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One challenge of physics is to explain how collective properties arise from microscopic interactions.
Indeed, interactions form the building blocks of almost all physical theories and are described by
polynomial terms in the action. The traditional approach is to derive these terms from elementary processes
and then use the resulting model to make predictions for the entire system. But what if the underlying
processes are unknown? Can we reverse the approach and learn the microscopic action by observing the
entire system? We use invertible neural networks to first learn the observed data distribution. By the choice
of a suitable nonlinearity for the neuronal activation function, we are then able to compute the action from
the weights of the trained model; a diagrammatic language expresses the change of the action from layer to
layer. This process uncovers how the network hierarchically constructs interactions via nonlinear
transformations of pairwise relations. We test this approach on simulated datasets of interacting theories
and on an established image dataset (MNIST). The network consistently reproduces a broad class of
unimodal distributions; outside this class, it finds effective theories that approximate the data statistics up to
the third cumulant. We explicitly show how network depth and data quantity jointly improve the agreement
between the learned and the true model. This work shows how to leverage the power of machine learning to
transparently extract microscopic models from data.
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I. INTRODUCTION

Models of physical systems are frequently described on
the microscopic scale in terms of interactions between their
degrees of freedom. Often one seeks to understand the
collective behavior that arises in the system as a whole. The
interactions can feature symmetries, such as spatial or
temporal translation invariance. Prominent examples of
these theories can be found in statistical physics, high
energy physics, and also in neuroscience. The nature of the
interactions is often derived as an approximation of a more
complex theory.
The description of systems on the microscopic scale is

key to their understanding. In the absence of an underlying
theory, the inverse problem has to be solved: one needs to

infer the microscopic model by measurements of the
collective states. This is typically a hard problem. A recent
route toward a solution comes from studies [1–8] that
explore the link between the learned features of artificial
neural networks and the statistics of the data they were
trained on. This inspection yields insights both into the
mechanisms by which artificial neural networks achieve
stellar performance on many tasks and into the nature of the
data. In this study, we make the link between learned
parameters and data statistics explicit by studying gener-
ative neural networks.
Generative models learn the statistics which underlie the

data they are trained on. As such they must possess an
internal, learned model of data which is encoded in the
network parameters. In this work, we gain insights into the
nature of the training data by extracting the model from
the network parameters, thus bridging the gap between the
learned model and its interpretation.
One class of generative models are invertible neural

networks (INNs), also called normalizing flows. INNs are
invertible mappings trained to approximate the unknown
probability distribution of the training set [9,10]. They can

*c.merger@fz-juelich.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 041033 (2023)

2160-3308=23=13(4)=041033(24) 041033-1 Published by the American Physical Society

https://orcid.org/0000-0003-2538-8382
https://orcid.org/0000-0003-3795-5073
https://orcid.org/0000-0001-9973-9953
https://orcid.org/0000-0003-2498-0536
https://orcid.org/0000-0002-7564-7453
https://orcid.org/0000-0002-7664-916X
https://orcid.org/0000-0002-0404-8656
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.041033&domain=pdf&date_stamp=2023-11-20
https://doi.org/10.1103/PhysRevX.13.041033
https://doi.org/10.1103/PhysRevX.13.041033
https://doi.org/10.1103/PhysRevX.13.041033
https://doi.org/10.1103/PhysRevX.13.041033
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


be used to generate new samples from the same distribution
as the training set, or to manipulate existing data consistent
with the features of the training set (for example, transitions
between images [11–13]). This is achieved by mapping the
highly structured input data to a completely unstructured
latent space. The model learned by the network is expressed
through the inverse mapping, as this must generate all
interactions in the data. However, the network mapping is
typically high dimensional and depends on many para-
meters, which does not allow for a direct interpretation.
In this work, we derive interpretable microscopic theories

from trained INNs. We extract an explicit data distribution,
formulated in terms of interactions, from the trained network
parameters. These interactions form the building blocks of
the microscopic theory that describes the distribution of the
training data. Furthermore, the process of extracting the
microscopic theory makes the relation between the trained
network parameters and the learned theory explicit. We
show how interactions are hierarchically built through the
composition of the network layers. This approach provides
an interpretable relation between the network parameters
and the learned model.
We illustrate and test this framework on several examples

where the underlying theory is exactly known. We find that
the networks are able to learn nontrivial interacting theo-
ries. Furthermore, we show that theories with higher-order
interactions emerge as the network depth increases. Thus,
we show how to leverage the power of machine learning to
extract interacting models from data.
Solving inverse problems is a well-known challenge, to

which many approaches have been developed; these are
usually specific to a particular model or use discrete
variables, or both. We discuss these approaches in
Sec. V. In contrast, our approach considers continuous

variables, is not restricted to pairwise interactions, and does
not require prior knowledge of the interaction structure.
Further, the optimization of the couplings does not require
the calculation of correlation functions of the learned
theory for optimization but is done implicitly via the
mapping encoded by the network.
This paper is structured as follows: in Sec. II we

introduce the action as the central object of a theory. We
then describe how to extract the action from a trained INN
in Sec. III. Subsequently, we test this framework in several
settings in Sec. IV. Finally, we summarize and discuss the
main findings, compare our work to different previously
proposed inference schemes, and provide an outlook on
how to extend the framework in Sec. V.

II. ACTIONS IN PHYSICS

Physical theories are often formulated in terms of micro-
scopic interactions of their many constituents, the degrees of
freedom fxig1≤i≤d, whered is the number of constituents and
x describes the system’s state. The degrees of freedom
fxig1≤i≤d can be Ising spins, firing rates of neurons, social
agents, field points, or pixels of an image. The interactions of
the constituents provide a mechanistic understanding of the
system. For example, an interaction between adjacent pixels
of an image can induce these pixels to be similar to each
other, to create a color patch in the image, or to induce them to
be different, and thereby create an edge. The energy or
Hamiltonian H of the system can be written as the sum of
these interactions. One can then ask how probable it is to
observe the system in a specific microscopic state x given an
average energy hHi. The most unbiased (maximum entropy)
estimate of the probability density is then

pXðxÞ ¼
1

Z
e−βHðxÞ;

with Z the normalization factor or partition function. Here
pX is also known as the Boltzmann distribution [14]. In
statistical physics, the prefactor β is identified as the inverse
temperature.
The action SX of this system is defined as the log

probability; hence, SXðxÞ ¼ lnpXðxÞ ¼ −βHðxÞ − lnZ.
Therefore, the system is fully characterized by SX and
measurements of the system state x correspond to drawing
samples from pX. Furthermore, up to the constant prefactor
−β and the constant lnZ, the terms in the action are the
same interaction terms as those in the Hamiltonian.
Consider an action of the form

SXðxÞ ¼ Að0Þ þ
Xd
i¼1

Að1Þ
i xi þ

Xd
i;j¼1

Að2Þ
ij xixj

þ
Xd
i;j;k¼1

Að3Þ
ijkxixjxk þ � � � ; ð1Þ

FIG. 1. Learning actions from data. We observe a physical
system of interacting degrees of freedom (gray dots), whose
precise interactions are unknown (shaded areas). We train a neural
network on measurements of the system. The network learns in an
unsupervised fashion an estimate of the distribution of training
data. We extract the action from the network parameters layer by
layer, using a diagrammatic language. The final action coefficients
AðkÞ represent the learned interactions (pink nodes).
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where the coefficients AðkÞ are tensors of rank k and
dimension d. Without loss of generality we choose the

AðkÞ to be symmetric tensors, AðkÞ
i1…ik

¼ AðkÞ
Pði1;…;ikÞ for any

permutation P of the indices (for example, a general matrix

Að2Þ and its symmetrized equivalent ¯Að2Þ ¼ ðAð2Þ þ
ðAð2ÞÞT=2Þ lead to the same quadratic polynomial: xTAð2Þx ¼
xT ¯Að2Þx for all x∈Rd). These coefficients encode the
coordination between the different degrees of freedom xi.

In general, we refer to a term of typeAðkÞ
i1;…;ik

xi1 � � � xik , as a k-
point interaction, since this term describes a coaction of k
degrees of freedom for i1;…; ik ∈ f1;…; dg all unequal. In
this work, we focus exclusively on actions of the form of
Eq. (1), which are suitable only for describing classical fields
xi, as the fields and the action coefficients are tensors and
scalars, not operators. However, we are not limited to
equilibrium statistical mechanics: the samples could as well
stem from a time-dependent process; in this case, the action
describes the measure on a path, which is allowed to come
from a nonequilibrium system. Furthermore, even for quan-
tum systems where the interactions are exactly known, a
renormalized classical theory is sometimes sought to effec-
tively describe the influence of quantum fluctuations [15,16].
Notation. In the following, we use the notation u⊗k for

the outer product of k instances of a tensor u,

u⊗k ¼ u ⊗ u ⊗ � � � ⊗ u|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
k times

;

and TðkÞ · ðuÞ⊗l for l ≤ k to denote the contraction of the
first l indices of a rank k tensor AðkÞ with the first index of
each tensor u:

�
AðkÞ · ðuÞ⊗l

�
β1;…βl;ilþ1;…;ik

¼
X
i1;…;il

AðkÞ
i1;…;ik

ui1β1 � � � uilβl ;

with multi-indices β1;…; βl whose rank depends on the
rank of u. In the special case that u is a vector, the indices
β1;…; βl vanish from the expression. If additionally k ¼ l,
the result is a scalar. Hence, Eq. (1) becomes

SXðxÞ ¼ Að0Þ þ Að1Þ · xþ Að2Þ · ðxÞ⊗2 þ Að3Þ · ðxÞ⊗3 þ � � � :

We symmetrize a tensor by averaging over the set PðαÞ
of all permutations of the multi-index α:

ðsym AðkÞÞα ¼ jPðαÞj−1
X

π∈PðαÞ
AðkÞ
π ;

this operation does not change the result of polynomial
contractions: AðkÞ · ðxlÞ⊗k ≡ ðsymAðkÞÞ · ðxlÞ⊗k. Thus the
choice of symmetric tensors does not restrict the expres-
sivity of SX.

A typical objective in statistical physics is understanding
how the microscopic interactions AðkÞ determine the macro-
scopic properties of the system. In this work, we take a
different approach: Given samples from a system with
unknown microscopic properties, we extract the inter-
actions. Generative models such as INNs are a powerful
tool to approximate data distributions pX [9,10,13,17]. In
the next section, we demonstrate how to extract the
interaction coefficients AðkÞ from trained networks.

III. LEARNING ACTIONS WITH INVERTIBLE
NEURAL NETWORKS

In this section, we show how to extract an action of the
form Eq. (1) by using a special class of generative neural
networks, namely invertible neural networks. These neural
networks learn a data distribution in an unsupervised
manner. Each sample from the dataset is hence viewed
as drawn independent identically distributed (IID) from an
unknown distribution and each layer of the network is a
mapping between different representations of the same
random variables. Intuitively, the network bends and
stretches the space in which the random variables lie until
their distribution in the new space becomes particularly
simple, e.g., Gaussian. We will describe this process via a
series of action coefficients that characterize the distribu-
tions after each network layer. Thus the transformation of
the space is encoded in the transformation of the action
coefficients. This procedure is illustrated in Fig. 1. We first
describe the training objective and architecture of the
network, before we move on to the coefficient transforms.
Invertible neural networks are used to learn the data

distribution pX from a dataset D of training samples [9].
They implement a bijective mapping fθ∶ Rd → Rd, where
the network output z ¼ fθðxÞ is often referred to as the
latent variable. The parameters θ of the network are trained
such that the latent variables follow a prescribed target
distribution. We follow a common choice for this latent
distribution as a set of d uncorrelated centered Gaussian
variables with unit variance [9],

pZðzÞ ¼ exp

�
−
1

2
zTz −

d
2
ln 2π

�
; ð2Þ

where zTz ¼ P
d
i¼1 z

2
i denotes the Euclidean scalar product.

Given pZ, the probability assigned to a specific input is
given by the change of variables formula,

pθðxÞ ¼ pZ½fθðxÞ�j det JfθðxÞj; ð3Þ

which depends only on the network mapping fθ and its
Jacobian Jfθ . The training objective is to minimize the
negative log-likelihood,
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LðθÞ ¼ −
X
x∈D

lnpθðxÞ ¼ −
X
x∈D

SθðxÞ; ð4Þ

where we used that lnpθ is precisely the action Sθ of the
learned distribution.
In this manner, we optimize Eq. (3) to approximate the

unknown underlying data distribution using stochastic
gradient descent. Since the target distribution, Eq. (2), is
a set of independent Gaussians, the mapping fθ∶ x ↦ z of
the network aims to eliminate cross-correlations and
higher-order dependencies of the components of the latent.
On the level of the action, this means that all k-point
interactions with k ≥ 3 between components of z must
vanish. In turn, the inverse mapping defines a generative
process that induces interactions in the learned distribution
from a noninteracting latent theory.
We now define the architecture that allows us to obtain a

polynomial action Sθ from the network parameters θ. The
network is composed of multiple layers l; every layer
mapping fl;θ∶ Rd → Rd is an invertible function. For each
layer, we define an output action SX;lþ1, which transforms
into the input action SX;l via the change of variables
formula. Using Eq. (3) we compute the input action SX;l
of each layer given the output action SX;lþ1,

SX;lðxlÞ ¼ SX;lþ1½flðxlÞ� þ ln j det JflðxlÞj; ð5Þ

starting with the polynomial action of the latent variable
SZðyÞ ¼ lnpZðyÞ. We construct all layer mappings fl such
that a polynomial action SX;lþ1 generates a polynomial
action SX;l in Eq. (5) and thus by induction we obtain a
polynomial learned input action Sθ.
Each layer mapping fl is composed of a linear mapping

Ll and a nonlinear mapping ϕl:

flðxlÞ ¼ ϕl ○ LlðxlÞ: ð6Þ

In the overall architecture, linear and nonlinear mappings
are therefore stacked alternately (see Fig. 2). After the last

nonlinear transform ϕL, we add an additional linear trans-
form LLþ1, such that the network architecture begins and
ends with a linear transform.
The transform of the action via a single layer, Eq. (5),

similarly decomposes into two steps, with hl ¼ LlðxlÞ the
intermediate activation:

SH;lðhlÞ ¼ SX;lþ1½ϕlðhlÞ� þ ln j det Jϕl
ðhlÞj; ð7Þ

SX;lðxlÞ ¼ SH;l½LlðxlÞ� þ ln j det JLl
ðxlÞj: ð8Þ

The transformations from SX;lþ1 to SH;l, and from SH;l to
SX;l, are therefore determined by ϕl and Ll, respectively,
which we express schematically as

SX;lþ1 ⟶
ϕl SH;l ⟶

Ll SX;l: ð9Þ

The remainder of this section is concerned with expressing
Eq. (9) in terms of transforms of the action coefficients.
Since the actions are polynomials, at each step we can

write SX;l; SH;l in terms of coefficients fAðkÞ
l gk; fBðkÞ

l gk:

SX;lðxlÞ ¼
XKl

k¼0

AðkÞ
l · ðxlÞ⊗k; ð10Þ

SH;lðhlÞ ¼
XKl

k¼0

BðkÞ
l · ðhlÞ⊗k; ð11Þ

where the sum runs over the ranks k of the coefficient
tensors. Here Kl is the degree of the polynomial in hl,
which depends on the layer index l. We show in the
following that the rank of the polynomial does not change
between SX;l and SH;l in the latter step of Eq. (9). The
coefficients further uniquely determine the action.
Therefore, Eq. (9) is equivalent to the coefficient mapping:

fAðkÞ
lþ1gk ⟶

ϕl fBðkÞ
l gk ⟶

Ll fAðkÞ
l gk: ð12Þ

FIG. 2. Architecture and coefficient order. Invertible network composed of multiple layers. L1;…; LLþ1 denote linear fully connected

layers, ϕ1;…;ϕL are quadratic nonlinear activation functions. Coefficients BðkÞ
l of the action SH;l of preactivations hl in layer l of order

k; coefficients AðkÞ
l of the action SX;l prior to linear layer l of order k.
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In Fig. 2 we illustrate the order in which the coefficients are
transformed.
We now derive the recursive equations for the coefficient

transforms, beginning with the linear mapping.
Linear mapping. The linear mapping is given by

hl ¼ LlðxlÞ ¼ Wlxl þ bl; ð13Þ

with Wl; bl ∈ θ. Combining Eqs. (8) and (11) yields

SX;lðxlÞ ¼
X
k

BðkÞ
l · ðWlxl þ blÞ⊗k þ ln j detWlj: ð14Þ

We find the transformed coefficients AðkÞ
l by expanding

Eq. (14) and ordering them by powers in xl. Higher-rank
coefficients of SH;l contribute to lower-rank coefficients of
SX;l via the contraction with the bias bl. All remaining

indices of BðkÞ
l must then be contracted with the first index

of Wl:

AðkÞ
l ¼

�XKl−k

k0¼0

�
kþ k0

k0

�
Bðkþk0Þ
l · ðblÞ⊗k0

�
· ðWlÞ⊗k

þ δk0 ln j detWlj: ð15Þ

The combinatorial factor ðkþk0
k0 Þ arises due to the symmetry

of the coefficients BðkÞ: since they are symmetric under
permutations of the indices, we only need to fix the number
of contractions k0 with the bias term bl and count all ðkþk0

k0 Þ
possible combinations of k0 indices in BðkÞ. Since Ll is
linear, SX;l and SH;l both have the same rank Kl.
We illustrate Eq. (15) for the final linear mapping of the

network, the first coefficient transform that starts on the
known latent space coefficients fBðkÞ

Lþ1gk (on the far right in
Fig. 2). The action of the latent distribution given in Eq. (2)
describes a centered Gaussian with unit covariance; its first

three coefficients are therefore Bð0Þ
Lþ1 ¼ −ðd=2Þ ln 2π,

Bð1Þ
Lþ1 ¼ 0, and Bð2Þ

Lþ1 ¼ − 1
2
1, and all coefficients with rank

k ≥ 3 being zero.
The transformed zeroth-rank coefficient Að0Þ

Lþ1, which
ensures that the action stays normalized, reads

Að0Þ
Lþ1 ¼ −

d
2
ln 2π þ Bð2Þ

Lþ1 · ðbLþ1Þ⊗k þ ln j detWLþ1j

¼ −
d
2
ln 2π −

jbLþ1j2
2

þ ln j detWLþ1j: ð16Þ

The bias in the linear mapping shifts the mean of the
probability distribution, which is induced by the first-order
coefficient:

Að1Þ
Lþ1 ¼

��
2

1

�
Bð2Þ
Lþ1 · ðbLþ1Þ⊗1

�
· ðWLþ1Þ⊗1

¼ −WT
Lþ1bLþ1: ð17Þ

The second-rank coefficient is transformed in accordance
with the rotation and scaling of the space due to WLþ1:

Að2Þ
Lþ1 ¼ −Bð2Þ

Lþ1 · ðWLþ1Þ⊗2 ¼ −
1

2
WT

Lþ1WLþ1: ð18Þ

In the case of actions with higher-order interactions
k ≥ 3, the coefficient transform Eq. (15) requires the
computation of many more terms. To simplify the coef-
ficient transforms, we therefore employ a diagrammatic
language. A common practice in statistical physics is to
represent kth-order interactions as vertices with k legs [18].
Accordingly, we here express tensors of rank k as vertices
with k legs and the contraction between tensors by an
attachment of legs. This facilitates the computation of
combinatorial factors, which can be read off from the
diagram topology. The diagrammatic representations of
Eqs. (16), (17), and (18) read:

ð19Þ

ð20Þ

ð21Þ

A complete presentation of the diagrammatic method is
provided in Appendix A.
Nonlinear mapping. We follow Dinh et al. [9] to define

an invertible nonlinear mapping: we split the activation
vectors and activation functions into two halves (if the
dimension d is uneven, we take the first ⌈d=2⌉ entries of hl
to be in h1l ), denoting them by hl ¼ ð h1l

h2l
Þ and ϕl ¼ ð ϕ1

l

ϕ2
l
Þ.

The first half is passed onto the next layer unchanged; we
then add a nonlinear function ϕ̃ðh1l Þ of the first half onto the
second half:

xlþ1¼ϕlðhlÞ¼
�
ϕ1
l ðhlÞ

ϕ2
l ðhlÞ

�
¼
�
h1l
h2l

�
þ
�

0

ϕ̃lðh1l Þ
�
: ð22Þ

We choose a quadratic nonlinearity,

ϕ̃lðh1l Þ ¼ χ̃l · ðh1l Þ⊗2; ð23Þ
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where χ̃l ∈Rbd=2c×⌈d=2⌉×⌈d=2⌉ is a third-order tensor whose
coefficients are trained, χ̃l ∈ θ. In the following, we will use
a shorthand notation ϕlðhlÞ ¼ hl þ χl · ðhlÞ⊗2 with χ̃l
being the nonzero part of χl.
Equation (23) is the most elementary nonlinearity which

is compatible with a polynomial action. Through the
composition of L layer transforms fl, the network mapping
becomes a polynomial of order 2Lþ1. The advantage of
decomposing such a transform in terms of multiple appli-
cations of Eqs. (13) and (22) is a particularly simple form of
the update equations for the coefficients.
Splitting the nonlinear mapping (22) makes it trivially

invertible,

hl ¼ ϕ−1
l ðxlþ1Þ ¼

�
x1lþ1

x2lþ1

�
−
�

0

ϕ̃lðx1lþ1Þ
�
; ð24Þ

as one can observe by evaluating the composition of
Eqs. (22) and (24) on an arbitrary vector hl.
We compute the action SH;l from SX;lþ1 using Eq. (8).

Since the Jacobian Jϕ;l of ϕl is a triangular matrix with
ones on the diagonal, we have ln j det Jϕ;lj ¼ 0. Therefore,
the transform of the action induced by ϕl is just the
composition

SH;lðhlÞ ¼ SX;lþ1

�
hl þ χl · ðhlÞ⊗2

�

¼
X
k

AðkÞ
lþ1 ·

�
hl þ χl · ðhlÞ⊗2

�
⊗k
: ð25Þ

Equation (25) yields a polynomial of orderKl ¼ 2Klþ1. We
expand the products in Eq. (25) and reorder the terms to
obtain the transform of the action coefficients. Since each
factor of χl increases the rank of the resulting tensor by one,

lower-order coefficients Aðk−k0Þ
lþ1 contribute to the coefficient

BðkÞ
l via

�
k − k0

k0

�
Aðk−k0Þ
lþ1 · ðχlÞ⊗k0 ;

with k > k0 ≥ 1. Each contraction of Aðk−k0Þ
lþ1 with χl

consumes one index in Aðk−k0Þ
lþ1 and the first index in χl,

but adds two indices to the resulting tensor. As a result, for
each χl in the contraction, the rank is raised by one.
Therefore, k0 factors of χl are needed to increase the rank
from k − k0 to k. The factor ðk−k0k0 Þ arises because there are
ðk−k0k0 Þ ways of choosing k0 of the k − k0 indices of the tensor
to which to contract the factors of χl. However, contractions
of this type are no longer symmetric tensors because the
resulting kth-order tensor has 2k0 indices stemming from χl
and the remaining ones from Aðlþ1;k−k0Þ. To express this
result as a symmetric tensor, we symmetrize the result. This
yields

Bðk≤1Þ
l ¼ AðkÞ

lþ1;

Bðk>1Þ
l ¼ sym

Xk
k0¼0

�
k − k0

k0

�
Aðk−k0Þ
lþ1 · ðχlÞ⊗k0 : ð26Þ

Diagrammatically, the contraction with χl is represented
by splitting the legs of a vertex. By counting the number of
splits we can therefore infer the number of factors χl of any
diagram. To illustrate this, we here show the mapping

fAðkÞ
Lþ1gk →

ϕL fBðkÞ
L gk, which generates interactions up to the

fourth order. The zeroth- and first-rank coefficients remain

unchanged, Bð0Þ
L ¼ Að0Þ

Lþ1 and Bð1Þ
L ¼ Að1Þ

Lþ1, as the A
ð0Þ
Lþ1 has

no legs to split; the splitting of legs in Að1Þ
Lþ1 gives a

contribution to Bð2Þ
L :

ð27Þ

This diagrammatic expression corresponds to

Bð2Þ
L ¼ Bð2Þ

Lþ1 · ðWLþ1Þ⊗2

þ sym
�h

Bð2Þ
Lþ1 · bLþ1

i
·WLþ1

�
· χL:

No further diagrams are generated from Að1Þ
Lþ1, as all legs are

split. The higher-order interactions Bð3Þ
L ; Bð4Þ

L emerge

through the splitting of legs in Að2Þ
Lþ1:

ð28Þ

ð29Þ

In tensor notation, the same expressions read

Bð3Þ
L ¼

�
2

1

�
sym

h
Bð3Þ
Lþ1 · ðWLþ1Þ⊗2

i
· χL;

Bð4Þ
L ¼ sym

h
Bð3Þ
Lþ1 · ðWLþ1Þ⊗2

i
· ðχLÞ⊗2:

This exemplifies how the interactions are built hierarchi-
cally as further layer transforms contribute contractions
with Wl≤L, bl≤L, and χl<L, to previous coefficients. See
Appendix A for further details.
The degree Kl of the action doubles with each layer,

starting from the output action with degree 2. Networks of
depth L thus generate actions of degree 2Lþ1. Through the
composition of several nonlinear mappings like Eq. (22),
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the prefactors χl of later layers will be exponentiated
alongside their activations. Increasing the number of
layers will therefore generate terms of arbitrarily high
degree in both x and in the prefactors. For example, the
contribution of χ1 to xL will be of order ðχ1Þ2L−1. As a
result, large values in χl are unfavorable as they make the
activations diverge. In practice, we find that the entries of
the tensors χl of trained networks are typically small,
jðχlÞijkj ≪ 1.
We note that all coefficients with rank k > 2 must

contain at least k − 2 factors of χl, where the different
factors in general originate from different layers. These
terms of rank k > 2 constitute the non-Gaussian part of
the action. Therefore, for applications where the data can
be described as a perturbed Gaussian, small entries in χl
are sufficient. The higher the rank of the coefficient, the
smaller its entries. Consequently, we place a cutoff of
two on the number of factors of χl in the action
coefficients, thus ignoring negligible contributions. This
effectively imposes a maximum rank of k ¼ 4 onto the
action coefficients.
Coefficients of high rank can be numerically intractable

for large dimension d, as their size grows as OðdkÞ. To
mitigate this, we make use of Eq. (23) to write the
coefficients in a decomposed form, which speeds up the
computations and allows for tractable reductions in the size
of the stored tensors. We specify this decomposition in
Appendix B.
We began this section by equating the transform of the

action through the network to the transform of its coef-
ficients, decomposed as alternating linear and nonlinear
transforms. We then make these transforms explicit in
Eqs. (15) and (26). Given a trained network, these expres-
sions allow us to extract the learned action through the
iterative application of the coefficient transforms from the
last layer to the first. In this way, we can describe the data
distribution constructively, by tracking how the latent
distribution is transformed through successive network
layers.
Equation (26) shows how higher-rank coefficients hier-

archically emerge through repeated contractions with the
parameters χL;…; χ1 of the nonlinear mappings and
WL;…;W1; bL;…; b1 of the linear mappings of different
layers. In the data space, these coefficients correspond to
interactions; therefore this approach establishes an explicit
relation between network parameters θ and the character-
istic properties of the learned distribution pθ. In the next
section, we test this method in several cases with known
ground-truth distributions.

IV. EXPERIMENTS

In this section, we will test the learning of actions in four
different settings. In Sec. IVA, we use a randomly
initialized teacher network to generate samples. The teacher

network has the same architecture as the one described in
Sec. III, enabling us to compute the ground-truth action.
In Sec. IV B, the ground-truth action coefficients them-
selves are generated randomly, leading to multimodal data
distributions. In Sec. IV C, we move to a physics-inspired
model system with interactions on a square lattice of
d ¼ 102 sites. Finally, in Sec. IV D, we apply our method
to the MNIST dataset, a standard benchmark dataset in
image classification.

A. In-class distributions

First, we test whether we can recover the action
coefficients of a known action from samples drawn from
the respective distribution. We initialize a teacher network
with random weights and compute the corresponding
action coefficients fTðkÞgk≤4 with the method outlined in
Sec. III. We then generate a training set D by sampling
Gaussian random variables z ∼ pZ and apply the inverse
network transform of the teacher on them; the elements of
D are therefore samples from the teacher distribution. Since
the teacher distribution is by construction part of the set of
learnable student distributions, we refer to this as an in-
class distribution. We then initialize a student network to
identity Wl ¼ 1, bl ¼ 0, χl ¼ 0 ∀ l and train it on the
training setD. This choice for the initialization ensures that
all variability in the trained result is due to the training data
and the sequence of random batches drawn during training.
After training, we extract the student coefficients fAðkÞgk≤4
as described in Sec. III. The student network has learned the
teacher distribution if the associated action coefficients
match, TðkÞ ¼ AðkÞ ∀ k.
Note that TðkÞ ¼ AðkÞ ∀ k does not imply that the

parameters θ of the teacher and student network are equal.
Because of the rotational invariance of the latent space, an
additional linear transform which rotates the latent space z
does not result in a change in the learned action. Hence,
TðkÞ ¼ AðkÞ ∀ k implies only that the two networks learn
the same statistics.
We compare teacher and student coefficients in Fig. 3 for

two different training set sizes jDj. For a sufficiently large
dataset, the student learns the teacher coefficients arbitrarily
well: In Figs. 3(a)–3(d), the coefficient entries coincide
while the network parameters θ do not align (see
Appendix C for a comparison between network parame-
ters). This confirms that the extracted coefficients are
indeed characteristic of what the network has learned, as
opposed to the parameters. Given sufficient samples, we
therefore find that the method recovers the correct action
coefficients.
For a smaller training set with jDj ¼ 103, we find that the

student network overfits the training set. To see this, we
compute the test loss LtestðθÞ on a test set of 104 samples. In
Fig. 3(e) the test loss is significantly larger than the training
loss. This is reflected in deviating coefficient entries in
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Figs. 3(a)–3(d). To quantify this disparity, we compute the
cosine similarity between the tensors,

cos∠ðTðkÞ; SðkÞÞ ¼ jPαT
ðkÞ
α SðkÞα jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

αðSðkÞα Þ2PαðTðkÞ
α Þ2

q ; ð30Þ

where the sum runs over all independent indices α,
excluding duplicate tensor entries which are equal due to
the symmetry. The cosine similarity ranges between zero
and one; for perfect alignment it is equal to one. Figure 3(f)
shows how the cosine similarity between teacher and
student coefficients increases with the training set size.
The lower-order coefficients Tðk≤2Þ are approximated well
even in the case of little training data. The learned higher-
order coefficients clearly deviate from the teacher coef-
ficients in this case [see Figs. 3(c)–3(f)], indicating that the
higher-order coefficients, corresponding to higher-order
interactions in the teacher distribution, can only be con-
veyed through larger datasets.
Learning rules in coefficient space. Higher-order inter-

actions depend on higher-order statistics of the data
distribution, which must be expressed through a limited
amount of samples. We train the network using stochastic
gradient descent (SGD), which updates all parameters of
the network at training time t according to the dependence
of the loss L on a subset of training data Dt ⊂ D. In SGD,
the update of a single weight Δθi ¼ θiðtþ 1Þ − θiðtÞ is

Δθi ¼ −η
∂

∂θi
LDt

¼ η
∂

∂θi
hSθðxÞiDt

; ð31Þ

where η is the learning rate and h·iDt
denotes the average

over the current training batchDt. In Appendix D, we show

that this leads to a noisy update in the coefficients AðkÞ for
k ≥ 1 of

ΔAðkÞ
α ¼ η

�
ξðkÞt þ hðx⊗kÞαiD − hðx⊗kÞαiA

�X
i

�
∂AðkÞ

α

∂θi

�2

þ η
X
l;αl≠α

�
ξðlÞαl;t þ hðx⊗lÞαliD − hðx⊗lÞαliA

�

×
X
i

∂AðkÞ
α

∂θi

∂AðlÞ
αl

∂θi
þOðΔθ2Þ; ð32Þ

where h·iD is the empirical average over all samples in the
full training setD, and h·iA is the expectation with regard to
the current estimate of the density depending on learned

coefficients fAðkÞgk. The random variable ξðkÞt encodes the
difference between the mean estimated on the whole
training set and a training batch. One can show that on
average over all batches, the noise vanishes, hξðkÞi ¼ 0, and
the variance also decreases with the training set size:

⟪ξðkÞ⟫ ¼ ðhx⊗2kiD − ðhx⊗kiDÞ⊗2ÞjDtj−1

(see, e.g., Ref. [19]). Smaller batch sizes jDtj therefore
increase the noise in the updates of the action coefficients.
The expected update hΔAðkÞ

θ i vanishes on average over
all batches when the learned moments and the moments on
the training set match: hx⊗kiD ¼ hx⊗kiA. However, for any
finite training set, there will furthermore be a deviation
between hx⊗kiD and the true moment hx⊗kiT of the teacher
network. This expected difference scales as

hx⊗kiD − hx⊗kiT ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hx⊗2kiT − ðhx⊗kiTÞ⊗2�jDj−1

q
:

Therefore, there is a batch-size-dependent variability in the
coefficient updates as well as a bias induced by the limited
amount of training data. This drift introduces a bias in the
training, leading to overfitting. For many distributions, both
hx⊗kiD − hx⊗kiT and ⟪ξðkÞ⟫ increase with k [20,21]. In this
case, both the bias and the variability of the training
procedure increase with k, explaining why it is harder to
learn higher-order statistics.

B. Out-of-class distributions

In the previous section, we demonstrated that invertible
networks accurately learn any distribution generated by the
image set of inverse mappings f−1θ . However, it is interest-
ing to investigate how our approach deals with distributions
outside this set. A first step to this end lies in understanding
the nature of mappings employed by the invertible network.
The proposed network architecture belongs to the class

of volume-preserving networks [9,10]: the additive
nature of the nonlinearity in Eq. (22) leads to a constant
Jacobian determinant det JfθðxÞ. The Jacobian determinant

(a) (b) (e)

(c) (d) (f)

FIG. 3. Teacher-student coefficient comparison for varying
training set sizes D ¼ jDj. Both teacher and student have depth
L ¼ 1. (a)–(d) Student coefficients AðkÞ over teacher coefficients
TðkÞ up to fourth order forD ¼ 103 in green andD ¼ 105 in pink.
(e) Training loss (full lines) and test loss (dashed lines) over
training steps. (f) Cosine similarity of coefficients over number of
training samples.
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det JfθðxÞ of a mapping states how the image of the
mapping is locally stretched. Since the only contribution
to j det JfθðxÞj comes from the linear transform, Eq. (13),
the Jacobian determinant is constant in x. Therefore, this
stretch is homogeneous everywhere. As a result, an
invertible network with j det JfθðxÞj ¼ const and a
Gaussian target distribution pZ can only learn unimodal
distributions pθ, i.e., distributions with only one maximum.
To see this, we compute the gradient of Eq. (3) with respect
to x:

∇xpθðxÞ ¼ 0 ⟺
j det Jfθ ðxÞj¼const>0∇fθpZ½fθðxÞ� ¼ 0:

This shows that the learned input distribution pθðxÞ has an
extremum at x0 if and only if the target distribution has an
extremum at fθðx0Þ. Since pZ has a single extremum, so
does pθ. This limitation is not caused by the choice of a
polynomial activation function, but a consequence of the
special structure of the Jacobian of the nonlinearity Eq. (22)
and the latent distribution pZ.
The method can be generalized to incorporate multi-

modal distributions by the choice of a multimodal latent
distribution. For example, for pZ a Gaussian mixture model
with m components, the networks learn an interacting
theory with m sets of coefficients Aðk;mÞ, one set for each of
the m modes of the learned distribution. Alternatively, we
can directly parametrize lnpZ by a multimodal polynomial.
Then the computation of the coefficients simply starts with
a different set of coefficients for the latent distribution, but
the same update equations as derived for the single mode
Gaussian case apply.
An effective unimodal model, however, may also prove

useful. While volume-preserving invertible networks with
unimodal latent distribution pZ cannot learn a multimodal
distribution pθ exactly, they can learn an approximation. In
this section we show how volume-preserving networks can
therefore be used to extract an effective theory in the
multimodal case.
To avoid tying results to a particular choice of

distribution, we generate actions SR with random coeffi-
cients fRðkÞgk≤3. A diagonal negative action coefficientRð4Þ

is then added to obtain a normalizable distribution. We
ensure that the corresponding distributions are multimodal
and that their terms are balanced in strength using a sampling
method for the coefficients that is detailed in Appendix E.
Although the action SR is an unnormalized log-probability
[we do not compute the constant term in SR which ensuresR
dx exp½SRðxÞ� ¼ 1 as it is not needed for the sampling

method],we can then sample a training setD using aMarkov
chainMonte Carlo (MCMC) sampler; for this work we used
a Hamiltonian Monte Carlo [22–24] sampler implemented
in PyMC3 [25]. (For details see Appendix F.)
Given a known random action SR and a corresponding

training set D of generated samples, we train networks of

different depths and compare their action coefficients. In
Fig. 4(a) we show a two-dimensional example of such a
randomly generated distribution as well as the learned
monomodal approximation. Figures 4(b)–4(d) show com-
parisons of the true compared to the learned coefficients in
the d ¼ 10 dimensional case. As expected, some action
coefficients cannot be learned correctly. The largest devia-
tions from the true coefficients occur in the diagonal entries

Að1Þ
i ; Að2Þ

ii ;…. However, we observe that many action
coefficient entries that have at least two different indices

[shown as Að2Þ
off-diagin Fig. 4(d)] recover approximately the

correct value.
Using the network to generate samples, which hence

belong to the learned distribution pθ, we compare the
cumulants of the two distributions. The cumulants of a
distribution can be computed from its moments and vice
versa. For example, the first three cumulants are equal to the
mean, the variance, and the centered third moment of a
distribution. Cumulants are better suited than moments to
compare two different distributions because they contain
only independent statistical information.We distinguish kth-
order cumulants frommoments by using single brackets hxki
for moments and double brackets ⟪xk⟫ for cumulants.
Despite the disparity in the coefficients, we find that the

cumulants agree up to third order [compare Figs. 4(e)–4(g)].
The learned distribution is therefore an effective theory that
reproduces the statistics of the system beyond the Gaussian
order, since in a Gaussian model the third-order cumulants
are zero. Equation (32) shows that the action coefficient AðkÞ
converges in expectation either when the moments of the
training set and the learned distribution coincide,
hx⊗kiD ¼ hx⊗kiA, or when the network cannot tune the
coefficients in the relevant direction. Therefore the training
aims tomatch themoments hx⊗kiD; hx⊗kiA (and, thereby, the
cumulants)within the bounds of the flexibility allowedby the
network architecture. We find that the higher-order cumu-
lants are learned later in training [see Fig. 4(h)].
Mulitmodality often appears as a result of symmetry

breaking. Consider the classical example of an Ising model
[18]. The action of this system is symmetric under a global
flipping of all spins. Below the critical temperature, two
modes appear, one for positive and one for negative net
magnetization. However, in a physical system, this multi-
modality cannot be observed, because the probability of a
global sign flip approaches zero as the system size
increases. Furthermore, external factors such as coupling
to the environment or a measurement device will also break
the symmetry. In such a setting, the network can never-
theless find an informative theory, characterizing the
observed monomodal distribution.

C. Interaction on a lattice

Physical theories often feature a local structure of the
interactions, for example, a lattice structure. We here
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construct such a system by introducing nearest-neighbor
couplings on a square lattice of d ¼ 10 × 10 sites with
periodic boundary conditions. Furthermore, we introduce
self-interaction terms of second and fourth order. The
resulting action is symmetric under a global sign change
and under translations along the lattice. In an experiment,
such symmetries may be broken by the coupling of the
system to an external environment. We model this breaking
of both symmetries by introducing a heterogeneous exter-
nal field which introduces a bias to each degree of freedom.
The action therefore reads

SIðxÞ ¼ −β
�
1

2

X
i;j

xiðr0δij − ΛijÞxj þ
X
i

ðhixi þ ux4i Þ
�

≕ Ið1Þ · xþ Ið2Þ · ðxÞ⊗2 þ Ið4Þ · ðxÞ⊗4; ð33Þ

where the IðkÞ are the coefficients of the true distribution
and we have omitted the normalization. Here β serves as an
inverse temperature. The matrix Laplacian Λij ¼
−δij degðiÞ þ aij with aij the adjacency matrix (aij ¼ 1

if i, j are connected and aij ¼ 0 else) constitutes an
interaction with the degðiÞ ¼ 4 nearest neighbors on the
lattice. Both the diagonal part of Λ and r0 encode a second-
order self-interaction.

The fourth-order term is another self-interaction −βux4i .
This model can be considered the lattice version of the
effective long distance theory of an Ising model in two
dimensions [18]. We illustrate the network topology and
external field in Fig. 5(a).
As in Sec. IV B, we sample from this distribution using

an MCMC sampler (see Appendix F for details) and train
networks of different depths L. In Figs. 5(b)–5(d) we
compare the learned action coefficients AðkÞ to the corre-
sponding target values IðkÞ. We find good agreement for

Að1Þ and the off-diagonal values Að2Þ
ij ; i ≠ j, independent of

network depth. The external field and nearest-neighbor
coupling is therefore recovered accurately. The self-inter-

action Að2Þ
diag is typically lower than the target value while the

fourth-order self-interaction Að4Þ
diag is typically larger. Since

both parameters control the widths of the distributions, the

slightly lower Að2Þ
diag can compensate for the too small

magnitude of Að4Þ
diag, producing an effective theory.

Nevertheless, the higher-order coefficients Aðk≥3Þ of the
learned theory are relevant. We show in Figs. 5(f)–5(h) that
the first, second, and third cumulants of the learned and true
distribution approach each other as the network depth
increases. A Gaussian approximation of SI would only
tune Að1Þ and Að2Þ with Aðk≥3Þ ¼ 0 to match the first and

(a) (e)

(h)

(f) (g)

(b) (c) (d)

FIG. 4. Learning an effective monomodal theory. (a) Two-dimensional example of random density with multiple maxima. White
lines are level lines of learned distribution for a five layer network. All other panels show results from a d ¼ 10 dimensional dataset.
(b)–(d) Learned over true coefficients for a three layer network on a d ¼ 10. We distinguish diagonal tensor entries from off-diagonal
ones, where at least two indices differ. (e)–(g) Learned over true cumulants, computed from samples. Error bars are typically smaller
than marker size. (h) Dissimilarity of true and learned cumulants: 1 − cos∠ð⟪x⊗k⟫A;⟪x⊗k⟫RÞ over training steps. We record the
cumulants at logarithmically spaced intervals during training. The curves are then smoothed by averaging over ten adjacent recording
steps. Shaded areas show the variation due to the estimation of the cumulants from samples. Dots indicate training stage of cumulants
shown in (e)–(g).
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second cumulants shown in Figs. 5(f) and 5(g). As in the
multimodal case, therefore, we learn an effective non-
Gaussian theory. The effective theory may result from the
depth of the network being small in comparison to the
dimensionality of the system to tune all higher-order
coefficients Aðk≥3Þ. The number of independent entries in
the action coefficients up to the fourth order is Oðd4Þ,
roughly 4.6 × 106 for the case of d ¼ 102, with by far the
most number of entries in the highest-order coefficient Að4Þ.
In contrast, the number of free parameters of a single layer
is ⌈d=2⌉3 in χ̃l, d2 in Wl, and d in bl, so all in all
⌈d=2⌉3 þ dðdþ 1Þ. Although the coefficients do not
depend linearly on the network parameters, this gives a
rough estimate of the required depth L ¼ 34 of the net-
work, at which the number of free parameters in the
network and in the coefficients coincide. Since the number
of entries in the coefficients grows with Oðd4Þ, but the
number of free parameters in the network is only OðLd3Þ,
the depth required to tune all coefficient entries grows with
d. [Analogously, one can work out that one needs a network
of depth L ¼ Oðdk−3Þ to learn all interaction coefficients of
order k exactly by using quadratic nonlinearities as defined
here.] Below this depth, it may well be that the flexibility of
the network is too small to tune all fourth-order action
coefficients. Even though hðx⊗kÞαiD − hðx⊗kÞαiA in
Eq. (32) is likely nonzero then, the coefficients may still
reach stationary values by the combination of the terms on

the right-hand side of Eq. (32) vanishing. Indeed we find in
Appendix G that, in lower dimensions, smaller network
depths are sufficient to tune the higher statistical orders.
Furthermore, the learned coefficients Að4Þ approach the
target value as the depth increases. In all examples studied
here, the alignment between learned and true statistics
improves with depth, which increases the network flexi-
bility. For shallow networks, however, although the learned
action is not equal to the true one, it effectively describes
the statistics of the true distribution beyond the Gaussian
order as indicated by the good agreement of the cumulants.
This behavior is equivalent to that of renormalized theories
[18], which feature the same statistical correlations while
changing the interaction strengths in a consistent manner.

D. Inferring pixel interactions in MNIST

We will now exemplify the learning of higher-order
interactions on the MNIST dataset [26]. MNIST is a dataset
of gray scale images with 28 × 28 pixels. Each image
shows a handwritten digit between zero and nine. To show
the effect of higher-order interactions, we train both a linear
and a nonlinear network. A linear network may only learn a
Gaussian approximation of the data distribution, corre-
sponding to coefficients Að1Þ and Að2Þ in Eq. (1), whereas a
nonlinear network is able to learn higher-order coefficients
Að3Þ; Að4Þ ≠ 0 as well. The authors of Refs. [5,6] showed
that nonlinear classifiers can make use of the higher-order

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 5. Symmetry broken lattice model for networks of varying depth trained on a d ¼ 102 dimensional dataset with D ¼ 106

samples. (a) Sites of square lattice with periodic boundary conditions distributed on a two-dimensional torus. Colored dots show strength
of external field h at connected lattice sites. (b) Learned over true first-order coefficients for network depth L ¼ 3. (c) Distribution of
learned coefficient entries Að2Þ compared to target values (black crosses) for network depth L ¼ 3. We distinguish self-interaction terms

Að2Þ
diag from off-diagonal entries Að2Þ

off-diag. From the off-diagonal entries Að2Þ
off-diag, we further separate those entries belonging to adjacent

lattice sites Að2Þ;adj
off-diag. (d) Training loss (solid curves) and test loss (dashed curves). Colors distinguish different network depths L.

(e) Distribution of learned fourth-order self-interactions as function of network depth. The dashed line marks the target value.
(f)–(h) Learned over true cumulants of up to third order. Cumulants were computed on a subset of 10 randomly chosen lattice sites.
Colors distinguish different network depths L.
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statistics of MNIST and other datasets; therefore it is useful
to gain an understanding of the higher-order statistics also
in the classification setting.
We train networks on single digit datasets, since thewhole

dataset is likely multimodal. (One could equivalently train
with a Gaussian mixture as a latent and then treat each
mixture component separately as outlined in Sec. IV B.) For
brevity, we here focus on the digit three, examples of which
are shown in Fig. 6(a); comparable results for other digits are
given in Appendix H. We then sample new digits from both
the linear and the nonlinear models, uncurated (randomly
selected) samples of which are shown in Figs. 6(b) and 6(c).
We show the test and training loss in Fig. 6(i). The more
flexible nonlinear model overfits the training data slightly,
after around 103 optimization steps. We take the training
stage yielding the best test performance to compute the
coefficients.We then first compute the self-interacting action

coefficients, namely the diagonal entries Að2Þ
ii , A

ð3Þ
iii , A

ð4Þ
iiii of

both models and visualize them on the same 28 × 28 grid,
such that the action coefficient entries lie in the same position
as the pixels whose statistics they characterize [see Fig. 6(h)
for the linear network and Figs. 6(k)–6(m) for the nonlinear
network]. We further visualize μA ¼ − 1

2
ðAð2ÞÞ−1Að1Þ in the

sameway for bothmodels in Figs. 6(g) and 6(j); in the case of
the linear model, this is simply the mean of the associated
Gaussian theory. For the nonlinear model, the mean cannot
be computed exactly from Að1Þ;…; Að4Þ; we nevertheless
depict the same quantity μA for comparability. The coef-
ficients Að1Þ; Að2Þ are very similar across models; however,
the higher-order coefficients of the nonlinear model expose a
further structure in the data: we find that the third-order
coefficients are large near the edges of the digit. The
distributions of the pixels at the digit edges are typically
skewed, which are better approximated by including a third-
order term.We exemplify this behavior on three pixels of the
images in Figs. 6(d)–6(f). Pixels on the border of the image
are typically black, corresponding to a single peak at zero.
Pixels in the middle of the “three” can be either black or
white, which is modeled by both networks via a broader
distribution. Finally, pixels at the typical location of edges are
either black or gray scale, resulting in the skewed distribution
in Fig. 6(f). Therefore, the diagonal terms in Að3Þ are good
indicators of typical edge locations.
We further examine pixel-pixel interactions. To show-

case the higher-order statistics, we focus on three-point
interactions. To this end, we compute those entries in the

(a)
(d)

(g) (h) (i)

(j) (k) (l) (m)

(e) (f)

(b)

(c)

FIG. 6. Inference of interactions on MNIST for digit three. (a)–(c) Images from the dataset, the linear model, and an L ¼ 1 layer
nonlinear model, respectively. (d)–(f) Single pixel activation statistics from three distinct locations in the image. (g) Entries of the mean

μA of the Gaussian theory (linear model). (h) Entries on the diagonal of the second-order coefficient Að2Þ
diag of the linear model. (i) Training

loss (full lines) and test loss (dashed lines) over training steps. Dots mark the training stages from which the coefficients of both models
were extracted. (j) Mean μA for the nonlinear model if Að3Þ; Að4Þ were not present. (k)–(m) Entries on the diagonals of the remaining
coefficients of the L ¼ 1 layer nonlinear model. White squares in (l) mark the locations of the single pixel statistics shown in (d)–(f).
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third coefficient which correspond to an interaction

between three distinct pixels Að3Þ
ijk for i ≠ j, j ≠ k, and

i ≠ k. Since the inputs are all positive, 0 ≤ xi ≤ 1, a

positive value of Að3Þ
ijk favors images where all pixels are

jointly brighter, whereas a negative value of Að3Þ
ijk favors that

at least one of the pixels have value zero, i.e., that at least
one pixel is black. Out of all distinct triplets i, j, k, we pick

those which have largest magnitude in Að3Þ
ijk and show those

with the most negative value in Fig. 7(b) and those with the
most positive value in Fig. 7(c). For both cases, we find that
the three-point interactions are predominantly local, cou-
pling adjacent pixels. They further align with the edges of
the digit. The largest values are found in the upper half of
the digit; the lower half of the digit shows a qualitatively
similar enhancement of third-order coefficients, only to a

slightly lower extent. Most entries in Að3Þ
ijk are, however,

close to zero [see Fig. 7(a)]. This can be readily understood

from the fact that there are many more entries in Að3Þ
ijk which

couple pixels that are distant from each other, and can
therefore be assumed to be mostly independent. Thus we
find that the higher-order statistics express nontrivial
interactions localized at digit edges. In Appendix H we
provide details on the training process and show the same
analysis for the digit two, as well as the strongest 102 three-
point interactions for both digits. We find that the results do
not depend on the choice of the digit. Thus the third-order
interactions encode the digit edges in a localized manner.

V. DISCUSSION

A. Summary of main findings

We have developed a method to learn a microscopic
theory from data—concretely, we learn a classical action

that assigns a probability to each observed state. For this
data-driven approach, we employ a specific class of deep
neural networks that are invertible and that can be trained in
an unsupervised manner, without the need of labeled
training data. Such networks have been used before as
generative models [9,10,13], but are generally considered a
black box: after training the learned information is stored in
a large number of parameters in an accessible, yet distrib-
uted and generally incomprehensible manner.
The diagrammatic formalism developed here allows us

to extract the data statistics from the trained network in
terms of an underlying set of interactions—a common
formulation used throughout physics. To achieve this, we
designed the network architecture as a trade-off between
flexibility and analytical tractability. The choice of a
quadratic polynomial, along with a volume-preserving
invertible architecture, allows us to obtain explicit expres-
sions for the interaction coefficients. This formalism shows
how the interplay between linear and nonlinear mappings in
the network composes non-Gaussian statistics, and hence
higher-order interactions, in a hierarchical manner. As a
consequence of the quadratic interaction constituting the
fundamental building block, higher-order interactions are
decomposed into this simplest possible form of nonlinear
interplay. As a result, the order of interaction in the data
directly maps to the required depth of the network in an
understandable manner, thus providing an explanation of
why deep networks are required to learn higher-order
interactions.
We complement this study with a characterization of the

training process, confirming the expectation that both larger
training set size and network depth improve learning.
Larger datasets in general decrease the bias of the learned
distribution due to undersampling of the true distribution.
This point is most severe for higher-order statistics, while
the first two orders of the statistics are typically learned
robustly also from limited data. We provide an approximate
expression, Eq. (32), to investigate the convergence proper-
ties of statistics of different orders. While deeper networks
are required to offer sufficient flexibility to learn higher-
order statistics, the larger number of trainable parameters at
the same time requires more data to learn the statistics
accurately. Alternatively, the network flexibility can be
increased by raising the order of the polynomial activation
function. Finding the optimal trade-off between local
nonlinearity and depth is an interesting point of future
research.

B. Related work

The general problem of inferring models from data
discussed in this work is a well-known challenge. In the
dynamical systems setting, the authors of Refs. [27–30] use
regression to infer the right-hand side of the governing
differential equation of a system from a set of basis
functions. Other studies [31,32] infer rules for the time

(a) (b) (c)

FIG. 7. Three-point interactions in MNIST for digit three.
(a) Histogram of all entries of the third-order coefficient Að3Þ

ijk
for i ≠ j, j ≠ k, and i ≠ k, color coded according to their value.
(b),(c) Triplets corresponding to the ten most negative (b) or most

positive (c) values of Að3Þ
ijk . For each triplet, we color pixels i, j,

and k, according to the value of the interaction coefficient in Að3Þ
ijk .

Thus triplets of pixels corresponding to the same entry in Að3Þ
have the same color.
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dependence of couplings (synaptic plasticity) using regres-
sion and genetic programming. These approaches produce
interpretable models, but require a predetermined set of
basis functions or operations, through the combination of
which the system dynamics are approximated. Inference of
parameters of stochastic processes [33–36] also relies on
the specific form of the update equations. Prior knowledge
about likely terms in the dynamical equations or their exact
functional form is therefore needed in these works.
Perhaps the most prominent example of an inference

problem is the Ising model, which is also at the heart of
training Boltzmann machines [37]. Here, a set of pairwise
couplings between binary degrees of freedom is inferred. The
difficulty in inferring pairwise couplings stems from the need
to maximize the likelihood, which requires computing the
correlation functions of the inferred model at every opti-
mization step. Nevertheless, many algorithms now exist for
inferring models with pairwise interactions, such as the
inverse Ising or XY model. However, these algorithms deal
with discrete data and are limited to pairwise interactions.
Other thanBoltzmannmachines, a range of techniques for

the Ising or XY models first solve the forward problem,
namely the statistics given the couplings—using variations
of mean-field theory [38–41] or the Thouless-Anderson-
Palmer (TAP) equations [42–44]—and then invert these
relations explicitly or iteratively [44–47]. Maximum like-
lihoodmethods or the TAP equations have also been used to
infer the patterns stored in Hopfield models [48,49]. In the
special case of a treelike, known network topology, or
translationally invariant higher-order couplings along a
linear chain, the inverse problem can be solved exactly
[50]. Further works maximize the likelihood of the network
model given the data, by using belief propagation to
reconstruct the network structure from infection cascades
[51], orMonteCarlo sampling to infer amino acid sequences
in proteins [52]. A series of works use the pseudo-likelihood
[53,54] and interaction screening objective [55], or derive
optimal objective functions [56,57] using the cavity method
and replica trick. The authors of Ref. [58] impose a special
factorization of the distribution of discrete variables. In
contrast to theseworks, in this studywe consider continuous
rather than discrete variables. Furthermore, we are not
restricted to pairwise interactions and do not require prior
knowledge on the structure of interactions.
Zache et al. [59] also solve the forward problem: they

approximate a higher-order interacting theory to tree level
or one-loop order in the effective action, and thereby obtain
an invertible relation between interactions and correlations.
This approach relies on the validity of the approximations,
namely for the typically difficult step from interactions to
correlation functions. These approximations are not neces-
sary to train INNs, as the correlation functions are implic-
itly generated by the network mapping.
Neural networks have also previously been used to treat

inverse problems. They are trained to infer the posterior

probability of characteristic parameters given data [60,61],
and to compute renormalized degrees of freedom that are
maximally informative about the global state of a system
[62]. For systems of interacting identical particles, Cranmer
et al. [63] use symbolic regression on trained graphical
neural networks to derive interpretable interactions.
However, these approaches make no lucid connection
between the learned model and the parameters of the
neural network as we do in this study.

C. Extensions

Exponential distributions with polynomial actions can
model a broad class of phenomena, including highly
skewed distributions (such as the pixel statistics in
MNIST), but they are not universal: in particular, they
have finite support everywhere. This limitation, however, is
not specific to this approach, since learning heavy tails in
general is not possible without strong parametric priors. We
expect that a model learning on a finite dataset drawn from
a heavy-tailed distribution would adjust its coefficients to
broaden the distribution to incorporate the data of the
training set. In the absence of prior knowledge on the
heavy-tailed nature of the data distribution, our method
therefore yields interpretable statistics—and therefore an
effective theory—for the data within the high probability
region. Invertible neural networks which are not volume
preserving can yield higher performance and broader tails
but lack interpretability.
To provide the most transparent setting, we have here

chosen the simplest but common case of a latent Gaussian
distribution, which has the aforementioned advantage of
mapping to a noninteracting theory.A consequence is that the
latent distribution only has a single maximum. Since for
invertible volume-preserving networks the number of modes
in data space and in latent space are identical, these network
architectures therefore learn only monomodal distributions.
For many settings of interest this is sufficient: multimodal
distributions in physical systems often occur together with
nonergodic behavior such as spontaneous symmetry break-
ing, selecting one of the modes of the distribution. As
presented, our approach necessarily learns the statistics of
the mode selected by nature, and thus obtains an effective
theory of the single observed phase of the system. The
simplest way to learn genuinemultimodal distributions is the
use of a multimodal latent distribution, such as a Gaussian
mixture.Our frameworkwould then provide one set of action
coefficients for each mixture component, correspondingly
offering one effective theory for each phase.
The analytical framework we developed can also readily

be extended to higher-order nonlinearities: In terms of the
diagrammatic language, the quadratic activations used in
this work amount to the splitting of “legs” in the Feynman
diagrams into pairs. Likewise one obtains a threefold
splitting from a cubic term, a fourfold splitting from a
quartic term, and so on. Such higher-order nonlinearities
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would allow the composition of more complex interactions
with fewer layers.
Several studies have highlighted the role of the stochas-

ticity of the training algorithm for networks performing
classification [64–66]. A possible starting point for under-
standing SGD for generative models could be Eq. (32),
which relates the trajectory of the learned distribution in
coefficient space to the training algorithm. Equation (32)
closely resembles the training of restricted Boltzmann
machines, where the pairwise coupling matrix between
hidden and visible layers is updated according to the
difference between learned and observed pairwise corre-
lations [37]. Studying Eq. (32) could shed light on the
dynamics of unsupervised learning, for which the archi-
tecture used in this work is a fully tractable prototype.
Another challenge in learning interacting theories of

higher order is the necessarily large size of the action
coefficients which grows with the dimension, irrespective
of how these interactions are inferred. However, it is
plausible that not all terms in these tensors are equally
important: For spatially or temporally extended systems,
interactions between distant degrees of freedom may be
irrelevant. The framework explicitly shows how higher-
order interactions are composed of lower-rank coefficients.
This may be leveraged to extract the most relevant con-
tributions in a tractable manner (see Appendix B).
Actions such as Eq. (1) also appear in dense associative

memory models [67,68], which store patterns of binary
variables. There, the number of patterns and the robustness
of the storage increase [69] with the interaction order. Here,
we observe that more flexible models yield higher inter-
action orders, but require a larger amount of data to train,
and are more susceptible to noise. We believe that exploring
the link between associative memory models and gener-
ative models as presented here in the context of noisy data
could hence be a fruitful future direction of research.
From a physics point of view, one may regard the trained

network as a device to solve an interacting classical field
theory in a data-driven manner: once the network has been
trained, it maps each configuration of the interacting theory
in data space to samples in latent space that follow a
Gaussian theory, hence a noninteracting theory. Such a
mapping allows one to compute arbitrary connected corre-
lation functions of the interacting theory. The framework
offers two routes to this end. The traditional route uses
common rules of diagrammatic perturbation theory to
obtain controlled approximations of connected correlation
functions in terms of connected diagrams constructed from
propagators and interaction vertices of the inferred action.
An alternative route directly constructs connected correla-
tion functions hierarchically across the layers of the net-
work, ultimately reduced to pairwise interactions on the
level of the latent Gaussian. For example, the second-order
correlations read ⟪xixj⟫pθ

¼ ⟪f−1θ;iðzÞf−1θ;jðzÞ⟫z∼N ð0;1Þ. For
the nth-order correlations ⟪xi1 � � � xin⟫pθ

one can therefore

either work out the coefficients of the polynomial
f−1θ;i1ðzÞ � � � f−1θ;inðzÞ, in a similar manner to the action
transform, and then average the resulting function over
pZ, or estimate the correlations by drawing samples from
the generative network. An open avenue to explore further
in this regard is the link between the presented framework
and asymptotically free theories, where an interacting
theory becomes noninteracting at high energy (UV) scales.
In that case, different scales are connected by a renorm-
alization group (RG) flow. It would be interesting to
investigate whether the change of couplings described by
the RG flow can be related to the transformations per-
formed by the network. More broadly, the ability to learn an
interacting theory by the network can be considered an
alternative to asymptotic freedom, as the flow across layers
does not have to correspond to a change of length scale.
With the here proposed extraction method for the action

of a physical system at hand, one can now proceed to
extract hitherto unknown interacting models from data.
One interesting application of this approach is to learn
actions for systems for which a microscopic or mesoscopic
description is not known, for example, in biological neuro-
nal networks: the inferred coefficients would determine the
importance of nonlinear interactions in biological informa-
tion processing. The approach may also be fruitful when
applied to systems in physics where the microscopic theory
may be known but an effective theory is sought that
captures an observed macroscopic phenomenon.
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APPENDIX A: DIAGRAMMATIC
UPDATE EQUATIONS

We here describe the diagrammatic rules to compute the
action coefficient transforms in Eqs. (15) and (26).
Following the structure in Sec. III, we first treat the linear

transform Eq. (13). Each action coefficient AðkÞ
lþ1 is repre-

sented by a vertex, where the number of outgoing lines,
also called legs, is equal to the rank of the coefficient. Each
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leg is assigned an index il corresponding to the indices

ði1;…; ikÞ of the coefficient entry of AðkÞ
lþ1 it represents.

Equation (15) shows that each index of the coefficient must
either be contracted withWl, and therefore remains a leg of
the resulting vertex from the second index ofWl, or it must
be contracted with bl, and therefore drops out. We represent
the contraction withWl by an elongated line decorated with
Wl, and the contraction with bl as a leg ending on an empty
circle. Thus, to compute the transformed action coeffi-
cients, we must add empty circles to the previous vertices in
all possible ways and then elongate the remaining legs
using Wl. A diagram with k legs therefore produces the
following diagrams:

where the combinatorial factors ðklÞ arise due to the different
ways of choosing legs which are contracted with bl. For
example, there are ðk

1
Þ ¼ k ways of choosing a single leg

from a vertex with k legs which is then contracted with bl.
We first compute the new diagrams for all k, then sum up all
diagrams that have equal numbers of legs to one coefficient.
This illustrates how higher-order action coefficients, by
the contraction of their indices with the biases, i.e., the
attachment of empty circles to their legs, contribute to
lower-order coefficients.
For the nonlinear transform, we have the opposite effect:

each index in the coefficient either remains or is contracted
with χl, which increases the rank of the transformed
diagram by one. Therefore, either the legs of vertices
remain as they are or they must be split into two to signify
the contraction with χl, which increases the number of legs
of the vertex by one. We keep the split legs distinguishable
from three-point vertices by using curved lines for the split
legs and sum over all possible ways to split legs. A diagram
with k legs therefore produces the following diagrams:

Here, the combinatorial factors arise due to the number of
ways in which to choose the split legs. The number of

factors χl in any diagram can then be read off from the
number of leg splits. As in the linear transform, to compute
the transformed action coefficients of rank k, we must
therefore sum over all diagrams with equal numbers of legs.
This illustrates how higher-order action coefficients arise
through the splitting of legs by factors of χl.

APPENDIX B: DECOMPOSED TENSORS

Higher-order tensors TðkÞ of rank k can become numeri-
cally intractable for large dimension d as the number of
entries in TðkÞ grows asOðdkÞ. Specifically, two challenges
arise. First, to store the entries of the tensors. Second, to
compute contractions with matrices W such as

TðkÞ · ðWÞ⊗k; ðB1Þ

which arise due to the linear coefficient transform Eq. (15).
For these contractions, we must compute the sum over all
entries,

�
TðkÞ · ðWÞ⊗k

�
i:
1;…ik

¼
Xd

j1;…jk¼1

TðkÞ
j1;…jk

Wj1;i1 � � �Wjk;ik ;

therefore, without further simplification this entails the
computation of dk entries of TðkÞ · ðWÞ⊗k from dk terms
each, so the total number of floating point operations scales
as Oðd2kÞ. Even though the number of steps required
therefore only grows polynomially with d, for realistic
dataset sizes and k ¼ 4, this number increases very fast.
To facilitate the computation of coefficients with rank

k ¼ 4, we exploit that they are built from coefficients of
lower rank to write the tensors in a decomposed form. As a
first step, we decompose the network parameters χl.
Without loss of network expressivity, we may choose χl
to be symmetric in its latter two indices ðχlÞμjk ¼ ðχlÞμkj. In
the following, we drop the layer index l for brevity, as the
structure of the computation is the same for any layer. We
then rearrange the tensor to be a list of d symmetric
matrices βμ; μ ¼ 1;…; d such that χμkj ¼ β̄μkj. Using the

eigendecomposition of these matrices β̄μ, we may write

χ ¼
Xd
μ;ν¼1

γμ;ν ⊗ βμ;ν ⊗ βμ;ν; ðB2Þ

where γμ;ν; βν are vectors and γμ;ντ ¼ δτ;μλ
μ
ν has only one

nonzero entry, namely the νth eigenvalue of the μth matrix
β̄μ. To store this object we require 2d2 vectors of length d,
namely d2 vectors βμ;ν and d2 vectors γμ;ν. The magnitude
of entries in χ is directly related to the magnitude of the
eigenvalues λμν , which is typically small for trained net-
works. We show distributions of eigenvalues from trained
networks in Fig. 8. The distributions broaden with increas-
ing depth; however, the peak of the distribution remains at
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jλμν j ¼ 0. It is therefore possible to reduce the space
required to store χ and all tensors related to it by placing
a cutoff λ̄ ≥ 0 on the eigenvalues, keeping only the n̄ ≤ d2

largest eigenvalues which have jλμν j ≥ λ̄. Then the number
of entries required to store χ scales as Oð2n̄dÞ, as again we
need 2n̄ vectors of length d each. To further simplify the
expression, we absorb the sum over μ, ν into a single
index τ ¼ 1;…; n̄.
An alternative way to achieve the decomposition of χ

into a reduced number of components would be to use the
decomposed form Eq. (B2) directly during training and
limit the number of independent vectors βτ. This approach
effectively trades the network expressivity for the tractabil-
ity of the action coefficient transforms.
In addition to reduced storage requirements, the decom-

posed form (B2) also has the advantage that the decom-
position translates to all tensors computed via contraction
with χ, which is how higher-order coefficients are origi-
nally generated [compare with Eq. (26)]. The contraction
between a rank k symmetric tensor TðkÞ and χ is

TðkÞ · χ ¼
X
τ

ðTðkÞ · γτÞ ⊗ βτ ⊗ βτ:

If k ¼ 1, the result is just a matrix. If k ¼ 2, then
TðkÞ · γτ ≕ ατ is a vector; therefore, TðkÞ · χ can be written as
a sum of outer products between three vectors. If k ¼ 3,
the result is a sum of outer products between a matrix
TðkÞ · γτ ¼ ᾱτ and two vectors:

Tð3Þ · χ ¼
X
τ

ᾱτ ⊗ βτ ⊗ βτ: ðB3Þ

The matrices ᾱτ are symmetric since

ᾱτab ¼
X
c

TðkÞ
abcγ

τ
c ¼

X
c

TðkÞ
bacγ

τ
c ¼ ᾱτba:

The case k ≥ 4 does not arise, as any coefficient with
degree k ≥ 4 must already contain at least two factors χ.
To store the factors of Eq. (B3) we therefore require n̄

matrices ᾱτ and n̄ vectors βτ. The number of matrix and
vector entries required to store this object is therefore

Oðn̄d2Þ. The contraction with matrices W along all
indices is

ðTð3Þ · χÞ · ðWÞ⊗4 ¼
X
τ

ðWT ᾱτWÞ ⊗ ðWTβτÞ ⊗ ðWTβτÞ;

which corresponds to n̄ matrix-vector products WTβτ and
2n̄ matrix-matrix products for ᾱτW and WTðᾱτWÞ. Each
term in the matrix-matrix product is computed from d
terms; therefore, the number of terms required to compute
WT ᾱτW isOð2dωÞ with the matrix multiplication exponent
ω, which depends on the concrete algorithm used for
matrix multiplication, e.g., ω ≈ 2.8 for the Strassen
algorithm [70]. To evaluate the contraction, we therefore
need to compute Oð2n̄dωÞ terms. Even in the case of
no cutoff λ̄ ¼ 0 ⇒ n̄ ¼ d2, this approach significantly
reduces the required computations compared to the naive
implementation.
In Ref. [71] it was shown that the number of floating

point operations needed to compute general contractions of
the type of Eq. (B1) can be reduced by exploiting the
symmetry of the tensors. They propose a simple scheme to
reduce the number of floating point operations (using
ω ¼ 3) to roughly Oðdkþ1Þ, and a more complex structure
of saving these tensors, which further speeds up the
computations at the expense of storing more intermediate
entries. In the absence of any cutoff, we find a scaling of
our algorithm roughly equal to the simpler scheme pro-
posed in Ref. [71]. In our experiments, in Secs. IVA–IV C,
we have used no cutoff λ̄ ¼ 0. For the MNIST dataset with
d ¼ 784, we used a cutoff of λ ¼ 10−2. The combination of
a cutoff, more efficient storing of symmetric tensors as
suggested in Ref. [71], or restricting the number of free
components in χ directly, facilitates the extension of the
coefficient transforms to higher dimension d.

APPENDIX C: DISSIMILARITY
OF PARAMETERS

We here show that although the learned statistics of two
networks may be the same, their parameters do not need to
align. To this end, we use the teacher-student setup
presented in Sec. IVA, and compute the cosine similarities
between pairs of network parameters bl, Wl, χl—both
between the teacher and the student and between the
teacher and a network of the same architecture with random
Gaussian weights. We then average over the cosine
similarities of the different parameters to obtain the average
network cosine similarity. We show in Fig. 9. that although
the teacher and student coefficients approach each other for
increasing dataset sizesD, their network parameters remain
dissimilar. The appropriate object to compare the learned
statistics is therefore the action, not the parameters of the
network.

(a) (b) (c)

FIG. 8. Eigenvalue distributions of decomposed χl for networks
of different depths. We decompose trained network parameters χl
from Sec. IV C to the form of Eq. (B2) and distinguish
eigenvalues from the decomposed form of different layers l.
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APPENDIX D: LEARNING ACTION
COEFFICIENTS WITH SGD

The learned action SθðxÞ depends on the parameters θ
only through the coefficients AðkÞ. We can therefore also
view the training as a nonlinear optimization of the action
coefficients via the parameters. However, we cannot freely
move in this coefficient space: we must ensure that the
action stays normalized,

R
exp½SθðxÞ�x ¼ 1. To this end, we

fix the constant term in the action:

Að0Þ ¼ − ln
Z

exp
�X

k≥1
AðkÞ · ðxÞ⊗k

�
dx: ðD1Þ

Given this constraint, we rewrite the updated equa-
tion (31) in terms of the coefficients using the chain rule,

Δθi ¼ η
X
k≥1

X
αk

∂

∂AðkÞ
αk

hSθðxÞiDt

∂AðkÞ
αk

∂θi
;

where
P

αk
runs over all possible (multi)indices of AðkÞ. The

update in the parameters induces a change in the action
coefficients. We use this to approximate the update step for

the coefficient entry AðkÞ
α to linear order in the parameter

updates:

ΔAðkÞ
α ≈

X
i

∂AðkÞ
α

∂θi
Δθi

¼ η
∂

∂AðkÞ
α

hSθðxÞiDt

X
i

�
∂AðkÞ

α

∂θi

�2

þ η
X
l;αl≠α

∂

∂AðlÞ
αl

hSθðxÞiDt

X
i

∂AðkÞ
α

∂θi

∂AðlÞ
αl

∂θi
: ðD2Þ

The update step ΔAðkÞ
α therefore depends on the network

architecture through the derivatives ∂AðkÞ
α =∂θi. The deriva-

tive of the expectation of the action with respect to the
coefficients in the former factor in Eq. (D2) is

∂

∂AðkÞ
α

hSθðxÞiDt
¼ hðx⊗kÞαiDt

þ ∂Að0Þ

∂AðkÞ
α

¼ hðx⊗kÞαiDt
− hðx⊗kÞαiA; ðD3Þ

where h·iA denotes the current average of the learned
distribution and we used Eq. (D1) in the second line.
This term induces a variability in the coefficient updates, as
hx⊗kiDt

will vary from batch to batch due to the finite size

of each batch. We define the random variable ξðkÞt ¼
hx⊗kiDt

− hx⊗kiD to be the deviation between the moment
estimated on the current batch Dt and the moment
estimated on the entire dataset D. Combining Eqs. (D3)
and (D2) yields Eq. (32).

APPENDIX E: RANDOM GENERATION
OF MULTIMODAL ACTIONS

1. Coefficient distributions for random actions

In Sec. IV B we use multimodal actions SR constructed
from randomly drawn coefficients RðkÞ. A basic condition
these coefficients must satisfy is that the resulting action be
normalizable:

R
SRðxÞdx < ∞. We note that for large

enough x, the action is dominated by the highest-order
terms:

SðxÞ ⟶
kx→∞k

ðRð4ÞÞ · x⊗4:

It is therefore necessary and sufficient for normalizability
that Rð4Þ be negative definite, which we ensure by choosing
Rð4Þ to be a diagonal tensor with negative coefficients:

Rð4Þ
i1i2i3i4

¼


− x−4r

d if i1 ¼ i2 ¼ i3 ¼ i4
0 otherwise:

ðE1Þ

Here d is the dimensionality of the data, and xr ∈R is a
length scale which we are free to choose; one can view Rð4Þ
as a regulator term, and xr as the value for which it becomes
strongly suppressing. For our experiments we used
xr ¼ 1.0.
Having ensured that the action is normalizable, we can

define the probability pRðxjfRðkÞgk≤4Þ ¼ exp½SRðxÞ�=R
exp½SRðxÞ�dx. We choose the SR such that the data can

be described as a perturbation of a Gaussian theory—we
therefore also choose Rð2Þ to be negative definite (i.e., a
valid precision matrix). Since any d-dimensional multi-
variate Gaussian can be written as a linear combination of d
independent Gaussian variables, we define Rð2Þ as follows:

FIG. 9. Dissimilarity of parameters. Stars show the cosine
similarities of the teacher and student network parameters trained
on varying dataset sizesD. The average cosine similarity between
the teacher and 102 randomly generated random networks is
marked by the gray line, the shaded area encompasses one
standard deviation. The remaining markers display the cosine
similarity between the teacher coefficients TðkÞ and student
coefficients SðkÞ.

CLAUDIA MERGER et al. PHYS. REV. X 13, 041033 (2023)

041033-18



Wij ∼N ð0; 1=d2Þ; i; j ¼ 1;…d;

Rð2Þ
ij ≔ c −

1

2

X
a

WiaWja; ðE2Þ

with c ¼ −0.1 in our experiments. This is equivalent to
transforming a Gaussian variable z ∼N ð0; 1Þ by a linear
transform x ¼ W−1z and then computing the action of x
[compare to Eq. (18)].
Finally, the coefficients Rð1Þ and Rð3Þ are chosen as

follows (i; j; k ¼ 1;…d):

Rð1Þ
i ∼N ð0; σ2i Þ; σi ¼

x−1r
d

;

Rð3Þ
ijk ∼N ð0; σ2ijkÞ; σijk ¼

x−3r
sijkγijk

:

The scaling with respect to x−1r and x−3r ensures that neither
linear nor cubic terms are negligible within the region
where the regulator term Rð4Þ is nonsuppressing. The
variable γα ¼ jPðαÞj in the denominator of σα is the
multiplicity of the index α. This is the number of times
the component Rð3Þ

ijk appears in Rð3Þ; since coefficients are
symmetric, it is equal to the number of distinct permuta-
tions of ði; j; kÞ. We scale the multiplicity by sα, the number
of different components which have the same number of
permutations—for example, the permutations of the indices
(2, 1, 1) and (5, 3, 3) appear γijj ¼ 3 times each, and there
are sijj ¼ dðd − 1Þ distinct entries of such indices. Scaling
σα by γα and sα ensures that both the on-diagonal and off-
diagonal components of Rð2Þ; Rð3Þ are significant.

2. Multimodality of random actions

We here provide evidence that the distribution in
Sec. IV B is indeed multimodal. To do so, we initialize
an optimization algorithm at random points and attempt to

(a) (b)

FIG. 10. Multiple local maxima in SR. (a) SR along the straight
line connecting two local maxima x�0; x

�
1 of SR found by the

optimization algorithm. (b),(c) Eigenvalues of the Hessian H of
SR at local maxima x�0; x

�
1. All eigenvalues λHðx�i Þ are negative;

therefore the action is convex down in all directions.

(a)

(d) (e)

(b) (c)

FIG. 11. Coefficients of lattice model for networks of varying
depth trained on a d ¼ 16 dimensional dataset with D ¼ 105

samples. (a) Learned (Lð1ÞÞ over true (Að1Þ) first-order coeffi-
cients. (b) Distribution of learned coefficient entries Að2Þ com-
pared to target values (black crosses). Self-interaction terms are

labeled Að2Þ
diag, off-diagonal entries Að2Þ

off-diag. Among the off-

diagonal entries Að2Þ
off-diag, entries belonging to adjacent lattice

sites Að2Þ;adj
off-diag are shown separately. (c) Training loss (full curves)

and test loss (dashed curves). Colors distinguish different net-
work depths L. (d) Distribution of learned fourth-order self-
interactions over network depth. The dashed line marks the
target value. (e) Dissimilarity of true and learned cumulants:
1 − cos∠ð⟪x⊗k⟫A;⟪x⊗k⟫RÞ over training steps. We record the
cumulants at logarithmically spaced intervals during training. The
curves are smoothed by averaging over ten adjacent recording
steps. Shaded areas show the variation due to the estimation of the
cumulants from samples. Dots indicate training stage of coef-
ficients shown in (a) and (b).

(a) (b)

(c) (d)

FIG. 12. Coefficients of lattice model without external field
for networks of varying depth trained on a d ¼ 9 dimensional
dataset with D ¼ 105 samples. (a) Distribution of learned coef-
ficient entries Að1Þ; Að2Þ compared to target values (black crosses).

Self-interaction termsAð2Þ
diag are shown separately fromoff-diagonal

entries Að2Þ
off-diag. Among the off-diagonal entries Að2Þ

off-diag, those

entries belonging to adjacent lattice sites Að2Þ;adj
off-diag are shown

separately. (b)Distribution of learned fourth-order self-interactions
compared to network depth. The dashed linemarks the target value.
(c) Training loss (full curves) and test loss (dashed curves). Colors
distinguish different network depthsL. (d)Dissimilarity of true and
learned cumulants: 1 − cos∠ð⟪x⊗k⟫A;⟪x⊗k⟫RÞ over training
steps. We record the cumulants at logarithmically spaced intervals
during training. The curves are smoothed by averaging over ten
adjacent recording steps. Shaded areas show the variation due to
the estimation of the cumulants from samples. Dots indicate
training stage of coefficients shown in (a) and (b).
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find the maximum of SRðx�Þ. We initialized at 103 different
values. In Fig. 10 we show the maximal values of SRðx�Þ
found by the algorithm as well as the eigenvalues of the
Hessian for selected, distinct final values x�. Since all
eigenvalues are below zero, the action SR is locally convex
down in all directions at both points. The action SR
therefore has at least two local maxima.

APPENDIX F: SAMPLING FROM ACTIONS
WITH A MCMC SAMPLER

Given ground truth coefficients TðkÞ, we create a dataset
D by drawing samples according to the probability
pCðxjfTðkÞgk≤4Þ. Markov chain Monte Carlo sampling is
well suited to this task since it requires only the unnor-
malized log probability, i.e., SCðxÞ, and is guaranteed to
converge to the true distribution (in contrast to variational
methods like automatic differentiation variational inference
[72]). To generate D, we used the no-U-turn sampler [73]
implementation provided by PyMC3 [25]; sampler param-
eters mostly followed recommended defaults, with 103

tuning steps and a mass matrix initialized to unity. The
target acceptance rate was increased to 0.95 to increase the
sensitivity to small features of the probability distribution.

APPENDIX G: LATTICE MODEL
IN LOW DIMENSIONS

We here show a lower-dimensional version of the lattice
model introduced in Sec. IV C.
Here, the combined number of independent entries in the

first four action coefficients is only 4844,which corresponds
to roughly 6 network layers. Figure 11 shows a comparison
of true vs learned coefficients. Independent of network

depth, we find thatAð1Þ and the off-diagonal entriesAð2Þ
ij with

i ≠ j are recovered correctly [see Figs. 11(a) and 11(b)]. For
shallow networks, the diagonal entries in the fourth-order

coefficient Að4Þ
diag are approximately zero. Their magnitudes

increase with L [see Fig. 11(d)]. Increasing the depth L also
speeds up learning [see Fig. 11(c)]. Furthermore, we find
that up to the fourth order, the cumulants of the learned
distribution increasingly align with those of the true dis-
tribution as we increase network depth. Therefore we can
conclude that increasing the depth of the network increases
the accuracy of the learned distribution, both in terms of its
coefficients and of its cumulants.
We repeated the experiment for d ¼ 9 without any

heterogeneous external field, therefore h ¼ 0. Again, we

find an alignment of most entries in Að1Þ; Að2Þ, with Að2Þ
diag

(a)
(d)

(g)

(j) (k) (l) (m)

(h) (i)

(e) (f)

(b)

(c)

FIG. 13. Inference of interactions on MNIST for digit two. (a)–(c) Images from the dataset, the linear model, and an L ¼ 1 layer
nonlinear model, respectively. (d)–(f) Single pixel activation statistics from three distinct locations in the image. (g) Entries of the mean

μA of the Gaussian theory (linear model). (h) Entries on the diagonal of the second-order coefficient Að2Þ
diag of the linear model. (i) Training

loss (full lines) and test loss (dashed lines) over training steps. Dots mark the training stages from which the coefficients of both models
were extracted. (j) Mean μA for the nonlinear model if Að3Þ; Að4Þ were not present. (k)–(m) Entries on the diagonals of the remaining
coefficients of the L ¼ 1 layer nonlinear model. White squares in (l) mark the locations of the single pixel statistics shown in (d)–(f).
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slightly lower than expected and Að4Þ
diag larger than expected

[see Figs. 12(a) and 12(b)]. In this setting, the symmetry of
the action causes the first and third cumulant to vanish. We
therefore only compute the alignment of the second and
fourth cumulants. As in the previous cases, this alignment
increases with depth, as shown in Fig. 12(d). Therefore, the
effective nature of the learned theory does not depend on
the system’s symmetry being broken.

APPENDIX H: TRAINING ON MNIST DIGITS

It is well known that the MNIST data lie on a lower-
dimensional manifold, as a principal component analysis of
the MNIST dataset confirms: several eigenvalues of the
covariance matrices of the MNIST dataset are small
λMNIST
min ∼ 10−28. This aspect of the dataset can lead to
diverging eigenvalues in the Jacobian of the INN (see, e.g.,
Refs. [74,75] for a detailed treatment). However, we find
that this problem can be mitigated in two steps. In the first
step, we add a small, IID Gaussian noise ξ with mean zero
and variance σ2ξ ¼ 10−2 to each pixel value in the dataset.
The small noise ensures that the eigenvalues of the
covariance matrix are all of order σ2ξ or larger. In the
second step, we perform a full principal component (PC)
decomposition on this noised dataset, retaining all principal
components. We then train a network on the data in PC
space. As PC decomposition is a linear mapping, we can
compute the action coefficients by including this linear
transform as a final step in the transformation of coef-
ficients obtained from the trained network. As we have a
limited number of samples, we also add a small IID
Gaussian noise ξtrain with variance σ2ξtrain ¼ 10−2 to each
training batch to prevent overfitting. We find that this

procedure both prevents divergences of the training loss
during training as well as speeds up the training process.
We showcase the detection of edges also for the digit two

in Fig. 13. Again, we find an increased magnitude in Að3Þ
diag

and Að4Þ
diag along the location of the typical digit edges in

Fig. 13. The three-point interactions in Að3Þ
ijk for the digit two

are shown in Fig. 14.
Finally, in Figs. 15 and 16, we show the first 100 most

positive and most negative three-point interactions of digits
two and three. This shows that the higher-order interactions
consistently trace the edges of the digits.

(a) (b) (c)

FIG. 16. Three-point interactions in MNIST for digit two.
(a) Histogram of all entries of the third-order coefficient Að3Þ

ijk for
i ≠ j, j ≠ k, and i ≠ k, color coded according to their value.
Panels (b) and (c) show triplets corresponding to the 102 most

negative (b) or most positive (c) values of Að3Þ
ijk . For each triplet,

we color pixels i, j, and k, according to the value of the

interaction coefficient in Að3Þ
ijk . Thus triplets of pixels correspond-

ing to the same entry in Að3Þ have the same color.

(a) (b) (c)

FIG. 14. Three-point interactions in MNIST for digit two.
(a) Histogram of all entries of the third-order coefficient Að3Þ

ijk for
i ≠ j, j ≠ k, and i ≠ k, color coded according to their value. (b),
(c) Triplets corresponding to the ten most negative (b) or most

positive (c) values of Að3Þ
ijk . For each triplet, we color pixels i, j,

and k, according to the value of the interaction coefficient in Að3Þ
ijk .

Thus triplets of pixels corresponding to the same entry in Að3Þ
have the same color.

(a) (b) (c)

FIG. 15. Three-point interactions in MNIST for digit three.
(a) Histogram of all entries of the third-order coefficient Að3Þ

ijk for
i ≠ j, j ≠ k, and i ≠ k, color coded according to their value.
Panels (b) and (c) show triplets corresponding to the 102 most

negative (b) or most positive (c) values of Að3Þ
ijk . For each triplet,

we color pixels i, j, and k, according to the value of the

interaction coefficient in Að3Þ
ijk . Thus triplets of pixels correspond-

ing to the same entry in Að3Þ have the same color.
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[4] S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborová,
Modeling the influence of data structure on learning in
neural networks: The hidden manifold model, Phys. Rev. X
10, 041044 (2020).

[5] M. Refinetti, A. Ingrosso, and S. Goldt, Neural networks
trained with SGD learn distributions of increasing complex-
ity, arXiv:2211.11567.
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