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Understanding the materials dependence together with the universal controlling parameter of super-
conductivity (SC) in copper oxide superconductors is one of themajor challenges in condensedmatter physics.
Here, we numerically analyze SC by using ab initio low-energy effective Hamiltonians consisting of the
antibonding combination of Cu 3dx2−y2 andO 2pσ orbitals without adjustable parameters.We have performed
the state-of-the-art variational Monte Carlo calculations for the four carrier doped cuprates with diverse

experimental optimal SC critical temperature Topt
c : CaCuO2 (T

opt
c ∼ 110 K), Bi2Sr2CuO6 (T

opt
c ∼ 10–40 K),

Bi2Sr2CaCu2O8 (T
opt
c ∼ 85–100 K), andHgBa2CuO4 (T

opt
c ∼ 90 K).Materials and hole doping concentration

(δ) dependencies of the SC order parameter FSC and the competition with spin or charge order show essential
and quantitative agreement with the available experiments on the fourmaterials in the following points. (1) In a
wide range 0.05 ≤ δ ≤ 0.25, the ground state is commonly the uniform SC state, which is severely competing
with the charge or spin stripe and antiferromagnetic states. (2) FSC at the optimum doping shows amplitude
consistent with the superfluid density measured in the muon spin resonance and its dome structure found in δ
dependence shows consistency with that of the SC gap in the tunneling and photoemission measurements.
Based on the confirmed materials dependence, we further find insights into the universal SC mechanism.
(I) FSC increases with the ratio U=jt1j within the available realistic materials, indicating that U=jt1j is the
principal component controlling the strength of the SC in the real materials dependence. Here, U and t1 are
the on-siteCoulomb repulsion and the nearest neighbor hopping, respectively, in theab initioHamiltonians. (II)
A universal scaling Topt

c ∼ 0.16jt1jFSC holds. (III) SC is enhanced and optimized if U is increased beyond
the real availablematerials, and it is further enhancedwhen theoff-site interaction is reduced,while thepresence
of the off-site interaction is important to make the SC ground state against other competing states. The present

findings provide useful clues for the design of new SC materials with even higher Topt
c .
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I. INTRODUCTION

The mechanism and origin of the large superconducting
(SC) gap, high superfluid density, and high critical temper-
atures Tc observed in high-Tc superconductors, such as

copper oxides, remain a central challenge in condensed
matter physics. In these copper oxides, the d-wave SC state
is severely competing with other orders, such as spin and
charge stripes or antiferromagnetic (AFM) states, and the
observed Tc widely ranges from above 130 K to below
10 K. Understanding and reproducing these diverse phe-
nomena without relying on adjustable parameters is hence
desirable, especially when clarifying their origin. When
ab initio calculations are able to reproduce systematic
materials dependence quantitatively by solely relying
on their crystal structures, it provides us with valuable
insight into the universal mechanism behind and into the
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principal components for the enhancement of SC beyond
existing materials.
Many studies have suggested severe competitions of

the SC with charge or spin stripe and AFM states
theoretically based on simplified Hubbard-like or t-J
Hamiltonians as models of the cuprate superconductors
[1–8]. A positive correlation between U and Tc or SC
tendency was also pointed out by taking U as an
adjustable parameter in the Hubbard-type Hamiltonians
[9]. However, ab initio studies without adjustable param-
eters are few and it is not clear whether the diversity of the
materials dependence can be accounted for. There still
exists a limited number of ab initio studies: The phase
diagram including the SC phase was reproduced by
solving the ab initio Hamiltonian for a particular case
of Hg compound [10]. Ab initio Hamiltonians were
derived by Nilsson et al. for several cuprate compounds,
which reported an empirical observation without solving
the Hamiltonians that the experimental optimal Tc is
generally higher for larger U=jtj in their parameters
[11,12]. The relation of the charge transfer energy to
Tc was also pointed out [13,14]. Aside from the cuprates,
there exist some ab initio studies on strong-coupling
superconducting materials such as the iron-based super-
conductors [15], fullerene [16], and nickelates [17] to
discuss the superconducting properties. However, to our
knowledge, there exist no systematic studies on the SC
properties by solving solely ab initio Hamiltonians with-
out adjustable parameters with the help of accurate many-
body solvers to reveal the origin of the diverse materials
dependence, especially for the challenging cuprates.
Unless reproducing the materials dependent properties
quantitatively, the universal mechanism would also not be
able to be identified confidently either.
In this paper we show properties of typical cuprate

superconductors calculated by solving the ab initio
Hamiltonians of four families of materials, namely,
carrier doped CaCuO2, HgBa2CuO4 (abbreviated as
Hg1201 hereafter), Bi2Sr2CuO6 (Bi2201 hereafter), and
Bi2Sr2CaCu2O8 (Bi2212 hereafter) [12], by applying a
state-of-the-art quantum many-body solver based on the
variational Monte Carlo (VMC) algorithm [18,19], includ-
ing the combination with neural network [20,21] elaborated
from earlier variational algorithms [22–25]. It is experimen-
tally known that the optimum critical temperature Topt

c is
realized at around δ ¼ 0.1–0.15 [26,27] for doped CaCuO2

(Topt
c ∼ 110 K) and Hg1201 (Topt

c ∼ 90 K), and at around
δ ¼ 0.15–0.25 [28–30] for doped Bi2212 (Topt

c ∼
85–100 K) and Bi2201 (Topt

c ∼ 10–40 K). We elucidate that
similarity and diversity among the four families, especially
the amplitude of the SC order parameters and Topt

c in the
experiments, are accounted for by using the present ab initio
results, which provides us with insights into the materials
dependence and the universal mechanism.

We emphasize that our ab initio analyses contain
essential differences from most of the Hubbard models
studies. One important difference is the presence of the
realistic off-site interactions. We will clarify that this
crucially stabilizes the charge uniform SC state without
clear stripe long-range order.
The dominance of the SC for all the four families is

successfully demonstrated. In addition, the δ dependence
of FSC has a dome structure with the peak at
δ ∼ 0.05–0.1 consistently with the experimental indica-
tions. On the other hand, the dome peak of Tc appears at
larger δ > 0.1 in the experiment. This shift from the
dome peak of FSC is understood from the decreasing
renormalization factor with decreasing doping, which
does not affect FSC but Tc.
Although Topt

c has a variety among these four families,
we show universally that (I) the higher SC order parameter
FSC at the optimal doping basically results from a larger
ratio U=jt1j, where U is the on-site repulsive Coulomb
interaction and t1 is the nearest neighbor hopping in our
ab initio parameters of single-band effective Hamiltonian
for the antibonding (AB) orbital of strongly hybridized
Cu 3dx2−y2 and O 2pσ orbitals. Furthermore, we show that

(II) Topt
c is determined by the scaling Topt

c ∼ 0.16jt1jFSC.
The δ dependence of the local energy suggests a universal

superconducting mechanism: Though the bare interaction is
strongly repulsive, the Mottness converts it to the strong
effective attraction required for the Cooper pairing.
Despite monotonic increase of FSC with U=jt1j within

the existing materials, we further show that (III) larger
U=jt1j beyond the ab initio values makes the peak of FSC
followed by the reduction. We find that FSC can be
roughly 30% more enhanced than the ab initio case
when U is 20% increased beyond the ab initio value by
preserving the transfer and other off-site interaction
parameters. We also show that FSC is further enhanced
to as much as the double of the existing material by the
additional reduction of the off-site Coulomb interaction.
These searches beyond the ab initio parameters for the
existing materials offer a guide for future experimental
materials design.
This paper is organized as follows. Section II presents

the methods and computational details. First, the effective
Hamiltonians studied in this paper are summarized in
Sec. II A. Then, we give the numerical methods in
Sec. II B and define the physical quantities in Sec. II C.
We present in Sec. III the results for each of the four
families of compounds. Based on the obtained ab initio
results, in Sec. IV, we further explore the direction to
enhance and optimize the SC order parameter by control-
ling the effective interaction parameters beyond the ab initio
values, to gain insights into the future materials design.
In Sec. V, we discuss our analyses. Summary and con-
clusion are given in Sec. VI.
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II. METHODS

A. Ab initio effective Hamiltonian

Within this paper, we solve the ab initio single-band
effective Hamiltonians for CaCuO2, Hg1201, Bi2201, and
Bi2212 as derived in Ref. [12]. It should be noted that the
single band is constructed from the AB orbital of strongly
hybridized Cu 3dx2−y2 and O 2pσ orbitals and not from the
atomic single orbital of Cu 3dx2−y2 . This is justified by very
large hybridization gap of the AB and bonding (B) or
nonbonding (NB) orbitals. See Appendix D of Ref. [12]
and the last paragraph of Sec. V in this paper. Here the
transfer and interaction parameters are derived at values
close to the experimental optimum hole concentration (at
10% doping for CaCuO2 and Hg1201 and at 20% for the
two Bi compounds). This choice is appropriate in this
paper, because properties at optimum hole concentration
are the central subject. The effective Hamiltonians have
the form

H ¼ Hkin þHU þHV; ð1Þ

with

Hkin ¼
X
i;j;σ

tijc
†
iσcjσ;

HU ¼
X
i

Uni↑ni↓;

HV ¼ 1

2

X
i≠j

Vijninj:

Here i, j are the unit cell indices of the maximally localized
Wannier function [31,32] and c†iσ (ciσ) is the corresponding
creation (annihilation) operator of an electron of spin σ at
the site i. The number operator is given by ni ¼

P
σ niσ and

niσ ¼ c†iσciσ. Hopping amplitudes tij in the kinetic energy
Hkin depend on the relative coordinate vector ri − rj by
assuming the translational invariance of the crystal struc-
ture. The direct effective Coulomb interaction given byHU
is scaled by the on-site interaction U, and off-site inter-
action HV is the sum over the combination of the site i
and j, which is proportional to Vij. Leading values for all of
the four materials are listed in Table I. For longer-ranged
part of tij and Vij, see Sec. S1 A in Supplemental Material
(SM) [33]. Note that the Hamiltonian parameters for
Hg1201 in Ref. [12], which we employ, are improved
from Ref. [34]. It results in slightly different physical
quantities on the quantitative level in the present solution in
comparison to Ref. [10].
From four different materials, we learn that the realistic

range of available ab initio Hamiltonian parameters is
estimated to be 6≲ U=jt1j≲ 10, 0.2≲ jt2=t1j≲ 0.3,
1.2≲ jV1=t1j≲ 2.0, 0.5≲ jV2=t1j≲ 1.2, etc. (see also
Table IV). In this paper, we investigate whether the

diversity of the SC properties can be understood within
this range of parameters.
We note that the effective Hamiltonian parameters in

Eq. (1) are restricted to a single CuO2 layer. However, in
the case of multilayer cuprates CaCuO2 and Bi2212, the
distance between CuO2 layers is comparable to the cell
parameter along the x direction, so that interlayer coupling
parameters (given in Table VI in Appendix H for Bi2212)
also exist in the effective Hamiltonian [12], and its
amplitude Vl

n ≲ 0.6 eV is comparable to that of the intra-
layer off-site interaction Vn ≲ 0.9 eV. This interlayer
coupling is ignored in Eq. (1), but potentially plays a role
in the SC properties. This role is actually examined in
Sec. III C 1 in the case of Bi2212, which ensures that the
SC order parameter F∞

SC (defined later in Sec. II C) and
physical quantities are essentially not affected by the
interlayer coupling within the present case of CaCuO2

and Bi2212 as we discuss in Sec. III C 1. Thus, we restrict
to Eq. (1) even in the case of CaCuO2 and Bi2212. We
employ this “single-layer approximation” for all the four
materials throughout this paper unless otherwise noted.

B. Numerical methods

We solve the Hamiltonian in Eq. (1) by applying
the many-variable variational Monte Carlo (mVMC)
method [18,19] with a trial wave function of the form
jψi ¼ PGPJPdhjϕpairi. Here we consider the Gutzwiller
factor PG ¼ expð−gPi ni↑ni↓Þ [35], the Jastrow correla-
tion factor PJ ¼ expðPi<j αijninjÞ [36,37], the doublon-

holon correlation factor Pdh ¼ exp½−P
4
m¼0

P
l¼1;2 α

ðlÞ
m ×P

i ξ
ðlÞ
iðmÞ� [38], and a generalized pairing wave function of

the form jϕipair ¼ ðPiσ;jσ0 fiσ;jσ0c
†
iσc

†
jσ0 ÞNe=2j0i. The varia-

tional parameters are g, αij, α
ðlÞ
m , and fiσ;jσ0 .

We also supplement the mVMC technique with the
restricted Boltzmannmachine (RBM) [20] and the first-order

TABLE I. Ab initio single-band effective Hamiltonian for
CaCuO2, Hg1201, Bi2212, and Bi2201 taken from Ref. [12].
U is the on-site interaction. The nth neighbor hopping amplitude
and Coulomb interaction are denoted as tn and Vn, respectively.
Interlayer hoppings and interactions are neglected here. All
values are given in eV.

t1 t2 t3 t4 t5

CaCuO2 −0.521 0.132 −0.047 0.008 0.000
Hg1201 −0.544 0.111 −0.043 0.010 0.000
Bi2212 −0.452 0.135 −0.053 −0.001 0.007
Bi2201 −0.527 0.140 −0.042 0.009 −0.007

U V1 V2 V3 V4

CaCuO2 4.221 0.969 0.539 0.380 0.316
Hg1201 3.999 1.002 0.596 0.448 0.389
Bi2212 4.226 0.915 0.518 0.366 0.312
Bi2201 4.393 1.030 0.602 0.450 0.395
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Lanczos step to improve the wave function and also to take
the zero limit of the variance extrapolation to improve
the estimate by following the variance extrapolation
method [39–41] and by using the simple mVMC, mVMCþ
Lanczos, and mVMCþ RBM results (see Appendixes A
and B and Ref. [42] for the detailed procedure).
Competing states with spin or charge order or strong

fluctuations can be studied by imposing the mean-field
order at the initial trial wave function [19]. The correlated
metallic state without any symmetry breaking can also be
studied by using the ground-state wave function of the
noninteracting system as an initial state. These initial states
are then relaxed to lower the energy by optimizing the
variational parameters. If the competing states exist, the
optimization leads to multiple locally stable solutions.
The true ground state is determined by comparing the total
energy after taking the variance extrapolation described in
Appendix B and if possible after careful size extrapolation
to see the thermodynamic limit.
The computational details are the following. For all

numerical solutions of finite-size lattices subsequently
presented in this paper, we assumed the antiperiodic-
periodic boundary condition on a N ¼ L × L square lattice
of length L, where N is the number of sites on the single-
layer system by ignoring the interlayer coupling except for
Bi2212. For Bi2212, we examine the two-layer system to
examine the effect of interlayer coupling, because a unit
cell of Bi2212 contains two layers and the interlayer
coupling could play roles in the SC. Within a layer,
hoppings and interactions were taken into account up to
t9 and V9, i.e., up to the 2D distance R ¼ ð3; 3Þ in the unit
of the Cu-Cu distance, while contributions smaller than
0.001 eV were ignored. Unless explicitly mentioned this
is applied throughout the whole paper. We concentrate
solely on hole doped cases, where the hole doping is
given via δ ¼ 1 − Ne=N and Ne is the number of electrons
in the system.

C. Physical quantities

The physical quantities discussed in this paper are
defined as follows: The total energy per site E=N ¼
hHi=N is calculated after the variance extrapolation as it
is summarized in Appendix B. To see whether the state has
spin or charge order, we compute the spin structure factor,

SsðqÞ ¼
1

N

X
i;j

hSi · Sjieiqðri−rjÞ; ð2Þ

and the charge structure factor,

ScðqÞ ¼
1

N

X
i;j

hninjieiqðri−rjÞ; ð3Þ

where Si¼ðSxi ;Syi ;Szi Þ¼
P

σ;σ0 c
†
iσσσσ0ciσ0=2 is the spin-1=2

operator and σσσ0 is the Pauli matrix ½¼ ðσxσσ0 ; σyσσ0 ; σzσσ0 Þ�.

The long-range order is determined whether SsðqÞ=N
or ScðqÞ=N remains after taking the limit N → ∞.
The SC long-range order is measured by the d-wave SC
correlation function:

PdðrÞ ¼
1

2N

X
ri

hΔ†
dðriÞΔdðri þ rÞ þ H:c:i: ð4Þ

Here Δ†
dðriÞ describes the order parameter of the form

ΔdðriÞ ¼
1ffiffiffi
2

p
X
r

fdðrÞðcri↑criþr↓ − cri↓criþr↑Þ; ð5Þ

where the dx2−y2-wave symmetry is included via the form
factor:

fdðrÞ ¼ δry;0ðδrx;1 þ δrx;−1Þ − δrx;0ðδry;1 þ δry;−1Þ: ð6Þ

Then, we deduce PdðrÞ over the long-range part as

P̄dðLÞ ¼
1

M

X
ffiffi
2

p
L=4<jrj

PdðrÞ; ð7Þ

where r ¼ ðrx; ryÞ includes all sites within the square
ð−L=2; L=2�2 and M is the number of lattice points
satisfying

ffiffiffi
2

p
L=4 < jrj < ffiffiffi

2
p

L=2. We define the SC order
parameter in the thermodynamic limit F∞

SC by

F∞
SC ¼ lim

L→∞
FSCðLÞ ¼

ffiffiffiffiffiffiffi
P̄∞
d

q
;

FSCðLÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffi
P̄dðLÞ

q
;

P̄∞
d ¼ lim

L→∞
P̄dðLÞ: ð8Þ

III. AB INITIO RESULTS

In this section we present our calculated ab initio results
on the four families of compounds. We first analyze the
results for doped CaCuO2 in detail and then compare it with
the result of doped Hg1201. Doped Bi2201 and Bi2212
suffer from the experimental uncertainty of the apical
oxygen position due to the supermodulation of the crystal
structure. Since it generates a variance of the Hamiltonian
parameters if one assumes the translational symmetry of the
Hamiltonian parameters, we show the properties by indi-
cating this range. All of the four materials show dominance
of the d-wave SC in the doping concentration dependence
and the calculated results reproduce the experimental
materials dependence of the strength of SC, which makes
it possible to extract the universal properties and systematic
trends as well.
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A. Doped CaCuO2

Here, we present the results of our calculation for the
doped CaCuO2 in the following order.
(1) δ dependence of SC properties; in particular, P̄∞

d
and the d-wave SC order parameter F∞

SC. (See the
definitions in Sec. II C.)

(2) Competition between the SC state and other com-
peting states including stripe states.

1. Properties of superconducting phase

First, we discuss the r dependence of the pairing
correlation PdðrÞ for L × L lattice and its long-ranged part
P̄dðLÞ: Figure 1 shows PdðrÞ and P̄dðLÞ for several choices
of square lattices with the linear size L from 24 to 36 and
hole doping δ from 0.028 (2.8%) to 0.247 (24.7%). For
each value of δ, we observe that P̄d does not significantly
depend on L, suggesting the existence of a strong SC long-
range order in the thermodynamic limit in this ground-state
candidate. This is indeed confirmed by a size extrapolation,
i.e., plot of P̄dðLÞ as a function of 1=L to estimate P̄∞

d in the
limit L → ∞ via linear regression, as shown in the insets of
Figs. 1(a)–1(h). The linear 1=L scaling was employed in
Ref. [10] and is expected to work because of Dirac-type
linear dispersion for the quasiparticle excitation of the
d-wave superconductor at the nodal points. Here, we have
shown the data calculated from the transfer and interaction
parameters in the Hamiltonian fixed at 10% hole doping for
simplicity as we addressed above. However, we can test its
robustness by taking δ dependent transfer and interaction

parameters. The result is shown in Appendix C and the
difference is small.
After taking the size extrapolation to the thermodynamic

limit, we show the δ dependence of the order parameter F∞
SC

calculated from Eq. (8) and P̄∞
d ¼ limL→∞ P̄dðLÞ in Fig. 2

and the numerical values in Table II. This shows a rapid
increase of F∞

SC from 0 at δ ¼ 0 up to δ ∼ 0.05 as a function
of δ followed by a plateau around 0.05 ≤ δ ≤ 0.1 and

FIG. 1. SC correlation function PdðrÞ for CaCuO2 at different hole dopings. (a) δ ¼ 0.028, (b) δ ¼ 0.045, (c) δ ¼ 0.087,
(d) δ ¼ 0.101, (e) δ ¼ 0.125 (here L ¼ 28 instead of L ¼ 30), (f) δ ¼ 0.167, (g) δ ¼ 0.208, (h) δ ¼ 0.247. In each case, we show
PdðrÞ for the square lattice size L ¼ 24, 30, 36. For the same distance rwe employ the largest value of correlation. We perform the same
procedure in later figures. Inset of each panel: size extrapolation of P̄dðLÞ to the thermodynamic limit P̄∞

d , whose numerical value is
listed in Table II. The gray line shows the linear approximation. Statistical errors originating from the Monte Carlo sampling are smaller
than the symbol size.

FIG. 2. The SC order parameter FSC as a function of δ for
doped CaCuO2. The gray filled circles show the values of FSCðLÞ
at L ¼ 24 square lattice calculated from P̄dðLÞ shown in Fig. 1
by using FSCðLÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄dðLÞ

p
. The red squares are the size-

extrapolated values F∞
SC calculated from P̄∞

d . Inset shows the
corresponding P̄dðLÞ at L ¼ 24 and P̄∞

d .
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monotonic decrease with further increasing δ above around
0.1 in the thermodynamic limit.
The dome structure ubiquitously observed for Tc in the

cuprates is qualitatively similar to the δ dependence in F∞
SC,

but the peak for F∞
SC is located at somewhat lower δ ∼ 0.05

than the case of experimental Tc, where the optimum δ is
observed to be δ ∼ 0.12 [43]. We will discuss this discrep-
ancy in Sec. V. However, the monotonic decrease of F∞

SC
with increasing δ for δ ≥ 0.1 is consistent with the universal
trend of δ dependence of the SC gap identified from the
angle-resolved photoemission spectra (ARPES) and the
scanning tunneling microscope (STM) of the cuprates in
general [44,45], though the SC gap in the experimental
estimate contains an ambiguity associated with the con-
tribution from the pseudogap.
In the mean-field picture, the SC gap is the product of the

order parameter F∞
SC and the effective attractive interaction.

If we consider the experimentally observed maximum
gap ∼50 meV [44,45] and F∞

SC ∼ 0.13, the characteristic
scale of attractive interaction is as large as ∼0.4 eV. This
imposes a constraint on theories for the SC mechanism.
The sharp increase of F∞

SC between δ ¼ 0 and 0.05
and the subsequent dome structure are similar to the earlier
study by a VMC method and a cluster dynamical mean-
field study [9,46] for the Hubbard model, where rapidly
increasingFSC from 0 at δ ¼ 0 already reaches FSC ∼ 0.1 at
δ ¼ 0.03 in the present notation. In case of the Hubbard
model, however, it was argued that the ground state is
actually not SC but stripe-ordered states [4–6].

2. Competition of SC, stripe, and AFM states

Now, we analyze the competition between the SC and
other states. The energies of the SC state and other states at
L ¼ 24 are given in Fig. 3. We see that the SC state has the
lowest energy in the region from δ ¼ 0.05 to δ ¼ 0.25,
indicating that the SC phase is dominant in the ground state
of doped CaCuO2. The SC ground state, however, is
severely competing with the C4S8, and C3S3-like stripe
states, and AFM-type state within the energy difference of

5–10 meV. Here, CmSn denotes the charge- and spin-
ordered stripe state with the periodicity of m lattice spacing
for the charge modulation and the period n for the spin
order. Spin and charge real-space patterns and structure
factors are explicitly illustrated in Secs. S2–S4 of SM [33]
for the C4S8, C3S3-like, and AFM-like excited states.
In the region studied here, we find only C4S8 and C3S3
as candidates of the competing stripe order, which has
similarity to an earlier study of the simple Hubbard model
with the next nearest neighbor transfer in the range
0.2< jt2=t1j<0.3 and 0.05 < δ < 0.25 [6] and an ab initio
study [10]. Note that C4S8 at δ ¼ 1=8 and C3S3 at
δ ¼ 1=6 have a particular commensurability energy gain.
In Fig. 3(b), a dip exists in the AFM states at δ ¼ 0.167.
At the moment, the origin of the dip is not clear.
Figures 14 and 15 in Appendix D show size dependence

of spin and charge structure factors. Although the demand-
ing computation cost does not allow larger system calcu-
lation, the available size dependence supports that the AFM
states up to δ ¼ 0.16 and the C4S8 stripe state at finite
doping around δ ∼ 0.12 do have the long-range order as one
can see in Figs. 14(a) and 15, respectively. However,
although the initial trial states are ordered mean-field states,
long-ranged order seems absent or is very weak after the
optimization in VMC calculations for the C3S3 stripe states
and seems replaced by well-developed short-ranged corre-
lations at δ ≠ 0. This is the reason why we add “-like” for

TABLE II. Size-extrapolated SC correlation function P̄∞
d and

order parameter FSC for doped CaCuO2 for several choices of
doping δ. The fitting error is of the order of ∼10−4 for P̄∞

d and
∼10−3 for F∞

SC.

δ P̄∞
d F∞

SC

0.028 0.0139(6) 0.118(2)
0.045 0.0188(2) 0.137(1)
0.087 0.0177(8) 0.133(3)
0.101 0.0174(16) 0.132(6)
0.125 0.0136(9) 0.116(4)
0.167 0.0078(2) 0.088(1)
0.208 0.0039(2) 0.062(1)
0.247 0.0016(2) 0.040(3)

M

M

-

FIG. 3. (a) Variance extrapolated energies of doped CaCuO2 for
various ground-state candidates, SC, charge or spin stripe states
C3S3 and C4S8, and AFM state as a function of hole doping δ on a
L ¼ 24 square lattice. All energies are subtracted by the function
F ðδÞ ¼ −12.76470 × δþ 6.44626 for better visibility. (b) Energy
difference ΔE for the variance extrapolated data from (a).
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the case of C3S3. The AFM and stripe states are in any case
excited states of the SC ground states at δ ≥ 0.05.
On the comparison between SC and stripe or AFM

states, similar severe competitions were reported in
Hubbard models. However, the present ab initio results
have a crucial difference, where the charge uniform SC
phase is the dominant ground state, while the ground states
of Hubbard models irrespective of the presence or absence
of t2 mostly have the stripe long-range order. The reason for
this difference originates from the presence of realistic off-
site interaction in the ab initio case as was already pointed
out in Ref. [10]. We discuss this point in comparison to the
Hubbard models in Appendix E.

B. Doped Hg1201 compared with CaCuO2

Now, we present our results in the case of Hg1201, and
compare it to CaCuO2. In this comparison, we find (i) the
positive correlation between F∞

SC and U=jt1j and (ii) the
relation Topt

c ∼ 0.16jt1jF∞
SC from the comparison with

the experimental Tc.
The pairing correlation for Hg1201 Hamiltonian and the

size extrapolation are shown in Fig. 4 for δ ¼ 0.146,
indicating the existence of the SC long-range order. The
size of the order parameter is F∞

SC ∼ 0.09 as compared with
∼0.116 for doped CaCuO2 at δ ∼ 0.12, respectively, which
are both close to each optimal concentration. The difference
in F∞

SC between Ca and Hg compounds can be compared
with the difference in U=jt1j ¼ 8.10 for CaCuO2 and 7.35
for Hg1201. As we discuss later, F∞

SC rapidly increases with
U=jt1j if we monitor the effect of U=jt1j beyond the

ab initio value around U=jt1j ¼ 7–8. Therefore, F∞
SC

amplifies the increase in U=jt1j while effects of other
parameters are minor: Namely, F∞

SC should have a func-
tional form F∞

SCðU=t1; Vi=t1; ti=t1Þ with 1 ≤ i ≤ 9 in gen-
eral, but Vi=t1 and ti=t1 dependencies are weaker as
compared to dependence on U=jt1j in the realistic param-
eter range. See Appendix F for the example of jt2=t1j
dependence. See also Fig. 9 for the V1=t1 dependence. In
both cases, the change in FSC at the optimum doping is at
most 10% in the realistic parameter range. In fact, in the
comparison of Bi2212, Bi2201, CaCuO2, and Hg1201,
jt2=t1j is ∼0.30, 0.27, 0.25, and 0.20, respectively, which
does not have systematic correlation with Topt

c . Appendix F
shows tiny anticorrelation of jt2=t1j and FSC, but is
practically negligible at the optimal doping. After careful
examination of other parameters as well, the difference of
F∞
SC in these four compounds studied is concluded to be

ascribed to the difference in U=jt1j.
The materials dependent F∞

SC may also be compared
with the difference in Topt

c ∼ 110 and 90 K for CaCuO2

and Hg1201, respectively, because Tc may be proportional
to the order parameter F∞

SC. Since Tc has the dimension
of energy and should also be scaled by the overall
characteristic energy scale t1, Tc may be proportional
to jt1jF∞

SC. In fact, the ratio of Topt
c =jt1jF∞

SC as a non-
dimensional quantity is ∼0.16ð1Þ at the optimal doping
δ ∼ 0.12 for CaCuO2 and ∼0.16ð2Þ at the optimal point
δ ∼ 0.15 for Hg1201, as we show in Table III, supporting
the hypothesis that Topt

c is universally given from the
relation

Topt
c ∼ 0.16jt1jF∞

SC ð9Þ

at the optimal doping.
In the Uemura plot [47], it was observed from the muon

spin resonance (μSR) measurement that Topt
c is proportional

to the ratio between the superfluid density ns, here
interpreted as F∞

SC=
ffiffiffi
2

p
, and the effective mass m�. Since

the mass enhancement from the bare band mass m0,
namely, m�=m0 at the optimal hole density may be similar
in the cuprates, Topt

c is indeed expected to be roughly
proportional to jt1jF∞

SC according to the Uemura plot,
because the inverse band mass is essentially determined
by the dominant transfer t1. In addition, ns estimated from
the relaxation rate σ ∼ 2 μs−1 from the μSR measurement
for the cuprates with Tc ∼ 80–100 K corresponds to
nsm0=m� ∼ 4 × 1021 cm−3. If we cut out the volume
including one Cu atom with the c axis length ∼6 Å as
in Ref. [47] irrespective of the unit cell volume to compare
with F∞

SC defined as the value per Cu atom, this corresponds
to F∞

SC ∼ 0.10 by considering the definition F∞
SC ¼ ffiffiffi

2
p

ns
and m�=m0 ∼ 5 assumed in Ref. [47]. Then it is also
quantitatively consistent with the present result of F∞

SC ∼
0.10 at the optimum doping. These indicate that our results

FIG. 4. SC correlation function PdðrÞ for Hg1201 at δ ¼ 0.146,
which is close to the experimental optimal doping, at the square
lattice size L ¼ 24, 28, 30, 32, and 36. Error bars are smaller than
the symbol size. Inset: size extrapolation of Pd to the thermo-
dynamic limit L → ∞. Because of relatively scattered data we
employ the average of the two biggest lattice sizes (L ¼ 32, 36)
for the size extrapolation L → ∞. In fact, the value at the largest
sizes is consistent with the systematic δ dependence observed
near δ ¼ 0.146 after the size extrapolation (not shown). The error
bar at 1=L ¼ 0 is estimated as the biggest difference to F∞

SC from
the given data.
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indeed capture the realistic situation more or less quanti-
tatively. We will show in Sec. V that F∞

SC also agrees with
the estimate from the angle resolved photoemission spectra
in case of Bi2212 and Bi2201.

C. Doped Bi2201 and Bi2212

In this subsection, we discuss ab initio results for
Bi2212 and Bi2201 and compare them to each other.
Unfortunately, in these two compounds, an uncertainty
exists in the experimental crystal parameters that causes
the uncertainty in the effective Hamiltonian parameters
as well. In particular, the distance dzOap between an apical
oxygen and the nearest Cu atom is not fully precisely
determined and the available experimental data have
considerable variations [48–53]. This uncertainty is also
related to the structural distortion and long-period modu-
lation of the CuO2 plane arising from the effect from
the BiO layer [54,55] as we discuss in Sec. V. Recent
ab initio studies have clarified that this uncertainty
leads to a possible variety of effective Hamiltonian
parameters, especially owing to the variation of the apical
oxygen position [12].
In principle, the structural optimization in ab initio

calculations is desired to predict the stable atomic position.
However, such an optimization in strongly correlated
electron systems is at the moment not necessarily accurate
enough and we leave this task for future studies. Instead, in
this paper, we admit a range of Hamiltonian parameters and
discuss the consequence.
As analyzed in Ref. [12], the apical oxygen position

sensitively affects the effective Hamiltonian parameters,
primarily the value of U. For Bi2212, the value U ∼ 4.2 eV
in Table I is intermediate and the uncertainty range is
between 4.0 and 4.7 eV for U by considering that dzOap may
range from 2.25 to 2.45 Å. On the other hand, the value
U ∼ 4.4 eV for Bi2201 in Table I is the upper bound and
the uncertainty ranges from U ∼ 4.4 to 3.5 eV by consid-
ering that dzOap may range from dzOap ¼ 2.6 to 2.45 Å. We
first present in Secs. III C 1 and III C 2 the results obtained
from the parameters shown in Table I, namely, U ¼ 4.2 eV
for Bi2212 and U ¼ 4.4 eV for Bi2201 and then discuss in
Sec. III C 3 the possible range of SC properties originating
from this uncertainty later.

1. Bi2212

We begin with the results for Bi2212. Figure 5 shows
PdðrÞ and P̄dðLÞ at δ ¼ 0.167 for L from 16 to 36 by
switching off the interlayer transfers and interactions.
Namely, we first show the results obtained by solving
the single-layer Hamiltonian despite the actual two-layer
unit cell of Bi2212. The case of δ dependent Hamiltonian is
also shown in Appendix C, where the difference is small.
Similarly to CaCuO2, we identify a SC ground state with
large P̄d and it does not change significantly by increasing
L, where the size extrapolation gives P̄∞

d ∼ 0.0151, as
shown in the inset of Fig. 5, which corresponds to a SC
order parameter F∞

SC ∼ 0.12. This relatively strong value of
F∞
SC is understandable, because the U=jt1j ratio has a value

of U=jt1j ∼ 9.4, which is the strongest among all four
considered compounds. Again the enhanced F∞

SC originates
from the larger U=jt1j in accordance with the observation
in the comparison of Hg1201 and CaCuO2 in Sec. III B.
This large F∞

SC is also consistent with the high Tc (up to
∼100 K) [30]. We will discuss more intricate aspect
in Sec. V.
The competition with other phases is seen in δ depend-

ence of the total energy shown in Fig. 19 in Appendix I.
Similarly to CaCuO2, the SC state is the ground state in
most of the doping concentration, while it is severely
competing with spin- or charge-ordered states.

TABLE III. Comparison of long-ranged SC correlation P̄∞
d and the order parameter F∞

SC with U=jt1j as well as
comparison between jt1jF∞

SC and Topt
c for doped CaCuO2 at δ ¼ 0.125, and Hg1201 at δ ¼ 0.146 (these values of δ

are chosen in accordance with those closest to experimental optimal values, δ ∼ 0.12 and 0.15, respectively, and to
allow the numerical size extrapolation to be easier). Note that the ratio Topt

c =ðjt1jF∞
SCÞ is given as a nondimensional

quantity by using 1 eV ¼ 1.16 × 104 K. The parentheses in the last digit indicate the error bar.

U=jt1j P̄∞
d F∞

SC jt1jF∞
SC (eV) Topt

c (K) Topt
c =ðjt1jF∞

SCÞ
CaCuO2 8.10 0.0136(9) 0.116(4) 0.060(2) 110 0.16(1)
Hg1201 7.35 0.008(2) 0.09(1) 0.048(5) 90 0.16(2)

FIG. 5. SC correlation function PdðrÞ for Bi2212 at δ ¼ 0.167
for the square lattice size L ¼ 16, 24, 30, 36. Inset: size
extrapolation of P̄d to the thermodynamic limit. The gray line
shows the linear extrapolation to 1=L → 0 by using the values for
L ¼ 16, 24, 30, 36. Error bars are smaller than the symbol size.
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Now, we extend the calculation by switching on the
interlayer terms and solve the two-layer Hamiltonian
obtained in Ref. [12] to examine the effects of interlayer
coupling. For the calculations we take two identical layers
(in terms of intralayer parameters for tij, Vi, and U, where i
and j are intralayer combination), coupled by the interlayer
terms listed in Table VI (Appendix H). The interlayer
contributions are restricted to the leading interlayer hop-
ping term of size tl0 ¼ −0.098 eV and nearest and next
nearest neighbor interlayer interaction of size Vl

0 ¼
0.643 eV and Vl

1 ¼ 0.463 eV. See Ref. [12] for more
details. A comparison between the single- and two-layer
cases of PdðrÞ for L ¼ 16 and δ ¼ 0.167 is shown in Fig. 6.
We see that the long-range average of PdðrÞ in the two-
layer case is close to that of PdðrÞ in the single layer case,
which demonstrates that PdðrÞ is not significantly affected
by the interlayer Coulomb interaction and hopping param-
eters. Indeed, for the single layer we found a long-range
average of the SC correlation function of P̄single

d ¼ 0.0225,
while for the two-layer compound the average is P̄two

d ¼
0.0213. The corresponding values of the SC order param-
eter are Fsingle;∞

SC ¼ 0.150 and Ftwo;∞
SC ¼ 0.146, which differ

by only ∼2.8%. The essentially same behavior between the
single- and two-layer cases may not depend on the system
size in accordance with the result of a two-layer Hubbard
model at the optimum doping [56]. This similarity may be
attributed to (i) the relatively small leading interlayer
hopping parameter of tl0 ¼ −0.098 eV and also (ii) the
robustness of the SC solution against the interlayer
Coulomb interaction parameter, because the pairing occurs
essentially only within a layer.

2. Bi2201

In the case of Bi2201, we again solve the single-layer
Hamiltonian. The competition with other phases is seen
in δ dependence of the total energy shown in Fig. 20 in

Appendix I. Figure 7 shows PdðrÞ and its extrapolation to
the thermodynamic limit, which suggests the stable long-
ranged SC order. Again, the obtained value F∞

SC ∼ 0.10 is
consistent with the rule that larger U=jt1j leads to larger
F∞
SC because U=jt1j is the second largest among the four

materials in the estimate shown in Table I. The smaller
U=jt1j relative to Bi2212 leads to weaker SC. However, on
a more quantitative aspect, we need to be careful about the
uncertainty of the Hamiltonian parameter. We will discuss
this issue below.

3. Effect of structural uncertainty on possible
variation of SC properties

Since we have the uncertainty of the Hamiltonian
parameters particularly for the interaction as we discussed
above, we here monitor the effects of modifying the
effective interactions for Bi2212 and Bi2201, which well
represent the effect of variant apical oxygen position as
shown in Appendix C of Ref. [12]. Namely, Table I
with preserved transfer parameters fixed at each ab initio
value, together with interaction scaling, represents most of
the effect of the apical oxygen shift and we scale the
Hamiltonian Eq. (1) such that

Hðα; ξÞ ¼ Hkin þ αHU þ ξHV; ð10Þ

where α ¼ ξ ¼ 1 represents the ab initio case given in
Table I, α scales the on-site Coulomb interaction term HU,
and ξ scales the remaining off-site interactions Vi. Since the
apical oxygen shift alters the interaction parameters in
the way α ∼ ξ [12], we examine the dependence on
α ¼ ξ below.
Figures 8(a) and 8(b) show the size scaling and α ¼ ξ

dependence of P∞
d for Bi2212 and Bi2201 at δ ¼ 0.167,

which is close to the experimental optimum doping. Further
details are given in Sec. S5 of SM [33]. Figure 8(c) shows
the corresponding α ¼ ξ dependence of the SC order

FIG. 6. SC correlation function PdðrÞ for Bi2212 at δ ¼ 0.167
in the cases of the single- and the explicit two-layer calculations.
In the single-layer case a 16 × 16 square lattice was considered,
which corresponds to a 16 × 16 × 2 lattice in the two-layer case.
Error bars are smaller than the symbol size.

FIG. 7. SC correlation function PdðrÞ for Bi2201 at δ ¼ 0.167
at the square lattice sizes L ¼ 24, 30, 36. Inset: size extrapolation
of P̄d to the thermodynamic limit. The gray line shows the linear
extrapolation to 1=L → 0 by using the values for L ¼ 24, 30, 36.
Error bars are smaller than the symbol size.
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parameter F∞
SC. For Bi2212, by taking the realistic uncer-

tainty range 4.0≤U≤4.7 eV (corresponding to 0.95 ≤ α ¼
ξ ≤ 1.1) obtained from 2.25 ≤ dzOap ≤ 2.45 Å, we find the
range of 0.011≲ P∞

d ≲ 0.015, namely, 0.10≲ F∞
SC ≲ 0.12.

On the other hand, the uncertainty for Bi2201 obtained
from 2.45 ≤ dzOap ≤ 2.6 Å leads to 3.5 ≤ U ≤ 4.4 eV (cor-
responding to 0.8 ≤ α ¼ ξ ≤ 1.0), which results in
0.00017≲ P∞

d ≲ 0.0094 (0.013≲ F∞
SC ≲ 0.10). The lower

bound for Bi2201 causes a fatal damage to the SC order.
Table IV summarizes the size-extrapolated P̄∞

d and
corresponding F∞

SC for the two Bi compounds when we
use the Hamiltonian parameters listed in Table I and when
we admit the uncertainty range of the interaction param-
eters for Bi2212 and Bi2201. The scaling Eq. (9) proposed
for CaCuO2 and Hg1201 is also valid in the Bi compounds,
and the experimental Topt

c is within the inferred range. We

conclude that its materials dependence is well captured for
the four studied materials (see also Fig. 11 in Sec. VI).
We realize that the fragility and diversity of Topt

c

experimentally observed in the range 10 < Topt
c < 40 K

for Bi2201 is accounted for by the range of actual apical
oxygen position. This range may be caused by the type of
dopant atoms, impurities, and the spatial inhomogeneity
caused by the supermodulation, which may depend on
samples and the amplitude of the modulation. In fact,
it was observed that the dzOap periodically varies as much as
6% in accordance with the supermodulation for Bi2212
and a comparable modulation may exist for Bi2201 as
well, which can be the origin of the experimental
uncertainty [54,55]. The basic origin of this diversity
and relatively low Tc among the four families of com-
pounds is attributed to relatively small U=jt1j in the lower
uncertainty range, at which the SC order becomes
sensitively damaged by a slight decrease of U=jt1j. We
discuss more general aspects of the interaction depend-
ence in Sec. IV. Even when we admit the uncertainty
range, the general trend about the weaker SC of Bi2201
than those of Bi2212 is well explained by this ab initio
result. It can also safely be addressed that Bi2212 has one
of the strongest SC and Topt

c among the four families
comparably to CaCuO2.
The effects of apical oxygen position on Hamiltonian

parameters are discussed in Sec. V and in Appendix L.

IV. RESULTS BEYOND AB INITIO: INTERACTION
DEPENDENCE OF SUPERCONDUCTING ORDER

We now study SC properties beyond the ab initio results.
Ab initio results in the previous section successfully
reproduce the experimental trend and have revealed that
U=jt1j is the principally important Hamiltonian parameter
to control the SC order parameter. Therefore, it is intriguing
to examine the optimum Hamiltonian parameters to maxi-
mize the order parameter and hence the optimum Tc
beyond the existing materials for the purpose of materials
design to seek for higher Tc superconductors. We present
U=jt1j dependence of FSC as well as dependence on off-site
interaction when tuning the interaction parameters artifi-
cially away from the ab initio value while keeping transfer
parameters fixed at ab initio values. We here take an
example of CaCuO2 Hamiltonian at δ ¼ 0.167 and monitor
the effect of α and ξ dependencies defined in Eq. (10).

FIG. 8. Variation of SC order arising from uncertainty of the
apical oxygen position via α ¼ ξ scaling for Bi2212 and Bi2212.
The realistic range is 0.95 ≤ α ¼ ξ ≤ 1.1 for Bi2212 and 0.8 ≤
α ¼ ξ ≤ 1.0 for Bi2201. Size extrapolation of P̄d for (a) Bi2212
at δ ¼ 0.167 and α∈ f0.8; 0.9; 1.0; 1.1; 1.2g, (b) Bi2201 at δ ¼
0.167 and α∈ f0.8; 0.9; 1.0g. (c) F∞

SC as a function of α ¼ ξ for
Bi2212 (orange) and Bi2201 (blue).

TABLE IV. Comparison of long-ranged SC correlation P̄∞
d and the order parameter F∞

SC with U=jt1j for Bi2212
and Bi2201 at δ ¼ 0.167, which is chosen in accordance with the experimental optimal values. The range of values
represents the uncertainty range arising from the uncertainty of the apical oxygen position. This estimate helps the
inference of the correct apical oxygen position (see text).

U U=jt1j P̄∞
d F∞

SC 0.16jt1jF∞
SC (K) Topt

c (K)

Bi2212 4.0–4.7 8.8–10.4 0.011–0.015 0.10–0.12 83–101 85–100
Bi2201 3.5–4.4 6.7–8.4 0.00017–0.0094 0.013–0.096 12–93 10–40
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We examine three types of scaling to go beyond the
ab initio Hamiltonian: (i) scale only the on-site Coulomb
interaction by α with fixed ξ ¼ 1.0 [Hðα; 1.0Þ], (ii) scale
the full interaction part equally by using α ¼ ξ [namely,
Hðα; αÞ], and (iii) fix α ¼ 1.2 and scale the off-site
Coulomb interaction uniformly via ξ by employing
Hð1.2; ξÞ, by considering the fact that (ii) shows the
maximum SC order at α ¼ ξ ¼ 1.2. For the cases (i) and
(ii) we chose scaling values α ranging from 0.6 up to 4.0,
while for the third case the range from 0.0 to 2.0 was
chosen. Since the size dependence is not appreciable,
we study L ¼ 24 lattice. The SC order parameter FSC
are shown in Fig. 9(a) at δ ¼ 0.167 hole doping.
The results show that the SC order parameter can be

enhanced with the amount of around 30% from the ab initio
value when the interaction parameter is tuned to α ∼ 1.2
for (i) and around 20% at α ¼ ξ ∼ 1.2 for (ii), which may
allow Topt

c as much as ∼130–140 K, when compared to the
ab initio results for CaCuO2.
In the tuning (iii), we find that the order parameter

further increases up to F∞
SC ∼ 0.22 by decreasing ξ, which is

twice as large as the ab initio case. However, we keep
in mind that on-site and off-site interactions cannot

independently be controlled in the usual experimental
conditions. The present result offers a guide to enhance
the SC in designing artificial structure and metamaterials
including surface and interface, where quicker screening of
the off-site interaction is desirable by keeping the on-site
interaction at the optimal value (in this case α ¼ 1.2).
Another limitation to be considered is the competition

with the stripe and AFM order. As far as we restrict the on-
site interaction within the ab initio range, the SC energy is
always lower than that of the stripe state, as one sees in
Fig. 9(b). Here, we show the competition with the C4S8
because it is established that the most severe competitor is
the C4S8 state. However, the decreasing of energy differ-
ence, such as at (α ¼ 1.2, ξ ¼ 0), where the difference is
≤2 meV, may result in the thermal destruction of the SC
order. For ξ ≥ 0.2 the SC is still a stable ground state, while
at small ξ, FSC becomes nearly twice of the ab initio value
for the doped CaCuO2.
The order parameter decreases when U=jt1j is too large

beyond the realistic range of the cuprates studied in this
paper, as we see in Fig. 9(a). This reduction was already
pointed out on the level of the Hubbard model [9]. The
reduction at large U=jt1j is studied in Appendix J, which
shows nontrivial power-law dependence of FSC on U=jt1j.
The reduction itself may be easily understood on a
qualitative level from the suppression of charge fluctuation
with increasing U=jt1j, which also suppresses the quantum
entanglement caused by the suppression of both spin
singlet fluctuation and dynamical exciton generation, as
was reported in the literature [9,57]. It was pointed out that
the enhanced quantum entanglement can be achieved by
the fractionalization of electrons [57,58], which may be
maximized at the optimum U=jt1j.

V. DISCUSSION

By assuming the same ratio Tc=ðjt1jF∞
SCÞ ∼ 0.16 with

CaCuO2 and Hg1201, we can infer the range of Tc arising
from the uncertainty of the apical oxygen position and
resultant uncertainty of U=jt1j listed in Table IV. The range
of inferred Tc listed in Table IV for Bi2212 is consistent
with the experimentally observed range of Topt

c within the
error bars as seen in Fig. 11. This suggests that the sample
dependence of Topt

c may be accounted for by the sample
dependence of the apical oxygen position.
We note that the order parameter F∞

SC ∼ 0.10 obtained
here for Bi2212 and Bi2201 also shows consistency
with the result obtained by using the machine learning
of the angle-resolved photoemission spectroscopy data
for Bi2212 and Bi2201, respectively, at the optimum
doping [59], which gave hck↑c−k↓i ∼ 0.065 at the antinodal
point for Bi2212 and the momentum averaged value
∼0.063 for Bi2201 at the optimum doping. These are
translated commonly to F∞

SC ∼ 0.09 in the present definition

of F∞
SC because of the relation F∞

SC ¼ ffiffiffi
2

p hck↑c−k↓i.

FIG. 9. (a) FSC over scaling α or ξ (effective scaling of U=jt1j
and Vi=U) of the SC state on the L ¼ 24 square lattice and
δ ¼ 0.167 hole doping. The inset is an enlarged plot around the
peak 0.9 < α; ξ < 1.5. For further details, see the main text.
(b) Variance extrapolated energy difference ΔE between the SC
and C4S8 as a function of ξ in the case Hðα ¼ 1.2; ξÞ.
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In the case of Bi2201, the estimated 0.16jt1jF∞
SC is also

listed in Table IV. The comparison with the sample
dependence of experimental Tc suggests that the true apical
oxygen position is distributed near the lower bound
dzOap ∼ 2.45 Å, if it is spatially uniform. Alternatively, if
the supermodulation exists, the lower bound of dzOap in the
modulation may be close to 2.45 Å, because it governs the
SC order as the bottleneck. It is desired to test this inference
by precise and simultaneous measurements of the relation
between Tc and dzOap for Bi2212 and Bi2201.
The order parameter F∞

SC increases with decreasing hole
doping for δ > 0.05, as we find in Fig. 2, which follows the
same trend as the SC gap as we discussed, but is slightly
different from the dome structure known for Tc in the
cuprates, where the peak of the dome is located at higher δ.
Complete and quantitative understanding of this different
trend is not the scope of this paper and is left for future
studies. However, the origin of this difference can be
inferred to be attributed to the increasing damping
and incoherence of electrons in the underdoped region
toward the metal-insulator transition as was analyzed
before [44,45], which is represented as the enhanced
self-energy of the normal electrons toward the Mott
insulator. In the experimental conditions, the atomic doping
or substitution introduces atomically spatial inhomogene-
ity, which is ignored in the present study and may cause the
localization of carriers, which could also be the origin of
slower increase of Tc upon doping.
In Appendix K, we show a qualitative difference of the

momentum distribution between the optimal and under-
doped hole concentrations, which suggests a signature
of the increased damping at lower carrier concentration
within the present ab initio study. We also discuss in
Appendix K the subtlety and complexity in the underdoped
region due to the pseudogap formation, involved in several
quantities, which is not the scope of this paper.
The δ dependence of the energy decomposed to the

kinetic, on-site and off-site interaction energies is analyzed
in Appendix G. It should be noted that the on-site
interaction energy EU ¼ hHUi has a convex curvature as
a function of δ, which contributes to the effective attraction
of electrons despite the original strong repulsion U. In fact,
theU=jt1j dependence of the local attraction is qualitatively
consistent with FSC in Fig. 9. See Appendix G for more
details. The local effective attraction may cause the Cooper
pairing as well as the stripe formation. It was pointed out
that the convex curve of the local energy generates bistable
excitations, one in the underdoped side and the other in the
overdoped side, inducing the electron fractionalization and
the enhanced quantum entanglement through the quantum
tunneling of the two excitations [57,58]. This line of further
research is an important future subject.
The importance of the apical oxygen position has been

pointed out from various viewpoints [60–63]. In this paper,
we have elucidated the crucial role of controlling U in

general in the single-band description, which quantitatively
explains the variation of Topt

c and its uncertainty in the Bi
compounds. In addition, the modulation of the SC gap with
the modulation of the apical oxygen position in Bi2212
has indicated that the longer dzOap induces the smaller SC
gap [55]. This is consistent with the trend of F∞

SC, which
decreases when α is increased in the realistic range as
shown in Fig. 8. This indicates that Bi2212 is located
already slightly above the peak in the α dependence of F∞

SC,
which corresponds to α ¼ 1.2 for doped CaCuO2 shown
in Fig. 9. The present observation is also in accordance
with the effect observed by laser irradiation aiming at the
displacement of the apical oxygen position [64]. The
control of dzOap if possible in a spatially uniform fashion
may help to optimize the SC in which the disturbance and
pair breaking by the randomness caused by the inhomo-
geneous supermodulation in the case of the Bi compounds
could be avoided.
The effects of the displacement of the apical oxygen

position on the Hamiltonian parameters were discussed in
Ref. [12]. In Appendix L, we readdress this issue in relation
to earlier work.
We have mainly focused on the quantities at optimal

doping to clearly extract the diversity of the materials
dependence, where the experimental subtlety due to the
effects from extrinsic randomness as well as the complexity
of physical quantities arising from the pseudogap formation
in the underdoped region is irrelevant. The behavior of
suppressed Tc, the SC carrier density ns, and the coherent
spectral weight arising from the pseudogap formation in
the underdoped region are left for future studies. See
Appendix K for more details.
In general, the d-wave SC correlation has a dip at (1, 1)

distance. The origin is speculated as follows. The singlet
pair between electrons at (0, 0) and (1, 0) sites dynamically
interferes with the singlet pair between (1, 1) and (1, 0),
because these two singlets are incompatible. The same is
true for the singlets, which share (0, 1) site. This double
interfere makes the SC correlation of the pair between (0, 0)
and (1, 1) smaller very generally. However, at the moment,
we do not know the origin of particularly large dip around
δ ¼ 1=8, which is left for future study.
There exist studies proposing the possibility of the

pair-density-wave (PDW) states [65]. However, in the
present ab initio Hamiltonians, the PDW correlation
remains small as is shown in Fig. S7 of SM [33], where
peak is absent at nonzero momentum. If the stripe long-
ranged order coexists in the SC ground state, the PDW
order must be trivially accompanied. However, as one
sees in Fig. 14(b) and in Fig. S6 [33], the stripe
correlation exists but remains small and is scaled to zero
in the thermodynamic limit.
In this paper, we have employed the single-band

Hamiltonian for the AB orbital, because the hybridization
gap between AB and B or NB orbitals is so large
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(∼8–9 eV) that the B or NB bands are more or less
completely filled and inactive [see Fig. 10(b) of
Ref. [34] and Appendix D of Ref. [12] ]. When one starts
from the three bands constructed from Cu 3dx2−y2 and O
2pσ atomic orbitals, the analysis would be more compli-
cated. See Appendix M for this issue.

VI. SUMMARY AND CONCLUSIONS

We have studied the superconductivity in the ab initio
Hamiltonians for CaCuO2, Hg1201, Bi2201, and Bi2212
derived by using the experimental crystal structure in
Ref. [12] without adjustable parameters. The dominance
of SC order against severely competing stripe states and
AFM state in a wide range of hole concentration is shown
in the solutions for the ground state of all four materials
obtained from the variational Monte Carlo calculations,
which agrees with the experimental results.
The SC order parameter F∞

SC at the optimal doping shows
consistency with the superfluid density measured in the
μSR and the machine learning analysis of the ARPES data
for Bi2212 and Bi2201. F∞

SC decreases with increasing
doping for the doping concentration δ > 0.05, showing a
similarity to the SC gap reported in the STM and ARPES
measurements. On the other hand, F∞

SC quickly decreases to
zero toward δ ¼ 0 for δ < 0.05 forming a dome structure
which has a similarity to experimental Tc, but the dome
peak appears at slightly lower δ for the calculated F∞

SC. This
may be attributed to the reduced renormalization factor
suggested by the broadened momentum distribution.
From the comparison of the four materials, we have

revealed that U=jt1j is a crucial parameter to control the
strength of the SC order; largerU=jt1jmaterials show larger
SC order parameter F∞

SC in the realistic materials. This
explains that Tc and the SC gap at the optimum doping are
larger for CaCuO2 than Hg1201, where Topt

c is well scaled
by jt1jF∞

SC as Topt
c ∼ 0.16jt1jF∞

SC. Though the experimental
uncertainty in the crystal structure prohibits a quantitative
comparison, F∞

SC is also larger for Bi2212 than Bi2201
at least qualitatively, in agreement with the experimental
indications. When we apply the same scaling Topt

c ∼
0.16jt1jF∞

SC to the two Bi compounds with the calculated
order parameter, it also well explains the experimental
sample dependence of Tc. The strong dependence of F∞

SC
on U=jt1j for real materials is summarized in Fig. 10: In the
range of 7.0 ≤ U=jt1j ≤ 8.0, F∞

SC sharply increases and the
calculated sensitive materials dependence of F∞

SC is well
captured within this range. This simply means that, except
for Bi2212, most of the realistic materials we have studied
are positioned in the weak-coupling side, where the SC
order parameter rapidly increases with increasing U=jt1j.
The good scaling of Topt

c by 0.16jt1jF∞
SC is also summarized

in Fig. 11, which indicates that the detailed difference of
U=jt1j within the range of 7 < U=jt1j < 9 in the ab initio
parameters reproduces the diverse materials dependence

of Topt
c . Since the larger variance for the theoretical

prediction on Bi2201 is ascribed to the experimental
uncertainty of the apical oxygen, it is desired to precisely
determine the apical oxygen position in the experiments.
Based on the successful reproduction of the materials

dependent properties, the underlying superconducting
mechanism is identified by the effective local attraction
emerging from the Mottness, which converts the original
strong repulsion to the attraction.
The SC order parameter has the maximum above the

ab initio values ofU=jt1j at 20% larger value ofU=jt1j with
the enhancement of 20%–30%. If one can control on-site
and off-site interaction independently, further optimization
of the SC order parameter as much as the factor 2 larger
value beyond the available compounds synthesized so far
without falling into other competing states can be achieved
as the theoretical maximum value in the present mechanism.
By increasing jt1j as well as the whole parameter values

FIG. 10. F∞
SC as a function of U=jt1j for the four cuprate

compounds at δ ¼ 0.167 plotted from the list in Tables III and IV.

FIG. 11. Experimental Topt
c (black crosses or bars) in compari-

son to the Tc ¼ 0.16jt1jF∞
SC scaling for each compound (purple

bars). Tc is taken from Tables III and IV.
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uniformly, Topt
c should obviously increase accordingly.

These offer a clue for the materials design in the future.
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APPENDIX A: LANCZOS METHOD
AND RESTRICTED BOLTZMANN

MACHINE PROCEDURE

1. Lanczos method

To further improve the accuracy of the VMC calculations
or the variance extrapolation of the competing ground state
candidates, we apply the Lanczos method [42]. To do so the
optimized mVMC wave function jΨi is extended by

jψni ¼
�
1þ

XM
n¼1

αnHn

�
jΨi: ðA1Þ

The factor in front of jΨi can be regarded as an additional
projection operator with variational parameters αn, which–
when chosen appropriately–further reduce the energy.
Although one could systematically improve the wave
function by increasing M, the computational cost increases
exponentially with M, too. Hence we employ the Lanczos
method only up to the first step (n ¼ 1) within this work.

2. Restricted Boltzmann machine procedure

To further improve the mVMC wave function we apply a
restricted Boltzmann machine as a variational wave func-
tion jΨi, as first suggested in Ref. [66]. Here we follow the
notations given in Refs. [20,42]. The variational wave
function including RBM takes the following form:

jΦi ¼ PGPJPdhN jϕpairi; ðA2Þ

where N is the additional RBM correlator. The RBM
correlator,

N ¼
Y
k

2 cosh

�
bk þ

X
i

Wikσi

�
e
P

i
aiσi ; ðA3Þ

introduces the additional variational parameters bk (hidden
layer), ai (visible layer), and Wik (network).
In practice we apply the additional RBM projection

after the wave function is already optimized via mVMC
calculations; i.e., the variational parameters of the opti-
mized wave function jϕi ¼ PGPJPdhjϕpairi are kept fixed
during the RBM procedure.
The accuracy of the wave function depends on the

number of hidden and visible parameters (Nh, Nv) [66].
Hence we can define a hidden variable density as αRBM ¼
Nh=Nv as measure for the accuracy. Note that the number
of RBM variational parameters increases with α, too.
Within this work the RBM procedure was applied

with αRBM ¼ 4.

APPENDIX B: VARIANCE EXTRAPOLATION
PROCEDURE

The total energy per site E=N ¼ hHi=N is calculated
after the variance extrapolation. The true ground state as a
function of the variance ðδEÞ2 ¼ ðhH2i − hHi2Þ=hHi2 is
obtained by taking the limit δE → 0, because the true
eigenstate satisfies δE ¼ 0 [39–41]. If several different
states such as SC, spin- and charge-ordered as well as
normal metallic states are competing, the ground state is
determined from the lowest-energy state after the variance
extrapolation. In practice, the variance extrapolation is a
linear regression of the energies per site E=N (e.g., obtained
from combinations of mVMC, Lanczos, or RBM) over the

M

FIG. 12. Variance extrapolation for the example of CaCuO2 at
δ ¼ 0.167 on a L ¼ 24 lattice. The inset shows an enlarged plot
around ðδEÞ2 ¼ 0.
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variance δE for a specific state, to approximate the zero
variance value of the energy.
As an example, the variance extrapolation for δ ¼ 0.167

in CaCuO2 is shown in Fig. 12. From the inset we confirm
the lowest energy of the SC state with severely competing
AFM and stripe states very close to it (the difference is
around 5 meV). However, the overlap of the error bars is
small and in comparison to AFM, C4S8, and C3S3 states,
the SC state definitely has lower energy.

APPENDIX C: RESULTS OF δ DEPENDENT
HAMILTONIAN

The hole density dependence ofFSC atL ¼ 24 is compared
between the case presented in themain text and that calculated
by the δ dependentHamiltonian given inSec. S1BofSM[33].
The results for CaCuO2 in Fig. 13(a) and for Bi2212 in
Fig. 13(b) show that the difference of the two Hamiltonians is
small and the essential feature can be analyzed by taking the
Hamiltonians analyzed in the main text.

APPENDIX D: THERMODYNAMIC LIMIT OF
THE TRIAL WAVE FUNCTION AFTER

OPTIMIZATION FOR CaCuO2

Here we discuss the stability of the AFM, C3S3,
and C4S8 states in the thermodynamic limit for
CaCuO2. To do so, each state is stabilized on different
lattice sizes and the spin and charge structure factors [SsðqÞ
and ScðqÞ] are calculated.
We plot SsðqÞ as a function of 1=L or 1=L2 depending on

the cases of the presence or absence, respectively, of the
AFM order by following the convention and perform a linear
extrapolation. The result is shown in Fig. 14, where in
Fig. 14(a) the peak height of the spin structure factor follows
a linear trend with a nonzero offset, indicating a stable long-
ranged AFM order. In Fig. 14(b), the peak of the spin
structure is scaled to zero in the thermodynamic limit, which
indicates the absence of the long-ranged AFM order in the
SC state at this doping.We did not find the coexistence of the
SC and AFM order at other doping either.
The size scaling of the charge stripe states is shown in

Fig. 15. Although the plot of the size dependence is not

sufficient due to very demanding computational cost for
larger sizes, the trend suggests that only the C4S8 state shows
a clear long-ranged order of spin and charge at around
δ ¼ 0.125 in the thermodynamic limit. The C3S3 state seems
to collapse to a paramagnetic state at the chosen doping
of δ ¼ 0.207, at which C3S3 has relative stability. Hence we
use the labeling “C3S3-like” instead of C3S3 in themain text.
We do not go into details of the size dependence for the
stripelike states, because they are in any case excited states.

APPENDIX E: COMPARISON TO HUBBARD
MODEL STUDIES

Here we discuss the crucial difference of the ab initio
results from the extensively studied Hubbard models

FIG. 13. Comparison of FSC between that obtained by using δ
dependent Hamiltonians (red) and the fixed Hamiltonian (black)
as in the main text.

� �

M
M

FIG. 14. Size dependence of the spin structure factor 103 ×
SsðqmaxÞ=N at ðπ; πÞ for (a) the AFM state after optimization at
half filling (L ¼ 12, 16, 24) and δ ¼ 0.167 (L ¼ 12, 18, 24), and
for (b) the SC state at δ ¼ 0.167 for different lattice sizes
(L ¼ 24, 30, 36).

FIG. 15. Size dependence of the charge and spin stripe state
after the optimization of variational parameters for different
lattice sizes and fillings. For C3S3 (red crosses) δ ¼ 0.207 and
L ¼ 12, 24 and for C4S8 (blue dot) δ ¼ 0.125 and L ¼ 16, 24.
(a) 103 × SsðqSDWÞ=N vs 1=L. (b) 103 × ScðqCDWÞ=N vs 1=L2.
The dashed lines are only to guide the eyes. qSDW and qCDW are
the wave numbers at the peak of Ss and Sc, respectively, for the
spin density wave (SDW) and charge density wave (CDW)
modulations, respectively.
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without the off-site interaction. In the Hubbard model
studies, irrespective of the presence of the next nearest
transfer t2 or absence of it, in the hole doped region, a broad
consensus seems to be formed, where the ground state has
stripe type long-ranged charge order [3,5,6,67–72]. The
charge or spin stripe states were also suggested to coexist
with weak SC order in some cases [5,72], but other studies
did not find the SC order [6,68,69,71].
In the Hubbard model studies, the numerical methods

have a variety including the present VMC, density matrix
renormalization group, constrained path quantum
Monte Carlo, tensor network and density matrix embedding
theory, which have their own advantages and disadvantages
and they are complementary. When they can be compared
with reliable solutions, the above Hubbard model calcula-
tions were benchmarked, which have shown comparable
accuracy when compared between each state-of-the-art
updated version. Even in quantum spin models, the level
of accuracy of the above methods is roughly similar [21]. We
also refer to recent thorough comparisons [73].
On the other hand, when realistic off-site interaction is

included, the ground state is reported to be charge homo-
geneous superconducting state [10]. The off-site interaction
substantially suppresses the SC order but the charge and
spin stripe states are more damaged by the frustration
introduced by the off-site interaction. The role of off-site
interaction for the stabilization of the SC state relative to the
stripe state was directly demonstrated in Ref. [10] by the
comparison of ab initio result and that of the Hamiltonian
obtained by switching off only the off-site interactions.
We confirmed the similar behavior for the present
Hamiltonians. The absence of developed stripe correlations
in the SC ground state is seen in Fig. 14 herein and in
Fig. S6 of SM [33].

APPENDIX F: t2 DEPENDENCE

Here we show t2 dependence of FSC by starting from the
ab initio Hamiltonian for hole doped CaCuO2 with other
Hamiltonian parameters fixed, where the effect of t2 is

monitored beyond the ab initio value primarily within the
realistic range of jt2=t1j (0.2 ≤ jt2=t1j ≤ 0.3) in Figs. 16
and 17 for L ¼ 24 lattice. FSC slightly decreases with
increasing t2, which is qualitatively consistent with a
different approach [63]. However, the variation of FSC is
at most 10% near the optimum doping in the realistic range.
Furthermore, FSC has essentially no t2 dependence in
the range 0.0 ≤ jt2=t1j ≤ 0.2. On the other hand, the period
of the stripe order is known to sensitively depend on t2
[5,6,68,69,71,72] in the ground states of Hubbard models
and it may alter the superconductivity if it coexists, while
the present charge uniform superconducting ground state is
quite different.

APPENDIX G: ANALYSIS OF δ DEPENDENCE
OF ENERGY

In Fig. 18 the total energy per site Etot and the on-site
Coulomb part EU [see Figs. 18(a) and 18(c), respectively]
are shown for doped CaCuO2. Each energy contribution is
subtracted by a linear function FðδÞ ¼ b0 þ b1δ for better
visibility, where b0 and b1 are listed in Table V [see gray
lines in Figs. 18(a) and 18(c)] and are shown in Figs. 18(b)
and 18(d). The subtracted energies are fitted by a quadratic
function PðδÞ ¼ c0 þ c1δþ c2δ2 to examine the curvature.
Explicit values of the parameters are given in Table V.
The result shows that the total energy is concave as a

function of δ of course, which is required from the
thermodynamic stability, while only EU exhibits convex
behavior with c2 < 0. Because the effective particle inter-
action is given by the δ2 term, we find that the local quantity
EU is the origin of the attraction while the nonlocal energies
contribute to c2 > 0 in the total energy ensuring the
thermodynamic stability. This supports the idea that the
local strong correlation (repulsion) called Mottness turns to
originate the effective attraction of the electrons, which is
the underlying mechanism of both the Cooper pairing and
charge segregation such as the stripes. The attraction is
understood from the following Mottness. The local energy
is retained high in the Mott insulator because of U.

FIG. 16. SC correlation function PdðrÞ for modified t2 from the
CaCuO2 Hamiltonian for L ¼ 24 lattice.

FIG. 17. SC order parameter FSC as a function of δ calculated
for three choices of t2 modified from CaCuO2 Hamiltonian.
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However, if the carrier is doped, this is released by
acquiring the itinerancy in a nonlinear fashion as a function
of δ, which yields c2 < 0 and the attraction. In accordance
with the α dependence of FSC, c2 shows a similar behavior
as −c2 ¼ 1.47, 2.24, 2.13, 1.85, and 1.53 at α ¼ 1.0, 1.1,
1.2, 1.3, and 1.4, respectively, with a peak around
α ∼ 1.1–1.2.

APPENDIX H: INTERLAYER CONTRIBUTIONS
FOR Bi2212

The effective interlayer Hamiltonian parameters for
Bi2212 are shown in Table VI, where Vl

n is the interlayer
Coulomb interaction and tln the interlayer hoppings. As
defined in Ref. [12], the notation n ¼ 0 represents the
interaction or hopping between interlayer nearest neighbor
Cu atoms (located one above the other), and n ≥ 1
represents the interaction or hopping between a Cu atom
and its (nþ 1)th interlayer nearest neighbor (located above
or below its intralayer nth nearest neighbor).

APPENDIX I: DOPING DEPENDENCE OF
ENERGY FOR Bi2201 AND Bi2212

The energy per site as a function of δ and the competition
of SC, stripe, and AFM states is shown in Fig. 19 for
Bi2212 and Fig. 20 for Bi2201.

APPENDIX J: SCALING OF THE SC ORDER IN
STRONG-COUPLING REGION

The SC order parameter FSC in the strong-coupling
region is plotted in Fig. 21 by monitoring U with
other parameters of the Hamiltonian fixed at the ab initio
values of CaCuO2 for L ¼ 24 lattice. FSC is scaled as

FIG. 18. Energy per site as a function of δ in the SC state on a
L ¼ 24 square lattice. Total energy Etotal=N (a) and Etotal=N −
FðδÞ (b), as well as on-site Coulomb energy EU=N (c) and
EU=N − FðδÞ (d), are plotted. Here, a δ-linear function FðδÞ
defined below is subtracted in (b) and (d) for better visibility.
Note that FðδÞ is different depending on the type of the energy as
seen in Table V. The gray line in the left-hand column indicates
FðδÞ ¼ b0 þ b1δ, which is subtracted in (b) and (d). Right-hand
column: energies after subtraction of FðδÞ are fitted via a
quadratic function PðδÞ ¼ c0 þ c1δþ c2δ2. Fitting parameters
are given in Table V.

TABLE V. Fitting parameters of linear correction function and
quadratic fit function discussed in Fig. 18. See the main text for
the explanation.

b0 b1 c0 c1 c2

Etotal=N 6.4995 −11.9723 0.0626 −2.5274 9.2307
EU=N 0.3455 −0.5900 −0.0043 0.3651 −1.4749

TABLE VI. Effective interlayer Hamiltonian parameters (in eV)
for Bi2212 at δ ¼ 0.2 taken from Ref. [12].

Bi2212

Vl
0 Vl

1 Vl
2 Vl

3 Vl
4 Vl

5 Vl
6

0.643 0.463 0.368 0.291 0.262 0.220 0.120

tl0 tl1 tl2 tl3 tl4 tl5 tl6
−0.098 −0.001 0.019 −0.010 0.007 0.000 −0.003

M

M

-

FIG. 19. Variance extrapolated energies of Bi2212 for various
ground-state candidates (SC, charge or spin stripe C3S3 and C4S8,
and AFM states) as a function of hole doping δ on a L ¼ 24 square
lattice. (a) Total energies per site subtracted by F ðδÞ. All energies
are subtracted by the function F ðδÞ ¼ −12.34985 · δþ 6.36953.
(b) Energy difference ΔE for the variance extrapolated data
from (a).
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FSC ∼ ðjt1j=UÞp with p ∼ 0.6 irrespective of the hole
density. As far as we know, there exists no theoretical
argument in the literature including the role of the super-
exchange interaction J ∼ 4jt1j2=U to understand this scal-
ing. The origin of this nontrivial power-law dependence
imposes a severe constraint on the superconducting
mechanism in the strong-coupling region and is left for
future studies.

Overall δ and α dependences of FSC are shown in
Fig. 22. This shows that though the asymptotic behavior
at large α is insensitive to δ, the optimal δ and α depend on
each other. We note here α corresponds to ð1=8.1ÞU=jt1j.

APPENDIX K: COMPLEXITY IN UNDERDOPED
REGION AND ANALYSIS ON MOMENTUM

DISTRIBUTION

We show calculated momentum distribution defined by

nðkÞ ¼ 1

2N

X
i;j;σ

eikðri−rjÞhc†iσcjσi; ðK1Þ

because the jump or singularity of nðkÞ at the Fermi level
characteristic of metals measures the incoherence of the
carrier. Here, we show nðkÞ for the case of doped CaCuO2

in Fig. 23 for the cases of δ ¼ 0.028 [Figs. 23(a) and 23(f)],
0.045 [Figs. 23(b) and 23(g)], 0.101 [Figs. 23(c) and
23(h)], 0.125 [Figs. 23(d) and 23(i)], and δ ¼ 0.167
[Figs. 23(e) and 23(j)] in the SC state on the L ¼ 24
square lattice. Although F∞

SC is similar between δ ¼ 0.028
(or 0.045) and δ ¼ 0.101 (or 0.125), nðkÞ shows substan-
tially more smooth and rounded shape for δ ¼ 0.028 and
0.04 than δ ¼ 0.101 and 0.125, demonstrating that the
effect of the larger normal damping at smaller δ is
responsible for this rounded behavior. The substantial
increase in the damping with decreasing doping may be
responsible for the suppression of Tc in the underdoped
region irrespective of the high F∞

SC. More quantitative
studies will be presented elsewhere. In SM Fig. S9, we
show the case of δ ¼ 0.028 and δ ¼ 0.167 on the L ¼ 36
square lattice to ensure that the size dependence is
weak [33].
The strong damping is most prominent in the under-

doped region around the antinodal points. This region is
under the strong influence of the pseudogap, which
makes the relation of the physical quantities nontrivial.
The different behavior of Tc and FSC is such an example.
Deviation of the SC carrier density ns and the weight of
quasiparticle coherence peak at the antinodal point from
FSC and the SC gap ΔSC against the naive expectation
may be another example. Although FSC and the SC gap
ΔSC grow on top of the pseudogap as we revealed in the
case of FSC, ns seems to be severely suppressed by the
pseudogap around the antinodal point. This trend is
indeed seen in the comparison of the muon penetration
depth and the SC gap measurement [45,74–76], which
causes difficulty in the comparison of our calculated
result and experimental indications in the underdoped
region. Such a complexity is expected to be small at the
optimum doping region, while the prominent materials
dependence is seen most prominently at the optimum
doping. This is the reason why we focus on the materials
dependence at the optimum doping.

M

-

M

FIG. 20. Variance extrapolated energies of Bi2201 for various
ground-state candidates [SC, charge-spin stripe (C3S3 and
C4S8), and AFM state] as a function of hole doping δ on a
L ¼ 24 square lattice. (a) Total energies per site subtracted by
F ðδÞ. All energies are subtracted by the function
F ðδÞ ¼ −15.38797 · δþ 7.79753. (b) Energy difference ΔE
for the variance extrapolated data from (a).

FIG. 21. SC order parameter in strong-coupling region for
δ ¼ 0.101 and 0.167. The lattice size is L ¼ 24. The dashed
lines are fitting FSC ∝ ðjt1j=UÞp with p ¼ 0.58 for δ ¼ 0.167 and
p ¼ 0.60 for δ ¼ 0.101.
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APPENDIX L: EFFECT OF APICAL OXYGEN
POSITION ON HAMILTONIAN PARAMETERS

We extend analysis on the effect of apical oxygen
position examined in Ref. [12]. Studies on effects of the
apical oxygen position represented by the distance dzOap to
Cu on effective Hamiltonian parameters are few [60,61,63].
In Table VII we show the Hamiltonian parameters of
Bi2201 when the apical oxygen is artificially shifted.
As is already addressed in Ref. [12], U decreases with

decreasing dzOap because of increased screening from
electrons at the apical oxygen, which is consistent with

FIG. 22. SC order parameter in the space of δ and α ¼ ð1=8.1ÞU=jt1j modified from the ab initio CaCuO2. Calculations were
performed on L ¼ 24 lattice.

FIG. 23. Momentum distribution nðkÞ in the Brillouin zone for doped CaCuO2 on a L ¼ 24 square lattice in the SC state. The doping
concentration is δ ¼ 0.028 for (a),(f); 0.045 for (b),(g); 0.101 for (c),(h); 0.125 for (d),(i); and 0.167 for (e),(j). The lower panels [(f)–(j)]
are contour plots.

TABLE VII. Ab initio single-band effective Hamiltonian for
Bi2201 when the apical oxygen is shifted. The energy unit is eV.

dzOap (Å) t1 t2 U V1 V2

2.58 −0.527 0.140 4.393 1.030 0.602
2.53 −0.513 0.159 3.994 0.837 0.447

U=jt1j jt2=t1j V1=jt1j
2.58 8.336 0.266 1.954
2.53 7.789 0.310 1.632
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the claim in Ref. [61]. In Ref. [60], jt2=t1j increases with
increasing dzOap, for instance, in the comparison of Hg1201
and Bi2201. However, it shows opposite trend in Table VII
and in the results in Ref. [12]. References [60,61] focused
on the effect of orbitals whose energies are above the Fermi
level such as Cu 4s and apical O 2pz orbitals. The
increasing dzOap makes those levels lower because farther
distance to the negative CuO2 layer charge for the apical O
2pz orbital and farther distance to the negatively charged
apical oxygen for the Cu 4s orbital makes the Madelung
potential lower. This lowering induces a larger hybridiza-
tion with the AB orbital located around the Fermi level
constructed from Cu 3dx2−y2 and in-plane O 2pz orbital
(our target band), which we call in-plane CuO2 AB orbital.
This increased hybridization especially enhances t2.
However, this is not the whole story. The effective next
nearest neighbor hopping t2 in the single-band Hamiltonian
is also altered by the effect from the bands below the Fermi
level such as 3dz orbital. Increasing dzOap makes the
lowering of the 3dz level and hence causes the decrease
in the hybridization with in-plane CuO2 AB orbital which
cancels the effect of the increased hybridization of the
orbital above the Fermi level, as was pointed out in
Ref. [63]. More precisely, the apical O 2pz and Cu 3dz
orbitals are strongly hybridized and they form bonding
and antibonding bands, and we need to consider all of
these contributions, which are taken into account quanti-
tatively in our calculations in the derivation of the
effective Hamiltonian. As a consequence, the present
estimate for t2=t1 has large difference from that in the
estimates of Ref. [60] in some cases. For instance, in the
case of Hg1201, jt2=t1j ∼ 0.36 for Hg1201 in Ref. [60],
while ∼0.20 in the present study. Although Ref. [60] is
based on complex approximations to estimate t2=t1 only
by taking into account the contribution from the band
above the Fermi level, recent standard way employs the
maximally localized Wannier orbitals and its Hamiltonian
matrix elements for the estimate of hopping, by consid-
ering all the bands contribution near the Fermi level. This
is much simpler, more straightforward, and transparent
for the estimate of the lattice fermion Hamiltonian
parameters, which are used in Ref. [12] as the basis of
our VMC calculations. In fact, recent estimates of jt2=t1j
for Hg1201 are 0.20 and 0.23 in Refs. [77,78] (in the
revised manuscript), respectively, which are consistent
with the present 0.20.
As we already mentioned in Appendix F, larger jt2=t1j

slightly but quantitatively suppresses FSC in the realistic
parameter range, which is opposite to the prediction in
Ref. [60] but is consistent with Ref. [63]. Furthermore, and
most importantly, too small dependence of optimal FSC on
jt2=t1j clarified in this paper makes the role of jt2=t1j on
FSC highly questionable. We find that the effect of the
apical oxygen position on the superconductivity is pri-
marily to control U.

APPENDIX M: COMPARISON TO APPROACH
USING MULTIBAND HAMILTONIAN

There exists recent work based on the atomic orbitals
containing Cu 3dx2−y2 and O 2pσ orbitals [79–81]. Of
course, multiorbital Hamiltonians should give essentially a
similar answer if the derivation and the solving procedure
are appropriate. On the other hand, the Hamiltonian
becomes more complex with larger number of parameters,
as it should be.
However, the antibonding band and nonbonding or

bonding band are well separated with the hybridization
gap (band center separation is ∼9 eV and the direct gap is
5–6 eV for the cases we studied in this paper). See
Appendix D of Ref. [12] for detailed analyses. In this
circumstance, we can safely start from the picture of single-
band Hamiltonian derived from the AB band of strongly
hybridized Cu 3dx2−y2 and O 2pσ orbitals only, because the
B orbitals are more or less completely filled and inactive.
See Appendix D of Ref. [12]. See also Fig. 10(b) of
Ref. [34], where the completely filled B bands are verified
for the Hg-based cuprate through all the relevant hole
densities and this is universal in the curate superconductors.
In the single AB band description, the B degrees of freedom
are downfolded and give the renormalization to the AB
orbital description. Since the AB-B hybridization gap is
large, the perturbative downfolding procedure to renorm-
alize and eliminate B degrees of freedom works well as a
good approximation [12]. This is based on the multiscale
ab initio scheme for correlated electrons (MACE) with
refined GW approximation supplemented by the level
renormalization feed back [34]. Except for the AB band,
all the bands are either well below the Fermi level or above
the Fermi level so that they can be perturbatively taken by
the partial trace summation to give renormalizations to the
AB degrees of freedom.
Of course, one can start from the three-band Hamiltonian

where the charge transfer gap and covalency are relevant
parameters. However, it should end up with this AB or B
description after the basis transformation if one focuses on
the low-energy physics in the realistic situation of the
cuprates. The effect of the parameters of the charge transfer
energy and the d-p covalency were taken into account in our
downfolding procedure from the three-band to a single-band
AB Hamiltonian in Ref. [12]. For instance, larger charge
transfer gap results in poorer screening and larger correlation
(U) as is confirmed in Ref. [12] [See the comparison of
Table IV with Tables I and II in Ref. [12] ]. Therefore, the
three-band parameters are encoded in U=jt1j and other
parameters in the AB single-band description indirectly
and systematically in a complex manner.
There exist several recent analyses based on multiband

Hamiltonian containing Cu 3dx2−y2 and O 2pσ atomic
orbitals for the cuprates or Hubbard-type models [79–81].
Three-band Hamiltonian constructed from the Cu 3dx2−y2

SCHMID, MORÉE, KANEKO, YAMAJI, and IMADA PHYS. REV. X 13, 041036 (2023)

041036-20



and O 2pσ atomic orbitals derived and listed in Table IVof
Ref. [12] shows rough consistency with the proposal by
Ref. [79], in which the authors claim stronger super-
conducting order for smaller charge transfer gap ΔExp

and larger d-p transfer txp in the notation of Ref. [12].
Naively, one would expect that smaller ΔExp makes
stronger screening on the AB band and decreases effective
U in the single-band picture, while larger txp directly leads
to larger t1. Both result in smaller U=jt1j, which appears to
contradict the statement claimed in the present paper that
larger U=jt1j leads to larger superconducting order param-
eter in the realistic parameter region. However, one needs
to be careful about the parameter region employed in
Ref. [79]. When one sees Ud (the direct on-site repulsion
between atomic d orbital) dependence of the superconduct-
ing order parameter in Fig. 2 of Ref. [79], one clearly finds
that the superconducting order parameter decreases from
Ud ¼ 10 to 18 or 14 in the energy scale of tpp, transfer
between neighboring Op orbital. When one compares the
parameters with those in Table IV of Ref. [12], and
compares with Tables I and II of Ref. [12], one notices
that Ud ¼ 10 in Ref. [79] already corresponds to the region
around the optimum of U=jt1j in the present single-band
description and further increase of Ud drives the system
into the strong-coupling region with larger U, where the
superconducting order decreases with increasing U=jt1j, as
one can see in our result in Fig. 9(a). This perfectly explains
theUd dependence betweenUd ¼ 10 and 18 in Ref. [79] as
well as the tpd ¼ txp and p level, ϵp dependences, because
larger tpd ¼ txp and smaller ϵp ¼ ΔExp both make smaller
U=jt1j, as was mentioned above, and leads to larger
superconducting order parameter in the strong-coupling
region, as is clarified in Fig. 9(a). It clarifies that the region
studied in Ref. [79] is outside of the real materials
dependence of the cuprates studied here. We further need
more detailed studies of the correspondence between
multiorbital and the present single-band description in real
materials systematically, which is left for future studies.
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