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Randomized benchmarking (RB) protocols are the most widely used methods for assessing the
performance of quantum gates. However, the existing RB methods either do not scale to many qubits or
cannot benchmark a universal gate set. Here, we introduce and demonstrate a technique for scalable RB of
many universal and continuously parametrized gate sets, using a class of circuits called randomized mirror
circuits. Our technique can be applied to a gate set containing an entangling Clifford gate and the set of
arbitrary single-qubit gates, as well as gate sets containing controlled rotations about the Pauli axes. We use
our technique to benchmark universal gate sets on four qubits of the Advanced Quantum Testbed, including
a gate set containing a controlled-S gate and its inverse, and we investigate how the observed error rate is
impacted by the inclusion of non-Clifford gates. Finally, we demonstrate that our technique scales to many
qubits with experiments on a 27-qubit IBM Q processor. We use our technique to quantify the impact of
crosstalk on this 27-qubit device, and we find that it contributes approximately 2=3 of the total error per
gate in random many-qubit circuit layers.
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I. INTRODUCTION

Quantum computers suffer from a diverse range of errors
that must be quantified if their performance is to be
understood and improved. Errors that are localized to
single qubits or pairs of qubits can be studied in detail

using tomographic techniques [1,2]. However, many-qubit
circuits are often subject to large additional errors, such as
crosstalk [3–8], that are not apparent in isolated one- or
two-qubit experiments. There are now techniques for
partial tomography on individual many-qubit circuit layers
(also called “cycles”), including cycle benchmarking [9]
and Pauli noise learning [10–12]. But quantum computers
can typically implement exponentially many different
circuit layers, and it is feasible to characterize only a small
subset of them.
Randomized benchmarks [5–8,13–31] make it possible

to quantify the rate of errors in an average n-qubit layer, by
probing a quantum computer’s performance on random
n-qubit circuits. However, established randomized bench-
marks cannot measure the performance of universal layer
sets in the many-qubit regime, where quantum computa-
tional advantage may be possible. Those randomized
benchmarks that can be applied to universal layer sets,
such as standard randomized benchmarking (RB) [15,16]
and cross-entropy benchmarking (XEB) [27–29], require
classical computations that scale exponentially in the

*jordanh@berkeley.edu
†Present address: Alice & Bob, 53 Boulevard du General

Martial Valin, 75015 Paris, France.
‡Present address: Google Quantum AI, Mountain View,

California, 94043, USA.
§tjproct@sandia.gov
∥Present address: PsiQuantum, Palo Alto, California, 94304,

USA.
¶Present address: IonQ, College Park, Maryland, 20740, USA.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 041030 (2023)

2160-3308=23=13(4)=041030(38) 041030-1 Published by the American Physical Society

https://orcid.org/0000-0001-5126-7256
https://orcid.org/0000-0002-6104-3552
https://orcid.org/0000-0001-8074-5130
https://orcid.org/0000-0003-0219-8930
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.041030&domain=pdf&date_stamp=2023-11-14
https://doi.org/10.1103/PhysRevX.13.041030
https://doi.org/10.1103/PhysRevX.13.041030
https://doi.org/10.1103/PhysRevX.13.041030
https://doi.org/10.1103/PhysRevX.13.041030
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


number of qubits (n). XEB requires classical simulation of
random circuits that are famously infeasible to simulate for
more than approximately 50 qubits [28]. This is because
XEB requires estimating the (linear) cross entropy between
each circuit’s actual and ideal output distributions. Standard
RB of a universal layer set is restricted to even smaller n,
because it requires compiling and running Haar random
n-qubit unitaries [15]. This compilation requires classical
computations that are exponentially expensive in n and
results in circuits containing Oð2nÞ two-qubit gates [32].
Because of the large overhead, even standard RB on
Clifford gates—which has lower overheads and nonexpo-
nential scaling—has been implemented only on up to five
qubits [5,6,8]. Existing RB protocols can be used for
heuristic estimates of the performance of a universal gate
set—e.g., by synthesizing Clifford gates from a universal
gate set [33] or by separately benchmarking Clifford gates
with standard RB and a nonuniversal set of non-Clifford
gates with dihedral RB [18] or interleaved RB [22,34–37].
However, these approaches do not holistically assess a
universal gate set, and they typically require strong
assumptions on the types of gate errors to be accurate.
In this paper, we introduce and demonstrate a simple and

scalable technique for RB of a broad class of universal gate

sets. Our technique uses a novel kind of randomized mirror
circuits, shown in Fig. 1(a), and advances on a recently
introduced method—mirror RB (MRB)—that enables
scalable RB of Clifford gates [6]. Mirror circuits
[6,7,12] use a layer-by-layer inversion structure that ena-
bles classically efficient circuit construction and prediction
of that circuit’s error-free output. The idea of layer-by-layer
inversion was explored in the earliest work on RB [13,14],
and recently it was shown that the addition of Pauli frame
randomization [38] to Clifford mirror circuits enables
reliable error rate estimation [6,7,12]. The randomized
mirror circuits we introduce here combine layer-by-layer
inversion with a form of randomized compilation [39] to
enable reliable and efficient RB of universal gate sets. MRB
on universal gate sets consists of running randomized
mirror circuits of varied depths and computing their mean
observed polarization [6], a quantity that is closely related
to success probability. The mean observed polarization
versus circuit depth is fit to an exponential decay, as shown
in Fig. 1(b). As in standard RB, the estimated decay rate is
then simply rescaled to estimate the average error rate of
n-qubit layers. MRB, therefore, preserves the core strengths
and simplicity of standard RB and XEB while avoiding
the classical simulation and compilation roadblocks that
have prevented scalable and efficient RB of universal
gate sets.
We use MRB to study errors in two different quantum

computing systems, based on superconducting qubits. We
demonstrate our method on four qubits of the Advanced
Quantum Testbed (AQT) [40] and on all of the qubits of a
27-qubit IBM Q quantum computer (ibmq_montreal) [41].
In our experiments on AQT, we use MRB to quantify and
compare the performance of three different layer sets on
each subset of n qubits (for n ¼ 1, 2, 3, 4), including a layer
set containing non-Clifford two-qubit gates [see Figs. 1(b)
and 1(c)]. In our demonstration on ibmq_montreal, we
show that our method scales to many qubits by performing
MRB on a universal gate set on up to 27 qubits.
Multiqubit MRB enables probing and quantifying cross-

talk, which is an important source of error in contemporary
many-qubit processors [3–5,7] that cannot be quantified by
testing only one or two qubits in isolation. We quantify the
contribution of crosstalk errors to the observed error rates in
our experiments on AQT and further divide the error into
contributions from individual layers and gates. The tech-
niques we introduce for these analyses complement other
established RB-likemethods for estimating the error rates of
individual gates—such as interleaved RB [34,36,42] and
cycle benchmarking [9]. We use MRB to study how cross-
talk errors vary on ibmq_montreal as n increases, with n
ranging from n ¼ 1 up to n ¼ 27. We find that crosstalk
errors dominate in circuit layers with n ≫ 1 qubits.
This paper is structured as follows: In Sec. II, we

introduce our notation and define the error rate that our
method measures. In Sec. III, we define the MRB protocol.

FIG. 1. Scalable randomized benchmarking of universal gate
sets. (a) Randomized mirror circuits combine a simple reflection
structure with randomized compiling to enable scalable and
robust RB of universal gate sets. (b) Data and fits to an
exponential obtained by using our method—MRB of universal
gate sets—to benchmark a universal gate set on n ¼ 1, 2, 3, 4
qubits of the Advanced Quantum Testbed and the average error
rates of n-qubit layers (rΩ, where Ω is the layer sampling
distribution) extracted from these decays. (c) We benchmark
each connected set of n qubits for n ¼ 1, 2, 3, 4, enabling us to
map out the average layer error rate (rΩ) for each subset of qubits.
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In Sec. IV, we present theory and simulations that show that
MRB is reliable. In Secs. Vand VI, we present the results of
our experiments on AQT and demonstration on IBM Q’s
quantum processors, respectively.

II. DEFINITIONS AND PRELIMINARIES

In this section, we introduce our notation and back-
ground information related to our method. In Sec. II A, we
introduce the notation and definitions used throughout this
paper. In Sec. II B, we introduce the type of random circuits
whose error MRB is designed to measure. In Sec. II C, we
describe the gate sets that our method can be used to
benchmark; i.e., we state the conditions that a gate set must
satisfy if it is to be benchmarked with MRB.

A. Definitions

We begin by introducing our notation and definitions. A
k-qubit gate g is an instruction to perform a particular
unitary operation UðgÞ∈SUð2kÞ on k qubits. We consider
only k ¼ 1, 2, and we use G1 and G2 to denote a set of one-
and two-qubit gates, respectively. In this work, G2 contains
only controlled rotations about the X, Y, or Z axis, denoted
CPθ and defined by

UðCPθÞ ¼ j0ih0j ⊗ I þ j1ih1j ⊗ e−iðθ=2ÞP; ð1Þ

where θ is the angle of rotation and P is the axis of
rotation. Our experiments use four of these gates, which we
write as cs ¼ CZπ=2, cs† ¼ CZ−π=2, cphase ¼ CZπ , and
cnot ¼ CXπ . We denote the single-qubit gate that is a
rotation by θ about P by Pθ. An n-qubit, depth-d circuit is a
length-d sequence of n-qubit layers C ¼ LdLd−1…L2L1.
An n-qubit layer L is an instruction to perform a particular
unitary operation UðLÞ∈SUð2nÞ on those n qubits. In this
work, we use layers that consist of parallel applications of
only one-qubit gates or only two-qubit gates. We use LðGÞ
to denote the set of all layers constructed by parallel
applications of gates from the gate set G. Often, it is
convenient to think of random circuits and layers as random
variables, and when we do so we use the L font; e.g., we
often use L to denote a layer-valued random variable,
meaning that L ¼ L with probability ΩðLÞ for some
distribution Ω over LðGÞ. We use L−1 to denote an
instruction to perform the operation UðLÞ−1.
For a layer or circuit L, we use UðLÞ and ϕðLÞ to denote

the superoperator for its perfect and imperfect implemen-
tations, respectively, so UðLÞ½ρ� ¼ UðLÞρU†ðLÞ. We
assume that ϕðLÞ is a completely positive trace-preserving
map. We often represent superoperators as matrices, acting
on states represented as vectors in Hilbert-Schmidt space
(denoted by jρ⟫). A layer L’s error map is defined by
EðLÞ ¼ ϕðLÞU†ðLÞ. The entanglement fidelity (also called
the process fidelity) of ϕðLÞ to UðLÞ is defined by

FðϕðLÞ;UðLÞÞ ¼ FðEÞ ¼ hφjðI ⊗ EðLÞÞ½jφihφj�jφi ð2Þ

¼ 1

4n
TrðUðLÞ†ϕðLÞÞ; ð3Þ

where φ is any maximally entangled state of 2n qubits [43].
Throughout, we use the term “(in)fidelity” to refer to the
entanglement (in)fidelity.
Our theory makes use of the polarization of a channel E,

which is a rescaling of E ’s fidelity given by

γðEÞ ¼ 4n

4n − 1
FðEÞ − 1

4n − 1
; ð4Þ

as well as stochastic Pauli channels. An n-qubit stochastic
Pauli channel Epauli;fεPg is parametrized by a probability
distribution fεPg over the 4n Pauli operators (Pn), and it has
the action

Epauli;fεPg½ρ� ¼
X
P∈Pn

εPPρP; ð5Þ

with
P

P∈Pn
εP ¼ 1. For a stochastic Pauli channel, the

total probability of a fault, i.e., the probability it applies a
nonidentity Pauli operator, is 1 − εIn ¼ 1 − FðEpauli;fεQgÞ.

B. Ω-distributed random circuits

In this work, we aim to estimate the average error rate ϵΩ
of circuit layers sampled from a distribution Ω. We now
introduce a natural family of circuits—which we call
Ω-distributed random circuits—that we use in our method
in order to estimate ϵΩ. Ω-distributed random circuits are
similar to the circuits used in XEB and other benchmarking
routines. They are defined in terms of a customizable
gate set G and sampling distribution Ω over that gate set.
This gate set consists of one- and two-qubit gate sets
G ¼ ðG1;G2Þ, and Ω is determined by two probability
distributions Ω1 and Ω2 over n-qubit layer sets LðG1Þ and
LðG2Þ, respectively. AnΩ-distributed random circuit with a
benchmark depth of d is a circuit-valued random variable
Cd ¼ L2d…L2L1, where the d odd-indexed layers are Ω1

distributed and the d even-indexed layers are Ω2 distrib-
uted. These circuits consist of interleaved layers of one- and
two-qubit gates, so it is useful to define a composite layer to
be a pair of layers of the form L ¼ L2L1, where L1 ∈LðG1Þ
is a layer of one-qubit gates and L2 ∈LðG2Þ a layer of one-
qubit gates. We denote the set of all composite layers by
LðGÞ. An Ω-distributed random circuit of benchmark depth
d then consists of d composite layers that are Ω distributed
over LðGÞ with ΩðL2L1Þ ¼ Ω1ðL1ÞΩ2ðL2Þ.

C. The gate set and sampling distributions

Our technique requires certain conditions of the gate set
G ¼ ðG1;G2Þ and the sampling distributions Ω1 and Ω2. In
order to construct the circuits required for our method, the
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gate set and sampling distributions must satisfy the follow-
ing properties.
(1) G2 is a set of CPθ gates (defined in Sec. II A) and is

closed under inverses. Examples of valid G2 are
fcnotg and fcs; cs†g.

(2) G1 is closed under inverses, conjugation by Pauli
operators, and multiplication by the single-qubit Pauli
axis rotationPθ for eachCPθ ∈G2. This is guaranteed
to hold if G1 is the set of all single-qubit gates SUð2Þ.

In addition, we require that our circuits are highly
scrambling. To ensure that our circuits are highly scram-
bling, we require that our gate set and sampling distribu-
tions satisfy the following conditions.
(1) G1 is a unitary 2-design over SUð2Þ. Examples of

valid G1 are the set of all single-qubit gates SUð2Þ
and the set of all 24 single-qubit Clifford gates C1.

(2) G2 contains at least one gate with θ ≠ 0; i.e., it must
contain at least one entangling gate.

(3) Ω-distributed layers quickly randomize and delocal-
ize errors. Informally, this means that any Pauli error
is mapped to a distribution over many different
errors before another error is likely to have occurred.
Formally, we require that, for all Pauli operators
P;P0 ≠ In, there exists a constant k ≪ 1=ε such that

1

4n
E

L1;…;Lk
TrðP0UðLk…L1ÞPUðLk…L1Þ−1Þ ≤ δþ 1

4n
;

ð6Þ
where P½ρ� ¼ PρP and P0½ρ� ¼ P0ρP0, L1;…; Lk are
Ω-distributed random layers, δ ≪ 1, and ε is the
expected infidelity of an Ω-distributed random layer.
While we require that k ≪ 1=ε for our theory, this
condition on k can be relaxed when n ≫ 1, because
errors that occur on spatially separated qubits cannot
cancel even if they occur in sequential circuit layers.
Note that Eq. (6) is not equivalent to requiring that a
length k sequence of Ω-distributed layers is a good
approximation to a unitary 2-design [because we do
not require that δ ¼ Oð1=4nÞ].

(4) Ω1 is the uniform distribution over G1.
(5) Ω2 is invariant under exchanging any subset of the

gates in a two-qubit gate layer L with their inverses.
The above conditions are sufficient to ensure our circuits

are highly scrambling but not necessary. In particular, our
method can be generalized to single-qubit gate sets G1 that
only generate a unitary 2-design and to distributions Ω1

other than the uniform distribution. However, this compli-
cates the analysis, so we do not consider this more general
case herein.

III. SCALABLE RANDOMIZED BENCHMARKING
OF UNIVERSAL GATE SETS

In this section, we introduce our method for MRB of
universal gate sets. In Sec. III A, we introduce the family of

randomized mirror circuits used in MRB. In Sec. III B, we
explain the MRB data analysis and define the complete
MRB protocol.

A. Randomized mirror circuits for universal gate sets

Our protocol uses a novel family of randomized mirror
circuits [6,7,31] that we now introduce. The structure of
these randomized mirror circuits allows our protocol to
measure ϵΩ, the average error rate of n-qubit layers sampled
from Ω (see Sec. IVA for the precise definition of ϵΩ),
without expensive classical computation. One approach to
estimating ϵΩ is to run Ω-distributed random circuits of
varied depths and then estimate the decay in the (linear)
cross entropy between these circuits’ ideal and actual output
probability distributions [27,29]. This is because the decay
rate of this cross entropy is known to be approximately equal
to ϵΩ [27,29]. The problem with this method is that the
classical computation cost of computing the ideal output
probability distribution scales exponentially in the number
of qubits (n) when the gate set is universal [28], limiting it to
n≲ 50. To estimate ϵΩ without expensive classical compu-
tation, our protocol runs Ω-distributed randomized mirror
circuits, which use an inversion structure to transform an
Ω-distributed random circuit into a circuit with an efficiently
computable outcome.
We construct a specific randomized mirror circuit on n

qubits with benchmark depth d via the three-step procedure
shown in Fig. 2. This procedure consists of first sampling a
circuit C1 consisting of an Ω-distributed random circuit
preceded by an initial layer of random single-qubit gates
that randomizes the state input into the circuit (enabling
estimation of the circuit’s fidelity using the method in
Ref. [44]). We then append the inverse of C1 to obtain C2, a
simple form of mirror (or motion-reversal) circuit which, if
run perfectly, always outputs a single bit string. Finally, C2

is randomly compiled, to prevent systematic coherent
addition or cancellation of errors between the Ω-distributed
random circuit and its inverse—which is essential for
reliable estimation of ϵΩ. The exact procedure is as follows.
(1) Sample a random circuit.—Construct a circuit C1 ¼

Ld=2Lθd=2…L1Lθ1L0 consisting of
(a) a layer L0 sampled from Ω1, which consists of a

single-qubit gate on each qubit, and
(b) d=2 composite layers LiLθi , where Li is sampled

from Ω1 and Lθi is sampled from Ω2.
(2) Construct a simple mirror circuit.—Add to the

circuit C1 the layers in step 1 in reverse order, with
each layer replaced with its inverse. The result is a
circuit:

C2 ¼ L−1
0 L−1

θ1
L−1
1 …L−1

θd=2
L−1
d=2Ld=2Lθd=2…L1Lθ1L0;

ð7Þ

such that UðC2Þ ¼ I.
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(3) Randomized compiling.—Construct a new circuit M
by starting with C2 and replacing layers using the
following randomized compilation procedure, which
reduces to standard Pauli frame randomization [39]
when the two-qubit gates are all Clifford gates. To
specify our procedure, we first write C2 [Eq. (7)] in
the form

C2 ¼ Ldþ1Lθdþ1
Ld…Lθd=2þ2

Ld=2þ1Lθd=2þ1
Ld=2Lθd=2…

× L1Lθ1L0;

where Lθd=2þ1
is a dummy (empty) two-qubit gate

layer, so that C2 consists of alternating layers of one-
and two-qubit gates. Then,

(a) for each single-qubit gate layer Li in C2, sample
a uniformly random layer of Pauli gates Pi that
in the following procedure is inserted after and
then compiled into Li.

(b) Replace each two-qubit gate layer Lθi in C2 with
a new two-qubit gate layer T ðLθi ; Pi−1Þ that is
constructed as follows: For each gate CPθ in Lθi
with control qubit qj and target qubit qk, con-
sider the instructions in Pi−1 acting on qj and qk,
denoted by Pi−1;j and Pi−1;k, respectively. If
UðPi−1;jÞ ¼ I or Z, then add CPϕ acting on
ðqj; qkÞ to T ðLθi ; Pi−1Þ where ϕ ¼ θ if
½UðPÞ; UðPi−1;kÞ� ¼ 0 and ϕ ¼ −θ otherwise.
If UðPi−1;jÞ ¼ X or Y, then add CPϕ acting
on ðqj; qkÞ to T ðLθi ; Pi−1Þ where ϕ ¼ −θ if
½UðPÞ; UðPi−1;kÞ� ¼ 0 and ϕ ¼ θ otherwise.

(c) For each single-qubit gate layer Li in C2

with i > 0, we define a layer of single-qubit
gates Pc

i−1 that undoes the effect of adding Pi−1
into the circuit—meaning a layer such that
UðPc

i−1T ðLθi ; Pi−1ÞPi−1Þ ¼ UðLθiÞ. Because
G2 is restricted to only controlled Pauli-axis
rotations, the correction takes the form
UðPc

i−1Þ ¼ UðPi−1Pθ̃i
Þ, where Pθ̃i

consists of
single-qubit Pauli axis rotations. If Li is not
immediately preceded by a two-qubit gate layer,
then Pθ̃i

¼ I. Otherwise,

UðPθ̃i
Þ ¼ UðPi−1LθiPi−1T ðLθi ; Pi−1Þ−1Þ: ð8Þ

(d) Replace each single-qubit gate layer Li in
C2 with a recompiled layer RðPiLiPc

i−1Þ,
defined by

UðRðPiLiPc
i−1ÞÞ ¼ UðPiLiPc

i−1Þ: ð9Þ

This randomized compilation step transforms the layer pair
LiLθi into RðPiLiPc

i−1ÞT ðLθi ; Pi−1Þ, where

UðRðPiLiPc
i−1ÞT ðLθi ; Pi−1ÞÞ ¼ UðPiLiLθiPi−1Þ: ð10Þ

The final circuit produced by this procedure (M) has the
property that UðMÞ ¼ UðPdþ1Þ; i.e., its overall action is an
n-qubit Pauli operator. So, if run perfectly, M returns a
single bit string (sM) that is determined during circuit
construction with no additional computation needed.
The final depth-d randomized mirror circuit has the form

M ¼ RðPdþ1L−1
0 Pc

dÞM̃RðP0L0Þ; ð11Þ
where

M̃ ¼ T ðL−1
θ1
; PdÞRðPdL−1

1 Pc
d−1Þ…RðPd=2þ1L−1

d=2Pd=2Þ
×RðPd=2Ld=2Pc

d=2−1Þ…RðP1L1Pc
0ÞT ðLθ1 ; P0Þ

FIG. 2. Randomized mirror circuits over universal gate sets. To
construct a randomized mirror circuit of benchmark depth d (and
total depth 2dþ 2), we first sample a random depth dþ 1 circuit.
This circuit alternates between layers of randomly sampled one-
qubit gates and layers of randomly sampled two-qubit gates. It
can be thought of as consisting of a single initial layer of random
one-qubit gates followed by d=2 composite layers (see the inset).
We then append to this circuit its inverse, i.e., the circuit in reverse
with each layer replaced with its inverse. This creates a depth
2dþ 2 circuit that, if run perfectly, always returns the all-zeros bit
string. This circuit is susceptible to systematic addition or
cancellation of errors between the two halves of the circuit. To
prevent this unwanted effect, we then apply randomized compil-
ing to the circuit. We insert a layer of random single-qubit Pauli
gates (cyan) after each one-qubit gate layer. In order to guarantee
that this randomly compiled circuit still always, if run perfectly,
returns a single bit string s, our procedure (i) changes the rotation
angles in the two-qubit gates (orange) if these gates are not
Clifford gates, (ii) adds in single-qubit Pauli axis rotations
following the two-qubit gates (red), and (iii) adds in correction
Pauli gates (purple) prior to each single-qubit gate layer. The
yellow boxes show gates that are compiled together to create the
final circuit of depth 2dþ 2. This circuit contains d composite
layers, which we call its benchmark depth.

DEMONSTRATING SCALABLE RANDOMIZED BENCHMARKING … PHYS. REV. X 13, 041030 (2023)

041030-5



is the circuit obtained after applying randomized compi-
lation to the d=2 composite layers sampled from Ω and
their inverses.

B. RB with non-Clifford randomized mirror circuits

We now introduce our protocol—MRB for universal gate
sets. Our protocol has the same general structure as
standard RB [15] and many of its variants: An exponential
decay is fit to data from random circuits. However, our data
analysis method is different from standard RB. We use the
same analysis technique as MRB of Clifford gate sets [6].
In particular, for each n-qubit circuit C that we run, we
estimate its observed polarization [6]

S ¼ 4n

4n − 1

�Xn
k¼0

�
−
1

2

�
k
hk

�
−

1

4n − 1
; ð12Þ

where hk is the probability that the circuit outputs a bit
string with Hamming distance k from its target bit string
(sC). As shown in Ref. [6] and discussed further below, the
simple additional analysis in computing S simulates an
n-qubit 2-design twirl using only local state preparation and
measurement.
A specific MRB experiment is defined by a gate set G, a

sampling distribution Ω, and the usual RB sampling
parameters (a set of benchmark depths d, the number of
circuits K sampled per depth, and the number of times N
each circuit is run). Our protocol is the following.
(1) For a range of integers d ≥ 0, sample K randomized

mirror circuits that have a benchmark depth of d,
using the sampling distribution Ω, and run each one
N ≥ 1 times.

(2) Estimate each circuit’s observed polarization S.
(3) Fit S̄d, the mean of S at benchmark depth d, to

S̄d ¼ Apd; ð13Þ

where A and p are fit parameters, and then compute

rΩ ¼ ð4n − 1Þð1 − pÞ=4n: ð14Þ

IV. THEORY AND SIMULATIONS OF MRB
ON UNIVERSAL GATE SETS

In this section, we present a theory for MRB of universal
gate sets that shows that our method is reliable. We show
that the average observed polarization (S̄d) decays expo-
nentially and that the MRB error rate (rΩ) approximately
equals the average error rate of Ω-distributed layers (ϵΩ). In
Sec. IVA, we define ϵΩ, the error rate that MRB is designed
to measure. In Sec. IV B, we show that rΩ ≈ ϵΩ assuming
Pauli stochastic error on each circuit layer. In Secs. IV C
and IV D, we present theory and simulations of the
performance of MRB under general Markovian errors to

further validate our method. In particular, we show that the
randomized compilation step of our circuit construction
guarantees that all errors in the circuit are twirled into Pauli
stochastic error (implying that rΩ ≈ ϵΩ) under the
assumption that all two-qubit gates are Clifford gates.

A. The error rate of Ω-distributed random circuits

Our claim is that rΩ is a reliable estimate of the average
error rate ϵΩ ofΩ-distributed n-qubit circuit layers. We now
make this claim precise by defining ϵΩ. Surprisingly,
defining the error rate that our method (or any other RB
method) should aim to estimate is challenging. RB proto-
cols are often formulated as methods for measuring the
mean infidelity of a set of n-qubit gates or layers, but this is
subtly flawed: The mean infidelity is not an observable
property of a set of physical gates—it is not “gauge
invariant” [45]. One solution to this problem, which we
adopt herein, is introduced in Ref. [46]: The rate of decay of
the mean fidelity of a family of random circuits, as a
function of increasing circuit depth, is (approximately)
gauge invariant. This decay rate can, therefore, be what an
RB protocol aims to measure.
Our protocol aims to estimate the rate at which the

fidelity of Ω-distributed random circuits decays with depth.
The average fidelity of Ω-distributed random circuits with
benchmark depth d (F̄d) is given by

F̄d ¼ E
Cd

FðUðCdÞ;ϕðCdÞÞ: ð15Þ

The requirement that our Ω-distributed circuits are highly
scrambling, which is guaranteed by our restrictions on G
and Ω (see Sec. II C), ensures that F̄d decays exponentially
and, therefore, has a well-defined rate of decay. In Sec. IV,
we show that F̄d decays exponentially in depth for our
circuits, i.e., F̄d ≈ Apd

rc þ B, for constants A and B. We
then define

ϵΩ ¼ ð4n − 1Þð1 − prcÞ=4n: ð16Þ

We choose ϵΩ to be this particular rescaling of prc, because
prc corresponds to the effective polarization of a random
composite layer in an Ω-distributed random circuit—i.e.,
the polarization in a depolarizing channel that would give
the same fidelity decay—and so ϵΩ is the effective average
infidelity of a layer sampled from Ω. When stochastic Pauli
errors are the dominant source of error, ϵΩ is approximately
equal to the average layer entanglement infidelity (see
Appendix A 3).

B. MRB with stochastic Pauli errors

We now show that rΩ ≈ ϵΩ under the assumption of
stochastic Pauli errors on each circuit layer. A more detailed
derivation can be found in Appendix A. Throughout this
section, we treat circuits and circuit layers as random
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variables. We assume each circuit layer has gate-dependent
Markovian error ϕðLÞ ¼ EðLÞUðLÞ. We model the error on
state preparation and measurement (SPAM) and the first
and last circuit layers of a randomized mirror circuit
[RðP0L0Þ and RðPdþ1L−10 Pc

dÞ, respectively] as a single
global depolarizing error channel ESPAM½ρ� ¼ γSPAMρþ
ð1 − γSPAMÞðIn=2nÞ occurring immediately before the final
circuit layer. We assume ESPAM is independent of L0 and the
target bit string of the circuit.
We start by showing that the mean observed polarization

[Eq. (12)] of randomized mirror circuits, which is measured
in the MRB protocol, equals the mean polarization of the
overall error map of a randomized mirror circuit. An
implementation of the depth-d randomized mirror circuit
Md [whose structure is given in Eq. (11)] can be expressed
in terms of its error and its target evolution UðPdþ1Þ as

ϕðMdÞ ¼ UðPdþ1ÞUðL−10 ÞEeffðMdÞUðL0Þ; ð17Þ

where

EeffðMdÞ ¼ ESPAMEeffðM̃dÞ ð18Þ

¼ ESPAME0
T ðL−1θ1 ;PdÞ…E0

L−1d=2
E0
Ld=2

…E0
T ðLθ1

;P0Þ ð19Þ

and

E0
Li
¼ UðL1Þ−1…UðLiÞ−1EðLiÞUðLiÞ…UðL1Þ: ð20Þ

Equation (18) defines an overall error map forMd, which
includes the error from the d=2 Ω-distributed circuit layers
and their inverses (after randomized compilation). To
extract the polarization [Eq. (4)] of this error map, we
average over the initial circuit layer L0, making use of a
fidelity estimation technique that requires only single-qubit
gates: The fidelity of any error channel E can be found by
averaging over a tensor product of single-qubit 2-designs
[44]. In particular, for any bit string y∈ f0; 1gn,

γðEÞ ¼ 4n

4n − 1

X
x∈ f0;1gn

ð−1=2Þhðx;yÞ⟪xþ yjĒj0⟫ −
1

4n − 1
;

ð21Þ

where Ē ¼ EL½UðLÞ†EUðLÞ� and L ¼ ⊗n
i¼1Li, where each

Li is a independent, single-qubit 2-design [44]. Applying
Eq. (21) to Eq. (17), we find that

γðEeffðMdÞÞ ¼ E
L0
SðMdÞ; ð22Þ

where SðMdÞ denotes the observed polarization [Eq. (12)]
of Md. Therefore, the mean observed polarization over all
depth-d randomized mirror circuits is

S̄d ¼ E
Md

γðEeffðMdÞÞ: ð23Þ

Equation (23) says that the average observed polarization
S̄d, which is estimated in the MRB protocol, is equal to the
expected polarization of the error channel of a depth-d
randomized mirror circuit.
We now show how S̄d depends on the error rate of layers

sampled from Ω. To do so, we use the fact that a depth-d
randomized mirror circuit consists of randomized compi-
lation of a circuit consisting of a depth-d=2 Ω-distributed
random circuit Cd=2 followed by its inverse. These two
depth-d=2 circuits are both Ω distributed (even after
randomized compilation), but they are correlated. In
particular,

S̄d ¼ γðESPAMÞ E
Cd=2

γðUðCd=2ÞĒeffðC−1
d=2ÞUðCd=2Þ−1

× EeffðCd=2ÞÞ; ð24Þ

where EeffðCd=2Þ is the overall error map for Cd=2 [i.e.,
ϕðCd=2Þ ¼ UðCd=2ÞEeffðCd=2Þ] and ĒeffðC−1

d=2Þ denotes the
average error map over all possible circuits C0 resulting
from applying randomized compilation toC−1

d=2. Expressing
Eq. (24) in terms of the mean observed polarization of the
overall error map on an Ω-distributed random circuit, we
have

S̄d ¼ γðESPAMÞðΓ̄2
d=2 − ΔΩÞ; ð25Þ

where

Γ̄d ¼ E
Cd

γðEeffðCdÞÞ ð26Þ

and

ΔΩ ¼ E
Cd=2

γðUðCd=2ÞĒeffðC−1
d=2ÞUðCd=2Þ−1EeffðCd=2ÞÞ

−
�
E

Cd=2

γðEeffðCd=2ÞÞ
�
2
: ð27Þ

Equation (25) shows that S̄d ≈ γðESPAMÞΓ̄2
d=2 if jΔΩj is

small. If S̄d and Γ̄d=2 decay exponentially, Eq. (25) relates
their decay rates—i.e., rΩ ¼ ϵΩ if ΔΩ ¼ 0. ΔΩ quantifies
the correlation between the overall error map of a depth-
d=2 Ω-distributed random circuit and the overall error map
of its randomly compiled inverse. We conjecture that jΔΩj
is typically small for physically relevant errors, which is
supported by our simulations (see Sec. IV D) and prior
work [6].
We now show that the expected polarization of

Ω-distributed random circuits (Γ̄d) decays exponentially.
Together with the assumption that jΔΩj is small, this
implies that S̄d decays exponentially. To show that Γ̄d
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decays exponentially, we assume that the error on each
composite layer EðLÞ is a stochastic Pauli channel [Eq. (5)].
This assumption implies that EeffðCdÞ [Eq. (19)] is the
composition of a stochastic Pauli channel for each
composite layer of M̃d, each rotated by a unitary. This
allows us to relate the polarization of EeffðM̃dÞ to the
polarizations of the error channels of individual circuit
layers using the scrambling condition required for
MRB [Eq. (6)].
Because of the scrambling condition on the gate set and

sampling distribution for MRB [Eq. (6)], the polarization of
the effective error channel of Ω-distributed random circuits
is approximately equal to the product of the polarizations of
the layers’ error channels. Specifically, the expected polari-
zation of the overall error map is

Γ̄d ¼ E
L
γðEðLÞÞd þ δ̃; ð28Þ

where δ̃ ¼ Oðdεðδþ kεÞÞ and ε is the average layer
infidelity. Because circuits longer than d ¼ Oð1=εÞ have
negligible polarization, we need consider only the case
where dε ¼ Oð1Þ. Because kε and δ are small, δ̃ is
negligible. In the small-n limit, Eq. (28) follows, because
Eq. (6) implies that depth-k Ω-distributed random circuits
rapidly converge to a unitary 2-design (as a function of k).
In this case, errors in Ω-distributed random circuits are
rapidly scrambled into global depolarizing errors, which
implies that the polarizations of the circuit layers approx-
imately multiply. For n ≳ 3, our circuits do not quickly
converge to a 2-design, but in Appendix A 3 we show that
Eq. (6) implies that error cancellation is negligible in
Ω-distributed random circuits, from which it follows that
Γ̄d decays exponentially at a rate determined by the
expected layer polarization.
We have shown that the expected polarization of the

overall error map of Ω-distributed random circuits decays
exponentially, and we now relate its decay rate to the decay
rate of the observed polarization of randomized mirror
circuits, thereby relating rΩ and ϵΩ. Combining Eq. (28)
with Eq. (25), we have

S̄d ¼ γðESPAMÞ
��

E
L
γðEðLÞÞ

�
d
− ΔΩ

�
; ð29Þ

Assuming that ΔΩ is small, Eq. (29) implies that S̄d and Γ̄d
have approximately the same decay rate, which implies
that rΩ ≈ ϵΩ.

C. MRB with general errors

The theory presented above (Sec. IV B) shows that MRB
is reliable whenever stochastic Pauli errors dominate over
all other possible errors (e.g., coherent errors). In practice,
stochastic error is not always dominant, which our protocol
addresses with the randomized compilation step (see

Fig. 2). The purpose of this step is to, upon averaging,
convert all types of errors into stochastic Pauli errors [39]—
in which case the theory presented above can be used to
infer that rΩ ≈ ϵΩ. WhenMRB is implemented on a gate set
in which all of the two-qubit gates are Clifford gates, this
noise tailoring follows from standard randomized compi-
lation theory [39]. In Appendix B, we show that, with a
Clifford two-qubit gate set, the error in MRB circuits is
twirled into Pauli stochastic noise under the assumption
that the error map on the single-qubit gates is independent
of the Pauli gates with which they are compiled. In actual
devices, it is common for the single-qubit gate layers to
have errors that are gate dependent but much smaller than
the two-qubit gate errors, in which case this result holds
approximately [39].
Our MRB protocol can be applied to all controlled

rotations around Pauli axes, i.e., all CPθ gates. When the
two-qubit gates are not all Clifford gates (i.e., when
θ ≠ 0; π), the randomized compilation method used in
our circuits is not equivalent to standard randomized
compilation. In this case, we cannot use standard random-
ized compilation theory to guarantee that all coherent
errors on the two-qubit gates are twirled into stochastic
Pauli errors. Ineffective twirling of coherent errors on two-
qubit gates could result in coherent cancellation of the
errors in a layer of two-qubit gates and its inversion layer
in the second half of the mirror circuit (as happens in a
simple mirror circuit, or standard Loschmidt echo [7]).
In Appendix C 1, we prove that our randomized compila-
tion method largely—but not entirely—prevents this error
cancellation. We consider the sensitivity of our method to
general Hamiltonian errors on each gate g∈G2. We model
these errors by an error map EðgÞ ¼ eMg , where

Mg ¼
X
Pa;Pb

εgPa;Pb
HPa;Pb

ð30Þ

and HPa;Pb
is the two-qubit Hamiltonian error generator

indexed by the Pauli operators Pa and Pb, as defined in
Ref. [47]. We show that rΩ depends on all Hamiltonian
errors inCPθ gates except one particular linear combination
of the Hamiltonian errors on CPθ and CP−θ gates, when
θ ≠ 0; π (i.e., when CPθ is not a Clifford gate). In
particular, rΩ is insensitive (at first order) to εCPθ

P;P þ
εCP−θ
P;P when θ ≠ 0; π. This is the sum of over- and under-
rotation Hamiltonian errors in the CPθ gate and its inverse.
In Appendix C 2, we discuss how our technique could
be adapted to remove this limitation. Note that if
G2 ¼ fcs; cs†g, as is the case in our simulations (below)
and some of our experiments (Sec. V), then rΩ is insensitive
(at first order) to εcsZ;Z þ εcs

†

Z;Z. However, it is sensitive to all
other linear combinations of the Hamiltonian errors on the
cs and cs† gates.
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D. Simulations

We now use numerical simulations to investigate the
robustness of MRB, studying whether the MRB error rate
(rΩ) closely approximates the error rate of Ω-distributed
layers (ϵΩ). Our theory for MRB suggests that MRB is
particularly robust when the two-qubit gates are Clifford
gates and when all errors are stochastic Pauli errors.
Therefore, we simulate MRB with non-Clifford two-qubit
gates and for both stochastic and coherent errors. We
simulate MRB for n-qubit layer sets constructed from
the gate set G1 ¼ SUð2Þ and G2 ¼ fcs; cs†g and n ¼ 1, 2,
4, with all-to-all connectivity. We use a sampling distri-
bution Ω2 for which the two-qubit gate density is ξ ¼ 1=2
[48]. In these simulations (and our experiments), each
single-qubit gate is decomposed into the following
sequence of xπ=2 and zθ gates:

uðθ;ϕ; λÞ ¼ z−ϕ−π=2xπ=2zπ−2θxπ=2z−λþπ=2: ð31Þ

Here, xπ=2 is a π=2 rotation around the X axis, and zθ is a
rotation around the Z axis by θ∈ ½0; 2πÞ. Note that even
when a shorter sequence of gates can implement the
required unitary [e.g., uð0; 0; 0Þ implements the identity
so it could be implemented with no gates] we always use
this sequence of five gates. Therefore, the only difference
between any two single-qubit gates is the angles of the
zθ gates.
We simulate three different families of error model:

stochastic Pauli errors, Hamiltonian errors, and stochastic
and Hamiltonian errors. These error models are specified
using the error generator framework in Ref. [47], and they
consist of gate-dependent errors specified by randomly
sampling error rates for each type of error and each gate.
We simulate error models that are crosstalk-free (note that
our theory encompasses crosstalk errors), so each error
model is specified by the rates of each type of local error on
each gate. In particular, for an m-qubit gate, we randomly
sample 4m − 1 stochastic error generators, or 4m − 1
Hamiltonian error generators, or both, depending on the
error model family. We sample the error rates so that
the infidelity of each two-qubit gate is approximately q, and
the infidelity of each one-qubit gate is approximately 0.1q,
where q is a parameter swept over a range of values (see
Appendix D). These error models have perfect state
preparation and measurements. The effect of SPAM error
on the polarization is approximately independent of bench-
mark depth, and, therefore, we expect MRB to be robust to
SPAM error. In Appendix D, we present simulations
compare the MRB error rate in error models with perfect
measurements to error models with bit flip and amplitude
damping measurement error. We find that these measure-
ment errors do not significantly impact the resulting MRB
error rate.
Figure 3 shows the results of our main simulations. It

compares the true average layer error rate per qubit

ϵΩ;perQ ¼ 1 − ð1 − ϵΩÞ1=n ≈ ϵΩ=n ð32Þ

to the observed MRB error rate per qubit

rΩ;perQ ¼ 1 − ð1 − rΩÞ1=n ≈ rΩ=n ð33Þ

in each simulation, separated into the three families of error
model (1σ error bars are shown, computed using a standard
bootstrap). Figures 3(a)–3(c) show that rΩ ≈ ϵΩ in every
simulation, which means that our method closely approx-
imates the error rate of Ω-distributed layers for all of these
error models.
For stochastic error models [Fig. 3(a)], the relative error

δrel ¼ ðrΩ;perQ − ϵΩ;perQÞ=ϵΩ;perQ in the MRB estimate of
ϵΩ;perQ is small: jδrelj < 0.04, and the mean jδrelj is 0.007 for
all sampled error models. This is consistent with, and
supports, our theory for MRB with stochastic errors. The
relative error is larger for Hamiltonian error models—the
mean relative error is 0.04 and jδrelj < 0.21 for all error
models. We expect larger relative error for some
Hamiltonian error models, because MRB is insensitive to
some Hamiltonian errors (see Sec. IV C)—but note that the
uncertainty due to finite sample fluctuations (σ) is larger in
these simulations. For stochastic Pauli errors [Fig. 3(a)], the
uncertainty in rΩ;perQ is small, because there is little variation
in the performance of circuits of the same depth (the mean
uncertainty in rΩ;perQ is 0.5%). For Hamiltonian errors
[Fig. 3(c)], the uncertainty in rΩ;perQ is larger (the mean
uncertainty is 3%), as individual circuit performance varies
widely due to coherent addition or cancellation of error
being highly dependent on the circuit structure (as in all RB
methods, we expect coherent errors to add or cancel in
individual MRB circuits).
Arguably the most relevant simulations for real-world

quantum computers are those with both stochastic and
coherent errors [Fig. 3(b)]. In these simulations, we sample
random combinations of stochastic and Hamiltonian errors
(so the dominant source of error varies across these
models). We find that rΩ ≈ ϵΩ holds to a good approxi-
mation for typical error models sampled from this ensemble
(the mean relative error is 0.017, jδrelj < 0.11 for all
models, and the mean uncertainty in rΩ;perQ is 1.4%).
To investigate whether there is evidence for rΩ system-

atically underestimating (or overestimating) ϵΩ, we plot the
relative error divided by its uncertainty σδrel [Figs. 3(d)–3(f)].
For n ¼ 1 qubit, there is no evidence that MRB is signifi-
cantly biased toward under- or overestimating ϵΩ with these
error models. In contrast, we find that MRB slightly but
systematically underestimates ϵΩ for n > 1 qubits. This
underestimate can be explained by the correlation between
the error in an Ω-distributed circuit and its randomly
compiled inverse, which determines the difference between
rΩ and ϵΩ (see Sec. IV B). When the circuits contain two-
qubit gates—which in our simulations (and in most real
systems) have higher error rates than one-qubit gates—the
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error in a circuit is typically highly correlated with the
number of two-qubit gates in the circuit. As a result, the
correlation between a circuit and its randomly compiled
inverse is typically largerwhen the circuits contain a variable
number of two-qubit gates, causing rΩ to slightly under-
estimate ϵΩ.

V. EXPERIMENTS ON THE ADVANCED
QUANTUM TESTBED

We use MRB to benchmark universal gate sets on the
Advanced Quantum Testbed (AQT) [40], a quantum com-
puting test bed platform based on superconducting qubits.
We perform our experiments on four qubits (Q4–Q7)
of an eight-qubit superconducting transmon processor
(AQT@LBNL Trailblazer8-v5.c2). These four qubits are
coupled to their nearest neighbors in a linear geometry (see
Fig. 4). Below and throughout this paper, estimated quan-
tities include error barswhere possible [49]. All error bars are
1σ and are written using standard concise notation; i.e.,
r ¼ 1.2ð3Þ%means r ¼ 1.2%with a standard error of 0.3%.

A. Experiment design

One of the advantages of MRB is that it can benchmark a
wide variety of n-qubit layer sets, and we use this flexibility

to explore the performance of three distinct layer sets on
AQT. Each layer set is defined by a set of single-qubit
gates G1, a set of two-qubit gates G2, a two-qubit gate
density ξ, and the connectivity of the qubit subset (see

FIG. 3. Investigating the reliability of MRB using simulations. We simulate MRB on n all-to-all-connected qubits for n ¼ 1, 2, 4 with
the gate set ðG1;G2Þ ¼ ðSUð2Þ; fcs; cs†gÞ with randomly sampled gate-dependent errors. From left to right, the columns show results
from simulations with crosstalk-free error models consisting of (a),(d) only stochastic errors, (b),(e) a combination of stochastic and
Hamiltonian errors, and (c),(f) only Hamiltonian errors (see Sec. IV D for details). (a)–(c) The MRB error rate per qubit
[rΩ;perQ ¼ 1 − ð1 − rΩÞ1=n] versus the average composite layer error rate per qubit [ϵΩ;perQ ¼ 1 − ð1 − ϵΩÞ1=n] for each randomly
sampled error model. The MRB error rate rΩ closely approximates ϵΩ, and the agreement is closest under purely stochastic errors.
(d)–(f) The relative error δrel ¼ ðrΩ;perQ − ϵΩ;perQÞ=ϵΩ;perQ divided by its uncertainty σδrel for each randomly sampled error model (σδrel is
calculated via a standard nonparametric bootstrap). The MRB error rate rΩ is biased toward very slightly underestimating ϵΩ for n > 2
qubits, which is expected from our theory (see the main text).

FIG. 4. The Advanced Quantum Testbed. We perform MRB
experiments on four qubits (Q4–Q7) of AQT’s eight-qubit super-
conducting transmon processor (AQT@LBNL Trailblazer8-
v5.c2). The processor includes eight fixed frequency transmons
coupled in a ring geometry. Each qubit (purple) has its own control
line (orange) and readout resonator (cyan) coupled to a shared
readout bus (red) for multiplexed readout.
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Sec. II). In our experiments, we investigate three different
choices for ðG1;G2Þ: ðSUð2Þ; fcs; cs†gÞ, ðSUð2Þ; fczgÞ,
and ðC1; fczgÞ, where C1 is the set of all 24 single-qubit
Clifford gates. These circuits contain strict barriers between
all layers, including between the single- and two-qubit gate
layers that make up each composite layer.
MRB enables benchmarking each layer set on any

connected set of qubits, and the error rates on subsets of
a device can be used to learn about the location and type of
errors. We benchmark n-qubit layer sets for every possible
connected set Q ⊆ fQ4; Q5; Q6; Q7g of n qubits with
n ¼ 1, 2, 3, 4, resulting in ten different qubit subsets.
Independently benchmarking every connected subset of
qubits allows us to study the spatial variation in gate
performance in detail and determine the size of crosstalk
error in circuits with three and four qubits (see Sec. V C).
For each RB experiment, we sample K ¼ 30 circuits
at a set of exponentially spaced benchmarking depths
(d ¼ 0; 2; 4; 8…).
For each of the three gate sets ðG1;G2Þ and each qubit

subset Q, we run experiments with a two-qubit gate density
of ξ ¼ 1=2. To investigate the effect of varying ξ, we also run
experiments with ξ ¼ 1=8 for one of the gate sets—
ðSUð2Þ; fcs; cs†gÞ—and every Q. For each qubit subset,
we therefore run four MRB experiments, defined by [50]
(1) G1 ¼ SUð2Þ, G2 ¼ fcs; cs†g, and ξ ¼ 1=8;
(2) G1 ¼ SUð2Þ, G2 ¼ fcs; cs†g, and ξ ¼ 1=2;
(3) G1 ¼ SUð2Þ, G2 ¼ fczg, and ξ ¼ 1=2; and
(4) G1 ¼ C1, G2 ¼ fczg, and ξ ¼ 1=2.

Further experiment details are provided in Appendix E.

B. Estimating average error rates of universal layer sets

Figure 5 summarizes the results of the 3 × 10 MRB
experiments in which we vary the gate set ðG1;G2Þ—
corresponding to each row in Fig. 5—and the subset of
qubits benchmarkedQ, but we keep the expected two-qubit
gate density constant (ξ ¼ 1=2). The main output of an
MRB experiment is an average layer error rate (rΩ),
obtained by fitting the mean observed polarization [S̄d,
defined in Eq. (12)] to an exponential decay. This error rate
is a function of ðG1;G2;Q; ξÞ, so we denote our estimated
error rates by rðG1;G2;Q; ξÞ whenever we need to refer
to a particular error rate. These error rates quantify the
performance of random circuits on this device and enable
us to compare the average performance of the gate sets
we test.
Figures 5(a)–5(c) show MRB data and fits to an

exponential, for each of the three gate sets and ξ ¼ 1=2.
For each MRB experiment, we show the mean observed
polarization (S̄d) versus benchmark depth, the distribution
of the observed polarization versus benchmark depth, and
the fit of S̄d to S̄d ¼ Apd. Data for a single representative
subset of qubits of each size (n ¼ 1, 2, 3, 4) are shown.
In all cases, we observe that S̄d is consistent with an

exponential decay in d, providing experimental evidence
for our claim that S̄d decays exponentially under a broad
range of conditions.
Figures 5(d)–5(f) show the estimated error rates (rΩ) for

each qubit subset that we benchmark, for each of the three
different gate sets. Each rΩ is a rescaling of the decay rate
of the fitted exponential [see Eq. (13)]. By comparing
Figs. 5(d)–5(f), we can compare the average error rates of
n-qubit layers constructed from three different gate sets,
two of which are universal and one of which contains
only Clifford gates and, therefore, is not. By comparing
Figs. 5(e) and 5(f), we find that the average error rate of a
layer set is approximately independent of whether single-
qubit gates are sampled from SUð2Þ or from C1 (the single-
qubit Clifford group)—that is, rðSUð2Þ; fczg;Q; 1=2Þ ≈
rðC1; fczg;Q; 1=2Þ for all ten subsets of qubits Q. All
single-qubit gates in our experiments are implemented
using a composite uðθ;ϕ; λÞ gate [see Eq. (31)] that
contains two xπ=2 gates and three zθ gates. This is the
case even for unitaries that do not require two xπ=2 pulses,
such as the identity. The difference between any two single-
qubit gates is, therefore, only in the angles of the three zθ
gates within uðθ;ϕ; λÞ. These gates are implemented by in-
software phase updates on later pulses [51], so it is
expected that these “virtual gates” cause negligible errors.
The observed similarity between the average performance
of these two gate sets is consistent with this expectation
(numerical values for all estimated rΩ are included in
Table I). Note, however, that the observed similarity
between the average success rates of circuits in which
the single-qubit gates uðθ;ϕ; λÞ are sampled from two
different distributions does not imply that the success rate
of an individual circuit is independent of the values of θ, ϕ,
and λ in its uðθ;ϕ; λÞ gates—see Appendix E 2 for further
discussions.
Our experiments include MRB on n-qubit layers

containing two non-Clifford two-qubit gates—cs and
cs†—and we now turn to these results. Comparing
Figs. 5(d) and 5(f), we observe that the error rates for
layers containing cs and cs† gates are all almost equal
to, but slightly larger than, the error rates for layers
containing cz gates. The largest relative difference is in
the experiments on the three-qubit set fQ4; Q5; Q6g:
rðSUð2Þ; fcs; cs†g; fQ4; Q5; Q6g; 1=2Þ ¼ 1.64ð5Þ% and
rðSUð2Þ;fczg;fQ4;Q5;Q6g;1=2Þ ¼ 1.48ð4Þ%. The three
different two-qubit gates (cs, cs†, and cz) on each qubit
pair are a priori expected to have similar error rates, due to
their similar calibration procedures. The slightly larger
error rates for cs and cs† are cross-validated using cycle
benchmarking [9] (see Sec. V D for a quantitative com-
parison). Therefore, these results are experimental evidence
for the robustness of MRB with non-Clifford two-qubit
gates (see Secs. IV C and IV D for a discussion of and
theory for MRB of non-Clifford two-qubit gates).
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C. Estimating crosstalk errors

Crosstalk is an important type of error in current quantum
processors, but it is challenging to quantify [4]. Multiqubit
MRB captures crosstalk errors, and it enables us to quantify
the contribution of crosstalk errors to the average error rate
of n-qubit layers. To do so, we compare the observed
increase in rΩ with n [Figs. 5(d)–5(f)] to predictions for
rΩ that assume no crosstalk errors. The excess observed
error above these predictions is then attributed to crosstalk.

We predict rΩ for sets of three or more qubits from the
observed rΩ values for each one- and two-qubit subset
(note, however, that this is not the only possible way to
predict rΩ). This prediction is built on a simple theory for
MRB. We model rΩ by

rΩ ¼
X
L∈L

ΩðLÞϵL; ð34Þ

FIG. 5. Randomized benchmarking of universal gate sets on four qubits of the Advanced Quantum Testbed. We use MRB to
benchmark n-qubit layers constructed from three different gate sets, on each connected n-qubit subset of a linearly connected set of four
qubits fQ4; Q5; Q6; Q7g in an eight-qubit superconducting transmon processor (AQT@LBNL Trailblazer8-v5.c2). The rows
correspond to results from three different choices of gate set, each consisting of a two-qubit gate set G2 and a single-qubit gate
set G1. From top to bottom, the rows correspond to a universal gate set containing two non-Clifford entangling gates and the set of all
single-qubit gates [G2 ¼ fcs; cs†g, G1 ¼ SUð2Þ]; a universal gate set containing a Clifford entangling gate and the set of all single-
qubit gates [G2 ¼ fczg, G1 ¼ SUð2Þ]; and a nonuniversal, Clifford gate set [G2 ¼ fczg, G1 ¼ C1, where C1 is the one-qubit Clifford
group]. (a)–(c) MRB decays for the qubit subsets fQ4g, fQ4; Q5g, fQ4; Q5; Q6g, and fQ4; Q5; Q6; Q7g. Violin plots and points show
the distribution and mean, respectively, of the MRB circuit’s observed polarization (Sd) versus benchmark depth (d). The curve is a fit of
the mean of Sd (S̄d) to S̄d ¼ Apd. The average error rate of an n-qubit layer (rΩ) is given by rΩ ¼ ð4n − 1Þð1 − pÞ=4n. The observed S̄d
decays exponentially, as predicted by our theory for MRB. (d)–(f) The estimated error rate rΩ for each qubit subset that we benchmark.
(g)–(i) Predictions for the average layer error rate of three- and four-qubit subsets (hatched) based on the experimental one- and two-
qubit error rates (unhatched) and the assumption of no crosstalk errors. The difference between (d)–(f) and (g)–(i) quantifies the
contribution of crosstalk errors to the average error rate of an n-qubit layer, for n ¼ 3, 4. For all three gate sets and n ¼ 4, we see that
crosstalk errors are contributing approximately 0.7% error to rΩ, which is approximately 1=3 of rΩ.
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where ϵL is the infidelity of a G1-dressed layer L, which
consists of a specific layer of two-qubit gates—i.e., L is
labeled by the two-qubit gate layer—followed by a layer of
random single-qubit gates [from either SUð2Þ or C1].
Equation (34) is justified by our theory for MRB (see
Sec. IV), but note that it holds only approximately, unless
each layer’s error channel is an n-qubit depolarizing
channel. The fidelity F ¼ 1 − ϵ of a tensor product of
channels is the product of those channels’ fidelities. So,
under the assumption that there are no crosstalk errors, the
infidelity of L is given by ϵL ¼ Q

g∈L Fg, where g are
the G1-dressed gates in the G1-dressed layer L and Fg is the
fidelity of g. Therefore,

ϵL ¼ 1 −
Y
g∈L

ð1 − ϵgÞ; ð35Þ

where ϵg ¼ 1 − Fg.
To predict ϵL using Eq. (35) [and then rΩ using Eq. (34)],

we need estimates for ϵg for every possible G1-dressed gate
g. That is, we need estimates for (i) ϵidleðQiÞ for each qubit
Qi∈ fQ4; Q5; Q6; Q7g, where idleðQiÞ is the G1-dressed
idle gate on Qi, and (ii) ϵgðQi;QjÞ for each connected pair of
qubits fQi;Qjg, where gðQi;QjÞ is a two-qubit gate on
fQi;Qjg uniformly sampled from G2. Each of these
quantities can be estimated from the observed one- and
two-qubit MRB error rates. Using Eq. (34), we have

rðG1; fQigÞ ¼ ϵidleðQiÞ; ð36Þ
because each single-qubit MRB circuit simply consists
of repeating the G1-dressed idle gate. Similarly, using
Eq. (34), we have

rðG1;G2;fQi;Qjg;ξÞ
¼ ξϵgðQi;QjÞ þð1−ξÞð1−ϵidleðQiÞÞð1− ϵidleðQjÞÞ; ð37Þ

because each G1-dressed layer in a two-qubit MRB circuit
is either (with probability ξ) a G1-dressed two-qubit gate

sampled uniformly at random from G2 or a G1-dressed idle
on each qubit (with probability 1 − ξ).
Using Eqs. (35)–(37) and explicit expressions for ΩðLÞ,

we obtain analytic expressions for our crosstalk-free
predictions of rΩ for the three- and four-qubit layers.
These predictions are shown in Figs. 5(g)–5(i). The cross-
talk-free predictions are significantly smaller than the
observed experimental values, shown in Figs. 5(d)–5(f).
For each gate set, the predicted four-qubit rΩ is approx-
imately 25% smaller than the observed value. The cross-
talk-free predictions for fQ4; Q5; Q6g are 13%–19%
smaller than their observed values, and the crosstalk-free
predictions for fQ5; Q6; Q7g are 20%–27% smaller than
their observed values. The difference between the exper-
imental error rates and the crosstalk-free predictions, shown
in Fig. 6, is a quantification of the contribution of crosstalk
errors to the average rate of errors in three- and four-qubit
random circuits in this system. We note that one contri-
bution to the difference between the observed rΩ and the
crosstalk-free prediction is the difference between idle

TABLE I. RB error rates on AQT. The RB error rates for every RB experiment we run on AQT. We benchmark
each connected subset of four linearly connected qubits and use three different gate sets.

Qubit subset ðQÞ
rðfcs; cs†g;

SUð2Þ;Q; 1=8Þ
rðfcs; cs†g;

SUð2Þ;Q; 1=2Þ
rDRBðfcs; cs†g;
SUð2Þ;Q; 1=2Þ

rfczg;SUð2Þ;
Q; 1=2Þ

rðfczg;C;
Q; 1=2Þ

Q4 0.25(3)% 0.18(2)% 0.27(2)%
Q5 0.12(1)% 0.12(1)% 0.12(1)%
Q6 0.118(4)% 0.108(5)% 0.113(3)%
Q7 0.079(1)% 0.080(2)% 0.080(1)%
ðQ4; Q5Þ 0.50ð3Þ= 0.77(3)% 0.87(4)% 0.73(2)% 0.67(2)%
ðQ5; Q6Þ 0.54(3)% 0.86(3)% 0.81(3)% 0.81(2)% 0.76(2)%
ðQ6; Q7Þ 1.05(4)% 1.05(4)% 0.99(4)% 1.04(3)% 0.98(2)%
ðQ4; Q5; Q6Þ 1.04(4)% 1.64(5)% 1.48(4)% 1.51(4)%
ðQ5; Q6; Q7Þ 0.97(3)% 1.63(3)% 1.61(4)% 1.61(3)%
ðQ4; Q5; Q6; Q7Þ 1.36(3)% 2.48(5)% 2.45(5)% 2.34(5)%

FIG. 6. Estimating crosstalk errors on AQT. We estimate the
contribution of crosstalk errors to the layer error rate rΩ for n ¼ 3,
4 qubits by taking the difference between each experimental error
rate (rΩ) and a corresponding prediction (rΩ;pred) obtained from
the experimental one- and two-qubit error rates and the
assumption of no crosstalk. We find that crosstalk contributes
approximately 0.2%–0.4% to rΩ for n ¼ 3 (which is 1=8–1=4 of
rΩ) and approximately 0.7% to rΩ for n ¼ 4 (which is 1=3 of rΩ).
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gates that occur in parallel with a two-qubit gate and idle
gates that occur in single-qubit circuits. The idle that occurs
in parallel with a two-qubit gate is a 200 ns idle (the
duration of a two-qubit gate on this device), whereas the
idle gate that occurs in a one-qubit circuit is a 60 ns idle.
Our prediction methodology implicitly assumes that these
two idle gates have the same error rate. However, we
conjecture that the contribution from this difference is
small, because idle gates in this system are relatively
low error.

D. Estimating the error rates of individual gates

An MRB experiment is primarily designed to estimate a
single error rate (rΩ) that quantifies the average error rate of
an n-qubit layer. However, it is also often useful to quantify
the error in specific layers, e.g., to identify high-error gates.
Information about the error rates of individual layers is
contained within the MRB data (e.g., RB data can even be
used for full tomography [52,53]), and we extract it using a
scalable model fitting method. Specifically, we fit a four-
qubit depolarizing error model to the four-qubit MRB data
to estimate the error rates of individual G1-dressed layers
(Fig. 7). To validate our results, we compare the infidelities
we estimate to independent estimates obtained from an
established technique: cycle benchmarking [9], which is a
method for estimating the infidelity of individual many-
qubit gate layers. Figure 7 shows that our estimates are
broadly similar to the those obtained from cycle

benchmarking, differing by at most 23%, and note that
we would not expect exact agreement [54]. This demon-
strates the potential of MRB to go beyond average error rate
estimation and provides an alternative to, e.g., interleaved
RB. In Appendix E 3, we discuss the depolarizing model fit
as well as two additional methods for estimating the error
rate of individual layers from MRB data and compare their
predictions (Figs. 15 and 16 in Appendix E).

E. Comparison to direct RB

One of the purposes of our experiments is to test the
reliability of MRB. To investigate whether rΩ ≈ ϵΩ in
experiment (as claimed by our theory), we compare the
results of MRB to an alternative, established RB technique:
direct RB (DRB) [5]. DRB is a streamlined variant of
standard RB. Both DRB and standard RB are inefficient
when applied to universal gate sets—as they have costs that
scale exponentially with the number of qubits—but they are
feasible in the very-few-qubit regime. We choose to
compare MRB to DRB, because these two methods have
the same flexible circuit sampling and they are designed to
measure the same error rate: ϵΩ. In contrast, standard RB
benchmarks a gate set that forms a group, e.g., SUð2nÞ, and
it measures an error rate for a uniformly random element of
that group—so this error rate cannot be directly compared
to rΩ.
An n-qubit, benchmark depth-d DRB circuit for a

universal layer set is constructed by first sampling a
depth-d circuit C with layers sampled from some distri-
bution Ω—exactly as with MRB. As shown in Fig. 8(a),
this circuit C is then embedded between (i) a circuit that
implements an n-qubit Haar random unitary and (ii) a
circuit that returns the qubits to the computational basis.
Note that both (i) and (ii) require circuits of one- and two-
qubit gates whose size grows exponentially in n [we
compile a SUð2nÞ unitary into a circuit of xπ=2, zθ, and
cz gates using the Qsearch package [55,56] ]. We, therefore,
run DRB on all n-qubit subsets only up to n ¼ 3.
In our DRB experiments, we use the same layer

sampling distribution as in our G1 ¼ SUð2Þ, G2 ¼
fcs; cs†g, and ξ ¼ 1=2 MRB experiments. So the DRB
error rates we are measuring—which we denote by
rDRBðSUð2Þ; fcs; cs†g;Q; 1=2Þ for qubit subset Q—are
equal to the equivalent MRB error rates rðSUð2Þ;
fcs; cs†g;Q; 1=2Þ if both DRB and MRB are working
correctly. Figure 8 compares these DRB and MRB error
rates for each one- and two-qubit subset. For each of these
qubit subsets, the two error rates differ by no more than 2σ.
Because of the overhead in implementing a Haar-random
unitary from SUð2nÞ, the three-qubit DRB circuits are so
large that the polarization of all n ¼ 3 DRB circuits is
Sd ≈ 0, even for the d ¼ 0 circuits, so we are not able to
obtain reliable estimates of rDRB for either three-qubit
subset. The rapid decrease in the d ¼ 0 polarization (S0)
with increasing n is shown in the inset in Fig. 8(b).

FIG. 7. Estimating the infidelity of dressed four-qubit layers.
Estimates of the error rates of individual G1-dressed layers
containing a single two-qubit gate (cs, cs†, or cz), obtained
by fitting an n-qubit depolarizing model to the four-qubit MRB
data. This scalable analysis technique enables extraction of
additional information about each layer’s error from MRB data.
To validate our results against an established technique, we
compare to infidelities independently estimated using cycle
benchmarking [9]. We observe qualitative agreement. The cycle
benchmarking experiments measure the infidelities of layers
dressed with one-qubit gates sampled from a different gate set
(the Pauli group) to those used in our MRB experiments, so exact
agreement is not expected.
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This demonstrates that DRB cannot be used to benchmark
universal gate sets on more than around 2–3 qubits (and
note that standard RB requires running even larger circuits
than those used in DRB).

VI. 27-QUBIT IBM Q DEMONSTRATION

To investigate what many-qubit MRB can reveal about
errors in current many-qubit hardware, we run MRB on a
27-qubit IBM Q device (ibmq_montreal, a Falcon r4
processor). We use the universal gate set G1 ¼ SUð2Þ
and G2 ¼ fcnotg, and we sample layers with a two-qubit
gate density of ξ ¼ 1=4. Our circuits contain barriers
between each layer of gates, as in our experiments on
AQT (Sec. V). We choose a single qubit subset Q
containing n qubits for 15 exponentially spaced n up to
n ¼ 27. This is illustrated in Fig. 9(b), for 6 of the 15 qubit
subsets. For each qubit subset, we sample and run 25
circuits at each of a set of exponentially spaced depths.
Figure 9(a) shows the observed polarization versus

benchmark depth for six representative values of n. Even
for n ¼ 27, where we observe an average layer error rate of
rΩ ¼ 28ð1Þ%, we obtain a d ¼ 0 average observed polari-
zation of S0 ≈ 40%. This demonstrates that MRB is
practical on many qubits, even when the error rate per
layer is Oð10%Þ. For all n, we observe that the mean
observed polarization is consistent with an exponential
decay, as expected. Figure 9(b) shows the error rate per
qubit [rΩ;perQ ¼ 1 − ð1 − rΩÞ1=n ≈ rΩ=n] versus n. Our
circuits have a fixed expected two-qubit gate density (of
ξ ¼ 1=4). Therefore, rΩ;perQ is independent of n for n ≥ 2 if
(i) the error rate of one-qubit gates and the error rate of
two-qubit gates is invariant across the device and (ii) there

are no crosstalk errors. Instead, we observe that rΩ;perQ
rapidly increases from rΩ;perQ ≈ 0.2% for n ¼ 2 up to
rΩ;perQ ≈ 1.2%—an increase of approximately 500%.
To quantify the contribution of crosstalk errors to the

observed increase in the per-qubit error rate with n, we first
need to quantify the spatial variations in the one- and two-
qubit gate error rates (meaning the error rates of those gates
when all other qubits are idle). We use one- and two-qubit
MRB tomeasure the error rates of each one-qubit subset and
each connected two-qubit subset of the 27 qubits. Because of
the large number of qubits, it would require running more
circuits than is feasible to implement independent one-qubit
MRB experiments on each qubit (27MRBexperiments) and
independent two-qubit MRB experiments on each con-
nected pair of qubits (30 MRB experiments). Instead, we
implement all 27 one-qubit MRB experiments simultane-
ously [3]. The resultant one-qubit MRB error rates, there-
fore, include contributions from single-qubit gate crosstalk
errors. We run the 30 two-qubit MRB experiments in eight
groups, selected to minimize the closeness in frequency
space of the qubits in each group. These two-qubit MRB
error rates, therefore, include some contributions from two-
qubit gate crosstalk, but the experiments are designed with
the aim of minimizing this contribution. We also run five
isolated two-qubit MRB experiments and observe that the
simultaneous two-qubit MRB error rates are a factor of
between 1.5 and 2.5 times larger than the corresponding
isolated MRB error rates (see Table III).
We use the set of measured one- and two-qubitMRB error

rates to predict the n-qubit rΩ that would be observed if there
are no two-qubit gate crosstalk errors, using Eqs. (34)–(37)
[57]. Figure 9(c) shows the predictions for the per-qubit error
rate rΩ;perQ. Forn ≫ 1, these predictions (blue diamonds) are

(a) (b)

FIG. 8. Validating MRB by comparison to DRB. (a) The structure of DRB circuits, which is a method for benchmarking an n-qubit
layer set, when applied to a universal gate set. DRB is known to be reliable, but it is exponentially expensive in n for universal gate
sets—because, for a universal gate set, its circuits start by implementing a Haar random unitary from SUð2nÞ. (b) The error rates
obtained when running equivalent DRB and MRB experiments, on every one- and two-qubit subset of the four qubits we benchmark on
AQT. The close agreement between the DRB and MRB error rates is experimental evidence that MRB is reliable. The inset shows the
polarization at benchmark depth d ¼ 0 (S0) for n-qubit DRB with n ¼ 1, 2, 3. The rapid decay in S0 is due to the overhead in
implementing a Haar-random unitary, and it makes DRB of universal gate sets infeasible on more than around 2–3 qubits.
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much smaller than the observations (red circles). This
prediction accounts for spatial variations in the one- and
two-qubit error rates and includes contributions from one-
qubit gate crosstalk errors (and some contributions from two-
qubit gate crosstalk). Therefore, we can conclude that the
additional observed error is due to crosstalk caused by the
two-qubit gates, and it lower bounds the total contribution of
crosstalk errors to rΩ. Figure 9(d) shows the ratio R of the
observed to the predicted error rate per qubit rΩ;perQ, versusn.
R grows approximately linearly from R ≈ 0.2 at n ¼ 2 up to
R ≈ 2.5 at n ≈ 13 and then saturates at between R ≈ 2.5 and
R ≈ 3.0. One possible explanation for this is two-qubit gate
crosstalk errors with finite spatial radius; i.e., two-qubit gates
cause increased errors on other qubits within some distance
of the target qubits.

VII. DISCUSSION

Scalable benchmarking methods are needed to quantify
the integrated performance of medium- and large-scale

quantum processors. In this paper, we introduce a scalable
method for RB of universal gate sets that uses a novel and
customizable family of randomized mirror circuits. We
present a theory for our method, showing that it reliably
measures the error rate of a random n-qubit circuit layer
sampled from a user-specified distribution Ω. We demon-
strate MRB on multiple gate sets in both simulations and
experiments, demonstrating that it is reliable and that it is a
powerful tool for understanding errors in many-qubit
circuits. Our method can be viewed both as an adaptation
of standard RB and its variants, to enable efficient and
scalable benchmarking of universal gate sets, and as an
adaptation of XEB that removes XEB’s inefficient circuit
simulation step. It, therefore, provides a link between two
widely used benchmarking methodologies, and so we
anticipate that the ideas introduced here will lead to further
advances in randomized benchmarking.
Using two quantum processors, we demonstrate MRB of

a gate set consisting of cnot and arbitrary single-qubit gates
on up to 27 qubits and MRB of a gate set with non-Clifford

(c) (d)

(a) (b)

(e)

FIG. 9. Randomized benchmarking of a universal gate set on a 27-qubit IBM Q processor. We run MRB on n-qubit subsets of the
ibmq_montreal processor, for 15 exponentially spaced n from n ¼ 1 to n ¼ 27. (a) The MRB decays and fits to an exponential for the
six subsets of qubits illustrated in (b). The observed polarization decays exponentially in all cases. Because of the minimal overhead in
MRB circuits, we obtain an exponential decay even for 27 qubits and can extract a low-uncertainty estimate of the average error rate of
27-qubit layers [rΩ ¼ 28ð1Þ%]. (c) The observed error rate per qubit rΩ;perQ ¼ 1 − ð1 − rΩÞ1=n ≈ rΩ=n (red circles) versus n increases
rapidly with n, even though the circuits have a constant expected two-qubit gate density ξ ¼ 1=4. This increase in rΩ;perQ is due to two-
qubit gate crosstalk, not spatial variations in gate error rates. This is confirmed by comparison to predictions for rΩ;perQ (blue diamonds)
obtained from one- and two-qubit error rates, for each one-qubit and connected two-qubit subset, and the assumption of no crosstalk.
(d) The ratio of the observed (rΩ;perQ) to predicted (rΩ;perQ;pred) per-qubit error rate shows that crosstalk errors cause the per-qubit error
rate rΩ;perQ to increase by approximately 250%–300% when n ≥ 15. (e) The one- and two-qubit error rates are obtained using
simultaneous one-qubit MRB on all 27 qubits (blue boxes) and two-qubit MRB, on all pairs of connected qubits, run simultaneously on
the qubit pairs in eight distinct groupings (the purple and green boxes show two such groups).
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two-qubit gates (cs and cs†) on up to four qubits. Our results
provide evidence that MRB with non-Clifford gates is a
robust method for determining a processor’s error rate per
gate layer and that these error rates can be used to understand
the magnitude of various types of errors. Additionally, our
results show that MRB on many qubits reveals and quan-
tifies errors not present in one- and two-qubit circuits,
highlighting the importance of scalable benchmarks.
Comparisons of RB error rates predicted from crosstalk-
free models and our experimental results show evidence of
large crosstalk errors in both of the devices we benchmark,
and, importantly, our methods make it possible to quantify
the size of these crosstalk errors.
We anticipate that a variety of interesting benchmarking

methods can be constructed using MRB and extensions or
adaptations of this method. For example, we anticipate that
MRB can form the foundation of methods for estimating
the error rates of individual gates and layers, within the
context of many-qubit circuits. In this work, we demon-
strate a simple example of such a technique—fitting MRB
data to a depolarizing model—and we expect that a variety
of robust methods could be developed that would comple-
ment or advance on existing methods for this task
[9,12,42], such as interleaved RB. For example, MRB
can potentially be adapted to extend the averaged circuit
eigenvalue sampling protocol [12] to universal gate sets.
Furthermore, we anticipate that MRB can be adapted to
construct scalable “full-stack” benchmarks based on ran-
dom circuits, such as a scalable variant of the widely used
quantum volume benchmark [30].

All data and code for our simulations and experiments
will be provided upon reasonable request. All circuit
sampling and simulations are performed using pyGSTi [59].
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APPENDIX A: MRB WITH STOCHASTIC
PAULI ERRORS

In this appendix, we provide further details on the
theory presented in Sec. IV B, showing that the MRB
error rate (rΩ) approximately equals ϵΩ [Eq. (16)] under the
assumption of stochastic Pauli errors.

1. Determining the observed polarization
of MRB circuits

We start by proving Eq. (23), which says that the mean
observed polarization [Eq. (12)] of randomized mirror
circuits equals the mean polarization of the overall error
map of a randomized mirror circuit. We start by defining an
overall error map for our mirror circuit, which captures all
errors in the circuit. We can define an overall error map for
a circuit C by rewriting ϕðCÞ with all errors moved to the
beginning of the circuit. For a general depth-l circuit with
gate-dependent errors,

ϕðCÞ ¼ EðLlÞUðLlÞ…EðL2ÞUðL2ÞEðL1ÞUðL1Þ
¼ UðLlÞ…UðL2ÞUðL1ÞE0

Ll
…E0

L2
E0
L1
; ðA1Þ

where

E0
Li
¼ UðL1Þ−1…UðLiÞ−1EðLiÞUðLiÞ…UðL1Þ: ðA2Þ

Applying Eq. (A1) to our randomized mirror circuit allows
us to express the error in M̃d (which is the mirror circuit
without the initial and final layers) as a single error channel
following the initial randomized state preparation layer L0.
We find that ϕðMdÞ can be expressed as

ϕðMdÞ¼ϕðRðPdþ1L−10 Pc
dÞÞϕðM̃dÞϕðRðP0L0ÞÞ

¼UðRðPdþ1L−10 Pc
dÞM̃dÞUðP0ÞESPAMEeffðM̃dÞUðL0Þ

¼UðPdþ1ÞUðL−10 ÞEeffðMdÞUðL0Þ; ðA3Þ

where

EeffðMdÞ ¼ ESPAMEeffðM̃dÞ ðA4Þ

¼ESPAME0
T ðL−1θ1 ;PdÞ…E0

L−1d=2
E0
Ld=2

…E0
T ðLθ1

;P0Þ: ðA5Þ

To obtain Eq. (A3), we use the reflection structure
of randomized mirror circuits—in particular,
UðRðPdþ1L−10 Pc

dÞM̃dÞ ¼ UðPdþ1L−10 P0Þ, where P0 and
Pdþ1 are the Pauli gates that are recompiled into L0 and
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L−10 , respectively, in the randomized compilation step. The
Pauli gate Pdþ1 determines the target bit string ofMd—i.e.,
UðMÞj0⟫ ¼ UðPdþ1Þj0⟫ ¼ jb⟫. The overall error map
EeffðM̃dÞ [Eq. (A5)] contains the error from the d=2
Ω-random circuit layers and their inverses (after random-
ized compilation), and it is composed of unitary rotations of
the error channels associated with each circuit layer.
In the MRB protocol, we compute each circuit’s

observed polarization S [Eq. (12)]. We now show that
the observed polarization SðMdÞ is related to the polariza-
tion [Eq. (4)] ofMd ’s overall error map (introduced above).
Using the expression for ϕðMdÞ in Eq. (A3), the probability
of measuring bit string x on circuit Md is given by

Px ¼ ⟪xjUðPdþ1ÞUðL−10 ÞEeffðMdÞUðL0Þj0⟫ ðA6Þ

¼ ⟪xþ bjUðL−10 ÞEeffðMdÞUðL0Þj0⟫: ðA7Þ

The layer L0 consists of single-qubit gates independently
sampled from single-qubit unitary 2-designs. We now
average over the initial circuit layer L0, making use of a
fidelity estimation technique based on single-qubit gates:
The fidelity of any error channel E can be found by
averaging over a tensor product of single-qubit 2-designs
[44]. In particular, for any bit string y∈ f0; 1gn,

γðEÞ ¼ 4n

4n − 1

X
x∈ f0;1gn

ð−1=2Þhðx;yÞ⟪xþ yjĒj0⟫ −
1

4n − 1
;

ðA8Þ

where Ē ¼ EL½UðLÞ†EUðLÞ� [44] and L ¼ ⊗n
i¼1Li, where

each Li is a independent, single-qubit 2-design. This
implies that the expected observed polarization of Md over
L0 is

E
L0
SðMdÞ ¼

4n

4n − 1

�Xn
k¼0

X
hx;bi¼k

�
−
1

2

�
k
E
L0
Px

�
−

1

4n − 1

¼ 4n

4n − 1

� X
x∈ f0;1gn

�
−
1

2

�
hðx;bÞ

E
L0
Px

�
−

1

4n − 1

¼ γðEeffðMdÞÞ; ðA9Þ

where γðEÞ denotes the polarization of E [Eq. (4)].
Equation (A9) follows from Eq. (A8). Averaging over
all depth-d randomized mirror circuits, the mean observed
polarization is

S̄d ¼ E
Md

γðEeffðMdÞÞ: ðA10Þ

Equation (A10) says that the average observed polarization
S̄d, which is estimated by the MRB protocol, is equal to the
expected polarization of the error channel of a depth-d
mirror circuit.

2. Relating the observed polarization of MRB
circuits and Ω-distributed random circuits

Above, we related the mean observed polarization (S̄d),
which determines the MRB error rate, to the expected
polarization of the overall error map of a depth-d random-
ized mirror circuit. We now use this result to derive
Eq. (25), which relates the mean observed polarization
of depth-d randomized mirror circuits to the expected
polarization of the overall error map of a depth-d=2
Ω-distributed circuit. In combination with the theory in
Appendix A 3—which shows that S̄d and the mean
polarization of the overall error map of Ω-distributed
random circuits decay exponentially—the relationship
we derive here implies that rΩ ≈ ϵΩ.
Our goal is to relate the rate of decay of S̄d to the rate of

decay of the fidelity of Ω-distributed circuits (F̄d)
[Eq. (15)]. We start by expressing F̄d in terms of the
expected polarization of the overall error map of a depth-d
Ω-distributed circuit. Applying Eq. (A1) to a depth-d,
Ω-distributed random circuit Cd ¼ LdLθd…L0Lθ1 , we
obtain an overall error map for Cd, EeffðCdÞ, which is
defined by ϕðCdÞ ¼ UðCdÞEeffðCdÞ. We define Γd to be the
average polarization of the error map of a depth-d mirror
circuit:

Γ̄d ¼ E
Cd

γðEeffðCdÞÞ: ðA11Þ

To relate S̄d to Γ̄d, we use the fact that a depth-d
randomized mirror circuit consists of randomized compi-
lation of a depth-d=2Ω-distributed random circuit followed
by its inverse. These two depth-d=2 circuits are both Ω
distributed (even after randomized compilation), but they
are correlated. Below, we show that the polarization of the
mirror circuit’s overall error map depends on the covariance
between the error in a depth-d=2 Ω-distributed circuit and
its randomly compiled inverse. We can write the overall
error map in Eq. (A5) as a composition of two error maps—
an overall error map for a random circuit and an overall
error map for its randomly compiled inverse:

EeffðMdÞ ¼ ESPAMEeff;2ðMdÞEeff;1ðMdÞ; ðA12Þ

where

Eeff;1ðMdÞ ¼ E0
RðPd=2Ld=2Pc

d=2−1Þ…E0
T ðLθ1 ;P0Þ;

Eeff;2ðMdÞ ¼ E0
T ðL−1θ1 ;PdÞ…E0

RðPd=2þ1L−1d=2Pd=2Þ

¼ UðCÞEeffðT ðL−1θ1 ;PdÞ…RðPd=2þ1L−1d=2Pd=2ÞÞ
× UðCÞ−1;

and
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C ¼ RðPd=2þ1L−1
d=2Pd=2ÞRðPd=2Ld=2Pc

d=2−1Þ…
×RðP1L1Pc

0ÞT ðLθ1 ; P0Þ:

C is the first half of M̃d, and it is a depth-d=2 Ω-distributed
random circuit that has randomized compilation applied to
it. By substituting Eq. (A12) into Eq. (A10), we obtain

S̄d ¼ E
Md

γðESPAMEeff;2ðMdÞEeff;1ðMdÞÞ ðA13Þ

¼ γðESPAMÞE
Md

γðEeff;2ðMdÞEeff;1ðMdÞÞ; ðA14Þ

where, to go from Eq. (A13) to Eq. (A14), we use the
assumption that ESPAM is a global depolarizing channel.
Applying randomized compilation to an Ω-distributed

random circuit creates a new random circuit that is also Ω
distributed. This is due to the conditions we require of Ω1

and Ω2 (Ω1 is the uniform distribution, and Ω2 is invariant
under replacing a subset of a layer’s gates with their
inverses). Therefore, we can replace the average over all
depth-d randomized mirror circuits in Eq. (A14) with an
average over all depth-d=2 Ω-distributed random circuits:

S̄d ¼ γðESPAMÞ E
Cd=2

γðUðCd=2ÞĒeffðC−1
d=2Þ

× UðCd=2Þ−1EeffðCd=2ÞÞ; ðA15Þ

where ĒeffðC−1
d=2Þ denotes the average over all possible

circuitsC0 resulting from applying randomized compilation
to C−1

d=2. Expressing Eq. (A15) in terms of Γ̄d=2 [Eq. (A11)],
we have

S̄d ¼ γðESPAMÞðΓ̄2
d=2 − ΔΩÞ; ðA16Þ

where

ΔΩ ¼ E
Cd=2

γðUðCd=2ÞĒeffðC−1
d=2ÞUðCd=2Þ−1EeffðCd=2ÞÞ

−
�
E

Cd=2

γðEeffðCd=2ÞÞ
�
2
: ðA17Þ

3. Fidelity decay of Ω-distributed random circuits

In this section, we show that the fidelity of Ω-distributed
random circuits decays approximately exponentially in
depth, assuming stochastic Pauli errors, when n is suffi-
ciently large that 1=4n is negligible (in the small-n case,
Ω-distributed random circuits rapidly converge to a
2-design, from which it follows that the fidelity decays
approximately exponentially). In this section, we use the
notation La;b to denote the sequence of composite layer-
valued random variables LaLaþ1…Lb. We assume that each
composite layer has a stochastic Pauli error channel, i.e.,
ϕðLÞ ¼ ELUðLÞ, where L is a stochastic Pauli channel.

We use the stacked representation of superoperators,
U ¼ U ⊗ U�. We use P�

n to denote the n-qubit Paulis,
excluding the identity. We use P to denote the super-
operator representation of a Pauli P.
We first prove a useful lemma that follows from the

properties of the layer sampling distribution required for
MRB (see Sec. II C). MRB requires that the layer sampling
distribution is invariant under the randomized compilation
procedure defined in Sec. III A, which implies that the
distribution of unitaries induced by our layer sampling
distribution is invariant under left and right multiplication
by Paulis, i.e., for all P;P0 ∈Pn,

E
L
UðLÞ ¼ E

L
P0UðLÞP; ðA18Þ

where L is sampled from a layer sampling distribution Ω
that satisfies the conditions in Sec. II C. Using this fact, we
obtain the following lemma.
Lemma 1.—Let L be a circuit layer-valued random

variable sampled from an MRB layer sampling distribution
Ω. Let P1; P2; P3; P4 ∈Pn be Pauli operators. If either
(i) P1 ≠ P2 or (ii) P3 ≠ P4, then

E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ ¼ 0: ðA19Þ

Proof.—We first consider the case where P3 ≠ P4.
Because Ω is invariant under right multiplication by
Paulis, we can insert a right-multiplying Pauli Q:

E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ

¼ E
L
TrðQUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞQðP3 ⊗ P�
4ÞÞ; ðA20Þ

where Q is a Pauli superoperator. We can rewrite
Eq. (A20) as

E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ

¼ E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðQ ⊗ Q�ÞðP3 ⊗ P�
4Þ

× ðQ ⊗ Q�ÞÞ ðA21Þ

¼E
L
ηðQ;P3ÞηðQ;P4ÞTrðUðLÞ−1ðP1⊗P�

2ÞUðLÞðP3⊗P�
4ÞÞ;

ðA22Þ

where ηðP;QÞ ¼ −1 if P and Q anticommute and
ηðP;QÞ ¼ 1 if P and Q commute. If P3 ≠ P4, then there
exists some Pauli Q such that Q anticommutes with P3 and
commutes with P4 (otherwise, we would have ½PQ;P0� ¼ 0
for all P0 ∈Pn, which implies PQ ¼ I and, hence, P ¼ Q).
Taking Q to be such a Pauli, we have
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E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ

¼ −E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ: ðA23Þ

Therefore, E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ ¼ 0.

Similarly, to address the case where P1 ≠ P2, we use the
invariance of the sampling distribution under left multipli-
cation by Paulis to obtain

E
L
TrðUðLÞ−1ðP1 ⊗ P�

2ÞUðLÞðP3 ⊗ P�
4ÞÞ

¼E
L
TrðUðLÞ−1QðP1 ⊗ P�

2ÞQUðLÞðP3 ⊗ P�
4ÞÞ ðA24Þ

¼E
L
ðηðQ;P1ÞηðQ;P2ÞÞTrðUðLÞ−1ðP1⊗P�

2ÞUðLÞðP3⊗P�
4ÞÞ:

ðA25Þ

Using an argument analogous to the previous case, we
conclude that if P1 ≠ P2, then E

L
TrðUðLÞ−1ðP1 ⊗ P�

2Þ×
UðLÞðP3 ⊗ P�

4ÞÞ ¼ 0. ▪
We now show that the fidelity of Ω-distributed random

circuits decays approximately exponentially. Our theory
shows that the expected polarization of Ω-distributed
random circuits is given by Eq. (26):

Γ̄d ¼ E
Cd

γðEeffðCdÞÞ

¼ E
L1;…Ld

γðUðL1Þ−1…UðLdÞ−1ELdUðLdÞ…EL1UðL1ÞÞ;

ðA26Þ

where Eeff is the overall error channel of a depth-d Ω-
distributed random circuit. Analogously, the expected
fidelity of these circuits is given by

E
Cd

FðEeffðCdÞÞ

¼ E
L1;…Ld

FðUðL1Þ−1…UðLdÞ−1ELdUðLdÞ…EL1UðL1ÞÞ:

ðA27Þ

We now show that the expected process fidelity decays
exponentially in benchmark depth (d), from which it
follows that the polarization γðEeffÞ decays exponentially
(as n ≫ 1). We use the Pauli unraveling of the circuit: We
expand each error channel as ELi

¼ P
P∈Pn

γPðLiÞP. We
then expand the fidelity [Eq. (A27)] as a sum of terms
corresponding to sequences of Paulis in the Pauli unrav-
eling. Equation (A27) becomes

FðEeffÞ ¼
1

4n
E

L1;…;Ld

� X
P1;…;Pd ∈Pn

γPd
ðLdÞ…γP1

ðL1ÞTrðUðL1;dÞ−1PdUðLdÞ…P2UðL2ÞP1UðL1ÞÞ
�

ðA28Þ

¼ 1

4n

X
P1;…;Pd ∈Pn

�
E

L1;…;Ld
γPd

ðLdÞ…γP1
ðL1ÞTrðUðL1;dÞ−1PdUðLdÞ…P2UðL2ÞP1UðL1ÞÞ

�
: ðA29Þ

The sum in Eq. (A29) has 4nd terms, each with a different
sequence of d Pauli superoperators P1;P2;…;Pd, which
represents a possible sequence of Pauli errors in a depth-d
circuit. We separate these terms by the number of errors in
the Pauli sequence, i.e., the number of indices i such that
Pi ≠ In. Throughout this section, we assume that indices
for circuit layers and Paulis satisfy 1 ≤ i ≤ d. We use the
term error pattern to refer to a description of the locations
in a Pauli sequence where errors occur, which we describe
by the set of indices S such that Pi ≠ In if and only if i∈ S.
We call an error k-separated if there are no errors within k
layers of the error; i.e., there is a k-separated error on layer i
if Pi ≠ I and j ∉ S for all j ≠ i such that ji − jj < k.
We expand Eq. (A29) by dividing the terms in the sum

over Paulis P1;…; Pd up by their error patterns to get

FðEeffÞ ¼ E
L1;…;Ld

�Yd
i¼1

γInðLiÞ
�
þ
Xd
j¼1

cj þ
Xd
j¼2

hj ðA30Þ

¼ ðE
L
γInðLÞÞd þ

Xd
j¼1

cj þ
Xd
j¼2

hj; ðA31Þ

where cj is the sum of all terms in Eq. (A29) in which the
error pattern has jSj ¼ j errors and contains a k-separated
error and hj is the sum of all terms in Eq. (A29) with an
error pattern with jSj ¼ j that does not contain a k-
separated error. By the cyclic property of the trace, all
terms with exactly one error have no contribution to the
fidelity:

c1 ¼
�
1

4n

�Xd
i1¼1

X
Pi1

≠In

E
L1;…;Ld

��Y
i≠i1

γInðLiÞ
�
γPi1

ðLi1Þ

× TrðUðL1;dÞ−1UðLi1þ1;dÞPi1UðL1;i1ÞÞ
�
¼ 0: ðA32Þ

It remains to show that cj and hj are negligible for j ≥ 2.
First, we use the scrambling condition on our gate set and
sampling distribution to show that the cj are small.
We start by considering the terms that make up c2. We

break c2 up into terms for each error pattern fi1; i2g
contributing to c2, and we bound the contribution of each
of these terms:

JORDAN HINES et al. PHYS. REV. X 13, 041030 (2023)

041030-20



c2 ¼
X

i2−i1>k

cfi1;i2g; ðA33Þ

where

cfi1;i2g ¼
�
1

4n

� X
Pi1

;Pi2
∈P�

n

E
L1;…;Ld

�� Y
i≠i1;i2

γInðLiÞ
�
γPi1

ðLi1ÞγPi2
ðLi2ÞTrðUðLd…L1Þ−1UðLi2þ1;dÞPi2UðLi1þ1;i2ÞPi1UðL1;i1ÞÞ

�
:

ðA34Þ

We now use the scrambling condition [Eq. (6)] to derive a bound on cfi1;i2g. We can simplify Eq. (A34) to

cfi1;i2g ¼
�
1

4n

� X
Pi1

;Pi2
∈P�

n

E
L1;…;Ld

�� Y
i≠i1;i2

γInðLiÞ
�
γPi1

ðLi1ÞγPi2
ðLi2ÞTrðUðLi1þ1;i2Þ−1Pi2UðLi1þ1;i2ÞPi1Þ

�
: ðA35Þ

Now, we define the unitarily rotated error channel

UðLi2Þ−1Pi2UðLi2Þ ¼
X
P;P0

dP;P0 ðP ⊗ P0Þ; ðA36Þ

where dP;P0 depends on UðLi2Þ and Pi2 , but we suppress this dependence. Substituting Eq. (A36) into Eq. (A35) and
applying Lemma 1, we get

cfi1;i2g ¼
�
1

4n

� X
Pi1

;Pi2
∈P�

n

�
E
Lj

j<i1 ;j>i2

�Y
j

γInðLjÞ
�

E
Li

i2≥i≥i1

Y
i2>i>i1

½γInðLiÞ�γPi1
ðLi1ÞγPi2

ðLi2ÞTrðUðLi1þ1;i2Þ−1Pi2UðLi1þ1;i2ÞPi1Þ
�

ðA37Þ

¼
�
1

4n

� X
Pi1

;Pi2
∈P�

n

�
E
Lj

j<i1 ;j>i2

�Y
j

γInðLjÞ
�

E
Li

i2≥i≥i1

Y
i2>i>i1

½γInðLiÞ�γPi1
ðLi1ÞγPi2

ðLi2Þ

×
X

P;P0 ∈Pn

dP;P0TrðUðLi1þ1;i2−1Þ−1ðP ⊗ P0�ÞUðLi1þ1;i2−1ÞPi1Þ
�

ðA38Þ

¼
�
1

4n

� X
Pi1

;Pi2
∈P�

n

�
E
Lj

j<i1 ;j>i2

�Y
j

γInðLjÞ
�

E
Li

i2≥i≥i1

Y
i2>i>i1

½γInðLiÞ�γPi1
ðLi1ÞγPi2

ðLi2Þ

×
X
P∈Pn

dP;PTrðUðLi1þ1;i1−kÞ−1PUðLi1þ1;i1−kÞPi1Þ
�
: ðA39Þ

We now apply the scrambling condition [Eq. (6)] and use the definition of the layer infidelity to obtain an upper bound on
cfi1;i2g:

cfi1;i2g ≤
X

Pi1
;Pi2

∈P�
n

�
ð1 − εÞd−ði2−i1þ1Þ E

Li
i2>i≥i1þ1

�Y
i

γInðLiÞ
�

E
Li1 ;Li2

γPi1
ðLi1ÞγPi2

ðLi2Þ
X
P∈P�

n

dP;Pδ

�
ðA40Þ

≤
X

Pi1
;Pi2

∈P�
n

�
ð1 − εÞd−ði2−i1þ1Þ E

Li
i2>i≥i1þ1

�Y
i

γInðLiÞ
�

E
Li1 ;Li2

γPi1
ðLi1ÞγPi2

ðLi2Þδ
�
: ðA41Þ

Letting ε ¼ 1 − EL½γInðLÞ� be the expected layer infidelity, Eq. (A41) becomes

cfi1;i2g ≤ ð1 − εÞd−k−2ε2δ: ðA42Þ
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Equation (A42) bounds the value of each term in the
expansion of c2 given in Eq. (A33), and the number of
terms in cfi1;i2g is bounded by dðd − kÞ=2.
We now bound cj for j > 2. Again, we start by bounding

the contribution of each individual error pattern S that
contributes to cj, i.e., each S such that jSj ¼ j and S contains
a k-separated error. LetS ¼ fi1; i2;…; ijg be an error pattern

with j > 2 and ii < i2 < � � � < ij, and assume that iqþ1 −
iq > k and iq − iq−1 > k for someq < j (we address cases in
which the first or last error is k separated later). We expand
the errors before and after the k-separated error in layer iq in
terms of tensor products of Paulis and then apply the
properties of our layer distribution to bound the value of
cS. First, using the cyclic property of the trace, cS becomes

cS ¼
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

��Y
m∉S

γInðLmÞ
��Y

m∈S

γPm
ðLmÞ

�
TrðUðLi1þ1;ijÞ−1Pij…UðLi2þ1;i3ÞPi2UðLi1þ1;i2ÞPi1Þ

�
ðA43Þ

¼
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

��Y
m∉S

γInðLmÞ
��Y

m∈ S

γPm
ðLmÞ

�
TrðPiqUðLiq;iq−1þ1Þ…UðLi2þ1;i3ÞPi2UðLi1þ1;i2ÞPi1

× UðLi1;ijÞ−1PijUðLij−1þ1;ijÞ…Piqþ1
UðLiqþ1;iqþ1

ÞÞ
�
: ðA44Þ

We expand two unitaries, corresponding to the layers of the circuit before and after k error-free layers, in terms of tensor
products of Paulis:

PiqUðLiq−1þ1;iqÞ…UðLi2þ1;i3ÞPi2UðLi1þ1;i2ÞPi1UðLi1þ1;iqÞ−1 ¼
X

P;P0 ∈Pn

bP;P0 ðP ⊗ P0�Þ; ðA45Þ

UðLiqþkþ1;ijÞ−1PijUðLij−1þ1;ijÞ…UðLiqþ1þ1;iqþ2
ÞPiqþ1

UðLiqþ1;iqþkþ1Þ ¼
X

P;P0 ∈Pn

dP;P0 ðP ⊗ P0�Þ: ðA46Þ

Using Eqs. (A45) and (A46), Eq. (A44) becomes

cS ¼
�
1

4n

� X
Pi1

;…Pij
∈P�

n

E
L1;…;Ld

�� Y
m∉S

iqþ1≤m≤iqþk

γInðLmÞ
�� Y

m∉S
m>iqþk;m<iq

γInðLmÞ
��Y

m∈ S

γPm
ðLmÞ

��

×

� X
P1;P2;P3;P4 ∈Pn

ðbP1;P2
dP3;P4

TrððP1 ⊗ P�
2ÞUðLiqþ1;iqþkÞ−1ðP3 ⊗ P�

4ÞUðLiqþ1;iqþkÞÞÞ
�
: ðA47Þ

Using Lemma 1, Eq. (A47) becomes

cS ¼
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

�� Y
m∉S

iqþ1≤m≤iqþk

γInðLmÞ
�� Y

m∉S
m>iqþk;m<iq

γInðLmÞ
��Y

m∈ S

γPm
ðLmÞ

��

×

� X
P;P0 ∈P�

n

ðbP;PdP0;P0TrðPUðLiqþ1;iqþ1
Þ−1UðLiqþ1;iqþ1

ÞP0Þ þ TrðUðLiqþ1;iqþ1
Þ−1UðLiqþ1;iqþ1

ÞÞbI;IdI;IÞ
�
: ðA48Þ

Because γInðLÞ ≤ 1 for all L,

cS ≤
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

�� Y
m∉S

m>iqþk;m<iq

γInðLmÞ
��Y

m∈ S

γPm
ðLmÞ

��

×

� X
P;P0 ∈P�

n

bP;PdP0;P0TrðUðLiqþ1;iqþ1
Þ−1PUðLiqþ1;iqþ1

ÞP0Þ þ 4nbI;IdI;I

�
: ðA49Þ

Applying Eq. (6), we have
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cS ≤
X

Pi1
;…;Pij

∈P�
n

E
L1;…;Liq

E
Liqþkþ1;…;Ld

�� Y
m∉S

m>iqþk;m<iq

γInðLmÞ
��Y

m∈ S

γPm
ðLmÞ

��� X
P;P0 ∈P�

n

bP;PdP0;P0δþ bI;IdI;I

�
: ðA50Þ

We then bound sums of dP0;P0 and bP;P coefficients and use the fact that Eq. (6) implies bI;I ≤ δ to bound cs in terms of the
average layer infidelity and δ:

cS ≤
X

Pi1
;…;Pij

∈P�
n

E
L1;…;Liq

E
Liqþkþ1;…;Ld

�� Y
m∉S

m>iqþk;m<iq−k

γInðLmÞ
��Y

m∈ S

γPm
ðLmÞ

��
2δ ðA51Þ

≤ 2ð1 − εÞd−2k−jεjδ; ðA52Þ

where the final inequality follows from the definition of ε. Equation (A52) bounds the contribution of the term with error
pattern S to the polarization of depth-d Ω-distributed random circuits. The number of possible error patterns S with jSj ¼ j
of the type considered in our argument above (i.e., error patterns with jSj ¼ j and contain a k-separated error that is not the
first or last error) is bounded by kðd−2kj Þ.
There are two additional types of error pattern S that contribute to cj: (i) i1 − i2 > k and (ii) iq − iq−1 > k. These two cases

essentially reduce to the two error case. In case (i), all errors after the first error can be expanded in terms of the Pauli basis:

cS ¼
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

��Y
m∉S

γIm

��Y
m∈ S

γPm
ðLmÞ

�
TrðUðLi1þ1;ijÞ−1Pij…UðLi2þ1;i3ÞPi2UðLi1þ1;i2ÞPi1Þ

�
ðA53Þ

¼
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

X
P;P0 ∈Pn

��Y
m∉S

γIm

��Y
m∈ S

γPm
ðLmÞ

�
TrðUðLi1þ1;i2Þ−1dP;P0 ðP ⊗ P0ÞUðLi1þ1;i2ÞPi1Þ

�
ðA54Þ

¼
�
1

4n

� X
Pi1

;…;Pij
∈P�

n

E
L1;…;Ld

X
P∈Pn

��Y
m∉S

γIm

��Y
m∈ S

γPm
ðLmÞ

�
TrðUðLi1þ1;i2Þ−1dP;PPUðLi1þ1;i2ÞPi1Þ

�
ðA55Þ

≤ ð1 − εÞd−k−jεjδ: ðA56Þ

The argument for case (ii) is analogous, doing an expansion of all errors except the last error. For each case (i) and case (ii),
the number of possible error patterns S with jSj ¼ j is bounded by kðd−k−1j−1 Þ.
As in the previous section, our arguments bound cS for each valid error pattern S with jSj ≥ 3. Therefore,

Xd
j¼1

cj < 2k
Xd−k
j¼2

�
d − k − 1

j − 1

�
ð1 − εÞd−k−jεjδþ ðd − 2k − 2Þ

Xd−2k
j¼2

�
d − 2k − 1

j − 1

�
ð1 − εÞd−2k−jεjδ ðA57Þ

< 2kε
Xd−k
j¼2

�
d − k − 1

j − 1

�
ð1 − εÞd−k−jεjδþ ðd − 2k − 2Þε

Xd−2k
j¼3

�
d − 2k − 1

j − 1

�
ð1 − εÞd−2k−jεj−1δ ðA58Þ

< dδε: ðA59Þ

We need not consider circuits with depth larger than
Oð1=εÞ, because the circuit depth at which the polarization
becomes negligible is Oð1=εÞ—because when dε ⪆ 1 at
least one error is almost certain to occur. Therefore,
Eq. (A59) implies that the cj terms have a negligible
contribution to the fidelity FðEeffÞ.
We bound the contributions of the cj terms to FðEeffÞ.

We now argue that contribution of the hj terms is also

negligible. These terms represent error patterns in which
every error is within k layers of another error, so that our
scrambling condition cannot guarantee that the probability
of error cancellation is negligible. Instead, we argue that the
total probability of these error patterns is negligible.
Because the contribution of an error pattern to the fidelity
is bounded by its probability, this bounds the contribution
of the hj terms to the fidelity:
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Xd
j¼2

hj ≤
Xd
l¼1

Prðerror in layer lÞPrðan error in layers l−k;l−kþ1;…; l−1; lþ1; lþ2;…; lþkjerror in layer lÞ; ðA60Þ

Xd
j¼2

hj ≤
Xd
l¼1

εPrðan error in layers l − k; l − kþ 1;…; l − 1; lþ 1; lþ 2;…; lþ kÞ; ðA61Þ

Xd
j¼2

hj ≤
Xd
l¼1

kε2; ðA62Þ

Xd
j¼2

hj ≤ dkε2: ðA63Þ

Because we consider only d ¼ Oð1=εÞ (see the argument
above), we have dε ¼ Oð1Þ. Since we have kε ≪ 1 from
our scrambling condition, it follows that dkε2 is small, and,
hence, hj is small.
We also note that, as d gets large, it is highly likely that

an error pattern contains a k-separated error, and we can
show that the probability of no k-separated layers is
exponentially suppressed. We can break a depth-d circuit
into d=2kþ 1 pieces of 2kþ 1 layers to bound the
probability of there being no k-separated errors—if one
of these blocks of 2kþ 1 layers consists of an error with k
error-free layers before and after it, then there is a
k-separated error. When dε=2kþ 1 > 1, we can bound
the probability of there being no block of this form (which
we call a k-separated block) using a Chernoff bound:

Prðno k-separated blockÞ

≤ exp

�
−1−

1

2

�
d

2kþ 1
εð1− εÞ2kþ 2kþ 1

d
1

εð1− εÞ2k
��

;

ðA64Þ

this bound implies that hj is bounded by anOðe−dε=kÞ term,
which is small in the regime where dkε ≫ 1.
Using the bound given by Eq. (A59) in Eq. (A31), we

obtain an expression for the fidelity of Ω-distributed
random circuits:

FðEeffÞ ¼
�
E
L
γInðLÞ

�
d
þ
Xd
j¼1

cj þ
Xd
j¼2

hj ðA65Þ

¼
�
E
L
γInðLÞ

�
d
þ δ̃c þ δ̃k ðA66Þ

¼ ð1 − εÞd þ δ̃; ðA67Þ

where ε is the expected infidelity of a layer of an
Ω-distributed random circuit,

δ̃ ¼ δ̃c þ δ̃k ¼ Oðdεðδþ kεÞÞ; ðA68Þ

and δ̃ is negligible for d ¼ Oð1=εÞ. Because the average
layer polarization is γ ¼ 4n=ð4n − 1Þð1 − εÞ − 1=ð4n − 1Þ
and n ≫ 1 (by assumption), 1 − ε ≈ γ, up to a negligible
Oð1=4nÞ constant. Therefore, the polarization decays as

γðEeffÞ ¼ pd
rc þ δ̃; ðA69Þ

where prc ¼ ELðγðEðLÞÞÞ is the expected polarization of an
Ω-random layer and δ̃ is a negligible constant.

APPENDIX B: MRB WITH CLIFFORD
TWO-QUBIT GATES

The theory presented in Sec. IV B (which is presented in
detail in Appendix A) assumes stochastic Pauli noise on
each circuit layer to derive the exponential decay of the
observed polarization of mirror circuits. However, stochas-
tic error is not always the dominant error in a processor. Our
method uses a randomized compilation procedure to
convert error into stochastic Pauli error. In this appendix,
we prove that, when all two-qubit gates in an MRB
experiment are Clifford, the error in randomized mirror
circuits is twirled into Pauli stochastic error, under the
assumption that the error map on the one-qubit gates is
independent of the Paulis with which they are compiled.
We consider a depth-d randomized mirror circuit (treated

as a random variable), which we write as

Md ¼ RðPdþ1L−10 Pc
dÞT ðL−1θ1 ;PdÞRðPdL−11 Pc

d−1Þ…
×RðPd=2þ1L−1d=2Pd=2ÞRðPd=2Ld=2Pc

d=2−1Þ…
×RðP1L1Pc

0ÞT ðLθ1 ;P0ÞRðP0L0Þ: ðB1Þ

When the two-qubit gate layers consist of two-qubit
Cliffords of the form CPθ, they are not changed by the
randomized compilation step of our circuit construction.
Therefore,
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Md ¼ RðPdþ1L−10 Pc
dÞL−1θ1 RðPdL−11 Pc

d−1Þ…RðPd=2þ1L−1d=2Pd=2ÞRðPd=2Ld=2Pc
d=2−1Þ…RðP1L1Pc

0ÞLθ1RðP0L0Þ: ðB2Þ

We assume the error on the single-qubit gates is independent of the Paulis they are recompiled with—i.e.,
ϕðRðP0LiPÞÞ ¼ EðLiÞUðRðP0LiPÞÞ. Using this assumption, an implementation of the circuit Md can be written as

ϕðMdÞ ¼ EðL−10 ÞUðRðPdþ1L−10 Pc
dÞÞEðLθ1−1ÞUðL−1θ1 ÞEðL−11 ÞUðRðPdL−11 Pc

d−1ÞÞ…
× EðL−1θd=2ÞUðL−1θd=2ÞEðL−1d=2ÞUðRðPd=2þ1L−1d=2Pd=2ÞÞEðLd=2ÞUðRðPd=2Ld=2Pc

d=2−1ÞÞ
× EðLθd=2ÞUðLθd=2ÞEðLd=2−1ÞUðRðPd=2−1Ld=2−1Pc

d=2−2ÞÞ…EðLθ1ÞUðLθ1ÞEðL0ÞUðRðP0L0ÞÞ: ðB3Þ

We now push the error on the single-qubit gate layers through the two-qubit gate layers, defining new error channels that
represent the error on a composite layer. Equation (B3) becomes

ϕðMdÞ ¼ EðL−10 ÞUðRðPdþ1L−10 Pc
dÞÞE0

dUðL−1θ1 ÞUðRðPdL−11 Pc
d−1ÞÞ…E0

d=2þ1UðL−1θd=2ÞUðRðPd=2þ1L−1d=2Pd=2ÞÞEðLd=2Þ
× UðRðPd=2Ld=2Pc

d=2−1ÞÞE0
d=2UðLθd=2ÞUðRðPd=2−1Ld=2−1Pc

d=2−2ÞÞ…E0
1UðLθ1ÞUðRðP0L0ÞÞ; ðB4Þ

where

E0
i ¼ EðLθiÞUðLθiÞEðLi−1ÞUðLθiÞ−1; 1 ≤ i ≤

d
2
; ðB5Þ

E0
i ¼ EðLθd−iþ1

ÞUðLθd−iþ1
Þ−1EðLiþ1ÞUðLθd−iþ1

Þ; d
2
< i ≤ d: ðB6Þ

We group the error channels into error channels E0
i that represent the error in a composite layer. Now, we use the structure

of the randomized compilation procedure to twirl the error. The dressed layers can be expanded in terms of the original
sampled layer and the Paulis inserted in randomized compilation as

UðLθiÞUðRðPi−1Li−1Pc
i−2ÞÞ ¼ UððPc

i Þ−1LθiLi−1Pc
i−1Þ; 1 ≤ i ≤

d
2
; ðB7Þ

UðL−1θd−iþ1
ÞUðRðPiþ1L−1d−iþ1P

c
i ÞÞ ¼ UððPc

iþ1Þ−1L−1θd−iþ1
L−1d−iþ1P

c
i Þ;

d
2
< i ≤ d: ðB8Þ

Rewriting Eq. (B4) using these expansions, we have

ϕðMdÞ ¼ EðL−10 ÞUðPdþ1L−10 Pc
dÞE0

dUððPc
dÞ−1L−1θ1 L−11 Pc

d−1Þ…E0
d=2þ1UððPc

d=2þ1Þ−1L−1θd=2L−1d=2Pc
d=2ÞEðLd=2Þ

× UððPc
d=2Þ−1Lθd=2Ld=2−1Pc

d=2−1ÞE0
d=2UððPc

d=2−1Þ−1Lθd=2−1Ld=2−2Pc
d=2−1Þ…E0

1UððPc
1Þ−1Lθ1L0Þ; ðB9Þ

where each correction layer Pc
i is a uniform random Pauli, because the two-qubit gates are Clifford. Averaging over the

uniform random n-qubit Paulis P0;P1;…;Pd, which equivalently averages over the correction Paulis Pc
1;…;Pc

dþ1,
performs a Pauli twirl, converting the error channels into Pauli stochastic error channels. Performing this average, Eq. (B9)
becomes

ϕðMdÞ ¼ EðL−10 ÞUðPdþ1L−10 ÞSdUðL−1θ1 L−11 Þ…Sd=2þ1UðL−1θd=2L−1d=2ÞSðLd=2ÞUðLθd=2Ld=2−1ÞSd=2UðLθd=2−1Ld=2−2Þ…S1UðLθ1L0Þ;
ðB10Þ

where Si ¼ EPPE0
iP

−1 and SðLd=2Þ ¼ EPPEðLd=2ÞP−1 are
stochastic Pauli channels, each of which captures the error
from one composite layer. All error, except the error on the
final circuit layer, is twirled into stochastic Pauli noise by

the random Paulis inserted in randomized compilation.
Therefore, we expect our method to be sensitive to all
errors when the two-qubit gates are chosen to be
Clifford gates.
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APPENDIX C: MRB WITH NON-CLIFFORD
TWO-QUBIT GATES

In this appendix, we show that, when applied to a gate set
containing non-Clifford two-qubit gates, MRB is sensitive
to all Hamiltonian errors on those two-qubit gates except
one linear combination of errors on a non-Clifford two-
qubit gate and its inverse. We then discuss possible
adaptations to our protocol that would guarantee sensitivity
to all Hamiltonian errors on non-Clifford two-qubit
gates.

1. Sensitivity of errors in non-Clifford
two-qubit gates

In Appendix B, we show that, when the two-qubit gate
set used in MRB contains only Clifford gates, the error in
the two-qubit gates is twirled, upon averaging, into sto-
chastic Pauli noise. This guarantees sensitivity to gen-
eral errors on the two-qubit gates. We now consider

circuits with non-Clifford two-qubit gates and show that
randomized mirror circuits are sensitive to most
Hamiltonian errors on the two-qubit gates, to first order.
We assume there is no crosstalk error, and all two-qubit
layers are sampled independently, so that we expect the
only systematic coherent cancellation of errors to come
from a layer and its inverse. We also assume there is no
error on the single-qubit gates. To see the effect of error in a
two-qubit gate on a randomized mirror circuit to first order,
it is sufficient to consider mirror circuits resulting from
applying our circuit construction procedure to a single two-
qubit composite layer L ¼ L1Lθ, where Lθ ¼ CPθ is a
two-qubit gate and L1 is a one-qubit gate layer. After
mirroring and randomized compilation on L, we have the
circuitM¼T ðL−1

θ ;P2ÞRðP2L−1
1 Pc

1ÞRðP1L1Pc
0ÞT ðLθ;P0Þ,

where P0, P1, and P2 are random two-qubit Pauli layers.
The ideal operation M implements is UðMÞ ¼ ðPc

2Þ−1P0.
An imperfect implementation of M can be expressed as

ϕðMÞ ¼ EðT ðL−1
θ ; P2ÞÞUðT ðL−1

θ ; P2ÞRðP2L−1
1 Pc

1ÞRðP1L1Pc
0ÞÞEðT ðLθ; P0ÞÞUðT ðLθ; P0ÞÞ ðC1Þ

¼ EðT ðL−1
θ ; P2ÞÞUðT ðL−1

θ ; P2ÞP2Pc
0ÞEðT ðLθ; P0ÞÞUðT ðLθ; P0ÞÞ ðC2Þ

¼ EðT ðL−1
θ ; P2ÞÞUððPc

2Þ−1L−1
θ Pc

0ÞEðT ðLθ; P0ÞÞUðT ðLθ; P0ÞÞ ðC3Þ

¼ EðT ðL−1
θ ; P2ÞÞUððPc

2Þ−1P0T ðLθi ; P0Þ−1ðPc
0Þ−1Pc

0ÞEðT ðLθ; P0ÞÞUðT ðLθ; P0ÞÞ ðC4Þ

¼ EðT ðL−1
θ ; P2ÞÞUððPc

2Þ−1P0T ðLθ; P0Þ−1ÞEðT ðLθ; P0ÞÞUðT ðLθ; P0ÞÞ; ðC5Þ

where we use the definitions of the two-qubit gate layer
T ðLθ; PÞ and the correction layers Pc

i to rewrite the unitary
evolution.
We now consider the effect of general gate-dependent

Hamiltonian errors on the two-qubit gates onϕðMÞ.Wewrite
the error in terms of elementary error generators, as defined in
the errorgenerator formalism inRef. [47].Wemodel the error
on each two-qubit gate g as EðgÞ ¼ eMg , where

Mg ¼
X
Pa;Pb

εgPa;Pb
HPa;Pb

ðC6Þ

and where HPa;Pb
is the two-qubit Hamiltonian error gen-

erator indexed by the Pauli operators Pa and Pb. Using this
expression for the error and expanding Eq. (C5) to first order
in the error rates εgPa;Pb

, we have

ϕðMÞ ≈ UððPc
2Þ−1P0Þ

�
UðIÞ þ

�X
Pa;Pb

εT ðL−θ ;P2Þ
Pa;Pb

HPa;Pb

�
þ UðT ðLθ; P0Þ−1Þ

�X
Pa;Pb

εT ðLθ ;P0Þ
Pa;Pb

HPa;Pb

�
UðT ðLθ; P0ÞÞ

�
: ðC7Þ

Equation (C7) expresses the implementation ofM in terms of its target evolution and a first-order correction. The circuit is
insensitive to an error to first order when the correction term vanishes, which occurs when

�X
Pa;Pb

εT ðL−θ ;P2Þ
Pa;Pb

HPa;Pb

�
þ UðT ðLθ; P0Þ−1Þ

�X
k

ε
T ðLθi

;Pi−1Þ
Pa;Pb

HPa;Pb

�
UðT ðLθ; P0ÞÞ ¼ 0: ðC8Þ
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Satisfying Eq. (C8) requires that the coefficient of each
elementary error generator HPa;Pb

is 0, which results in a
system of 15 linear equations for each of 162 choices of
two-qubit random Paulis P2 and P0 used in randomized
compilation. The randomized mirror circuits are sensitive
to an error if, for some choice of P0 and P2, the system
cannot be satisfied when the error is nonzero. The two-
qubit gate set G2 is closed under inverses, so, in addition to
mirroring L ¼ L1Lθ as we have done above, we can mirror
L1L−θ to get an analogous set of linear equations.
Considering all of the equations from mirroring L1Lθ

and L1L−θ, we have a system of 2 × 162 × 15 linear
equations. The solutions to this system are εθPa;Pb

¼ ε−θPa;Pb
¼

0∀ðPa;PbÞ≠ ðP;PÞ and εGP;P ¼ εG
†

P;P. This means that,
to first order, the mirror circuits are not sensitive to the
sum of HP;P errors on CPθ and CP−θ, as we can change
εGP;P þ εG

†

P;P without changing the error in any of the mirror
circuits. This is a result of the structure we use for our
mirror circuits. Below, we discuss how our method can be
adapted to address this insensitivity.

2. Adaptations of MRB

While our simulations and experiments suggest non-
Clifford MRB is a robust method, when our randomized
mirror circuits contain non-Clifford two-qubit gates they
are not sensitive to some coherent errors on these gates. In
Appendix C 1, we show that MRB circuits containing non-
Clifford two-qubit gates are not sensitive to one linear
combination of the Hamiltonian errors in these gates
because of the correlations between the randomized com-
pilation and the two-qubit gate that is applied, which
prevent error from being perfectly twirled into stochastic
noise. This shortcoming in our method is due to our choice
of structure for our randomized mirror circuits. However,
circuit mirroring is a flexible technique that can be applied
to a variety of circuit structures, and here we discuss several
adaptations of our method utilizing this flexibility that
address the error insensitivity in MRB.
Our method involves sampling random circuits with

layers sampled from a user-specified distribution Ω over
circuit layers. Different choices of circuit structure can
address the shortcomings of our method and make other
scalable benchmarks. We could guarantee sensitivity to all
errors with more complex sampling of the Ω-distributed
random circuit. For example, to benchmark a two-qubit gate
set G2 ¼ fcs; cs†g, we could generate circuits containing
cs, cs†, and cz gates and implement the cz gate by two
consecutivecs or cs† gates. ThisMRBexperimentwould be
sensitive to the HZ;Z errors on the cs and cs† gates that our
MRB experiment is insensitive to (see above).
Our MRB protocol performs inversion layer by layer,

and an alternative method to guarantee sensitivity to all
errors is to use more complex inversion strategies that
reduce the correlation in the gate layers in the two halves of

a mirror circuit. One option is to invert multiple circuit
layers at a time, through computing the inverse of the
layers and compiling an inverse circuit—and similar ideas
to this have recently been used to implement RB of
continuously parametrized gates [60]. However, compila-
tion can be computationally intensive with many qubits.
Alternatively, we can modify the inversion layers by adding
in additional gates while maintaining a circuit that is
logically equivalent to the inverse.

APPENDIX D: SIMULATIONS OF MRB

In this appendix, we provide further details about our
simulations of MRB, which are discussed in Sec. IV D.

1. Error models for MRB simulations

We simulate MRB with three classes of error models—
stochastic, Hamiltonian, and stochasticþ Hamiltonian.
Our models are defined based on the error generator
formalism in Ref. [47]. Error rates are specified as
elementary error generators of a postgate error map. We
include qubit-dependent Hamiltonian errors and Pauli
stochastic errors on the xπ=2 and single-qubit idle gates
with Hamiltonian error rates sampled in the range ½0; h=10�
and stochastic Pauli error rates sampled in the range
½0; s=10�. The stochastic and Hamiltonian errors are each
split randomly across the three Paulis. We also include
qubit-dependent Hamiltonian errors and Pauli stochastic
errors on the cs and cs† gates with Hamiltonian error rates
sampled in the range ½0; h� and Pauli stochastic error rates
sampled in the range ½0; s�, spread at random across the 15
two-qubit Pauli errors.
To generate error models, we start with an overall error

parameter p and select s and h such that h2 þ s ¼ p.
We generate models with p∈ ½0.001; 0.2475� for 150
evenly spaced values for the one-qubit models and
p∈ ½0.0001; 0.075� for 150 evenly spaced values for the
two- and four-qubit models. In the stochastic error models,
we set h ¼ 0. In the Hamiltonian error models, we set
s ¼ 0. In the stochasticþ Hamiltonian error models, we
generate s∈ ½0; p� at random and set h ¼ ffiffiffiffiffiffiffiffiffiffiffi

p − s
p

.
For each error model, we run a randomly generated set of

MRB circuits consisting of K ¼ 300 circuits at each
benchmark depth d∈ f2jj0 ≤ j ≤ 8g. We approximate
the error rate in Ω-distributed random circuits (ϵΩ) via
sampling. For each depth d∈ f2jj0 ≤ j ≤ 8g, we run K
randomly generated depth-d=2 Ω-distributed random cir-
cuits, each followed by a perfect projective measurement
onto the target state.

2. Simulations of MRB with measurement error

We simulate MRB with two types of measurement
error—amplitude damping error and bit flip error. For each
type of measurement error, we perform simulations where
only a single qubit has measurement error and where each
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qubit has measurement error. We compare these results to
simulations of MRB with no measurement error.
To generate each error models, we sample a stochasticþ

Hamiltonian gate error models via the method in
Appendix E 3 with overall error parameter p, with p ¼
0.1 for single-qubit error models and p ¼ 0.02 for two- and
four-qubit error models. We define our measurement error
using the single-qubit elementary error generators SX, SY ,
and AX;Y defined in Ref. [47]. To add bit flip error of

strength pm to a qubit, we apply the error expðpmSxÞ
immediately before measurement. To add amplitude damp-
ing error to a qubit, we apply the error expðpmðSX þ SY −
AX;YÞÞ immediately before measurement. We use 80 evenly
spaced values of pm ∈ ½0.0001; 0.0801�. We run simulations
with measurement error on a single qubit and on all qubits.
In models with measurement error on all qubits, we sample
a uniform random value p∈ ½0; 2pm� for each qubit and
apply error of strength p to that qubit. In models with

FIG. 10. Investigating the reliability of MRB in the presence of measurement error. We simulate MRB with error models with no
measurement error (a),(f) and with four types of measurement error: (e),(j) amplitude damping error on one qubit, (d),(i) amplitude
damping error distributed across all qubits, (c),(h) bit flip error on one qubit, and (b),(g) bit flip error distributed across all qubits. For all
simulations, we use the gate set G ¼ ðfcs; cs†g;SUð2ÞÞ and randomly generated Hamiltonian and stochastic gate errors. (a)–(e) We
compare the MRB error rate per qubit rΩ;perQ to the actual per-qubit error rate ϵΩ;perQ, estimated via sampling. We observe close
agreement between the MRB error rate and ϵΩ with each type of measurement error. (f)–(j) The distribution of the relative error
δrel ¼ ðrΩ;perQ − ϵΩ;perQÞ=ϵΩ;perQ divided by its uncertainty σδrel, for models with each type of measurement error. The mean δrel (red
dashed line) is shown for each distribution.

FIG. 11. MRB with varied-strength measurement error. We simulate MRB with the gate set G ¼ ðfcs; cs†g;SUð2ÞÞ with randomly
generated gate errors and four types of measurement error: (a) bit flip error distributed across all qubits, (b) bit flip error on one qubit,
(c) amplitude damping error distributed across all qubits, and (d) amplitude damping error on one qubit. We plot the relative error in the
MRB error rate δrel ¼ ðrΩ;perQ − ϵΩ;perQÞ=ϵΩ;perQ divided by its uncertainty σδrel, versus the strength of the measurement error. We observe
no systematic change in the error in the MRB error rate with as the strength of measurement error changes.
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measurement error on one qubit, we apply a fixed meas-
urement error of strength pm to one qubit.
Figure 10 shows the results of these simulations. We

observe that rΩ ≈ ϵΩ across all types of measurement error
models we sample, providing evidence that measurement
error does not significantly impact the performance of
MRB. Furthermore, the distribution of δrel=σδrel , the relative
error in MRB error rates divided by its uncertainty, is
similar for all types of error model we test. The mean
δrel=σδrel differs by under 0.015 between error models with
and without measurement error. Figure 11 shows δrel=σδrel
as a function of the measurement error parameter p. We
observe no systematic change in the error in MRB with the
rate of measurement error.

APPENDIX E: AQT EXPERIMENTS

In this appendix, we provide further details about our
experiments on AQT, which are discussed in Sec. V.

1. Experiment design

A specific set of MRB circuits for a given ðG2;G1;Q; ξÞ
is obtained by sampling K circuits at a set of benchmark
depths. We use K ¼ 30 and a set of exponentially spaced
benchmarking depths (d ¼ 0; 2; 4; 8…). For the MRB
designs in which ξ ¼ 1=2, we do not independently sample
the circuits for the three different gate sets. Instead, to
sample a depth-d circuit on qubits Q for each of our three
gate sets,
(1) we sample a depth d=2 circuit C for the

ðfczg;SUð2ÞÞ gate set;
(2) we create a correlated sample for the ðfczg;C1Þ gate

set by replacing the SUð2Þ gates in C with gates
sampled from C1;

(3) we create a correlated sample for the ðfcs; cs†g;
SUð2ÞÞ gate set by replacing each cz gate in C with
either cs or cs† at random; and

(4) we independently convert each of the three circuits
in (1)–(3) into a randomized mirror circuit.

Because the marginal distribution for the sampling of each
circuit set is unaffected by this procedure, it does not impact
the RB error rates we estimate (except by correlating their
uncertainties), but it allows us to perform an interesting
per-circuit comparison (see Appendix E 2).
To enable comparison to an established technique, we

also run direct RB circuits, which are described in Sec. V E.
This resulted in a total of 16 194 circuits. In the experiment,
we randomize the order of this circuit list and run each
circuit 1000 times in turn. We repeat this three times in
succession, to enable us to look for substantial changes in a
circuit’s success probability that signify drift. We use
standard statistical testing methods [61] to identify circuits
in which the success probability changes between the three
runs and discard that data. We perform qutrit classification
in the readout; i.e., the readout is calibrated to resolve the

“2” leakage state from the two computational basis states.
Whenever a circuit outputs 2, the result is discarded.

2. Comparing MRB circuits with Clifford
and Haar-random single-qubit gates

The observed similarity between the average success
rates of circuits in which the single qubit-gate gates
uðθ;ϕ; λÞ are sampled from two different distributions
(see Sec. V B) does not imply that the success rate of an
individual circuit is independent of the values of θ, ϕ, and λ
in its uðθ;ϕ; λÞ gates. We design our experiments so that
each circuit in the ðSUð2Þ; fczg;Q; 1=2Þ experiment is
identical to a circuit in the ðC1; fczg;Q; 1=2Þ experiment
except for the values of each of the single-qubit gate’s
parameters. We can, therefore, use our data for each such
circuit pair ðC1; C2Þ to investigate whether circuit success
rates depend on the values of the phase shifts. Figure 12
shows the observed polarization S for C1 versus S for C2

for each pair of circuits ðC1; C2Þ that differ only by the
values of the phases in zθ gates. There are many circuit
pairs that have very different S; e.g., there is a circuit pair
for which S ≈ 0.9 for one circuit and S ≈ −0.3 for the
other (note that −1=2 ≤ S ≤ 1). Figure 12(b) shows that
the spread in the differences between the observed polari-
zation of circuit pairs is largest for single-qubit circuits
(σ ¼ 0.147) and decreases as the number of qubits
increases (σ ¼ 0.052 for n ¼ 4). The substantial variance
in observed polarization differences implies strongly struc-
tured errors, e.g., coherent errors. Even for perfect zθ gates,
the value of each phase shift impacts how errors in other
gates propagate through a circuit [62,63].

3. Estimating the error rates of individual gates

A single MRB experiment is designed to estimate a
single error rate rΩ that quantifies the average rate at which
an n-qubit layer causes an error in Ω-random circuits. But
we can also use MRB to extract information about the error
rates of particular layers. In Sec. V D, we present one
method for doing so—fitting to a depolarizing model. In
this appendix, we explain this method and present two
alternative methods. These methods are complementary, as
they trade off rigor for complexity. Note that one possible
method for estimating the error rates of individual gates
using MRB is to run an interleaved [42] version of MRB
(and interleaved standard RB has been previously used to
measure the error rate of a cs gate [34]). We do not explore
this here, although we note that interleaved MRB would
inherit all of the known problems with interleaved standard
RB [37,52].

a. Estimating gate error rates using
a varied-densities heuristic

MRB uses flexible sampling of the circuit layers, as each
composite layer is sampled from some distribution Ω. By
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running MRB experiments with the same layer set L but
different sampling distributions fΩ1;Ω2;…g over L, we
can (approximately) ascertain the average error rates of
different subsets of gates by applying basic linear algebra to
frΩ1

; rΩ2
;…g [5]. In our experiments, we run MRB for the

gate set ðfcs; cs†g;SUð2ÞÞwith two differentΩ defined by
two different two-qubit gate densities: ξ ¼ 1=2 and
ξ ¼ 1=8. We focus on the three two-qubit sets of connected
qubits. Using Eq. (37), for each two-qubit subset Q, we
have that

�
r1=2
r1=8

�
¼

�
1=2 1=2

7=8 1=8

��
ϵ1

ϵ2

�
; ðE1Þ

where rξ ¼ rðG1; fcs; cs†g;Q; ξÞ, ϵ1 is the infidelity of the
dressed layer consisting of dressed idles on each qubit inQ,
and ϵ2 is the mean of the infidelities of G1-dressed cs and
cs† gates applied to the qubits Q. We solve these linear
equations to estimate ϵ2, for all three connected qubit pairs.
These estimates are shown in Fig. 13(a), and we call this
method the two-densities heuristic, as it is based on the
approximate relation of Eq. (34) [64].

b. Estimating gate error rates by fitting depolarizing
error models

The two-densities heuristic is built on the standard MRB
data analysis, which extracts a single error rate (rΩ) from
each MRB experiment design. But data from even a
single MRB experiment contains a lot more information
about each gate’s errors than is contained in rΩ; e.g., RB
data can contain sufficient information for complete

tomography [52,53]. In principle, this information can
be extracted by fitting error models to MRB data—as
demonstrated in simulations with two-qubit standard RB
[53]. However, fitting an error model to data typically
requires simulating the circuits under that error model, and
this simulation is, in general, exponentially expensive in the
number of qubits. Simplified, scalable approximations are,
therefore, useful. One model that satisfies these criteria is a
model in which each gate’s error is modeled by a single
error rate, and the error map for a layer of gates is a
depolarizing channel [7].
Our depolarizing model summarizes the errors in each

dressed one- and two-qubit gate (g) with a single, indepen-
dent error rate ϵg. The error channel for each dressed n-qubit
layer L is modeled by an n-qubit depolarizing channel with
an infidelity ϵL given by ϵL ¼ 1 −

Q
g∈Lð1 − ϵgÞ. This

means modeling the error channel for each dressed n-qubit
layer L by

DγL ½ρ� ¼ γLρþ ð1 − γLÞ
I
2n

; ðE2Þ

with

γL ¼ 1

4n − 1

�
4n

Y
g∈L

ð1 − ϵgÞ − 1

�
: ðE3Þ

This error model is illustrated in Fig. 13(b). We also
model the readout on each qubit with an independent
error rate ϵQi, where the readout error on an n-qubit
circuit is an n-qubit depolarizing channel with infidelity

FIG. 12. Comparing the success rates of circuits that differ only by virtual phase gates. Our experiments are designed so that each
randomly sampled circuit containing cz and single-qubit Clifford gates [the ðfczg;C1Þ gate set] differs from a randomly sampled circuit
containing cz and Haar-random single-qubit unitaries [the ðfczg;SUð2ÞÞ gate set] only by the angles in its zθ gates. Here, we compare
the observed polarization of each pair of circuits that differ only by the angles in these virtual zθ gates. For many of these circuit pairs
ðC1; C2Þ, C1 and C2 have very different observed polarizations, meaning that they have very different success rates. (a) The observed
polarization for the ðfczg;SUð2ÞÞ circuits and their corresponding Clifford circuits. (b) The difference in observed polarization between
ðfczg;SUð2ÞÞ circuits and their corresponding Clifford circuits.
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ϵR ¼ 1 −
Q

Qi∈Qð1 − ϵQiÞ. Under this error model, the
observed polarization of a circuit C ¼ L1L2…Ld is

SðCÞ ¼ γðL1ÞγðL2Þ…γðLdÞγðRÞ: ðE4Þ

The parameters of this depolarizing model are a set of
error rates—an ϵg for each G1-dressed one- and two-qubit
gate g and an ϵQi for the readout on each qubit Qi. To
estimate these parameters, we use a least-squares fit of
Eq. (E4) to the observed polarizations of the MRB circuits.
We separately fit the parameters of the depolarizing model
to the data from MRB circuits on different numbers of
qubits (n ¼ 1, 2, 3, 4), so that we can study how the error
rates of the gates change with n, due to crosstalk errors.
Fitting Eq. (E4) to the data from two-qubit MRB circuits

results in estimates of the infidelity of each two-qubit
dressed layer containing a two-qubit gate from G2 (and an
estimate for ϵ1, the dressed two-qubit idle). We can,
therefore, use these fits to compare to the two-densities
heuristic (above). Figure 13(a) compares the mean of the
entanglement infidelities of the dressed cs and cs† gates,
obtained from this fit, with the estimate from the two-
densities heuristic. The estimates of both methods are
between 1.1% and 1.5%, with the estimates differing by
0.5%–2.1%, which cross-validates the two methods.
Fitting Eq. (E4) to the data from four-qubit MRB circuits

provides estimates for the entanglement infidelities of all 15
dressed four-qubit layers used in our experiments. Figure 14
shows the estimated infidelity for each of the nineG1-dressed
layers that consist of a single dressed two-qubit gate applied

to one of the three connected qubit pairs (in parallel with
dressed idles on the other two qubits). These infidelities are
between 2%and 3.1%, and they vary between qubit pairs and
between gates (cs,cs†, andcz).Wequantify the contribution
of crosstalk errors to these infidelities by also predicting the
infidelities of these four-qubit layers from the dressed gate
error rates obtained from fitting the depolarizingmodel to the
one- and two-qubit data. Shown in Fig. 14, these predicted
infidelities are smaller than those estimated from the four-
qubit data by up to 60%. Crosstalk errors are a large
proportion of the total infidelity in these four-qubit layers.
To validate our results, we compare the infidelities we

estimate to independent estimates obtained from an estab-
lished technique: cycle benchmarking [9], a technique for
estimating the infidelity of individual many-qubit gate
layers. Figure 14 shows that our estimates are broadly
similar to those obtained from cycle benchmarking, differ-
ing by at most 23%. Moreover, we expect only rough
agreement with the cycle benchmarking estimates, for two
reasons: (i) the cycle benchmarking experiments are
implemented on a different day (they are run immediately
after the gates are calibrated), and (ii) cycle benchmarking
estimates the error rate of layers that are dressed by random
Pauli gates (whereas our layers are dressed by Haar-random
gates or random single-qubit Clifford gates).

c. Estimating gate error rates by fitting
Pauli error models

Fitting data to an n-qubit depolarizing model is scalable,
but the actual error map for each layer is unlikely to be

FIG. 13. Fitting error models to MRB data and estimating gate error rates. We fit two types of error models to MRB data to estimate the
infidelity of individual circuit layers. (a) By running two MRB experiments with two different two-qubit gate densities ξ, we can
estimate the mean infidelity of a set of one or more two-qubit gates—here, cs and cs†—using basic linear algebra (see Appendix E 3 a).
We call this procedure the two-densities heuristic. The estimates of the average gate error obtained from the two-densities heuristic
(orange) are compared to independent estimates obtained from two more rigorous but more complex and computationally intensive
procedures: fitting each set of two-qubit MRB data to (i) a depolarizing model (light blue) and (ii) a stochastic Pauli errors model (dark
blue). (b) To fit a depolarizing model, we assign an error rate to each dressed layer and an error rate to each qubit’s readout. (c) To fit a
Pauli stochastic model, we assign a Pauli stochastic channel to each possible gate except the virtual zθ gates and each qubit's readout.
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FIG. 14. Estimating the infidelity of dressed four-qubit layers. By fitting error models to MRB data, we can estimate the infidelity of
each G1-dressed layer used in the MRB circuits. Here, we show four different estimates of the infidelities of four-qubit layers containing
a single cs, cs†, or cz gate on one of the three connected pairs of qubits. We fit a simple n-qubit depolarizing model to (i) the four-qubit
data and (ii) the one- and two-qubit data and use both models to estimate the infidelity of four-qubit G1-dressed layers. The estimates
from fitting to the one- and two-qubit data do not account for any additional crosstalk errors that occur in four-qubit layers, so the
additional error estimated when fitting to the four-qubit data is a quantification of crosstalk. We also fit a more sophisticated stochastic
Pauli error model to the four-qubit circuit data, resulting in comparable estimates to those obtained from the simple depolarizing model
(which uses a scalable, less computationally intensive analysis). To validate our results against an established technique, we compare to
infidelities independently estimated using cycle benchmarking [9]. We observe qualitative agreement. The cycle benchmarking
experiments measure the infidelities of layers dressed with one-qubit gates sampled from a different gate set (the Pauli group) to that
used in our MRB experiments [SUð2Þ or C1, the single-qubit Clifford group], and these experiments are implemented on a different day
than the MRB circuits, so exact agreement is not expected.

FIG. 15. Comparing error models for two-qubit MRB data. For each pair of qubits we benchmark, we fit two error models, a
depolarizing error model and a Pauli stochastic error model, to the data from the two-qubit RB experiments. Here, we compare the
simulated observed polarization based on the fit models to the observed observed polarization for each circuit.
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global depolarization. For example, a global depolarizing
channel causes highly correlated errors, whereas physically
we expect many errors to be local errors. We, therefore, fit a
more physically well-motivated model against which to
compare our estimates for each dressed layer’s infidelity.
Arbitrary Markovian errors on a set of n-qubit layers L can
be modeled by an n-qubit process matrix for each L∈L [1].
But each of these process matrices has Oð16nÞ parameters,
resulting in an infeasible number of parameters to estimate
when n ¼ 4. Instead, we fit to a process matrix model of
reduced complexity. This error model is illustrated in
Fig. 13(c). We model the error in each one- or two-qubit
native gate (i.e., each xπ=2, etc., not each dressed gate, or
each element of G1) by a one- or two-qubit stochastic Pauli
channel [Eq. (5)], respectively. We allow the Pauli error
rates fγPg to be gate and qubit dependent. We fix the error
rates of the zθ gate on each qubit to zero (because it is a
virtual gate). We model state preparation error as a tensor
product of single-qubit stochastic Pauli channels before the
circuit, and we model measurement error as a tensor
product of single-qubit stochastic Pauli channels immedi-
ately before readout. We estimate the error rates of all gates
besides zθ gates (cz, cs, and cs† on each of three qubit
pairs and xπ=2 and idle on each of the four qubits) and on
state preparation and readout. We fit this model (which has

159 gate error parameters and 24 SPAM error parameters)
to the data from the four-qubit MRB circuits, using
maximum likelihood estimation.
The best-fit model contains a process matrix for each

gate present in our circuits. These process matrices imply
infidelities for each dressed layer. Figure 14 shows the
estimated infidelity for each of the nine four-qubit
G1-dressed layers containing a single two-qubit gate.
The estimates we obtain from the stochastic Pauli errors
model are comparable to those obtained from the depola-
rizing model. Maximum likelihood estimation of a Pauli
stochastic model using data from general circuits is
exponentially expensive in n (due to the circuit simulation
cost), whereas fitting a global depolarizing model is not.
Note, however, that there are a variety of powerful
techniques for efficient estimation of Pauli errors on
Clifford gates, using data from Clifford circuits [9–12]
(including a technique that uses data from Clifford ran-
domized mirror circuits [12]).

APPENDIX F: IBM Q DEMONSTRATIONS

The error rates from all of our MRB experiments on
ibmq_montreal are shown in Tables II and III. Calibration
data from the time of our demonstration is shown in
Table IV.

FIG. 16. Comparing error models for four-qubit MRB data. We fit two error models, a depolarizing error model and a Pauli stochastic
error model, to the data from our four-qubit MRB experiments. Here, we compare the simulated observed polarization based on the fit
models to the observed polarization for each circuit. The mean-squared error in the observed polarization is approximately 40% smaller
for the Pauli stochastic model than the depolarizing model.
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TABLE II. Many-qubit MRB on IBM Q. The MRB error rates for every MRB experiment with n > 2 qubits we run on
ibmq_montreal. We benchmark a single-qubit subset Q containing n qubits for 13 exponentially spaced n.

Qubit subset rΩ

(Q0, Q1, Q2) 0.88(2)
(Q0, Q1, Q2, Q3) 1.39(3)
(Q0, Q1, Q2, Q3, Q4) 1.96(5)
(Q0, Q1, Q2, Q3, Q4, Q5) 2.53(6)
(Q0, Q1, Q2, Q3, Q4, Q5, Q7) 3.36(8)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7) 6.7(3)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9) 8.4(4)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11) 11.6(4)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14) 14.4(7)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18) 20.4(6)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18, Q19, Q20, Q21) 23.6(9)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18, Q19, Q20, Q21,
Q22, Q23, Q24, Q25)

28(1)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q18, Q19, Q20, Q21, Q22,
Q23, Q24, Q25, Q26)

27.9(9)

TABLE III. One- and two-qubit isolated and simultaneous MRB on IBMQ. We perform simultaneous one-qubit
MRB on all 27 individual qubits of ibmq_montreal. We also perform simultaneous two-qubit MRB on each
connected qubit pair of IBMQ Montreal, in eight groups. We run isolated MRB experiments on five qubit pairs to
compare the error rates from simultaneous and isolated two-qubit mirror RB. Isolated MRB experiments have an
error rate approximately 50% smaller than simultaneous MRB experiments.

Qubit subset rΩ (isolated MRB) rΩ (simultaneous MRB)

Q0 0.103(3) 0.104(2)
Q1 0.113(3)
Q2 0.106(2)
Q3 0.105(1)
Q4 0.087(2)
Q5 0.113(3)
Q6 0.33(1)
Q7 0.38(1)
Q8 0.19(1)
Q9 0.149(2)
Q10 0.30(1)
Q11 0.135(3)
Q12 0.165(6)
Q13 0.118(4)
Q14 0.106(3)
Q15 0.208(7)
Q16 0.30(2)
Q17 0.127(3)
Q18 0.31(1)
Q19 0.148(4)
Q20 0.097(2)
Q21 0.205(7)
Q22 0.118(3)
Q23 0.140(5)
Q24 0.121(2)
Q25 0.391(9)
Q26 0.168(2)

(Table continued)
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TABLE III. (Continued)

Qubit subset rΩ (isolated MRB) rΩ (simultaneous MRB)

(Q0, Q1) 0.418(5) 0.82(2)
(Q24, Q25) 2.7(1)
(Q14, Q16) 1.23(5)
(Q18, Q21) 1.61(7)
(Q3, Q5) 0.389(5) 0.75(2)
(Q4, Q7) 1.26(4)
(Q12, Q15) 0.99(3)
(Q19, Q20) 0.72(1)
(Q1, Q2) 0.81(2)
(Q12, Q13) 0.92(3)
(Q22, Q25) 3.15(1)
(Q2, Q3) 0.64(1)
(Q8, Q9) 0.499(8) 0.85(2)
(Q25, Q26) 1.95(6)
(Q1, Q4) 1.34(3)
(Q6, Q7) 3.31(3)
(Q15, Q18) 1.98(7)
(Q23, Q24) 1.19(2)
(Q7, Q10) 1.30(4)
(Q11, Q14) 0.98(2)
(Q16, Q19) 0.77(2) 1.74(6)
(Q21, Q23) 1.45(6)
(Q8, Q11) 1.10(4)
(Q10, Q12) 0.66(1)
(Q19, Q22) 0.78(2)
(Q5, Q8) 1.00(4)
(Q17, Q18) 0.530(8) 1.29(5)
(Q13, Q14) 0.79(2)

TABLE IV. IBMQ Montreal calibration data. Calibration data from ibmq_montreal from the time of our MRB
demonstrations (September 7, 2021).

Qubit T1 (us) T2 (us)
Frequency
(GHz)

Anharmonicity
(GHz)

Readout
error

Pr (prep 1,
measure 0)

Pr (prep 0,
measure 1)

Readout
length (ns)

Q0 99.80 29.03 4.91 −0.34 0.010 0.015 0.005 5201.78
Q1 159.43 24.69 4.83 −0.32 0.015 0.024 0.005 5201.78
Q2 88.31 107.64 4.98 −0.34 0.016 0.019 0.013 5201.78
Q3 65.10 68.28 5.10 −0.34 0.010 0.011 0.009 5201.78
Q4 128.29 147.35 5.00 −0.34 0.013 0.017 0.008 5201.78
Q5 68.79 100.11 5.03 −0.34 0.013 0.015 0.011 5201.78
Q6 161.18 23.97 4.95 −0.39 0.063 0.060 0.066 5201.78
Q7 141.25 101.48 4.91 −0.32 0.063 0.061 0.065 5201.78
Q8 78.10 117.90 4.91 −0.32 0.017 0.020 0.014 5201.78
Q9 96.97 101.53 5.04 −0.34 0.009 0.013 0.006 5201.78
Q10 120.94 86.65 5.08 −0.34 0.009 0.014 0.004 5201.78
Q11 162.14 46.60 5.03 −0.34 0.015 0.013 0.018 5201.78
Q12 127.39 172.19 4.97 −0.32 0.015 0.025 0.005 5201.78
Q13 119.46 68.34 4.87 −0.34 0.008 0.012 0.004 5201.78
Q14 130.38 105.47 4.96 −0.32 0.009 0.013 0.005 5201.78
Q15 108.30 78.65 5.03 −0.34 0.016 0.024 0.008 5201.78
Q16 98.09 44.07 5.09 −0.34 0.014 0.023 0.004 5201.78
Q17 119.27 116.98 5.07 −0.34 0.013 0.015 0.010 5201.78
Q18 87.46 31.94 4.98 −0.33 0.029 0.038 0.020 5201.78

(Table continued)
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