈V mjẋjðtÞ2 is the kinetic energy of V

at time t.
In Sec. V, we prove that our quantum algorithm solves

this problem with high probability with Oð1=ϵÞ uses of the
quantum algorithm from Theorem. 1. We also show a
related result for the estimation of the potential energy
stored on a subset V ⊆ ½N� × ½N� of springs at time t.
Problems 1 and 2 are formulated using a specific input

and output format, and one might wonder if a classical
algorithm could also solve these problems efficiently. The
answer is no: we show that any classical algorithm solving
Problem 2 must make polyðNÞ or expðnÞ queries to the
oracles in general.
Theorem 2. Any classical algorithm that solves Problem

2 with high probability must make 2ΩðnÞ queries to the
oracle for K. This lower bound holds even if we further
require that all mj ¼ 1, all κjk ∈ f0; 1g, d ≤ 3, and the
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initial state is jψð0Þi ¼ j0i⊗q for some q ¼ polyðnÞ, which
corresponds to x⃗ð0Þ¼ð0;0;…;0ÞT and ˙⃗xð0Þ¼ ð1;0;…;0ÞT .
To provide more evidence of the impossibility of

efficient classical simulations and prove a stronger hardness
result, we define a nonoracular version of Problem 2 and
show that it is BQP-complete. Thus, no classical algorithm
can solve this nonoracular problem efficiently [in time
polyðnÞ� unless it can also solve every problem solved by
quantum computers in polynomial time. The same obser-
vation essentially applies to Problem 2 as a result. Formally,
to be BQP-complete a problem must be a decision problem
(i.e., a problem where there are only two possible answers),
so we define a decision version of Problem 2 with jVj ¼ 1
and a sparse initial state.
Problem 3. The setup is as in Problem 2, but we are

given efficient quantum circuits [i.e., circuits with
polyðnÞ gates] to implement the oracles for K and M,
an explicit description of jψð0Þi, which is required to have
a constant number of nonzero entries, and a label v∈ ½N� of
a single oscillator. We additionally require that τ, 1=ϵ, and
mmax=mmin are bounded by polyðnÞ. The problem is to
decide if KvðtÞ=E, the kinetic energy of oscillator v as a
fraction of total energy, is at least 1=polyðnÞ or at most
1= expð ffiffiffi

n
p Þ, promised that one of these holds.

Note that this problem has an input of size polyðnÞ and
our algorithm for Problem 1 will solve this on a quantum
computer in time polyðnÞ. We then show this problem is
BQP-complete in Sec. VI B.
Theorem 3. Problem 3 is BQP-complete. The problem

remains BQP-complete even if we further require that all
κjk ≤ 4, mj ¼ 1, d ≤ 4, and the initial state is jψð0Þi ¼
j0i⊗q ⊗ j−i for some q ¼ polyðnÞ, which corresponds to
x⃗ð0Þ ¼ ð0; 0;…; 0ÞT and ˙x⃗ð0Þ ¼ ðþ1;−1; 0;…; 0ÞT .
Finally, we show that our results can be extended to

address more general classical systems that arise naturally
under the harmonic approximation [14]. In these cases, for
example, the matrix M resulting from Eq. (1) is not
necessarily diagonal and the off-diagonal entries of F are
not necessarily nonpositive. A simple change of variables
takes Eq. (1) to the standard form ̈y⃗ðtÞ ¼ −Ay⃗ðtÞ, where
y⃗ðtÞ ¼ ffiffiffiffiffi

M
p

q⃗ðtÞ, and q⃗ðtÞ∈RN are the generalized dis-
placements. We then consider the following generaliza-
tion of Problem 1.
Problem 4. Let A ≽ 0 be an N × N real-symmetric,

positive semidefinite, d-sparse matrix. Define the normal-
ized state,

jψðtÞi ≔ 1ffiffiffiffiffiffi
2E

p
� ˙y⃗ðtÞ
iμ⃗ðtÞ

�
; ð7Þ

where E > 0 is a constant and μ⃗ðtÞ ≔ ffiffiffiffi
A

p
y⃗ðtÞ∈CN .

Assume we are given oracle access to A and oracle access
to a unitaryW that prepares the initial state jψð0Þi. Given t

and ϵ, the goal is to output a state that is ϵ-close to jψðtÞi in
Euclidean norm.
The constant E in Eq. (7) is also the energy of the system.

The encoding is different from the one used for Problem 1;
for example,

ffiffiffiffi
A

p
is of dimension N × N and might not be

sparse even if A is. However, the support of jψðtÞi on the
subspace spanned by the first N basis states is still KðtÞ=E,
where KðtÞ is the kinetic energy. We then show the
following result.
Theorem 4. Problem 4 can be solved with a quantum

algorithm that makes

Q ¼ O(kAkmaxd logð1=ϵÞ min

�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kA−1k

p
ϵ

;
t2

ϵ2

�
) ð8Þ

queries to the oracles, uses Õ(Q × polylogðN=ϵÞ) 2-qubit
gates, and uses W once.
The Õ notation hides logarithmic factors in several

parameters that specify the input.

III. REDUCTION TO QUANTUM EVOLUTION

We show how to reduce Problem 1 to time evolution of a
quantum system. A change of variables where y⃗ðtÞ ≔ffiffiffiffiffi
M

p
x⃗ðtÞ allows us to write Eq. (1) as

̈y⃗ðtÞ ¼ −Ay⃗ðtÞ; ð9Þ

where A ≔
ffiffiffiffiffi
M

p −1F
ffiffiffiffiffi
M

p −1 ≽ 0 is positive semidefinite
and real symmetric, and M≻0 is the diagonal matrix with
entries mj. Any solution to Eq. (9) satisfies

̈y⃗ðtÞ þ i
ffiffiffiffi
A

p
˙y⃗ðtÞ ¼ i

ffiffiffiffi
A

p
½˙y⃗ðtÞ þ i

ffiffiffiffi
A

p
y⃗ðtÞ�: ð10Þ

This is simply Schrödinger’s equation induced by the
Hamiltonian −

ffiffiffiffi
A

p
. Hence its solution is

˙y⃗ðtÞ þ i
ffiffiffiffi
A

p
y⃗ðtÞ ¼ eit

ffiffiffi
A

p
½˙y⃗ð0Þ þ i

ffiffiffiffi
A

p
y⃗ð0Þ�: ð11Þ

Unfortunately, we do not have direct access to −
ffiffiffiffi
A

p
, and

casting the problem as quantum evolution with simpler
Hamiltonians requires additional steps. It is possible,
however, to do Hamiltonian simulation with −

ffiffiffiffi
A

p
given

oracle access to A using quantum phase estimation, as we
describe in Sec. VII, but that is less efficient than what we
describe here. The phase estimation approach also gives
rise to a different encoding, and some properties of the
system are not as easy to access. For example, in the
encoding used in Problem 1, the support of jψðtÞi in a basis
state is either proportional to the kinetic energy of an
oscillator or to the potential energy stored in a spring, but
this might not be the case in other encodings.
Let B be any N ×M matrix that satisfies BB† ¼ A and

H be the block Hamiltonian:
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H ≔ −
�

0 B

B† 0

�
; ð12Þ

where 0 are matrices of all zeros. (The dimension of each 0
is clear from context.) Note that H acts on the space CNþM

and functions as the “square root” ofA, since the first block
of H2 is A. Schrödinger’s equation induced by H is

jψ̇ðtÞi ¼ −iHjψðtÞi; ð13Þ

where jψðtÞi∈CNþM is the state of a quantum system at
time t.
It can be verified by direct substitution that

jψðtÞi ∝
� ˙y⃗ðtÞ
iB†y⃗ðtÞ

�
ð14Þ

is a valid solution to Eq. (13). Hence, we have

� ˙y⃗ðtÞ
iB†y⃗ðtÞ

�
¼ e−itH

� ˙y⃗ð0Þ
iB†y⃗ð0Þ

�
; ð15Þ

which lets us compute ˙y⃗ðtÞ and B†y⃗ðtÞ using Hamiltonian
simulation. This generalizes Eq. (11) since B is not
necessarily −

ffiffiffiffi
A

p
. (This formulation also stores the posi-

tions and velocities in different components of the vector,
but this is a minor difference.)
To match the state representation of Problem 1, we need

to choose B such that μ⃗ðtÞ ¼ B†y⃗ðtÞ ¼ B†
ffiffiffiffiffi
M

p
x⃗ðtÞ, where

μ⃗ðtÞ∈CM [for M ¼ NðN þ 1Þ=2]. We can express μ⃗ðtÞ in
the basis fjj; ki∶j ≤ k∈ ½N�g, which is of size M. Since F
is a graph Laplacian, we can obtain B from the incidence
matrix of F given by

ffiffiffiffiffi
M

p
Bjj; ki ¼

� ffiffiffiffiffiffi
κjj

p jji if j ¼ kffiffiffiffiffiffi
κjk

p ðjji − jkiÞ if j < k:
ð16Þ

This choice satisfies
ffiffiffiffiffi
M

p
Bð ffiffiffiffiffi

M
p

BÞ†¼F, and henceBB† ¼
A, becausewe canwriteF¼ ffiffiffiffiffi

M
p ðPj≤kBjj;kihj;kjB†Þ ffiffiffiffiffi

M
p

and each term in this sum describes the interaction between
the jth and kth oscillators,

ffiffiffiffiffi
M

p
Bjj; jihj; jjB†

ffiffiffiffiffi
M

p
¼ κjjjjihjj; ð17Þ

and for j < k,

ffiffiffiffiffi
M

p
Bjj; kihj; kjB†

ffiffiffiffiffi
M

p
¼ κjkðjjihjj þ jkihkj
− jjihkj − jkihjjÞ: ð18Þ

These reproduce F once we perform the sum. To obtain the
action of B we apply

ffiffiffiffiffi
M

p −1 to Eq. (16).

Note that a similar approach based on the incidence
matrix was taken in Ref. [11] to provide a quantum
algorithm that simulates the wave equation. The setting
considered in that paper corresponds to the special case of
our problem where the graph is spatially local, and the
masses and spring constants are uniform.

IV. QUANTUM ALGORITHM

Our quantum algorithm solves Problem 1 by preparing
jψð0Þi and simulating H for time t.
Access model. The Hamiltonian H is built from the

matrix of spring constants K (or F) and M. As we wish to
avoid complexities that are polynomial in N, we require
succinct representations of these matrices. For maximum
generality, we assume that access to M and the d-sparse K
is provided by a black box, similar to that used in prior
quantum algorithms [19,20]. The black box is a unitary S
that computes the masses mj on input j and the nonzero
entries of K, i.e., κjk, on input ðj; kÞ, as well as their
locations. This black box readily gives query access toH in
Eq. (12), which is also d-sparse. Its entries are � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κjk=mj
p

,
and these factors can be applied using the values of mj and
κjk; see Appendix A.
Simulation of H. Time evolution with the sparse H can

be simulated using one of the methods in Refs. [21–24],
which apply an approximation of the exponential e−itH.
Such methods are tailored to our access model and achieve
almost optimal scaling in the parameters ϵ, d, t, and
kHkmax, the largest entry of H in absolute value. Here
kHkmax is at most

ffiffiffiffi
ℵ

p
, which is defined in Theorem 1.

Complexity. The complexity of our approach is deter-
mined by the simulation of H for time t from the initial
state. We consider the query complexityQ of the number of
calls to S, and we allow inverses and controlled forms of
these oracles. This query complexity can also be taken to
include the unitary for preparing the initial state, but only
one call to that preparation is needed. We also consider the
gate complexity G, which is the number of additional
elementary gates, which could, for example, be single-qubit
gates and CNOT gates. We describe these as “2-qubit gates”
in Theorem 1 for simplicity.
Using Ref. [23], the Hamiltonian evolution may be

simulated with

O(tΛþ logð1=ϵÞ) ð19Þ

calls to a block encoding of H, where the block encoding
gives a factor of 1=Λ. In Appendix Awe show how to block
encode H with Λ ¼ ffiffiffiffiffiffiffiffiffi

2ℵd
p

using Oð1Þ calls to S, and so
Eq. (19) gives the total query complexity Q given in
Theorem 1 since τ ≔ t

ffiffiffiffiffiffi
ℵd

p
. The reason for the square root

dependence on the sparsity is then because the algorithm
involves simulation of H, which is effectively the square
root of the d-sparse operator A. Note that ℵd is an upper
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bound on kAk, implying that
ffiffiffiffiffiffi
ℵd

p
is an upper bound on the

largest frequency of the normal modes. See Appendix A for
a more technical explanation.
To achieve final error ϵ, each block encoding should be

given within error

ϵ0 ¼ O(ϵ=½τ þ logð1=ϵÞ�); ð20Þ

which will determine the gate complexity. In Lemmas 8
and 9 of Appendix A we also show that it suffices to
represent the relevant inputs, i.e., masses and spring
constants, with a number of bits, that is, rm ¼
O( logðmmax=ðmminϵ

0Þ) and rκ ¼ O( logð1=ϵ0Þ), respec-
tively, to achieve error ϵ0 in the block encoding. The gate
complexity for the arithmetic is essentially OðrmrκÞ, and
there is also another contribution OðnÞ to the gate
complexity for other operations in the block encoding
(e.g., for inequality tests and other state preparations).
Hence, we can bound the overall gate complexity as
G ¼ O(Qlog2ðNmmax=ðmminϵ

0ÞÞ). Substituting the value
of ϵ0 from Eq. (20), this gives

G ¼ O(Qlog2
�
Nτ

ϵ

mmax

mmin

�
); ð21Þ

which is the expression provided in Theorem 1. To
simplify this expression we used the fact that
log (ðτ þ logð1=ϵÞÞ=ϵ) ≤ log (ðτ þ ð1=ϵÞÞ=ϵ). Because
we consider complexity for large τ and 1=ϵ, we can upper
bound that by logðτ=ϵ2Þ ¼ O( logðτ=ϵÞ).
In Theorem 1 we have not quantified the state prepa-

ration complexity (i.e., the complexity of W), since
Problem 1 assumes W is given as an input. However,
in many situations this preparation can often be performed
efficiently. One example is when we have oracles to
separately prepare states with amplitudes proportional to
x⃗ð0Þ and ˙x⃗ð0Þ. In Appendix E, we show the query
complexity to prepare jψð0Þi is Qini ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Emaxd=E
p Þ,

where

Emax ¼
mmax

2
k˙x⃗ð0Þk2 þ κmax

2
kx⃗ð0Þk2 ð22Þ

is the energy of N uncoupled oscillators of mass mmax
and spring constants κmax with similar initial conditions.
We also establish the gate complexity Gini ¼
O(Qinilog2ðNEmax=ðEϵÞÞ).

V. EXAMPLE APPLICATION

Our quantum algorithm can simulate classical oscillators
in time polynomial in n under some assumptions. As we are
concerned with dynamics and seek to preserve the speedup,
we focus on computing certain time-dependent properties
of the system. In particular, we explain how to use the
quantum algorithm to solve Problem 2, i.e., to estimate the

kinetic energy of all or some oscillators V ⊆ ½N� at
any time.
Theorem 5. Let V be an oracle for V, i.e., a unitary that

performs the map Vjji ¼ −jji if j∈V and Vjji ¼ jji
otherwise, and δ > 0. Then Problem 2 can be solved with
probability at least 1 − δ by a quantum algorithm that
makes O( logð1=δÞ=ϵ) uses of V and the quantum circuit
that prepares jψðtÞi (along with its inverse and controlled
version).
When V ¼ ½N�, the potential energy is UðtÞ ¼

E − KVðtÞ, and a solution to Problem 2 provides an
estimate ofUðtÞ=E as well. As usual, we include controlled
applications of the oracle V, which means that the global
phase is distinguishable (this way we have that V ¼ ½N� is
distinct from V ¼ fg). Although here we focus on estimat-
ing kinetic energies, a similar idea can be used to estimate
the potential energies stored on a subset of springs at any
time, as we discuss below.
To prove Theorem 5, we note that KVðtÞ=E ¼

hψðtÞjPV jψðtÞi, where PV ¼ ð1 − VÞ=2 is the projector
onto V. This expectation, which is the support of jψðtÞi on
the subspace spanned by the basis states whose labels
correspond to V (i.e., a subspace of that spanned by the first
N basis states), can be obtained by making measurements
on many copies of jψðtÞi, but that approach is not optimal
(i.e., the scaling is quadratic in 1=ϵ). The problem reduces
to estimating hψðtÞjVjψðtÞi with additive error at most 2ϵ
and error probability δ. A method based on high-confidence
amplitude estimation [25] then provides the result in
Theorem 5.
Hence, when jψðtÞi can be efficiently prepared and V

can be efficiently implemented, we can obtain an estimate
of KVðtÞ=E with error ϵ and high probability in time
polynomial in n. If in addition E is known or is efficiently
computed, this translates to an efficient estimation of KVðtÞ
with error ϵE.
A related result shows that our quantum algorithm can be

applied to estimate the potential energy of a subset of
oscillators.
Problem 5. Given the same inputs as Problem 1 and an

oracle for V ⊂ ½N� × ½N�, which is now a subset of springs
(edges) labeled as ðj; kÞ with k ≥ j, output an estimate
ûVðtÞ∈R such that

jûVðtÞ − UVðtÞ=Ej ≤ ϵ; ð23Þ

where

UVðtÞ ≔
1

2

X
j∶ðj;jÞ∈V

κjjxjðtÞ2

þ 1

2

X
k>j∶ðj;kÞ∈V

κjk(xjðtÞ − xkðtÞ)2 ð24Þ

is the potential energy of the springs in V at time t.

BABBUSH, BERRY, KOTHARI, SOMMA, and WIEBE PHYS. REV. X 13, 041041 (2023)

041041-6



By noting that UVðtÞ=E is the support of jψðtÞi on the
subspace spanned by the basis states jj; ki such that
ðj; kÞ∈V, the problem reduces to estimating the expect-
ation of another unitary V on jψðtÞi. Like in the prior
example for the kinetic energy, this can be done efficiently
using our quantum algorithm as follows.
Theorem 6. Let V be an oracle for V, i.e., a unitary that

performs the map Vjj; ki ¼ −jj; ki if ðj; kÞ∈V and
Vjj; ki ¼ jj; ki otherwise, and δ > 0. Then, Problem 5
can be solved with probability at least 1 − δ by a quantum
algorithm that makes O( logð1=δÞ=ϵ) uses of W and the
quantum circuit that prepares jψðtÞi (along with its inverse
and controlled version).

VI. IMPOSSIBILITY OF EFFICIENT
CLASSICAL SIMULATIONS

An important question is whether our quantum algorithm
results in an exponential quantum speedup, or whether it can
be efficiently simulated by classical algorithms. We address
this question in two ways: (i) by showing that our approach
can solve an oracular problem—the “glued-trees” problemof
Ref. [26]—in polyðnÞ time, while Theorem 2 is implied by
Ref. [26], and (ii) by showing that our approach can simulate
any quantumcircuit of sizeL acting onq qubits in polyðL; qÞ
time. More precisely, we show that Problem 3 is BQP-
complete, thereby proving Theorem 3. Although our results
use physical systems that may seem artificial (e.g., resulting
interactions between oscillators are not spatially local), they
are strong evidence that no polynomial-time (in n) classical
algorithm for simulating systems of coupled classical oscil-
lators exists. Our results also add a new problem to the list of
“natural” BQP-complete problems [27].

A. Oracle lower bound

At a high level, in the glued-trees problem of Ref. [26],
we are given oracle access to the adjacency matrix of a
sparse graph with an ENTRANCE vertex, and the goal is to
find the EXIT vertex. We map this problem to a system of
masses and springs by putting a unit mass at each vertex
and a spring of unit spring constant at every edge. Then we
show that if the system starts at rest except with the
ENTRANCE vertex having unit velocity, after polynomial
time, the EXIT vertex will have inverse polynomial
velocity, and thus it is a special case of Problem 2.
Formally, we study the following problem.
Problem 6. Consider a network of N ¼ 2nþ1 − 2masses

coupled by springs, where M ¼ 1N and K coincides with
the adjacency matrix of a graph consisting of two balanced
binary trees of depth n “glued” randomly as in Fig. 2 [i.e.,
the spring constants are κjk ¼ 1 if ðj; kÞ is an edge of the
graph or κjk ¼ 0 otherwise]. Each mass (vertex) of the
network is labeled randomly with a bit string of size 2n.
The network contains two special and verifiable masses,
ENTRANCE and EXIT, which correspond to the roots of

both trees. Given oracle access to K and the label of the
ENTRANCE mass, the problem is to find the label of the
EXIT mass.
This problem is equivalent to that studied in Ref. [26]

where the authors presented an efficient quantum walk
based algorithm while showing that no classical algorithm
can solve the problem efficiently in this oracular setting. In
that work the root vertices do not have the extra edge that
connects them to a wall, so they can be easily verified as
they are the only vertices of degree two. We add these extra
edges to simplify the analysis below; this small change
allows us to use some results on the spectral properties of
the adjacency matrix already studied in Ref. [26]. With this
change, the oracle to accessK allows us to verify whether a
certain vertex is a root or not, since they are the only
vertices (or masses) with nonzero diagonal spring con-
stants; i.e., κjj ¼ 1 only if j corresponds to ENTRANCE or
EXIT and κjj ¼ 0 otherwise. Since our problem is a minor
modification of the glued-trees problem, and any oracle
query to our problem can be answered using a single oracle
query to the glued-trees problem, the original classical
lower bound of Ref. [26] implies that our problem requires
2ΩðnÞ queries to solve classically.
We then show that our quantum algorithm for simulating

coupled classical oscillators can also be used to solve
Problem 6 efficiently. This is a different approach from that
of Ref. [26] as we are not simulating the quantum walk but
rather the classical dynamics obtained from Newton’s
equation with a quantum algorithm. This shows that our
quantum algorithm cannot be simulated classically effi-
ciently in the oracular setting in general. Our main claim is
the following lemma, which we prove in Appendix B.
Lemma 7. Let x⃗ð0Þ¼ð0;0;…;0ÞT and ˙x⃗ð0Þ¼ð1;0;…;0ÞT ,

where the first and last components refer to the initial
conditions of the ENTRANCE and EXIT masses in the
network of Fig. 2, respectively. Then, there exists a time

FIG. 2. A network of N ¼ 2nþ1 − 2 coupled oscillators ob-
tained by randomly gluing two binary trees. Each mass is mj ¼ 1

for all j∈ ½N� and is labeled by a random bit string of size 2n.
Edges denote springs of constant κjk ¼ 1. The goal is to find the
label of the EXIT mass given the label of the ENTRANCE mass
and given oracle access to the network.
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t ¼ O(polyðnÞ) at which the kinetic energy of the EXIT
mass is KμðtÞ ≔ 1

2
(ẋEXITðtÞ)2 ¼ Ω(1=polyðnÞ).

Given this lemma, it is easy to see that Problem6 is a special
case of the problem of estimating the kinetic energy, Problem
2. The quantum algorithm can prepare jψðtÞi efficiently
under the conditions of Lemma 7. Because Lemma 7 proves
that the kinetic energy of the EXIT mass will be inverse
polynomially large after time t ¼ O(polyðnÞ), a projective
measurement on jψðtÞiwill return the label of the EXITwith
probability KEXITðtÞ=E ¼ Ω(1=polyðnÞ), where the energy
is E ¼ 1

2
(ẋENTRANCEð0Þ)2 ¼ 1

2
in this case. Since the EXIT

mass can be verified with the oracle by assumption, the
probability of finding the label of EXIT can be made a
constant close to 1 after O(polyðnÞ) repetitions of the
previous procedure, giving an overall query and gate com-
plexityO(polyðnÞ). SinceProblem6 requires 2ΩðnÞ queries to
solve classically, this yields the exponential lower bound in
Theorem 2.

B. BQP-completeness

To prove this, we start from the standard BQP-complete
problem of simulating universal quantum circuits, i.e., the
problem of determining some property of the output state
jϕi ¼ UL…U1j0i⊗q, where L ¼ polyðqÞ. The unitary
gates Ul belong to a universal set such as fH;X;Toffg,
where H and X are single-qubit Hadamard and Pauli X (bit
flip) gates, and Toff is the 3-qubit Toffoli gate. (Without
loss of generality, all Hadamard gates can act on the last
qubit, a property that is not necessary, but we use it to
simplify the presentation of the proof.) The specific
problem is that of deciding if jϕi is essentially the all-
zero state or has almost no overlap on it; see Problem 7. In
Appendix C we show that this problem reduces to one in
which the kinetic energy of a specific oscillator is either
exponentially close to zero or at least 1=polyðqÞ large. This
is essentially Problem 3 for n ¼ OðqÞ.
We use the standard Feynman-Kitaev construction

[28,29] to encode the Ul’s into a Hamiltonian with an
extra “clock” register. One property of this construction is
that evolution under the Hamiltonian is known to apply
the sequence of gates UL…U1 on a given initial state
[with 1=polyðqÞ amplitude]. We want this Hamiltonian
to be the matrix A of a corresponding system of coupled
oscillators. This way we could use the connection between
classical and quantum systems discussed in Sec. III,
which suggests that the evolved state of the oscillators
encodes the amplitudes of jϕi. However, this has two
problems.
(1) The off-diagonal entries of the Hamiltonian would

not be real negative numbers; i.e., they cannot be
related to spring constants.

(2) The evolution of the oscillators is induced by theffiffiffiffi
A

p
rather than A, so the evolution property of the

Hamiltonian does not apply.

The first problem is due to the fact that Hadamard gates
have negative matrix entries. To fix this, we observe that
the same effect can be obtained using an operator with
non-negative entries and an ancilla in the j−i ≔
ð1= ffiffiffi

2
p Þðj0i − j1iÞ state [30,31]. This operator is no longer

unitary, but this poses no additional problems as it is only
being encoded in a Hamiltonian that, at this stage,
corresponds to a system of oscillators coupled by springs.
The second problem is addressed by showing that the
spectral properties of

ffiffiffiffi
A

p
are such that there is an

appropriate evolution time t ¼ polyðqÞ after which the
evolved state of the oscillators indeed encodes the output
of the quantum circuit with 1=polyðqÞ amplitude.
Formally, we consider problem instances, i.e., systems of

coupled oscillators, where N ¼ ðLþ 1Þ2qþ1,M ¼ 1N , and
A ¼ F is

A ¼ 41N −
XL
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ ⊗ Wl: ð25Þ

The matrix 1N is the N × N identity matrix. The 2qþ1 ×
2qþ1 matrices Wl are real symmetric and act on one more
qubit than do the Ul matrices. We define them as Wl ¼
Ul ⊗ 12 if Ul is the X or Toff gate acting on the space of q
qubits. When Ul is a Hadamard gate, which acts on the last
qubit (the qth qubit), we replace it by the following 4 × 4
matrix acting on qubits q and qþ 1:

1ffiffiffi
2

p

0
BBB@

1 0 1 0

0 1 0 1

1 0 0 1

0 1 1 0

1
CCCA: ð26Þ

This matrix acts like Hadamard on qubit q when qubit
qþ 1 is set to j−i. Thus the entries of Wl are non-negative
in this case as well, the off-diagonal entries of A are
f0;−1= ffiffiffi

2
p

;−1g, and all diagonal entries are 4. Hence, the
off-diagonal entries of the matrix K are f0; 1= ffiffiffi

2
p

; 1g and
one can show that κjj ≥ 0 for all j∈ ½N�. These spring
constants can be efficiently accessed using Eq. (25). The
gates Ul are 2-sparse, implying that the Wl’s are also
2-sparse, and A and K are 4-sparse. These properties are
outlined in Theorem 3.
For our proof, we consider the initial condition

for the N oscillators where x⃗ð0Þ ¼ ð0; 0;…; 0ÞT , ˙x⃗ð0Þ ¼
ðþ1;−1; 0;…; 0ÞT , so that the energy is E ¼ 1. Labeling
each oscillator j∈ ½N� by ðl; rÞ, where l∈ ½Lþ 1� and
r∈ ½2qþ1�, the oscillator under consideration is the one
with l ¼ Lþ 1 and r ¼ 1. In Appendix C we show that
computing the kinetic energy of this oscillator after time
t ¼ polyðqÞ ¼ polylogðNÞ solves the above BQP-complete
problem. In addition, this classical system satisfies all of
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our conditions for the quantum algorithm to be efficient
(i.e., the problem is in BQP).

VII. GENERALIZED COORDINATES

In general, when modeling a classical system using the
harmonic approximation, Newton’s equation can be simply
written as ̈y⃗ðtÞ ¼ −Ay⃗ðtÞ, where y⃗ðtÞ∈RN encodes the
generalized coordinates and A ≽ 0 is of dimension N × N.
To prove Theorem 4 we use a standard approach based on
quantum phase estimation [32–34] to first estimate the
eigenvalues of Hð2Þ ≔ −X ⊗ A, which are γη;j ≔ ð−1Þηλj,
within certain precision that gives the eigenvalues of H
within precisionOðϵ=tÞ. Here, λj ≥ 0 are the eigenvalues of
A, and η∈ f0; 1g determine the eigenvalues of −X as
ð−1Þη, with eigenstates j0Xi ¼ j−i and j1Xi ¼ jþi. We
specifically use a standard QFT-based approach to phase
estimation (PE), where QFT stands for quantum Fourier
transform. This eschews the need for measurement and in
turn maps (within small error) each eigenvector of Hð2Þ via

jηX; λji ↦ jηX; λji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δη;j
p X

x∶jx−γη;jj≤ϵPE
bxjxi

þ ffiffiffiffiffiffiffi
δη;j

p jϕη;ji
�
; ð27Þ

where jϕη;ji is some unspecified error state of the ancillas
of unit norm,

P
x jbxj2 ¼ 1, δη;j ≤ δPE, and ϵPE and δPE

need to be set according to the error requirements. The
states jxi encode the eigenvalue estimates of Hð2Þ. From
each estimate x, we obtain the eigenvalue estimate of H by
taking its sign and computing a square root, i.e.,
sgnðxÞ ffiffiffiffiffijxjp

. Then we apply a phase factor yielding

jηX; λji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δη;j
p X

x∶jx−γη;jj≤ϵPE
e−itsgnðxÞ

ffiffiffiffi
jxj

p
bxjxi

þ ffiffiffiffiffiffiffi
δη;j

p jϕ0
η;ji
�
: ð28Þ

Last, we invert quantum phase estimation and other
operations to (approximately) uncompute the estimated
eigenvalues. The result is, for a value of the error tolerances
where δPE ¼ Oðϵ2Þ and

ϵPE ¼ O(max

�
ϵ

t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kA−1k

p ;
ϵ2

t2

�
); ð29Þ

a unitary approximating e−itH within error ϵ. The result is
implied by the complexity of quantum phase estimation
that requires O(kAkmaxd logð1=δPEÞ=ϵPE) queries to the
oracle. See Appendix D for details.

VIII. CONCLUSION

We introduced an approach to simulating systems of
coupled classical oscillators using a quantum computer. We
showed how to map Newton’s equations for these dynamics
(coupled second-order ordinary differential equations) to
the Schrödinger equation (a first-order partial differential
equation), with polylogarithmic overhead in the number of
oscillators under certain assumptions. Using this mapping,
we demonstrated that any classical algorithm that simulates
these classical dynamics requires at least 2ΩðnÞ queries to
the oracle, and that they can provide solutions to BQP-
complete problems, and would thus require exponential
time to solve classically under reasonable complexity
theoretic assumptions. We also generalized our approach
to the simulation of other classical harmonic systems.
While providing a large quantum advantage in certain

contexts, these techniques also have significant limitations.
For example, the approach is only efficient for computing
particularly large or global properties and when masses and
spring constants can be computed in time polylogarithmic
in system size. Another feature of our algorithm is that its
complexity is (almost) linear in the evolution time t, a
scaling that might not be avoided in general [19,35,36],
being efficient only if t is also polylogarithmic in system
size. This would discourage applications where, for exam-
ple, N ¼ polyðtÞ (and when fast forwarding is not pos-
sible). This feature is expected to arise when simulating
physical systems with geometrically local interactions, and
for initial states that are locally supported. In these
examples, the relevant system size is determined by the
“light cone,” whose size in D spatial dimensions would
scale as N ∼ tD. Nevertheless, even for these examples our
quantum algorithm would still result in significant quantum
speedups (e.g., superquadratic), suggesting a new applica-
tion area for quantum computers [37].
As many systems from molecular vibrations, to struc-

tural mechanics, to electrical grids, to neuronal activation
can be modeled within the harmonic approximation, and
since interesting dynamical features can appear at relatively
short times (e.g., t independent of N), we expect that there
exist specific applications that meet all the requirements for
our quantum algorithm to be efficient. Such applications
will then benefit from this speedup with appreciable real-
world impact; identifying them is one important next step
in this line of research.
Last, we note that our classical-to-quantum reduction

provides yet another way to think about quantum algo-
rithms. For example, once mapped to a one-dimensional
system, the glued-trees problem of masses and springs
becomes a simple wave propagation problem. Since waves
propagate ballistically, it is now clear why our quantum
algorithm, whose complexity is mainly dominated by
evolution time but not by the number of masses, works in
this case. Another example results from Grover’s classical
system of coupled pendulums [18] that, after using our
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reduction, provides another way to solve the unstructured
search problem with OðtÞ queries, where t ¼ Oð ffiffiffiffi

N
p Þ.
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APPENDIX A: ACCESS MODELS AND BLOCK
ENCODING OF B AND H

We provide more details on the access model used for
our quantum algorithm, which is similar to that used in
prior quantum algorithms [19,20]. The black box or oracle
S allows us to perform the map

jj;li → jj; aðj;lÞi; ðA1Þ

for any j∈ ½N� ≔ f1;…; Ng and l∈ ½d�, where d is the
maximum number of nonzero entries in any row of K (i.e.,
the sparsity), and aðj;lÞ is the column index of the lth
nonzero entry in the jth row of K. The same black box
allows us to perform the maps jj; k; zi → jj; k; z ⊕ κ̄jki and
jj; zi → jj; z ⊕ m̄ji, for any j; k∈ ½N�, where z, κ̄jk, and m̄j

are assumed to be given as bit strings. (One could use three
different oracles for these maps, but we combine them into
one that we call S.) Specifically, if mmax ≥ mj for all
j∈ ½N�, then jm̄ji denotes a basis state determined from the
bits in the binary fraction mj ¼ mmax½:bj;1bj;2…�, where
bj;i ∈ f0; 1g. Similarly, if κmax ≥ κjk for all j; k∈ ½N�, then
jκ̄jki denotes a basis state determined from the bits in the
binary fraction κjk¼κmax½:cjk;1cjk;2…�, where cjk;i ∈ f0; 1g.
This access model simplifies some calculations and does
not require knowing the important quantities in any
specific units.
Similar to Refs. [19,20], we assume that any number of

bits can be given as the output of S, with it still being
accounted for as a single oracle call. However, for compu-
tations with this output, we will only use a limited number
of bits, the choice of which is governed by the parameters
of the problem, particularly the approximation errors. In
particular, we denote by rm and rκ the number of bits used
to represent mj and κjk. Then mj ¼ mmaxm̄j=2rm and
κjk ¼ κmaxκ̄jk=2rκ . These approximations as well as the
choices for rm and rκ are discussed below, where we show
how to use S to gain access to B or H.

1. Access to B and H

We explain how to use S and other gates to accessH, the
Hamiltonian in Eq. (12). This access is required by
Hamiltonian simulation methods in Refs. [21–24]. We do
this by showing a block encoding of the relevant matrices
using known methods for state preparation via inequality
testing [38], i.e., by constructing a unitary such that one of its
blocks approximatesH=Λ, where Λ is needed for normali-
zation reasons and given below. We explain how to imple-
ment that unitary operation using elementary gates.
In our construction, we start by providing a block

encoding of B (and B†). This is the N ×M matrix
discussed in Sec. III. Because M ¼ NðN þ 1Þ=2 is not a
power of two in general (N ¼ 2n), it is convenient to pad B
with zeros so that its dimension is N × N2, instead. That is,
here we consider and describe the simulation of H in a
larger-dimensional space, where many amplitudes of the
evolved state will be zero and the others will coincide with
those of jψðtÞi in Eq. (2). With this padding, the matricesB
and H will then be of dimension N × N2 and 2N2 × 2N2,
respectively, in the following analyses. First we prove the
following.
Lemma 8. Let ϵ0 > 0,mmax ≥ mj ≥ mmin and κmax ≥ κjk

for all j; k∈ ½N�, and ℵ ≔ κmax=mmin. Consider the d-sparse
N × N2 matrixB obtained from Sec. III (with the padding).
Then, there exists a unitary UB acting on 2nþ rþ 2 qubits
with r ¼ O( logð1=ϵ0Þ) that provides a block encoding of
B to within additive error ϵ0 as follows:

����ð1N ⊗ h0j⊗n ⊗ h0j⊗rþ2ÞUBð1N ⊗ 1N ⊗ j0i⊗rþ2Þ

−
1ffiffiffiffiffiffiffiffiffi
2ℵd

p B

���� ≤ ϵ0: ðA2Þ

The quantum circuit that implements UB makes Oð1Þ uses
of S and its inverse, in addition to O(nþ log2ðmmax=
ðmminϵ

0ÞÞ) 2-qubit gates.
Next, we use this result to provide a block encoding for

the 2N2 × 2N2 matrix H.
Lemma 9. Let ϵ0 > 0, mj ≥ mmin and κmax ≥ κjk for all

j; k∈ ½N�, and ℵ ≔ κmax=mmin. Consider the d-sparse
2N2 × 2N2 matrix H obtained from Sec. III (with the
padding). Then, there exists a unitary UH acting on 2nþ
rþ 4 qubits with r ¼ O( logð1=ϵ0Þ) that provides a block
encoding of H to within additive error ϵ0 as follows:

����h0j⊗rþ3UHj0i⊗rþ3 −
1ffiffiffiffiffiffiffiffiffi
2ℵd

p H

���� ≤ ϵ0: ðA3Þ

The quantum circuit that implements UH uses a
controlled version of UB and its inverse once, and addi-
tional OðnÞ 2-qubit gates (e.g., CNOT gates and single-
qubit gates).
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Combining Lemmas 8 and 9, a block encoding forH=Λ,
where Λ ≔

ffiffiffiffiffiffiffiffiffi
2ℵd

p
, can be implemented within additive

error Oðϵ0Þ in spectral norm using the oracles S, together
with its inverse and controlled versions, Oð1Þ times, in
addition to O(nþ log2ðmmax=ðmminϵ

0ÞÞ) 2-qubit gates.

2. State preparation using inequality testing

Before presenting the proofs of the lemmas, we revisit
how inequality testing can be used for state preparation
[38], since our constructions use this approach, which is
more efficient than controlled rotation of an ancilla qubit as
in Ref. [8]. Let fβ1;…; βNg be such that βj ≥ 0 can be
expressed using r bits (see below) and β ≥ βj for all
j∈ ½N�. Assume we have access to an oracle that, on input
jj; zi outputs jj; z ⊕ β̄ji, where z and β̄j ∈ ½2r� are given as
bit strings of size r (we will fix z ¼ 0…0). That is, in this
notation, jβ̄ji is a basis state, and the bits are obtained from
the binary fraction βj ¼ β½:b1…br�. The method in
Ref. [38] can be used to perform the following:

jjij0i → jji
�
βj
β
j0i⊗rj0i þ jωji

�
; ðA4Þ

where jωji is a state orthogonal to j0i⊗rj0i. The basic steps
of the method are as follows.
(1) Apply the oracle to compute β̄j; i.e., perform the

map jji ↦ jj; β̄ji.
(2) Prepare the equal superposition state of r ancilla

qubits, i.e., ð1=2r=2ÞP2r

x¼1 jxi.
(3) Apply inequality testing to prepare jj; β̄jið1=2r=2Þ×

ðPβ̄j
x¼1 jxij0i þ

P
2r

β̄jþ1
jxij1iÞ.

(4) Apply Hadamard gates on the r ancilla qubits.
(5) Apply the inverse of the oracle to reverse the

computation of β̄j; i.e., perform the map jj; β̄ji ↦
jj; 0i.

After these operations there will be amplitude β̄j=2r ¼
βj=β on j0i⊗rj0i. This is because the amplitude can be
found by taking the inner product of the state in step 3 with
ð1=2r=2ÞP2r

x¼1 jxij0i. The method requires one use of the
oracle and its inverse, in addition to OðrÞ Hadamard gates
for steps 1 and 4, and OðrÞ gates for the inequality test in
step 3. It is also possible to compute more complicated
functions of the oracle by rearranging the inequality in step
3, which is the method we will use here.

3. Proof of Lemma 8

We consider a block encoding of B† for simplicity, and
later use it to provide a block encoding of B by taking the
conjugate transpose. Using the padding described above,
the dimension of B† is N2 × N and its entries are of the
form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjk=mj

p
or zero; specifically, the definition of B in

Sec. III [obtained from Eq. (16)] implies

B†jji ¼
�X

k≥j

ffiffiffiffiffiffi
κjk
mj

r
jjijki

�
−
�X

k<j

ffiffiffiffiffiffi
κjk
mj

r
jkijji

�
: ðA5Þ

We will construct a unitary U†
B that is a block encoding of

B† following simple steps and then explain how these can
be simulated with quantum circuits. The steps require using
a work register of qubits for some computations that we
discard at the end.
(1) Apply a unitary that performs the map

j0i⊗n ↦
1ffiffiffi
d

p
Xd
l¼1

jli: ðA6Þ

(2) Apply the oracle S for the positions of nonzero
entries of K to map jli to jaðj;lÞi according
to Eq. (A1).

(3) Apply the oracle S two more times to compute m̄j
and κ̄jk; i.e., perform the map jj; 0i ↦ jj; m̄ji
and jj; k; 0i ↦ jj; k; κ̄jki.

(4) Prepare the equal superposition state of r ancilla
qubits, i.e., ð1=2r=2ÞP2r

x¼1 jxi, where r is given below.
(5) Using coherent arithmetic, compute the square of x

and multiplications needed for the inequality test,

κmaxκ̄jk
2rκ

≤
x2

22r
ℵ
mmaxm̄j

2rm
; ðA7Þ

where rκ and rm are the numbers of bits of κ̄jk
and m̄j, respectively, also determined below. This
gives the factor in the amplitude approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjk=ðmjℵÞ

p
.

(6) Reverse the computation of the arithmetic for
Eq. (A7) and the oracles for m̄j and κ̄jk. This
transforms the working registers back to an all-zero
state.

(7) Apply inequality testing (outputting the result in an
ancilla qubit) and a controlled-SWAP operation to
perform the map jjijkij0i ↦ jkijjij1i if k < j or
leave the state jjijkij0i invariant otherwise.

(8) Apply HZ on the ancilla qubit of the previous
step to implement j0i↦ð1= ffiffiffi

2
p Þðj0iþj1iÞ and j1i↦

ð1= ffiffiffi
2

p Þð−j0iþj1iÞ.
The previous sequence of unitaries define U†

B. To
show that the method is correct, consider steps 1–6. If
we discard the working registers (used to store m̄j; κ̄jk and
perform the arithmetic), these steps combined implement
approximately

jjij0i⊗nþrj0i ↦ jji 1ffiffiffiffiffiffi
ℵd

p
X
k

jki
ffiffiffiffiffiffi
κjk
mj

r
j0i⊗rj0i þ jωji;

ðA8Þ
for some state jωji that is orthogonal to j0i⊗rj0i on the
ancilla qubits. Wewant the error in this approximation to be
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Oðϵ0Þ, and we show how to achieve this below. Step 7 is
then needed to rearrange the sum depending on whether
k < j or k ≥ j, according to Eq. (A5). This step transforms
Eq. (A8) to

1ffiffiffiffiffiffi
ℵd

p
X
k≥j

jjijkij0i
ffiffiffiffiffiffi
κjk
mj

r
j0i⊗rj0i

þ 1ffiffiffiffiffiffi
ℵd

p
X
k<j

jkijjij1i
ffiffiffiffiffiffi
κjk
mj

r
j0i⊗rj0i þ jω0

ji; ðA9Þ

where jω0
ji is still orthogonal to j0i⊗rj0i on the ancilla

qubits. Applying step 8 to Eq. (A9), and considering the
part of the state where the ancillas are in j0ij0i⊗rj0i only,
we obtain

1ffiffiffiffiffiffiffiffiffi
2ℵd

p
�X

k≥j

ffiffiffiffiffiffi
κjk
mj

r
jjijki −

X
k<j

ffiffiffiffiffiffi
κjk
mj

r
jkijji

�
j0ij0i⊗rj0i:

ðA10Þ

This coincides with Eq. (A5) if we drop the normalization
factor and project onto the subspace specified by
j0ij0i⊗rj0i of the ancillas. Hence, the sequence of steps
defines the desired unitary U†

B that satisfies, for all j∈ ½N�,

h0j⊗rþ2U†
Bjjij0i⊗nj0i⊗rþ2 ≈ϵ0

1ffiffiffiffiffiffiffiffiffi
2ℵd

p B†jji: ðA11Þ

Equivalently, ð1N ⊗ h0j⊗n ⊗ h0j⊗rþ2ÞUBð1N ⊗ 1N ⊗
j0i⊗rþ2Þ ≈ϵ0 ð1=

ffiffiffiffiffiffiffiffiffi
2ℵd

p ÞB.
Note that the factor of 1=

ffiffiffi
d

p
comes from a single sparse

state preparation (with amplitudes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjk=mj

p
). In contrast,

the block encoding based on Ref. [20] involves a matched
preparation and inverse preparation, each of which gives a
factor of 1=

ffiffiffi
d

p
for an overall factor of 1=d for Hamiltonian

simulation. In particular, the state preparation as in Lemma
4 of Ref. [20] gives a factor of 1=

ffiffiffi
d

p
, then the step of the

walk as in Eq. (23) of Ref. [20] involves a matched
preparation and inverse preparation to implement the
reflection.
The above steps can be implemented with a quantum

circuit as follows. The unitary in step 1 [Eq. (A6)] is simply
obtained from the action of logðdÞ Hadamard gates if d is a
power of 2, or otherwise can be performed with high
precision by amplitude amplification (see Appendix E.2 of
Ref. [34]). The gate complexity is Oðlog dÞ ¼ OðnÞ, with
an amplitude for success that is very close to 1. When
allowing arbitrary qubit rotations in the gate set, as we do
here, then the amplitude for success can be made exactly
one, so we need no correction here. The gate complexity in
step 4 depends on the number of bits needed to represent
mj, κjk, and x with sufficient accuracy. The leading-order
gate complexity is Oðr2 þ rrmÞ for computing x2 and
x2 × m̄j. We also need to multiply by ℵmmax=κmax ¼

mmax=mmin. The number of bits needed is no more than
that in x2 × m̄j, which is Oðrþ rmÞ, giving gate complex-
ityO(ðrþ rmÞ2). The divisions by powers of 2 just involve
bit shifts with no gate cost. The gate complexity for the
inequality test is linear in the number of bits, so is smaller
than the multiplication cost.
It suffices to set r ¼ O( logð1=ϵ0Þ) for overall precision

Oðϵ0Þ, since this choice would imply that the coefficients
in Eq. (A8) are given with that precision. To choose
rm, rκ, we note that our computations of mj and κjk are
effectively done within additive error δm ¼ Oðmmax=2rmÞ
and δκ ¼ Oðκmax=2rκÞ, respectively, since m̄j and κ̄jk give
mj and κjk relative to mmax and κmax. That is, we are
effectively giving the factor in the amplitude:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjk þ δκ

ðmj þ δmÞℵ

s
: ðA12Þ

For additive error Oðϵ0Þ in the above, we can let δm ¼
Oðmjϵ

0Þ; i.e., mj is computed within multiplicative error
Oðϵ0Þ. This choice would imply rm ¼ O( logðmmax=
ðmminϵ

0ÞÞ). Similarly using the error propagation
formula for κjk indicates that the error is largest for small
κjk, so the choice of rκ would depend on κmin. However, the
worst the error can be is rounding down a value by δκ to
zero, which would imply an error Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δκ=κmax

p Þ. That
implies we can choose δκ¼O(κmaxðϵ0Þ2) and, there-
fore, rκ ¼ O( logð1=ϵ0Þ).
These choices of numbers of bits imply the complexity

of the squaring and multiplications at most O(log2½mmax=
ðmminϵ

0Þ�). Last, all unitaries in steps 7 and 8 can be
implemented with gate complexity OðnÞ using standard
techniques. These imply the gate complexities stated in
Lemma 8. ▪

4. Proof of Lemma 9

The result of Lemma 9 is a direct consequence of
Lemma 8. Recall that

H ¼ −
�

0 B

B† 0

�
; ðA13Þ

where we use 0 to denote all-zero matrices whose dimen-
sions are clear from context. Assuming that B is of
dimension N × N2 following Lemma 8, then H would be
of dimension ðN þ N2Þ × ðN þ N2Þ. However, because it is
easier to work with square matrices, we will further pad B
and B† with more zeros, to make them of dimension
N2 × N2, implying that the dimension of H is now
ð2N2Þ × ð2N2Þ. That is,H acts on a space of 2nþ 1 qubits.
[The evolved state will have nonzero amplitude on a sub-
space of dimensionN þM only, whereM ¼ NðN þ 1Þ=2.]
The previous padding is equivalent to replacing Bjj; ki →
ðBjj; kiÞ ⊗ j0i⊗n and hj; kjB† → ðhj; kjB†Þ ⊗ h0j⊗n.
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With this small modification, Lemma 8 implies

Hffiffiffiffiffiffiffiffiffi
2ℵd

p ¼ −

 
0 ð1N ⊗ j0ih0j⊗n ⊗ h0j⊗rþ2ÞUBð1N ⊗ 1N ⊗ j0i⊗rþ2Þ

ð1N ⊗ 1N ⊗ h0j⊗rþ2ÞU†
Bð1N ⊗ j0ih0j⊗n ⊗ j0i⊗rþ2Þ 0

!
;

ðA14Þ

or, equivalently, ðH=
ffiffiffiffiffiffiffiffiffi
2ℵd

p Þ ¼ h0j⊗rþ2ŨHj0i⊗rþ2, where

ŨH ≔ −j0ih1j ⊗ ½ð1N ⊗ j0ih0j⊗n ⊗ 1⊗rþ2
2 ÞUB� þ H:c: ðA15Þ

Here, H.c. denotes the conjugate transpose of the first term. This operator is not yet unitary because j0ih0j⊗n is not unitary
(it is a projector). However, it is simple to construct a block encoding for a projector as follows. We bring one additional
ancilla and implement a conditional unitary operation on the state of the ancilla that is

jþihþj ⊗ ð2j0ih0j⊗n − 1NÞ þ j−ih−j ⊗ 1N: ðA16Þ

Applying h0j � � � j0i to this operator gives the block encoding,

h0jðjþihþj ⊗ ð2j0ih0j⊗n − 1NÞ þ j−ih−j ⊗ 1NÞj0i ¼ j0ih0j⊗n; ðA17Þ

which implements the desired projector. We write Ucond for
this unitary when acting on the system of 2nþ 1 qubits (the
space associated with H) plus rþ 3 ancilla qubits. Hence,
our block encoding for H is

1ffiffiffiffiffiffiffiffiffi
2ℵd

p H ¼ h0j⊗rþ3UHj0i⊗rþ3; ðA18Þ

where

UH ≔ −Ucondðj0ih1j ⊗ 12 ⊗ UBÞ þ H:c: ðA19Þ

Here 12 acts on the extra qubit used for block encoding the
projector.
Simulating UH with a quantum circuit requires applying

a controlled version of UB and U†
B once, in addition to a

simple X gate on the controlled qubit. Simulating Ucond can
be done with gate complexity OðnÞ, since it requires
applying a conditional phase on j0i⊗n. ▪

APPENDIX B: ORACLE LOWER BOUND AND
PROOF OF LEMMA 7

Consider the glued-trees oscillator network in Fig. 2. Let
any node represent a unit mass (i.e., mj¼mmax¼mmin¼1
for all j∈ ½N�) and each edge represent a spring of constant
1 [i.e., κjk ¼ κmax ¼ 1 if ðj; kÞ is an edge and κjk ¼ 0

otherwise]. The ENTRANCE and EXIT masses are addi-
tionally connected to a wall each with a spring of constant

also 1. We write x⃗ðtÞ∈RN and ˙x⃗ðtÞ∈RN for the positions
and velocities of the masses, where we assume their motion
is constrained to one spatial dimension, such as the
“horizontal” direction. Although we do not know the actual
names of the masses a priori, our labels are such that j ¼ 1
refers to the ENTRANCE, j ¼ 2, 3 refer to the masses in
the second column, and so on, until j ¼ N ¼ 2nþ1 − 2
represents the EXIT mass. The energy of the system is
E ¼ TðtÞ þ UðtÞ, where

TðtÞ ¼ 1

2

XN
j¼1

(ẋjðtÞ)2; ðB1Þ

UðtÞ ¼ 1

2

X
j;k>j

κjk(xjðtÞ − xkðtÞ)2 þ
1

2
κ11(x1ðtÞ)2

þ 1

2
κNN(xNðtÞ)2 ðB2Þ

are the kinetic and potential energies, respectively.
Newton’s equation gives then a set of N coupled second-
order differential equations:

̈x⃗ðtÞ ¼ −Ax⃗ðtÞ; ðB3Þ

where A is the (N × N)-dimensional symmetric matrix:
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A ¼

0
BBBBBBBBBBBBBBBBBBBBB@

3 −1 −1 0 � � � � � � � � � � � � 0

−1 3 0 −1 � � � � � � � � � � � � 0

−1 0 3 0 � � � � � � � � � � � � 0

0 −1 0 3 � � � � � � � � � � � � 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.
3 0 −1 0

..

. ..
. ..

. ..
. ..

.
0 3 0 −1

..

. ..
. ..

. ..
. ..

.
−1 0 3 −1

0 0 0 0 � � � 0 −1 −1 3

1
CCCCCCCCCCCCCCCCCCCCCA

:

ðB4Þ

Note thatA ¼ 31N − A, where A is the adjacency matrix of
the graph constructed from the two binary trees randomly
glued, if we disregard the edges that connect the roots to
their respective walls, and 1N is the N × N identity matrix.
Also,A is positive semidefinite because it is symmetric and
diagonally dominant. This property also follows from the
potential being UðtÞ ¼ 1

2
x⃗ðtÞTAx⃗ðtÞ ≥ 0 for all x⃗ðtÞ∈RN ,

which implies A ≽ 0. In fact, A is positive definite: The
matrix A0 ¼ A − j1ih1j − jNihNj represents the above
network of oscillators where the masses at the roots are
not connected to any wall. Hence, A0 contains a non-
degenerate eigenvector of eigenvalue zero corresponding to
the translations of the system, i.e., the eigenvector
ju1i ≔ ð1= ffiffiffiffi

N
p ÞPj jji. The only way for A to contain

an eigenvalue zero is if this eigenvector ju1i was also an
eigenvector of j1ih1j þ jNihNj, which is not the case.
Nevertheless, while A≻0, its smallest eigenvalue is expo-
nentially small in n since the expectation hu1jAju1i ¼ 2=N
is an upper bound on the smallest eigenvalue.
We would like to show the following property. If x⃗ð0Þ ¼

ð0; 0;…; 0ÞT and ˙x⃗ð0Þ ¼ ð1; 0;…; 0ÞT , then ˙x⃗ðtÞ is such
that the magnitude of its Nth entry, corresponding to EXIT,
is at least polynomially small in n for a time t that is at most
polynomial in n [i.e., the kinetic energy of the Nth
oscillator is Ω(1=polyðnÞ)]. For these initial conditions,
the solution to Eq. (B3) implies

˙x⃗ðtÞ ¼ cos

�
t
ffiffiffiffi
A

p �
˙x⃗ð0Þ: ðB5Þ

The matrix A, and hence
ffiffiffiffi
A

p
, possesses a symmetry that

allows one to simulate the dynamics of the N oscillators by
considering that of 2n oscillators in one spatial dimension,

instead. (A similar idea was used in Ref. [26] to prove that
the quantum algorithm solves the problem efficiently.) To
show this, we define 2n real components:

zlðtÞ ¼
1ffiffiffiffiffi
Nl

p
X

j∈ lth column

xjðtÞ; ðB6Þ

where Nl is the number of masses in the lth column and
l∈ ½2n�; that is, Nl ¼ 2l−1 if l ≤ n and Nl ¼ 22n−l if
l ≥ nþ 1. Then, for the masses in any column that is
not the ENTRANCE (l ¼ 1), EXIT (l ¼ 2n), or the
randomly glued masses where l ¼ n and l ¼ nþ 1, simple
manipulations of Eq. (B3) give

̈zlðtÞ ¼
ffiffiffi
2

p
zl−1ðtÞ − 3zlðtÞ þ

ffiffiffi
2

p
zlþ1ðtÞ: ðB7Þ

For the masses in the remaining columns, Eq. (B3) gives

̈z1ðtÞ ¼ −3z1ðtÞ þ
ffiffiffi
2

p
z2ðtÞ; ðB8Þ

̈znðtÞ ¼
ffiffiffi
2

p
zn−1ðtÞ − 3znðtÞ þ 2znþ1ðtÞ; ðB9Þ

̈znþ1ðtÞ ¼ 2znðtÞ − 3znþ1ðtÞ þ
ffiffiffi
2

p
znþ2ðtÞ; ðB10Þ

̈z2nðtÞ ¼
ffiffiffi
2

p
z2n−1ðtÞ − 3z2nðtÞ: ðB11Þ

Then, if z⃗ðtÞ ≔ ½z1ðtÞ;…; z2nðtÞ�T ∈R2n, Eq. (B3) implies

̈z⃗ðtÞ ¼ −Ã z⃗ðtÞ; ðB12Þ

where Ã is a ð2nÞ × ð2nÞ real-symmetric and tridiagonal
matrix that, in bra-ket notation, can be written as

Ã ¼ 3
X2n
l¼1

jlihlj −
ffiffiffi
2

p �Xn−1
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ

þ
X2n−1
l¼nþ1

ðjlihlþ 1j þ jlþ 1ihljÞ
�

− 2ðjnihnþ 1j þ jnþ 1ihnjÞ: ðB13Þ

Hence, we have effectively reduced the dimension of the
system from N to 2n when symmetries are considered. The
matrix Ã is 312n − Ã, where Ã is the 2n × 2n adjacency
matrix of the graph constructed from the glued binary trees
in the new coordinate system defined above (see Fig. 3).
The matrix Ã is also positive, with its smallest eigenvalue
being exponentially small in n, and any two eigenvalues
separated by a gap that is at least Δ0 ¼ Ωð1=n3Þ. In

FIG. 3. The 2n × 2n matrix Ã ¼ 312n − Ã viewed as the adjacency matrix of a weighted graph.
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particular, if z⃗ð0Þ ¼ ð0; 0;…; 0ÞT , the solution to Eq. (B12)
implies

˙z⃗ðtÞ ¼ cos

�
t
ffiffiffiffi
Ã

p �
˙z⃗ð0Þ: ðB14Þ

We are interested in the magnitude of ż2nðtÞ≡ ẋNðtÞ or,
more specifically, the kinetic energy of the Nth oscillator.
Similar to Ref. [26], rather than considering a fixed t, we
will consider an average over t as follows:

PEXITðTÞ ≔
1

T

Z
T

0

dtjẋNðtÞj2 ¼
1

T

Z
T

0

dtjż2nðtÞj2: ðB15Þ

Here, T > 0 is set below andPEXITðTÞ is the average kinetic
energy of the Nth oscillator from time t ¼ 0 to t ¼ T
renormalized by the energy E ¼ 1=2 for the above initial
conditions; for our algorithm, PEXITðTÞ coincides with the

average probability of projecting jψðtÞi into a basis state that
corresponds to the EXIT mass. Thus, the goal reduces to
showing that there exists T ¼ O(polyðnÞ) such that
PEXITðTÞ ¼ Ω(1=polyðnÞ). If we prove this, then
Eq. (B15) automatically implies the existence of t ¼
O(polyðnÞ) such that KNðtÞ ¼ Ω(1=polyðnÞ), which is
our main goal. Finding such t can be done classically by
simulating Eq. (B12) in time polynomial in n.
We can write

ż2nðtÞ ¼ h2nj 1
2
ðeit

ffiffiffĩ
A

p
þ e−it

ffiffiffĩ
A

p
Þj1i: ðB16Þ

Let fjλ1i;…; jλ2nig be the 2n eigenvectors of the adjacency
matrix Ã of eigenvalues λ1 < λ2 < � � � < λ2n. These are

also eigenvectors of
ffiffiffiffi
Ã

p
of eigenvalues γl ≔

ffiffiffiffiffiffiffiffiffiffiffiffi
3 − λl

p
> 0.

This implies

PEXITð∞Þ ≔ lim
T→∞

PEXITðTÞ

¼ lim
T→∞

1

T

�Z
T

0

dth2nj 1
2
ðeit

ffiffiffĩ
A

p
þ e−it

ffiffiffĩ
A

p
Þj1ih1j 1

2
ðeit

ffiffiffĩ
A

p
þ e−it

ffiffiffĩ
A

p
Þj2ni

�

¼
X2n
l;l0¼1

h2njλlihλlj1ih1jλl0 ihλl0 j2ni lim
T→∞

1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þ

¼ 1

2

X2n
l¼1

h2njλlihλlij1ih1jλlihλlj2ni

¼ 1

2

X2n
l¼1

jhλlj1ij2jhλlj2nij2

¼ 1

2

X2n
l¼1

jhλlj1ij4

≥
1

2

1

2n

X2n
l¼1

jhλlj1ij2

¼ 1

4n
: ðB17Þ

To obtain this we used limT→∞ð1=TÞ
R
T
0 dt eitðγl−γl0 Þ ¼ δl;l0 , limT→∞ð1=TÞ

R
T
0 dt eitðγlþγl0 Þ ¼ 0 since the eigenvalues are

positive, jhλlj1ij ¼ jhλlj2nij for all l∈ ½2n� due to a reflection symmetry of the network (i.e., the adjacency matrix of the
graph in the line is invariant under the transformation l ↔ 2n − lþ 1), and also the Cauchy-Schwarz inequality for the last
line as there are 2n different eigenvectors. This would already prove the desired result, but we are interested in finite times
T < ∞ and, more precisely, showing a similar bound for T ¼ O(polyðnÞ).
Using again the reflection symmetry of the network, for T < ∞ the average success probability can be

written as
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PEXITðTÞ ¼
X
l;l0

h2njλlihλlj1ih1jλl0 ihλl0 j2ni
1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þ

¼
X
l;l0

jh1jλlij2jh1jλl0 ij2
1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þ

¼ 1

2

X
l

jh1jλlij4
1

T

Z
T

0

dt½1þ cosð2tγlÞ� þ
X
l≠l0

jh1jλlij2jh1jλl0 ij2
1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þ

¼ 1

2

X
l

jh1jλlij4 þ
1

2

X
l

jh1jλlij4
1

T

Z
T

0

dt cosð2tγlÞ þ
X
l≠l0

jh1jλlij2jh1jλl0 ij2
1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þ

¼ PEXITð∞Þ þ 1

2

X
l

jh1jλlij4
1

T

Z
T

0

dt cosð2tγlÞ þ
X
l≠l0

jh1jλlij2jh1jλl0 ij2
1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þ; ðB18Þ

where we used the identity cos2ðαÞ ¼ 1
2
½1þ cosð2αÞ�. Then, the correction to PEXITð∞Þ for T < ∞ is such that

jPEXITðTÞ − PEXITð∞Þj ¼
����X
l≠l0

jh1jλlij2jh1jλl0 ij2
1

T

Z
T

0

dt cosðtγlÞ cosðtγl0 Þþ
1

2

X
l

jh1jλlij4
1

T

Z
T

0

dt cosð2tγlÞ
����: ðB19Þ

Note that, for l ≠ l0,

���� 1T
Z

T

0

dt cosðtγlÞ cosðtγl0 Þ
���� ¼ 1

T

���� 12
�
sin½Tðγl þ γl0 Þ�

γl þ γl0
þ sin½Tðγl − γl0 Þ�

γl − γl0

����� ≤ 1

TΔ
ðB20Þ

where Δ is the minimum spectral gap between any pair of eigenvalues γl, that is, Δ ≔ minl jγlþ1 − γlj.
(Also, jγl þ γl0 j > Δ if l ≠ l0.) Also, if we order the eigenvalues so that γlþ1 > γl for all l ¼ ½2n − 1�, for l ≥ 2 we
have γl ≥ Δ and

���� 1T
Z

T

0

dt cosð2tγlÞ
���� ¼ 1

T

���� sinð2tγlÞ2γl

���� ≤ 1

2TΔ
: ðB21Þ

For l ¼ 1, the eigenvalue γl is exponentially small in n and the corresponding average can be Oð1Þ. Combining these
equations and using the reflection symmetry of the network, we obtain

jPEXITðTÞ − PEXITð∞Þj ≤ 1

TΔ

X
l≠l0

jhλlj1ij2jhλl0 j1ij2 þ
1

4TΔ

X
l≥2

jhλlj1ij4 þ
1

2
jhλ1j1ij4

≤
1

TΔ

X
l;l0

jhλlj1ij2jhλl0 j1ij2 þ
1

2
jh1jλ1ij4

≤
1

TΔ
þ 1

2
jh1jλ1ij4; ðB22Þ

where we also used
P

l jh1jλlij2 ¼ 1. We need to show that both these terms are small.
In Ref. [26] it has been shown that the eigenvalues λl’s are separated by spectral gaps bounded by Δ0 ¼ Ωð1=n3Þ. The

same follows for the γl’s. More precisely, suppose that the two closest eigenvalues of Ã are 3 − λ ≤ 6 and 3 − ðλþ Δ0Þ.
Then, the two closest eigenvalues of

ffiffiffiffi
Ã

p
are separated as
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Δ ¼
ffiffiffiffiffiffiffiffiffiffi
3 − λ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ðλþ Δ0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffi
3 − λ

p �
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δ0

3 − λ

r �

≥
ffiffiffiffiffiffiffiffiffiffi
3 − λ

p �
1 −

�
1 −

Δ0

3 − λ

�	

≥
Δ0ffiffiffiffiffiffiffiffiffiffi
3 − λ

p

≥
Δ0ffiffiffi
6

p : ðB23Þ

Then, since Δ0 ¼ Ωð1=n3Þ, we have Δ ¼ Ωð1=n3Þ. This
implies that we can choose T ¼ Oðn4Þ so that, for example,

1

TΔ
≤

1

8n
: ðB24Þ

It is also possible to show that jh1jλ1ij4 is exponentially
small in n. Consider the vector

jv1i ≔
Xn
l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
22þn−l

p jli þ
X2n
l¼nþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
21þl−n

p jli: ðB25Þ

The length of this vector is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
l¼1ð1=21þn−lÞ

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 1=2n
p

being exponentially close to 1. In addition,

Ãjv1i ¼ 3jv1i −
ffiffiffi
2

p �Xn−1
l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
22þn−l

p jlþ 1i þ
Xn
l¼2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
22þn−l

p jl − 1i þ
X2n−1
l¼nþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
21þl−n

p jlþ 1i þ
X2n
l¼nþ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
21þl−n

p jl − 1i
�

− 2
1

2
ðjnþ 1i þ jniÞ

¼ 3jv1i −
ffiffiffi
2

p �Xn
l¼2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
23þn−l

p jli þ
Xn−1
l¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
21þn−l

p jli þ
X2n
l¼nþ2

1ffiffiffiffiffiffiffiffi
2l−n

p jli þ
X2n−1
l¼nþ1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
22þl−n

p jli
�
− 2

1

2
ðjnþ 1i þ jniÞ

¼ 3jv1i − 3
Xn−1
l¼2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
22þn−l

p jli − 1

2
jni − 1ffiffiffiffiffiffiffiffiffi

2n−1
p j1i − 3

X2n−1
l¼nþ2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
21þl−n

p jli − 1ffiffiffiffiffiffiffiffiffi
2n−1

p j2ni − 1

2
jnþ 1i − 2

1

2
ðjnþ 1i þ jniÞ

¼ 3jv1i − 3jv1i þ
1

2
ffiffiffiffiffiffiffiffiffi
2n−1

p j1i þ 1

2
ffiffiffiffiffiffiffiffiffi
2n−1

p j2ni

¼ 1

2
ffiffiffiffiffiffiffiffiffi
2n−1

p j1i þ 1

2
ffiffiffiffiffiffiffiffiffi
2n−1

p j2ni: ðB26Þ

This implies kÃðjv1i=kjv1ikÞk ¼ Oð1= ffiffiffiffiffi
2n

p Þ and that
jv1i=kjv1ik is exponentially close to the normalized
eigenvector of lowest eigenvalue as the spectral gaps are
at least Δ ¼ Ωð1=n3Þ; that is, kðjv1i=kjv1ikÞ − jλ1ik ¼
O(1= expðnÞ). Since the first entry of jv1i=kjv1ik is
O(1=expðnÞ), these results imply jh1jλ1ij¼O(1=expðnÞ).
Combining these bounds, and for the choice of T above,
we obtain

jPEXITðTÞ − PEXITð∞Þj ≤ 1

8n
þO(1= expðnÞ): ðB27Þ

Together with Eq. (B17), this gives

PEXITðTÞ ≥
1

8n
−O(1= expðnÞ); ðB28Þ

which is the desired result: we can choose T ¼ Oðn4Þ so
that the average probability PEXITðTÞ is Ωð1=nÞ, implying
the existence of t∈ ½0; T� with the desired property
jẋNðtÞj ¼ Ω(1=polyðnÞ). ▪

We note that numerical solutions show a stronger result,
where t ∝ n suffices. See Fig. 4 for an example.

FIG. 4. Numerical simulation of the network in Fig. 2
for n ¼ 20 (N ¼ 221 − 2). Initially x⃗ð0Þ ¼ ð0; 0;…; 0ÞT and
˙x⃗ð0Þ ¼ ð1; 0;…; 0ÞT . At time t ≈ 2n, jẋNðtÞj becomes significant.
Similar behavior is observed for larger values of n.
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APPENDIX C: BQP-COMPLETENESS AND
PROOF OF THEOREM 3

In this appendix our goal is to show Theorem 3, which
establishes that Problem 3 is BQP-complete. A problem is
BQP-complete if it is in BQP and if it is BQP-hard, which
means that every problem in BQP can be reduced to it by
classical polynomial-time reductions. Sincewe have already
established that Problem 3 is in BQP (a consequence of
Theorem 1), we only need to show it is BQP-hard.
To show our problem is BQP-hard, we start the reduction

from the following BQP-complete problem:
Problem 7. Given a quantum circuit on q qubits with

L ¼ polyðqÞ gates over the gate set of Hadamard, Pauli X,
and Toffoli acting on the initial state j0i⊗q, decide if the
output state has overlap at least 1 − 1= expð ffiffiffi

q
p Þ with j0i⊗q

or has overlap at most 1= expð ffiffiffi
q

p Þ with j0i⊗q, promised
that one of these is the case.
This problem is easily seen to be in BQP. It is BQP-hard

by reduction from the standard BQP-complete problem,
which has a similar input, but the goal is to decide a
different property of the output state: Upon measuring the
first qubit of the output state, we have to decide if it is 1
with probability at least 2=3 or 1 with probability at most
1=3, promised that one of these is the case. By known
results, we can assume our gate set is real and contains only
Hadamard and Toffoli, since this is a universal gate set for
real quantum computation, which is computationally as
powerful as complex quantum computation [39,40]. We
also add the single-qubit Pauli X gate so that we can create
the state j1i from j0i, as we want the computation to start
with all qubits in state j0i. Also, the X and Toffoli gates
generate SWAP gates, and we can then assume that all
Hadamard gates act on the same qubit. This property will
be useful to simplify the presentation of the proof, but it is
not necessary, and one could in principle allow Hadamard
gates to act on any qubit.
Given such a circuit, we can amplify the constants 2=3

and 1=3 to 1 − 1= expðqÞ and 1= expðqÞ by running OðqÞ
copies of the circuit in parallel and taking the majority
vote of the first output qubits of all circuits. Now we have
a new circuit on Oðq2Þ qubits whose first qubit is almost
certainly [with probability 1 − 1= expðqÞ] j1i when the
answer is yes and almost certainly j0i when the answer is
no. We then use an additional qubit and copy this answer
to that qubit. Since the qubit we are copying is exponen-
tially close to being j0i or j1i, let us assume it is one of
these, and this will only introduce an error of 1= expðqÞ.
We then run the circuit’s inverse on the remaining qubits
to restore them to the all-zero state. The resulting output
state is now exponentially close to all zeros if the addi-
tional qubit was also zero, which happens when the input
was a no instance. If it was a yes instance, the additional
qubit we added will be exponentially close to j1i, and
hence the overall state will have almost no amplitude on
the all-zeros state.

Thus deciding if the output state of a Oðq2Þ qubit circuit
of size polyðqÞ is 1 − 1= expðqÞ close to the all-zeros state
or has at most 1= expðqÞ overlap on the all-zeros state is
BQP-complete. This yields the stated result by renaming q
to q2. (Our proof below does not require the closeness to be
exponentially small, and it would suffice to have inverse
polynomial closeness, as long as this polynomial was
smaller than all the other polynomials appearing in the
problem.)

1. From a circuit to a network of oscillators

We now show that our quantum algorithm for simulating
coupled classical oscillators allows us to solve the BQP-
complete problem above. We begin with the given quantum
circuit on q qubits with L ¼ polyðqÞ gates. If the gates are
U1 to UL, the output of this circuit is UL…U1j0i⊗q. Our
goal is to decide if this state is essentially j0i⊗q or has
essentially no overlap with j0i⊗q. The unitaries U1 to UL
are either the single-qubit gates Hadamard H or Pauli X
(tensored with identity on all other qubits) or the 3-qubit
Toffoli gate Toff (tensored with identity on all other qubits).
These gates are

H ¼
� 1ffiffi

2
p 1ffiffi

2
p

1ffiffi
2

p − 1ffiffi
2

p

�
; X ¼

�
0 1

1 0

�
; and

Toff ¼

0
BBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

1
CCCCCCCCCCCCCCCA

ðC1Þ

in the corresponding 1-qubit and 3-qubit subspaces. It will
be very useful in our context that these are real as the
resulting Hamiltonian will have real entries, which we
require because the κjk are real.
From this circuit we will create a network of N

oscillators, where N ¼ ðLþ 1Þ2qþ1. It is convenient to
label each oscillator j∈ ½N� using two indexes j → ðl; rÞ,
where l∈ ½Lþ 1�, r∈ ½2qþ1�, and j ¼ ðl − 1Þ2qþ1 þ r. We
will call the oscillator with l ¼ Lþ 1 and r ¼ 1 the output
oscillator. In our construction, the N × N matrix of spring
constants K that describes the couplings between oscil-
lators, which depends on the Ul’s, is 4-sparse and each
entry is bounded as κjk ≤ 4. We will have all masses be

mj ¼ 1. Note that A ¼ ffiffiffiffiffi
M

p −1F
ffiffiffiffiffi
M

p −1 ¼ F and y⃗ðtÞ ¼ffiffiffiffiffi
M

p
x⃗ðtÞ ¼ x⃗ðtÞ in this case. This simplifies our analysis.
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In the following, we show that for our oscillator network,
there exists a time t ¼ polylogðNÞ such that, for the initial
conditions where x⃗ð0Þ¼ð0;…;0ÞT , ẋ1ð0Þ ¼ 1, ẋ2ð0Þ ¼ −1,
and ẋjð0Þ ¼ 0 for all j > 2, the kinetic energy of the output
oscillator is either exponentially close to 0 (when the
original circuit had almost no overlap with j0i⊗q) or
1=polylogðNÞ (when the original circuit’s output is very
close to j0i⊗q). Since our algorithm allows us to estimate
the kinetic energy of a given oscillator to additive
1=polylogðNÞ precision, we can distinguish these two
cases with complexityO(polylogðNÞ). The initial quantum
state jψð0Þi is simply j−i tensored with the all-zeros state,
and hence easy to prepare. This proves that Problem 2 is
BQP-complete even with these constraints on the initial
conditions, t, ϵ, M, and K, which is the desired result.
We now provide the details of this construction. We use

the bra-ket notation for specifying vectors and matrices,
which is convenient for relating properties of the classical
system with properties of quantum states. We will specify
our oscillator network using the A matrix, instead of theK
matrix. This real matrix is positive semidefinite and has
non-negative entries on the diagonal and nonpositive
entries on the off diagonal. The standard Feynman-
Kitaev [28,29] circuit-to-Hamiltonian construction gives
us a Hamiltonian of the form

XL
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ ⊗ Wl; ðC2Þ

whereWl is the lth gate in the circuit, i.e.,Ul. We cannot let
A equal this Hamiltonian, since the matrix is not positive
semidefinite and there are off-diagonal entries of both
signs. The first issue is easily fixed by adding a multiple of
the identity, but it will require some work to fix the second
issue. We will adjoin an additional qubit to work in a
slightly larger space. Formally, we consider the following
Hilbert space:

H ¼ Hclock ⊗ Hcomp ⊗ H2: ðC3Þ

Here,Hclock is the (Lþ 1)-dimensional Hilbert space that is
used to describe the state of the clock [i.e., corresponding to
the first register in Eq. (C2)], which is used to track the
progress of a simulated quantum computation on a state in
Hcomp ⊗ H2, whereHcomp is 2q dimensional andH2 is two
dimensional. The purpose of Hcomp is to store the state of
the given quantum circuit at a time given by the clock. The
purpose of H2 is to address the issue on the off-diagonal
entries raised above. The off-diagonal entries of A need to
have the same sign, but our gate set includes a gate H with
entries of both signs. We address this by providing a
resource state j−i ¼ ð1= ffiffiffi

2
p Þðj0i − j1iÞ in the last register

which we use to effectively create negative signs in a
subspace although the operators will only have positive

entries. Similar constructions that create Hamiltonians with
non-negative entries have been used within the context of
Hamiltonian complexity; see Refs. [30,31], for example.
We will map our circuit to a system of oscillators that

satisfy the assumptions made in Problem 1 by choosing the
couplings to implement an “encoded” sequence of gates
fWlgl as

A ¼ 41N −
XL
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ ⊗ Wl; ðC4Þ

where eachWl corresponds to an encoded version of the lth
gate in the original circuit, which is either a Hadamard, X,
or a Toffoli, and 1N is the identity matrix on the system of
dimension N. Notice thatWl lives inHcomp ⊗ H2, whereas
the original unitaries Ul lived inHcomp. So we encode each
gate into a larger space with 1 additional qubit.
We want all the entries in the encoded versions of

Hadamard, X, and Toffoli to be non-negative, which will
make the off-diagonal entries nonpositive in A due to
Eq. (C4). Let us start with the Hadamard matrix. Without
loss of generality, because we can swap qubits, we assume
the Hadamard always acts on qubit q, the last qubit of
Hcomp. We describe our encoded Hadamard gate via the
following positive-valued real-symmetric block matrix
acting on the last qubit of Hcomp and H2:

Henc ¼
1ffiffiffi
2

p
�
12 12
12 X

�
: ðC5Þ

This can be seen to act as a logical Hadamard when acting
on a state of the form jψij−i because of the following
block-encoding result:

ð12 ⊗ h−jÞHencð12 ⊗ j−iÞ

¼ 1ffiffiffi
2

p
�
ð12 ⊗ h−jÞ

�
12 12
12 X

�
ð12 ⊗ j−iÞ

�

¼ 1ffiffiffi
2

p
�
1 1

1 −1

�

¼ H: ðC6Þ

Note here that unlike a conventional block encoding, the
encoded Hadamard gate Henc is not a unitary operation.
However, it block encodes a unitary operation within the
logical subspace where the Hilbert space H2 contains the
state j−i, which is sufficient for our purposes as it
represents the Hadamard gate as a real-symmetric matrix
with positive entries.
The Toffoli and X gates have non-negative entries and so

we define the encoded Toffoli and X gates on Hcomp ⊗ H2

as simply Ul ⊗ 12. The action of this matrix on the first
register (Hcomp) is a Toffoli gate or X gate, independent
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of the second register (H2). Finally, as in the standard
circuit-to-Hamiltonian construction, the initial state that we
use is jl ¼ 1i ⊗ j0i⊗q on the first two spaces, and j−i on
the last space, as discussed. As mentioned above, the Wl’s,
which are not necessarily unitary on the entire Hilbert space
(but act as unitaries on the subspace where the last register
is j−i), have non-negative entries ∈ f0; 1= ffiffiffi

2
p

; 1g and are
of sparsity at most 2.
The matrix F ¼ A contains all the desired properties to

describe N coupled oscillators. Its off-diagonal entries are
ajk ∈ f0;−1;−1= ffiffiffi

2
p g, for j; k∈ ½N�, j ≠ k. This agrees

with the assumptions that the off-diagonal elements in F are
negative given in Sec. III. All diagonal entries are ajj ¼ 4,
which similarly agrees with the requirement in Sec. III that
the diagonal elements of F are positive. The spring
constants of the system are such that κjk ¼−ajk for j≠ k
and then κjk∈f0;1= ffiffiffi

2
p

;1g. Also, κjj ¼ ajj −
P

k≠j κjk ¼
4 −

P
k≠j ajk. The matrix K has a nonzero diagonal entry

and it can have at most 3 nonzero off-diagonal entries. For
example, if Wl ¼ Henc and Wlþ1 ¼ Toff or Wlþ1 ¼ X,
then the corresponding row will have at most 3 nonzero
matrix elements off the diagonal with coefficients 1=

ffiffiffi
2

p
for

two and 1 for the remainder. Maximizing over all such
possibilities

P
k≠j ajk ≤ 1þ 2=

ffiffiffi
2

p
in our construction, we

obtain κjj > 0. (Since the Hadamard gates act on the same
qubit, we do not have two consecutive Hadamard gates in
our circuit.) The matrix of spring constants K is then
4-sparse and each entry satisfies κjk ≤ 4. Given j∈ ½N�, it is
possible to compute all neighbors aðj;lÞ of j, where
l∈ ½4�, and the corresponding nonzero spring constants, in
polynomial time from the polynomial-sized representation
in Eq. (C4). This gives an efficient circuit to query the
matrixK as in Sec. IV. Now that we have established that a
query to the elements of the oscillator can be efficiently
simulated, we will now turn to showing that the classical
dynamics under an exponentially largeA can implement an
arbitrary quantum computation.

2. Solving the original problem using the
dynamics of oscillators

As discussed above, the initial state we want to use is
jl ¼ 1i ⊗ j0i⊗q ⊗ j−i. As a vector, this is a vector with the
first entry equal to þ1=

ffiffiffi
2

p
, the second entry equal to

−1=
ffiffiffi
2

p
, and the remaining entries zero. Using our prob-

lem’s encoding in Eq. (2), this corresponds to the initial
state where ẏ1ð0Þ ¼ 1, ẏ2ð0Þ ¼ −1, ẏjð0Þ ¼ 0 for all j > 2,
x⃗ð0Þ ¼ 0, and E ¼ 1. This corresponds to all the oscillators
starting at their rest positions, with the first oscillator
having velocity þ1, the second one having velocity −1,
and the remaining oscillators being stationary.
When the initial conditions are such that x⃗ð0Þ ¼ ð0;…;

0ÞT , the solution to Newton’s equations is even easier to
describe, and Eq. (11) implies

˙x⃗ðtÞ ¼ ˙y⃗ðtÞ ¼ Re
n
ei
ffiffiffi
A

p
t ˙y⃗ð0Þ

o
¼ cos


 ffiffiffiffi
A

p
t
�
˙y⃗ð0Þ: ðC7Þ

In the rest of this section we want to understand the
behavior of ˙y⃗ðtÞ for our initial conditions.
We start by defining an N × N matrix A0, which is

obtained from A in Eq. (C4) by replacing Wl → Ul ⊗ 12
whenUl is a Hadamard gate (i.e.,A0 is allowed to have off-
diagonal entries of both signs). We do this for simplicity to
remove the dependence on the j−i state in the ancilla.
Specifically, let Ul ∈ fH;X;Toffg and

A0 ¼ 41N −
XL
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ ⊗ Ul ⊗ 12: ðC8Þ

The block-encoding property of Eq. (C6) implies

˙y⃗ðtÞ ¼ cos

 ffiffiffiffi

A
p

t
�
˙y⃗ð0Þ

¼ cos

 ffiffiffiffi

A
p

t
�
jl ¼ 1i ⊗ j0i⊗q ⊗ j−i

¼ cos

 ffiffiffiffiffi

A0p
t
�
jl ¼ 1i ⊗ j0i⊗q ⊗ j−i: ðC9Þ

That is, Wl and Ul ⊗ 12 act identically on the subspace
specified by j−i. As a corollary, the velocities of the
oscillators are such that the last register remains in j−i.
The matrix A0 is also 4-sparse and satisfies A0 ≽ 0,
implying that

ffiffiffiffiffi
A0p

is a well-defined N × N Hermitian
matrix that is row computable.
We define the N × N select unitary (U0 ≔ 12q),

S ≔
XL
l¼0

jlþ 1ihlþ 1j ⊗ Ul…U0 ⊗ 12; ðC10Þ

which implements the unitary in the circuit up to Ul when
the first register is jlþ 1i, i.e., a vector inRLþ1 with entry 1
in position lþ 1 and zeros elsewhere. Note that S and S†

leave any vector represented as jl ¼ 1i ⊗ jψi, jψi∈C2qþ1

,
invariant. We also define the N × N Hermitian matrix:

X ≔ 41N −
XL
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ ⊗ 12qþ1 : ðC11Þ

Then, by inspection of Eq. (C8), we obtain from the fact
that each Ul in our gate set is Hermitian and unitary

A0 ¼ SXS†: ðC12Þ

Since U0 ¼ 12q , for our initial conditions ˙⃗yð0Þ¼jl¼
1i⊗ j0i⊗q⊗ j−i,
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˙y⃗ðtÞ ¼ cos

 ffiffiffiffiffi

A0p
t
�
jl ¼ 1i ⊗ j0i⊗q ⊗ j−i

¼ S cos

 ffiffiffiffi

X
p

t
�
S†jl ¼ 1i ⊗ j0i⊗q ⊗ j−i

¼ S cos

 ffiffiffiffi

X
p

t
�
jl ¼ 1i ⊗ j0i⊗q ⊗ j−i: ðC13Þ

Since X acts trivially on Hcomp ⊗ H2, it is useful to define

X0 ≔ 41Lþ1 −
XL
l¼1

ðjlihlþ 1j þ jlþ 1ihljÞ; ðC14Þ

implying

˙y⃗ðtÞ ¼ S cos

 ffiffiffiffi

X
p

t
�
jl ¼ 1i ⊗ j0i⊗q ⊗ j−i

¼ S
h
cosð

ffiffiffiffiffiffi
X0p

tÞjl ¼ 1i
i
⊗ j0i⊗q ⊗ j−i: ðC15Þ

This compact expression for the vector of velocities is
useful to show the desired result.
In general, we can write

cos

 ffiffiffiffiffiffi

X0p
t
�
jl ¼ 1i ¼

XLþ1

l¼1

αlðtÞjli; ðC16Þ

with αlðtÞ∈R, because the Taylor expansion of the cosine
function has only even powers of

ffiffiffiffiffiffi
X0p

. Then

˙y⃗ðtÞ ¼ S
h
cos

 ffiffiffiffiffiffi

X0p
t
�
jl ¼ 1i

i
⊗ j0i⊗q ⊗ j−i

¼
XLþ1

l¼1

αlðtÞjli ⊗ ðUl−1…U0j0i⊗qÞ ⊗ j−i: ðC17Þ

Hence, when the first register in the tensor product is
l ¼ Lþ 1, the second register is UL…U1j0i⊗q, and recall
that our goal was to decide if this state was close to or far
from j0i⊗q.
So if we measure the output state, in the case where the

circuit’s output was close to j0i⊗q, we will see jLþ 1ij0i⊗q

with probability ½1 − 1=expð ffiffiffi
q

p Þ�jαLþ1ðtÞj2 ≥ 1
2
jαLþ1ðtÞj2,

and if the circuit’s output had 1= expð ffiffiffi
q

p Þ overlap with
j0i⊗q, then we will see jLþ 1ij0i⊗q with at most
1= expð ffiffiffi

q
p Þ probability.

So all we have to show is that there exists a t ¼
polylogðNÞ such that jαLþ1ðtÞj2 ¼ Ω(1=polylogðNÞ) ¼
Ω(1=polyðqÞ), which will allow us to distinguish the
two cases by using our algorithm O(polylogðNÞ) ¼
polyðqÞ times.

3. Establishing inverse polynomial overlap

It is not too hard to establish inverse polynomial overlap
jαLþ1ðtÞj2 ¼ Ω(1=polylogðNÞ) for t ¼ polylogðNÞ. (In
fact, it is possible to get perfect overlap as we discuss in
the next section.) To prove this result, we use some

known results on the spectral properties of X0. Its eigen-
vectors are

jϕli ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

Lþ 2

r XLþ1

l0¼1

sin

�
πll0

Lþ 2

�
jl0i; ðC18Þ

and the eigenvalues are

γl ¼ 4 − 2 cos
�

πl
Lþ 2

�
; ðC19Þ

where l∈ ½Lþ 1�. Note that 6 > γl > 2. The jϕli’s are also
the eigenvectors of

ffiffiffiffiffiffi
X0p

, whose eigenvalues are γ0l ≔
ffiffiffiffi
γl

p
and

ffiffiffi
6

p
> γ0l >

ffiffiffi
2

p
. Let Δl ¼ γlþ1 − γl be the spectral gaps

of X0 and note that Δl > 0 and Δl=γl > 0. The spectral
gaps of

ffiffiffiffiffiffi
X0p

satisfy (for l∈ ½L�)

γ0lþ1 − γ0l ≥
π

Lþ 2
min

x∈ ½lπ=ðLþ2Þ;ðlþ1Þπ=ðLþ2Þ�
d
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − 2 cosðxÞ

p

¼ π

Lþ 2
min

x∈ ½lπ=ðLþ2Þ;ðlþ1Þπ=ðLþ2Þ�
sinðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 − 2 cosðxÞp
≥

π

Lþ 2
min

x∈ ½lπ=ðLþ2Þ;ðlþ1Þπ=ðLþ2Þ�
sinðxÞffiffiffi

2
p : ðC20Þ

This derivative is zero at x ¼ 0 and π, which is outside the
region of values of x. The derivative will therefore take its
smallest (nonzero) values at the nearest allowed values of x:

x ¼ π

Lþ 2
and x ¼ πðLþ 1Þ

Lþ 2
: ðC21Þ

We have (L ≥ 1)

sin
�

π

Lþ 2

�
¼ sin

�
πðLþ 1Þ
Lþ 2

�
≥

1ffiffiffi
2

p π

Lþ 2
: ðC22Þ

Thus we have

γ0lþ1 − γ0l ≥
1

2

�
π

Lþ 2

�
2

: ðC23Þ

Hence, the smallest spectral gap of
ffiffiffiffiffiffi
X0p

, Δ0 ¼ minlðγ0lþ1−
γ0lÞ, satisfies Δ0 ¼ Ωð1=L2Þ.
The amplitude αLþ1ðtÞ that we are interested in can be

written as
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αLþ1ðtÞ¼ hLþ1jcos
� ffiffiffiffiffiffi

X0p
t

�
j1i

¼
ffiffiffiffiffiffiffiffiffiffiffi
2

Lþ2

r
hLþ1jcosð

ffiffiffiffiffiffi
X0p

tÞ
XLþ1

l¼1

sin

�
πl

Lþ2

�
jϕli

¼ 2

Lþ2

XLþ1

l¼1

cosðγ0ltÞsin
�
πlðLþ1Þ
Lþ2

�
sin

�
πl

Lþ2

�

¼ 2

Lþ2

XLþ1

l¼1

ð−1Þl−1sin2
�

πl
Lþ2

�
cosðγ0ltÞ: ðC24Þ

Recall that the probability of measuring jLþ 1i after
evolving with

ffiffiffiffiffiffi
X0p

for time t, when the initial state is j1i, is

jαLþ1ðtÞj2¼
�

2

Lþ2

�
2XLþ1

l;l0¼1

ð−1Þlþl0 sin2
�

πl
Lþ2

�
sin2
�

πl0

Lþ2

�

×
1

4
ðeitðγ0lþγ0

l0 Þþeitðγ
0
l−γ

0
l0 Þþeitð−γ

0
lþγ0

l0 Þþeitð−γ
0
l−γ

0
l0 ÞÞ;

ðC25Þ

where we used that cosðθÞ ¼ 1
2
ðeiθ þ e−iθÞ.

If l ≠ l0, Eq. (C23) implies jγ0l−γ0l0 j≥π2=½2ðLþ2Þ2�≥Δ0,
and jγ0l þ γ0l0 j ≥ 2

ffiffiffi
2

p
for all l, l0. Then, for any ϵ > 0, there

exists a probability distribution fðtÞ, where t∈ f0; 1;…; Tg
and T ¼ O(ðLþ 2Þ2 logð1=ϵÞ), such that fðtÞ ≥ 0,P

T
t¼0 fðtÞ ¼ 1, and

����XT
t¼0

fðtÞeitðγ0l−γ0l0 Þ
���� ≤ ϵ; ∀ l ≠ l0; ðC26Þ

����XT
t¼0

fðtÞeitðγ0lþγ0
l0 Þ
���� ≤ ϵ; ∀ l; l0: ðC27Þ

In other words, the absolute value of the Fourier
transform of fðtÞ for frequencies ω such that jωj ≥ Δ0
is upper bounded by ϵ. One choice for fðtÞ is the probability
distribution obtained by taking m¼O( logð1=ϵÞ) samples
ft1;…; tmg from a uniform distribution where ti ∈ f0; 1;…;
T 0g, T 0 ¼ OðL2Þ, and outputting t ¼Pi ti. Other choices
can be found in Ref. [41]. This also implies

����XT
t¼0

fðtÞ
X
l≠l0

ð−1Þlþl0sin2
�

πl
Lþ 2

�
sin2
�

πl0

Lþ 2

�
eitðγ

0
l−γ

0
l0 Þ
���� ≤ ϵ

X
l≠l0

sin2
�

πl
Lþ 2

�
sin2
�

πl0

Lþ 2

�

¼ ϵ

�ðLþ 2Þ2
4

−
3ðLþ 2Þ

8

�

≤ ϵ
ðLþ 2Þ2

4
; ðC28Þ

and ����XT
t¼0

fðtÞ
X
l;l0

ð−1Þlþl0sin2
�

πl
Lþ 2

�
sin2
�

πl0

Lþ 2

�
eitðγ

0
lþγ0

l0 Þ
���� ≤ ϵ

X
l;l0

sin2
�

πl
Lþ 2

�
sin2
�

πl0

Lþ 2

�

¼ ϵ
ðLþ 2Þ2

4
: ðC29Þ

Hence, when we analyze
P

T
t¼0 fðtÞjαLþ1ðtÞj2, the terms that dominate the sum are those that correspond to l ¼ l0 in

Eq. (C25) and where the phases are e�itðγ0l−γ0l0 Þ. That is, the above equations give����XT
t¼0

fðtÞjαLþ1ðtÞj2 −
1

2

XT
t¼0

fðtÞ
�

2

Lþ 2

�
2XLþ1

l¼1

sin4
�

πl
Lþ 2

����� ≤ 2

�
2

Lþ 2

�
2

ϵ
ðLþ 2Þ2

4

≤ 2ϵ: ðC30Þ
The second term on the left-hand side can be computed and is 3=4ðLþ 2Þ, which gives����XT

t¼0

fðtÞjαLþ1ðtÞj2 −
3

4ðLþ 2Þ
���� ≤ 2ϵ: ðC31Þ

Let us choose ϵ ¼ 1=½4ðLþ 2Þ�. This implies that the average
P

T
t¼0 fðtÞjαLþ1ðtÞj2 is Ωð1=LÞ and recall that T ¼ ÕðL2Þ.

Then, there must exist a t ¼ ÕðL2Þ such that jαLþ1ðtÞj2 ¼ Ωð1=LÞ.
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Now we are done, since we can run the algorithm for all
t ¼ 1;…; T, since there are only polyðLÞ ¼ polylogðNÞ
values. Alternatively, we can find the desired t by simulat-
ing

ffiffiffiffiffiffi
X0p

for all times t ¼ 1; 2;…; T on a classical computer
at cost that is also polynomial in L or polylogðNÞ. Note that
although our proof does not pin down a specific t for which
this works, numerical simulations show that a fixed time
t ¼ OðLÞ suffices for any L.

4. Bonus: Establishing perfect overlap

While the argument above completes the proof of BQP-
completeness, we observe that it is also possible to obtain
jαLþ1ðtÞj ¼ 1 in the proof above, which is equivalent to
perfect transmission of a disturbance down a spin chain,
which was solved in Refs. [42–44]. The principle is to
adjust the weights of the operator X0 as

X0 ¼
XL
l¼0

bljlþ1ihlþ1j−
XL
l¼1

ffiffiffiffi
ul

p ðjlihlþ1jþ jlþ1ihljÞ;

ðC32Þ

where we have adjusted the first sum to be consistent with
the notation in Ref. [44]. The weights bl and ul are adjusted
so that the eigenvalues are proportional to the squares of a
sequence of integers. Provided the matrix is persymmetric

(so bl ¼ bL−l and ul ¼ uLþ1−l), then ei
ffiffiffiffi
X0p

tj1i gives exactly
jLþ 1i for some t. In particular, in Ref. [42], X0 has the
eigenvalues 2k2 for k ¼ 0 to L, which gives the perfect
transfer for t ¼ π=

ffiffiffi
2

p
.

Here we cannot use that exact result, because
that would imply certain values for the diagonal
entries of X0 (and hence A) for which the Hamiltonian
would not correspond to a system of coupled oscillators.
For our case, it will suffice if the diagonal entries are at
least 2

ffiffiffi
2

p
times the off-diagonal entries. To obtain the

larger on-diagonal entries we can use the analysis in terms
of para-Racah polynominals in Ref. [44]. For odd
L ¼ 2jþ 1, one takes [from Eq. (2.9) of Ref. [44], and
using α ¼ 1=2]

bl ¼
(

1
2
½aðaþ jÞ þ cðcþ jÞ þ lðL − lÞ� if l ≠ j; jþ 1

a2 þ 1
2
jð1þ a − cÞð1þ aþ cþ jÞ − 1

2
ða − cÞð1þ jÞðaþ cþ jÞ if l ¼ j; jþ 1;

ðC33Þ

ul ¼
8<
:

lðLþ1−lÞðL−lþaþcÞðl−1þaþcÞððl−j−1Þ2−ða−cÞ2Þ
4ðL−2lÞðL−2lþ2Þ if l ≠ jþ 1

1
4
ða − cÞ2ð1þ jÞ2ðaþ cþ jÞ2 if l ¼ jþ 1:

ðC34Þ

We have flipped the sign of the matrix in Ref. [44] to be
consistent with our usage here. The eigenvalues as per
Eq. (3.11) of Ref. [44] are (again flipping the sign from that
work)

λ2s ¼ ðsþ aÞ2; s ¼ 0;…; j;

λ2sþ1 ¼ ðsþ cÞ2; s ¼ 0;…; j: ðC35Þ

We then get the appropriate set of eigenvalues if
a − c ¼ 1=2. The matrix is persymmetric if α ¼ 1=2.
We will also use Lþ ¼ Lþ 1 in the notation to simplify
the form of the expressions. Taking a ¼ Lþ=2þ 1=4 and
c ¼ Lþ=2þ 3=4, we obtain

4bl ¼ 5L2þ=2 − 1=4 − 2ðl − L=2Þ2; ðC36Þ

16ul ¼ lð2Lþ − lÞðL2þ − l2Þ: ðC37Þ

Exactly the same result is obtained for odd L ¼ 2j using
the expressions in Eq. (4.4) of Ref. [44]. In either case it is
found that the eigenvalues are 1

4
ðLþ kþ 1=2Þ2 for k ¼ 0

to L. Then one can evolve directly to l ¼ Lþ 1 for t ¼ 2π,
so that jαLþ1ð2πÞj ¼ 1. Alternatively, one can divide theX0

given here by L2 so the coefficients are Oð1Þ, and evolve
for time 2πL.
For the relative values of bl and ul, we need to show

bl ≥
ffiffiffi
2

p
ð ffiffiffiffi

ul
p þ ffiffiffiffiffiffiffiffiffi

ulþ1

p Þ; ðC38Þ

for l ¼ 0 to L. Here we use the convention that u0 ¼ 0,
which is given by the formula above. For l ¼ 0 we
want b0 ≥

ffiffiffiffiffiffiffi
2u1

p
, so Eq. (C38) can still be used with

the convention u0 ¼ 0. Note that both bl and ul take
their maximum values in the center, but bl is nonzero
at the boundaries whereas ul is close to zero. This
means that bl=

ffiffiffiffi
ul

p
is smallest for l ¼ L=2, and there

the ratio is approximately 10=3, which is significantly
larger than 2

ffiffiffi
2

p
.

To show this inequality more rigorously, we can use the
concavity of ul as a function of l and the concavity of the
square root function to give
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ulþ1=2

q
≥

ffiffiffi
2

p
ð ffiffiffiffi

ul
p þ ffiffiffiffiffiffiffiffiffi

ulþ1

p Þ; ðC39Þ

where ulþ1=2 is using the same function of l (even though it
is only meaningful to give coefficients for integer l). We
find that

b2l − 8ulþ1=2 ¼ 1þ 16ðL4þ − L2þÞ½1þ ð1 − βÞβ�
þ 16L4þ(3 − βf9 − β½5þ 4ð2 − βÞβ�g);

ðC40Þ
with β ¼ ðlþ 1=2Þ=Lþ. Because we consider values of
l∈ ½0; L�, we need only consider β∈ ½0; 1�. The expression
(3 − βf9 − β½5þ 4ð2 − βÞβ�g) is positive; it has its mini-
mum of 1=2 at β ¼ 1=2. The expression L4þ − L2þ is non-
negative, and 1þ ð1 − βÞβ is positive for β∈ ½0; 1�. As a
result,

b2l ≥ 8ulþ1=2

⇒ bl ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ulþ1=2

q
≥

ffiffiffi
2

p
ð ffiffiffiffi

ul
p þ ffiffiffiffiffiffiffiffiffi

ulþ1

p Þ; ðC41Þ

as required.

APPENDIX D: PHASE ESTIMATION APPROACH
AND PROOF OF THEOREM 4

We provide proof of Theorem 4, which provides a
method for simulating the dynamics of a broader family
of classical systems under the harmonic approximation
than the previous method described in Theorem 1, at the
price of reduced scaling with the desired error tolerance ϵ.
Proof of Theorem 4. We describe the simulation of

H ¼ −X ⊗
ffiffiffiffi
A

p
, where X is the single-qubit Pauli bit flip

operator and
ffiffiffiffi
A

p
is the principal square root of A, using a

standard quantum phase estimation (QPE) approach. In this
approach, we run QPE with a unitary that is a walk operator
built from a block encoding of Hð2Þ ≔ −X ⊗ A, i.e., a
unitary that containsHð2Þ=Λ in a block, where Λ > 0 is due
to normalization reasons. This QPE provides estimates of
the eigenvalues of thewalk operator, which can be converted
into estimates of the eigenvalues ofHð2Þ and ultimately ofH.
Once these estimates are obtained, simulation ofH is simply
applying a phase that is a product of the eigenvalue estimate
and t. Last, we reverse QPE and other calculations to
uncompute the estimated eigenvalues.
In the case where we have oracle access to K, then A ¼

BB† and we can obtain a block encoding of A—and hence
of Hð2Þ—from the block encodings of B and B†. These
were given in Appendix A. This approach would imply
Λ ¼ 2ℵd. In the case of generalized coordinates described
in Sec. VII, where we assume oracle access to d-sparse A
but not K, then Hð2Þ can be block encoded using standard
methods with Λ ¼ OðkHð2ÞkmaxdÞ ¼ OðkAkmaxdÞ [24].
Let jλji denote the eigenvectors of A of eigenvalue

λj ≥ 0. Then, we can write jηXijλji ¼ jηX; λji for the
eigenvectors of Hð2Þ, where η∈ f0; 1g, and j0Xi ¼ j−i
and j1Xi ¼ jþi are the eigenvectors of X. The correspond-
ing eigenvalues of Hð2Þ are γη;j ≔ ð−1Þηλj. Our first step is
to estimate the eigenvalue γη;j within fixed error, and then
propagate that error into the maximum error that can be
observed in ð−1Þη ffiffiffiffi

λj
p

, which is the corresponding eigen-
value ofH, using an arithmetic circuit on the outputs of the
QPE routine. Phase estimation can be used to provide a
confidence interval Sη;j for the eigenvalue estimates of
Hð2Þ, which we call x. That is, for all x∈ Sη;j that are
estimates of γη;j, and for a given ϵPE, we define ϵη;jðxÞ ≔
x − γη;j and Sη;j ≔ fx∶ϵη;jðxÞ∈ ½−ϵPE; ϵPE�g. To describe
the contribution to estimates outside the confidence inter-
val, we use a state jϕη;ji of unit norm and an amplitudeffiffiffiffiffiffiffi
δη;j

p
, where δη;j > 0 depends on η and j, and 1 − δη;j is the

confidence level when the input state is jηX; λji. Eventually,
we will set δη;j ≤ δPE for all η and j, where δPE > 0 is
determined below. Then, when implementing QPE on input
eigenstate jηX; λji and using a unitary that provides
eigenvalue estimates of Hð2Þ (e.g., a walk operator), the
state is approximately transformed as

jηX; λji ↦ jηX; λji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δη;j
p X

x∈ Sη;j

bxjxi þ
ffiffiffiffiffiffiffi
δη;j

p jϕη;ji
�
;

ðD1Þ

for some unit vector b⃗ that gives the probability distribution
jbxj2 for phase estimates within the confidence interval (the
states jxi can be basis states that encode the estimates of
γη;j). When performing QPE using Kaiser windows [34],
the number of invocations of the walk operator (i.e., the
query complexity) built from the block encoding of Hð2Þ is
then [45]

O(Λ logð1=δPEÞ=ϵPE) ¼ O(kAkmaxd logð1=δPEÞ=ϵPE):
ðD2Þ

The walk operator we use in QPE combines the block
encoding of Hð2Þ with other 2-qubit gates, including a
reflection on some ancilla qubits [46]. That is, each use of
the walk operator requiresOð1Þ uses of the oracle to access
A. The eigenvalues of the walk operator are then
∓ e�i arcsinðλj=ΛÞ. The actual eigenvalues of Hð2Þ, which
are γη;j, can be estimated by QPE using the walk operator,
then taking the sine of the result to give an estimate of
γη;j=Λ. Note that jγη;jj=Λ ≤ 1 for all η∈ f0; 1g and j∈ ½N�.
Aiming for ϵPE=Λ uncertainty in the phase estimation of
arcsinðλj=ΛÞ yields the following estimate in γη;j=Λ:

jγη;j=Λ − sin½arcsinðγη;j=ΛÞ þ ϵPE=Λ�j ≤ ϵPE=Λ: ðD3Þ
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Then, in QPE we are first obtaining an estimate x ¼ γη;jþ
ϵη;jðxÞ, where the error ϵη;jðxÞ satisfies jϵη;jðxÞj ≤ ϵPE
within a ð1 − δPEÞ confidence level. We want to convert
this estimate into an estimate of an eigenvalue ofH, i.e., an
estimate of ð−1Þη ffiffiffiffi

λj
p ¼ sgnðγη;jÞ

ffiffiffiffiffiffiffiffiffijγη;jj
p

, which is obtained

by computing sgnðxÞ ffiffiffiffiffijxjp
. This gives the error

Δη;jðxÞ ≔ sgnðxÞ
ffiffiffiffiffi
jxj

p
− sgnðγη;jÞ

ffiffiffiffiffiffiffiffiffi
jγη;jj

q
¼ sgn½γη;j þ ϵη;jðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jγη;j þ ϵη;jðxÞj

q
− sgnðγη;jÞ

ffiffiffiffiffiffiffiffiffi
jγη;jj

q
; ðD4Þ

which we seek to bound. In the case where γη;j ≥ 0 (i.e.,
η ¼ 0 and γη;j ¼ λj), we have

jΔη;jðxÞj ¼
����sgn½λjþ ϵη;jðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλjþ ϵη;jðxÞj

q
−

ffiffiffiffi
λj

q ����; ðD5Þ

and in the case where γη;j ≤ 0 (i.e., η ¼ 1 and γη;j ¼ −λj),
we have

jΔη;jðxÞj ¼
����sgn½−λjþ ϵη;jðxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j−λjþ ϵη;jðxÞj

q
þ

ffiffiffiffi
λj

q ����:
ðD6Þ

If we replace ϵη;jðxÞ with −ϵη;jðxÞ this becomes����sgn½λj þ ϵη;jðxÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jλj þ ϵη;jðxÞj

q
−

ffiffiffiffi
λj

q ����; ðD7Þ

and so bounding the expression for the case η ¼ 0 will be
sufficient to account for all cases. To find the bound for this
case we will show that for any a∈R,����sgnð1þ aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1

���� ≤ ffiffiffi
2

p
minðjaj;

ffiffiffiffiffiffi
jaj

p
Þ: ðD8Þ

There are four cases to consider to prove this expression.

(1) For a ≥ 1, we can prove the inequality by using

1þ a ≤ 1þ aþ 2
ffiffiffi
a

p
⇒

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
≤ 1þ ffiffiffi

a
p

⇒
ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
− 1 ≤

ffiffiffi
a

p

⇒ sgnð1þ aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1 ≤

ffiffiffiffiffiffi
jaj

p
: ðD9Þ

Since
ffiffiffiffiffiffijajp

≤ jaj for a ≥ 1, this proves the inequality.
(2) For a∈ ½0; 1�, we can use ffiffiffiffiffiffiffiffiffiffiffi

1þ a
p

≤ 1þ a ⇒
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1 ≤ jaj

⇒ sgnð1þ aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1 ≤ jaj: ðD10Þ

Since jaj ≤ ffiffiffiffiffiffijajp
for a∈ ½0; 1�, this proves the inequality.

(3) For a∈ ½−1; 0�, ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
≥ j1þ aj ⇒

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1 ≥ a

⇒ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
≤ −a

⇒
���sgnð1þ aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1
��� ≤ jaj: ðD11Þ

Again for a∈ ½−1; 0� we can use jaj ≤ ffiffiffiffiffiffijajp
. This time we need to take the absolute value because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij1þ ajp
≤ 1.

(4) For a ≤ −1, we can use

0 ≤ ðjaj − 2Þ2 ⇒ 4ðjaj − 1Þ ≤ a2

⇒ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj − 1

p
≤ jaj

⇒ ðjaj − 1Þ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj − 1

p
þ 1 ≤ 2jaj

⇒
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj − 1

p
þ 1 ≤

ffiffiffiffiffiffiffiffi
2jaj

p
⇒
���sgnð1þ aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ aj

p
− 1
��� ≤ ffiffiffiffiffiffiffiffi

2jaj
p

: ðD12Þ

That also implies that it is upper bounded by
ffiffiffi
2

p jaj.
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The result gives us the bound on the error in the signed
square root as follows:

Δη;j ≔ max
x∶jx−γη;jj≤ϵPE

jΔη;jðxÞj ≤ min

�
ϵPE

ffiffiffiffiffiffiffiffiffi
2=λj

q
;
ffiffiffiffiffiffiffiffiffi
2ϵPE

p �
:

ðD13Þ

Hence, from the estimate x of γη;j within error at most ϵPE,
we can compute an estimate of ð−1Þη ffiffiffiffi

λj
p

, the eigenvalue
of H, within error at most Δη;j as above.
To implement eitX⊗

ffiffiffi
A

p
, we apply a phase factor propor-

tional to the estimated eigenvalue from QPE. Then the state
after applying the phase factor is transformed as

jηX; λji ↦ jηX; λji
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δη;j
p X

x∈ Sη;j

bxe
−itsgnðxÞ

ffiffiffiffi
jxj

p
jxi þ ffiffiffiffiffiffiffi

δη;j
p jϕη;j

0i
�

¼ e−itð−1Þ
η
ffiffiffi
λj

p
jηX; λji

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δη;j

p X
x∈ Sη;j

bxe−itΔη;jðxÞjxi þ ffiffiffiffiffiffiffi
δη;j

p jϕη;j
0i
�

¼ e−itð−1Þ
η
ffiffiffi
λj

p
jηX; λji

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δη;j

p X
x∈ Sη;j

bxjxi þ
ffiffiffiffiffiffiffi
δη;j

p jϕη;ji
�

þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − δη;j
p X

x∈ Sη;j

bxðe−itΔη;jðxÞ − 1Þjxi þ ffiffiffiffiffiffiffi
δη;j

p ðjϕη;j
0i − jϕη;jiÞ

�	
: ðD14Þ

The states jϕη;ji and jϕ0
η;ji are states of the ancillas of unit

norm, supported in the space orthogonal to fjxi∶x∈ Sη;jg.
After the phase was applied, we need to invert QPE. The
inverse phase estimation and projection onto the zero state
of the ancillas that were used to estimate the eigenvalues
corresponds to applying

hλ̃η;jj ¼
X
x∈ Sη;j

b�xhxj; ðD15Þ

to give

e−itð−1Þ
η
ffiffiffi
λj

p
jηX; λji

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δη;j

p þ ffiffiffiffiffiffiffi
δη;j

p hλ̃η;jjϕη;ji

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δη;j

p X
x∈ Sη;j

jbxj2ðe−itΔη;jðxÞ − 1Þ

þ ffiffiffiffiffiffiffi
δη;j

p ðhλ̃η;jjϕ0
η;ji − hλ̃η;jjϕη;jiÞ

	
: ðD16Þ

The error can be bounded from the Euclidean
distance between the above state and the correct state

e−itð−1Þ
η
ffiffiffi
λj

p
jηX; λji. Using δη;j ≤ δPE, this distance is upper

bounded by

1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δPE

p
þ3

ffiffiffiffiffiffiffi
δPE

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−δPE

p
he−itΔη;jðxÞ−1i; ðD17Þ

where the expectation value is on the probability distribu-
tion given by jbxj2. This can be further upper bounded by

max
η;j

Δη;jtþ 4
ffiffiffiffiffiffiffi
δPE

p
: ðD18Þ

To appropriately bound the error by ϵ as required by
Problem 4 we can take

4
ffiffiffiffiffiffiffi
δPE

p
¼ ϵ=2; ðD19Þ

so δPE ¼ ϵ2=64. Because measurement of the phase with
this confidence level has a factor O( logð1=δPEÞ) in the
complexity in Eq. (D2), it corresponds to a factor of
O( logð1=ϵÞ). Then for

max
η;j

Δη;j ≤ max
η;j

min

�
ϵPE

ffiffiffiffiffiffiffiffiffi
2=λj

q
;
ffiffiffiffiffiffiffiffiffi
2ϵPE

p �

¼ min

�
ϵPE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=min

j
λj

q
;
ffiffiffiffiffiffiffiffiffi
2ϵPE

p �
; ðD20Þ

to satisfy maxη;jΔη;jt ≤ ϵ=2, we can take

ϵPE ¼ max

�
ϵ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
minjλj

p
2t

ffiffiffi
2

p ;
ϵ2

8t2

�
: ðD21Þ

Using these expressions in Eq. (D2) gives us an overall
query complexity,

O(kAkmaxd logð1=ϵÞ min

�
t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kA−1k

p
ϵ

;
t2

ϵ2

�
); ðD22Þ

for the phase estimation approach. This is the stated result.
There are further elementary 2-qubit gates arising from

three main areas.
(1) Computing sgnðxÞ ffiffiffiffiffijxjp

, the estimate of the eigen-
value of H, multiplying by t, and then applying the
phase factor. The dominant complexity is that from
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computing the square root, which scales using
Newton iteration and textbook multiplication as
Õ(log2ð1=ϵÞ). The phase rotation then requires a
linear number of controlled rotation gates based on
the target, which in turn requires at most
O( logð1=ϵÞ) 2-qubit gates to implement. Thus
the former cost dominates.

(2) The gates for the implementation of the block
encoding will be logarithmic in N and the allowable
error of the block encoding. Because the allowable
error in the block encoding needs to be ϵ divided by
the number of block encodings in the phase esti-
mation, there will be logarithmic factors in many of
the parameters here.

(3) The gate complexity of preparing the control states
for phase estimation with optimal confidence inter-
vals is at most linear in the dimension of this control
register [47], which is the same as the number of
oracle calls. This is the least significant contribution
to the complexity and gives no logarithmic factors.

In quoting the complexity we give the logarithmic factor in
N coming from implementing the block encoding, but for
simplicity use Õ and do not explicitly give the logarithmic
factors in other parameters. ▪

APPENDIX E: INITIAL STATE PREPARATION

Our algorithm for solving Problem 1 accepts as input a
circuitW that prepares an initial state of the form in Eq. (2)
for t ¼ 0. In this appendix we explain how we might create
such a circuit given only the ability to separately create
superpositions over the initial positions and initial veloc-
ities. Our construction is related to that in Lemma 8 of
Appendix A.
As in Sec. IV, we consider a setting where the N × N

matrices M and K can be queried through the use of a
unitary S that gives the positions and nonzero entries of
these matrices.
Lemma 10. LetK be the N × N symmetric and d-sparse

matrix of spring constants, κmax ≥ κjk ≥ 0, M≻0 be the
N × N diagonal matrix of masses, and mmax ≥ mj > 0,
where κmax and mmax are known. Assume we are given
access to K and M through an oracle S, and access to a
unitary U that performs the map

αj0i ↦ j0ij˙x⃗ð0Þi; βj1i ↦ j1ijx⃗ð0Þi;

where

j˙x⃗ð0Þi ¼
XN
j¼1

ẋjð0Þjji; jx⃗ð0Þi ¼
XN
j¼1

xjð0Þjji

are normalized states that encode the initial states of the
oscillators in their amplitudes, and α and β are known
norms of the vectors ˙x⃗ð0Þ and x⃗ð0Þ, respectively. Then,

there exists a quantum algorithm that prepares a state that is
ϵ-close in Euclidian norm to

jψð0Þi ¼ 1ffiffiffiffiffiffi
2E

p
� ffiffiffiffiffi

M
p ˙x⃗ð0Þ
iμ⃗ð0Þ

�
; ðE1Þ

whereE > 0 is a known constant (the energy of the classical
oscillators) and μ⃗ð0Þ∈RM forM ¼ NðN þ 1Þ=2 is a vector
whose entries are ffiffiffiffiffiffi

κjj
p xjð0Þ or ffiffiffiffiffiffi

κjk
p

(xjð0Þ − xkð0Þ), k > j.

The quantum circuit makes Qini ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emaxd=E

p Þ uses of
U, S, and its inverses, in addition to

Gini ¼ O(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Emaxd=E

p
× polylogðNEmax=ðEϵÞÞ) ðE2Þ

2-qubit gates. Here Emax ¼ ðmmax=2Þ
P

j (ẋjð0Þ)2þ
ðκmax=2Þ

P
j (xjð0Þ)2 is the energy of a system of N

uncoupled oscillators where all masses are mmax and all
individual spring constants are κmax, and for the same initial
conditions.
Proof. For ease of implementation, we can encode the

state on 2nþ 1 qubits, where n ¼ logðNÞ. In this space, the
initial state is represented as

jψð0Þi¼ 1ffiffiffiffiffiffi
2E

p
�X

j

ffiffiffiffiffiffi
mj

p
ẋjð0Þjjij0iþ i

X
j

ffiffiffiffiffiffi
κjj

p
xjð0Þjjijji

þ i
X
j<k

ffiffiffiffiffiffi
κjk

p
(xjð0Þ−xkð0Þ)jjijki

	
: ðE3Þ

First we rotate a qubit and apply the state preparation
oracle as

j0i↦ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmaxα

2þ2κmaxdβ2
p ð ffiffiffiffiffiffiffiffiffiffi

mmax
p

αj0iþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κmaxd

p
βj1iÞ

↦
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmaxα
2þ2κmaxdβ2

p ½ ffiffiffiffiffiffiffiffiffiffimmax
p

αj0ij ˙⃗xð0Þi

þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κmaxd

p
βj1ijx⃗ð0Þi�: ðE4Þ

The way we have described the oracle for ˙x⃗ð0Þ and x⃗ð0Þ
allows for the case where α or β may be zero, in which case
U can be arbitrary on that subspace because it has no effect
on the state above. Then our goal is to apply

ffiffiffiffiffi
M

p
to the

j˙x⃗ð0Þi portion, and B†
ffiffiffiffiffi
M

p
to the jx⃗ð0Þi portion.

The most challenging part is for applying B†
ffiffiffiffiffi
M

p
. To do

this, we essentially apply the same construction in Lemma
8 in Appendix A, but for block encodingB†

ffiffiffiffiffi
M

p
rather than

B†. First consider the operation where we prepare a
superposition over d values in an ancilla to give

jx⃗ð0Þi 1ffiffiffi
d

p
Xd
l¼1

jli: ðE5Þ
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This preparation is simple if d is a power of 2, and
otherwise can be performed using OðlogdÞ ¼ OðnÞ gates
via amplitude amplification (see Appendix E.2 of
Ref. [34]). We can then apply the oracle for the positions
of nonzero entries of K to map k to the nonzero entry in
row j, and obtain

1ffiffiffi
d

p
XN
j¼1

xjð0Þjji
X

k∈ ½N�∶κjk≠0
jki: ðE6Þ

There may be less than d values of k for each j such that
κjk ≠ 0, but the oracle may be chosen to give dummy
values of k to pad it out to d. These will later be eliminated
because κjk is actually zero for those values of j, k.

In the usual way, we can use the oracle for the matrix
entries of κjk to output its value, and perform an inequality
test with an ancilla in an equal superposition to apply a
factor corresponding to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjk=κmax

p
(which is no greater

than 1) [38]. This will give us, with an amplitude
corresponding to the amplitude for success,

1ffiffiffiffiffiffiffiffiffiffiffi
κmaxd

p
X
j;k

ffiffiffiffiffiffi
κjk

p
xjð0Þjjijki: ðE7Þ

We then perform an inequality test, and perform a con-
trolled swap based on the result of the inequality test. This
gives the state

1ffiffiffiffiffiffiffiffiffiffiffi
κmaxd

p
�XN
j¼1

ffiffiffiffiffiffi
κjj

p
xjð0Þjjijjij0i þ

X
k>j

ffiffiffiffiffiffi
κjk

p
xjð0Þjjijkij0i þ

X
k<j

ffiffiffiffiffiffi
κjk

p
xjð0Þjjijkij1i

	
; ðE8Þ

where the third register is the qubit flagging the result of the inequality test. Then we perform a Z gate on that qubit and
relabel the third sum to give

1ffiffiffiffiffiffiffiffiffiffiffi
κmaxd

p
�XN
j¼1

ffiffiffiffiffiffi
κjj

p
xjð0Þjjijjij0i þ

X
j<k

ffiffiffiffiffiffi
κjk

p jjijki(xjð0Þj0i − xkð0Þj1i)
	
: ðE9Þ

Projecting onto the jþi state on the ancilla qubit then gives

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κmaxd

p
�XN
j¼1

ffiffiffiffiffiffi
κjj

p
xjð0Þjjijji þ

X
j<k

ffiffiffiffiffiffi
κjk

p
(xjð0Þ − xkð0Þ)jjijki

	
; ðE10Þ

where the amplitude is indicating the amplitude for success.
To apply

ffiffiffiffiffi
M

p
to the j˙x⃗ð0Þi portion, we can simply perform the same inequality testing procedure from Ref. [38] to apply

a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj=mmax

p
, and give

j˙x⃗ð0Þi ↦ 1ffiffiffiffiffiffiffiffiffiffi
mmax

p
XN
j¼1

ffiffiffiffiffiffi
mj

p
ẋjð0Þjji: ðE11Þ

Combined, the preparation on these two parts of the state gives

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmaxα

2 þ 2κmaxdβ2
p (

ffiffiffiffiffiffiffiffiffiffi
mmax

p
αj0ij˙x⃗ð0Þi þ i2

ffiffiffiffiffiffiffiffiffiffiffi
κmaxd

p
βj1ijx⃗ð0Þi)

↦
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmaxα
2 þ 2κmaxdβ2

p �XN
j¼1

ffiffiffiffiffiffi
mj

p
ẋjð0Þj0ijjij0iþi

XN
j¼1

ffiffiffiffiffiffi
κjj

p
xjð0Þj1ijjijji þ i

X
j<k

ffiffiffiffiffiffi
κjk

p
(xjð0Þ − xkð0Þ)j1ijjijki

	
;

ðE12Þ

which is the correct state [Eq. (E3)], but subnormalized indicating that it is not produced deterministically and we need to
use amplitude amplification.
The number of amplitude amplification rounds scales as the inverse of the amplitude, so the complexity in terms of α, β,

E is
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O
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmaxα
2 þ 2κmaxdβ2

2E

r �
: ðE13Þ

We assume we know the constants for this lemma to
simplify the amplitude amplification. It is also possible to
perform amplitude amplification when the amplitude is
unknown but bounded [48]. Note that

1

2
mmaxα

2 ¼ 1

2

XN
j¼1

mmax(ẋjð0Þ)2 ðE14Þ

≕Kmax; ðE15Þ

which is the kinetic energy of the system of oscillators at
t ¼ 0 if all masses were mj ¼ mmax. Also,

1

2
κmaxβ

2 ¼ 1

2

XN
j¼1

κmax(xjð0Þ)2 ðE16Þ

≕Umax ðE17Þ

is the potential energy of a systemofN uncoupled oscillators
at t ¼ 0 if all spring constants were κjj ¼ κmax and κjk ¼ 0

if j ≠ k. If Emax ¼ Kmax þ Umax ¼ ðmmax=2Þk˙x⃗ð0Þk2 þ
ðκmax=2Þkx⃗ð0Þk2 is the total energy of such a system, it
satisfies

mmaxα
2 þ 2κmaxdβ2 ≤ 4Emaxd: ðE18Þ

The number of amplitude amplification rounds is then
Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Emaxd=E
p Þ. Each amplitude amplification roundmakes

two uses of S, S†, and also one use of U and U†. Hence, the
overall query complexity of our algorithm that prepares
jψð0Þi is

Qini ¼ O
� ffiffiffiffiffiffiffiffiffiffiffiffi

Emaxd
E

r �
: ðE19Þ

To find the accuracy of the block encoding we need to
account for the error due to applying the factors offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κjk=κmax

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj=mmax

p
by inequality testing. If we

give the maximum errors in these factors as δ [correspond-
ing to logð1=δÞ bits in the inequality testing], then the error
in Eq. (E12) is upper bounded as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmaxα

2 þ 2κmaxdβ2
p ����X

j

δ
ffiffiffiffiffiffiffiffiffiffi
mmax

p
ẋjð0Þj0ijjij0i þ

X
j

δ
ffiffiffiffiffiffiffiffiffi
κmax

p
xjð0Þj1ijjijji þ

X
j<k
κjk≠0

δ
ffiffiffiffiffiffiffiffiffi
κmax

p
(xjð0Þ − xkð0Þ)j1ijjijki

����
≤

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmaxα

2 þ 2κmaxdβ2
p �

mmax

����XN
j¼1

δẋjð0Þjji
����
2

þ κmax

����X
j≤k

κjk≠0

δxjð0Þjjijki −
X
j>k
κjk≠0

δxjð0Þjkijji
����2
	1=2

≤
δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmaxα
2 þ 2κmaxdβ2

p �
mmax

����˙x⃗jð0Þ
����2 þ κmax

���� ffiffiffi
2

p X
j;k;κjk≠0

xjð0Þjjijki
����2
	
1=2

≤
δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mmaxα
2 þ 2κmaxdβ2

p �
mmax

����˙x⃗ð0Þ
����2 þ 2κmaxd

����x⃗ð0Þ
����2
	
1=2

¼ δ: ðE20Þ

The inequality on the third line is obtained by noting that
we can move from the state on the third line to that on the
second line by the procedure described above, with an
inequality test between j and k, a controlled swap and
phase, then projection onto jþi on the ancilla. Thus, δ
corresponds to the error before amplitude amplification,
and it is amplified by a factor of Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Emaxd=E
p Þ.

If we are aiming for error ϵ in the state preparation, we
should therefore take

δ ¼ O
�
ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
E

Emaxd

s �
: ðE21Þ

Because the state preparation by inequality testing uses
squares, we have a gate complexity that is the square of

logð1=δÞ for each step of amplitude amplification, and
therefore the gate complexity from this source is

O(
ffiffiffiffiffiffiffiffiffiffiffiffi
Emaxd
E

r
log2

�
Emaxd
Eϵ

�
): ðE22Þ

Moreover, there areO( logðNÞ) gates needed to implement
an inequality test and controlled swap for each step of
amplitude amplification. Using d ≤ N, we can give the
overall gate complexity as

O(
ffiffiffiffiffiffiffiffiffiffiffiffi
Emaxd
E

r
log2

�
EmaxN
Eϵ

�
); ðE23Þ

which are the stated results. ▪
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The factor Emax=E in the complexity can become large
when the massesmj or spring constants κjk lack uniformity.
In this case, the state jψð0Þi is more complicated, and one
has to “pay extra” for its preparation. In addition, the query
complexity in Lemma 10 matches a lower bound for some
instances. For example, consider the case where xjð0Þ ¼ 0

for all j∈ ½N�, which implies β2 ¼ 0, and ẋjð0Þ ¼ 1=
ffiffiffiffi
N

p
for all j∈ ½N�, which implies α2 ¼ 1. Let the masses
be mj ¼ 1, for some unknown j, and mj0 ¼ 0 otherwise.
Then, jψð0Þi is simply a state jji in a computational
basis, and our state preparation algorithm would output the
unknown j with high probability, as in the unstructured
search problem [49]. A lower bound on the query complex-
ity for this case is Ωð ffiffiffiffi

N
p Þ [50]. Since Emax ¼ 1

2
mmaxα

2¼ 1
2
,

E ¼ 1
2
½ẋjð0Þ�2 ¼ 1

2N, and d ¼ 1 for this instance, the query
complexity of our approach is Oð ffiffiffiffi

N
p Þ, matching the

lower bound.

APPENDIX F: OTHER ENCODINGS

In Sec. III, we choose a specific encoding for the position
and velocities as a quantum state jψi in Eq. (14), which
satisfies Eq. (13). Let jψðtÞi∈CNþM be written as

jψðtÞi ¼
�

ν⃗ðtÞ
iμ⃗ðtÞ

�
; ðF1Þ

where ν⃗ðtÞ∈CN and iμ⃗ðtÞ∈CM. We made the choice of
ν⃗ðtÞ ¼ ˙y⃗ðtÞ and μ⃗ðtÞ ¼ B†y⃗ðtÞ to present our main results.
Nevertheless, other choices also work, and we now discuss
another solution (and problem). This provides us with a
new encoding that is different from the one we used in
Problem 1, and is closely related to the encoding used
in Ref. [11].
Let ν⃗ðtÞ ¼ Py⃗ðtÞ, where P projects out the components

of y⃗ðtÞ corresponding to the null space of A (or B†). Let
μ⃗ðtÞ¼−BþP ˙⃗yðtÞ, where Bþ is the Moore-Penrose pseudo-
inverse of B. This is an M × N matrix that satisfies
BBþB ¼ B and Bþ ¼B†ðBB†Þþ ¼B†Aþ. We claim that

this choice also satisfies Eq. (13). Specifically, we want it to
satisfy

� ˙ν⃗ðtÞ
i ˙μ⃗ðtÞ

�
¼ −iH

�
ν⃗ðtÞ
iμ⃗ðtÞ

�
¼
�−Bμ⃗ðtÞ
iB†ν⃗ðtÞ

�
: ðF2Þ

We then have

˙⃗νðtÞ¼P ˙⃗yðtÞ¼AAþP ˙⃗yðtÞ¼BBþP ˙⃗yðtÞ¼−Bμ⃗ðtÞ; ðF3Þ

which establishes the first component of Eq. (F2). Note
that AAþP ¼ P, since Aþ does not act on eigenvectors of
A of eigenvalue zero. Using Newton’s equations [Eq. (9)],
we have

i ˙μ⃗ðtÞ ¼ −iBþP ̈y⃗ðtÞ ¼ iBþPAy⃗ðtÞ ¼ iBþAPy⃗ðtÞ
¼ iB†AþAPy⃗ðtÞ ¼ iB†Py⃗ðtÞ ¼ iB†ν⃗ðtÞ; ðF4Þ

which establishes the second component in Eq. (F2).
Hence, evolution under H also allows us to solve the

following variation of Problems 1 and 4.
Problem 8. Let A ≽ 0 be an N × N real-symmetric,

positive semidefinite, and d-sparse matrix, andB anN ×M
matrix that satisfies BB† ¼ A. Define the normalized state,

jψðtÞi ≔ 1ffiffiffiffiffiffi
2F

p
�

Py⃗ðtÞ
−iBþP˙y⃗ðtÞ

�
; ðF5Þ

where F > 0 is a constant, P is the projector onto the
subspace orthogonal to the null space of A, and Bþ is the
Moore-Penrose pseudo-inverse of B. Assume we are given
oracle access to A and to a unitary W that prepares the
initial state jψð0Þi. Given t and ϵ, the goal is to output a
state that is ϵ-close to jψðtÞi in Euclidean norm.
Note that the normalizing constant is

F ¼ 1

2
y⃗ðtÞTPy⃗ðtÞ þ 1

2
˙y⃗ðtÞTPðBþÞ†BþP˙y⃗ðtÞ; ðF6Þ

which satisfies

2Ḟ ¼ ˙y⃗ðtÞTPy⃗ðtÞ þ y⃗ðtÞTP˙y⃗ðtÞ þ ̈y⃗ðtÞTPðBþÞ†BþP˙y⃗ðtÞ þ ˙y⃗ðtÞTPðBþÞ†BþP ̈y⃗ðtÞ
¼ ˙y⃗ðtÞTPy⃗ðtÞ þ y⃗ðtÞTP˙y⃗ðtÞ − y⃗ðtÞTAPðBþÞ†BþP˙y⃗ðtÞ − ˙y⃗ðtÞTPðBþÞ†BþPAy⃗ðtÞ
¼ ˙y⃗ðtÞTPy⃗ðtÞ þ y⃗ðtÞTP˙y⃗ðtÞ − y⃗ðtÞTPAðBþÞ†BþP˙y⃗ðtÞ − ˙y⃗ðtÞTPðBþÞ†BþAPy⃗ðtÞ
¼ ˙y⃗ðtÞTPy⃗ðtÞ þ y⃗ðtÞTP˙y⃗ðtÞ − y⃗ðtÞTPAðAþÞ†BBþP˙y⃗ðtÞ − ˙y⃗ðtÞTPðBþÞ†B†AþAPy⃗ðtÞ
¼ ˙y⃗ðtÞTPy⃗ðtÞ þ y⃗ðtÞTP˙y⃗ðtÞ − y⃗ðtÞTPBBþP˙y⃗ðtÞ − ˙y⃗ðtÞTPðBþÞ†B†Py⃗ðtÞ
¼ ˙y⃗ðtÞTPy⃗ðtÞ þ y⃗ðtÞTP˙y⃗ðtÞ − y⃗ðtÞTP˙y⃗ðtÞ − ˙y⃗ðtÞTPy⃗ðtÞ
¼ 0; ðF7Þ
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where we used BBþP ¼ AAþP ¼ P. Then, F is indepen-
dent of t and refers to another conserved quantity different
from E. We can use our quantum algorithm to prepare
jψðtÞi in Eq. (F5) by simulating H in Eq. (12). The
complexity of Hamiltonian simulation is the same as that
in Theorem 1.
In the encoding used for Problem 8, some amplitudes are

proportional to Py⃗ðtÞ, and we have more direct access to the
displacements of the oscillators than that using the encod-
ing in Problem 1. However, preparing jψð0Þi in this case is
expected to be more costly as it involves the action of Bþ.
This is the reason why the complexity in the quantum
algorithm of Ref. [11] for simulating the wave equation can
be dominated by that of the initial state preparation. That
case is a special instance of Problem 8 where A corre-
sponds to the (discretized) Laplacian.

APPENDIX G: RELATED WORK AND
OPTIMALITY OF OUR APPROACH

Our quantum algorithm provides the solution to a
second-order differential equation, i.e., ̈y⃗ðtÞ ¼ −Ay⃗ðtÞ,
encoded in the amplitudes of a quantum state
jψðtÞi defined in Problems 1 and 4. We do this via the
classical-to-quantum reduction given in Sec. III,
which results in a first-order differential equation, corre-
sponding to a Schrödinger equation with a time-indepen-
dent Hamiltonian H that depends on B, where A ¼ BB†.
Prior works have also considered quantum algorithms for
solving first-order differential equations using a variety of
approaches. A prominent example is Ref. [5] and related
results (cf. Refs. [51,52]) that use the quantum algorithm
for linear systems of equations [8,9,53]. Herewe argue that
those approaches, while possibly applicable to our prob-
lem, generally yield inefficient quantum algorithms for
Problems 1, 2, 4, and 5 due to issues arising from the
encoding. Indeed, by formulating the problem as a
Hamiltonian simulation problem, and using optimal meth-
ods for the latter, we argue that our approach is the optimal
one for solving these problems. Among other useful
features, our approach does not necessitate a clock register
to encode the solution at all times as in Ref. [5]. More
details follow.
One standard approach to formulate the second-order

differential equation as a first-order one in our case would
be to consider

˙v⃗ðtÞ ¼
�

0 −A
1N 0

�
v⃗ðtÞ; ðG1Þ

where

v⃗ðtÞ ≔
� ˙y⃗ðtÞ
y⃗ðtÞ

�
ðG2Þ

is a vector in R2N that encodes the coordinates of all
oscillators. (We assume that the choice of units is set from
the beginning so that calculations are done with real
numbers.) Another standard approach would be to consider

˙w⃗ðtÞ ¼
�

0 −1N
A 0

�
w⃗ðtÞ; ðG3Þ

where

w⃗ðtÞ ≔
� ˙y⃗ðtÞ
Ay⃗ðtÞ

�
ðG4Þ

is also a vector in R2N . Equations (G1) and (G3) are also
homogeneous first-order differential equations, whose
solutions can be obtained by applying an exponential
operator to v⃗ð0Þ or w⃗ð0Þ. Note that ðd=dtÞkv⃗ðtÞk ≠ 0
and ðd=dtÞkw⃗ðtÞk ≠ 0 in general, so we cannot directly
apply Hamiltonian simulation methods using these encod-
ings, as the evolution of these vectors is not unitary.
To solve differential equations that do not conserve the

norm, Refs. [5,51,52] propose a range of quantum algo-
rithms that, for this application, would output (normalized)
quantum states:

jv⃗ðtÞi ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k˙y⃗ðtÞk2 þ ky⃗ðtÞk2

q � ˙y⃗ðtÞ
y⃗ðtÞ

�
ðG5Þ

or

jw⃗ðtÞi ≔ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k˙y⃗ðtÞk2 þ kAy⃗ðtÞk2

q � ˙y⃗ðtÞ
Ay⃗ðtÞ

�
: ðG6Þ

In Refs. [5,51,52] this is done by approximating the
solutions to the differential equations as solutions to
systems of linear equations. The complexity of this
approach depends on several parameters, in particular
the condition number of the matrix to be inverted. In
Ref. [13] a solution is found by giving the solution to the
differential equation in exponential form, and then using
the linear combination of unitaries (LCU) approach to
approximate the exponential; a related approach that
approximates the exponential operator is given in
Ref. [54]. That approach is not applicable here, because
it requires the matrix to be normal. Here the matrices—the
2 × 2 block matrices including A—are not normal, so the
approach cannot be used. Nevertheless, even disregarding
such difficulties, we show that this way of encoding the
coordinates of the oscillators as in Eq. (G1) or (G3) is
readily problematic.
To observe this, it suffices to consider the evolution of a

single normal mode of frequency ωk, i.e., the eigenvector of
A of eigenvalue ðωkÞ2. We obtain
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y⃗ðtÞ ¼ a⃗k cosðtωk þ ϕkÞ; ðG7Þ

where ϕk ∈R is the initial phase and a⃗k ∈RN is the
eigenvector of A. Computing the time average we obtain

hky⃗ðtÞk2i ¼ 1

2
ka⃗kk2 ðG8Þ

and

hk˙y⃗ðtÞk2i ¼ 1

2
jωkj2ka⃗kk2

¼ jωkj2hky⃗ðtÞk2i: ðG9Þ

(The latter is also the time average of the kinetic energy.) In
a case where A gives rise to normal modes of low
frequency, we have jωkj ≪ 1 (in the corresponding units),
and then

hk˙y⃗ðtÞk2i ≪ hky⃗ðtÞk2i: ðG10Þ

The implication is that the support of jv⃗ðtÞi is, on average,
mostly concentrated on the subspace spanned by basis
vectors that encode y⃗ðtÞ. These do not encode the terms
appearing in the kinetic energy or ˙y⃗ðtÞ. Hence, the com-
plexity of solving Problem 2 using this encoding, where
jv⃗ðtÞi is prepared rather than jψðtÞi, is at least linear in
1=jωkj, which is the factor needed to increase the desired
amplitudes to a constant. This can become unbounded
if jωkj → 0.
In the second case we note that the support of jw⃗ðtÞi is,

on average, mostly concentrated on the subspace spanned
by basis vectors that encode ˙y⃗ðtÞ instead. That is, the case
hkAy⃗ðtÞk2i ≪ hk˙y⃗ðtÞk2i can occur when there are normal
modes of low frequency. To solve Problem 1 or Problem 4,
and especially Problem 5, the second component of the
state must be proportional to B†y⃗ðtÞ or

ffiffiffiffi
A

p
y⃗ðtÞ, which

requires the application of the pseudo-inverse of B or
ffiffiffiffi
A

p
to jw⃗ðtÞi. The condition number of these pseudo-inverses is
also polynomial in 1=jωkj; for example, kða⃗kÞTBk ¼
jωkj ≪ 1 for low frequencies. This implies that the com-
plexity of solving Problem 1, Problem 4, or Problem 5
using this encoding, where jw⃗ðtÞi is prepared rather than
jψðtÞi, is at least linear in 1=jωkj, which is the complexity
of the most efficient methods to implement the pseudo-
inverse [9]. As in the previous case, this can also become
unbounded if jωkj → 0.
Similar observations follow directly from the results for

the complexity in Refs. [5,51]. There the complexity is
polynomial in the condition number of the matrix that
diagonalizes the matrix appearing in the differential equa-
tions, which is here that with the blocks −A and 1N in
Eq. (G1), or the negative of these for w⃗ðtÞ in Eq. (G3). The
matrix that diagonalizes this matrix has condition number

maxðjωkj; jωkj−1Þ: ðG11Þ

Thus it will become unbounded when jωkj → 0, as
described above. Technically, we cannot use the result as
given in Ref. [5] directly, because the stability condition it
uses requires the matrices appearing in the differential
equations to not have eigenvalues exactly on the imaginary
axis, as is the case here.
An alternative approach to avoid dependence on the

condition number of the diagonalizing matrix is that using
the log-norm [52]. There we would need to subtract the
identity times the log-norm from the original matrix. Here,
the log-norm is

max j1 − ω2
kj=2: ðG12Þ

This means it is always positive, and so subtracting a
multiple of the identity would result in a norm that
exponentially decreases. Hence, the approach of Ref. [52]
would yield a complexity that is exponential in time.
At a high level, our encoding is motivated by the

conservation of energy in time, and places equal emphasis
on those terms that encode the kinetic energy [˙y⃗ðtÞ] and the
potential energy [B†y⃗ðtÞ] of the oscillators. The other two
encodings do not have this feature: jv⃗ðtÞi underrepresents
the kinetic energy terms and jw⃗ðtÞi underrepresents the
potential energy terms, bringing the issues discussed above.
Last, we provide a comment on the relation between our

results and a closely related result in Ref. [11] for
simulating the wave equation. In Ref. [11] it is shown
that the wave equation, a second-order and homogeneous
differential equation, can also be mapped to a Schrödinger
equation. Their construction is related to ours in that it uses
a factorization of the (discrete) Laplacian as L ¼ BB†, and
indeed it is well known that the wave equation is one
example of a classical system of coupled oscillators where
all masses and springs are uniform, and where the cou-
plings between oscillators are geometrically local (e.g., on
the square grid). However, the encoding used in Ref. [11] is
different from ours; for example,N amplitudes are reserved
to encode the intensity of the wave, which corresponds to
y⃗ðtÞ in our case. [The component of y⃗ðtÞ on the eigenvector
of eigenvalue 0 of L is projected out.] The other amplitudes
are proportional to Bþ ˙y⃗ðtÞ, whereBþ is the pseudo-inverse
of B. That is, the state prepared by the algorithm of
Ref. [11] is of the form

jϕðtÞi ∝
�

y⃗ðtÞ
Bþ ˙y⃗ðtÞ

�
; ðG13Þ

where the constant of proportionality is also time
independent. This is essentially the same encoding as
the one discussed in Appendix F, since Py⃗ðtÞ ¼ y⃗ðtÞ by
assumption. The length of this vector is preserved in time
since the evolution is unitary. Nevertheless, one implication
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of using this encoding to solve Problem 1 or Problem 2 for
this example is the need to invert Bþ initially, to obtain
amplitudes proportional to Bþ ˙y⃗ð0Þ. The condition number
can be large, i.e., it is O(polyðNÞ) for the example of the
wave equation, and hence the initial state preparation step
(t ¼ 0) can be inefficient. Indeed, Ref. [11] manages to give
evidence of a polynomial quantum speedup only. In
addition, when considering the wave equation, the system
is geometrically local and implies that N is polynomial in
the evolution time t (i.e., t is exponential in n). In our
problem, however, we can treat a significantly larger set of
instances: we do not impose uniform masses, uniform
spring constants, or even geometrically local interactions,
and we can allow for times t ¼ O(polyðNÞ). This general-
ity together with our improved encoding are key to
obtaining our claimed exponential quantum speedups for
the problems defined.
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