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Environment is assumed to play a negative role in quantum mechanics, destroying the coherence in a
quantum system and, thus, randomly changing its state. However, for a quantum system that is initially in a
degenerate ground state, the situation could be different. In this case, the infinite manifold of ground state
eigenfunctions can contain a few states of zero entanglement, which can be demonstrated based on the
minimization of the von Neumann entropy. Then, following quantum Darwinism, these “classical”
combinations are selected and promoted by the quantum environment, which means that different
independent observers find them in experiments. In this work, we find and explore such classical states in
the eigenspectra of skyrmionic and antiferromagnetic quantum systems starting from a numerical
realization of Anderson’s tower of states. The degeneracy of the quantum ground state is shown to be
the key for explaining nontrivial properties of magnetic matter in the classical world including topological
protection arising in the classical limit.
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I. INTRODUCTION

Despite the huge success of quantum physics, which is
one of the pillars of our science and technology, its
foundations still remain the subject of hot debates, and
many conceptual issues still require further investigations
[1–7]. In particular, searching for the connection between
quantum and classical descriptions of the same phenome-
non or object has a long history in physics starting from the
foundation of quantum mechanics. In this sense, the
development of the path integral concept [8–10] is a bright
example showing that the classical trajectory of a particle is
just one of numerous alternatives characterized by different
probabilities. In these terms, classicality means nothing but
destruction of an interference between different alterna-
tives, similar to the transition from wave to geometric
optics [11].

However, in the case of the classical-quantum correspon-
dence, the problem is more complicated. The transition
between the classical and quantum regimes cannot be
determined only by the fact that the characteristic size of
the system, which can be related to the de Broglie wave-
length, becomes small compared to other length scales of the
problem. According to the popular decoherence program,
the classical-quantum correspondence is rather related to the
openness of the quantum system and to the destruction of
quantum interferences by the interaction with the environ-
ment [12–17]. The problem is closely related to the
measurement problem [18]. According to Bohr’s comple-
mentarity principle [19], a quantummeasurement is nothing
but the result of the interaction of a quantum particle with a
classical measuring device. This picture is the basis of the
formal theory of measurements developed by von Neumann
[20]. This theory includes a mysterious collapse of the
quantum wave function after the measurement. Further
developments have led to a more complicated picture,
including soft measurements [21] and decoherence waves
in distributed quantum systems [22–24]. There are also
analytical [25] and numerical [26] attempts to derive von
Neumann’s postulate from a consequent quantum consid-
eration of the measurement process, including decoherence
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by the environment. In general, the problemdoes not seem to
be completely solved, and further attempts at clarifying
these key issues are required.
These questions may look too general and too

abstract, but, actually, they are closely related to a very
common and important phenomenon of physics around us.
Antiferromagnetism, a usual property of condensed matter
[27], is, probably, one of the best examples. The classical
Néel picture of magnetic sublattices for the case of an
“antiferromagnetic” exchange interaction is in an obvious
contradiction with quantum mechanics’ prediction of a
singlet ground state [27]. Actually, the antiferromagnetic
state can be described without introducing sublattices [28],
but its difference with the singlet state remains dramatic.
A general way to establish the correspondence between
quantum and classical descriptions of antiferromagnets was
proposed in the seminal work of Anderson [29]. It has been
shown there that in some cases linear combinations of
eigenstates of a quantum Hamiltonian that form a tower of
low-energy states can be related to an ordered state that
would be the classical ground state of the system in the
thermodynamic limit. Such a tower-of-states (TOS)
approach may be of crucial importance, because it treats
the fundamental problem of quantum-classical correspon-
dence from a completely different perspective, namely,
without referring to measurements or postulating
decoherence due to the environment. Moreover, it has
proven to be extremely helpful in detecting broken sym-
metries with an eigenspectrum of even small-size supercells
of quantum systems. Up to now, the Anderson towers
approach was mainly used for studying quantum antifer-
romagnets [30–32]. However, it is worth mentioning that
the previous studies based on the group-theoretical calcu-
lations were fully concentrated on the symmetry identi-
fication of the eigenfunctions contributing to the TOS
without attempting to quantify their partial contributions.
Such an approach is also not flexible, since it requires one
to know the exact symmetry of the reconstructed classical
order, which prevents using the approach in the case where
the system is characterized by a transition to an unknown
classical state (a problem known as hidden order).
In this paper, we report on a symmetry-free numerical

technique based on gradient-descent optimization for con-
structing TOS on the basis of a limited number of
calculated low-lying eigenstates of a quantum system. In
contrast to previous works, our approach provides quanti-
tative information on the TOS composition. By means of
the developed scheme, we explore representative antifer-
romagnetic systems and less trivial topologically protected
classical magnetic skyrmions [33] that attract considerable
attention due to their fundamental interest [34–36] and
technological importance [37,38]. Recent theoretical stud-
ies [39–45] suggest that the ground state of some quantum
spin Hamiltonians with competing isotropic and aniso-
tropic interactions can be considered as analogs of classical

skyrmions, since the magnetization, the susceptibility, and
the scalar chirality calculated for these quantum ground
states agree with those obtained for the corresponding
classical models. For this reason, one can formally define
the quantum skyrmion as a quantum state for which the
spin-spin correlation functions reproduce the same quan-
tities in the classical version of the problem. The natural
question similar to the antiferromagnetic case is, then, what
is the mechanism through which one can observe a classical
skyrmion in a system that is a priori quantum?
In this work, we show that the connection between the

classical and quantum systems can be established not only
at the level of the observables, as done up to now, but also at
the most general level of a quantum state and of macro-
scopic classical order per se. To this aim, we use the
concept of Anderson’s tower of states and explore both the
towers of quantum wave functions to reconstruct classical
solutions and the towers of classical configurations needed
to reproduce the quantum ground state (see Fig. 1). The
analysis of the composition of the TOS that we obtain for
magnetic skyrmions and for antiferromagnets uncovers
important details of Anderson’s theory that are not
addressed in previous group-theoretical considerations.
We argue that the environment plays a crucial role in
selecting specific combinations of the quantum states that
build the TOS that correspond to classical order and are
known as pointer states in decoherence theory (quantum
Darwinism). Thus, quantum decoherence should be con-
sidered as an important part of the TOS theory. Since the

Minimising the entanglement entropy

Diagonalizing the Hamiltonian

FIG. 1. Cartoon explaining the main idea of the paper, namely,
how to go from classical ordered states to quantum low-lying
states and vice versa without any explicit reference to the
environment, on the example of the antiferromagnet. How to
go from the coherent (classical) antiferromagnetic states to the
low-lying exact eigenfunctions is “easy,” because one just has to
diagonalize the Hamiltonian in the basis of the coherent states. By
contrast, to go from the low-lying quantum states to classical
states is “difficult” in the sense that, according to the standard
theory, it requires the interaction of the system with its environ-
ment. In this paper, we show that to go from the low-lying exact
eigenstates to the classical states is also possible without any
reference to the environment by minimizing in the Hilbert space
of low-lying eigenstates the von Neumann entanglement entropy
when cutting the system into two parts.
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TOS analysis itself can be used as a more effective search
for pointer states within the decoherence program, both
theories benefit from this integration.

II. RESULTS

A. Protocol for constructing the Anderson tower

Formally, a quantumwave function corresponding to any
classical spin texture can be defined as a product of
coherent states of individual spins [46–48]:

jΨTi ¼
Y

i

�
cos

θi
2
eiðϕi=2Þj↑i þ sin

θi
2
e−iðϕi=2Þj↓i

�
; ð1Þ

where the polar angles θi and ϕi set a local basis for each
spin. Below, we refer to this state as a coherent state or a
target wave function. The consequent projective measure-
ments [20] of the state ΨT in σz, σx, and σy bases result in a
set of projections hŜzi i, hŜxi i, and hŜyi i for each spin. The
latter can be associated with the direction of the classical
magnetic moment mi in magnetic structures measured in
spin-polarized scanning tunneling microscopy experiments
[49]. More specifically, hmx

i i ¼ sin θi cosϕi, hmy
i i ¼

sin θi sinϕi, and hmz
i i ¼ cos θi. Thus, one can establish a

formal connection between parameters of the coherent
state and the classical magnetic moments of a quantum
system observed in real or numerical experiments: θi ¼
arccoshmz

i i and ϕi ¼ arctanðhmy
i i=hmx

i iÞ.
In order to construct the Anderson tower for a quantum

system,we follow the key steps visualized in Figs. 2(a)–2(c).
First, we perform the exact diagonalization of a quantum
Hamiltonian and determine its eigenstatesΨn [Fig. 2(a)].We
consider only the low-lying part of the eigenspectrum
n∈ ½0; k� and introduce the initial approximation for the
target wave function ΨA with random complex coefficients
αn [Fig. 2(b)]. Furthermore, these coefficients are varied
using the gradient-descent method to get the maximal
fidelity between ΨA and ΨT [Fig. 2(c)]. Here, as for any
optimization procedure, the choice of the loss function that is
responsible for the quality of the resulting approximation
and convergence speed plays a central role. In this work, it is
given by the following expression:

EðαÞ ¼ 1 − jhΨT jΨAðαÞij: ð2Þ

The coefficients are updated as

αnew ¼ αold − γ
∂E
∂αold

; ð3Þ

where γ is the gradient-descent step that is taken to be 1. This
choice for the loss function can be justified by the fact that
the fidelity is a standard metric to define the distance
between two quantum states [50]. Within our approach,
the loss function (2) can be replaced by another form with
milder conditions, which might be useful in the case where
the precise form of the target state ΨT is unknown.
An important property of the proposed numerical scheme

for constructingTOS is thatwe can quantitatively control the
quality of the approximation forΨAwith the parameter k that
truncates the eigenspectrum. It is worth noting that in
previous works the construction of the Anderson TOS for
antiferromagnets is mainly based on a symmetry-based
selection of the low-lying states of the eigenspectrum in
order to find a signature of a symmetry-broken state that can
be the ground state of the system in the thermodynamic limit
[30–32,51]. However, a combination of these eigenstates
taken with some amplitudes into a concrete coherent wave
function and exploring its properties by calculating different
observables are beyond the capabilities of the group-theo-
retical approach. Our protocol for constructing Anderson
towers allows for the direct numerical estimation of the
contribution of individual eigenstates to broken-symmetry
wave functions,which, to the best of our knowledge,was not
done up to date for quantum antiferromagnets. In this
respect, we would like to cite the results of Ref. [52], in
which an analytic expression for the tower decomposition
coefficients in the specific limit of the Bose-Hubbard model
parameters is derived. Based on this, the authors show that
one can find a signature of a nematic order when construct-
ing the TOS for the quantum system being in the superfluid
ground state of spin-1 bosons. Thus, it is instructive to
implement our approach to explore canonical quantum
antiferromagnets as well as other nontrivial magnetic order-
ings such as skyrmions.

E

E
E
E

(a) (b) (c)

FIG. 2. Protocol for constructing Anderson’s towers of states. (a) For the given Hamiltonian, one calculates a set of low-lying
eigenstates. (b) On the basis of the calculated eigenstates, an initial approximation of the target state is prepared. The complex
coefficients αn are chosen to be random. (c) The coefficients are optimized within a gradient-descent approach aiming to maximize the
fidelity between approximation and target wave functions. N is the corresponding number of energy levels.
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B. Skyrmionic and antiferromagnetic TOS

The protocol presented above is general and can be
applied for reconstructing classical orders stabilized with
completely different microscopic mechanisms. To demon-
strate this, we explore the TOS in antiferromagnets and
skyrmionic systems that can be defined with the following
general spin Hamiltonian:

Ĥ ¼
X

ij

JijŜi · Ŝj þ
X

ij

Dij½Ŝi × Ŝj� þ
X

i

BŜzi : ð4Þ

Here, Jij is the isotropic Heisenberg exchange interaction.
Dij is an in-plane vector that points in the direction
perpendicular to the bond between neighboring i and j
lattice sites and describes the Dzyaloshinskii-Moriya inter-
action (DMI). B is an external uniform magnetic field
applied along the z direction. In the following, for con-
structing the skyrmionic towers, we use the parameters
J ¼ −0.5, jDj ¼ 1, and B ¼ 0.44, which guarantee the
stabilization of the quantum skyrmion wave function as the
quantum ground state on a 19-site triangular-lattice super-
cell with periodic boundary conditions [45]. In turn, the
exact diagonalization calculations of the antiferromagnetic
systems with pure Heisenberg exchange (J ¼ 1, D ¼ 0,
and B ¼ 0) are performed on the 4 × 4 square and 3 × 3
triangular supercells with periodic boundary conditions.
Following the developed protocol, we calculate a set of

low-lying eigenstates for quantum Hamiltonians of the
considered systems and then perform the optimization of
the variational wave function with respect to the preselected
classical order (target wave function). For the skyrmion
problem, such a classical order represents a ground state
magnetic configuration obtained for the corresponding
classical Hamiltonian using the same set of model param-
eters as for the quantum counterpart. The low-energy part
of the eigenspectrum presented in Fig. 3(a) is characterized
by a sizable gap between the first 19 eigenstates and the rest
of the spectrum. The optimization results show that the
states at the bottom of the gap play a central role in
reconstructing the coherent skyrmion state with Anderson
towers and contribute about 80% to the probability of the
resulting wave function. Basically, the obtained states
structure agrees with the conventional picture of TOS
[51], which suggests the emergence of the classical order
from the degenerate ground state manifold of a quantum
system. Exact diagonalization calculations show that the
energy gap is controlled with the magnetic field and varies
from 0.2 to 0.7 in units of DMI within the skyrmionic phase
(Appendix A). Comparing this to the energy width of the
set of 19 low-lying states that is about 0.03 in units of DMI,
one can consider these eigenstates to be nearly degenerate.
However, we additionally observe contributions to the
tower from the excited states at the top of the gap. Such
a deviation from the standard TOS scenario may be
explained by the small size of the simulated systems.

The reconstructed classical skyrmionic order [inset in
Fig. 3(a)] belongs to the class of topologically protected
states of matter which are characterized by the nonzero
value of a topological invariant. In the case of a discrete
lattice, we consider the scalar chirality that plays the role of
such an invariant and can be defined as follows for a
specific wave function:

QΨ ¼ 1

π

X

hijli
hΨjŜi · ½Ŝj × Ŝl�jΨi; ð5Þ
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FIG. 3. Towers of states for skyrmions and antiferromagnets.
Eigenspectra (black lines) and largest contributions to TOS (red
lines) obtained for classical skyrmion (a), z-oriented AFM (b),
y-oriented AFM (c), and 120° AFM (d) orderings. The simu-
lations are performed with 19-site (a), 4 × 4 square [(b) and (c)],
and 3 × 3 triangular (d) supercells. For the sake of the visuali-
zation, the eigenstates giving 1% or less contribution to the TOS
are not highlighted in red.
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where i, j, and l depict three neighboring spins that form an
elementary triangular plaquette. We find that for all the
TOS eigenstates the scalar chirality correlator is equal to
about 0.55, and, as the result, the target wave function that
corresponds to the classical order is characterized by the
same QΨ. This finding suggests a distinct explanation for
the phenomenon of topological protection of classical
skyrmionic structures. Accordingly, the nontrivial topo-
logical structure of the classical magnet is fully defined by a
unique combination of the eigenstates of the corresponding
quantum system. At the same time, each TOS eigenstate is
featureless with respect to the any magnetization structure,
which guarantees immunity and stability against an exter-
nal magnetic influence.
Another important corollary of the TOS analysis of the

magnetic skyrmions is that each TOS eigenstate can be
represented as a linear superposition of trivial coherent
states (tower of classical states) corresponding to the
considered classical skyrmion and its replicas obtained
applying translational and rotational symmetry operations:

ð6Þ

Building from the same trivial wave functions, the TOS
eigenstates differ from each other only in the values of the
coefficients fa1;…; a38g. Thus, by construction, the sky-
rmionic TOS contains redundant information on the topo-
logically protected classical magnetic order, which
suggests to see the TOS as an analog of the DNAmolecules
in the context of solid state matter. Appendixes A–C
contain more information supporting these conclusions.
In the case of the square-lattice antiferromagnets, the

target wave functions correspond to antiparallel Néel order.
Figure 3 visualizes the contributions of the eigenstates to
the Anderson towers for quantum antiferromagnets. If the
directions of the magnetic moments in the classical texture
are collinear to the z axis, all the nonzero contributions to
the Anderson tower come from the states with zero total
spin [Fig. 3(b)]. The nonmonotonic behavior as the energy
of the state increases represents another peculiarity of the
constructed tower. While the largest weights jαnj2 are
provided by the excited states belonging to the first and
second eigenlevels, the ground state gives about 10% of the
coherent state. If the classical antiferromagnetic structure is
along the y axis, as shown in Fig. 3(c), the distribution of
the leading contributions over spin sectors becomes com-
pletely delocalized in comparison with the z axis case. Such
a tower is mainly built by the lowest-energy states in each
spin sector. Similar to the quantum skyrmions, we addi-
tionally observe significant contributions from the excited
states.
For the spin model (4) with the only nonzero antiferro-

magnetic interactions between nearest neighbors on a

triangular lattice, the target coherent wave function corre-
sponding to the classical order is assumed to be a 120° Néel
state [53]. According to calculations on a 36-site cluster, the
ground state of the quantum Heisenberg Hamiltonian on
the triangular lattice is, as a consequence of frustration,
only slightly ordered, if at all, as follows from the decay of
the spin-spin correlation function at large interspin dis-
tances [54]. This frustration requires simulating quantum
systems of large enough sizes in order to perform an
extrapolation of the system’s properties to the thermody-
namics limit. Advanced techniques such as neural quantum
state [55] potentially allow for modeling large quantum
systems. However, they do not provide the required
accuracy in determining the ground and the excited
eigenstate energies of frustrated magnets [56], which makes
it inevitable to use exact diagonalization methods.
Such fundamental limitations on the size of the frustrated

systems encourage an active use of the TOS concept to
explore the presence of magnetic order in the triangular-
lattice Heisenberg antiferromagnet [32,57,58]. In particu-
lar, as shown in Ref. [32], there is a whole set of excited
states which can constitute the tower of states. Our
numerical results presented in Fig. 3(d) support this
symmetry-based conclusion. For the in-plane 120° Néel
ordering simulated with a 3 × 3 supercell, the eigenspectra
resolved in total spin numbers is symmetrical. The largest
contributions of about 29% of the target coherent wave
function come from the ground eigenstates in spin sectors
with Sztot ¼ � 1

2
;� 3

2
. It is clearly seen from Fig. 3(d) that the

excited states of the same sectors provide non-negligible
contributions from 5% to 19%.
Thus, one can define the candidate eigenfunctions that

build the TOS with group-theoretical consideration or by
using the gradient-descent approach we propose in this
work. Importantly, our analysis of the quantum skyrmions
and quantum antiferromagnets (Fig. 3) demonstrates that
the coherent state representing the particular classical
configuration can be reconstructed with only specific
combination of the eigenstates. However, in the thermo-
dynamic limit, following the original idea by Anderson,
these states should collapse to the highly degenerate ground
state manifold, which means that the quantum system in
question can be described by an arbitrary superposition of
the considered wave functions. Thus, one faces a critical
problem that is not addressed in the previous works on
TOS, namely, the mechanism responsible for the trans-
formation of the random composition of the TOS eigen-
functions onto their specific combination. In the next
section, we take a step forward and propose a concrete
scenario describing such a transformation using the devel-
oped gradient-descent protocol.

C. Loss function for decoherence

The tower-of-states analysis is a very important approach
to detect the spectral structure for several scenarios of
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symmetry breaking in the thermodynamics limit, but it does
not unveil all the details of such a transformation. To
demonstrate this, we prepare 100 trial wave functions ΨR
representing a random superposition of the TOS eigenstates
(the corresponding eigenlevels are denoted with red in
Fig. 3) for both square- and triangular-lattice quantum
antiferromagnets. In other words, this random wave func-
tion is given by the following expression:

ΨRðαÞ ¼
Xk−1

n¼0

αnΨTOS
n ; ð7Þ

where αn are random complex coefficients. One can think of
constructing such random superpositions as a finite-size
supercell imitation of the thermodynamics limit in which
these TOS eigenstates should form a degenerate ground state
manifold, which means that the quantum system can be
found in an arbitrary combination of such eigenfunctions.
For the square-lattice quantum antiferromagnet, we consider
the case where TOS levels are in different Sztot sectors
[Fig. 3(c)]. The eigenstates used to construct ΨR for the
triangular-latticeHeisenbergmodel are collected fromdiffer-
ent spin sectors [Fig. 3(d)]. Magnetization textures obtained
as a result of projective measurements of such random
superpositions (ΨR) are presented in Figs. 4(a), 4(d).
Triangular plaquette Heisenberg antiferromagnets are char-
acterized by close to uniform magnetization profiles hŜzi i
[Fig. 4(d)] with small random hŜxi i and hŜyi i components
fluctuating from sample to sample. In turn, one can recognize
an antiferromagnetic pattern in the case of the square lattice.
However, the observed lengths of the magnetic moments are
negligibly small compared to what one would expect for a
classical configuration. These results raise an important
question about the connection between ΨR and the coherent
antiferromagnetic states ΨNéel, which is not discussed in the
previous works concerning the TOS, but at the same time it
would be a demonstration of the internal consistency of the
whole TOS theory, no more, no less.
It is also important to discuss details of building random

skyrmionic TOS and compare them with coherent sky-
rmion wave function. As shown above, the eigenspectrum
of the skyrmionic Hamiltonian (4) is characterized by 19
low-lying eigenstates that compose four eigenlevels and are
well separated by a sizable energy gap from the rest of the
spectrum [Fig. 3(a)]. The low-temperature physics of the
quantum skyrmion system can be described by a random
superposition of these 19 nearly degenerate eigenstates.
Following the antiferromagnets consideration, we generate
100 different such superpositions and measure their scalar
chirality. Remarkably, in all the cases, the total chirality (5)
calculated for ΨR has the value of 0.51, which is also found
for the ground state of the same Hamiltonian [45]. At the
same time, the generated ensembles of ΨR in the case of
skyrmions are characterized by featureless magnetization

textures [Fig. 4(g)] fluctuating from sample to sample,
which is similar to antiferromagnets.
Thus, the obtained picture of the magnetization density

for the ground state of the quantum model clearly contra-
dicts the results of real-space magnetization imaging
experiments, such as spin-polarized scanning tunneling
microscopy [49,59] and Lorentz transmission electron
microscopy [60]. The magnetization densities obtained
in these experiments in the case of ferromagnetic systems
with Dzyaloshinskii-Moriya interaction at external mag-
netic fields are characterized by reproducible skyrmionic
vortexlike profiles. In our case, such profiles are repro-
duced when solving the classical version of the quantum
Hamiltonian [Eq. (4)]. Trying to harmonize the classical
skyrmionic solution and quantum ground state with fea-
tureless magnetization, we arrive at the famous problem of
the transition from the quantum realm characterized by a
superposition of alternatives (outcomes) to the classical
reality with a single outcome, which has haunted research-
ers since the very foundation of quantum mechanics
[19,61,62]. However, the quantum-classical transition we
deal with in this work is a specific one.
The performed numerical experiments on measurements

of the magnetization density in skyrmionic systems and
antiferromagnets unequivocally testify that there should be an
additional transformation of the system’s wave function
before the measurement, which would give a classical spin
configuration as outcome of the measurement. Now, we have
to establish the relation of the TOS approach to the
decoherence program [12–17]. First of all, according to
the decoherence theory, macroscopic systems are never
isolated from their environments, which automaticallymakes
theTOSapproach,whichpredicts theproperties of an isolated
quantum system in the thermodynamic limit, incomplete
without taking into account the influence of the environment.
The decoherence leads to the environment-induced super-
selection of states (pointer states), which remain stable in the
presence of the environment. The environment has little effect
on the pointer states, since they are already classical. Thus,
following this definition, we would like to stress that the
coherent (target) wave functions corresponding to the
classical skyrmionic or antiferromagnetic textures we recon-
struct within the TOS framework can be associated to such
pointer states introduced in the decoherence theory. For
simpler model situations, the transition from quantum singlet
state to classicalNéel state under the effect of the environment
is studied in Refs. [63,64].
In general, the search for the pointer states can be realized

within the following scheme. First, one has to define a
general density matrix ρSE that describes an entangled
superposition of the quantum system in question (S) and
the environment (E). Then, it is necessary to compute the
reduced density matrix for the quantum system by tracing
the environmental part out: ρS ¼ TrEρSE . All possible states
of the systemare involved in ρS defined as a function of time.
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Thus, minimizing von Neumann entropy for ρSðtÞ allows
one to detect the pointer states. However, having introduced
an environment explicitly, one would have to make some
assumption on its properties, which leads to the loss of
generality of the performed analysis. Besides, from the

numerical point of view, a simulation of the environment to
detect the pointer states looks somehow unrealistic, since it
should be characterized by an exponentially larger number
of degrees of freedom than those describing the investigated
quantum system itself.

Pointer
states

OptimizationInitial
states

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Step

Step

Step

4% 96%

100%

12% 65%23%

FIG. 4. Searching for pointer states. Examples of magnetic structures corresponding to the different realizations of the random state
ΨR generated with TOS eigenfunctions in the case of square-lattice (a) and triangular-lattice (d) Heisenberg models as well as for
quantum skyrmion (g). (b),(e),(h) Loss functions describing the decrease of the entanglement in the system in question due to
decoherence. The insets show the evolution of the magnetic structures during the optimization. (c),(f),(i) Examples of pointer states—
classical configurations that are preselected by the decoherence and revealed in the quantum state measurements. Histograms denote the
percentage of realization of a certain pointer state in 100 independent numerical experiments for each spin model.
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Fortunately, the wave functions we consider within the
TOS theory to describe quantum antiferromagnets and
skyrmions contain pointer states by construction. Thus,
in our work, we mimic the influence of the environment on
the quantum system by optimizing ΨR as a function of α
toward a coherent (pointer) state. In this way, the environ-
ment is taken into account on the level of a loss function
without explicitly introducing it into the model. The
discussion above on the decoherence theory makes the
choice of the loss function obvious:

EAðαÞ ¼ −TrρAðαÞlog2ρAðαÞ; ð8Þ

where ρAðαÞ ¼ TrBρABðαÞ is the reduced density matrix for
a half-system bipartition into parts A and B. This loss
function is nothing but von Neumann entanglement
entropy. Thus, in our consideration, the subsystem B acts
like an “environment” in the sense of the set of degrees of
freedom that are integrated out. As we show below, this
procedure allows us to find a collection of few low-lying
energy eigenstates which are closest to the classical analog.
Their entanglement with “the surroundings” is minimal.
This is consistent with the standard definition of pointer
states but generates “the environment” in a much simpler
and direct manner.
The use of such a loss function for optimizing ΨR allows

us to describe the decrease of the uncertainty due to the
contact of the quantum state with the environment. Some
examples of the evolution of random states ΨR describing
quantum antiferromagnets and skyrmions within gradient-
descent procedure are presented in Figs. 4(b), 4(e), and 4(h).
Depending on the initial random combination of the TOS
eigenfunctions, different alternatives of the classical out-
come can be realized. In the case of the square-lattice
Heisenberg antiferromagnet, the symmetry of the TOS
eigenstates allows for the formation of only one type of
pointer state, that is, the 180° Néel configuration [Fig. 4(c)].
At the same time, there are two alternatives allowed by the
symmetry of the triangular-lattice Heisenberg model,
namely, 120° Néel and collinear stripe phases [Fig. 4(f)].
The latter is characterized by a larger energy than the former
one for the considered spin Hamiltonian (4). However,
including next-nearest-neighbor exchange interactions in
the model Hamiltonian is known to change the balance
between these classical configurations [65].
The survival of themost robust, that is, pointer states, in an

environment was called by Zurek “quantum Darwinism”
[17]. It is worth tomention that theword “Darwinism”when
discussing an optimization problem means probably much
more than just a bright analogy. Formal correspondence
between Darwinian evolution, the optimization problem in
machine learning, and statistical mechanics was recently
discussed in Refs. [66,67]; the loss function corresponds to
(minus) the logarithm of fitness in evolutionary biology and
to the free energy in statistical mechanics.

D. Scenario for experiments

The theory of quantum Darwinism for degenerate
states presented above describes the environment-driven
evolution of the eigenfunction of a system, which allows
one to establish a direct connection between entangled
quantum states and known classical magnetic orders
observed for some crystalline systems. To extend this
analysis, we show that our approach can reveal pointer
states unknown before, which will encourage new experi-
ments. For these purposes, we consider the antiferromag-
netic Heisenberg spin-1

2
model defined on the perfect

triangular plaquette [Fig. 5(a)]. This model can be
realized with different experimental techniques such as
ultracold atoms in optical lattice [68,69], photonic quan-
tum simulators [70], or scanning tunneling microscopy.
This system is characterized by a fourfold degenerate
ground state that is separated from the excited states by a
spin gap of 3J=2 [Fig. 5(a)].
We are interested in describing the ground state of this

quantum system, which means that the corresponding
experimental temperature should be smaller than the spin
gap. Because of the ground state degeneracy, the system is
characterized by random orientations of spins of random
lengths. It strongly differs from the classical 120° anti-
ferromagnetic state for which the length of the spin is 1

2
.

Moreover, the quantum and classical solutions are different
in entanglement. While for the former the von Neumann
entropy averaged over single-site subsystems can be
estimated to be about 0.78, the classical solution corre-
sponds to the trivial coherent state with zero entanglement
entropy. Our aim is to find pointer states—combinations
of ground states that are characterized by the smallest
entanglement.
To find the pointer wave functions for the Heisenberg

triangle quantum states, we adopt the loss function

EΔðαÞ ¼
1

3
½EAðαÞ þ EBðαÞ þ ECðαÞ� ð9Þ

that represents the average value over the loss functions
calculated with Eq. (8) for sublattices A, B, and C. The
resulting pointer quantum states [an example is presented in
Fig. 5(c)] are characterized by a von Neumann entangle-
ment entropy of 0.65 for each single-site subsystem. This is
the minimal value that can be reached for the given ground
state manifold. Such states reveal 120° antiferromagnetic
order. However, in comparison with the classical ordering,
the magnetic moments are reduced in the pointer state. The
length of the ith spin in the state ΨA can be calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨAjSxi jΨAi2þhΨAjSyi jΨAi2þhΨAjSzi jΨAi2

p
and is equal

to 0.33, while the classical spin length is 1
2
. Therefore, the

pointer states that fulfill our criterion of minimal entangle-
ment can be classified as hybrid and reveal both quantum
and classical properties.
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Thenoncollinear spin ordering of the pointer states should
facilitate their detection in real experiments. In this regard,
we believe that an appropriate experimental platform to
realize the Heisenberg-triangle model is provided by ultra-
cold atoms in optical lattices. In these experiments, the basic
system’s parameters—the tunnel matrix elements, a poten-
tial bias, and on-site interaction energies—can be tuned in
such a way as to mimic many-body spin Hamiltonians
including the isotropic Heisenberg model with antiferro-
magnetic as well as ferromagnetic couplings [68]. Examples
of experimental results that could be relevant for confirming
the quantum Darwinism model on the degenerate states
include a realization of three Ising spins on a frustrated
triangular cluster [71], a demonstration of antiferromagnetic
superexchange interactions in ultracold atomic dimers [69],
or the simulation of noncollinear orders [72] among others.
Importantly, there also are techniques for probing the
entanglement in ultracold atomic systems [71], which is
crucial for characterizing the hybrid states we predict.
The other option is to study clusters of magnetic adatoms

at metallic surfaces; in the simplest geometry, this can be
just magnetic dimers. As shown theoretically in Ref. [63],
the state of such a dimer has a phase transition from a
quantum singlet state to a classical antiferromagnetic state
when the ratio of the hybridization parameter with a

fermionic bath to the interatomic hopping increases so
that one goes from an isolated quantum system to an open
one. The conduction electrons in the metallic substrate play
the role of the fermionic bath. The magnetic state of
individual atoms can be probed by spin-polarized scanning
tunneling microscopy [73], and the above-mentioned ratio
can be changed in two ways. First, one can use different
thicknesses of isolating spacer between the adatoms and the
substrate using, for instance, atomic terraces at the spacer,
for the same interatomic distances. Alternatively, and
probably even simpler, one can put atoms at different
distances for the same substrate. Such experiments look
quite straightforward and practically doable.

III. DISCUSSION AND OUTLOOK

In our work, we reveal and explore a connection between
quantum and classical systems with the combination of the
Anderson tower of states and decoherence theory. On the
examples of topologically protected skyrmionic systems
and of the antiferromagnet, we unambiguously show that
the classical spin order can be reconstructed only from a
specific set of a few low-lying eigenstates of the corre-
sponding quantum Hamiltonian. Reconstruction with TOS
assumes the degeneracy of the states that form each tower,
which can be realized either on the level of small-size

Random state Pointer state Coherent state

B C

A

Model(a)

(c)

(b) Eigenspectrum

FIG. 5. Candidate for demonstrating the quantum Darwinism of degenerate quantum systems in real experiments. (a) Antiferro-
magnetic Heisenberg model defined on the triangular plaquette. (b) Eigenspectrum of the Heisenberg model characterized by fourfold
degenerate ground and excited states. (c) Example of a magnetic structure corresponding to a random superposition ΨR of ground
eigenstates, pointer state ΨA optimized with respect to von Neumann entropy showing reduced local magnetization, and classical model
solution ΨT .
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quantum systems as in the case of the skyrmions or in the
thermodynamics limit (antiferromagnets). The original
TOS theory does not explain the mechanism that promotes
the classical combinations among an infinite number of
other superpositions that can be found within a degenerate
manifold. We answer this question and show that the
decoherence induced by a quantum environment plays a
decisive role in the specific choice in favor of a classical
state of a system which is a priori quantum.
The demonstrated reconstruction of pointer states from

the tower of states by just minimizing the entanglement
entropy in that subspace could have interesting applications
in identifying the order in systems where one knows that
there is a phase transition but has no clue as to what the
order could be (a problem known as hidden order): From
the low-energy states, one could try to determine the linear
combinations with lowest entanglement and see if some
kind of classical order appears in the resulting state.
Regarding its technological implications, we note that

each TOS wave function encodes multiple copies of the
same classical order and, at the same time, is featureless on
the level of the magnetization density. It means that such a
quantum representation of the classical order guarantees
maximal protection of the information against different
defects or external fluctuations. In this case, the information
is encoded in a very sophisticated way in entangled states of
a quantum system, which requires the involvement of an
extremely powerful decryptor. As we show in this work, the
quantum environment facilitates the solution of this decod-
ing problem and prepares the state to read out by an
observer. This looks promising for the realization of a
quantum search system in which information is retrieved
through the contact of a carefully prepared quantum system
with a quantum environment that is characterized by an
exponentially large number of degrees of freedom. It
suggests an alternative to Grover’s search algorithm [74]
based on amplifying the amplitude of the concrete basis
function for isolated quantum systems. Thus, we believe
that the proposed combination of the TOS and decoherence
theory can be employed to solve not only fundamental
problems in condensed matter physics as demonstrated in
this paper, but also more practical ones related to the
development of quantum technologies.

Codes for constructing the tower of states and examples
of reconstructing the Néel orders on a 3 × 3 triangular
supercell have been deposited in Zenodo [75].
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APPENDIX A: TOS FOR SKYRMIONS

In this section, we discuss the structure of the eigens-
pectrum and analyze different approximations of the
classical skyrmion order obtained with TOS protocol.
Figure 6(a) gives an enlarged view on the low-energy part
of the spin Hamiltonian eigenspectrum and demonstrates
important features related to its structure and degeneracy,
which supplements data presented in Fig. 3 in the main text.
One can see that the width of the level band at the bottom of
the energy gap is much smaller than the size of the gap,
which confirms our consideration assuming the degeneracy
of these states. The energy gap value is larger than 0.2
within the skyrmionic phase [Fig. 6(b)].
In our work, we construct various towers of states that

differ from each other in the number of involved eigenlevels
and corresponding eigenstates. The example of the typical
loss-function behavior during the optimization process is
given in Fig. 6(c). It demonstrates a steep decrease for
N < 20, where N is the number of eigenlevels taken into
account. Further increasing N leads to the saturation of the
loss function. Importantly, the number of eigenstates we
consider is negligibly small with respect to the total
dimension of the Hilbert space. More specifically, while
the total dimension of the Hilbert space is equal to 219, to
construct an approximation of the coherent skyrmion state
we use superpositions of up to 495 eigenstates that can be
packed into 105 different eigenlevels taking into account the
degeneracy of the eigenfunctions.
Figure 6(d) shows the comparison of the probabilities of

the basis functions that give the largest contribution to the
quantum skyrmion and to the coherent skyrmion state and
its approximations with different numbers of N. The
probability function for ΨT is characterized by a steplike
profile, which means that this quantum state is highly
structured in the Hilbert space. By contrast, the quantum
skyrmion is strongly delocalized. Figure 7 shows the
composition for some approximations of the coherent
skyrmion state. The largest weights (

P
n α

2
n, where n

corresponds to a particular eigenlevel) are provided by
degenerate states corresponding to the first three excited
energy levels. The eigenstates of larger energies give much
smaller contributions, but they are important to reach the
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high fidelity in reproducing the concrete solution of the
classical version of the Hamiltonian (4). Indeed, as can be
seen from Fig. 8, the local magnetization of the quantum
Hamiltonian (4) is uniformly distributed on the lattice. We
find that already the first approximation for ΨA that takes
into account a small number N of levels leads to a
magnetization profile that reminds one of the classical
skyrmion spin texture. Such an approximation is formed
with the ground state and the sixfold degenerate first
excited state. Further extension of the set of excited states
increases the fidelity between the target wave function ΨT
and its approximation ΨA. For N ¼ 105, the fidelity
reaches the value of 97.5%.
For a complete characterization of the transition from the

quantum skyrmion wave function to the classical skyrmion

state, the performed investigation of the magnetization
pattern should be supplemented by the calculation of the
scalar chirality, Eq. (5), and its distribution over the system
in question [45], contributions of the individual triangles.
We note that if the Hamiltonian (4) is defined on an infinite
lattice, the problem can be solved on the basis of a supercell
with periodic boundary conditions, and all individual
triangular plaquettes produce the same contribution to
the total chirality. The distribution of the chirality is, thus,
uniform as the distribution of the magnetization in the
system. As the bottom row in Fig. 8 shows, in the case of
the classical skyrmion state ΨT and its different approx-
imations ΨA, the scalar chirality has a nonuniform distri-
bution with the largest contributions from the triangles
characterized by the strongest variation of the magnetiza-
tion, which can be explained by the smallness of the
system. Importantly, the values of the total chirality are in
the range 0.52–0.56 within the series of approximations as
well as for the target wave function ΨT that corresponds to
the classical skyrmion structure.
Recent experiments [76] show the possibility of stabi-

lizing antiskyrmions on an equal footing with ferromag-
netic skyrmions in a cubic chiral magnet. Thus, searching
for a superposition of the quantum eigenstates that recon-
structs antiskyrmion and comparison with the skyrmion
TOS could represent next interesting problems to explore
with our theory. As a preliminary step for future consid-
erations, we define coherent states corresponding to anti-
skyrmionic counterparts for three ferromagnetic skyrmions
considered in our work. Then, by using the developed
optimization procedure, we construct Anderson towers of
the 495 low-lying eigenstates to get the best approximation
for the classical antiskyrmion orderings. In contrast to the
skyrmion case, for which the same set of eigenfunctions
gives the fidelity of 97.5% between the coherent state and

(a)

(d)

(b) (c)

Eigenlevel Eigenlevel Eigenlevel

Eigenlevel

FIG. 7. Structure of the coherent skyrmion state approxima-
tions. Results obtained with different numbers of states from the
low-lying part of the eigenspectrum of the Hamiltonian Eq. (4).
The points denote the sum of probabilities (α2n) of the eigenstates
corresponding to the same energy (eigenlevel). N denotes the
number of eigenlevels with different energies.

E
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Magnetic field Basis function
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Eigenlevel

FIG. 6. Structure of the eigenspectrum and performance of the gradient-descent optimization in the case of the skyrmionic TOS.
(a) Low-energy part of the eigenspectrum of the quantum Hamiltonian, Eq. (4) obtained with J ¼ −0.5, jDj ¼ 1, and B ¼ 0.44. The
numbers denote the degeneracy of each eigenlevel. (b) Magnetic field dependence of the energy gap between the low-lying eigenlevels
and the rest. (c) Dependence of the loss function on the number of eigenstates of minimal energy. (d) Comparison of the ordered
distributions of quantum states amplitudes. Only the hundred basis functions giving the largest contribution to the particular state are
considered.
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its approximation, the reconstruction of the antiskyrmions
is characterized by a very low fidelity that is not higher than
16%. It suggests that the skyrmion and antiskyrmion TOS
may belong to different parts of the eigenspectrum of the
periodic two-dimensional quantum system. To clarify this,
high-energy excited states should be investigated, which is
a complex computational problem beyond the scope of
this study.
From the technological perspective, it is of tremendous

interest to move skyrmions by an applied spin-polarized in-
plane electron current or by pulses of magnetic fields
introduced byAFM tips. Importantly, in such investigations,
one deals with isolated magnetic skyrmions that are nor-
mally stabilized in finite working areas with open bounda-
ries. Oppositely, in our work, we explore properties of
infinite magnetic systems that are simulated by means of
supercells with periodic boundary conditions. In other
words, we imitate a lattice of quantum skyrmions, which
prevents one from describing a driven isolated quantum
skyrmion in the present setup. Nevertheless, one could
model a nonequilibrium dynamics of the quantum skyrmion
lattice that is generated by laser pulses. Generally, such
simulations require account of excited states of the quantum
model above the gap. It means that a further development of
efficient exact diagonalization techniques is needed as in the
case of the antiskyrmions simulations described above.

APPENDIX B: ONE TOWER
FOR DIFFERENT PHASES

The results presented in the main text and Appendix A
justify the possibility to relate the eigenspectrum of the

quantum spin Hamiltonian (4) to the classical order
obtained for the particular value of the interspin interaction
and the magnetic field. In this section, we demonstrate the
power of the proposed approach in imitating different
trivial (spin spiral) and nontrivial (skyrmion) topological
structures, simultaneously. For this purpose, we consider
the same set of k ¼ 495 eigenstates obtained for the
quantum model with the parameters J ¼ −0.5, jDj ¼ 1,
and B ¼ 0.44. Some examples presented in Fig. 9 confirm
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FIG. 8. Magnetization (top) and scalar chirality (bottom) calculated for the reconstructed wave function corresponding to the classical
skyrmion with different numbers of eigenstates of the parent spin Hamiltonian. The arrows denote the in-plane direction of spins, while
the z components are defined with color. The triangle-resolved scalar chirality QΨ

ijl denoted with shaded triangles is calculated for a real
quantum skyrmion state (left plaquette), a coherent state with classical profile of the magnetization (right plaquette), and for quantum
states that are different approximations of the classical skyrmion within the Anderson tower approach. N denotes the total number of
low-lying energy levels involved in the state reconstruction.
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FIG. 9. Reconstruction of different phases. (a) Examples of
classical spin spiral and skyrmion magnetic configurations stabi-
lized at different magnetic fields B that can be reproduced with
high fidelity, F ¼ 0.95, 0.96, 0.97, 0.97, and 0.97 (from left to
right) by using the eigenspectrum of the quantum Hamiltonian (4)
with the fixed set of model parameters J ¼ −0.5, jDj ¼ 1, and
B ¼ 0.44. (b) Comparison of the contributions to approximations
of the spin spiral (B ¼ 0) and skyrmion (B ¼ 0.44) configurations.
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the high fidelity of the reconstruction of completely differ-
ent coherent states with the same set of quantum states.
Surprisingly, we find that coherent states corresponding to
topologically trivial and nontrivial classical configurations
can be obtained with the same set of 495 eigenfunctions of
the quantum spin Hamiltonian (4) that reveals the quantum
skyrmion state. The comparison of the contributions to the
corresponding approximations of the classical spin spiral
and skyrmion configurations is presented in the bottom in
Fig. 9. These two profiles are clearly different, and one can
conclude that the topology of a classical spin texture is
related to the first few (N ¼ 1, 2, and 3 excited) levels of
the quantum spectrum.
As follows from Fig. 9, one can distinguish the spin

spiral and skyrmion phases by the decomposition of the
weight profiles of the towers. In general, performing phase
classification in the case of noncollinear magnets is
supposed to be a hard problem that can be solved by
inventing order parameters or other means including
machine learning [77–80]. Our results suggest a distinct
way for phase classification through Anderson towers.

APPENDIX C: TOWER OF CLASSICAL STATES

The main focus in this paper is on reproducing the
classical state with low-lying quantum states, and one
might think that the quantum-classical connection in the
Anderson’s approach works only in one way. However,
it is not the case. A simple justification can be demon-
strated, for example, for the antiferromagnetic configura-
tion of two spins S ¼ 1

2
. On one hand, the antiferromagnetic

state can be expressed through a combination of the
singlet wave functions ΨA1

¼ ð1= ffiffiffi
2

p Þðj↑↓i − j↓↑iÞ and

ΨA2
¼ ð1= ffiffiffi

2
p Þðj↑↓i þ j↓↑iÞ, which corresponds to the

tower of quantum states. On the other hand, the singlet
wave function entangles two coherent antiferromagnetic
states ΨT1

¼ j↑↓i and ΨT2
¼ j↓↑i. It means that one can

construct two different types of towers: the tower of the
classical states to reproduce the quantum state and, vice
versa, the tower of quantum wave functions to reconstruct
the antiferromagnetic classical configuration. Thus,
Anderson’s approach supports both classical-quantum
and quantum-classical channels of characterization of the
system, which fundamentally distinguishes this approach
from measurement-based theories that assume complete
or partial collapse of the quantum wave function upon
measurement.
To explore the possibility of reconstructing the quantum

states, which are the eigenfunctions of the quantum spin
Hamiltonian, with classical solutions, we built a tower of
coherent states on the basis of the classical skyrmionic
solution obtained at B ¼ 0.44. This magnetic skyrmion is
visualized in Fig. 9(a) (skyrmion III), and its properties
regarding the spin-spin correlation functions are discussed
in a previous work [45]. Initially, the tower of states is built

up as a random superposition of the coherent states
corresponding to the considered classical skyrmion and
its replicas obtained applying translational and rotational
symmetry operations as visualized in Fig. 10(a). The
number of coherent states contributing to the tower depends
on the specific classical configuration and in our case is
equal to 38:

ðC1Þ

where ai is the amplitude of the ith coherent state. One
should note that

P
i a

2
i ≠ 1, since coherent states in

Optimized

(a)

(b)

(c)

Uniform

FIG. 10. Tower of classical skyrmions. (a) 38 classical sky-
rmionic configurations obtained at B ¼ 0.44 and used to define
the tower of classical states [Eq. (C1)]. (b) Reconstruction
fidelities of the ground and excited eigenfunctions of the quantum
Hamiltonian [Eq. (4)] calculated at B ¼ 0.44. The reconstruc-
tions are performed with optimization of the tower of classical
states [Eq. (C1)]. (c) Calculated fidelities (circles) describing the
quality of optimizing the quantum ground states at different
magnetic fields with the tower of classical states. Triangles
correspond to the approximation of Eq. (C1) taken with
a1 ¼ a2 ¼ � � � ¼ a38 ¼ 0.1078068.
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Eq. (C1) are not orthogonal to each other. Nevertheless, the
state Ψcl

A remains to be normalized to 1 in the σz basis.
The constructed tower is optimized with the gradient-

descent approach to get maximum possible overlap with
one of the states from the low-lying part of the eigenspec-
trum. For demonstration purpose, we choose the eigens-
pectrum of the quantum spin Hamiltonian (4) calculated for
the same value of the magnetic field B ¼ 0.44. From
Fig. 10(b), one can see that the constructed classical tower
reveals high fidelity (more than 95%) in reconstructing the
eigenstates with k ¼ 0;…; 18 that belong to the low-energy
part of the eigenspectrum below the energy gap. In contrast
to the low-energy eigenfunctions, the calculated fidelities
for the excited states above the gap are nearly zero.
The optimization of the quantum ground states obtained

at different values of magnetic field [circles in Fig. 10(c)]
reveal high fidelities close to 1 within the skyrmionic phase
for 0.3 ≤ B < 0.66 [45]. Interestingly, for B < 0.3, one can
find a combination of coefficients in Eq. (C1) with the
gradient-descent method such that there is a nonzero
overlap between the quantum ground state and the con-
structed tower of classical skyrmionic configurations. Even
at B ¼ 0, the fidelity is not identically zero and has the
value of about 0.1, which is direct evidence that there is a
quantum superposition of the spin spiral and skyrmion
states in the range of fields 0 ≤ B < 0.3.
Another important result is that the optimized coeffi-

cients within the skyrmionic phase (0.3 ≤ B < 0.66) are
practically the same for each term in Eq. (C1). Triangle
symbols in Fig. 10(c) denote the overlap between the
quantum ground state calculated for a specific magnetic
field and the wave function Ψcl

A taken with a ¼ a1 ¼
a2 ¼ � � � ¼ a38 ¼ 0.1078068. One can see that, using such
a uniform state

ðC2Þ

we can approximate any ground state within the skyrmionic
phase with high fidelity. In other words, it means that the
quantum ground state within the skyrmionic phase is
almost insensitive to the external magnetic field. This
specific choice of coefficients gives the wave function
for a pure skyrmion state, so fidelity of this pure skyrmion
state with the state that is a superposition of spin spirals and
skyrmions is zero, as we see for B < 0.3.
Thus, a highly entangled wave function jΨ0i, the ground

state of the quantum spin Hamiltonian (4), can be expressed
as a simple superposition of trivial coherent states that
correspond to the same classical magnetic configuration
and differ from each other only by translation or rotation
operations. We believe that this result is remarkable. First of
all, it directly demonstrates the connection between quan-
tum and classical skyrmion states. Previously, the relation
between quantum and classical skyrmionic solutions was

established only on the level of observables, such as the
magnetization, the spin structural factors, and the scalar
chirality. Furthermore, Eq. (C1) suggests a distinct way for
simulating and storing large-scale quantum topological
states. They can be efficiently prepared on the basis of
the classical solution, thus avoiding the hard-to-do exact
diagonalization procedure, for which the current limit is a
quantum system of 50 spins [81].
It is also worth discussing the connection of the quantum

state decomposition onto coherent states realized within
Eq. (C1) and the results of projective measurements of Ψ0

reported in our previous work [45]. Looking at Eq. (C1),
one might think that one of the classical replicas of a
skyrmion should be observed in the experiments after the
measurement. However, it is not the case. A single
projective measurement in σz basis results in a basis
function that can be attributed to one or more coherent
states (1) simultaneously. That is why in Ref. [45] when
measuring Ψ0 a sequence of basis states that are fully
unstructured with respect to the classical skyrmion profile
is observed. Averaging over such measurements leads to a
uniform magnetization. To amplify the contribution of one
particular coherent state, it is necessary to perform the
measurements by using the corresponding local bases for
each spin in the system. In principle, such a procedure can
be realized in quantum computing. In this case, one gets the
basis state j000…0i or j↑↑↑…↑i with the probability
approximately 0.01, which can be considered as a finite
value in comparison with practically zero contribution of
that basis function in the global σz basis.
A purely quantum mechanism that allows one to

preselect a specific coherent state from Eq. (C1) before
the measurements is discussed in Sec. II C in the main text.

APPENDIX D: ADDITIONAL ANALYSIS
OF THE POINTER STATES SEARCH

In this section, we extend the discussion presented in
Sec. II C in the main text. The periods of the square- and
triangular-lattice antiferromagnetic structures considered in
this work are shorter than that of the skyrmion one. The
square 4 × 4 and triangular 3 × 3 supercells we use can be
safely divided into smaller fragments (clusters) locally
reproducing the corresponding antiferromagnetic configu-
ration between nearest spins. It means that the reduced
density matrix introduced in Eq. (8) is defined on the
system’s fragment that is expected to contain complete
information on the magnetic configuration stabilized in the
classical case. For the quantum skyrmion system, the
situation is more complicated. A 19-site plaquette can host
only one skyrmion [45]. It means that the subsystem A of
nine sites for which we calculate ρA covers roughly half
of the skyrmion in the classical case. Judging by the fact
that the optimization of entanglement entropy calculated
for the local fragment of the quantum system restores the
classical skyrmionic structure, one can conclude that the
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corresponding reduced density matrix compresses the
complete information on this three-dimensional topological
texture.
To elaborate on this point and to probe the limit of such

quantum compression of the classical information, we
perform the quantum-classical optimization described in
Eq. (8) by choosing subsystems of different shapes and
different numbers of spins involved in the reduced density
matrix. It follows from Fig. 11 that the symmetry and
size of the subsystem used to probe the entanglement
strongly affect the quality of the resulting classical state.
Nevertheless, even the single-site entropy contains enough
information to get a recognizable skyrmionic pattern, albeit
with some symmetry distortion.
In the proposed realization of the Anderson idea on

tower of states, one can find a motif of generative machine
learning [82], one of the goals of which is to generate
new reliable content (images and videos). Instead of
explicitly specifying a target state, we can describe its
required properties using an appropriate loss function.
Importantly, such properties can be related not only to
some physical observables (magnetization and spin-spin
correlation functions), but also to pure theoretical physical
quantities such as von Neumann entropy. It opens the way
to constructing different classical states as well as various
quantum-classical hybrid wave functions characterized by
nonzero entanglement and specific magnetization patterns.

APPENDIX E: EXACT DIAGONALIZATION
DETAILS

The eigenstates used for the calculation of the scalar
chirality and magnetization are obtained via an exact
diagonalization approach. For that purpose, we use the
implicitly restarted Arnoldi algorithm as implemented in
the ARPACK library. Such a solution allows us to optimize
memory and CPU utilization due to compressed row

storage sparse matrix format [83] used for the representa-
tion of the Hamiltonian. We also use the package for exact
diagonalization developed by Westerhout [84]. In order to
construct the TOS for the 19-site supercell, we calculate
512 eigenstates using 2048 Arnoldi vectors for a magnetic
field B ¼ 0.44. For the classical TOS shown in Fig. 10(c),
we also calculate 16 low-lying eigenstates including the
ground state using 64 Arnoldi vectors for a magnetic field
in the interval [0, 1] with steps ΔB ¼ 0.02. In the case of
antiferromagnets, we solve the eigenproblem for each
sector of the Hamiltonian separately. For each spin sector
of the triangular supercell we perform a full diagonaliza-
tion, whereas for the square-lattice supercell we calculate
512 low-lying eigenvectors.
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