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Projective measurements in random quantum circuits lead to a rich breadth of entanglement phases and
extend the realm of nonunitary quantum dynamics. Here, we explore the connection between measure-
ment-only quantum circuits in one spatial dimension and the statistical mechanics of loop models in two
dimensions. While Gaussian Majorana circuits admit a microscopic mapping to loop models, for non-
Gaussian, i.e., generic Clifford, circuits, a corresponding mapping may emerge only on a coarse-grained
scale. We then focus on a fundamental symmetry of loop models: the orientability of worldlines. We
discuss how orientability enters in the measurement framework, acting as a separatrix for the universal
long-wavelength behavior in a circuit. When orientability is broken, the circuit falls into the universality
class of closely packed loops with crossings (CPLC) and features a Goldstone phase with a peculiar,
universal log2ðLÞ scaling of the entanglement entropy. In turn, when orientability is preserved, the long-
wavelength behavior of the circuit mimics that of (coupled) two-dimensional Potts models. We demonstrate
the strength of the loop model approach by numerically simulating a variety of measurement-only Clifford
circuits. Upon varying the set of measured operators, a rich circuit dynamics is observed, ranging from
CPLC to the one-state Potts model (percolation), the two-state Potts model (Ising), and coupled Potts
models (Berezhinskii-Kosterlitz-Thouless) universality class. Loop models, thus, provide a handle to
access a large class of measurement-only circuits and yield a blueprint on how to realize desired
entanglement phases by measurement.
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I. INTRODUCTION

Quantum circuits in the noisy intermediate-scale quan-
tum (NISQ) era represent an exciting playground to explore
novel types of quantum dynamics [1]. Recent examples
range from testing elementary digital quantum computing
algorithms, such as error correction [2–8] or topological
state preparation [9–14], to the realization of nonequili-
brium quantum many-body states without an equilibrium
counterpart [15,16].
A particular role, unique to quantum circuits, is played

by measurements. Evolution generated by measurement
yields irreversible, nonunitary quantum dynamics, which
provides directionality to a circuit. At the same time,
measurements preserve the purity of a wave function.
This enables a genuine quantum evolution, based only
on the noncommutativity of operators, i.e., of the gener-
ators of the dynamics. Applying sequences of consecutive
measurements, thus, provides the potential to implement

new types of directional quantum dynamics in order to
evolve and to prepare desired quantum many-body states in
near-term NISQ devices. This prospect has led to fruitful
activity among a broad, interdisciplinary research commu-
nity. A prominent example for the novel type of quantum
dynamics induced by measurement is measurement-
induced phase transitions in the behavior of the entangle-
ment entropy [17].
Entanglement transitions induced by measurements, com-

peting with either unitary gates [18–40], Hamiltonian
evolution [41–57], or other, incommensurate measurements
[32,58–64], have advanced our understanding of nonunitary
quantum dynamics and have established new links between
research areas. Measurement-induced phase transitions have,
for instance, been connected to quantum error correction
[22,28,33,62], measurement-based quantum computation
[64], quantum state preparation [65–67], and quantum
teleportation [11,68], bridging quantum information science,
where measurements traditionally play a vital role, with
nonequilibrium physics and aspects of statistical mechanics,
e.g., nonunitary conformal field theories.
Here, we undertake a closer inspection of one further

interdisciplinary theme: the relation between (1þ 1)-
dimensional measurement-only quantum circuits and
two-dimensional (2D) loop models. Often admitting exact
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treatment or efficient numerical simulation, loop models
are a powerful tool for studying paradigmatic statistical
mechanics models, such as Potts models and conformal field
theory [69–72]. Since their introduction, loop models have
enjoyed a long and rich history, touching many aspects of
physics ranging from the classical statistical mechanics of
polymers [73–77] and cosmic strings [78–82], to quantum
Monte Carlo algorithms [83,84], Hall transitions [85–89],
and magnetism [90–94], to knot invariants in topological
quantum field theory [95–98]. In the past decade, there has
been a renewed interest in better understanding universality
classes which emerge from loop models subject to particular
dynamical constraints or perturbations [92,95,99–108].
More recently, entanglement dynamics in a particular family
of random Clifford circuits has been expressed in terms of
Majorana fermion worldlines, making concrete connection
to well-studied loop models [32,109–111]. In this work, we
expand this connection between loop models and random
Clifford circuits. We argue, based on general considerations,
that a large class of both Gaussian and non-Gaussian
measurement-only circuits can be understood in an (emer-
gent) loop model framework. We confirm this perspective by
performing numerical simulations for a set of measurement-
only circuits.
First, we show how, in one dimension (1D), Gaussian

Majorana projection operators and SWAP gates generate
either the paradigmatic Temperley-Lieb (TL) or, more
generally, the Brauer algebra. Consequently, any 1D circuit
constructed from discrete, Gaussian operations admits a
loop model representation. Based on the particular form of
the algebra, we introduce a key concept for loop models
and the corresponding circuits: the loop orientability.
Orientability is a hidden U(1) symmetry, which deter-

mines the long-wavelength behavior in the circuit. If
present, the dynamics in the circuit are related to loop
models without crossings, which can be furnished with a
TL algebra, such as the 2D Potts model. When orientability
is broken, however, the circuit approaches the long-
wavelength behavior of a closely packed loop model with
crossings (CPLC) [100]. The latter gives rise to an uncon-
ventional symmetry broken Goldstone phase with a char-
acteristic ∼ log2ðLÞ growth of the entanglement entropy.
We show that, in a circuit, this symmetry has an inter-
pretation in terms of both the circuit geometry and the form
of the generators of the evolution: First, orientable circuits
admit a bipartition of the underlying Majorana lattice such
that only parities between different sublattices are mea-
sured. Second, this is equivalent of finding a representation
of the circuit where all generators of the evolution obey
time-reversal symmetry.
The latter provides an angle to extend the symmetry to

non-Gaussian, i.e., generic, random Clifford, circuits. The
measurement of operators that are even under time reversal
preserves orientable structures, while measuring operators
that are odd under time reversal breaks orientability.

As a result, the former provides an interpretation of non-
Gaussian measurement-only circuits in terms of coupled,
i.e., interacting, Q-state Potts models, which may admit an
exact analytical solution, while the latter pushes the circuit
into a non-Gaussian CPLC.
We confirm this picture by numerically simulating

measurement-only Clifford circuits with nearest- and
next-nearest-neighbor qubit measurements. Whenever the
measurements break orientability, in either the Gaussian
or non-Gaussian case, we find that the long-wavelength
behavior of the circuit is described by the CPLC.
Depending on the set of performed measurements, the
circuit realizes a set of topologically distinct area-law
phases, which are separated from each other by an extended
Goldstone phase. The Goldstone phase and its critical line
are described by the CPLC nonlinear sigma model [100], or
an enlarged supersymmetric field theory [112], yielding
universal behavior for the entanglement growth, including
the numerical prefactors, which are exactly recovered by
the (non-)Gaussian circuits.
In turn, for the orientable nearest-neighbor circuits, we

establish a direct connection to coupled one-state Potts
models via the transfer matrix method and the Temperley-
Lieb algebra. This provides an analytical approach to
understand the rich phase diagram which arises in the
orientable non-Gaussian model. Depending on the param-
eter regime, it realizes a series of measurement-induced
phases and phase transitions: (i) a phase transition between
topologically distinct area-law phases, which is described
by the one-state Potts model (equivalent to 2D bond
percolation); (ii) the branching of the one-state Potts model
critical point into two Berezhinskii-Kosterlitz-Thouless
(BKT) transitions, separated by an extended critical phase,
which is described by two ferromagnetically coupled one-
state Potts models; (iii) an emergent volume-law phase,
where Majorana worldlines braid freely due to the com-
petition between non-Gaussian measurements; and (iv) a
novel measurement-induced phase transition separating
two topologically distinct, non-Gaussian area-law phases,
which is described by the Ising universality class of the
two-state Potts model. We confirm these scenarios by
matching the critical exponents ν, η, and ηk to the known
values for Potts models.
The link to loop models, and the focus on orientability

as a relevant symmetry, gives rise to a practical approach
both to classify and to analytically solve many classes of
measurement-only circuits. Furthermore, it provides a
toolbox to realize desired loop model phases by imple-
menting the corresponding classes of (non-)Gaussian
measurements.
The paper is organized as follows. We begin in Sec. II

by reviewing fundamental aspects of loop models in
two spatial dimensions (2D) and by linking them to
the dynamics in (1þ 1)-dimensional measurement-only
Clifford circuits. In Sec. II A, we give a concrete mapping
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between Gaussian Majorana circuits and 2D loop models,
and we discuss the loop model observables in Sec. II B. We
then introduce the notion of worldline orientability and its
role in classifying measurement-only circuits in Sec. II C.
We conclude this section by examining the robustness of
the loop model picture when including non-Gaussian
measurements in Secs. II E and II F.
In Sec. III, we examine a set of (non-)Gaussian

measurement-only circuits for nearest-neighbor and next-
nearest-neighbor Pauli measurements. We separate the
circuits by symmetry into orientable and nonorientable
ones, and we validate their anticipated behavior based on
symmetry. In Sec. III A (III B), we explore Gaussian (non-
Gaussian) orientable circuits and argue that their behavior
can be understood in the framework of coupled 2D Potts
models. In Sec. III C (III D), we, in turn, explore Gaussian
(non-Gaussian) nonorientable circuits, and we show that
in both cases they realize a CPLC Goldstone phase with
universal properties. In Sec. IV, we discuss spacetime
duality for Majorana circuits, and we argue that the
measurement-only phases discussed in this work do not
have a purely unitary spacetime dual counterpart. Finally,
we consider the measurement-only XZZX quantum code in
Sec. V and argue, based on geometry, that it is generally
nonorientable and that it realizes a CPLC Goldstone phase.

II. FROM 1D QUBIT CIRCUITS
TO 2D LOOP MODELS

We consider measurement-only circuits of L qubits,
which are arranged in a one-dimensional chain. By virtue
of the Jordan-Wigner (JW) transformation, such circuits
may be represented in terms of Majorana fermions,
including in the presence of parity-violating measurements.
We argue, and subsequently numerically confirm, that this
further enables a mapping of the circuit to the statistical
mechanics of completely packed (dense) loop models in
2D [77,112–116]. For Gaussian Majorana operations, i.e.,
quadratic in Majorana fermions, this mapping is exact on
the level of the microscopic circuit. For non-Gaussian
circuits, the loop model is emergent and may depend on the
complete set operators that is measured and on the
parameter regime.
In this section, we discuss the mapping of Majorana

circuits to loop models based on (i) the TL and Brauer
algebras [117] and (ii) the worldlines for the Majoranas.
We then discuss a central aspect of these loop models: the
orientability of Majorana worldlines. The presence or
absence of orientability leads to fundamentally different
long-wavelength physics realized in the circuit. We, thus,
separate measurement-only circuits in the following dis-
cussion into orientable and nonorientable. Orientable
models can be studied by a number of well-established
techniques ranging from the TL representation of the
transfer matrix to Coulomb gas approaches. In contrast,
nonorientable loop models generically yield nonplanar

worldline configurations, termed CPLC, which cannot
be expressed by an element of the TL algebra. As one
major consequence, they allow for a nonunitary symmetry-
broken phase in two dimensions, the Goldstone phase of
the CPLC [100,112].
We proceed in this section by including non-Gaussian

measurements. We focus on two aspects: the relevance in
the renormalization group sense and the impact on the
orientability of the loop model representation.

A. Mapping discrete Gaussian Majorana circuits
to loop models

Here, we introduce the mapping between the statistical
mechanics of two-dimensional loops and the dynamics of
(1þ 1)-dimensional, discrete Gaussian Majorana circuits.
We label the L qubits in the circuit by an index j ¼ 1;…; L.
Each qubit j admits an alternative representation in terms
of two Majorana fermions γ2j−1 and γ2j, which fulfill the
anticommutation relation fγl; γmg ¼ 2δl;m for l; m ¼
1;…; 2L. The circuit evolves under measurements of
Pauli strings Ô; i.e., each operator Ô is a string Ô ¼⊗L

j¼1

Âj with Âj ∈ f1j; Xj; Yj; Zjg being a Pauli operator or the
identity acting on qubit j.
Under the JW transformation, each Pauli string yields a

corresponding Majorana operator which falls into one of
three categories: (i) Gaussian operators Ô ¼ iγlγm consist-
ing of exactly twoMajoranamodes, (ii) parity-preserving but
non-Gaussian operators Ô ¼ in

Q
n>1
l¼1 γj2l−1γj2l consisting of

an even number ofMajoranamodes, and (iii) parity-breaking
operators Ô ¼ γj2lþ1

in
Qn≥0

l¼1 γj2l−1γj2l consisting of an odd
number of Majorana modes.
We start with the Gaussian case, i.e., Ô ¼ iγlγm, and

introduce the projector Plm ≡ 1
2
ð1þ ÔÞ ¼ 1

2
ð1þ iγlγmÞ

onto the positive measurement outcome Ô ¼ þ1. The
opposite outcome is obtained by exchanging l ↔ m.
Similarly, we introduce the unitaryRlm ≡ exp ½iðπ=4ÞÔ� ¼
ð1= ffiffiffi

2
p Þð1 − γlγmÞ, which swaps Majoranas γl ↔ γm.

Upon normalization of the state after each projection, for
four different Majorana fermions γn, γs, γl, and γm, this
yields the algebra

0 ¼ ½Plm;Pns� ¼ ½Rlm;Rns�; ð1Þ

Plm ¼ P2
lm ¼ PlmPnlPlm; ð2Þ

Plm ¼ R†
msPlsRms; Rlm ¼ R†

msRlsRms; ð3Þ

R4
lm ¼ 1: ð4Þ

We emphasize that the last equality in Eq. (2) is not an
operator identity (which would require a factor 1

2
) but holds

when the quantum state on which the projectors are acting
is normalized after each measurement.
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The algebra is general and holds for any combination
of Majorana indices. If we restrict the projectors Plm to
nearest-neighbor pairs jl −mj ¼ 1 and exclude swaps, then
Eqs. (1) and (2) yield the paradigmatic TL algebra. The TL
algebra describes families of exactly solvable loop models,
here with loop fugacity n ¼ 1, such as the one-state Potts
model [71,118]. If we include nearest-neighbor swaps Rlm
with jl −mj ¼ 1, Eqs. (1)–(3) reveal yet another loop
model structure, known as the Birman-Murakami-Wenzl
(BMW) algebra [106,119–121].
Importantly, lifting the constraint jl −mj ¼ 1 and

allowing measurements and swapsPlm andRlm of arbitrary
Majorana pairs γl and γm, all operations remain well
described by the BMW algebra. By virtue of Eq. (3), any
nonlocal swap Rlm or measurement Plm with jl −mj > 1
can be expressed via a sequence of nearest-neighbor swaps,
e.g.,P1;3 ¼ R†

2;3P1;2R2;3. TheBMWalgebra, thus, provides
a framework for arbitrary measurement-only circuits of
Gaussian Majorana operators Ô ¼ iγlγm.
Dense loop models naturally correspond to diagram-

matic representations of the TL or BMWalgebra, which for
Gaussian Majorana circuits are quite intuitive. The instan-
taneous quantum state of a Gaussian Majorana circuit
at each point in time is characterized by the fermion
parities hiγlγmi ¼ 0;�1. It is represented by a free-fermion
stabilizer state

ρ ¼
Y
l

1

2
ð1 − iγl1γl2Þ; ð5Þ

where l labels all the Majorana pairs with mutually well-
defined parity jhiγl1γl2ij ¼ 1. For a pure state with 2L
Majorana fermions, there are L such pairs, while their
number is less if the state is mixed. Diagrammatically, we
can represent the state ρ by drawing a worldline for each
Majorana and connecting the worldlines of each pair l1, l2
through an open arc. Evolving ρ under the circuit
dynamics, the Majorana pairings are rearranged, which is
reflected by scrambled pairings of worldlines in the (1þ 1)-
dimensional spacetime lattice, as shown in Fig. 1(b).
For each time step t and neighboring pair l, m on the

tilted square (brick-wall) lattice, one of the following
generators of the BMW algebra is applied, as shown in
Fig. 1(a). The identity 1lm leaves the pairings unmodified,
and so diagrammatically it propagates Majorana fermions
γl and γm in time. A swap Rlm exchanges Majoranas
γl ↔ γm such that the corresponding worldlines cross over
one another. A parity measurement Plm takes initial
pairings γkγl and γmγn and yields a state with pairings
γlγm and γkγn. To achieve such a rearrangement, the loop
end points at l and m are fused to give a single arc
connecting γk and γn. Then a new arc is drawn between γl
and γn. The resulting operation can be viewed as propa-
gating loops in the spatial direction. See Fig. 2 for a

FIG. 1. Loop representation of Gaussian Majorana circuits.
(a) The three elementary operations on a pair of Majorana
worldlines: The identity 1lm propagates unaffected loops in the
temporal direction. A projective parity measurement Plm con-
nects loops in the opposite way, appearing like spatial propaga-
tion. A swap gate Rlm makes the worldlines cross over one
another. (b) A loop configuration for brick-wall Majorana circuit
of depth T. Different types of loops contribute to different
correlation functions: Spanning loops (green) connect the two
temporal boundaries, fixing boundary correlation functions like
hγiðt ¼ 0Þγjðt ¼ TÞi. Loops with both ends terminating on the
same temporal boundary (blue) determine the equal-time spatial
correlations hγiðtÞγjðtÞijt¼0;T . Adding ancilla Majorana modes
allows loops (purple) to cross the spatial boundaries. Closed
loops (black) contained entirely in the spacetime bulk do not
contribute to boundary observables but modify bulk correlation
functions. Non-Gaussian, e.g., four-fermion, measurements are
represented as multileg vertices (orange box) which are not
immediately expressed as a single loop configuration.

FIG. 2. Diagrammatic representation of a Majorana stabilizer
state and its evolution under the Gaussian circuit dynamics. The
instantaneous state ρ is specified by pairs of Majoranas corre-
sponding to the end point open arcs in the diagram. Measurement
P2;3 can be represented by fusing the loop end points at γ2 and γ3
and opening a new arc to produce the pairings in the postmeasure-
ment state. A swap gate R3;4 is represented by a loop crossing
which exchanges γ3 and γ4.
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minimal example of how the loop representation of the state
evolves under such operations.
A selection of possible spacetime loops, including

potential boundary conditions, is shown Fig. 1(b). As
one infers from the diagrams, the loop representation
makes no distinction between Plm and Pml; i.e., it is
agnostic to the sign of each parity measurement outcome.
Thus, each loop diagram represents an equivalence class
of circuits rather than a specific circuit realization. Each
circuit of a given equivalence class is identical up to the
random measurement outcomes and the sign of the swap
gates. Consequently, each equivalence class predicts
quantities that are independent of measurement out-
comes. Examples include the modulus jihγlγmij ¼ 0, 1
of each parity, the entanglement entropy, and the purity of
the state.
This equivalence relation identifies both signs of swap

gates Rlm ∼R†
lm such that Eq. (4) is replaced by R2

lm ∼ 1.
Then the relation between the operations reduces to the
Brauer algebra, i.e., the degenerate point of the BMW
algebra. The Brauer algebra BN consists of pairwise
matchings between 2N elements, which we can identify
with the end points of Majorana worldlines at temporal
boundaries of the circuit. Then the elements of BN are in
one-to-one correspondence with equivalence classes of
Gaussian Majorana circuits, specified by the pairings
jihγlγmij. Two circuits from the same equivalence class
can be transformed into one another by applying a series
of local phase gates, which do not change the entangle-
ment. This is true for general Clifford circuits [122] and
enables an experimental procedure to detect the predicted
observables [15].

B. Circuit observables and loop configurations

The dynamics of a circuit are characterized by bulk and
boundary observables. The latter are correlations at the
temporal boundary, i.e., in the final state ρðTÞ, such as the
entanglement entropy. When the circuit has a rigorous loop
model representation, ρðTÞ can be inferred from boundary
loop configurations. Then it is more efficient to simulate the
corresponding loop model rather than the Clifford circuit
(see Appendix A for details). When no such microscopic
mapping to a loop model is possible, we instead simulate
the Clifford circuit via the tableau formalism [123]. Below,
we provide a dictionary connecting observables in Clifford
circuits and in loop models.
We begin with two paragraphs providing a short sum-

mary of Clifford circuits and the stabilizer formalism.
A generic stabilizer state, emerging from a non-Gaussian
Clifford circuit, is a generalization of Eq. (5) to Pauli
operators that are not quadratic in Majorana fermions. It
can be written as a product of commuting projectors:

ρ ¼QjGj
i¼1

1
2
ð1 −MiÞ, where Mi are linearly independent

Pauli strings satisfying ½Mi;Mj� ¼ 0. The set G ¼ fMig

generates the stabilizer group S ¼ hGi for the state ρ. Such
states admit an efficient representation in the tableau
formalism wherein the only Pauli strings and phases for
stabilizer group generators Mi are recorded [123,124].
Under the action of Clifford operations, the Mi are trans-
formed into new Pauli strings, ensuring the continued
existence of a compact representation and enabling a fast
update of the tableau. Similarly, projective measurement of
a Pauli string M̃ can be simulated in polynomial time in
the following manner. Suppose we order the stabilizer
generators hM1;…;Mi;Miþ1;…i such that ½Mj; M̃� ¼ 0

for j < 0 and fMj; M̃g ¼ 0 for j ≥ i. The postmeasure-
ment state can be represented by the new stabilizer
generators hM1;…; M̃;MiMiþ1;…i.
Given a stabilizer state, the entanglement entropy of

subsystem A is given by SA ¼ dimF2 ðGjAÞ − jAj [122],
where GjA is the restriction of the tableau to subsystem A
and the rank is taken with respect to F2. Similarly, the
residual entanglement of a mixed state on L qubits is given
by jGj − L. Further entanglement measures such as mutual
information may be obtained by such a calculation on the
appropriate subsystems.
In a loop model, boundary observables are encoded

in the distribution of fermion parities jhγmγliT j at time T.
Each nonzero parity corresponds to a loop arc connecting
sites l and m with the length of the arc defined as
l ¼ jl −mj [125]. The entanglement properties and corre-
lations in ρðTÞ are captured by the normalized loop
length distribution PðlÞ, which is in one-to-one correspon-
dence with the stabilizer length distribution in the clipped
gauge [26,104]. At a critical point of the loop model,
the loop length distribution takes the form PðlÞ ¼
c̃ðlÞ½3 logð2Þ=l2� with a universal prefactor c̃ðlÞ. In
Table I, we show the known values of c̃ðlÞ for both
CPLC and the Q-state Potts model.

1. Entanglement entropy and mutual information

From the state ρðTÞ, we compute the von Neumann
entanglement entropy SA ≡ −Tr½ρAðTÞ log2 ρAðTÞ� of a
subregion A and the mutual information I2ðA; BÞ≡ SA þ
SB − SAB between two subregions A and B. Here, ρAðTÞ ¼
TrĀ½ρðTÞ� is the reduced density matrix obtained by tracing

TABLE I. Asymptotic behavior of the loop length distribution
for the long-loop phases of CPLC and the critical point of the
Q-state Potts models. It determines the prefactor of the von
Neumann entanglement entropy SL=2 ¼ ½c̃ðLÞ=3� logðLÞ.

State l2PðlÞ� 1
3 logð2Þ c̃ðlÞ

�
Critical Q-state Potts [126] ð2þ ffiffiffi

Q
p Þ

π
ffiffiffiffiffiffiffi
4−Q

p arcsecð2= ffiffiffiQp Þ
arcsecð−2= ffiffiffiQp Þ

CPLC critical point [100] 2.035
π

CPLC Goldstone phase [100] 1
2π2

logðlÞ þ const
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out the complement Ā of A. In a Gaussian circuit,
both SA and I2ðA; BÞ are determined by the set of fermion
parities jhγlγmiT j ¼ 1, i.e., by the loop arcs at t ¼ T. Then
SA ¼ NA [127] is the number of arcsNA that terminate with
one end in A and with the other end in its complement Ā
[32,59,122]. For a loop distribution PðlÞ with scaling
l2PðlÞ ¼ 3 logð2Þc̃ðlÞ as in Table I, this is NA ¼
c̃ðjAjÞ=3 logð2Þ (see Appendix A). The mutual information
I2ðA;BÞ is twice the number of loops with one end point
in A and the other end point in B. For Gaussian circuits
and loop models, mutual information is additive; i.e.,
I2ðA;BCÞ ¼ I2ðA; BÞ þ I2ðA;CÞ − I2ðA;B ∩ CÞ [128].
In order to detect long-range entangled states in the

circuit of 2L fermions, we compute the mutual information
between contiguous subsystems A and B of size jAj ¼
jBj ¼ L=4 Majorana fermions with separation L=4 (e.g.,
A ¼ ½1; L=4� and B ¼ ½L=2þ 1; 3L=4�). For this choice,
I2ðA;BÞ provides a convenient metric for the finite-size
scaling analysis in the vicinity of a critical point. It can be
used for both locating an entanglement transition and
determining the critical exponent ν [129,130].

2. Multipartite entanglement

For a Gaussian circuit, i.e., for loop models, every open
loop has precisely two end points [32] and zero operator
content between them. Thus, any multipartite entanglement
can be expressed by the sum of bipartite mutual information.
For instance, the tripartite mutual information I3ðA; B;CÞ
always vanishes in a loop model. This is different for generic
Clifford circuits: While for contiguous and adjacent sub-
systems A and B the entanglement entropy of a stabilizer
state is the same as for the corresponding Majorana wave
function, this is no longer true when computing the mutual
information between disconnected regions [131].

3. Purity and erasure of initial information

For a circuit with Majorana worldline representation, the
spanning number nsðTÞ counts the number of worldlines
connecting the t ¼ 0 and t ¼ T temporal boundaries of the
circuit. It is the mutual information between the initial and
the final state and, thus, quantifies the survival of informa-
tion inserted into the circuit at t ¼ 0 up to the final time
t ¼ T. We distinguish two important cases: First, when the
initial state is maximally mixed, it hosts only unpaired
Majorana worldlines, and the spanning number counts all
unpaired Majorana worldlines at time T. This provides the
total entropy SLðTÞ ¼ −Tr½ρðTÞ log2 ρðTÞ� ¼ 1

2
nsðTÞ, i.e.,

the time-dependent purity. Second, when the initial state is
pure, nsðTÞ is the number of Majorana parities which have
not been erased by measurements. Then it measures the
survival probability of initially encoded information. This
elucidates the equivalence between dynamical purification
of an initial mixed state and the erasure of information from
an initial pure state by measurement.

4. Bulk observables

Both 2D loop models and ð1þ 1ÞD circuits hold
information that is not accessible from boundary correla-
tions. In loop models, an important example is the so-called
watermelon correlator G2nðz⃗; z⃗0Þ. For any integer n, it is the
probability that the (two-dimensional) coordinates z⃗; z⃗0 in
the bulk of the loop configuration are connected by n
closed loops. In the circuit z⃗ ¼ ðl; tÞ, z⃗0 ¼ ðl0; t0Þ become
spacetime coordinates and, e.g., G2ðz⃗; z⃗0Þ is the probability
that the two Majorana fermions γl and γl0 share the same
worldline for intermediate times 0 < t; t0 < T and t ≠ t0.
We express this as the parity jhγlðtÞγl0 ðt0Þij ¼ 1, which
takes the form of an out-of-time order correlator. It reveals
information about the dynamics that boundary correlations
cannot access. In Appendix E, we show how this bulk
quantity can be extracted from Gaussian and general
Clifford circuits.

C. Worldline orientability, bipartite lattices,
and time-reversal symmetry

A core aspect of the statistical mechanics of loop models
and of measurement-only circuits is the so-called orient-
ability of the loops. Orientability implies the presence of a
continuous U(1) symmetry in the circuit, which determines
its long-wavelength behavior. Consider a circuit of N
Majorana fermions. We call this circuit and its correspond-
ing loop model orientable if and only if there exists a
bipartition A, B of the set of Majorana fermions such that
(i) each measurement Pl;m connects exactly one Majorana
γl ∈A and one Majorana γm ∈B, (ii) each swap Rl;m acts
on two Majoranas, which are either both in A, γl; γm ∈A
or both in B, γl; γm ∈B. In this case, loop configurations
are elements of the walled Brauer algebra BjAj;jBj ⊂ BN

[132,133]. When no such bipartition exists, we call the
circuit nonorientable. This provides a practical criterion for
orientability in a loop model. If all (any) closed loops [see
black configuration in Fig. 1(b)] originate from an even
(odd) number of measurements, the circuit is bipartite
(nonbipartite).
In an orientable circuit, we may label each Majorana

worldline with an arrow denoting an orientation. Each
worldline corresponding to subsystem A obtains a positive
orientation (travels forward in time), and each worldline
corresponding to subsystem B obtains a negative orienta-
tion (travels backward in time) [77]. Then the total
orientation Q ¼ jAj − jBj∈Z is a conserved charge with
−N ≤ Q ≤ N. For a purely algebraic definition of the
orientability symmetry operator, one may examine the
group center of the walled Brauer algebra [132,133].
To elucidate the notion of orientability, consider the

particular case of nearest- and next-nearest-neighbor mea-
surements Pl;lþ1 and Pl;lþ2. With only nearest-neighbor
measurements, we may take A ¼ fγ2l−1g and B ¼ fγ2lg.
As shown in Fig. 3(a), a measurement Pl;lþ1 preserves the
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orientations. In this particular example, the orientable
charge appears reminiscent of a staggered “magnetization”
of worldlines. To see this, we may map the circuit to the
six-vertex model and obtain an explicit XXZ matrix
representation of the TL generators [118,134,135]:

Pl;lþ1 →
1

2

h
XlXlþ1 − YlYlþ1 þ ðZlZlþ1 þ 1Þe�ðiπ=3ÞZl

i
;

where the phase in the exponential alternates between
the sublattices. Here, the spin-1=2 degree of freedom for
each worldline can be interpreted as the orientation of the
loop. The U(1) orientability charge is then given by
Q ¼Plð−1ÞlZl. Next-nearest-neighbor measurements,
by contrast, act on two Majoranas lying on the same
sublattice and are, thus, incompatible with the orientations
[see Fig. 3(c)]. Moreover, the matrix representation for
Pl;lþ2 obtained by conjugating with swap gates does not
commute with Q and so breaks the U(1) symmetry.
Furthermore, this example identifies orientability as the

circuit counterpart of time-reversal symmetry in Majorana
Hamiltonians. To see this, we first realize that a projection
Pl;lþm ¼ 1

2
ð1þ iγlγlþmÞ with m odd always connects a

Majorana with an even index to a Majorana with an odd
index. By convention, odd Majoranas are real γ2l−1 ∼
c†l þ cl, while even Majoranas are complex γ2l∼ iðc†l −clÞ.
Thus, products iγlγlþm with m odd are real and invariant
under time reversal. The same is true for swaps Rl;lþm ¼
ð1= ffiffiffi

2
p Þð1 − γlγlþmÞ, where for m even the product γlγlþm

is real. When all the generators of the evolution are
invariant under time reversal, so is the entire circuit. The
symmetry implies that all circuit observables that are odd
under time reversal must have zero expectation value.
This framework can be further generalized: A given

circuit has a time-reversal invariant representation and it
preserves orientability whenever we can find a satisfactory
bipartition A, B. This provides the equivalence of (i) the
bipartiteness of a Majorana circuit, (ii) time-reversal
invariance of the generators P andR, and (iii) orientability
of the corresponding loop model.

D. Effective long-wavelength description

Unambiguously mapping a monitored circuit to a
loop model gives rise to a large toolbox of theoretical
methods to examine its long-wavelength behavior. An
important example is the mapping of dense loops to
nonlinear sigma models (NLσMs) [100,112,113], whose
form and universal behavior depend explicitly on the
presence or absence of orientability. When the local
orientations are conserved, the order parameter takes values
in CPn−1. If, instead, orientability is broken, as in CPLC,
the order parameter is reduced toRPn−1 [100]. The relevant
case of n ¼ 1 may be studied as a replica-like limit of the
n > 1 theory [136].
Once orientability is broken sufficiently strongly, the

corresponding NLσM features a phase transition from a
short-loop phase to a symmetry-broken, so-called Goldstone
phase. It is an order-disorder transition driven by Z2 vortex
proliferation in the RPn−1 theory [100,112,113]. Despite
taking place in two dimensions, this transition and the CPLC
Goldstone phase are not prohibited by the Mermin-Wagner
theorem, since a non-Hermitian representation is required
for treating the n ¼ 1 loop model [100,112]. Whenever
orientability is broken in the circuit, we resort to the CPLC
nonlinear sigma model results, which are universally con-
firmed in this case.

E. Symmetry-preserving non-Gaussian perturbations

The mapping of Gaussian Majorana circuits to loop
models was based on the TL and Brauer algebra in
Eqs. (1)–(3), which is rigorous for Gaussian circuits. We
show below that measuring non-Gaussian operators creates
superpositions of loop configurations. This is analogous to
Hamiltonian systems, where interactions create superposi-
tions of Gaussian states. In many situations, however, a
unique loop model may emerge on a coarse-grained scale.
Here, we adopt a perspective inspired by the renormaliza-
tion group (RG) framework and consider measurements of
non-Gaussian operators fÔlg as perturbations on top of an
otherwise Gaussian circuit. We note that this situation is
quite general: The frustration graph of an arbitrary set of
measured operators always contains a subgraph that can be
represented by measurements of Gaussian fermion oper-
ators [137]. The remaining operators then act as non-
Gaussian perturbation.
Starting from a Gaussian circuit, i.e., a well-defined 2D

loop model, the notion of relevance and irrelevance in the
RG sense for non-Gaussian perturbations in 2D statistical
mechanics is applicable. Thus, measuring a set of non-
Gaussian operators fÔlg, which preserve the symmetries of
the Gaussian circuit, is an irrelevant perturbation when
added to an extended thermodynamic phase of either short
or long loops. The situation may, however, be different
at a Gaussian critical point. Here, we distinguish relevant
and irrelevant non-Gaussian operators, in analogy to

FIG. 3. Orientability of worldlines. Worldlines get assigned a
fixed orientation for the even or the odd sublattice. (a) Nearest-
neighbor measurements preserve this orientation. By contrast,
(b) nearest-neighbor crossings and (c) next-nearest-neighbor
measurements mix the orientations and break the associated
symmetry.
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equilibrium statistical mechanics. Irrelevant operators do
not modify the critical behavior at the fixed point when
added only weakly, i.e., with small measurement proba-
bility. They might, however, drive a phase transition into a
non-Gaussian phase once they start to dominate the circuit
evolution, i.e., once their measurement probability is
sufficiently large. This scenario is analogous to a strong-
coupling fixed point in the renormalization group picture.
In turn, relevant non-Gaussian operators would modify
the critical behavior even when added only with small
probability, similar to the Wilson-Fisher scenario: The
Gaussian fixed point becomes repulsive and the critical
behavior is determined by a different, interacting fixed
point [138–141]. In this work, we do not observe the
latter scenario.
The effect of symmetry-preserving non-Gaussian mea-

surements in a loop model can be illustrated by starting
with a Gaussian circuit described by the Brauer algebra in
Eqs. (1)–(3). It is perturbed by measurements of non-
Gaussian operators which are symmetry preserving, e.g.,
preserve parity and orientability and are, thus, even
under time reversal. Let us take, for example, four-fermion
parity checks, such as ZlZlþ1 ¼ γ2l−1γ2lγ2lþ1γ2lþ2 or
XlXlþ2 ¼ γ2lγ2lþ1γ2lþ2γ2lþ3. The projective measurement
P1;2;3;4 ¼ 1

2
ð1 − Ô1;2;3;4Þ of a general four-fermion operator

Ô1;2;3;4 ¼ γ1γ2γ3γ4 corresponds to an “eight-leg vertex” in
the loop model. It has four incoming and four outgoing
worldlines [see Fig. 4(a)], which, in contrast to two-fermion
measurements, have no unambiguous connection between
individual pairs of fermions. Instead, P1;2;3;4 yields a
superposition of all possible ways of connecting the
legs incident on the vertex with a fixed total parity. This
gives rise to several, equivalent representations of P1;2;3;4 in
the loop framework. For instance, the projector can be
written as

P1;2;3;4 ¼ 1 − i
ffiffiffi
2

p �
e−iπ=41 −

ffiffiffi
2

p
P2;3

�
P1;3P2;4

þ i
ffiffiffi
2

p �
eþiπ=41 −

ffiffiffi
2

p
P2;3

�
P1;2P3;4: ð6Þ

The corresponding superposition of loop configurations is
shown in Fig. 4(c). So far, the sum is not restricted to terms
which respect the symmetry, e.g., orientability, of the
Gaussian circuit and so may include both symmetry-
preserving and symmetry-breaking terms.
We may now ask what the action of Eq. (6) will be in an

otherwise Gaussian circuit. Whenever the parity of two of
the four fermions is already known or measured in the
future, the four-fermion measurement reduces to a two-
fermion parity check, as revealed from P1;2P1;2;3;4 ¼
P1;2;3;4P1;2 ¼ P1;2P3;4 and depicted in Fig. 4(b). This
provides access to two important limits: (i) When the
circuit is dominated by local Gaussian measurements, an
extensive number of local parities is known immediately
before or after application of P1;2;3;4. Then P1;2;3;4 can
almost always be replaced by two-fermion measurements.
(ii) In turn, when non-Gaussian measurements are domi-
nant, few Gaussian parity checks induce a cascade of fixed
local parities, which collapses the circuit onto a short-loop
state. Both cases give rise to a loop model interpretation, in
which the topology of the short-loop (area-law) phase
depends on (i) the Gaussian or (ii) the non-Gaussian
measurements.
This observation is readily generalized to measurements

of arbitrary symmetry-preserving Majorana operators
Ô ∼ γ1;…γ2n with n > 2. When the parity of m bilinears
in Ô is known, then it reduces to the measurement of an
2ðn −mÞ Majorana operator. The size of the reduced
operator corresponds precisely to the mutual information
between the support of Ô and its complement in the circuit.
This mutual information is a reliable indicator of the
relevance of a 2n-fermion operator in a Gaussian circuit.
In an area-law phase with short loops, and for contiguous
support of Ô, it does not grow with n. At a critical point
with long loops (logarithmic entanglement growth), it
grows ∼ logðnÞ, such that higher-order operators become
increasingly relevant. In this case, the 2n-fermion mea-
surements do not collapse onto a single loop configuration
but, instead, yield a superposition of all symmetry-allowed
configurations.
A further important consequence of the above discussion

is that symmetry-preserving non-Gaussian measurements
indeed inherit the symmetry of the Gaussian circuit.
Consider, for instance, orientability: When the worldlines
entering the 2n-fermion vertex form an orientable, bipartite
lattice, the corresponding vertex is collapsed onto its
bipartite part and cannot break orientability. In turn, when
the worldlines instead form a nonbipartite lattice, the
2n-fermion vertex collapses onto its nonorientable part.
Thus, 2n-fermion parity checks, which are compatible with

FIG. 4. Four-fermion measurements. (a) Measuring the total
parity on four Majoranas γl for l ¼ 1, 2, 3, 4 can be represented by
an eight-leg vertex, where the unprimed and primed indices denote
incoming and outgoing worldlines, respectively. (b) When one of
the local fermion parities is known due to a closed loop entering the
vertex, the measurement reduces to a parity check on two fermions,
restoring a vertex-free loop diagram. (c) Without knowledge of the
local parities, the vertex represents a sum over possible pairings of
the legs. One of several equivalent diagrammatic representations is
shown here. Notably, the sum includes configurations which are
inconsistent with orienting the worldlines.
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orientability, i.e., even under time reversal, inherit the (non)
orientable structure of the underlying Gaussian circuit.

F. Parity-violating measurements

A second important class of non-Gaussian operations
appearing in generic Clifford circuits violate the total parity
Z̄ ¼QL

l¼1 Zl. In general, a parity-breaking Pauli operator,
e.g., a single X or Y, maps to an odd-length string of
Majorana fermions attached to one (without loss of general-
ity, the left) spatial boundary of the circuit. For Clifford
circuits, two consecutive parity-violating measurements,
say, Xl followed by Xm, are equivalent to one parity-
violating measurement (Xm) followed by one parity-
conserving measurement (XlXm). While the latter can be
treated by the discussion of Jordan-Wigner strings in the
previous section, the former requires additional care. Here,
we show that, under appropriate conditions, such a pair of
parity-violating measurements may be reduced to a short-
range measurement P followed by a long-range swapR in
the Majorana framework. Depending on the measured
operators and, in particular, their spatiotemporal location,
such swaps are nonlocal in spacetime and may bridge
large distances. Moreover, these swaps yield a potential
mechanism for violating orientability, allowing a CPLC
Goldstone phase to emerge.
In order to include general parity-breaking measure-

ments in theMajorana framework, we recast them as parity-
preserving ones by introducing two ancilla fermions [142].
We place an ancilla qubit A consisting of two Majorana
modes γA1

and γA2
at the left boundary of the system, as in

Fig. 5. Performing a ZA measurement followed by a

Hadamard gate, the ancilla is prepared in an eigenstate
hXAi ¼ 1 without well-defined parity. For a parity-non-
conserving operator Ô acting in the bulk, prepending XA

yields a new operator Ô → XAÔ ¼ γA1
Ô that is even in

Majorana modes. This now conserves the parity of the joint
system ZAZ̄ and leaves the bulk unmodified compared to
measuring only Ô.
To illustrate the effect of the ancilla, we consider

the following basic example, as depicted in Fig. 5.
Consecutively measure two single Majorana fermions:
Ô ¼ γl at time t and Ô0 ¼ γl0 at time t0. In the ancilla
framework, this yields the Gaussian projections PA1;l ¼
1
2
ð1þ iγA1

γlÞ at time t and PA1;l0 at time t0. Both can be
expressed in the loop model framework by connecting the
ancilla worldline γA;1 to bulk worldlines γlðtÞ and γl0 ðt0Þ.
Between times t and t0, this is equivalent to drawing a
direct loop between γlðtÞ and γl0 ðt0Þ, i.e., replacing the
ancilla loop by a spacetime nonlocal swap Rðl;tÞ;ðl0;t0Þ. Any
two consecutive, single-Majorana measurements γln and
γlnþ1

at times tn < tnþ1 can, thus, be replaced by a swap
Rðln;tnÞ;ðlnþ1;tnþ1Þ. By this procedure, the ambiguity in the
bulk parity persists only along the loop connecting the first
and the final parity-breaking measurement via the ancilla.
After the final parity-violating measurement, the ancilla is
removed by applying another Hadamard gate and then
measuring ZA. In the bulk, this implements a final swap
R̃ðlN ;tNÞ;ðl1;t1Þ, which pushes the parity ambiguity into the
qubit represented by the pair γl1γlN.
When measuring local Pauli operators, e.g., X or ZX,

the effects of both the ancilla of JW strings need to be
combined. Each measurement then results in a super-
position of all possible loop configurations, including
long-range swaps, which are compatible with the state in
the circuit, e.g., as in Eq. (6). In a short-loop phase, this
again yields only a few possibilities so that the main
effects of parity-breaking measurements are orientability
breaking and long-range swaps. By contrast, in a phase
with extended loops, parity-breaking measurements gen-
erate superpositions of many worldline configurations,
leading to a rapid growth of entanglement.

III. LOOP MODEL PHASES IN
MEASUREMENT-ONLY CIRCUITS

We now turn our attention toward a family of measure-
ment-only circuits, based on (next-)nearest-neighbor qubit
measurements. We show that such circuits realize phases
and phase transitions that are described by Majorana loop
models. In each case, our starting point is a local, Gaussian
circuit. We distinguish orientable and nonorientable circuits
based on bipartiteness of the underlying Majorana graph,
which is equivalent to measuring time-reversal symmetric
operators. A summary of the setup and the corresponding
phase diagrams for orientable and nonorientable circuits are

FIG. 5. Ancilla-mediated parity-nonconserving measurements.
(a) Two sequential single Majorana measurements mediated via
an ancilla qubit PA1;l at time t and PA1;l0 at time t0. At the end of
the evolution, the ancilla is decoupled from the bulk by a
measurement in the X basis. (b) An equivalent circuit generating
the same final state involves a connection (blue) of bulk loops that
is nonlocal in both space and time. This can be viewed as an
effective swap Rl;l0 after the first measurement PA1;l. If γl and γl0
are in separate bipartitions of the Majoranas, this effective swap
facilitates a breaking of the worldline orientability.
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shown in Figs. 6(a)–6(c). When orientable, the Gaussian
circuits realize loop models corresponding to variants of
the one-state Potts model and critical behavior correspond-
ing to the 2D bond percolation universality class. In
contrast, nonorientable Gaussian circuits are described
by the CPLC and feature a transition into the symmetry-
broken Goldstone phase.
We then add non-Gaussian measurements that may or

may not preserve the symmetry (i.e., orientability) of the
underlying Gaussian circuit. In the orientable case, we
observe the emergence of a family of loop models, which
are connected to the TL or Brauer algebra of (coupled)
Potts models. Conversely, in the nonorientable case, we
find a robust CPLC Goldstone phase: It appears for any
type of nonorientable circuit as soon as orientability is
broken sufficiently strongly.
Restricting the measured operators to single or nearest-

neighbor qubits yields exactly five types of Pauli operators
that are Majorana bilinears: O ¼ fZl; XlXlþ1; YlYlþ1;
XlYlþ1; YlXlþ1g. It is then convenient to represent the
corresponding Majorana circuit on a weighted graph;
see Fig. 6(a). Each vertex γl of the graph corresponds to
a Majorana fermion, and each bond Ô ¼ iγlγm specifies a
parity check, measured with probability pO. For the set of
Paulis O given above, this graph has the structure of a two-
leg ladder, shown in Fig. 6(a). We consider a translationally
invariant circuit such that any two identical bonds are
measured with the same probability. Each temporal “layer”
of the circuit corresponds to a unit time step Δt ¼ 1 and
consists of L independent random measurements. For each

measurement, a Majorana l∈ f1; 2;…; 2Lg is selected at
random with uniform probability. We then measure an
operator Ô ¼ iγlγm which is randomly drawn from the
probability distribution pO.

A. Orientable Gaussian circuits

From the set of allowed Pauli operators, one can form
three translationally invariant and orientable subsets:

O1 ¼ fZl; XlYlþ1; YlXlþ1g;
O2 ¼ fZl; XlXlþ1; YlYlþ1g;
O3 ¼ fXlYlþ1; YlXlþ1; XlXlþ1; YlYlþ1g:

The corresponding bipartite Majorana graphs are shown in
Fig. 6(a). It is convenient to define two global unitary
transformations UZ ≡ exp ½iðπ=4ÞPl Zl� and UZ;odd ≡
exp ½iðπ=4ÞPl Z2l−1�, consisting of a π=2 rotation of each
or each odd Pauli-Z (i.e., a product of the R2l−1;2l
operators). Application of UZ;odd maps O1 ↔ O2, making
the two circuits identical upon parity sign flips, and it leaves
O3 invariant. Application of UZ leaves all three subsets
invariant.

1. Potts models and percolation

Each orientable subsetO1;2;3 contains at least one further
subset of operators whose projectors form a TL algebra.
For instance, the set of measurements fZl; XlXlþ1g ¼
fiγ2l−1γ2l; iγ2lγ2lþ1g forms the TL algebra generated by

FIG. 6. Loop model for Gaussian Majorana circuits. (a) Each allowed two-fermion parity check is represented by a bond on the lattice.
The probability for each bond to be measured and the corresponding Pauli operator are shown in the table. Each orientable set O1;2;3
yields a different bipartition of the lattice. (b) Phase diagram of theO1 ladder with pZ þ pXY þ pYZ ¼ 1 for system size L ¼ 1024. For
pZ > 0, the circuit is in an area-law state, which is highlighted by the rapid vanishing of entanglement on a logarithmic scale. At large
anisotropy (jpXY − pYZj ≈ 1), rare Z measurements induce a peculiar state with exponentially large correlation length, i.e., a strongly
enhanced mutual information, and tunable correlations between the two legs of the ladder. The dashed red line along q ¼ 0.05
corresponds to the parameter interval examined in Fig. 7. (c) Phase diagram of a nonorientable circuit in the pXX þ pYY þ pZ ¼ 1

2
plane

at fixed pXY ¼ pYX ¼ 1
4
, given by the two-interval mutual information I2 for system size L ¼ 4096. The extended phase with finite I2 is

the Goldstone phase. The white dashed line gives the pXX ¼ pYY cut used in Fig. 9. The marked points give exemplary points which are
either on the critical line or deep within the Goldstone phase.
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fbl ¼ Pl;lþ1g. The evolution of the circuit is then described
by the transfer matrix

T ¼ T1T3…TL−1T2T4…TL;

T2l−1 ¼ 1þ pZb2l−1;

T2l ¼ 1þ pXXb2l; ð7Þ

which is identical to the transfer matrix in the 2D one-state
Potts model. Depending on the probabilities pZ and pXX,
the odd (b2l−1) or even (b2l) parity measurements dominate.
This yields a dimerized ground state in the Potts model
given by a configuration of short loops over even or odd
bonds. The latter is equivalent to a stationary state in the
circuit with dimerized Majorana parities that features area-
law entanglement and zero (one) pairs of Majorana edge
states for pZ > pXX (pZ < pXX).
The transition between the two topologically inequiva-

lent area-law states at pZ ¼ pXX is described by the
critical one-state Potts model, corresponding to the uni-
versality class for 2D bond percolation. In the loop
framework, this yields an algebraic distribution of
loop lengths l, PðlÞ ¼ 3 logð2Þc̃l−2, and logarithmically
growing entanglement entropy SL ∼ ðc̃=3Þ logðLÞ with c̃ ¼
½3 ffiffiffi

3
p

logð2Þ=2π� [86,126] (see Table I). The universality of
this transition has been confirmed in previous works, where
measurements of the set fZl; XlXlþ1g are motivated as a
projective Ising model [59,143] or a measurement-only
version of the repetition code [62,110]. Applying UZ;odd,
UZ, or their product to fZl; XlXlþ1g yields three further
sets of measurements that realize the same TL algebra and,
thus, the same universal behavior. Since bothUZ andUZ;odd

correspond to constant-depth local unitary circuits, the
topology of the two area-law states is preserved—local
swaps transform the dimerization pattern but do not add or
remove edge modes.
Two further independent TL algebras fdl ¼ P2l−1;2lþ1g

and ffl ¼ P2l;2lþ2g are realized by the sets fYlXlþ1g ¼
fiγ2l−1γ2lþ1g and fXlYlþ1g ¼ fiγ2lγ2lþ2g. Application of
UZ exchanges fdlg ↔ fflg, while under UZ;odd,
fYlXlþ1g ↔ fX2l−1X2l; Y2lY2lþ1g and fXlYlþ1g ↔
fY2l−1Y2l; X2lX2lþ1g. Together, the two sets realize two
independent one-state Potts models. While, in principle,
the parameters for these Potts models can be tuned
independently, translational invariance of the measurement
probabilities yields an additional constraint. For the set
fYlXlþ1; XlYlþ1g, translational invariance places both Potts
models exactly at the critical point [144] but with distinct
timescales fixed by pXY and pYX. In contrast, for the set
fXlXlþ1; YlYlþ1g, both Potts models are identical but can
be tuned through different phases.
Once we extend the measurements to include any full

subsetO1;2;3, the circuit remains orientable but is no longer
described by uncoupled TL algebras. Instead, the Potts
models are coupled by a relevant, Gaussian operator.

Below, we consider one particular case of such coupled
Potts models in the Gaussian circuit.

2. Relation to the Ising model ground state

It is instructive to compare the percolation transition in
the “projective Ising model” to the ground state phase
transition in the Ising Hamiltonian. To do so, we first
realize that the Ising Hamiltonian can be expressed in terms
of projectors:

H ¼
X
l

JXlXlþ1 þ hZl

¼ −2
X
l

JP2l;2lþ1 þ hP2l−1;2l þ K; ð8Þ

where K ∈R is an irrelevant constant. The ground state
of the Hamiltonian is obtained from some random
initial state jψ0i by imaginary time evolution jGSi ¼
limβ→∞ e−βHjψ0i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ0je−2βHjψ0i

p
. Importantly, and in

contrast to the evolution by measurement, here the nor-
malization is performed only at the end of the evolution
and not after individual application of the projectors.
Trotterizing the time evolution yields e−βH ¼ ð1 −
δτHÞβ=δτ for δτJ; δτh ≪ 1. Each Trotterized evolution step
corresponds to an application of 1 − δτH, i.e., a transfer
matrix of the form of Eq. (7) with pXX ¼ δτJ; pZ ¼ δτh.
However, due to the different normalization, the transfer
matrix contains generators of a TL algebra, which results
from an exact operator identity and, thus, has loop
fugacity n ¼ ffiffiffi

2
p

. The transfer matrix in this case, thus,
describes the n2 ¼ 2-state Potts model, which is the Ising
model. The subtle distinction in the algebras underlying
imaginary time evolution and measurement, thus, yields
two different universality classes. Physically, this effect is
very transparent: In the imaginary time evolution, the
normalization at the end makes sure that states with
different energy are weighted differently, expressed by
an increased loop fugacity in the loop model. In contrast,
measurements do not provide a notion of energy and,
instead, weigh all energetic configurations equally, imple-
mented through loop fugacity n ¼ 1.

3. Apparent criticality altered by measurement

Consider the orientable set O1. It realizes two critical
one-state Potts models, represented by the chain of either
the even fXlYlþ1g or the odd fYlXlþ1g Majorana modes.
The two are coupled by measurements of fZlg. This
Gaussian term is relevant and introduces a timescale and
length scale, pushing the circuit into an area-law phase.
However, when both critical Potts models have signifi-
cantly different characteristic timescales, i.e., for strong
anisotropy between the measurement probabilities, the
correlation length remains exponentially large in the
inverse interchain coupling strength 1=pZ; cf. Fig. 6(b).
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This yields an intriguing dynamical regime: A circuit of
finite size or depth displays long-range correlations and
apparent critical behavior, up to exponentially large dis-
tances, which is tunable by fZlg measurements—a
general feature when Potts models are weakly coupled
by a relevant operator.
Let us define q ¼ minfpYX; pYXg=ðpXY þ pYXÞ, which

measures the anisotropy between the two Potts models. At
strong anisotropy and weak coupling, i.e., q; pZ ≪ 1, the
typical timescale on which each of the two Potts models
evolves is ≈q−1; ð1 − qÞ−1. Weak coupling between the
two models then provides an additional channel for the
slow Potts model to spread correlations via the fast one.
Consider, for instance, the case pYX ≪ pXY such that odd
Majoranas fγ2l−1g evolve much faster than even ones fγ2lg.
In order for a pair γ2lγ2lþ2m on the slow chain to become
entangled, a loop end point must travel m sites. This can be
accomplished either by waiting ≥ q−m layers for rare, even-
mode measurements or by taking the fast lane, harnessing
frequent odd-mode measurements to travel the same dis-
tance in ≥ ð1 − qÞ−mp−2

Z layers. At long distances
m≳ 2 logðpZÞ log½q=ð1 − qÞ�, the latter process dominates.
Correlations in the slow chain are then significantly
enhanced by the weak coupling. Hence, the fast (slow)
Potts model acts as a bath for the slow (fast) one, enhancing
(reducing) its tendency to form long loops l ≫ 1. A similar
scenario is observed in other monitored quantum systems,
in particular, when coupling two critical Ising chains by
measurements [145].
The modification of the length distribution PðlÞ for

loops within and between the two Majorana chains is seen
in Fig. 7. Both intrachain distributions converge to an
approximate power law l2PðlÞ → αl, whereas αl decays
very slowly with l on a logarithmic scale. This reflects the
exponentially large correlation length ξ, such that for loop
lengths ξ > l ≫ 1 a power-law behavior, reminiscent of a
critical state, is observed. As a consequence, each indi-
vidual chain displays a logarithmic growth of the entan-
glement entropy at finite system size. For the slow (fast)
chain, the magnitude of the probability density is
enhanced (reduced) by roughly one order of magnitude.
Long loops are almost exclusively accumulated in the
slow chain and, to a lesser extent, between the chains.
From the asymptotic value limξ>l≫1l2PðlÞ ¼ ðc̃=3Þ, we
can extract the coefficient c̃ for the logarithmic growth of
the intrachain entanglement entropy SL=2 ¼ ðc̃=3Þ logðLÞ,
shown in Fig. 7(b). This value is no longer universal.
Instead, it can be tuned to arbitrary values by adjusting the
measurement probabilities pZ and q and thereby the
anisotropy between the Potts models and their coupling
strength. Since the correlation length ξ diverges for
pZ → 0, this provides a knob to control both the amount
of long-range correlated loops in each individual chain as
well as the length scale up to which the apparent critical
behavior can be observed.

We note that similar scenarios have emerged in related,
orientable loop models; earlier works on coupled network
models for the spin quantum Hall effect show that coupling
two critical one-state Potts models via a Gaussian operator
immediately opens a gap, leading to a finite but large
correlation length [87,146]. Furthermore, the orientable
boundary of the CPLC phase diagram studied in Ref. [100]
gives rise to a coupled Potts model interpretation, for which

FIG. 7. Measurement-altered criticality for orientable Gaussian
circuits: Taking large anisotropyq¼minfpXY;pYXg=ðpXYþpYXÞ,
a small but finite interchain coupling viapZ ≠ 0 alters the criticality
of otherwise decoupled chains. (a) Length distributions for
fermionic loops restricted to either chain or spanning between
the two chains. The slow and fast chains see a strong enhance-
ment and suppression, respectively, of long-loop probability at
finite coupling pZ. At large l, l2PðlÞ approaches a constant
when q ¼ 0 (blue) and decays very slowly at q ¼ 0.05 (red) in the
slow chain, corresponding to approximately critical entangle-
ment induced via the coupling. For weak coupling, the fast chain
also exhibits almost constant l2PðlÞ, indicating that criticality
is modified but not destroyed. The interchain loop length distri-
bution shows that finite entanglement is shared between the chains
at long distances. (b) The effective log-law coefficient c̃ in each
chain extracted from the asymptotic value of l2PðlÞ at fixed
system sizeL. This reflects the enhancedmagnitude of c̃ in the slow
chain at weak coupling and the reduced but finite criticality of the
fast chain.
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the correlation length grows exponentially large with the
tuning parameter.

B. Orientable non-Gaussian circuits

Let us now consider measuring the orientable subset
O3 ¼ fXlXlþ1; YlYlþ1; YlXlþ1; XlYlþ1g and the non-
Gaussian operators fZlZlþ1; XlXlþ2g. The latter are com-
patible with orientability but introduce eight-leg vertices
into the loop diagram. This prohibits a precise microscopic
mapping to a TL algebra for the circuit. Nonetheless,
we can construct an effective transfer matrix based on
the TL algebra of the Gaussian operators, and we show that
it accurately describes the dynamics in the circuit. The
structure of the transfer matrix is again familiar from
the statistical mechanics of coupled Q-state Potts models
[106]. We argue that this approach is general for both
Gaussian and non-Gaussian orientable circuits and, thus,
establishes close contact between one-dimensional
measurement-only circuits and 2D Potts models.
Adding symmetry-preserving, non-Gaussian measure-

ments is an irrelevant perturbation to an extended phase of
Gaussian measurements, though it may become relevant
in the vicinity of a Gaussian critical point. Furthermore,
when non-Gaussian measurements become the dominant
generator of evolution, they may drive the circuit toward a
strong-coupling fixed point. In the following, we discuss

three general examples for this scenario: (i) By adding
non-Gaussian measurements in the vicinity of the perco-
lation critical point of the one-state Potts model, we split
the critical point into two BKT transitions, which enclose
an emergent critical phase, (ii) when inducing additional
frustration by measuring incommensurate non-Gaussian
operators, the critical phase transforms into a volume-law
entangled phase, and (iii) when non-Gaussian measure-
ments dominate, they give rise to a strong-coupling
tricritical point with an emergent Ising universality. We
show how (i)–(iii) can be understood from an elementary
version of the problem admitting an exact algebraic
description.
We consider a simplified version of the circuit, based on

measuring the Gaussian operators fXY; YXg with proba-
bility ðs=2Þ≡ pXY ¼ pYX and the non-Gaussian operators
ZlZlþ1 and XlXlþ2 with probabilities pZZ ¼ ð1 − sÞr and
pXIX ¼ ð1 − sÞð1 − rÞ, respectively. The phase diagram in
Fig. 8(c) shows the different transitions realizing scenarios
(i)–(iii). Here, the choice of Gaussian operators admits a
pair of TL algebras with generators el ≡ P2l−1;2lþ1 ¼
1
2
ð1þ XlYlþ1Þ and fl ≡ P2l;2lþ2 ¼ 1

2
ð1þ YlXlþ1Þ, respec-

tively. The transfer matrix for the Gaussian circuit then is
equivalent to that of two uncoupled, critical one-state Potts
models. Treating the non-Gaussian operators as a pertur-
bation, the transfer matrix T for the interacting circuit

FIG. 8. Orientable non-Gaussian circuit. (a) Majorana lattice for the two-leg ladder with four-fermion measurements. Shaded
plaquettes denote ZlZlþ1 (purple) and XlXlþ2 (orange) measurements. (b) Probabilities for the allowed two- and four-fermion
measurements. Quantity s∈ ½0; 1� sets the relative probability for two-fermion versus four-fermion measurements, while r determines
which type of four-fermion terms are measured. (c) Phase diagram in the r − s plane showing three distinct phases: an area-law phase at
strong four-fermion measurement rate, a critical phase extending from the noninteracting limit, and a volume-law phase arising from
frustration between four-fermion terms. The dashed black line marks the analytic expression for the critical point sc ¼
2j2r − 1j=ð1þ 2j2r − 1jÞ. The apparent deviation of the data from expected critical line results from finite-size effects which are
particularly strong for larger jr − 1

2
j, where the BKT transition gives logarithmically slow convergence to the thermodynamic limit.

(d)–(g) Critical rescaling of the tripartite mutual information I3 along various cuts in the r − s plane. In all plots, the critical value
I3ðx ¼ 0Þ is subtracted off and data are shown for system sizes up to at least L ¼ 360. (d) When r ¼ 1, the critical and area-law phases
are separated by a BKT transition at sc ¼ 2

3
. (e) With only interactions (s ¼ 0), the two area-law phases are separated by a conventional

second-order transition at rc ¼ 1
2
with critical exponent ν ≈ 1.1, close to the expected ν ¼ 1 for Ising criticality. (f) Fixing r ¼ 1

2
, we

observe a percolation transition between a critical phase and a volume-law phase with logarithmic corrections. (g) A cut at s ¼ 1
4
reveals

a percolation transition with ν ¼ 4
3
separating the area- and volume-law phases.
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can be expressed in terms of the original TL generators
(see Appendix C):

T ¼
X
i

½λðei þ fiÞ þ eiðð1þ δrÞfi þ ð1 − δrÞfiþ1Þ�;

λ≡ s
2ð1 − sÞ − jδrj; δr≡ 2r − 1: ð9Þ

We now go through scenarios (i)–(iii) in the phase diagram
with the help of the transfer matrix T.

1. Emergent critical phase and splitting of the percolation
critical point into two BKT transitions

Consider the limit s → 1 and δr ¼ �1, which corre-
sponds to two one-state Potts models, which are tuned
toward their critical point. Each is described by a TL
algebra feig; ffig. Then adding measurements of either
fZlZlþ1g or fXlXlþ2g introduces the couplings eifi or
eifiþ1, which both generate yet another TL algebra for a
single, critical one-state Potts model. This coupling is
known to be an irrelevant perturbation [106], and, thus,
for λ > 0 the critical Gaussian state remains robust.
Increasing the rate of non-Gaussian measurements, the
circuit reaches a strong-coupling fixed point at λ ¼ 0, i.e.,
at a critical s ¼ sc ¼ 2

3
. Here, the two critical one-state Potts

models combine into a single emergent one. For λ < 0, i.e.,
s < sc, non-Gaussian measurements dominate and induce
an area-law phase, whose topological properties depends
on the sign of δr. With δr ¼ 1 the area-law phase is trivial,
whereas for δr ¼ −1 one pair of edge states ∼iγ1γ2L is
stabilized; see Fig. 8(a). In both cases, the phase transition
in the coupled Potts models follows a BKT scenario, which
is visualized by the finite-size scaling collapse of the
mutual information in Fig. 8(d).
When moving away from the limit δr ¼ �1, both eifi

and eifiþ1 appear simultaneously, reflecting the competi-
tion between the two types of non-Gaussian measurements.
For any δr, the dominant non-Gaussian term induces a
robust area-law phase for λ < 0, which becomes unstable
for λ ≥ 0. This yields a precise analytical estimate for the
phase boundary at s ¼ scðδrÞ ¼ ð2jδrj=1þ 2jδrjÞ, which
is confirmed in Fig. 8(c). For large anisotropy δr between
the two couplings eifi; eifiþ1 or for large λ > 0, the
Gaussian critical phase remains robust. This is accompa-
nied by a BKT transition into the area-law phase at critical
sc. Numerical simulations of the circuit witness an
extended critical phase for 1

3
≲ s and correspondingly a

BKT transition for 1
4
≲ jδrj.

The emergence of a robust critical phase, separated by a
BKT critical line from an area-law regime, appears to be
generic when symmetry-preserving non-Gaussian mea-
surements are added to the sets O1;2;3. The prerequisite
is that the unperturbed circuit is in the vicinity of the one-
state Potts model critical point. We show in Appendix D

that non-Gaussian measurements cause the single one-state
Potts model critical point to branch out into two separate
BKT transitions, which enclose an extended critical phase.
This might be understood as follows. When an orientable
set O1;2;3 is pushed to a percolation critical point, it can be
decomposed into two one-state Potts models, one of which
is critical. Non-Gaussian measurements then couple both
Potts models into a robust critical phase. The scenario in
Fig. 8 represents one side of the broadened transition
between two area-law phases. A similar picture is observed
for orientable Gaussian measurements, which at the critical
point are perturbed by unitary gates [147].

2. Tricritical strong-coupling fixed point:
Emergent Ising universality

The two critical lines with λ ¼ 0 meet at the critical
point ðs; δrÞ ¼ ð0; 0Þ; see Fig. 8(c). The merging of two
critical lines is typical for a fine-tuned tricritical point,
which then realizes a different universality class. Indeed, it
is shown that the tricritical point of the ferromagnetic
Q-state Potts model with

ffiffiffiffi
Q

p ¼ 2 cosðπ=kÞ is related to the
critical point of the ferromagnetic Q0-state Potts model,
with

ffiffiffiffiffi
Q0p

¼ 2 cos½π=ðkþ 1Þ�, via the so-called ϵ − η
duality [72,148–151]. We argue above that each critical
line at λ ¼ 0; δr ≠ 0 corresponds to a single, critical one-
state Potts model, i.e., k ¼ 3. The duality then predicts the
tricritical point at ðs; δrÞ ¼ ð0; 0Þ to be described by a
critical two-state Potts model (k ¼ 4), i.e., the Ising
universality class. This can be made rigorous by recalling
that, in the Potts model, four-spin interactions (e.g., the eifi
coupling terms) are mapped to vacancies under a duality
transformation [69,152–154]. This maps the two coupled,
dense Potts models to a single, dilute one-state Potts model
in which s tunes the temperature and δr tunes the vacancy
density away from the critical point. Tuning ðs; δrÞ →
ð0; 0Þ takes the model to its tricritical point, and the ϵ − η
duality yields the critical Ising model.
Numerical simulations confirm the correlation length

critical exponent ν ≈ 1 of the Ising universality class [see
Fig. 8(c)]. In order to further support the emergent Ising
universality, we extract the bulk and surface critical
behavior through coupling the circuit to ancilla (see
Appendix F). This provides information on out-of-time
ordered correlation functions and yields the critical
exponents η ≈ 0.24 in the bulk and ηk ≈ 1.1 at the surface.
Both are compatible with the Ising values η ¼ 1=4 and
ηk ¼ 1 [155]. Furthermore, ηk ¼ 1 is consistent with the
scaling of the mutual information, which is obtained in
Ref. [156] for ZIZ and XX measurements.
We note three peculiar points: (i) Replacing the set

fXlXlþ2; ZlZlþ1g by fXlZlþ1Xlþ2; ZlZlþ1g yields an iden-
tical measurement-frustration graph yet provides a more
intuitive picture of the tricritical one-state Potts model. The
Gaussian set fXlZlþ1Xlþ2g realizes two identical Majorana
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chains, which are both coupled by fZlZlþ1g measure-
ments and simultaneously pushed to the critical point.
(ii) The same frustration graph is provided by the set
fXlXlþ2Xlþ3Xlþ4; Zlg, which is the measurement-only
version of an Ising chain with multispin interactions.
The corresponding Hamiltonian has an eightfold-
degenerate ground state and is related to the eight-state
Potts model [157–165], which undergoes a first-order
phase transition. This highlights the observed trend:
Orientable measurement-only circuits realize Q-state
Potts models, for which Q is reduced compared to their
Hamiltonian counterparts. (iii) Despite the critical expo-
nents determining the Ising universality class, we observe
an intriguing behavior of the entanglement entropy at the
critical point. It grows logarithmically SL=2 ¼ ðc̃=3Þ logðLÞ
with prefactor c̃ ¼ 2. This is significantly larger than the
expected value c̃Q¼2 ¼ ð1þ ffiffiffi

2
p Þ logð2Þ=π ≈ 0.53 from

the loop distribution of the two-state Potts model [126]
(see Table I and Appendix F). This discrepancy may result
from a difference in boundary conformal field theories
between the critical Ising model and the tricritical one-state
Potts model.

3. Emerging volume law from competing
non-Gaussian measurements

For small anisotropy jδrj ≪ 1 and positive λ > 0, all the
terms in the transfer matrix in Eq. (9) become relevant and
none can be treated as a small perturbation. In this regime,
the critical phase of the two one-state Potts models for
λ > 0 becomes unstable and the circuit enters a volume-law
entangled state. The volume law is signaled by a negative
value of the tripartite information I3 which scales with
system size [34,166], shown in Fig. 8(c). The volume-law
phase is symmetric around δr ¼ 0. It is separated from the
critical phase of the Gaussian circuit by a critical line at
s̃cðrÞ ≈ 1

3
and from the area-law phases by the already-

established critical line λ ¼ 0. At ðs; δrÞ ¼ ð0; 0Þ, it ter-
minates at the tricritical point. As a consequence, two
additional tricritical points emerge at ðs; δrÞ ≈ ð1

3
;� 1

4
Þ

where all three types of entanglement phases (area law,
volume law, and critical) meet. These latter tricritical points
are, however, difficult to locate precisely. Along each
boundary of the volume-law phase, except for the tricritical
points, we find the critical scaling behavior of the one-state
Potts model, i.e., percolation; see Figs. 8(f) and 8(g).
While a percolation transition separating a volume-law

phase from an area-law phase has been observed previously
in measurement-only [58] and monitored unitary circuits
[26,104], a percolation transition separating the volume-
law and critical phases is unconventional. We observe that
the logarithmic growth of the entanglement entropy at this
transition remains largely unaltered, while a volume-law
contribution emerges on top. A possible explanation of this
scenario and of the scaling behavior at the transition might

be that the critical sector is decoupled from an otherwise
area-law to volume-law transition.
The emergence of the volume-law entangled phase can

be explained from two complementary views in the Potts
model framework. When starting from the BMW algebra
for strongly coupled Potts models, the operator ei þ fi acts
as a perturbation that generates line crossings [106], i.e.,
emergent swap operations Reff . For jλ=δrj ∼ 1 and λ > 0,
this yields an effective circuit implementing frequent swap
operations, which rapidly generate long, orientable loops
and, thus, extensive entanglement. For λ < 0, the same
types of swaps arise, but the negative sign results in the
cancellation of many trajectories in the partition function,
suppressing the mobility of the worldlines.
In turn, when starting from the tricritical point at

ðs; δrÞ ¼ ð0; 0Þ, both δr ≠ 0 and s > 0 correspond to
relevant perturbations, as explained above [69]. The imbal-
ance parameter δr ≠ 0 tunes the chemical potential for
vacancies in the dual dilute model and drives the system
toward an ordered area-law fixed point. Tuning s > 0
reintroduces the generators ei and fi of the original one-
state Potts models. In the dual framework, taking finite s
corresponds to tuning the temperature and pushing the two-
state Potts model into its high-temperature phase. This
removes the energetic penalty for forming long loops in the
bulk and yields a disordered, volume-law entangled state at
the temporal boundary of the circuit.

C. Nonorientable Gaussian circuits

Once the set of measured Gaussian operators no longer
admits a bipartition of the Majorana graph, e.g., the union
of O1;2;3, the circuit is no longer orientable. The evolu-
tion then maps to a loop model which is described by the
Brauer algebra of CPLC instead of a TL or walled Brauer
algebra. For sufficiently strong competition between
incompatible measurements, this nonorientable loop
model is known to enter an extended long-loop phase,
the Goldstone phase. Both the critical point at the boun-
dary of the Goldstone phase as well as the phase itself
display universal scaling behavior, which is described by an
RPn−1 NLσM [100]. Circuits realizing this Goldstone
phase display a peculiar and universal logarithmic correc-
tion to entanglement, purification, and bulk correlation
functions [100,113,167].
We confirm that nonorientable Gaussian circuits indeed

display the universal behavior of CPLC by examining bulk
and boundary correlation functions for the following setup.
We measure the operators fXY; YXg with equal probability
pXY ¼ pYX ¼ 1

4
and add measurements of fZ; XX; YYg

such that pZ þ pXX þ pYY ¼ 1
2
. The circuit is symmetric

for pXX ↔ pYY, i.e., under the global unitary UZ. The two
limits pZ ¼ 0; 1

2
are both orientable and correspond to

two topologically distinct area-law phases. As shown in
Fig. 6(c), they are separated by an extended phase with
an increased mutual information and entanglement.
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By examining a cut along the symmetric point pXX ¼
pYY ¼ 1

4
ð1 − 2pZÞ≡ p [white dashed line in Fig. 6(c)], we

show that the entangled phase exhibits all key character-
istics of the CPLC Goldstone phase.

1. Correlation length critical exponent

Two critical points, pc;1 ¼ 0.12 and pc;2 ¼ 0.21, sepa-
rate the Goldstone phase from the area-law phases. At
both points, a finite-size scaling collapse of the mutual
information I2 [Fig. 9(a) [confirms the CPLC exponent
ν ¼ 2.75 [100].

2. Loop length distribution

Both critical points feature a power-law scaling of the
loop length distribution PðlÞ. It approaches a constant
l2PðlÞ → α with α ≈ 0.64 in Fig. 9(b), which is consistent
with the value from CPLC: α ¼ ð2.035=πÞ ≈ 0.648 arising
from the renormalized spin stiffness [32,100]. In the
Goldstone phase, the distribution acquires the characteristic
logarithmic correction l2PðlÞ ∼ β logðlÞ, with β ≈ 0.0565
being consistent with the CPLC value ð1=2π2Þ ≈ 0.0507
[32,100]; see Table I.

3. Entanglement entropy

We compute the steady-state entanglement entropy
SAðLÞ of a contiguous subsystem of jAj qubits in a system
of size L. For both the critical points and the entangled
phase, we make the ansatz SAðLÞ ¼ ½c̃ðLÞ=3�log2 ×
½ðL=πÞ sin ðπjAj=LÞ� þ β. The critical points pc;1=2 display
an expected logarithmic scaling c̃ðLÞ; I2ðLÞ ∼ const,
shown in Fig. 9(c). In the Goldstone phase, the logarithmic
correction to the loop distribution leads to an enhanced
entanglement with c̃; I2 ∝ logðLÞ.
The precise form of the entanglement and mutual

information follow from the loop length distribution
PðlÞ. Both can be computed through an appropriate
integral over PðlÞ in the continuum limit of the lattice
(see Appendix A for details). At the critical points, PðlÞ ¼
αl−2 yields I2 ¼ α logð4=3Þ and SA ¼ α logðjAjÞ þ const.
In contrast, the distribution PðlÞ ¼ β logðl=l0Þl−2 for
cutoff length scale l0 yields I2 ¼ β logð4=3Þ logðjAj=l0Þ þ
const (we take jAj ¼ L=8) and SA ¼ 1

2
β½logðjAj�2 þ

β logðjAjÞð1 − logðl0ÞÞ þ const. For universal prefactor
β ¼ ð1=2π2Þ from CPLC, we expect I2 ∼ ½logð4=3Þ=2π2�
logðLÞ ≈ 0.0146 logðLÞ and c̃ ∼ ½3 logð2Þ=2π2� logðLÞ≈
0.105 logðLÞ. Indeed, the data at p ¼ 1

6
exhibit a logarith-

mic growth of I2 (c̃) with prefactor 0.0194 (0.0974), both
comparable to the universal CPLC values.

4. Dynamical purification

A further signature of the Goldstone phase is logarithmic
corrections in the mutual information between the two
temporal boundaries, i.e., in the spanning number ns [100].

At a conventional critical point with dynamical critical
exponent z ¼ 1 and for fixed circuit aspect ratio T ¼ L, ns
is independent of L. This is confirmed at the critical points
pc;1=2 and shown in Fig. 9(c). In the Goldstone phase,

FIG. 9. Nonorientable Gaussian circuit. Data are taken along
the line cut in Fig. 6(c) with pXY ¼ pYX ¼ 1

4
and p≡ pXX ¼

pYY ¼ 1
4
ð1 − 2pZÞ in the steady state T ¼ 8L for system sizes up

to L ¼ 217. (a) Scaling collapse of the mutual information I2
identifies the critical points pc;1 ¼ 0.12 and pc;2 ¼ 0.21 and a
joint critical exponent ν ≈ 2.75. (b) Loop length distribution PðlÞ
normalized by l2 to highlight the asymptotic behavior. In the
Goldstone phase (gray), CPLC predicts a logarithmic correction
l2PðlÞ ¼ ð1=2π2Þ logðlÞ (dashed black line). By contrast, at the
critical points p ¼ pc;1=2 (maroon and green), CPLC predicts a
conventional critical scaling l2PðlÞ ≈ 2.035=π [100] (dashed
blue line). (c) System-size dependence of the log-law coefficient
c̃ (circles), mutual information I2 (stars), and spanning number ns
at circuit depth T ¼ L (crosses), normalized against the value at
L0 ¼ 214. In the Goldstone phase (gray), we observe logarithmic
corrections, OðLÞ ∝ logðLÞ, whereas at the transition p ¼ pc;1=2

all three quantities approach a system-size-independent value.
(d) The scaling of the two-leg watermelon correlator G2ðL=2Þ is
consistent with CPLC [100]. At the transition, there is power-law
decay G2ðL=2Þ ∼ L−2x2 with x2 ≈ 0.096 (dashed black line),
whereas in the Goldstone phase, correlations decay slower than
algebraic, G2ðL=2Þ ∼ logðL=L0Þ−α2 with α2 ≈ 2.38� 0.2.
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however, a logarithmic correction ns ∝ logðLÞ appears.
This yields logarithmic corrections to the dynamical
purification in the circuit when starting from a mixed
initial state [113,167]. As a result, there is an anomalous
slowing of the purification, which is shown in Appendix B.
We find a prefactor of the logarithmic correction of 0.19,
whereas ð1=2πÞ ≈ 0.159 is expected from the renormalized
spin stiffness in CPLC [100].

5. Bulk correlations

Finally, we examine correlations in the spacetime bulk of
the circuit, which are expressed via the two-leg watermelon
correlator G2ðL=2Þ. At the critical points pc;1=2 in the
circuit, G2ðL=2Þ shows slow power-law decay as L−2x2

with exponent x2 ¼ 0.095 consistent with the behavior in
loop models with crossings [100]; see Fig. 9(d). In the
Goldstone phase, these correlations fall off even slower,
decaying as G2ðL=2Þ ∝ logðL=L0Þ−α2 with a fitted expo-
nent α2 ¼ 2.38� 0.2. Previous work found α2 ≈ 1.9 [100],
and the slow decay limits the accuracy of the estimate.

D. Nonorientable non-Gaussian circuits

Here, we examine the generality of the CPLC Golds-
tone phase in nonorientable quantum circuits by adding
non-Gaussian measurements. We consider two cases:
(i) adding orientable non-Gaussian measurements to a non-
orientable Gaussian circuit and (ii) adding nonorientable

non-Gaussian, e.g., parity-breaking, measurements to an
orientable Gaussian circuit. Orientability is then broken
only by the non-Gaussian terms. Both cases yield an
extended Goldstone phase with a universal log correction
to the entanglement entropy. Since the loop model in the
non-Gaussian circuits emerges only on a coarse-grained
scale, our main observables are multipartite mutual infor-
mation measures for Clifford circuits, i.e., the bipartite and
tripartite mutual information I2 and I3, respectively.

1. Perturbing a CPLC with non-Gaussian measurements

In order to confirm the expected irrelevance of non-
Gaussian measurements in both the Goldstone and the
area-law phases (see Sec. II E), we examine measurements
of the set O3 ∪ fZl; ZlZlþ1g. This adds ZZ measurements
to the nonorientable setting in Sec. III C. Note that
O3 ∪ fZlZlþ1g would be an orientable circuit. We set
the measurement probabilities to pZZ ¼ ð1 − sÞ, pZ ¼
pXX ¼ pYY ¼ sð1 − pÞ=3, and pXY ¼ pYX ¼ sp=2, such
that the circuit is described by parameters p; s∈ ½0; 1�. The
Gaussian limit (s ¼ 1) is in a Goldstone phase for
0.22≲ p < 1. For s < 1, the Goldstone phase remains
robust against ZZmeasurements. Eventually, non-Gaussian
measurements become sufficiently frequent to drive the
system into an area-law phase. A scaling collapse of the
mutual information at the transition confirms the correla-
tion length exponent ν ≈ 2.75 as in CPLC [see Fig. 10(e)].
Though they may stabilize an area-law phase at strong

FIG. 10. Measurement phases in non-Gaussian, nonorientable circuits. (a)–(c) Goldstone phase in the range-2 measurement-only
circuit where Pauli operators AlBlþ1 are measured with probability pApB with A; B∈ fX; Y; Zg. (a) Phase diagram of the tripartite
mutual information I3 showing a Goldstone phase (red) and area-law phase (blue). The white dashed line marks pX ¼ pY , along which
we mark the upper critical point and the center of the Goldstone phase. (b) The prefactor c̃ of the logarithmic growth of the entanglement
entropy. In the Goldstone phase (maroon), we observe a logarithmic correction with magnitude comparable to the universal
3 logð2Þ=ð2π2Þ expected for the CPLC Goldstone phase (black dashed line). At the transition (gray), c̃ is independent of system size and
consistent with c̃ ≈ 1.33 found along the critical line in CPLC. (c) The finite-size scaling collapse of the tripartite mutual information I3
confirms a critical exponent ν ≈ 2.75. (d),(e) Goldstone phase in the interacting, nonorientable two-leg ladder with pZZ ¼ 1 − s,
pZ ¼ pXX ¼ pYY ¼ sð1 − pÞ=3, and pXY ¼ pYX ¼ sp=2. (d) Phase diagram in the s − p plane showing a transition from a Goldstone
phase at weak interactions to an area law where four-fermion measurements dominate. (e) Scaling collapse of the mutual information I2
along the dashed line in (d) marking p ¼ 1

2
. The scaling is consistent with a critical correlation length exponent ν ≈ 2.75, as expected

from the Gaussian CPLC limit.
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coupling, the non-Gaussian measurements are irrelevant
at the CPLC fixed points, leaving the CPLC universality
class unaltered.

2. Inducing CPLC by non-Gaussian measurements

Here, we examine the emergence of CPLC, including
the Goldstone phase, when adding nonorientable, non-
Gaussian measurements to an orientable Gaussian circuit.
In particular, we consider Pauli measurements of two qubit
operators AlBlþ1 with A;B∈ fX; Y; Zg, which form a
range-2 measurement-only Clifford circuit [168]. The
emergent CPLC in this model further confirms that
short-ranged measurement-only Clifford circuits yield
emergent loop model behavior, even when including
non-Gaussian, parity-violating measurements. Each oper-
ator is measured with probability pAB ¼ papb, i.e.,
pXY ¼ pxpy, with px þ py þ pz ¼ 1. A global rotation
UA ≡ exp½iðπ=4ÞPl Al� with A∈ fX; Y; Zg maps between

parameters px⟷
UZ py⟷

UX pz⟷
UY px, yielding a highly sym-

metric circuit and phase diagram, which is shown in
Fig. 10(a).
By virtue of the symmetry above, we can focus on

the parameter regime px; py ≫ pz, which corresponds to
perturbing the orientable Gaussian circuit O3 ¼ fXX; YY;
XY; YXg with parity-breaking non-Gaussian operators
fXZ; YZ; ZX; ZYg. The parity-breaking operators also
break the orientability of the worldlines, as discussed in
Sec. II F. Along the orientable boundary pz ¼ 0, we recover
the bipartite two-leg ladder, which lies in an area-law phase
for all px þ py ¼ 1. As in conventional CPLC, the short-
loop area-law phase is robust against a small probability
of orientability (parity) -violating measurements. Then, at

small but nonzero pðcÞ
z ≈ 0.04, there is a transition into a

CPLC Goldstone phase. The Goldstone phase extends over
a large fraction of the parameter range and generally
appears when orientability breaking by parity-violating
measurements becomes sufficiently strong. The character-
istic ½logðLÞ�2 growth of the entanglement entropy is shown
in Fig. 10(b). The critical line separating the Goldstone
from the area-law phase features the correlation length
exponent ν ¼ 2.75 expected of the CPLC universality
class, confirmed in Fig. 10(c).
We note that taking the above example and replacing ZX,

XZ, ZY, and YZ measurements by either X or Y measure-
ments alone induces neither a nonorientable circuit nor a
Goldstone phase. The effective swaps emerging from X or
Y measurements preserve orientability when added to the
set O3, since products of subsequent measurements, e.g.,
XlXl0 , are obtained from a sequence of measurements
from O3. The same applies to four-qubit operators acting
on four consecutive qubits, e.g., XZXZ and ZXXZ.
The simplest nontrivial, orientability-breaking terms
arising from the random two-qubit measurements are the
non-Gaussian operators ZlXlþ1Ylþ2 ∼ ZlYlþ1 × Zlþ1Ylþ2.

We demonstrate in Appendix G that including the latter
instead of parity-breaking operators indeed yields a CPLC
Goldstone phase.

IV. SPACETIME DUALITY

Each (1þ 1)-dimensional quantum circuit possesses
a spacetime dual circuit, in which the measurement and
swap vertices P andR are rotated around π=2 in spacetime,
i.e., for which space and time are exchanged. The loopmodel
of the spacetime dual circuit displays the same bulk behavior,
while its spatial boundary correlations, such as the mutual
information, are exchanged with the temporal boundary
correlations ∼jhγ1ðt2Þγ1ðt2Þij. Depending on the particular
loop model, it may be advantageous to implement the
spacetime dual instead of the original circuit, e.g., in order
to overcome the postselection problem in non-Clifford
circuits [11,169–171]. Alternatively, one may implement
“isotropic” or spacetime self-dual circuits for which the
spacetime dual and the original circuit are identical. This
yields an additional symmetry, which may grant access to an
exact analytical solution of the circuit evolution [172–182].
Consider, for instance, a circuit with nearest-neighbor

Majorana operations, involving only four-leg Majorana
vertices. Then the spacetime rotation (i) maps each swap
Rl;lþ1 → Rl;lþ1 onto itself (i.e., swaps are self-dual) and
(ii) exchanges the identity and the projection 1l;lþ1 ↔
Pl;lþ1. Therefore, the circuit is spacetime self-dual when
both 1 and P appear with equal probability.
Allowing nearest-neighbor qubit operations composed

of four Majorana fermions requires eight-leg Majorana
vertices in spacetime. Let us consider a brick-wall circuit
consisting of alternating layers of bricks acting on four
neighboring fermions, as depicted in Fig. 11(a). Each brick
is an eight-leg vertex in the loop model, with four incoming
and four outgoing worldlines, and the set of possible bricks
consists of all ways to pair the eight worldlines with
one another. Under spacetime rotation, eight-leg vertices
transform into one another by permuting the legs [e.g.,
1 → 20; 2 → 10; 3 → 1;… in Fig. 11(a)]. Among all eight-
leg vertices with unambiguous worldline representation,
only five are self-dual; see Fig. 11(b).
Let us denote V8 as the set of all possible configurations

of worldline pairings in an eight-leg vertex. The space-
time rotation induces a permutation σ on V8 such that
any vertex v∈V8 is transformed into σðvÞ∈V8. Self-
dual vertices have σðvÞ ¼ v, while vertices v1 invariant
under a π rotation but not under a π=2 rotation have a

dual vertex v2 such that v1↔
σ
v2. The remaining vertices

can then be separated into groups of four such that
v1!σ v2!σ v3!σ v4!σ v1, since σ4 ¼ 1. In a spacetime self-
dual circuit, every vertex v and its dual σðvÞ occur with the
same probability P, i.e., P½σðvÞ� ¼ PðvÞ for all v∈V8. This
gives rise to an abundance of Majorana brick-wall circuits,
which feature both spacetime duality and an exact world-
line description.
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A peculiar scenario arises when v and σðvÞ correspond to
different types of operations, i.e., when v results from a
nonunitary operation while σðvÞ is unitary. This gives rise
to the possibility to implement an entirely unitary circuit,
which realizes the spacetime dual of a nonunitary circuit
including measurements. This approach is demonstrated
for Clifford circuits in order to overcome the postprocess-
ing [15] or postselection [183] problem of nondeterministic
measurements [11,170].
In the loop model framework, a large class of both

orientable and nonorientable circuits can be simulated by
purely unitary evolution. However, since the spacetime
dual of the identity is a projective parity measurement, only
“dense” nonunitary circuits, where each brick realizes
either a swap or a measurement but never the identity,
have a unitary spacetime dual. This poses a restriction on
the corresponding loop model. For instance, the CPLC
realized by purely unitary operations lives at the border of
the CPLC phase diagram [100] and cannot stabilize a
Goldstone phase. Instead, it realizes a gapped area-law
phase in both the temporal and the spatial direction, with a
parametrically large correlation length. This can be ration-
alized by the fact that in 2D a bulk phase which breaks a
continuous symmetry is allowed only under a nonunitary
evolution.

Phase transitions which continuously break a discrete
symmetry do not have this constraint in two dimensions.
This grants access to the physics of coupled Potts models,
e.g., to the Ising and percolation phase transitions, that are
observed in orientable circuits also via a purely unitary
evolution.

V. LOOP MODELS IN DIFFERENT GEOMETRIES

We now turn our attention to Gaussian measurement-
only circuits for which we lift the constraint that measure-
ments be limited to nearest- and next-nearest neighbors.
This allows us to manipulate the geometry of the under-
lying Majorana lattice in order to probe the presence or
absence of a Goldstone phase as a function of the circuit’s
orientability. The starting point here is measurements of the
operators Z, XY, and YX and the XZZX stabilizer. This
relates the setup to an important class of quantum error
correcting codes [184] and to topological phase transitions:
For suitable measurement rates, the circuit hosts both a
symmetry-protected topological order and a bulk sym-
metry-breaking order [130,185].
In the presence of XZZX-stabilizer measurements, it is

convenient to arrange the Majorana fermions on a three-leg
ladder geometry as shown in Fig. 12(a). The Z and XZZX
measurements implement three copies of the repetition
code [130] or, alternatively, a measurement-only version of
the fermionic 3-chain obtained by interleaving three Kitaev
chains [186]. The chains are coupled via XY and YX Pauli
measurements connecting γl and γlþ2. This implements
vertical bonds between chains 1 ↔ 2 and 2 ↔ 3, while it
creates a relative offset at the boundary, coupling mode n
on chain 3 and mode nþ δ with δ ¼ 2 on chain 1. This
link, i.e., the offset δ ¼ 2, makes the circuit nonbipartite
and its loop model nonorientable. Conversely, an offset
δ ¼ 1 instead of δ ¼ 2 would make the graph bipartite and
restore orientability.
This argument can be extended to generic m-leg ladders

with rectangular interchain bonds between chains
k ¼ 1;…m − 1. Making such a graph bipartite requires
Néel ordering of the worldline orientations. This is com-
patible only with an offset δ between the mth and the first
chain if δþm is even. Otherwise, the ladder is not bipartite,
and orientability is broken.
We numerically confirm the presence (absence) of a

Goldstone phase for nonorientable (orientable) ladder
geometries in Fig. 12(b). It shows the entanglement in
the circuit for different offsets δ and measurement prob-
abilities. The latter are parametrized by p; q∈ ½0; 1� as
shown in Fig. 12(a). Here, 1

2
ð1 − pÞ is the probability for

measuring one of the two interchain bonds, and q sets the
dimerization of measurement probabilities along each
chain; i.e., p ¼ 1; q ¼ 1

2
is the percolation critical point

of the XZZX code [130]. When δ is odd, only the lines
q ¼ 1

2
and p ¼ 0 show increased mutual information, with

FIG. 11. Spacetime duality in a brickwork circuit. (a) Alternat-
ing layers of two-qubit operations give a tilted square lattice
where each edge carries two worldlines. Each “brick” in the
circuit consists of a generic eight-leg vertex in which the four
incoming (unprimed) and outgoing (primed) worldlines must be
paired among one another. Exchanging space and time gives a
π=2 rotation of such an eight-leg vertex configuration. (b) The
five eight-leg vertex configurations which are self-dual under the
spacetime rotation, along with the corresponding operation. If,
instead, a π=4 rotation is made, then two pairs rotate into one
another while the four-line crossing R2;3R1;4 is left invariant.
(c) A pair of vertex configurations which transform into one
another under the spacetime rotation. For this example, parity
checks are transformed into swaps, giving an intuitive picture for
how measurements act to mediate effective swaps.

MAJORANA LOOP MODELS FOR MEASUREMENT-ONLY … PHYS. REV. X 13, 041028 (2023)

041028-19



p ¼ 0 corresponding exactly to δ copies of critical perco-
lation. For δ even, we instead observe an extended
Goldstone phase. When increasing δ, the parity measure-
ments across the boundary of the ladder become longer in
range and facilitate the onset of the Goldstone phase
already at small measurement probabilities.
We show in Fig. 12(b) that turning on finite interchain

coupling, i.e., breaking the orientability of the ladder,
causes the percolation critical point to broaden into a
critical fan, which is symmetric about q ¼ 1

2
. Upon exami-

nation, we confirm that the entangled phase inside the fan is
the Goldstone phase of CPLC. In the remainder of this
section, we verify the universal behavior of CPLC for the
particular case of δ ¼ 2.

A. Correlation length critical exponent

The scaling collapse of the mutual information I2 along
the dashed line at p ¼ 1

2
in Fig. 12(c) identifies the critical

points qc ¼ 0.282, 0.718 (symmetric around q ¼ 0.5) and
the CPLC critical exponent ν ¼ 2.75.

B. Loop lengths

We define the length l of a loop with respect to the
indexing of the fermions on the lattice. The transition
q ¼ qc features conventional critical scaling l2PðlÞ → α,
while the Goldstone phase exhibits logarithmic corrections
l2PðlÞ → β logðlÞwith both α and β being consistent with
the CPLC values; see Fig. 12(d).

FIG. 12. Loop model for the XZZX code. (a) Majorana lattice where each bond corresponds to an allowed parity check on the three-
chain square lattice. The measurement probabilities for the different types of bonds and the corresponding Pauli operator on a single-
qubit chain are shown in the legend and parametrized by p; q∈ ½0; 1�. Transverse boundary conditions defined by the twist δ
correspond to connecting the first and third chains with bonds γðn;3Þ ↔ γðnþδ;1Þ (here, δ ¼ 2). (b) The phase diagram in the p − q plane
depicted via the mutual information I2 at L ¼ 12288 shown for different boundary twists δ. For even twists, the lattice is nonbipartite,
and we observe an extended Goldstone phase (red). For odd twists, the lattice remains bipartite, and the worldlines are orientable such
that no Goldstone phase is observed. Here, the mutual information is finite only when crossing q ¼ 1

2
or p ¼ 0, corresponding to

percolation criticality. (c)–(f) Entanglement and loop statistics with δ ¼ 2 along the dashed p ¼ 1
2
line in (b). (c) Scaling collapse of

the two-interval mutual information I2 near transition identifies the critical point qc ≈ 0.282 and correlation length exponent
ν ¼ 2.75. (d) The steady-state stabilizer length distribution PðlÞ reveals a logarithmic correction in the Goldstone phase compared to
the conventional PðlÞ∝l−2 scaling at the transition. Dashed lines correspond to the universal value expected from CPLC in the
Goldstone phase (black) and at the transition (red) [100]. (e) The system-size dependence of the mutual information I2, fitted log-law
coefficient c̃, and spanning number ns, normalized against their magnitude at L0 ¼ 214, reveals logarithmic corrections in the
Goldstone phase that are absent at the transition. (f) The two-leg watermelon correlator G2ðL=2Þ exhibits power-law decay at the
transition, with exponent x2 ≈ 0.095 consistent with that found in CPLC. Correlations decay more slowly in the Goldstone phase,
falling off as logðL=L0Þ−α2 with α2 ≈ 2.1.
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C. Entanglement growth

The loop distributions PðlÞ readily imply the behavior
for the entanglement entropy SA and the mutual informa-
tion I2ðA; BÞ of contiguous subsystems of size jAj; jBj.
We again take the ansatz SAðLÞ ¼ ½c̃ðLÞ=3�log2½ðL=πÞ×
sin ðπjAj=LÞ� þ const. At the critical points, c̃ and I2 are
constant in system size [see Fig. 12(e)], while a logarithmic
correction is found in the Goldstone phase: c̃; I2 ∝ logðLÞ.
The numerical prefactors follow from PðlÞ and are, thus,
consistent with CPLC.

D. Purification

The Goldstone phase exhibits logarithmic corrections
to purification, witnessed via the spanning number. In
Fig. 12(e), we show the spanning number ns at fixed circuit
aspect ratio T ¼ L, which remains constant at qc but grows
logarithmically with L in the Goldstone phase. The
prefactor of the logarithmic growth is 0.14, comparable
to ð1=2πÞ ≈ 0.16 expected from CPLC. See Appendix B
for additional details on the dynamical purification and the
spanning number.

E. Bulk critical exponents

Using the two-leg watermelon correlator G2ðL=2Þ, we
extract bulk critical exponents at the critical point and in
the Goldstone phase [see Fig. 12(f)]. At the transition, the
results are consistent with G2ðL=2Þ ∼ Lx2 , with exponent
x2 ≈ 0.095. By contrast, we observe a logarithmic slowing
down G2 ∼ logðL=L0Þ−α2 with exponent α2 ≈ 2.1 in the
Goldstone phase. Both exponents are consistent with the
results in the two-leg ladder and CPLC.

VI. CONCLUSION

Two-dimensional loop models represent a paradigm for a
large class of solvable models in quantum and classical
statistical mechanics. Using analytical arguments, confirmed
by numerical simulations, we have strengthened the link
between measurement-only Clifford circuits in (1þ 1)
dimensions and 2D loop models. Our work demonstrates
that loop models provide a general framework which covers
a large class of measurement-only circuits and measurement-
induced phase transitions, including previously studied
models as well as new types of setups considered here.
Mapping circuits to loop models provides a means to classify
the measurement-only evolution based on the symmetry and
the topology of the corresponding loop model, as well as to
analyze the universal long-wavelength behavior at measure-
ment-induced phase transitions.
The loop model approach outlined in our work, in

particular, the aspect of worldline orientability, provides
a blueprint to study the rich phenomenology of 2D
loop models with (1þ 1)-dimensional Clifford circuits.
Promising routes may be the realization of exotic entangled
states, such as topological phases or larger classes of

nonunitary conformal field theories, which are both known
to admit mappings to orientable loop models. The emer-
gence of an entanglement transition with Ising universality
at the tricritical point of the one-state Potts model stands as
a particularly clear example of the diverse set of states and
critical dynamics realizable by employing the loop model
framework for quantum circuits.
Further exploring the link to loop models opens up a new

perspective for general monitored quantum circuits. The
question arises naturally whether it is possible to extend the
loop model framework to include general unitary operations
beyond discrete swap gates or non-Clifford measurements.
For the former, the particular case of randomMajorana gates
has been shown to yield a similar nonlinear sigma model as
the one that is obtained for CPLC [38,113]. Including non-
Clifford measurements may similarly give rise to new
braiding or fusion rules, which go beyond classical loop
models. In both cases, orientability may emerge only on
certain fine-tuned parameter values, while new symmetries
may emerge which enlighten the connection of monitored
circuits to quantum loop model approaches [123,187].
Based on the current work, an exciting future direction is

the study of measurement-only circuits in higher dimensions
and for different geometries. For instance, in two-
dimensional circuits, the loop model and, in particular, its
symmetries may be enriched by tunable geometries. An
example of the latter is found in the 2D measurement-only
Kitaev spin liquid [61,188], which gives rise to a tripartite
Majorana graph. Adding higher-order Majorana measure-
ments breaks this symmetry and makes the graph non-
orientable, which leads to a peculiarly entangled Majorana
liquid [61]. Exploring this scenario and generalizations with
the loop model approach will help to establish a general
classification of measurement-only circuits in higher dimen-
sions beyond the currently established paradigms.
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APPENDIX A: NUMERICAL METHOD FOR
MAJORANA CIRCUITS

Whereas a stabilizer state in a generic Clifford circuit
requires an OðL2Þ tableau representation, the current state
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of a Gaussian Majorana circuit is represented by the
OðLÞ pairings corresponding to the end points of world-
lines. Moreover, while the computational cost of a
projective measurement generally scales as OðL3Þ for
stabilizer states, measurements in a loop model require
only Oð1Þ operations to rearrange the pairings. These
computational benefits are further enhanced by efficient
schemes for generating deeper circuits via shuffling and
concatenating shallower circuits [100]. By generating a
“pool” of N shallow circuits (e.g., a single layer),
repeated shuffling and concatenation of the elements
doubles the circuit depth with every round of concat-
enation. Then reaching a circuit depth T for L qubits in a
pool of size N requires computational cost that scales as
O½NL log2ðTÞ�. As a result, one can efficiently simulate
system sizes several orders of magnitude greater than is
possible with stabilizer states. This is crucial for accu-
rately identifying logarithmic scaling corrections which
are otherwise challenging to distinguish from anomalous
power-law scaling.

1. Entanglement statistics
from the boundary-loop distribution

Given a circuit trajectory with periodic boundary
conditions (PBCs), we might ask for an entanglement
measure averaged over all translations of the system in
order to extract maximal information out of the state. In
this case, one can equivalently take the distribution PðlÞ
of open loops with both ends on the final t ¼ T temporal
boundary, reducing the number of computations which
need to be performed in each trajectory. Here, we give a
short review of how this is implemented.
Let A and B be two disjoint subsystems for which

we would like to compute the ensemble averaged
mutual information ⟪I2ðA;BÞ⟫. This can be done via
the sum

I2ðA;BÞ ¼
1

2

X
x∈A

X
y∈B

P½l ¼ distðx; yÞ�; ðA1Þ

where the distance function respects the PBC such that

distðx; yÞ ¼ minðjx − yj; N − jx − yjÞ

and the factor of 1=2 accounts for the directionality of
the distance function. Without loss of generality, let
A ¼ ½1; jAj� and B ¼ ½jAj þ Δþ 1; jAj þ Δþ jBj� with
jAj; jBj ≤ N=2 and Δ ≤ N − jAj − jBj so that the intervals
remain disjoint. We then always have y > x for y∈B
and x∈A, allowing us to write the distance function
instead as

distðx; yjy > xÞ ¼
�
y − x y − x ≤ N=2;

N − ðy − xÞ else:

In practice, the double sum over coordinates is inefficient
when going to very large system sizes. This can be
simplified by instead expressing the mutual information as

I2ðA;BÞ ¼
X

x∈A;y∈B

P½l ¼ distðx; yÞ� ¼
XN=2

l¼1

PðlÞwA;BðlÞ;

where the weight function wA;BðlÞ depends on the parti-
tions A and B only via jAj and jBj and Δ and can be written
explicitly as

wA;BðlÞ ¼
1

2

X
x∈A;y∈B

δl;distðx;yÞ:

We now give explicit derivation of wðlÞ for two cases:
(i) the computation of I2 and (ii) the computation of Sl.

a. Weight function for two-interval mutual information

Recall that throughout the main text we compute the
mutual information I2 between regions A ¼ ½1; N=8� and
B ¼ ½1þ N=4; 3N=8� such that jAj ¼ jBj ¼ Δ ¼ N=8.
From this choice, the distance function is always given
simply by y − x. Letting y ¼ zþ 2jAj, we can evaluate the
weight function

wðlÞ ¼ 1

2

XjAj
x¼1

XjAj
z¼1

δl;2jAjþz−x

¼ 1

2
ðjAj − j2jAj − ljÞΘðjAj − j2jAj − ljÞ; ðA2Þ

where Θð·Þ is the step function. This gives exactly the
number of positions x∈A such that a loop of length l
terminates at some y ¼ xþ l∈B. Then, to compute the
ensemble-averaged entanglement entropy, we can simply
compute the weighted sum

⟪I2ðA;BÞ⟫ ¼
X
l

PðlÞwðlÞ

using the loop length distribution obtained from averaging
over many trajectories.

b. Weight function for the subsystem entanglement

While a single computation such as I2 is generally
inexpensive, it becomes quite costly if one wants the
subsystem entanglement entropy Sl for all allowed sub-
system sizes l. As such, it is useful to seek an efficiently
computable expression for wðlÞ. Let us now take sub-
system A ¼ ½1; jAj� and its complement A ¼ ½jAj þ 1; N�
for jAj ≤ N=2. It is no longer generically true that y − x ≤
N=2 for y∈ Ā and x∈A, and so some additional care is
required. For fixed x∈A, the distance function switches
behavior at y� ¼ ðN=2Þ − jAj þ x ≥ 1. We can then split
the sum over y and evaluate wðlÞ as follows:
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wðlÞ ¼ 1

2

XjAj
x¼1

XN−jAj

z¼1

δl;distðx;jAjþzÞ

¼ 1

2

XjAj
x¼1

"Xz�
z¼1

δl;jAjþz−x þ
XN−jAj

z¼z�þ1

δl;N−jAj−zþx

#

¼
�
minðl; jAjÞ 1 ≤ l < N=2

N=2 l ¼ N=2:
ðA3Þ

Then the ensemble-averaged entanglement entropy for a
contiguous subsystem of jAj ¼ l Majoranas is

⟪Sl⟫ ¼ N
2
PðN=2Þ þ

Xl−1
l0¼1

l0Pðl0Þ þ
XN=2−1

l0¼l

lPðl0Þ:

While this eliminates one sum (and many calculations
from each trajectory), it is still cumbersome to do OðN2Þ
calculations to compute ⟪Sl⟫ for all l. This can be
simplified by observing a recursive structure with respect
to l. In particular, we have

⟪Slþ1⟫ ¼ ⟪Sl⟫þ
XN=2−1

l0¼lþ1

Pðl0Þ:

Now let us define a slightly modified cumulative density
function for the loop length distribution:

FðlÞ≡ XN=2−1

l0¼l

Pðl0Þ;

such that Fð1Þ ¼ 1 − PðN=2Þ. Then we can write the
following recursive relations:

Fðlþ 1Þ ¼ FðlÞ − PðlÞ;
⟪Slþ1⟫ ¼ ⟪Sl⟫þ Fðlþ 1Þ:

Equipped with the above, the full set of ⟪Sl⟫ can
be computed from the loop length distribution PðlÞ in
OðNÞ time without any computation during individual
trajectories.

c. Watermelon correlators

In principle, the watermelon correlator G2ðx; yÞ can be
extracted from the ensemble-averaged loop length distri-
bution PðlÞ. However, in practice, this is quite cumber-
some as we outline below. Given a circuit of depth T, let
PðlÞ be the distribution of boundary loops on the final time
boundary, assuming that we impose fixed boundary con-
ditions at t ¼ 0 (i.e., a pure initial state). For x ¼ ðl; TÞ and
y ¼ ðm; TÞ, G2ðx; yÞ gives the probability that x and y lie
along the same loop in the bulk of a loop model. Taking two
copies of the circuit, we can glue the open ends together in

order to close all of the loops. Then G2ðx; yÞ is the
probability that points l and m on the boundary of the
circuit are connected by a loop when these two copies of
the circuit are glued together. A closed loop formed by the
gluing consists of alternating arcs from the two copies, with
the number of arcs in the path being between 2 and 2N.
The probability of l and m being on the same loop can be
decomposed into a sum over the probability of connecting
l and m with a path of fixed number of arcs:

G2ðl; mÞ ¼
XN
i¼1

Probðl ↔ mj2iarcsÞ≡XN
i¼1

μiðl ↔ mÞ:

For example, the first-order term μi is simply given by
Pðjl −mjÞ2. Higher-order terms can be further broken into
a sum over the length of the two halves of the path (i.e.,
l → m and m → l). In general, there are an exponential
number of possible paths, making the calculation of
G2ðl; mÞ from PðlÞ intractable. Of course, many such
paths have negligible weight and could be excluded from
the sum, but this remains impractical. As such, all values
of G2 reported in this work are computed in each
trajectory rather than from the ensemble-averaged length
distribution PðlÞ.

APPENDIX B: DYNAMICAL PURIFICATION
TIMESCALE

As we note throughout the main text, in the Goldstone
phase there are logarithmic corrections to the dynamics
which can be observed via the spanning number nsðt; LÞ. In
Figs. 9(c) and 12(e), we show for a fixed circuit aspect ratio
that the spanning number nsðt ¼ L;LÞ grows logarithmi-
cally with the system size. As noted in Ref. [100], for unit
aspect ratio (t ¼ L) the spanning number should be given
exactly by the renormalized spin stiffness of the Oðn ¼ 1Þ
loop model at RG scale t ¼ L. This result can be readily
extended to generic aspect ratio. At RG scale Λ, the
renormalized spin stiffness is given to leading order by
K̃ðΛÞ ¼ ð1=2πÞ log ðΛ=Λ0Þ. As a result, we expect the
spanning number in the Goldstone phase to evolve as

nsðt; LÞ ∼ F

�
t
L

2π

logðL=L0Þ
	

ðB1Þ

for some scaling function F. In the circuit language, this
corresponds to a slowing of purification such that the typical
timescale over which a maximally mixed state is purified
now depends on system size as L logðLÞ rather than L.
In Fig. 13, we show the time evolution of the spanning

number in the three-leg ladder at the two marked points
from Fig. 12(b). At the transition q ¼ qc, we observe
conventional critical purification with dynamical exponent
z ¼ 1 such that nsðt; LÞ ¼ Fðτ ¼ t=LÞ. Equivalently, this
can be considered as the L0 → 0 limit of Eq. (B1). In the
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Goldstone phase, at q ¼ 1
2
, the logarithmic corrections lead

to finite L0 being required for scaling collapse of the
spanning number. For this particular example, we find
logðL0Þ ¼ −5, which implies that logarithmic corrections
are non-negligible for L≳ 102.
For small system sizes, these logarithmic corrections to

purification can be difficult to unambiguously identify.
Indeed, a naive rescaling as nsðt; LÞ ∼ F½tL−z� � in the
regime ns ≳ 1 would suggest an anomalous scaling expo-
nent z� ≈ 1.1.

APPENDIX C: EFFECTIVE TRANSFER MATRIX
FOR INTERACTING MAJORANA CIRCUITS

In this section, we derive an effective transfer matrix
description for the family of orientable, interacting
Majorana circuits considered in Sec. III B.

1. Measurement-only XXZ chain

Let us consider the decoupled limit of the two-leg
ladder (XY and YX) perturbed by four-fermion (ZZ)

measurements. Moreover, let us impose a brick-wall
structure such that the circuit consists of alternating layers
of two-qubit bricks. The two types of layers are given
identical probabilities for measuring the different operators:
pXY ¼ pYX ¼ sp=2, pZZ ¼ sð1 − pÞ, and p1 ¼ 1 − s.
The transfer matrix for this circuit can be written as

T̂ ¼ T̂1T̂2 ¼
 YbL=2c

j¼1

T2j−1

! YbL=2c
j¼1

T2j

!
;

Tl ¼ ð1 − sÞ1þ sp
2
ðPXY þ PYXÞ þ sð1 − pÞPZZ;

whereTl is the transfermatrix corresponding to a brick acting
on qubits l and lþ 1. The projectors PXlYlþ1

and PYlXlþ1

individually form the generators of a TL algebra which
we denote el and fl, respectively. For forced projec-
tions onto the þ1 outcome, we may write PZlZlþ1

¼
1l;lþ1 þ 2PXlYlþ1

PYlXlþ1
−PXlYlþ1

−PYlXlþ1
. Averaging over

the possible two-qubit states, a forced projection onto
the þ1 eigenstate of ZlZlþ1 followed by normalization of
the wave function may be approximated as PZlZlþ1

→
1 − el − fl þ 2elfl. The transfer matrix then takes the form

Tl ¼ ½1þ sð1 − 2pÞ�1þ sð3p − 2Þ
2

ðel þ flÞ
þ 2sð1 − pÞelfl:

Observe that the set fEl ≡ elflg generates a TL algebra.
Whenp ¼ 2

3
, the transfermatrix involves only this new set of

generators:

Tljp¼2=3 ¼
�
1 −

s
3

	
1þ 2s

3
El:

Since the odd and even layers of the circuit have the same
measurement probabilities, this corresponds to a critical
one-state Potts model with TL algebra generators El. Then
one can identify pc ¼ 2

3
as a strong-coupling fixed point, in

agreement with the numerical results presented in
Sec. II E.

a. Competing four-fermion measurements

Let us now consider adding XIX measurements which
compete with the other four-fermion ZZ measurements.
This generally spoils the previous solution for a strong-
coupling fixed point. Nonetheless, suppose we now take
rZZ ≠ 1. The circuit must now involve three-qubit bricks,
each of which has a transfer matrix like

Tl ∼ ð1 − sÞ1þ sp
2
ðPXY þ PYXÞ

þ sð1 − pÞðrPZZ þ ð1 − rÞPXIXÞ:

FIG. 13. Evolution of the spanning number nsðt; LÞ in the
three-leg ladder at the marked points in Fig. 12(b). (a) The
transition at p ¼ 1

2
, q ¼ qc ¼ 0.282 has conventional critical

behavior with dynamical exponent z ¼ 1. This is reflected by the
spanning number collapsing to a single curve parametrized by
rescaled time τ ¼ t=L. While ns > 1, purification gives ns ∝ τ−1,
as shown by the black dashed line. (b) In the Goldstone phase at
p ¼ q ¼ 1

2
, logarithmic corrections modify the purification dy-

namics. Here, we show nsðt; LÞ for two different rescaled times τ.
Conventional z ¼ 1 scaling with τ ¼ t=L (gray) does not capture
the logarithmic corrections. Accounting for the renormalized spin
stiffness by taking τ ¼ ½2πt=L logðL=L0Þ� with logðL0Þ ¼ −5
yields excellent data collapse.
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As before, we may effectively write PXlXlþ2
∼ 1 − el −

flþ1 þ 2elflþ1. Then, writing the transfer matrix in terms
of the TL generators, we have

Tl ∼
1− sp

s
1þ 3p− 2

2
el þ

p− 2ð1−pÞr
2

fl

− ð1−pÞð1− rÞflþ1 þ 2ð1−pÞelðð1− rÞflþ1 þ rflÞ:

As before, the coefficient on el vanishes for p ¼ 2=3.
Now, however, there remains finite magnitude of fi
and fiþ1. Letting p ¼ 2

3
þ δ, the two terms become

ð1 − r=3Þ þ δðrþ 1
2
Þ and ð1 − r=3Þ − δð1 − rÞ. We see that

these deviate from ð1 − rÞ=3 in opposite directions. They
take on equal and opposite magnitude at pcðrÞ ¼
2ð1 − 2rÞ=ð1 − 4rÞ, which falls in the interval [0, 1] for
r∈ ½1=2; 1�. Since the phase diagram must be symmetric
under r → 1 − r, up to the presence of edge modes, in the
interval r∈ ½0; 1=2� we have a phase boundary at
pcðrÞ ¼ 2ð1 − 2rÞ=ð3 − 4rÞ. This is in agreement with
the phase diagram obtained from numerical simulation,
shown by the black dashed line in Fig. 8(c).
This argument can be made more precise by considering

a full row transfer matrix:

T ∼
X
l



s
2
ðPXlYlþ1

þ PYlXlþ1
Þ þ ð1 − sÞrPZlZlþ1

þ ð1 − rÞPXlXlþ2

�
:

It is now useful to take the XY and YX measurements to
be forced projections onto þ1 and −1 on opposite sub-
lattices such that e2l−1 ¼ PX2l−1Y2l

while e2l ¼ 1 − PX2lY2lþ1
.

Then forcing ZZ and XIX measurements onto the þ1
outcome gives

T ¼
X
l

½λðel þ flÞ þ 2½relfl − ð1 − rÞelflþ1��

¼
X
l

½λðel þ flÞ þ elðδrðfl þ flþ1Þ þ ðfl − flþ1ÞÞ�;

where we define λ ¼ ½s=2ð1 − sÞ� − jδrj and δr ¼ 2r − 1.
We see that, for scðrÞ ¼ 2jδrj=ð1þ 2jδrjÞ, the linear term
vanishes (i.e., λ ¼ 0), leaving only the couplings elfl and
elflþ1. While we cannot construct a TL algebra from
this mixture, we retain a well-defined continuum limit.
Identifying ϵ and ϵ̄ as the energy-density fields in the
conformal field theory for el and fl, respectively, the
coupling generally takes the form ϵð2δrϵ̄ − ∂xϵ̄Þ. A shift
in the coordinates for ϵ̄ then reduces the coupling to simply
2δrϵϵ̄ so that the effective long-wavelength description of
the circuit is simply that of the earlier interacting circuit but
with a modified interaction strength.

APPENDIX D: BROADENING OF THE
PERCOLATION CRITICAL POINT FOR

NON-GAUSSIAN CIRCUITS

As noted in Sec. III B, when the area-law phases in the
Gaussian and interacting limits of a circuit are not topo-
logically equivalent, then there must be an entanglement
transition observed upon varying the interaction strength.
Moreover, since four-fermion measurements are irrelevant
in a short-loop phase, this transition ought to occur at finite
interaction strength 0 < sc < 1. To see this, consider
the Gaussian limit drawn from orientable subset O3 but
excluding YY measurements. Here, XX measurements
drive the otherwise decoupled critical chains into an
area-law phase. Let us now perturb this circuit with

FIG. 14. Broadening of the percolation critical point for non-
Gaussian circuits. Here, we take rXX ¼ 1, rZZ ¼ 1, and q ¼ 1

2
.

(a) Phase diagram showing the log-law coefficient c̃ in the s − p
plane shows an extended critical phase separating two topologi-
cally distinct area-law phases. The transitions terminate at an
interacting percolation critical point at ðp; sÞ ¼ ð0; 1=2Þ, a
decoupled critical point at ðp; sÞ ¼ ð1; 0Þ, and a BKT critical
point at ðp; sÞ ¼ ð1; 2=3Þ. Data shown are extracted from the
subsystem entanglement entropy Sl for system size L ¼ 256.
(b) Scaling collapse of the log-law coefficient c̃ from fitting the
subsystem entanglement profile Sl for the two cuts along the
transition marked in (a). The scaling is consistent with a sudden
jump in c̃ at a BKT transition such that gðLÞc̃ ¼ FðxÞ for gðLÞ ¼
½1þ ð2 logðLÞ − BÞ−1�−1 and F a function of x ¼ logðLÞ −
A=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijs − scj
p

. Cut (i) is taken at p ¼ 0.9, showing the BKT
transition at sc ≈ 0.628 from the interacting area-law phase at
s < sc to the critical phase, with fitting parameters A ≈ 1.5
and B ≈ −9.5. Cut (ii) is taken at p ¼ 0.3, showing the BKT
transition from the Gaussian area-law phase to the critical phase
at sc ≈ 0.563, with fitting parameter A ≈ 2.35 and B ≈ 5.41.
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orientable non-Gaussian four-fermion ZZ measurements
such that the interacting limit lies also in an area-law phase.
We take measurement probabilities pXY ¼ pYX ¼ sp=2,
pXX ¼ sð1 − pÞ, and pZZ ¼ 1 − s. Upon varying the inter-
action strength, we observe an extended critical phase
sc;1 < s < sc;2 separating the two topologically distinct
area-law phases. The transitions from either area-law phase
into the critical phase falls into the BKT universality class,
as reflected in Fig. 14(b).
The apparent broadening of the transition into a critical

phase can be well understood by varying not only the
interaction strength, but also the strength of the interchain
XX measurements which are responsible for inducing an
area law in the Gaussian limit. As shown in Fig. 14(a), the
decoupled critical point at p ¼ 1 is robust against finite
interactions, which are RG irrelevant, giving an extended
critical phase. For weak interchain coupling 1 − p ≪ 1, the
measurement frustration with ZZ measurements suppresses
the effect of XX measurements, effectively protecting
the criticality of the decoupled limit. In the opposing
limit (p ¼ 0), ZZ and XX measurements reduce to two
decoupled copies of the repetition code which undergo a
percolation transition at s ¼ 1=2. Here, XY and YX
measurements appear as higher-order interaction coupling
between two chains at the percolation critical point, leading
again to a broadening. The now-broadened critical points
near p ¼ 0, 1 extend to two BKT lines that span the two
limits. In the intermediate critical phase, the entanglement
entropy has log-law coefficient c̃ ≈ 3

2
.

APPENDIX E: ANCILLA PROBES OF BULK
CORRELATION FUNCTIONS

In order to extend the set of accessible observables from
boundary to bulk correlations of the loop model, the
knowledge of the final state at the temporal boundary is
no longer sufficient, and one needs to access information
along the whole of the circuit trajectory. Here, we introduce
an ancilla-based detection scheme [34], with which
n-particle bulk correlation functions, i.e., the watermelon
correlators Gkðx; yÞ introduced in Sec. II, can be measured
in the Majorana circuit.
We consider the two-leg watermelon correlator G2ðx; yÞ,

which measures the probability that two points x and y lie
upon a single, closed loop in the two-dimensional plane.
In the circuit, this translates to the probability that two
Majorana modes γlðt1Þ and γmðt2Þ at spacetime points
x ¼ ðl; t1Þ; y ¼ ðm; t2Þ share a closed loop. In order to
detect G2ðx; yÞ in the circuit, we prepare two additional
pairs of ancillary worldlines, A and B, with A ¼ ðγA1; γA2Þ
and B ¼ ðγB1; γB2Þ, as depicted in Fig. 15. Both are
put in a parity eigenstate at t ¼ 0, ihγA1ð0ÞγA2ð0Þi ¼
ihγB1ð0ÞγB2ð0Þi ¼ 1. Now we evolve the circuit over time
but interrupt it at times 0 ≪ t1; t2 ≪ T, when the parities
γA1ðt1Þγlðt1Þ and γB1ðt2Þγmðt2Þ are measured. This inserts
the marked loops in Fig. 15 into the bulk while storing the

history of the loops crossing through spacetime points x
and y in ancilla worldlines γA2 and γB2, respectively.
Only if the Majoranas γlðt1Þ and γmðt2Þ share a closed

loop without inserting the ancilla measurements are A and
B connected via exactly two distinct worldlines. Otherwise,
no worldlines connect A and B. Thus, G2ðx; yÞ gives
precisely the mutual information between the two ancillas,
G2ðx; yÞ ¼ 1

2
IðA; BÞ. Higher-order watermelon correlators

Gkðx; yÞ can be constructed analogously by making use
of further ancilla states. Notably, G2ðx; yÞ appears as an
out-of-time order correlator in the Majorana framework.
The mutual information becomes the time-nonlocal (con-
nected) correlation function hγA1ð0ÞγA1ðTÞγB1ð0ÞγB1ðTÞi−
hγA1ð0ÞγA1ðTÞihγB1ð0ÞγB1ðTÞi.

APPENDIX F: SUPPLEMENTARY DATA
FOR ISING TRANSITION

In Sec. III B 2 in the main text, we identify a measure-
ment-induced transition at the tricritical point of the one-
state Potts model, for which the correlation length exponent
ν ≈ 1 is consistent with Ising universality. Here, we provide
additional characterization of the transition, examining
both the critical exponents and the prefactor c̃ for the
logarithmic entanglement scaling.

FIG. 15. Measuring bulk correlations in the circuit. We present
an ancilla-based scheme for detecting the two-leg watermelon
correlator G2ðx; yÞ with x ¼ ðl; t1Þ and y ¼ ðm; t2Þ. (a) Between
times t ¼ 0 and t ¼ t1, an initial state ρ0 is evolved by a circuit C.
At time t1, a parity measurement pairs the bulk worldline γl with
worldline γA;1 from ancilla A (blue). The circuit then evolves to
time t2, when γm is paired with γB;1 from ancilla B (green), after
which the circuit evolves to the final time T ≳ L. (b),(c) G2ðx; yÞ
is the probability that ðx; t1Þ and ðy; t1Þ are on the same, closed
loop, i.e., G2ðx; yÞ ¼ 1

2
I2ðA; BÞ the mutual information between

the ancillas. When no worldlines connect the two points,
(b) I2ðA; BÞ ¼ 0 and otherwise I2ðA; BÞ ¼ 2; see possible exam-
ples in (c).
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1. Critical exponents η and ηk
To further verify the Ising universality of the transition,

we employ ancilla probes to extract the bulk critical
exponent η and the surface critical exponent ηk. For
Ising universality realized via the two-state Potts model,
we expect η ¼ 1

4
and ηk ¼ 1 [155]. As with watermelon

correlators, these exponents can be determined by examin-
ing the mutual information between ancillas which are
entangled with the system [34]. In particular, we take PBC
and evolve the bulk system under measurement-only
dynamics until time t0. We then maximally entangle qubit
1 with ancilla A and qubit bL=2c þ 1 with ancilla B. From
the subsequent time evolution of the mutual information
I2ðt; LÞ between the ancilla, we extract exponents by
scaling collapse of the form I2ðt; LÞ ∼ LaF½ðt − t0Þ=L�.
For a ¼ η; ηk we take t0 ¼ 3L; 0, respectively.
The rescaled mutual information is shown in Fig. 16,

from which we obtain η ≈ 0.23 and ηk ≈ 1.11. These are
comparable to the expected values for the Ising and two-
state Potts model, with ηk being unambiguously distinct

from the percolation value ηðpercÞk ¼ 2=3.
The uncertainty in the trajectory-averaged mutual infor-

mation can be reduced by instead entangling groups of NA
ancilla to the bulk system again in the regions surrounding
x ¼ 1 and y ¼ bL=2c þ 1. As with the NA ¼ 1 case,
this inserts 2NA marked loops at both bulk regions. For
sufficiently large system sizes and late times, the ancilla
mutual information is dominated by the largest watermelon
correlator. As such, the scaling collapse reveals η and ηk.
Taking NA > 1 has the added advantage of eliminating
possible issues where certain sites or Majoranas live in
decoupled sectors, which can lead to spurious results
with NA ¼ 1. For NA ¼ 2, 4 we find similar results as

for NA ¼ 1, with the estimated value for ηk more closely
approaching 1 for larger NA.

2. Enhanced logarithmic entanglement scaling

As noted in the main text, the coefficient c̃ for the
log-law entanglement scaling observed at the measure-
ment-induced Ising transition is much larger than the
conventional c ¼ 1

2
. As shown in Fig. 17, the subsystem

entanglement entropy shows a clear log-law scaling behav-
ior consistent with c̃ ¼ 2.

APPENDIX G: SUPPLEMENTARY DATA FOR
INTERACTION-INDUCED GOLDSTONE PHASE

Here, we provide supplementary data for the scenario
discussed in Sec. III D 2 wherein nonorientable four-
fermion measurements perturbing an otherwise orientable
Gaussian circuit induce a CPLC Goldstone phase. Starting
from the Gaussian circuit defined by orientable set O3, we
introduce non-Gaussian measurements of the Pauli oper-
ator ZXY. This four-fermion operator is incompatible with
the worldline orientations fixed by the Gaussian measure-
ments. Let the measurement probabilities be pXX ¼ p2

x,
pYY ¼ p2

y, pXY ¼ pYX ¼ pxpy, and pZXY ¼ 1 − p, where
px ≡ pq and py ≡ pð1 − qÞ. As shown in Fig. 18(a), finite
measurement rate for the nonorientable, non-Gaussian
ZXY operator yields an entangled phase fanning out from
the vicinity of the maximally frustrated Gaussian point
ðp; qÞ ¼ ð1; 1=2Þ. At sufficiently large interaction strength,
the fact that ZXY operators are not all mutually commuting
leads to a volume-law phase, as seen for other circuits
with incommensurate four-fermion interactions. For
weaker interaction strength, the interaction-induced
entangled phase resembles the CPLC Goldstone phase.
At the transitions, we find correlation length exponent
ν ≈ 2.75 and c̃ ∼ const, as shown in Figs. 18(b) and 18(c).
Moreover, between the two critical lines, we observe an

FIG. 16. Ancilla probes for Ising criticality. Evolution of the
mutual information I2 between an ancilla coupled to the system at
separation L=2 at time t0. For the bulk exponent a ¼ η, we take
t0 ¼ 2L and find η ≈ 0.25, consistent with the expected η ¼ 1

4
for

Ising universality. For the surface exponent a ¼ ηk, we take
t0 ¼ 0, finding ηk ≈ 1.1, comparable to the Ising value ηk ¼ 1.

FIG. 17. Log-law scaling at the Ising transition. At the Ising
transition, the entanglement entropy Sl for all system sizes L falls
onto a single line when taken against log2½sinðπl=LÞL=π�. The
slope identifies the log-law coefficient c̃ ≈ 2.04 when fitted
against all data for L > 100.

MAJORANA LOOP MODELS FOR MEASUREMENT-ONLY … PHYS. REV. X 13, 041028 (2023)

041028-27



apparent logarithmic correction to entanglement entropy
which is consistent with CPLC [see Fig. 18(c)]. This
provides compelling evidence that breaking worldline
orientability, even if only at the four-fermion level, leads
to CPLC physics.
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bond-solid transition, Phys. Rev. Lett. 115, 267203
(2015).

[94] J. D’Emidio and R. K. Kaul, First-order superfluid to
valence-bond solid phase transitions in easy-plane SUðnÞ
magnets for small n, Phys. Rev. B 93, 054406 (2016).

[95] P. Fendley, Topological order from quantum loops and
nets, Ann. Phys. (Amsterdam) 323, 3113 (2008).

[96] P. Fendley and V. Krushkal, Tutte chromatic identities
from the Temperley-Lieb algebra, Geomet. Topol. 13, 709
(2009).

[97] P. Fendley and V. Krushkal, Link invariants, the chromatic
polynomial and the Potts model, Adv. Theor. Math. Phys.
14, 507 (2010).

[98] M. A. Levin and X.-G. Wen, String-net condensation: A
physical mechanism for topological phases, Phys. Rev. B
71, 045110 (2005).

[99] Z. Dai and A. Nahum, Quantum criticality of loops with
topologically constrained dynamics, Phys. Rev. Res. 2,
033051 (2020).

[100] A. Nahum, P. Serna, A. M. Somoza, and M. Ortuño,
Loop models with crossings, Phys. Rev. B 87, 184204
(2013).

[101] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, Phase transitions in three-dimensional loop
models and the CPn−1 sigma model, Phys. Rev. B 88,
134411 (2013).

[102] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, Length distributions in loop soups, Phys. Rev.
Lett. 111, 100601 (2013).

[103] A. Nahum, Universality class of the two-dimensional
polymer collapse transition, Phys. Rev. E 93, 052502
(2016).

[104] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum
entanglement growth under random unitary dynamics,
Phys. Rev. X 7, 031016 (2017).

[105] P. Fendley, Loop models and their critical points, J. Phys.
A 39, 15445 (2006).

[106] P. Fendley and J. L. Jacobsen, Critical points in coupled
Potts models and critical phases in coupled loop models,
J. Phys. A 41, 215001 (2008).

[107] P. A. Pearce and J. Rasmussen, Solvable critical dense
polymers, J. Stat. Mech. (2007) P02015.

[108] E. Vernier, J. L. Jacobsen, and H. Saleur, Dilute oriented
loop models, J. Phys. A 49, 064002 (2016).

[109] S. Sang and T. H. Hsieh, Measurement-protected quantum
phases, Phys. Rev. Res. 3, 023200 (2021).

[110] A. Nahum and B. Skinner, Entanglement and dynamics of
diffusion-annihilation processes with Majorana defects,
Phys. Rev. Res. 2, 023288 (2020).

[111] J. Merritt and L. Fidkowski, Entanglement transitions with
free fermions, Phys. Rev. B 107, 064303 (2023).

[112] J. L. Jacobsen, N. Read, and H. Saleur, Dense loops,
supersymmetry, and Goldstone phases in two dimensions,
Phys. Rev. Lett. 90, 090601 (2003).

[113] M. Fava, L. Piroli, T. Swann, D. Bernard, and A. Nahum,
Nonlinear sigma models for monitored dynamics of

free fermions, arXiv:2302.12820 [Phys. Rev. X (to be
published)].

[114] H. Saleur, New exact exponents for two-dimensional self-
avoiding walks, J. Phys. A 19, L807 (1986).

[115] M. J. Martins, B. Nienhuis, and R. Rietman, Intersecting
loop model as a solvable super spin chain, Phys. Rev. Lett.
81, 504 (1998).

[116] J. Cardy, Crossing formulae for critical percolation in an
annulus, J. Phys. A 35, L565 (2002).

[117] C. Candu and H. Saleur, A lattice approach to the
conformal OSpð2Sþ 2j2SÞ supercoset sigma model.
Part I: Algebraic structures in the spin chain. The Brauer
algebra, Nucl. Phys. B808, 441 (2009).

[118] P. Martin, Potts Models and Related Problems in Stat-
istical Mechanics (World Scientific, Singapore, 1991).

[119] In particular, loops with fugacity n ¼ 1 can be described
by the SOð4Þ1 representation of the BMW algebra.

[120] J. S. Birman and H. Wenzl, Braids, link polynomials and a
new algebra, Trans. Am. Math. Soc. 313, 249 (1989).

[121] J. Murakami, The Kauffman polynomial of links and
representation theory, Osaka J. Math. 24, 745 (1987).

[122] D. Fattal, T. S. Cubitt, Y. Yamamoto, S. Bravyi, and I. L.
Chuang, Entanglement in the stabilizer formalism, arXiv:
0406168.

[123] S. Aaronson and D. Gottesman, Improved simulation of
stabilizer circuits, Phys. Rev. A 70, 052328 (2004).

[124] D. Gottesman, The Heisenberg representation of quantum
computers, arXiv:quant-ph/9807006.

[125] This should not be confused for the total length of the
loop through the whole spacetime bulk, as considered in
Ref. [100].

[126] J. L. Jacobsen and H. Saleur, Exact valence bond entan-
glement entropy and probability distribution in the XXX
spin chain and the Potts model, Phys. Rev. Lett. 100,
087205 (2008).

[127] Please note that we work in units of log(2) so that entropies
reflect exactly the integer number of loops.

[128] The mutual information I2ðA; BÞ is uniquely characterized
by the ensemble average of

P
l∈A

P
m∈B jhγlðTÞγmðTÞij.

[129] A. Lavasani, Y. Alavirad, and M. Barkeshli,Measurement-
induced topological entanglement transitions in symmetric
random quantum circuits, Nat. Phys. 17, 342 (2021).

[130] K. Klocke and M. Buchhold, Topological order and
entanglement dynamics in the measurement-only XZZX
quantum code, Phys. Rev. B 106, 104307 (2022).

[131] As a minimal example, consider the four-qubit stabilizer
state with stabilizer generator G ¼ hγ1γ5; γ2γ3; γ4γ8; γ6γ7i.
After a Jordan-Wigner transformation, we have G ¼
hX1X2; Y1Z2X3; X3X4; X2Z3Y4i in the clipped gauge.
Consider now taking subsystems A, B, and C to be qubits
1, 2, and 4, respectively. Whereas I2ðB;CÞ ¼ 1 from the
fermionic loop representation, in the spin-qubit language
we have I2ðB;CÞ ¼ 0. As a result, the tripartite mutual
information I3ðA; B; CÞ is nonvanishing in the spin lan-
guage, while it is necessarily zero in the fermionic loop
language. The origin of this difference lies in the nonlocal
nature of the Jordan-Wigner transformation. Stabilizers
with end points in disconnected regions such as B and C
still have nontrivial operator weight in the intervening
region due to the Jordan-Wigner string.

MAJORANA LOOP MODELS FOR MEASUREMENT-ONLY … PHYS. REV. X 13, 041028 (2023)

041028-31

https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevX.5.041048
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1103/PhysRevLett.115.267203
https://doi.org/10.1103/PhysRevB.93.054406
https://doi.org/10.1016/j.aop.2008.04.011
https://doi.org/10.2140/gt.2009.13.709
https://doi.org/10.2140/gt.2009.13.709
https://doi.org/10.4310/ATMP.2010.v14.n2.a4
https://doi.org/10.4310/ATMP.2010.v14.n2.a4
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1103/PhysRevResearch.2.033051
https://doi.org/10.1103/PhysRevResearch.2.033051
https://doi.org/10.1103/PhysRevB.87.184204
https://doi.org/10.1103/PhysRevB.87.184204
https://doi.org/10.1103/PhysRevB.88.134411
https://doi.org/10.1103/PhysRevB.88.134411
https://doi.org/10.1103/PhysRevLett.111.100601
https://doi.org/10.1103/PhysRevLett.111.100601
https://doi.org/10.1103/PhysRevE.93.052502
https://doi.org/10.1103/PhysRevE.93.052502
https://doi.org/10.1103/PhysRevX.7.031016
https://doi.org/10.1088/0305-4470/39/50/011
https://doi.org/10.1088/0305-4470/39/50/011
https://doi.org/10.1088/1751-8113/41/21/215001
https://doi.org/10.1088/1742-5468/2007/02/P02015
https://doi.org/10.1088/1751-8113/49/6/064002
https://doi.org/10.1103/PhysRevResearch.3.023200
https://doi.org/10.1103/PhysRevResearch.2.023288
https://doi.org/10.1103/PhysRevB.107.064303
https://doi.org/10.1103/PhysRevLett.90.090601
https://arXiv.org/abs/2302.12820
https://doi.org/10.1088/0305-4470/19/13/009
https://doi.org/10.1103/PhysRevLett.81.504
https://doi.org/10.1103/PhysRevLett.81.504
https://doi.org/10.1088/0305-4470/35/41/102
https://doi.org/10.1016/j.nuclphysb.2008.09.034
https://doi.org/10.1090/S0002-9947-1989-0992598-X
https://arXiv.org/abs/0406168
https://arXiv.org/abs/0406168
https://doi.org/10.1103/PhysRevA.70.052328
https://arXiv.org/abs/quant-ph/9807006
https://doi.org/10.1103/PhysRevLett.100.087205
https://doi.org/10.1103/PhysRevLett.100.087205
https://doi.org/10.1038/s41567-020-01112-z
https://doi.org/10.1103/PhysRevB.106.104307


[132] D. Bulgakova and O. Ogievetsky, Fusion procedure for
the walled Brauer algebra, J. Geom. Phys. 149, 103580
(2020).

[133] G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C.
Lee, and J. Stroomer, Tensor product representations of
general linear groups and their connections with Brauer
algebras, J. Algebra 166, 529 (1994).

[134] R. J. Baxter, Exactly Solved Models in Statistical Mechan-
ics (Academic, New York, 1982).

[135] Y. Imamura, Construction of the Temperley-Lieb algebra
from bond algebra: From the transverse-field Ising to the
XXZ, arXiv:2203.14545.

[136] Or, alternatively, by a supersymmetric formulation on an
enlarged space CPmjm with m∈Zþ [77].

[137] S. J. Elman, A. Chapman, and S. T. Flammia, Free
fermions behind the disguise, Commun. Math. Phys.
388, 969 (2021).

[138] K. G. Wilson and M. E. Fisher, Critical exponents in 3.99
dimensions, Phys. Rev. Lett. 28, 240 (1972).

[139] R. K. P. Zia and D. J. Wallace, Critical behaviour of the
continuous n-component Potts model, J. Phys. A 8, 1495
(1975).

[140] D. J. Amit, Renormalization of the Potts model, J. Phys. A
9, 1441 (1976).

[141] V. Dotsenko, J. L. Jacobsen, M.-A. Lewis, and M. Picco,
Coupled Potts models: Self-duality and fixed point struc-
ture, Nucl. Phys. B546, 505 (1999).

[142] S. B. Bravyi and A. Y. Kitaev, Fermionic quantum com-
putation, Ann. Phys. (Amsterdam) 298, 210 (2002).

[143] F. Roser, H. P. Büchler, and N. Lang, Decoding the
projective transverse field Ising model, Phys. Rev. B
107, 214201 (2023).

[144] This can be made more apparent by a unitary trans-
formation

Q
l e

−iπX2l−1X2l=4: It maps the circuit to a variant
of the cluster model [129], whereas here XZX and Z are
measured with equal probabilities.

[145] S. Murciano, P. Sala, Y. Liu, R. S. K. Mong, and J. Alicea,
Measurement-altered Ising quantum criticality, arXiv:
2302.04325.

[146] E. J. Beamond, A. L. Owczarek, and J. Cardy, Quantum
and classical localization and the Manhattan lattice, J.
Phys. A 36, 10251 (2003).

[147] Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases
of quantum circuits, Ann. Phys. (Amsterdam) 435, 168618
(2021).

[148] G. Delfino and E. Tartaglia, Classifying Potts critical lines,
Phys. Rev. E 96, 042137 (2017).

[149] B. Duplantier, Two-dimensional fractal geometry, critical
phenomena and conformal invariance, Phys. Rep. 184,
229 (1989).

[150] W. Janke and A. M. Schakel, Geometrical vs. Fortuin-
Kasteleyn clusters in the two-dimensional q-state Potts
model, Nucl. Phys. B700, 385 (2004).

[151] B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick,
First- and second-order phase transitions in Potts models:
Renormalization-group solution, Phys. Rev. Lett. 43, 737
(1979).

[152] F. Y. Wu, Dilute Potts model, duality and site-bond
percolation, J. Phys. A 14, L39 (1981).

[153] A. Coniglio and F. Peruggi, Clusters and droplets in the
q-state Potts model, J. Phys. A 15, 1873 (1982).

[154] Y. M. M. Knops, H. W. J. Blote, and B. Nienhuis, Multi-
criticality in a self-dual Potts model, J. Phys. A 26, 495
(1993).

[155] J. L. Cardy, Conformal invariance and surface critical
behavior, Nucl. Phys. B240, 514 (1984).

[156] C.-J. Lin, W. Ye, Y. Zou, S. Sang, and T. H. Hsieh, Probing
sign structure using measurement-induced entanglement,
Quantum 7, 910 (2023).

[157] F. C. Alcaraz, Order of phase transition for systems with
multispin interactions: Monte Carlo simulations, Phys.
Rev. B 34, 4885 (1986).

[158] K. A. Penson, R. Jullien, and P. Pfeuty, Phase transitions
in systems with multispin interactions, Phys. Rev. B 26,
6334 (1982).

[159] A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker, and
E. Cobanera, Statistical translation invariance protects a
topological insulator from interactions, Phys. Rev. B 92,
085139 (2015).

[160] A. Rahmani, X. Zhu, M. Franz, and I. Affleck, Emergent
supersymmetry from strongly interacting Majorana zero
modes, Phys. Rev. Lett. 115, 166401 (2015).

[161] A. Rahmani, X. Zhu, M. Franz, and I. Affleck, Phase
diagram of the interacting Majorana chain model, Phys.
Rev. B 92, 235123 (2015).

[162] H. Blöte, A. Compagner, P. Cornelissen, A. Hoogland, F.
Mallezie, and C. Vanderzande, Critical behaviour of
two Ising models with multispin interactions, Physica
(Amsterdam) 139A, 395 (1986).

[163] W. Selke, The ANNNI model—Theoretical analysis and
experimental application, Phys. Rep. 170, 213 (1988).

[164] L. Turban, One-dimensional Ising model with multispin
interactions, J. Phys. A 49, 355002 (2016).

[165] E. O’Brien and P. Fendley, Lattice supersymmetry and
order-disorder coexistence in the tricritical Ising model,
Phys. Rev. Lett. 120, 206403 (2018).

[166] A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan,
D. A. Huse, and J. H. Pixley, Critical properties of the
measurement-induced transition in random quantum cir-
cuits, Phys. Rev. B 101, 060301(R) (2020).

[167] H. Lóio, A. D. Luca, J. D. Nardis, and X. Turkeshi,
Purification timescales in monitored fermions, Phys.
Rev. B 108, L020306 (2023).

[168] The phase diagram of this model was previously obtained
in Ref. [58]. However, no logarithmic correction was
observed for the considered system sizes.

[169] M. Ippoliti and V. Khemani, Postselection-free entangle-
ment dynamics via spacetime duality, Phys. Rev. Lett. 126,
060501 (2021).

[170] T.-C. Lu and T. Grover, Spacetime duality between
localization transitions and measurement-induced transi-
tions, PRX Quantum 2, 040319 (2021).

[171] M. Ippoliti, T. Rakovszky, and V. Khemani, Fractal,
logarithmic, and volume-law entangled nonthermal steady
states via spacetime duality, Phys. Rev. X 12, 011045
(2022).

[172] I. Reid and B. Bertini, Entanglement barriers in dual-
unitary circuits, Phys. Rev. B 104, 014301 (2021).

KAI KLOCKE and MICHAEL BUCHHOLD PHYS. REV. X 13, 041028 (2023)

041028-32

https://doi.org/10.1016/j.geomphys.2019.103580
https://doi.org/10.1016/j.geomphys.2019.103580
https://doi.org/10.1006/jabr.1994.1166
https://arXiv.org/abs/2203.14545
https://doi.org/10.1007/s00220-021-04220-w
https://doi.org/10.1007/s00220-021-04220-w
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1088/0305-4470/8/9/019
https://doi.org/10.1088/0305-4470/8/9/019
https://doi.org/10.1088/0305-4470/9/9/006
https://doi.org/10.1088/0305-4470/9/9/006
https://doi.org/10.1016/S0550-3213(99)00097-8
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1103/PhysRevB.107.214201
https://doi.org/10.1103/PhysRevB.107.214201
https://arXiv.org/abs/2302.04325
https://arXiv.org/abs/2302.04325
https://doi.org/10.1088/0305-4470/36/41/001
https://doi.org/10.1088/0305-4470/36/41/001
https://doi.org/10.1016/j.aop.2021.168618
https://doi.org/10.1016/j.aop.2021.168618
https://doi.org/10.1103/PhysRevE.96.042137
https://doi.org/10.1016/0370-1573(89)90042-2
https://doi.org/10.1016/0370-1573(89)90042-2
https://doi.org/10.1016/j.nuclphysb.2004.08.030
https://doi.org/10.1103/PhysRevLett.43.737
https://doi.org/10.1103/PhysRevLett.43.737
https://doi.org/10.1088/0305-4470/14/2/004
https://doi.org/10.1088/0305-4470/15/6/028
https://doi.org/10.1088/0305-4470/26/3/014
https://doi.org/10.1088/0305-4470/26/3/014
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.22331/q-2023-02-02-910
https://doi.org/10.1103/PhysRevB.34.4885
https://doi.org/10.1103/PhysRevB.34.4885
https://doi.org/10.1103/PhysRevB.26.6334
https://doi.org/10.1103/PhysRevB.26.6334
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevLett.115.166401
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1016/0378-4371(86)90128-7
https://doi.org/10.1016/0378-4371(86)90128-7
https://doi.org/10.1016/0370-1573(88)90140-8
https://doi.org/10.1088/1751-8113/49/35/355002
https://doi.org/10.1103/PhysRevLett.120.206403
https://doi.org/10.1103/PhysRevB.101.060301
https://doi.org/10.1103/PhysRevB.108.L020306
https://doi.org/10.1103/PhysRevB.108.L020306
https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1103/PRXQuantum.2.040319
https://doi.org/10.1103/PhysRevX.12.011045
https://doi.org/10.1103/PhysRevX.12.011045
https://doi.org/10.1103/PhysRevB.104.014301


[173] T. Prosen, Many-body quantum chaos and dual-unitarity
round-a-face, Chaos 31, 093101 (2021).

[174] C. Jonay, V. Khemani, and M. Ippoliti, Triunitary quantum
circuits, Phys. Rev. Res. 3, 043046 (2021).

[175] P. W. Claeys and A. Lamacraft, Emergent quantum state
designs and biunitarity in dual-unitary circuit dynamics,
Quantum 6, 738 (2022).

[176] Y. Kasim and T. Prosen, Dual unitary circuits in random
geometries, J. Phys. A 56, 025003 (2023).

[177] P. W. Claeys, M. Henry, J. Vicary, and A. Lamacraft,
Exact dynamics in dual-unitary quantum circuits with
projective measurements, Phys. Rev. Res. 4, 043212
(2022).

[178] A. Foligno and B. Bertini, Growth of entanglement of
generic states under dual-unitary dynamics, Phys. Rev. B
107, 174311 (2023).

[179] D. T. Stephen, W.W. Ho, T.-C. Wei, R. Raussendorf, and
R. Verresen, Universal measurement-based quantum com-
putation in a one-dimensional architecture enabled by
dual-unitary circuits, arXiv:2209.06191.

[180] M. A. Rampp, R. Moessner, and P. W. Claeys, From dual
unitarity to generic quantum operator spreading, Phys.
Rev. Lett. 130, 130402 (2023).

[181] P. W. Claeys, A. Lamacraft, and J. Vicary, From
dual-unitary to biunitary: A 2-categorical model for

exactly-solvable many-body quantum dynamics, arXiv:
2302.07280.

[182] G. M. Sommers, D. A. Huse, and M. J. Gullans, Crystal-
line quantum circuits, PRX Quantum 4, 030313 (2023).

[183] J. M. Koh, S.-N. Sun, M. Motta, and A. J. Minnich,
Measurement-induced entanglement phase transition on
a superconducting quantum processor with mid-circuit
readout, Nat. Phys. 19, 1314 (2023).

[184] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[185] R. Morral-Yepes, F. Pollmann, and I. Lovas, Detecting
and stabilizing measurement-induced symmetry-protected
topological phases in generalized cluster models, arXiv:
2302.14551.

[186] R. Verresen, R. Moessner, and F. Pollmann, One-dimen-
sional symmetry protected topological phases and their
transitions, Phys. Rev. B 96, 165124 (2017).

[187] S. Trebst, P. Werner, M. Troyer, K. Shtengel, and C.
Nayak, Breakdown of a topological phase: Quantum
phase transition in a loop gas model with tension, Phys.
Rev. Lett. 98, 070602 (2007).

[188] A. Lavasani, Z.-X. Luo, and S. Vijay, Monitored quantum
dynamics and the Kitaev spin liquid, Phys. Rev. B 108,
115135 (2023).

MAJORANA LOOP MODELS FOR MEASUREMENT-ONLY … PHYS. REV. X 13, 041028 (2023)

041028-33

https://doi.org/10.1063/5.0056970
https://doi.org/10.1103/PhysRevResearch.3.043046
https://doi.org/10.22331/q-2022-06-15-738
https://doi.org/10.1088/1751-8121/acb1e0
https://doi.org/10.1103/PhysRevResearch.4.043212
https://doi.org/10.1103/PhysRevResearch.4.043212
https://doi.org/10.1103/PhysRevB.107.174311
https://doi.org/10.1103/PhysRevB.107.174311
https://arXiv.org/abs/2209.06191
https://doi.org/10.1103/PhysRevLett.130.130402
https://doi.org/10.1103/PhysRevLett.130.130402
https://arXiv.org/abs/2302.07280
https://arXiv.org/abs/2302.07280
https://doi.org/10.1103/PRXQuantum.4.030313
https://doi.org/10.1038/s41567-023-02076-6
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1038/s41467-021-22274-1
https://arXiv.org/abs/2302.14551
https://arXiv.org/abs/2302.14551
https://doi.org/10.1103/PhysRevB.96.165124
https://doi.org/10.1103/PhysRevLett.98.070602
https://doi.org/10.1103/PhysRevLett.98.070602
https://doi.org/10.1103/PhysRevB.108.115135
https://doi.org/10.1103/PhysRevB.108.115135

