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Controlling the evolution of nonequilibrium systems to minimize dissipated heat or work is a key goal
for designing nanodevices, in both nanotechnology and biology. Progress in computing optimal protocols
to extremize thermodynamic variables has, thus far, been limited to either simple systems or near-
equilibrium evolution. Here, we present an approach for computing optimal protocols based on automatic
differentiation. Our methodology is applicable to complex systems and multidimensional protocols and is
valid arbitrarily far from equilibrium. We validate our method by reproducing theoretical optimal protocols
for a Brownian particle in a time-varying harmonic trap. We also compute departures from near-equilibrium
behavior for magnetization reversal on an Ising lattice and for barrier crossing driven by a harmonic trap,
which is used to represent a range of biological processes including biomolecular unfolding reactions.
Algorithms based on automatic differentiation outperform the near-equilibrium theory for far-from-
equilibrium magnetization reversal and for driven barrier crossing beyond the linear regime. The optimal
protocol for far-from-equilibrium driven barrier crossing is found to hasten the approach to, and slow the
departure from, the barrier region compared to the near-equilibrium theoretical protocol. We demonstrate
the utility of our method in a real-world use case by reducing the work required to unfold a DNA hairpin in
the coarse-grained oxDNA model and improving its nonequilibrium free-energy landscape reconstruction
compared to a naive linear protocol.
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I. INTRODUCTION

The control of nonequilibrium phenomena at micro-
scopic scales is central to biology and nanotechnology.
Evolution has exquisitely tuned cellular processes to
perform out-of-equilibrium tasks, ranging from machines
like ATP synthase to metabolic factories converting raw
materials and energy into functional macromolecules.
Experimental advances allow phenomena on this scale to
be probed in unprecedented detail [1–3], but determining
precisely how specific processes work and the role of
evolutionary optimization remains a major challenge. And

while impressive progress has already been made engineer-
ing synthetic DNA [4,5] and protein [6,7] structures, we do
not understand how to design de novo nanomachines for
nonequilibrium environments well enough for nanotech-
nology to rival the complexity of cellular machines.
For a microscopic system evolving out of equilibrium,

thermodynamic quantities like entropy, heat, and work can
be meaningfully defined only at the level of individual
trajectories [8]. An ensemble of trajectories has distribu-
tions of thermodynamic properties with forms that depend
on the system’s nonequilibrium evolution [8,9]. This
immediately suggests an optimization problem whereby
a protocol λðtÞ drives a system between given initial and
final states to produce a desired distribution of thermody-
namic properties. A common aim is to minimize average
dissipated work. This is important for optimal bit erasure
[10–12], as well as experimental measurements of the
equilibrium free energy of biomolecules from nonequili-
brium force pulling experiments and simulations [9,13,14].
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Other targets include protocols that maximize thermody-
namic efficiency for synthetic [15,16] and biological [17]
nanoengines and protocols that minimize dissipated heat,
for example, in bit-flipping operations [18,19].
Modeling nonequilibrium processes is notoriously

difficult, even when the equations of motion are precisely
known. A general method to optimize nonequilibrium
driving protocols valid for systems of any complexity
evolving arbitrarily far from equilibrium has heretofore
not been elucidated. In the context of extremizing thermo-
dynamic variables like entropy and work by tuning external
parameter protocols, most existing work either has been
limited to extremely simple systems, such as a Brownian
particle diffusing in a harmonic well or a single quantum
dot [20–23], or applies only in the near-equilibrium regime
[24–26]. An exception is the recent work of Whitelam [27],
which treats two of the examples we consider here through
an alternative machine-learning-inspired approach. We
discuss the relative benefits and drawbacks of his method
in relation to ours in Sec. IV. The assumption of near-
equilibrium evolution restricts optimal protocols to free-
energy landscapes with low-energy barriers, ruling out
many systems of interest, such as RNA molecules with
pseudoknots, proteins, and biomolecular motors like ATP
synthase.
Other work optimizing nonequilibrium processes has

focused on colloidal self-assembly. Goodrich et al. present
a method for tuning interparticle potentials to manipulate
crystal structure and transition rates [28] but do not
consider processes where external parameters are contin-
uously manipulated. Tang et al. [29,30] and Grover et al.
[31] present methods for adjusting external parameters to
minimize crystalline defects based on feedback-informed
Markov state modeling (MSM). While they achieve
impressive experimental results increasing colloidal crystal
order for hundreds of particles, these rely on computation-
ally costly dynamic programming calculations. Recent
work by Trubiano and Hagan circumvents this issue by
incorporating gradient information but acknowledges their
approach will scale exponentially with large numbers of
external control parameters [32]. Additionally, MSMs are
constructed for a few discrete values of external control
parameter, limiting the complexity of protocols that can be
discovered via these methods. Other Monte Carlo–based
optimization techniques preserve greater protocol complex-
ity by linearly interpolating between discrete control
parameter values [33], but in this case accuracy is limited
by how many discrete values are sampled. Whitelam et al.
recently presented a novel approach to tuning crystal
formation based on evolutionary reinforcement learning,
using neural networks to parametrize external protocols
[34]. Evolutionary reinforcement learning does not use
information about loss landscape gradients, however, ren-
dering convergence slower than for methods that incorpo-
rate such information.

Inspired by recent computational advances in the
machine-learning community, we propose a method for
computing optimal nonequilibrium protocols that is valid
for complex systems evolving far from equilibrium. In
particular, we leverage automatic differentiation (AD) [35–
38], a technique for computing gradients that repeatedly
applies the chain rule to elementary computational steps.
AD optimization has been recently applied in a range of
scientific contexts, from quantum devices to self-assembly
[28,39]. Using efficient AD algorithms developed in the
context of training neural networks [40–42] in conjunction
with sophisticated graphical processing unit (GPU) and
tensor processing unit (TPU) hardware, we compute
gradients by backpropagating through entire simulations,
allowing us to find optimal protocols via gradient descent
for a variety of systems. Using explicit gradient information
allows our AD approach to converge faster than methods
that do not incorporate it and provides richer information
about loss landscapes. Furthermore, our method can be
applied to arbitrarily complex external protocols. The
computational cost of automatic differentiation is indepen-
dent of the number of protocol parameters in so-called
“reverse mode” and scales linearly—not exponentially—
with the number of parameters in “forward mode” [43]. Our
method, thus, scales well to complex, multidimensional
external protocols.
To illustrate the potential of this method, we here

consider three canonical examples from the optimal
protocol literature and drive evolution much farther out
of equilibrium than previously possible. First, we con-
sider Monte Carlo (MC) simulations and use AD to
derive optimal protocols for flipping the magnetization
of a 2D Ising lattice. The AD protocols perform similarly
to existing near-equilibrium theoretical results in the
linear regime and outperform the near-equilibrium
theory in the far-from-equilibrium regime. Next, we treat
molecular dynamics (MD) simulations, reproducing clas-
sic analytical results for a single Brownian particle in a
time-varying harmonic potential. We then examine
barrier crossing on a double-well potential driven by a
moving harmonic potential, a problem that maps onto
biomolecular unfolding processes [44,45]. After re-
creating existing results, we probe the far-from-
equilibrium regime of barrier crossing, demonstrating
the capability of our method to capture departures from
the near-equilibrium optimal protocols. Finally, we apply
JAX-MD optimized biomolecular unfolding protocols to
the complex problem of biomolecular free-energy land-
scape reconstruction. Reconstructing free-energy land-
scapes from nonequilibrium data is a key goal of many
experimental [46–49] and computational [50,51] studies,
and much work has been devoted to improving the
accuracy of nonequilibrium free-energy landscape recon-
structions [13,52,53]. By improving the reconstructed
energy landscape of a DNA hairpin, we demonstrate that
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our method constitutes a valuable and practicable addi-
tion to these efforts.

II. RESULTS

A. Differentiation of MC simulations:
Nanomagnetic spin systems

Computers dissipate large amounts of heat when
performing logical operations via bit erasure, which
reverses nanomagnetic spins [54,55]. This has motivated
recent studies investigating minimum-dissipation proto-
cols for magnetization reversal with the 2D Ising model
[18,19,33]. The system is described by the Hamiltonian

H½BðtÞ� ¼ −
X
hi;ji

Jijσiσj − BðtÞ
X
i

σi; ð1Þ

where σi ¼ �1 are the spins, hiji indicates a sum over all
nearest-neighbor spins, Jij is the coupling between spins i
and j, and BðtÞ is the (time-dependent) external mag-
netic field.
In the linear response (near-equilibrium) regime, Crooks

and co-workers developed a general formalism for com-
puting optimal protocols based on thermodynamic geom-
etry [24,56]. Rotskoff and Crooks applied this theory to
yield the theoretical optimal protocol for varying external
magnetic field B and spin-spin coupling strength J (equiv-
alent to varying temperature) to reverse magnetization on
an Ising lattice [18]. More recently, Gingrich et al. [33]
explored the same problem using a numeric approach, in
which the space of low dissipation protocols is explored
with a Monte Carlo scheme. This yields a number of
degenerate, near-optimal protocols, but like the work of
Rotskoff and Crooks [18] is limited by the assumption of
near-equilibrium evolution.
Inspired by previous work, we examine the nonequili-

brium magnetization reversal of a 2D periodic lattice of
spins driven by a protocol that varies both magnetic field
BðtÞ and temperature TðtÞ: λðtÞ ¼ ½BðtÞ; TðtÞ� but push
evolution beyond the near-equilibrium regime, benchmark-
ing against the linear response formalism of Rotskoff and
Crooks [18].
We seek to minimize the total entropy production

ΔS, a proxy for the heat dissipated to the environment
during the “bit flip” that quantifies the irreversibility of the
process [9,33,57–59]:

ΔS ¼ kB ln
PF½x�
PR½x̄� : ð2Þ

Here, PF½x� is the probability of observing a particular
trajectory x during the forward evolution of a system, and
PR½x̄� is the probability of observing the exact time reversal
of that trajectory, x̄.

To find the optimal protocol for varying BðtÞ and TðtÞ,
we write a Monte Carlo simulator using JAX [42], a
PYTHON library with built-in automatic differentiation
and just-in-time compilation. The code carries out standard
Glauber dynamics [60] and iteratively updates the grid
points with even, then odd lattice index i using the spin flip
probability

Pðσi → −σiÞ ¼
1

1þ eβΔEi
; ð3Þ

where β ¼ 1=kBT is the usual inverse thermal energy and
the change in lattice energy resulting from the flip of spin σi
can be computed using the sum of its nearest-neighbor
spins

P
j σj:

ΔEi ¼ 2σi

�
Jij

X
j

σj − B

�
: ð4Þ

Our code compiles to run rapidly on GPUs or TPUs and
is differentiable: Given a Monte Carlo trajectory of spins
under some protocol λðtÞ, we can compute the gradient of
any function of the trajectory with respect to the protocol.
This gradient can be computed in either forward mode
or reverse mode. In forward mode, derivatives are com-
puted and stored at each step in the computation, obviating
the need to store intermediate states. In reverse mode—
commonly known as “backpropagation” in the deep learn-
ing community—the computation proceeds in two passes:
one forward evaluation and then a backward traversal of the
computational graph to compute derivatives. It is, thus,
necessary to hold all intermediate states in memory for
reverse-mode AD, which can be a significant memory
constraint for large systems. Generally, reverse mode is
favored for systems with large numbers of inputs and few
outputs (as is the case in typical neural network training), as
it is more computationally efficient in these cases [43],
while forward mode is a viable option for large, memory-
intensive computations.
Our Ising optimizations on larger lattices exhaust

memory in reverse-mode differentiation, so we opt to
compute gradients with forward-mode differentiation in
this case. We find it most convenient to parametrize the
protocol using a Chebyshev polynomial basis:

λðtÞ ¼ θ0T0ðtÞ þ θ1T1ðtÞ þ � � � þ θkTkðtÞ; ð5Þ

where the Ti is the ith Chebyshev polynomial and k is a
hyperparameter (typically, we choose k ¼ 32), but many
other parametrizations are possible. When selecting a
parametrization, a balance must be achieved between
sufficient complexity to describe the optimal protocol
and overfitting. For the problems we consider in this work,
we begin by choosing a simple parametrization (e.g.,
piecewise linear) and then increase complexity until we
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obtain a smoothly decreasing loss function and conver-
gence in optimal protocol shape. For our Ising model
optimizations, piecewise linear parametrizations are insuf-
ficient; losses do not decrease smoothly and protocol
shapes do not converge. We try Chebyshev polynomials
next and adjust the number of terms until we obtain
convergence.
The loss function (2) is computed for our trajectories as

follows. Each time step in the forward evolution can be
formulated as a sequence of two substeps: First, the
external protocol parameters are updated (this is where
external work is performed), and then the system performs
a transition to a new microstate (this is where heat is
exchanged with the bath) [57–59]. If ρAðx0Þ is the prob-
ability of drawing microstate x0 from the equilibrium
distribution corresponding to the initial value of the control
parameter λðt ¼ 0Þ ¼ λ0, which we call system state A,
then the probability of observing the forward trajectory is
given by

PF½x� ¼ ρAðx0ÞPðx0 → x1; λ1Þ…PðxN−1 → xN ; λNÞ; ð6Þ

where Pðxi−1 → xi; λiÞ is the transition probability between
lattice states xi−1 and xi at protocol parameter values λi.
Correspondingly, the probability of observing the time-
reversed trajectory x̄ is

PR½x̄� ¼ ρBðxNÞPðxN → xN−1; λNÞ…Pðx1 → x0; λ1Þ: ð7Þ

Formulating the evolution as a succession of accepted
and rejected spin flips and noting that for the Glauber
transition probability (3), 1 − PðΔEÞ ¼ Pð−ΔEÞ, with ΔE
given by Eq. (4), we can combine Eqs. (6) and (7) to obtain

PF½x�
PR½x̄� ¼

ρAðx0Þ
Q

iPðΔEiÞ
Q

jPð−ΔEjÞ
ρBðxNÞ

Q
iPð−ΔEiÞ

Q
jPð−ΔEjÞ

: ð8Þ

Here, the products containing i include all spins that flip
successfully and those containing j are failed spin flips.
The probability for the jth spin not to flip is the same in the
forward and reverse trajectories, since the ΔEi term
[Eq. (4)] evaluates identically in each case. The probability
of accepting the ith spin flip differs in the sign of ΔEi for
the forward and reverse trajectories. Note that this does not
violate normalization of probability, since the products

Q
i

and
Q

j run over different spins. The ratio of probabilities of
drawing the initial and final states from their respective
equilibrium ensembles, ρAðx0Þ=ρBðxNÞ, is given by

ρAðx0Þ
ρBðxNÞ

¼ ZB

ZA

e−β0Hðx0;λ0Þ

e−βNHðxN;λNÞ ; ð9Þ

where ZB=ZA ¼ 1 since, by construction, we set the
magnitude of the external field identically (and equal to
1) in the initial and final states of our simulations.

Plugging Eq. (3) into Eq. (8) and rearranging Eq. (2),
we find that the entropy production in our simulations is
given by

ΔS
kB

≡ ω ¼ βNHðxN; λNÞ − β0Hðx0; λ0Þ −
X
i

βiΔEi; ð10Þ

where we take a sum of the system energy changes ΔEi
following successful spin flips i, multiplied by the inverse
temperature βi at which the flip occurred.
We use JAX’s automatic differentiation to compute the

gradient ∇θhωi of this entropy production. Because of the
discrete choices inherent in Monte Carlo simulations, care
must be exercised in computing gradients. In particular, the
entropy production depends on external parameters through
discrete spin flip operations—dictated by a Glauber accep-
tance criterion—which are not themselves differentiable; a
similar issue arises in the context of training stochastic
neural networks [61]. Instead of directly backpropagating
through the loss function, we proceed as follows. The
average entropy production over all possible trajectories
xðtÞ for external protocol parameters θ is given by (see also
Ref. [62])

hωðθÞi ¼
Z

DxðtÞP½xðtÞ; θ�ω½xðtÞ; θ�; ð11Þ

where
R
DxðtÞ is an integration over all possible trajecto-

ries, P½xðtÞ; θ� is the probability weight associated with
each trajectory, and ω½xðtÞ; θ� is the total entropy produc-
tion (a proxy for heat dissipation) for each trajectory.
Applying the product rule and noting that∇P¼P∇ lnP,

the gradient of hωðθÞi is

∇θhωðθÞi ¼ hð∇θ lnPÞωi þ h∇θωi: ð12Þ

Note that merely averaging the gradient ∇θω over a batch
of simulated trajectories does not yield the correct average,
since the probability of observing a trajectory is itself
dependent on protocol parameters θ. A similar approach to
finding stochastic gradients is used for taking gradients in
the REINFORCE algorithm [63], widely used in reinforce-
ment learning.
We carry out N Monte Carlo simulations of the 2D Ising

lattice evolving under assumed protocol λðθÞ. For each
trajectory, we compute the gradients ∇θ lnP and ∇θω.
Plugging these into Eq. (12) and averaging gives us the
correct, REINFORCE estimate of the gradient, ∇θhωðθÞi.
We note that we are unable to train our system successfully
without using this REINFORCE approach. We then use the
Adam optimizer [64] to minimize the loss [Eq. (10)].
Figure 1(a) shows our lowest achieved average entropy

production hωi from AD protocols alongside hωi for the
near-equilibrium theoretical protocol of Rotskoff and
Crooks [18] for seven different simulation lengths on a
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32 × 32 lattice (t ¼ 10, 50, 100, 500, 1000, 5000, and
10 000 MC time steps). The longer the simulation, the
closer the magnetization reversal is to quasistatic. hωi
values are averages over 2560 trajectories. In all cases, AD
outperforms the near-equilibrium theory. We repeat the
t ¼ 10, t ¼ 50, t ¼ 100, t ¼ 500, and t ¼ 1000 simula-
tions on multiple lattice sizes up to 512 × 512 and find that
the normalized entropy production on the 32 × 32 lattice is
within 1% of its converged, infinite-lattice value; see
Supplemental Material, Fig. S2 [65]. The AD-derived
protocols also outperform the near-equilibrium theory
regardless of lattice size. This suggests AD optimization
can be effectively performed on smaller lattices to find
optimal protocols for larger lattices.
Figure 1(b) shows the optimal protocols corresponding

to the simulation lengths in Fig. 1(a) along with the near-
equilibrium theoretical curve of Rotskoff and Crooks [18].
Curves for t ¼ 5000 and t ¼ 10 000 are omitted as they are
near identical to the t ¼ 1000 curve. While the near-
equilibrium theoretical protocol is necessarily time sym-
metric [18], our protocols appear to break this symmetry;
see Supplemental Material, Fig. S4 [65]. Like the near-
equilibrium theoretical result, the AD protocols avoid the
critical phase transition region [18], but they do not appear
to be converging to the exact shape of the near-
equilibrium theoretical curve as equilibrium is
approached. We also observe a flat loss function for t ¼
5000 and t ¼ 10 000 over 1000 optimization iterations,
as shown in Supplemental Material, Fig. S1 [65]. The
fact that our curves perform comparably to the near-
equilibrium theoretical curve in the near-equilibrium
limit, but are differently shaped, suggests that the entropy
production landscape is relatively flat in the region of
optimal protocols and that there is a degenerate space of
nearly optimal solutions. Indeed, all of the AD protocols
in Fig. 1(b) perform comparably well at longer simulation
lengths; see Supplemental Material, Fig. S5 [65]. This is
in agreement with the findings of Gingrich et al. [33]
and noted by Rotskoff and Crooks [18], who predict
“weakly constrained” protocols in the noncritical region
of ½BðtÞ; TðtÞ� space.

B. Optimal protocols for Brownian dynamics

We now consider the MD of isothermal evolution of
Brownian particles, where the total entropy production is
equal to the dissipated external work (WD) [9]. We use the
closely related total external work supplied as our loss
function in the following case studies. Details about our
MD implementation can be found in Supplemental
Material [65].

1. Brownian particle in a harmonic potential

Some of the earliest work identifying optimal non-
equilibrium protocols focused on the paradigmatic colloi-
dal Brownian particle in a harmonic trap [8,20,22,62,66].

FIG. 1. (a) Minimum entropy production for different sim-
ulation lengths on a 32 × 32 lattice, averaged over 2560
trajectories (standard errors of the mean are smaller than
the linewidths). The AD protocols in each case are derived
using the Adam optimizer [64] with gradients averaged over
batches of N ¼ 256. AD protocols are able to outperform
the optimal entropy production that results from using the
near-equilibrium theoretical protocol of Rotskoff and Crooks
[18] and approach the minimum entropy production value of
Rotskoff and Crooks [18] as the near-equilibrium regime is
approached. (b) Optimal protocols for reversing magnetization
for five simulation lengths: t ¼ 10, 50, 100, 500, and 1000.
Forward evolution in time occurs along the counterclockwise
direction. Curves for t ¼ 5000 and t ¼ 10 000 are nearly
identical to the t ¼ 1000 curve and are not shown. That the
AD curves do not converge to the shape of the near-
equilibrium theoretical curve, yet produce lower entropy in
(a), suggests a flat loss landscape in the optimal region in the
near-equilibrium regime, in accordance with previous
findings [18,33].
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Exact optimal protocols for varying the stiffness of the
center and stiffness of the harmonic potential were found by
Schmiedl and Seifert [22] using variational calculus.
Strikingly, the solutions have discrete “jumps” in the
parameters [62,67]. We note that approaches based on
the linear response approximation are incapable of discov-
ering these jumps, since they assume protocols are
differentiable [56,66].
We reproduce these early results by using JAX-MD [68]

to automatically differentiate molecular dynamics simula-
tions of a colloid subjected to the moving harmonic
potential

Vðx; tÞ ¼ 1

2
½x − λðtÞ�2; ð13Þ

where here λðtÞ is the time-dependent position of the trap.
We seek a protocol that minimizes the total work done in
moving the trap from λi to λf. As before, and following
Crooks [59], evolution can be formulated as proceeding in
two stages: (i) The external protocol is updated, and then
(ii) the particle makes a random transition to a new state.
External work is done in the first step, implying

W ¼
XN−1

n¼0

½Vðxn; λnþ1Þ − Vðxn; λnÞ�: ð14Þ

Since the free energy is the same in the initial and final
ensembles, this external work is equivalent to the “dis-
sipated work” WD.
We perform Brownian dynamics simulations using one

of the sets of parameters considered by Schmiedl and
Seifert [22]: Δλ ¼ λf − λi ¼ 5 (λi ¼ 5 and λf ¼ 10);
kBT ¼ μ ¼ 1, with kBT the usual thermal energy and μ
the mobility of the colloid, and total simulation time of
tf ¼ 2.69 units, the time that theoretically yields the
highest ratio between the work dissipated by a “naive,”
linear trap protocol and the dissipated work corresponding
to the optimal protocol [22].
To parametrize our protocols, we consider piecewise

linear λðtÞ, specified by the values at eight distinct time
points; see Eq. (S1) [65]. Starting from an initial guess of a
linear protocol, we perform optimization with Adam [64]
on batches of N ¼ 5000MD simulations with learning rate
α ¼ 0.1 (this governs the size of step taken on the loss
landscape for each iteration), integration time step
dt ¼ 0.001, and an initial equilibration period of 0.1
simulation time units prior to trap motion. We are able
to reproduce the exact theoretical optimal curve derived by
Schmiedl and Seifert [22] within 100 optimization itera-
tions, taking a few minutes on a GPU; see Fig. 2. Our
calculation reproduces the theoretical ratio between the
work dissipated by the optimal and linear protocols,
Wlin=Wopt ≈ 1.14 for tf ¼ 2.69 [22]. We also run optimi-
zation simulations for two additional protocol durations,

tf ¼ 0.269 and tf ¼ 26.9, to investigate whether our
approach is robust even when the signal on which to
optimize Wlin=Wopt is weaker. In both cases, we reproduce
the theoretical optimal protocol within 100 optimization
steps; see Fig. S7 [65].
Our method also successfully reproduces the exact

theoretical optimal protocol for varying the stiffness of a
harmonic potential Vðx; tÞ ¼ λðtÞx2=2. We run for a total
simulation time of tf ¼ 0.5 and use two of the λf=λi ratios
considered by Schmiedl and Seifert [22]: one that is
expected to maximize the deviation from a linear guess
protocol (λi ¼ 0.2, λf ¼ 1.0, ðλf=λiÞ ¼ 5, shown in Fig. 2)
and one that optimizes on a weaker signal, expected to
produce much smaller jumps in the optimal protocol
(λi ¼ 0.2, λf ¼ 0.4, ðλf=λiÞ ¼ 2, shown in Fig. S8 [65]).
In the former case, we are able to recover the theoretical
optimal protocol within 100 optimization iterations, though
we need to increase our batch size to N ¼ 105 trajectories
as the signal on which to optimize is weaker than in the case
of the moving trap [compare Figs. S6(c) and S6(d) [65] ].
When the signal on which to optimize is yet weaker still,
for ðλf=λiÞ ¼ 2, we find a batch size of N ¼ 2 × 105 and
500 optimization iterations are necessary. Additionally, we
need to thermalize the initial system for longer (teq ¼ 100,

FIG. 2. Automatic differentiation-based optimization rapidly
converges to the exact theoretical optimal protocol for the cases
of a Brownian particle in (a) a moving harmonic trap and (b) a
trap with time-varying stiffness. The discrete jumps at the
beginning and the end of the protocol found originally by
Schmiedl and Seifert [22] are recaptured by our method.

ENGEL, SMITH, and BRENNER PHYS. REV. X 13, 041032 (2023)

041032-6



whereas previous examples use teq ¼ 10), for the same
reason a larger batch size is needed: More accurate
ensemble averages are required where the signal on which
to optimize is weaker.
We note that, while the gradient of the average dissipated

work for these optimizations is given by Eq. (12), we find
in practice that we are able to achieve convergence with the
exact theoretical results for most of the parameter sets
considered using only the second term in Eq. (12): h∇θωi.
For the case of the weakest optimization signal (Fig. S8
[65]), we use the full gradient expression (12) to improve
convergence.

2. Driven barrier crossing

We now turn to the more complex situation of
driven Brownian motion on a bistable potential, a model
used widely in soft matter to represent biomolecular
unfolding via AFM or optical tweezers [69,70], as well
as optimal protocols for bit erasure [12,71]. Sivak and
Crooks [44] consider a Brownian particle driven across a
bistable potential energy landscape (see Fig. 3 insets and
Supplemental Material [65] for details of the potential)
by a harmonic trap with a time-dependent minimum λðtÞ.
The trap drives barrier crossing from one minimum to
the other.
Following Refs. [44,45], we perform molecular dynam-

ics simulations of barrier crossing using parameters
approximating DNA hairpin unfolding experiments with
optical tweezers; see Supplemental Material [65] for
details. For quantitative comparison with previous work,
we make the same simplifying assumptions as Sivak and
Crooks [44]: (i) The free energies of the initial and final
equilibrium states are equal, and (ii) the two landscape
wells have equal curvature. Note that our method does not
require these assumptions. We proceed by calculating
dissipated work (again, equivalent here to the total external
work supplied) with Eq. (14). We perform 10 ms simu-
lations and consider two free-energy landscapes, with
barrier heights 2.5kBT and 10kBT. Since the rate of escape
from the potential well varies exponentially with landscape
barrier height [73], for a given protocol length, passage
over the 10kBT barrier is much farther from equilibrium
than a 2.5kBT barrier. Further details of how we quantify
distance from equilibrium can be found in Supplemental
Material, Fig. S9 [65]. A barrier height of 2.5kBT (10kBT)
maps roughly onto the unfolding of a six (20) base pair
DNA hairpin [74–76].
Figure 3 presents the results of using automatic differ-

entiation-based optimization to find optimal trap protocols
λðtÞ for driven barrier crossing; landscape profiles are
shown as insets. In the near-equilibrium regime (barrier
height 2.5kBT), optimizing over a batch of N ¼ 2504
trajectories, our method converges to the near-equilibrium
theoretical result of Sivak and Crooks [44] after 1000
optimization iterations, with most of the convergence

achieved after a couple hundred optimization steps (taking
a few hours on a TPU). The shape of the optimal protocol—
faster trap motion at the beginning and ends of the motion
and a slowing down in the central barrier region—reflects
the fact that the minimal work is dissipated if the trap slows
down in the vicinity of the barrier to “wait” for the system
to harness thermal energy kicks to surmount it [44,45].
We compare the limiting probability distributions (across

approximately 105 MD simulations) of dissipated work for
the near-equilibrium theoretical protocol, our result, and a
naive linear protocol. The AD-optimized and near-equilib-
rium theoretical distributions agree within error, each
having a mean work of hWDi ¼ 0.104� 0.001kBT. Both
protocols outperform the naive linear protocol, which gives
hWDi ¼ 0.136� 0.002kBT. Errors are standard errors of
the mean.
The AD-based optimization allows us to probe far

beyond the near-equilibrium regime [Figs. 3(c) and 3(d)].
With a 10kBT barrier landscape and a protocol length of
10 ms, the automatic differentiation-based optimal protocol
outperforms the near-equilibrium theory. Here, our algo-
rithm finds that a nonsymmetric protocol is optimal,
whereas linear theory necessarily predicts that it is sym-
metric [56]. Intuitively, the trap needs to spend more time in
the vicinity of the barrier to successfully “drag” the particle
along: The bimodal distribution of the near-equilibrium
theoretical pðWÞ in Fig. 3(d) reveals that not every particle
successfully “unfolds” under the near-equilibrium optimal
protocol; some are left behind in the “folded” state after the
trap completes its motion. These trajectories maximize
the external dissipated work: After the trap stops moving,
work can no longer accrue according to Eq. (14), even if the
particle eventually hops to the unfolded well. In contrast,
AD-based optimization finds a protocol that unfolds
nearly all molecules in simulation time, leading to a
significantly lower average dissipated work of hWDi ¼
3.260� 0.007kBT compared to the near-equilibrium theo-
retical mean work of hWDi ¼ 5.37� 0.02kBT. Here, a
naive linear protocol (hWDi ¼ 5.172� 0.009kBT) also
outperforms the near-equilibrium theory.
The AD-based λðtÞ features discrete jumps at the

beginning and end of the protocol that are absent in the
linear response optimum [see upper insets in Fig. 3(c)].
Discrete jumps have been observed in multiple other
studies of minimum-dissipation protocols [20,67,72] and,
indeed, were posited by Schmiedl and Seifert [22] to be a
“generic feature of the optimal protocol for arbitrary
potentials.” Recent work corroborates the universality of
jump features in optimal protocols [77]. Since the near-
equilibrium theory assumes protocols to be differentiable, it
necessarily misses these features [10,24,56].
We note that, although here we focus on the form of

landscape studied in previous literature, our method allows
the user to perform a similar barrier-crossing optimization
for virtually any free-energy landscape, such as bespoke
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FIG. 3. (a) The automatic differentiation-based optimal protocol converges to the near-equilibrium (NE) theoretical result of
Sivak and Crooks [44] in the near-equilibrium regime, corresponding to a 2.5kBT barrier landscape for a protocol length of
10 ms. Inset: a 2.5kBT barrier energy landscape. (b) The AD protocol is asymmetric and differs from the NE theoretical result
of Sivak and Crooks [44] in the farther-from-equilibrium regime represented by a 10kBT barrier landscape for a protocol length
of 10 ms. Insets near the top in (b), showing enlarged views of the beginning and end of the AD protocol, reveal discrete jumps
at the beginning and end of the optimal protocol, in agreement with results for similar systems [20,22,67,72]. Lower right inset: a
10kBT barrier energy landscape. (c) Probability work distributions associated with the protocols in (a), with the mean dissipated
work values under each protocol indicated with vertical lines. AD (hWDi ¼ 0.104� 0.001kBT) performs as well as the NE theory
(hWDi ¼ 0.104� 0.001kBT) within error, and both outperform a naive linear protocol (hWDi ¼ 0.136� 0.002kBT). (d) The same
as in (c), but for the protocols shown in (b). Here, the AD protocol (hWDi ¼ 3.260� 0.007kBT) significantly outperforms the NE
theory (hWDi ¼ 5.37� 0.02kBT), which fails to unfold all particles and is, thus, also beaten by a naive linear protocol
(hWDi ¼ 5.172� 0.009kBT).
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free-energy landscapes containing nontrivial features—like
intermediate states—that map to complex biomolecules.

3. oxDNA unfolding simulations

To demonstrate the utility of our method, we apply the
approach of the previous subsection to the mechanical
unfolding of a DNA hairpin. Near-equilibrium optimal
protocols were recently applied in this context to reduce the
external work required to unfold DNA hairpins [45]. Here,
we minimize the external work required to unfold a DNA
hairpin in the far-from-equilibrium regime by performing
coarse-grained simulations with the oxDNA model, which
has enjoyed widespread use and validation against experi-
ments [78–81]. To do this, we first compute an optimal
unfolding protocol using Brownian JAX-MD simulations,
and then we apply this protocol in oxDNA simulations.
Ideally, one would perform automatic differentiation
directly on the oxDNA unfolding simulations, but doing
so would necessitate rewriting the oxDNA coarse-grained
model and simulation software in a differentiable program-
ming language like JAX-MD. This is an avenue we are
actively pursuing, but it requires enough additional tech-
nical effort to merit a separate, forthcoming publication.
We treat mechanical DNA hairpin unfolding as a driven

barrier-crossing problem on a one-dimensional landscape
parametrized by the end-to-end extension of the DNA
hairpin, as has been done previously [70]. In typical
experiments, full underlying free-energy landscapes are
not always available for a particular molecule, so, in
performing our optimizations, we do not use exact land-
scape parameters; rather, we estimate barrier height based
on unfolding experiments on similar hairpins [82] and take
the barrier to be located at an end-to-end extension equal to
one-half the contour length of the unfolded ssDNA. We use
the bistable potential of Sivak and Crooks [44] as the
underlying free-energy landscape, with Δx ≈ 14 nm and
ΔG ≈ 6.5kBT. The protocol obtained from minimizing the
external work required in JAX-MD Brownian dynamics
barrier-crossing simulations (see Fig. S11 in Supplemental
Material [65]) is applied to unfold a 20 base pair (bp)
hairpin with a 4 bp loop similar to hairpins studied
previously [46,82,83] in oxDNA. We use an average
pulling rate of 4 × 107 nm s−1. The work distributions
resulting from applying our protocol and a naive linear
protocol are shown in Fig. 4. Using the optimal protocol
derived from automatic differentiation offers a 13kBT
reduction in external energy required to unfold the hairpin.
As the work W done unfolding a molecule increases, so

too does the energy dissipation Wdiss according to

Wdiss ¼ W − ΔF; ð15Þ

where ΔF is the free-energy difference between the folded
and unfolded states, which remains constant for different
unfolding protocols. The amount of dissipated work

FIG. 4. (a) Snapshots of a 20 bp stem, 4 bp loop DNA hairpin
unfolding in oxDNA in the far-from-equilibrium regime, simulation
length1 μs. (b)Comparisonof theworkprobability distributions for
unfolding this DNA hairpin in oxDNA with harmonic “traps,”
according to both a naive linear protocol (green line, hWi ¼
214kBT) and a protocol derived by automatic-differentiation-based
optimization over simplified Brownian dynamics simulations in
JAX-MD (blue line, hWi ¼ 201kBT); see Supplemental Material
[65] for protocol details. (c) Free-energy landscapes for the DNA
hairpin reconstructed using nonequilibrium pulling simulations
corresponding to both linear (green line) and JAX-MD-optimized
(light blue line) protocols. Protocols are compared to a landscape
derived using equilibriumumbrella sampling simulations [84] (dark
blue line). Nonequilibrium reconstructions are based on Hummer
and Szabo’s adaptation of Jarzynski’s equation to biomolecular
unfolding [85] and use 100 pulling trajectories each.
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governs the accuracy of free-energy estimates derived using
nonequilibrium fluctuation theorems like the Jarzynski
equality [14,86]. Minimizing the external work done
unfolding a molecule should, therefore, improve the accu-
racy of Jarzynski-based landscape reconstructions. We
explore this by reconstructing full free-energy landscapes
for our 20 bp hairpin by adapting the Jarzynski equality
according to the method proposed by Hummer and Szabo
[85], for both linear and optimized unfolding protocols.
Figure 4 demonstrates that our work-optimized protocol
clearly improves the accuracy of free-energy landscape
reconstruction compared to a naive linear protocol. Here,
we are comparing both nonequilibrium reconstructions to a
free-energy landscape for the hairpin reconstructed using
equilibrium simulations, which do not suffer from the same
convergence errors as Jarzynski-based landscapes [87].
Since barrier crossing is a rare event, advanced sampling
techniques are typically required to construct such equi-
librium free-energy landscapes, and the dark blue curve in
Fig. 4 is calculated using umbrella sampling [84,88]. It has
been shown that the proper quantity to minimize when
attempting to maximize the accuracy of free-energy recon-
structions is not the total work but rather an exponential of
the work performed in the reverse protocol [62]. It will be
interesting to explore whether JAX-MD optimal protocols
using this alternative objective function will be able to
improve free-energy landscape reconstructions yet further
and is a target of our future work. One can presumably also
use the improved free-energy landscape reconstruction to
better inform JAX-MD work-optimized protocols in an
iterative fashion (for example, the barrier is clearly not
located midway between the wells, as assumed when
optimizing in JAX-MD). We are actively exploring this
possibility.

III. DISCUSSION

A. Form of protocols

In the equilibrium limit, protocols are necessarily
symmetric because every microscopic step must be
time reversible. Substantial thermodynamic driving
forces, however, break time-reversal symmetry. Recent
work has explicitly demonstrated a link between the
magnitude of thermodynamic driving forces and the
degree to which time-reversal symmetry is broken [89].
In light of this, the increasing asymmetry we observe in
protocols that exert significant thermodynamic driving
forces (i.e., in the farther-from-equilibrium regime) is
not unexpected.
For the farthest-from-equilibrium examples treated

(t ¼ 10 duration in the Ising example and a barrier height
of 10kBT in the barrier-crossing example), protocols are
markedly asymmetric in time. Increasing protocol asym-
metry with increasing distance from the equilibrium regime
has been observed previously; Blaber, Louwerse, and Sivak

find that, in the rapidly driven limit, optimal magnetic field
switching protocols for an Ising lattice feature asymmetric
jumps to field values beyond the midpoint of their range
[77]. Esposito et al. find similar departures from symmetry
for increasing short (farther-from-equilibrium) protocols
for exciting a quantum dot [72]. Recent work on optimal
driving protocols for an ATP-synthase-like rotary motor
found a similar relationship between protocol symmetry
and effective distance from equilibrium [90]. In the case of
the Ising spins, one could intuitively imagine that, in order
to flip as many spins as possible in the allotted time, the
shorter the protocol, the more dramatically the field must
change earlier on to incentivize flipping. Any unflipped
spins remaining at the end of the procedure incur a large
penalty; see Sec. III C.
Recent work by Zhong and DeWeese [91] replicates our

findings of symmetry breaking in driven barrier crossing,
though in their case protocols become symmetric again in
the limit of very fast switching, because they consider a
symmetric energy landscape. In the general barrier-crossing
case, the time at the position of the barrier is maximized in
the fast-switching limit, leading to asymmetric protocols
for barriers not equidistant between the wells [77,91]. This
is to give particles “as much time as possible” in the vicinity
of the barrier in order to maximize their chances of
crossing, since any particles that fail to transition to the
second well in the protocol duration incur a large penalty in
the loss function; again, see Sec. III C.

B. Choice of basis functions and approach

Our approach across the case studies detailed above is to
begin with (i) a simple choice of basis functions and
(ii) reverse-mode automatic differentiation in the first
instance. Only when results fail to converge or gradients
are poorly behaved dowe refine the approach. For example,
we cannot derive a convergent optimal protocol for the
Ising model using basis functions that linearly interpolated
between discrete points and reverse-mode AD. We begin to
employ forward-mode AD for the longest simulations to
mitigate memory issues. Next, we attempt basis functions
that capture the deviation from initial guess functional
forms for temperature and magnetic field using Chebyshev
polynomials. Our gradients remain poorly behaved due
to the fact that Monte Carlo simulations are inherently
nondifferentiable. We then attempt to use so-called
“straight-through” gradient estimation, where gradients
of undifferentiable steps are set to 1 [61], but still do not
achieve convergence. Finally, we employ the REINFORCE
calculation of Eq. (12) to compute gradients [61], and this
leads to the successful optimizations detailed in the text. In
general, we expect simulations containing undifferentiable
“coin flips” to necessitate the use of Eq. (12). Longer,
memory-intensive simulations will likely require forward-
mode AD or checkpointing [92]. The optimal choice of
basis functions is likely context dependent, but beginning
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with simple ones and gradually adding complexity is a
sensible approach.

C. Ensuring successful transitions

Nonequilibrium protocol optimization problems seek
protocols that force successful transitions from initial state
A to final state B. For the Ising magnetization reversal, the
loss function [Eq. (1)] contains a term proportional to the
Hamiltonian of the final state (which is larger for larger
numbers of “unflipped” spins): βNHðxN; λNÞ. For our
purposes, this term is large enough to ensure that none
of the AD-optimal protocols feature incomplete transitions
by penalizing protocols that end without flipping all spins.
In the barrier-crossing examples, the form of the loss

[Eq. (14)] likewise ensures that protocols that fail to drag
the Brownian particle to the second minimum on the energy
landscape are always less favorable than protocols that
succeed in doing so, since “failed” transitions incur a term
like V ¼ 1

2
ðxfinal − λfÞ2 in the loss, incentivizing protocols

that minimize this distance.
For the general use case, successful transitions can be

ensured by incorporating a penalty into the loss function
that renders protocols that do not accomplish the transition
to always be less favorable than those that do. For example,
including a term like

Loss ¼ η½AðxfinalÞ − BðxfinalÞ� þ � � � ; ð16Þ

where η is a weight that can be increased until no failed
transitions are observed, A is some function capturing how
“A-like” the final state xfinal is, and B is a function capturing
how “B-like” the final state xfinal is. In the Ising example, A
and B could simply be the number of unflipped and flipped
spins, respectively, and in the barrier-crossing examples, A
and B could be particle distance from the second well on
the energy landscape. Again, while we do not find this to be
necessary in practice for the examples we consider, such a
constrained optimization should not present significant
additional computational difficulty.

IV. CONCLUSION

We have demonstrated the viability of AD to identify
optimal nonequilibrium protocols for bothMonte Carlo and
molecular dynamics simulations. The method performed as
well as existing near-equilibrium theoretical results in the
near-equilibrium regime for both magnetization reversal on
a 2D Ising lattice and driven barrier crossing. Critically, the
AD algorithm easily extends to far-from-equilibrium con-
ditions, where it significantly outperforms existing near-
equilibrium theoretical protocols. We have evidenced the
applicability of our method to real-world biomolecular
unfolding experiments by showing AD-optimized proto-
cols can reduce the energy required to unfold a DNA
hairpin in a realistic coarse-grained DNA simulation and,

thereby, improve the accuracy of nonequilibrium free-
energy landscape reconstructions.
Our work considers fixed simulation times with

one- and two-dimensional protocols, though the frame-
work is much more general than this, and essentially
arbitrary constraints and protocol parameters are pos-
sible, e.g., multidimensional external protocols and
arbitrary loss functions. For example, one could attempt
to optimize the speed or efficiency of nanoengines;
minimize the time taken to unfold a molecule; or
maximize the accuracy of Jarzynski-based free-energy
landscape reconstructions for a given amount of exper-
imental or computational time. Furthermore, in the JAX-
MD code suite, non-Brownian dynamics can easily be
simulated, opening up the possibilities of optimizing
protocols for systems like the recently proposed active-
matter-based thermodynamic engine [15]. All that our
strategy requires are known dynamical equations that
govern simulations, so there is no necessary assumption
of Markovian evolution.
Our approach is complementary to recent work of

Whitelam [27], which presents a method for computing
optimal external parameter protocols parametrized by deep
neural networks whose parameters are iteratively adjusted
and refined either via adaptive Monte Carlo (aMC) [93] or
genetic algorithms (GA) [94]. Whitelam benchmarks his
approach against our results, detailed in Ref. [95], and finds
it a viable alternative to the gradient-based strategies we
present here. It has particular promise for applications in
which gradient information is unavailable or unreliable:
experimental settings and cases where gradients are
poorly behaved [96]. Where gradients are accessible,
however, AD algorithms converge significantly more
quickly than aMC and GA approaches, particularly in
complex settings with tens of millions of parameters to
train [27,93], and also have the advantage of providing
information about the loss landscape. Further, aMC and
GA require many (102–105) iterations for convergence,
which may be unfeasible in some experimental contexts.
In particular, in cases of inverse system design (for
example, optimizing the sequence of a DNA duplex to
tune unbinding kinetics), regenerating a new system
thousands of times in response to aMC or GA perturba-
tions may be costly or impractically time consuming. In
such cases, an AD approach would be preferable, and we
have demonstrated here that protocols derived from
simulations can nonetheless be useful in experimentally
realistic settings. Whitelam’s use of neural networks to
parametrize external protocols could be easily combined
with the AD approach we describe here. He also dem-
onstrates the use of feedback to achieve negative entropy
production and dissipated work, effectively employing
Maxwell’s demon to convert information into other forms
of energy. Incorporating feedback information into the
pipelines we have described above is an exciting avenue
for future research and one we are pursuing.
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We are actively working to extend our framework to
truly complex examples. Forthcoming publications treat
AD within the full oxDNA model (which requires trans-
posing the model into the differentiable JAX-MD frame-
work) and for active matter systems containing tens of
thousands of particles. The main challenge of AD-based
protocol optimization in the context of increasingly com-
plex systems is the high computational cost of back-
propagating gradients through entire simulations. We
have already demonstrated a possible route to addressing
this in forward-mode automatic differentiation. In addi-
tion to using forward-mode automatic differentiation, one
can use gradient checkpointing with reverse-mode auto-
diff, which mitigates the cost of storing unrolled long,
complex simulations in memory by saving and remateri-
alizing snapshots of the gradient [92]. Other authors have
had success unrolling only the last N steps of simulation
trajectories for automatic differentiation [28]. There are
also alternative gradient estimation methods which still
employ AD but do not require full simulation trajectories
to be unrolled: implicit differentiation [97] and differ-
entiable trajectory reweighting [98]. The application of
AD in the present context of nonequilibrium thermody-
namics is in its infancy, and the field will continue to
benefit from ongoing improvements in gradient estimation
and AD performance from other domains as well as
continual hardware improvements. We have, nevertheless,
already demonstrated that protocols derived in simplified
1D JAX-MD simulations can be successful when applied
to more complex contexts, namely, oxDNA simulations,
suggesting they can already be profitably applied to
experiments. The longest optimizations in the current
work (barrier crossing for t ¼ 0.01 s) took 5 GPU hours
for 1000 iterations, and the longest Ising lattice optimi-
zations for N ¼ 1024 spins took less than an hour on an
A100 GPU. These are well below typical simulation times
for molecular dynamics studies, suggesting a broad scope
already exists for treating more complex problems before
computational time concerns rival those of some MD
simulations.
AD provides a valuable complement to existing near-

equilibrium approaches to find optimal protocols, as it
makes more complex systems and the far-from-equilibrium
regime accessible. We are eager to see its manifold
applications unfold in nonequilibrium protocol optimiza-
tion and beyond.

The code used to perform this research is freely
available [99].
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