
Interaction-Driven Topological Phase Diagram of Twisted Bilayer MoTe2

Wen-Xuan Qiu,1 Bohao Li,1 Xun-Jiang Luo,1 and Fengcheng Wu 1,2,*

1School of Physics and Technology, Wuhan University, Wuhan 430072, China
2Wuhan Institute of Quantum Technology, Wuhan 430206, China

(Received 23 May 2023; revised 6 September 2023; accepted 12 October 2023; published 7 November 2023)

Twisted bilayer MoTe2 is a promising platform to investigate the interplay between band topology and
many-body interactions. We present a theoretical study of its interaction-driven quantum phase diagrams
based on a three-orbital model, which can be viewed as a generalization of the Kane-Mele-Hubbard model
with one additional orbital and long-range Coulomb repulsion. We predict a cascade of phase transitions
tuned by the twist angle θ. At the hole-filling factor ν ¼ 1 (one hole per moiré unit cell), the ground state
can be in the multiferroic phase, with coexisting spontaneous layer polarization and magnetism; the
quantum anomalous Hall phase; and finally, the topologically trivial magnetic phases, as θ increases from
1.5° to 5°. At ν ¼ 2, the ground state can have a second-order phase transition between an antiferro-
magnetic phase and the quantum spin Hall phase as θ passes through a critical value. The dependence of the
phase boundaries on model parameters, such as the gate-to-sample distance, the dielectric constant, and the
moiré potential amplitude, is examined. The predicted phase diagrams can guide the search for topological
phases in twisted transition metal dichalcogenide homobilayers.
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I. INTRODUCTION

Moiré superlattices formed by group-VI transition metal
dichalcogenides (TMD) provide a new solid-state platform
to simulate model Hamiltonians on honeycomb and tri-
angular lattices [1–6]. TMD monolayers are semiconduc-
tors with sizable spin-orbit splitting in the valence band [7];
therefore, they have a reduced number of low-energy
degrees of freedom compared to monolayer graphene.
This theoretical simplification makes moiré TMD systems
an appealing platform for quantum simulation. In twisted
TMD homobilayers, the low-energy moiré valence bands
can be mapped to the Kane-Mele model on a honeycomb
lattice for �K valley states [2] or a honeycomb tight-
binding model with negligible spin-orbit coupling for Γ
valley states [3–5]. A variety of physical effects have been
theoretically predicted for the twisted TMD homobilayers
[2–5,8–17]. Experimental studies have reported correlated
insulating states as well as signatures of interaction-induced
topological states in twisted bilayer WSe2 (tWSe2) [18–20]
and twisted bilayer MoTe2 (tMoTe2) [21–23]. In moiré
TMD heterobilayers, low-energy states reside primarily in

one layer due to the band offset between two different TMD
materials, and they can simulate the generalized Hubbard
model on triangular lattices [1]. Experimental observations
of Mott insulators [24,25], generalized Wigner crystals
[26,27], metal-insulator transitions [28,29], and heavy
fermion behaviors [30] in moiré TMD heterobilayers
support the Hubbard model physics. An out-of-plane
electric field can reduce the band offset in the heterobilayer
and induce band inversion, which can result in topological
moiré bands [31]. The electric field-induced topological
states have been experimentally realized in AB-stacked
MoTe2=WSe2 heterobilayers [32–34], which stimulated
active theoretical studies on the nature of the states [35–44].
In this paper, we present a theoretical study of the

interaction-driven quantumphase diagramof tMoTe2, where
the two layers are rotated by an angle θ relative to the
rhombohedral-stacked bilayer. As predicted in Ref. [2], low-
energy moiré valence bands of tMoTe2 originate from �K
valleys of monolayer MoTe2, where �K refer to the
monolayer Brillouin zone corners. The intralayer moiré
potentials confine low-energy states to two different loca-
tions [i.e., A and B sites of the moiré superlattice shown in
Fig. 1(a)] in the bottom and top layers, where the two
locations exactly correspond to the two sublattices of a
honeycomb lattice. The rotation between the two layers
generates layer-dependent momentum shifts in the kinetic
energy, which induces effective valley-contrasting and sub-
lattice-dependent fluxes on the honeycomb lattice model.
Because of the lattice geometry and the flux pattern, the first
two moiré valence bands realize the Haldane model [45]
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within one valley and the Kane-Mele model [46,47] when
both valleys are considered [2]. Moreover, the moiré bands
have narrow bandwidths, and electron interaction effects are
enhanced. Therefore, tMoTe2 can serve as amodel system to
study the interplay between band topology and many-body
interactions. However, tMoTe2 has not been studied exper-
imentally until very recently [21–23]. Two independent
experiments reported signatures of integer and fractional
quantumanomalousHall states in tMoTe2 with θ ≈ 3.7° [22]
and 3.4° [23], respectively. This exciting experimental
progress makes the theoretical prediction of Ref. [2] exper-
imentally relevant and calls for thorough studies of themany-
body interaction effects in tMoTe2.
The mapping between the first two moiré bands and the

Kane-Mele model allows us to study the interaction effects
within a lattice model, which should be a generalized Kane-
Mele-Hubbard model since the realistic interaction is the
long-range Coulomb repulsion. However, such a mapping
is limited to the small θ regime of θ < θ�1, where θ�1 is
estimated to be about 1.74° in Ref. [2]. For θ > θ�1, there is a
topological band inversion between the second and the
third bands. To describe the low-energy moiré bands in a
unified manner regardless of the exact values of θ, we
construct a three-orbital model based on the Wannier states
of the first three bands. The three-orbital model faithfully
captures the energy, symmetry, and topology of the first
three bands. The interacting model is then obtained by

projecting the Coulomb interaction onto the Bloch-like
states derived from the Wannier orbitals. The interacting
Hamiltonian is formulated in momentum space and implic-
itly includes all microscopic interactions such as density-
density interactions and Hund’s coupling.
We calculate the quantum phase diagrams of the interact-

ing three-orbital model at hole-filling factors ν ¼ 1 and
ν ¼ 2, where ν counts the number of doped holes per moiré
unit cell. The phase diagrams are obtained by comparing the
energy of multiple competing states within the self-consis-
tent Hartree-Fock approximation. We construct the phase
diagram as a function of θ and examine its dependence on the
gate-to-sample distance d, the dielectric constant ϵ, and the
moiré potential amplitude V. We predict a cascade of phase
transitions tuned by θ in the range between 1.5° and 5°. At
ν ¼ 1, the ground state is in the multiferroic phase with
spontaneous layer polarization and magnetism for small θ,
the quantumanomalousHall phasewith aChern number of 1
for intermediate θ, and topologically trivial magnetic phases
for large θ. At ν ¼ 2, the ground state is in interaction-driven
magnetic phases for small θ and turns into the quantum spin
Hall phase for large θ. We also discuss how the phase
boundaries depend on parameters such as d, ϵ, and V. The
predicted phase diagrams demonstrate the remarkable rich-
ness of tMoTe2 and are expected to guide further exper-
imental and theoretical studies.
There are several benefits of performing the many-body

calculation using the three-orbital model compared to the
full continuum model. First, the constructed Wannier states
provide a clear real-space picture of the low-energy degrees
of freedom and valuable intuition for studying interaction
physics. The localized Wannier orbitals allow us to devise
various mean-field states with different layer polarization,
magnetization, and topology. Second, the symmetry and
topology of electronic states become more apparent in the
Wannier basis. Third, the three-orbital model can be further
studied using techniques (e.g., exact diagonalization)
beyond mean-field theory.
The paper is organized as follows. In Sec. II, we construct

the noninteracting as well as the interacting three-orbital
model. Construction of the Wannier states is informed by
symmetry analysis of the moiré bands, which is detailed in
Appendix A. In Sec. III, we present the phase diagrams at
ν ¼ 1 and ν ¼ 2. An additional discussion on the phase
diagram and the model is given, respectively, in
Appendixes B and C. In Sec. IV, we conclude with a
summary and a discussion. Our theoretical results are
compared with the recent experimental findings, and future
directions are discussed.

II. MODEL

A. Moiré Hamiltonian

The moiré superlattices of tMoTe2 have D3 point-group
symmetry generated by a threefold rotation C3z around the
out-of-plane ẑ axis and a twofold rotation C2y around the

(b) (c)

(a)

FIG. 1. (a) Moiré superlattices formed in tMoTe2. Green, red,
and blue dots indicate, respectively, O, A, and B sites, which also
correspond to the centers of the three Wannier orbitals. The black
dashed lines mark a moiré unit cell. (b,c) Moiré band structure at
θ ¼ 1.5° and 2.5° in the þK valley. The integer numbers at γ and
κ� label the C3z angular momentum of the first three bands (see
Appendix A) while the color represents the relative weight of the
three Wannier orbitals. The band structures are plotted along
high-symmetry paths in momentum space with κ0þ ¼ −κ−.
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in-plane ŷ axis that exchanges the bottom (b) and top (t)
layers. As illustrated in Fig. 1(a), the moiré superlattices
have three distinct high-symmetry locations labeled by O,
A, and B, where the latter two positions are related by the
C2y symmetry.
The single-particle moiré Hamiltonian for valence band

states in tMoTe2 has been constructed in Ref. [2] and is
given by

Hτ ¼

0
B@− ℏ2ðk−τκþÞ2

2m� þ ΔþðrÞ ΔT;τðrÞ
Δ†

T;τðrÞ − ℏ2ðk−τκ−Þ2
2m� þ Δ−ðrÞ

1
CA;

Δ�ðrÞ ¼ 2V
X

j¼1;3;5

cos ðgj · r� ψÞ;

ΔT;τðrÞ ¼ wð1þ e−iτg2·r þ e−iτg3·rÞ: ð1Þ

Here, τ ¼ � represents �K valleys, and also spin up (↑)
and down (↓), since spin and valley are locked for valence
band states in TMD [7]. The moiré Hamiltonian Hτ in
Eq. (1) is represented by a 2 × 2 matrix in the layer-
pseudospin space. The diagonal terms in Hτ describe an
electron moving in the layer-dependent potential Δ�ðrÞ
with an amplitude V and phase parameters�ψ , and the off-
diagonal terms account for the interlayer tunneling with a
strength w. In Hτ, r and k are, respectively, position and
momentum operators,m� is the effective mass, the momen-
tum shifts κ� ¼ ½4π=ð3aMÞ�ð−

ffiffiffi
3

p
=2;∓1=2Þ are located

at corners of the moiré Brillouin zone, and gj ¼
½4π=ð ffiffiffi

3
p

aMÞ�fcos½ðj − 1Þπ=3�; sin½ðj − 1Þπ=3�g for j¼
1;…;6 are the moiré reciprocal lattice vectors. Here, aM ≈
a0=θ is the moiré period, and a0 is the monolayer lattice
constant. The moiré Hamiltonian Hτ is constructed based
on the continuum approximation. Effects of in-plane lattice
relaxation, which can be important at small twist angles
(θ ≲ 1°), are not taken into account in the Hamiltonian Hτ.
The continuum approximation can also become less accu-
rate at large twist angles (θ ≳ 5°) where the superlattices
become small. Nevertheless, the Hamiltonian Hτ qualita-
tively captures the evolution of electronic states as a
function of θ in a convenient way.
The moiré Hamiltonian Hτ with a fixed τ index is

invariant under the C3z and the combined C2yT symmetry
operations, where T is the time-reversal symmetry. The
two valleys are related by the C2y and the T symmetries,
which map Hþ to H−. Moiré bands of Hτ can be

characterized by Chern numbers CðnÞ
τ , where n is the band

index (in descending order of energy). Because of the T

symmetry, CðnÞ
− ¼ −CðnÞ

þ .
A systematic study on the single-particle topological

phase diagram ofHτ as a function of the model parameters
ðV;ψ ; wÞ can be found in Ref. [9]. Unless otherwise stated,
we take the parameter values estimated for tMoTe2 from

Ref. [2], a0 ¼ 3.472 Å, m� ¼ 0.62me, V ¼ 8 meV,
ψ ¼ −89.6°, and w ¼ −8.5 meV, where me is the electron
bare mass. The calculated moiré band structures are plotted
in Figs. 1(b) and 1(c) for two representative twist angles
θ ¼ 1.5° and 2.5°, respectively. For twist angles θ ≤ 5°

studied in this work, Cð1Þ
þ of the first band in the þK valley

is always quantized to 1. However, ðCð2Þ
þ ; Cð3Þ

þ Þ change from
ð−1; 0Þ for θ < θ�1 to ð1;−2Þ for θ > θ�1, where θ

�
1 ≈ 1.74°.

The topological phase transition at θ�1 is accompanied by
the gap closing between the second and the third bands at
the γ point (i.e., the center of the moiré Brillouin zone). The
first three moiré bands with a total Chern number of 0
provide a low-energy approximation of the full moiré band
structure and are the focus of this work.

B. Wannier states

We construct Wannier states for the first three moiré
bands so that the bands can be represented in terms of local
orbitals. The center of the Wannier states can be determined
by theC3z eigenvalues of Bloch states at the high-symmetry
momenta (i.e., γ and κ�). Symmetry analysis of the moiré
Hamiltonian and Bloch states is performed in Appendix A
following the approach developed in Ref. [44]. The C3z
angular momenta of the Bloch states at γ and κ� in the first
three bands are labeled in Figs. 1(b) and 1(c). The
symmetry eigenvalues indicate that Wannier states for
the first three bands should be centered at the A, B, and
O positions, respectively.
We complement the symmetry analysis with a physical

picture of the Wannier states. We first consider the case
with θ < θ�1. In this case, the first two bands have opposite
Chern numbers (�1), and the third band has a Chern
number of 0. Previous studies [2,11] have shown that the
first two bands in one valley effectively realize a general-
ized Haldane model on a honeycomb lattice with two
Wannier states located at the A and B positions, respec-
tively. For the third band, the C3z eigenvalues take the same
value at γ and κ� [Fig. 1(b)], which implies that the
corresponding Wannier states are centered at the O posi-
tions. These considerations are consistent with the results
obtained from the symmetry analysis. We then consider the
second case with θ > θ�1, which is separated from the first
case by a band inversion between the second and the third
bands. This band inversion does not change the centers of
the Wannier states for the three bands as a whole.
We construct the Wannier states for θ < θ�1 and θ > θ�1 in

a unified manner. The Wannier states in the moiré unit cell
associated with the lattice site R ¼ 0 can be formally
expressed as

WnτðrÞ ¼ 1ffiffiffiffi
N

p
X
k

ϕnτ
k ðrÞ; ð2Þ

where τ is the valley index, n labels the three Wannier
orbitals (n ¼ 1, 2, 3), and N is the number of k points
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included in the summation. Wannier states at a generic site
R are obtained through lattice translation, Wnτ

R ðrÞ ¼
Wnτðr − RÞ. In Eq. (2), ϕnτ

k ðrÞ is a Bloch-like state
associated with the Wannier states and related to Bloch
states of Hτ by a unitary transformation,

ϕnτ
k ðrÞ ¼

X
n0¼1;2;3

Un0n
kτ ψ

n0τ
k ðrÞ; ð3Þ

where ψn0τ
k ðrÞ is the Bloch state of the n0th moiré band at

momentum k and Ukτ is a 3 × 3 unitary matrix. We obtain
Ukτ by requiring that ϕ1τ

k and ϕ3τ
k are, respectively,

maximally polarized to the top and bottom layers. This
maximum value problem is equivalent to finding the
eigenstates of the layer polarization operator σz (i.e., the
z Pauli matrix in the layer pseudospin space) projected to
the subspace spanned by ψnτ

k with n ¼ 1, 2, 3,

Πkτ ¼

0
BB@
hψ1τ

k jσzjψ1τ
k i hψ1τ

k jσzjψ2τ
k i hψ1τ

k jσzjψ3τ
k i

hψ2τ
k jσzjψ1τ

k i hψ2τ
k jσzjψ2τ

k i hψ2τ
k jσzjψ3τ

k i
hψ3τ

k jσzjψ1τ
k i hψ3τ

k jσzjψ2τ
k i hψ3τ

k jσzjψ3τ
k i

1
CCA; ð4Þ

where ψnτ
k ¼ ½ψnτ

kb;ψ
nτ
kt �T is a two-component spinor in the

layer-pseudospin space. Then, Ukτ is determined by

U†
kτΠkτUkτ ¼

0
BB@

ρ1τk 0 0

0 ρ2τk 0

0 0 ρ3τk

1
CCA; ð5Þ

where ρ1τk < ρ2τk < ρ3τk . We further fix the phase of ϕnτ
k in

the following way. The phase of ϕ1τ
k is chosen by requiring

that its top layer component ϕ1τ
kt is real and positive at

rA ¼ aMð1=
ffiffiffi
3

p
; 0Þ, which is the A site associated with

R ¼ 0. Similarly, we take the bottom layer component of
ϕ3τ
k to be real and positive at the B site rB ¼ aMð2=

ffiffiffi
3

p
; 0Þ.

For ϕ2τ
k , we first fix the gauge at k ¼ γ according to

ϕ2τ
γbðrOÞ > 0, where rO ¼ aMð0; 0Þ; then, at a generic k, we

require that hϕ2τ
γ ðrOÞjϕ2τ

k ðrOÞi > 0. For convenience, here-
after we denote the Bloch-like states ϕnτ

k with n ¼ 1, 2, and
3, respectively, as ϕAτ

k , ϕOτ
k , and ϕBτ

k , and similarly for the
Wannier states Wnτ.
The Wannier states constructed for θ ¼ 2.5° using the

above methods are shown in Fig. 2, where the amplitude of
each layer component ofWnτ is plotted. The Wannier states
WAτ and WBτ are, respectively, polarized mainly to the top
and bottom layers, and transformed into each other through
the C2yT operation (plus a lattice translation). The Wannier
state WOτ has significant weights on both layers and is an
eigenstate of the C2yT symmetry.
A tight-binding Hamiltonian based on the Wannier states

can be formally constructed in real space and then Fourier

transformed to obtain the momentum-space Bloch
Hamiltonian [44], which has the following second-
quantized form in the basis of ϕnτ

k ,

Ĥ0 ¼
X

k;τ;n;n0
hnn

0
kτ c

†
knτckn0τ;

hkτ ¼ U†
kτ

0
B@

E1τ
k 0 0

0 E2τ
k 0

0 0 E3τ
k

1
CAUkτ: ð6Þ

Here, c†knτ (cknτ) is the electron creation (annihilation)
operator of the Bloch-like state ϕnτ

k , and Enτ
k is the energy of

the Bloch state ψnτ
k with respect to Hτ.

The Hamiltonian Ĥ0 presents a noninteracting three-
orbital model. It faithfully captures the symmetry and
topology of the first three moiré bands. By diagonalizing

FIG. 2. Amplitude of each layer component of Wannier states
WnτðrÞ ¼ ½Wnτ

b ðrÞ; Wnτ
t ðrÞ�T for θ ¼ 2.5° and τ ¼ þ. The black

lines mark the effective triangular lattice formed by O sites.
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hkτ, we reproduce the band structure of the first three bands
and also obtain their weights projected onto the Wannier
orbitals, as shown in Figs. 1(b) and 1(c). For θ < θ�1, the
first two moiré bands are mainly derived from the hybridi-
zation of A and B orbitals, while the third band is mainly
composed ofO orbital. For θ > θ�1, the second and the third
bands exchange their orbital characters at the γ point, which
results in the band inversion.

C. Interacting model

We now construct the interacting three-orbital model. For
the charge-neutral twisted homobilayer, all valence band
states are below the Fermi energy.When the system is doped
with holes, it is more convenient to use the hole basis. We
define the hole operator as bknτ ¼ c†knτ. In the hole basis, the
noninteracting Hamiltonian Ĥ0 is equivalent to

Ĥ0 ¼ −
X

k;τ;n;n0
½h⊤kτ�nn

0
b†knτbkn0τ; ð7Þ

where a constant term is dropped.
The Coulomb interaction projected onto the three

Wannier orbitals in the hole representation is expressed as

Ĥint ¼
1

2

X
Vn1n2n3n4
k1k2k3k4

ðτ; τ0Þbþk1n1τbþk2n2τ0bk3n3τ0bk4n4τ; ð8Þ

where the summation is over the momentum kj (summed
over the moiré Brillouin zone), the orbital index nj, and the
valley index τ. The Coulomb matrix element is given by

Vn1n2n3n4
k1k2k3k4

ðτ; τ0Þ ¼ 1

A

X
q

VqM
n1n4
k1k4

ðτ; qÞMn2n3
k2k3

ðτ0;−qÞ; ð9Þ

whereA is the system area. The structure factorMn1n4
k1k4

ðτ; qÞ
is

Mn1n4
k1k4

ðτ; qÞ ¼
X
l

Z
dreiq·r½ϕ̃n1τ

k1l
ðrÞ��ϕ̃n4τ

k4l
ðrÞ; ð10Þ

where l is the layer index, and ϕ̃nτ
k ðrÞ ¼ ½ϕnτ

k ðrÞ�� due to
the particle-hole transformation. We use the dual-gate
screened Coulomb interaction with the momentum-depen-
dent potential Vq ¼ 2πe2 tanh ðjqjdÞ=ðϵjqjÞ, where d is the
gate-to-sample distance and ϵ is the dielectric constant.
Here, we neglect the effect of the vertical separation d0
between the two MoTe2 layers on the Coulomb potential
since d0 is much smaller than the typical interparticle
distance.
By combining the noninteracting Hamiltonian Ĥ0 in

Eq. (7) with the Coulomb interaction term Ĥint in Eq. (8),
we obtain the full Hamiltonian of the interacting three-
orbital model,

Ĥ ¼ Ĥ0 þ Ĥint: ð11Þ

Here, we formulate the Hamiltonian Ĥ in momentum
space. An alternative approach would be to construct the
Hamiltonian in real space by projecting the Coulomb
interaction onto the Wannier states. This latter approach
works well to capture on-site Hubbard interactions and off-
site density-density interactions [10], but it is not suited to
keep track of all relevant nonlocal interactions such as
intersite Hund’s coupling, pair hopping, and interaction-
assisted hopping terms [48–50]. As shown in Fig. 2,
neighboring Wannier states can have significant spatial
overlap and can lead to enhanced nonlocal interactions that
play an important role in determining the ground-state
properties [48–50]. Therefore, we do not use the real-space
formalism. The momentum-space Hamiltonian Ĥ implic-
itly includes all microscopic interactions and has been
widely employed in moiré systems such as twisted bilayer
graphene [51] to study correlated states [52,53].

III. PHASE DIAGRAM

We perform self-consistent mean-field studies of the
HamiltonianH using the Hartree-Fock (HF) approximation
for integer filling factors ν ¼ 1 and 2 at zero temperature.
Here, ν ¼ ð1=NÞPk;n;τ b

†
knτbknτ is the number of holes per

moiré unit cell. At a given filling factor, we study multiple
mean-field Ansätze that can break various symmetries of
the system. The self-consistent calculation starting from
different Ansatz states often generates different mean-field
solutions, whose energetic competitions determine the
mean-field ground state.
We calculate the phase diagram as a function of the twist

angle θ, the gate-to-sample distance d, and the dielectric
constant ϵ. The parameter d can be experimentally varied
by controlling the thickness of the encapsulating hBN layer.
The screening effect by metallic gates is enhanced by
reducing d. The dielectric constant ϵ accounts for the
environmental screening from hBN as well as internal
screening from remote moiré bands. Here, we take ϵ as a
phenomenological parameter and vary it theoretically to
reveal the most generic phase diagram.

A. ν= 1 phase diagram

The quantum phase diagram at ν ¼ 1 as a function of
θ∈ ð1.5°; 5°Þ and d∈ ð5 nm; 30 nmÞ is shown in Figs. 3(a)
and 3(b) for ϵ ¼ 10 and 15, respectively. We start by
describing the θ dependence of the ϵ ¼ 15 phase diagram.
Along a representative line cut with d ¼ 20 nm and ϵ ¼ 15,
the ground state is in (1) the LP-FMz phase for θ < 2°, (2) the
quantum anomalous Hall insulator (QAHI) phase for
2° < θ < 2.9°, (3) the topologically trivial FMz phase
for 2.9° < θ < 3.9°, and (4) the O − 120°AF� phase for
3.9° < θ < 5.0°. Here, the LP-FMz phase is a multiferroic
state with coexisting ferroelectricity and ferromagnetism.
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The ferroelectricity arises from spontaneous layer polariza-
tion (LP) induced by unbalanced hole densities on A and B
Wannier orbitals [red line in Fig. 4(d)], which is driven by the
Coulomb repulsion betweenA andB sites. Themagnetism is
a result of valley polarization, which leads to out-of-plane
ferromagnetism (FMz) since valleys are locked to out-of-
plane spins in the system.We note that the LP-FMz phase has
previously been obtained in an exact-diagonalization study
of tMoTe2 for θ limited to below 1.5° [16], and multiferroic
states have also been studied in moiréless graphene systems
[54,55]. The next two phases in our phase diagram, QAHI
and FMz, are both valley polarized but layer unpolarized;
they are distinguished by the total Chern number C of the
ground state, which is 1 in QAHI and 0 in FMz. The QAHI
and FMz phases are separated by a weakly first-order phase
transition from our numerical calculations, which is man-
ifested by a slight jump of the occupation number of O
orbitals across the transition [Fig. 4(d)]. Since this transition
is first order, the gap does not need to completely close at the
transition, as shown in Fig. 4(d). The topological transition is
also revealed by the HF band structure in the two phases, as
shown in Figs. 4(b) and 4(c). The band (in the original basis

defined by c†knτ and cknτ operators) above the Fermi level is
derived from A and B orbitals at γ and κ� momenta in the
QAHI phase, but it is composed ofO orbitals at the γ point in
the FMz phase. This band inversion results in a change of the
Chern number. Lastly, theO − 120°AF� phase has in-plane
120° antiferromagnetic (AF) Néel order on the O sites, and
the superscript � indicates the vector chirality of the
antiferromagnetism [9], as illustrated in Fig. 3(c). This AF
state with a given vector chirality spontaneously breaks C2y

symmetry, but states with opposite chiralities are related by
C2yT symmetry and, therefore, energetically degenerate.
Because of the C2y symmetry breaking, the O − 120°AF�

states also have spontaneous layer polarization controlled by
the vector chirality of the antiferromagnetism. This mag-
netoelectric coupling allows electric tuning of the vector
chirality. The layer polarization is numerically confirmed by
the unbalanced densities on A and B sites in the O −
120°AF� phase, as demonstrated by the red line in Fig. 4(d).
The phase diagram is determined by comparing the

energies of multiple competing states, as shown in the
lower panels of Figs. 3(a) and 3(b). In addition to the states

FIG. 3. (a,b) Top panel: quantum phase diagram at ν ¼ 1 as a function of θ and d. The color map plots the charge gap. White solid lines
mark the first-order phase transitions. Bottom panel: energy per moiré unit cell of competing states relative to the layer unpolarized but
valley-polarized (LUP-VP) states at d ¼ 20 nm. Here, ϵ is 10 in (a) and 15 in (b). (c) Schematic illustration of competing states. In the
LP-FMx, LP-FMz, LP-120°AFþ, and LP-120°AF− states, the A and B sublattices have unequal hole densities. In the LP-FMx (LP-FMz)
state, A (or B) sublattices have ferromagnetism along the x (z) direction. In the LP-120°AFþ (LP-120°AF−) state, the Néel order has an
anticlockwise (clockwise) arrangement on A (or B) sublattices along the y direction. Similar notations are used for O-FMx and
O-120°AF� states, of which magnetic moments are developed on theO sublattice. In QAHI and FMz states, the A and B sublattices have
equal density, and the magnetization is along the z direction. The total Chern number is 1 in QAHI and 0 in FMz states, both of which
can be classified as LUP-VP states.
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described above, we also find LP-FMx, LP-120°AF�, and
O-FMx states as mean-field solutions in certain parameter
regimes, although these latter states are less energetically
favorable and do not appear in the ground-state phase
diagram. Here, LP-FMx refers to a state with spontaneous
layer polarization and in-plane ferromagnetism (FMx) on
either A or B sites. LP-120°AF� is also layer polarized, but
it has in-plane 120° AF order on either A or B sites; the
superscript � again indicates the vector chirality. The
O-FMx has in-plane ferromagnetism on O sites. The in-
plane magnetism arises from intervalley coherent order and
spontaneously breaks the valley Uð1Þ symmetry.
The phase transition between competing phases is

generically first order in the ν ¼ 1 phase diagram.
Across the transitions, the energy of the ground state is
continuous, but other quantities—such as the sublattice-
resolved hole density, layer polarization, and gap—can
have discontinuous jumps. The evolution of these quan-
tities as a function of θ for the ground state is shown in
Fig. 4(d). The θ dependence of the phase diagram reflects
the competition between the kinetic energy and the
Coulomb interaction. As the moiré period aM decreases
by increasing θ, the ratio of the characteristic Coulomb
repulsion e2=ϵaM to the single-particle bandwidth typically
decreases, and different phases can appear.
We turn to the ϵ ¼ 10 phase diagram in Fig. 3(a), which

includes only the LP-FMz phase for θ ≲ 2.4° and the FMz
phase for θ ≳ 2.4°. The QAHI state is a solution to the HF
equations for θ ≲ 2°, but it is energetically unfavorable
compared to the LP-FMz phase in this small angle regime.
The stronger Coulomb interaction for ϵ ¼ 10 tends to
localize carriers by repulsion. The holes are localized at
A or B sites in the LP-FMz phase but around O sites in the
FMz phase. The existence of the QAHI phase requires an
intermediate-strength Coulomb repulsion.

The evolution of the phase diagram as a function of ϵ is
shown in Fig. 5. The region of the FMz phase in the
parameter space of ðθ; ϵÞ shrinks as ϵ increases and finally
vanishes for ϵ > 18, where there is a first-order phase
transition between the QAHI phase and the O − 120°AF�
phase. The phase boundary between the QAHI phase and
the LP-FMz (O − 120°AF�) phase shifts to lower θ as ϵ
increases. The reason is that the interaction effects become
weaker with increasing ϵ but stronger with decreasing θ.
The O − 120°AF� phase can become gapless at very large

FIG. 4. (a)–(c) HF band structure at ν ¼ 1 in (a) the LP-FMz phase at θ ¼ 1.5°, (b) the QAHI phase at θ ¼ 2.5°, and (c) the FMz phase
at θ ¼ 3.5°. The band structures are presented in the basis defined by c†knτ and cknτ operators. The solid and dotted lines, respectively,
plot bands fromþK and −K valleys. The color represents the weight of the three Wannier orbitals. The middle of the interaction-induced
gap, marked by the black dashed line, is set to 0 in each plot. The integer numbers at γ and κ� label the C3z angular momentum of the
band above the Fermi energy. (d) Sublattice polarization PAB (red line), the hole number nO on each O site (blue dashed line), and the
charge gap (black line) in ν ¼ 1 ground states as a function of θ. Note that PAB characterizes the layer polarization and is defined as
jnA − nBj=ðnA þ nBÞ, where nA (nB) is the hole number on each A (B) site. The vertical dashed lines mark the transitions between
different phases. Here, d is 20 nm, and ϵ is 15 for panels (a)–(d).

FIG. 5. Quantum phase diagram at ν ¼ 1 and d ¼ 20 nm as a
function of θ and ϵ. The color map plots the charge gap. The
symbol “M” stands for the metallic state without any symmetry
breaking. The white dashed line separates gapped and gapless
O-120°AF� states.
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ϵ and can finally give way to the metallic state without any
symmetry breaking.
We now discuss the d dependence of the phase diagrams.

The screening from thegatesmainly suppresses theCoulomb
repulsion for an interaction range larger than d. When
d ≫ aM, the system should have a weak dependence on d
since thegates only screen the long-range tail of theCoulomb
repulsion in this parameter regime. Numerically, we find that
the phase boundaries indeed have a relatively weak d
dependence for d down to 10 nm, as shown in the phase
diagrams of Figs. 3(a) and 3(b). For small d, the phase
boundary between the LP-FMz and QAHI phases in the ϵ ¼
15 phase diagramof Fig. 3(b) shifts towards the LP-FMz side
as d decreases from 10 nm to 5 nm; the Coulomb repulsion
between the nearestA andB sites is reduced under such small
values of d, and the LP-FMz phase becomes less energeti-
cally favorable. A similar effect is found for the phase
boundary between the FMz and QAHI phases, as shown in
Fig. 3(b). The numerical results indicate that the parameter
regimes of the QAHI phase can be slightly enlarged by
reducing d down to below aM.
We present additional discussions on the ν ¼ 1 phase

diagram in Appendixes B and C. In Appendix B, we show
that (1) the QAHI state is captured by the Kane-Mele-
Hubbard model, where the Hubbard interaction combined
with the spin-orbit coupling drives the out-of-plane spin
polarization at ν ¼ 1, (2) the transition from the LP-FMz to
the QAHI state is phenomenologically described by a

spinless Haldane model with nearest-neighbor repulsion,
and (3) theO − 120°AF� state can be understood as a result
of Fermi surface instability. These analyses deepen our
physical understanding of the phase diagram. In
Appendix C, we compare results obtained, respectively,
from one-band, two-band, and three-orbital models, which
show that the three-orbital model is essential to capture all
the competing states.

B. ν = 2 phase diagram

The quantum phase diagram at ν ¼ 2 as a function of θ
and d is shown in Figs. 6(a) and 6(b) for ϵ ¼ 10 and 15,
respectively. The phase diagram again has a weak d
dependence. Therefore, we focus on the θ dependence
of the phase diagram. The ground state along the line cut
with d ¼ 20 nm and ϵ ¼ 15 is in (1) the FMz phase for
θ < 1.7°, (2) the AFx phase for 1.7° < θ < 4.5°, and (3) the
quantum spin Hall insulator (QSHI) phase for θ > 4.5°. The
phase diagram is obtained by comparing the energy of
multiple competing states, including FMz, FMx, AFx, AFz,
and symmetric states. All these states have equal hole
densities on A and B sublattices. The symmetric state does
not break any symmetry of the system and always realizes
the QSHI state for the θ range (1.5°, 5°) under consid-
eration. In the FMz (FMx) state, the A and B sublattices
have ferromagnetic moments along the z (x) direction. The
AFz (AFx) state has collinear antiferromagnetic Néel order
with opposite magnetic moments on the A and B sublattices

FIG. 6. (a,b) Top panel: quantum phase diagram at ν ¼ 2 as a function of θ and d. The color map plots the charge gap. White solid
(dashed) lines mark the first (second)-order phase transitions. Bottom panel: energy per moiré unit cell of competing states relative to the
symmetric (sym) state at d ¼ 20 nm. Note that ϵ is 10 in (a) and 15 in (b). (c) Schematic illustration of competing states at ν ¼ 2.

QIU, LI, LUO, and WU PHYS. REV. X 13, 041026 (2023)

041026-8



along the z (x) direction. The HF band structures for the
FMx, AFx, and QSHI phases are, respectively, shown in
Figs. 7(a)–7(c), where the color encodes the weight on the
O orbital. The results show that the holes at ν ¼ 2 are
primarily doped to the A and B sites.
In the small θ regime of θ < 1.7°, the energy of the FMz

state is lower than that of the AFx state only by a very small
margin, as shown in the bottom panel of Fig. 6(b). The
transition between the FMz and AFx phases at θ ≈ 1.7° is
first order. By contrast, the transition between the AFx and
QSHI phases at θ ≈ 4.5° is second order. This is manifested
by the continuous suppression of the Néel order as θ
approaches 4.5° from the AFx phase [blue line in Fig. 7(d)].
This phase transition between the AFx and QSHI phases is
reminiscent of the same transition in the Kane-Mele-
Hubbard model at a critical on-site Hubbard interaction
[56]. While our realistic model differs from the Kane-Mele-
Hubbard model due to complications such as the additional
O orbital and the long-range Coulomb interaction, the latter
model provides important intuition to understand the phase
diagram. Mean-field theory underestimates the critical
Hubbard repulsion in the Kane-Mele-Hubbard model
compared to that obtained from quantum Monte Carlo
simulations [57]. It is likely that our mean-field phase
diagram also overestimates the tendency towards the
formation of the Néel order, and the QSHI phase could
appear in a larger parameter space.
In the QSHI phase, the occupied bands in opposite

valleys have opposite Chern numbers of �1. Since the two
valleys also act as spin up and down that are related by T
symmetry, the QSHI state is characterized by a nontrivial
Z2 topological invariant. In the single-particle band struc-
ture of the noninteracting moiré Hamiltonian, the first and
the second bands overlap in energy for θ > 3.1°, and the
system would then be a metallic state at ν ¼ 2 without
taking into account interaction effects. However, the QSHI
phase of the interacting model has a full charge gap as

indicated by the HF band structure shown in Fig. 7(c).
Thus, the Coulomb repulsion is crucial in opening up the
charge gap in the QSHI phase.
When ϵ is reduced to 10, the corresponding phase

diagram in Fig. 6(a) only has the FMz and AFx phases
for θ∈ ð1.5°; 5°Þ. The stronger Coulomb interaction for
ϵ ¼ 10 enhances the antiferromagnetic order, and therefore,
the QSHI state no longer appears in the phase diagram of
Fig. 6(a). The existence of the QSHI state requires an
intermediate interaction strength, which should be strong
enough to open a full charge gap but weak enough to avoid
the instability toward magnetism. This is clearly shown by
the phase diagram as a function of θ and ϵ plotted in Fig. 8.

FIG. 7. (a)–(c) HF band structure at ν ¼ 2 in (a) the FMz phase at θ ¼ 1.5°, (b) the AFx phase at θ ¼ 2.5°, and (c) the QSHI phase at
θ ¼ 4.7°. The band structures are presented in the basis defined by c†knτ and cknτ operators. The color represents the weight of the O
orbital. In panel (a), the solid and dotted lines, respectively, plot bands from þK and −K valleys. In panels (b) and (c), each band is
doubly degenerate. (d) Charge gap (black line) and the in-plane magnetic moment MA

x on the A sublattice (blue line) in ν ¼ 2 ground
states as a function of θ. Note that d is 20 nm, and ϵ is 15 for panels (a)–(d).

FIG. 8. Quantum phase diagram at ν ¼ 2 and d ¼ 20 nm as a
function of θ and ϵ. The color map plots the charge gap. The
symbol “M” stands for the metallic state.
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IV. DISCUSSION AND CONCLUSION

In summary, we present a systematic study of the
quantum phase diagrams of tMoTe2 that result from the
interplay between band topology and many-body inter-
actions. At the single-particle level, we construct a three-
orbital model that can be viewed as a generalization of the
two-orbital Kane-Mele model. The three-orbital model
faithfully captures the band dispersion, symmetry, and
topology of the low-energy moiré bands for a large range
of θ. For the interacting physics, we obtain the quantum
phase diagrams based on comprehensive many-body cal-
culations by comparing the energy of multiple competing
states. At ν ¼ 1, we find a cascade of phase transitions as θ
increases. In the small θ regime, the system is in a layer-
polarized phase with spontaneous unbalanced hole den-
sities on the A and B sites. The QAHI phase appears in an
intermediate range of θ and is superseded by topologically
trivial phases (i.e., FMz and O − 120°AF� phases) in the
large θ regime. At ν ¼ 2, the QSHI phase can appear in the
large θ regime, but it undergoes an instability towards an
antiferromagnetic state below a critical θ.
The obtained phase diagrams serve as a guide for further

experimental and theoretical studies, but the results should
be taken to be qualitative instead of quantitative. There are
several theoretical difficulties in establishing truly quanti-
tative phase diagrams. First, parameters in the moiré
Hamiltonian are subjected to numerical uncertainties. We
take the parameter values from Ref. [2], where parameters
were obtained by fitting to the density-functional-theory
(DFT) band structures of the untwisted homobilayer at
different high-symmetry stackings. The DFT calculations
are likely not accurate enough to pin down the exact values
of small quantities such as V and w that are on the order
of 10 meV. Second, mean-field theory can capture the
quantum phase diagram qualitatively but may overestimate
the tendency towards symmetry-breaking states. In spite of
these quantitative issues that are generic challenges for
moiré systems, we expect that our study captures the
qualitative features of the phase diagrams.
Recent experiments on tMoTe2 reported optical signa-

tures of a ferromagnetic correlated insulator in a θ ¼ 3.9°
sample [21] and a quantum anomalous Hall state with a
Chern number of 1 in another θ ¼ 3.7° sample [22], where
the hole-filling factor ν is 1 in both cases. The topological
character of the ν ¼ 1 ferromagnetic insulator in the θ ¼
3.9° sample was not reported [21]. An independent experi-
ment reported the quantum anomalous Hall state in tMoTe2
with θ ¼ 3.4° at ν ¼ 1 [23]. Our ν ¼ 1 phase diagram
featuring both the topological ferromagnetic phase (i.e.,
the QAHI phase) and the topologically trivial ferromagnetic
phase (i.e., the FMz phase) is qualitatively consistent
with these experimental findings. In the phase diagram of
Fig. 3(b), the QAHI phase appears for θ in the range of about
(2°, 2.9°), which is below the experimental twist angle 3.4°.
This discrepancy can be remedied by slightly adjusting the

parameters used in the moiré Hamiltonian. In Fig. 9, we
present the ν ¼ 1 phase diagram as a function of θ and V,
where V is the moiré potential amplitude as defined in
Eq. (1). In the calculation of Fig. 9, we keep other parameters
(except θ and V) of the moiré Hamiltonian in Eq. (1) fixed
and take ϵ ¼ 15 and d ¼ 20 nm. As shown in Fig. 9, the θ
range for the QAHI phase is shifted to (2.35°, 4.05°) if V is
increased to 9meV,which leads to better consistencywith the
experimental finding [22]. Increasing the intralayer moiré
potential amplitude V has two effects. First, a deeper moiré
potential leads to stronger spatial confinement of theA andB
orbitals and, therefore, weaker hopping parameters between
the A and B sites. The doped holes then have a stronger
tendency to be localized by Coulomb repulsion, which shifts
the phase boundary between the LP-FMz and QAHI phases
to larger twist angles. Second, the deeper intralayer moiré
potential also increases the single-particle energy difference
between the A=B orbital and the O orbital and effectively
pushes the O orbital away from the Fermi level. Therefore,
the topologically trivial FMz phase gradually shrinks as V
increases and finally disappears at V ≈ 8.7 meV. For
V > 8.7 meV, there is a first-order phase transition between
the QAHI phase and the O − 120°AF� phase, where the
corresponding phase boundary also shifts towards larger
twist angles as V increases. We note that the moiré potential
could, in principle, be tunedbypressure [58,59], but the exact
dependence of the model parameters and the phase diagrams
on the pressure requires further investigation.
We comment on the implication of our results for tWSe2.

Early transport studies of tWSe2 reported topologically

FIG. 9. Quantum phase diagram at ν ¼ 1 as a function of θ and
V for d ¼ 20 nm and ϵ ¼ 15. Different phases are separated
by blue solid lines. The blue dashed line is a continuation of the
phase boundary between the FMz and QAHI phases if the
O − 120°AF� phase is fully suppressed by an out-of-plane
magnetic field.
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trivial correlated insulators at ν ¼ 1 in the twist angle range
from 4° to 5.5° [18,19]. Recently, local electronic com-
pressibility measurements of tWSe2 at ν ¼ 1 revealed a
QAHI state in a narrow twist angle range between 1.2° and
1.25° but a topologically trivial correlated insulator for θ
either below or above this range [20]. Qualitatively, our
ν ¼ 1 phase diagram with the QAHI phase appearing in an
intermediate range of θ is consistent with these experi-
mental observations. The O − 120°AF� phase and the LP
phase can capture the topologically trivial correlated
insulators observed at large and small twist angles, respec-
tively. Quantitatively, one peculiar experimental finding is
that the QAHI state in tWSe2 only appears at a very narrow
twist angle range [20], which calls for further investigation.
Signatures of fractional quantum anomalous Hall

(FQAH) states at fractional filling factors were also
reported in tMoTe2 [22,23]. Exact diagonalization studies
of the FQAH states have recently been performed, where
the calculations were in the truncated Hilbert space
projected to the first moiré valence band [60,61]. Our
study highlights the importance of including multiple bands
in the many-body problem. For example, the fully valley-
polarized state in the truncated Hilbert space projected to
the first moiré valence bands is always a quantum anoma-
lous Hall state at ν ¼ 1, but this is not the case in the three-
orbital model (see the discussion in Appendix C for more
details). It is desirable to examine the energy competition
between the FQAH state and other candidate states (e.g.,
charge density wave state) at fractional filling factors in the
multiband model using techniques beyond the mean-field
theory.
FQAH states are analogous to fractional quantum Hall

states formed in Landau levels. However, there is a crucial
difference between Landau levels and topological moiré
bands in tMoTe2 since the latter respects time-reversal
symmetry. The FQAH states realized in tMoTe2 sponta-
neously break time-reversal symmetry. Time-reversal sym-
metric fractional quantum spin Hall insulators [62,63], as
another distinct type of fractionalized states, may also
emerge in tMoTe2 and tWSe2.
The obtained quantum phases can have interesting

responses to external fields. For example, an out-of-plane
electric displacement field can drive the QAHI state at ν ¼ 1

into a topologically trivial layer-polarized state. An out-of-
plane magnetic field turns the ν ¼ 1O − 120°AF� state into
a canted antiferromagnetic state, and finally to a ferromag-
netic state for a magnetic field above a critical value, where
the ferromagnetic state can be in the QAHI phase, as shown
in Fig. 9. The exploration of the rich quantum states in
tMoTe2 is in its beginning stage.

Note added. The fractionally quantized anomalous Hall
effect has recently been observed in tMoTe2 through
transport measurement [64,65].
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APPENDIX A: C3z SYMMETRY EIGENVALUES

The single-particle wave function can be viewed as a
direct product of the spatial envelope wave function ψnτ

k ðrÞ,
the atomic state jdτi, and the spin state jsτi, where jdτi ¼
jdx2−y2i þ iτjdxyi stands for the dominant atomic orbital
and jsτi represents spin up and down, respectively, for
τ ¼ þ and −. The C3z symmetry acts separately on the
three parts. For the internal degrees of freedom, the C3z
symmetry eigenvalue is given by

C3zjdτi ⊗ jsτi ¼ ei2πlτ=3jdτi ⊗ jsτi; ðA1Þ

where lτ ¼ −τ=2 is the angular momentum contributed by
the spin and atomic orbitals.
We now study the C3z symmetry property of the spatial

wave function using the approach developed in Ref. [44].
We first apply the following unitary transformation toHτ to
make the C3z symmetry transparent,

H̃τðrÞ≡ ΛτðrÞHτðrÞΛ−1
τ ðrÞ;

ΛτðrÞ ¼
�
e−iτκþ·r 0

0 e−iτκ−·r

�
;

H̃τðrÞ ¼
 
− ℏ2k2

2m� þ ΔþðrÞ Δ̃T;τðrÞ
Δ̃†

T;τðrÞ − ℏ2k2
2m� þ Δ−ðrÞ

!
; ðA2Þ

where Δ̃T;τðrÞ ¼ wðeiτq1·r þ eiτq2·r þ eiτq3·rÞ. Here, q1 ¼
κ− − κþ; q2 ¼ R̂3q1, q3 ¼ R̂3q2, and R̂3 is the real-space
anticlockwise rotation by 2π=3. The new Hamiltonian
H̃τðrÞ is clearly invariant under the threefold rotation of
r since H̃τðR̂3rÞ ¼ H̃τðrÞ.
The C3z symmetry of the original HamiltonianHτ can be

represented as Ĉ3z;τ ¼ Λ−1
τ ðrÞR̂3ΛτðrÞ, which leads to the

symmetry identity Ĉ3z;τHτðrÞĈ−1
3z;τ ¼ HτðrÞ. The C3z sym-

metry acts on the wave function in the following way,

Ĉ3z;τψ
nτ
k ðrÞ ¼ Λ−1

τ ðrÞR̂3ψ̃
nτ
k ðrÞ; ðA3Þ

where ψ̃nτ
k ðrÞ ¼ ΛτðrÞψnτ

k ðrÞ.
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At the three high-symmetry momenta γ and κ�, the
Bloch wave function is an eigenstate of the C3z symmetry,

Ĉ3z;τψ
nτ
k ðrÞ ¼ ei2πL

nτ
k =3ψnτ

k ðrÞ; ðA4Þ

where Lnτ
k is the C3z angular momentum of the spatial wave

function defined modulo 3. Using Eqs. (A3) and (A4), we
find that

ψ̃nτ
k ðR̂3rÞ ¼ ei2πL

nτ
k =3ψ̃nτ

k ðrÞ: ðA5Þ

Therefore, Lnτ
k can be determined by numerically compar-

ing ψ̃nτ
k ðR̂3rÞ and ψ̃nτ

k ðrÞ. The values of Lnτ
k for the first

three bands at the three high-symmetry momenta are
labeled in Figs. 1(b) and 1(c).
In a system with C3z symmetry [66], the Chern number

of a band is determined by the sum of the C3z angular

momentum up to modulo 3, ½ðLnτ
γ þ Lnτ

κþ þ Lnτ
κ−Þ − CðnÞ

τ �
mod 3 ¼ 0. The calculated Chern numbers and C3z angular
momentum are consistent with this condition.

APPENDIX B: PHYSICAL UNDERSTANDING

In this appendix, we present analyses that help to deepen
our understanding of the ν ¼ 1 phase diagram. As
explained in what follows, we show that (1) the QAHI
state is captured by the Kane-Mele-Hubbard model, (2) the
transition from the LP-FMz to the QAHI state is phenom-
enologically described by the Haldane-V model (i.e., the
spinless Haldane model with nearest-neighbor repulsion
V), and (3) the O − 120°AF� state can arise from Fermi
surface instability. We emphasize that these analyses should
be taken as qualitative instead of quantitative. The quanti-
tative energy competition between different phases depends
crucially on microscopic details and can only be obtained
from detailed numerical calculations.

1. Kane-Mele-Hubbard model

We first consider the Kane-Mele-Hubbard model, which
can be constructed by retaining only the A and B orbitals
and neglecting remote hoppings and repulsions. The model
is given by

ĤKMH ¼ ĤKM þ ĤU;

ĤKM ¼
X
hijis

t0b
þ
isbjs þ

X
⟪ij⟫s

tsijb
þ
isbjs

¼
X
k

bþk ½F0σ0s0 þ Fxσxs0 þ Fyσys0 þ Fzσzsz�bk;

ĤU ¼ U
X
i

n̂i↑n̂i↓; ðB1Þ

where ĤKM is the Kane-Mele model defined on a honey-
comb lattice, the fermion operators bþis and bis are defined

in the hole basis, the subscript s is the spin index (locked to
the valley index in tMoTe2), t0 is the nearest-neighbor
hopping parameter, and tsij describes the second nearest-
neighbor hopping with spin and sublattice-dependent flux.
Here, bk ¼ fbkA↑; bkA↓; bkB↑; bkB↓gT, where the subscripts
A and B denote the sublattices in the honeycomb lattice.
Note that σx;y;z and sx;y;z are, respectively, Pauli matrices in
the sublattice and spin spaces, and F0;x;y;z are real functions
of the momentum k.
Using Hartree-Fock decomposition, the Hubbard term

ĤU can be approximated as

ĤU ≈ −
NU
4

X
l

½n2l −m2
l� þ

U
2

X
kl

bþkl½nls0 −ml · s�bkl;

ðB2Þ

where the lattice translational symmetry is assumed to be
preserved, N is the number of unit cells, nl ¼ hbþl bli,
ml ¼ hbþl sbli, bl ¼ fbl↑; bl↓gT, and l is the sublat-
tice index.
By diagonalizing the mean-field Hamiltonian, we obtain

the total energy at ν ¼ 1 as follows:

Etot¼
NU
8

þ2NM2

U
þ
X
k

F0−
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þM2þΦ

p
;

Φ¼FzMðcosθA− cosθBÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M2jFkj2Φ1þM2F2

zΦ2

q
;

Φ1¼ 1þ cosθA cosθBþ sinθA sinθB cosðϕA−ϕBÞ;
Φ2¼ðcosθAþ cosθBÞ2; ðB3Þ

where Ml ¼ −Uml=2, F2 ¼ jFkj2 þ F2
z , Fk ¼ Fx − iFy,

and Ml is parametrized as Mlðsin θl cosϕl; sin θl sinϕl;
cos θlÞ. In deriving the total energy, we assume that nA ¼ nB
and MA ¼ MB ¼ M. It is obvious that Etot is minimized
when ϕA ¼ ϕB. By further taking ∂Etot=∂θl ¼ 0, we find
two types of solutions: (1) θA ¼ θB ¼ 0 and (2) θA ¼ 0,
θB ¼ π. It can be shown analytically that EtotðθA ¼
θB ¼ 0Þ < EtotðθA ¼ 0; θB ¼ πÞ. Therefore, the Kane-
Mele-Hubbard model supports the out-of-plane spin-
polarized state at ν ¼ 1, which exactly gives rise to the
valley-polarizedQAHI state in tMoTe2. From the expression
of Etot, we see that the spin-dependent term Fzσzsz in the
Kane-Melemodel leads to Ising anisotropy and stabilizes the
QAHI state.

2. Haldane-V model

The spontaneous sublattice (layer) polarization in the
LP-FMz phase is driven primarily by the repulsion between
the A and B orbitals. To capture this physics, we focus on
states with out-of-plane spin polarization. In this spin
sector, we can study the spinless Haldane model with
nearest-neighbor repulsion V, which is expressed as
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Ĥ ¼ ĤH þ ĤV;

ĤH ¼
X
hiji

t0b
þ
i bj þ

X
⟪ij⟫

tijb
þ
i bj

¼
X
k

bþk ½F0σ0 þ Fxσx þ Fyσy þ Fzσz�bk;

ĤV ¼ V
X
hiji

n̂in̂j; ðB4Þ

where ĤH is the Haldane model on the honeycomb lattice
and ĤV describes the nearest-neighbor repulsion. We note
that ĤKM can be understood as two copies of ĤH that are
time-reversal partners.
In the Hartree-Fock theory, Ĥ can be approximated as

Ĥ ≈ 3NV

�
ρ2 −

ν2

4

�
þ
X
k

�
F0 þ

3Vν
2

�
bþk σ0bk

þ
X
k

bþk

� Fz − 3Vρz ðt0 − VρkÞfk
ðt0 − Vρ�kÞf�k −Fz þ 3Vρz

�
bk; ðB5Þ

where bk ¼ fbkA; bkBgT and fk ¼ Fk=t0. We define a
vector ρ as hbþσbi=2, where b ¼ fbA; bBgT for a pair of
nearest neighbors. Here, ρz is the z component of ρ, and it
quantifies the sublattice polarization; ρk is defined as
ρx − iρy, and it quantifies the intersublattice coherence.
The nearest-neighbor hopping parameter is renormalized
from the bare value t0 to be t0 − Vρk by the interaction.
The total mean-field energy at ν ¼ 1 is

Etotðρz; ρkÞ ¼
3

4
VN þ

X
k

F0 þ 3VNρ2

−
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFz − 3VρzÞ2 þ jðt0 − VρkÞfkj2

q
;

ðB6Þ

where ρ2 ¼ jρkj2 þ ρ2z . We obtain the following two self-
consistent equations by, respectfully, taking ð∂Etot=∂ρzÞ¼ 0
and ð∂Etot=∂ρkÞ ¼ 0,

ρz ¼
1

2N

X
k

3Vρz − Fzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFz − 3VρzÞ2 þ jðt0 − VρkÞfkj2

q ;

ρk ¼
1

6N

X
k

ðVρk − t0Þjfkj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFz − 3VρzÞ2 þ jðt0 − VρkÞfkj2

q : ðB7Þ

We note that the self-consistent equations always
have a symmetric solution with no sublattice polarization

(ρz ¼ 0), but they can also have a symmetry-breaking
solution with spontaneous sublattice polarization (ρz ≠ 0).
By minimizing the total energy, we obtain the phase
diagram (Fig. 10) of the Haldane-V model as a function
of V=t0 and t01=t0, where t

0
1 is the imaginary part of one of

the second nearest-neighbor hopping parameters. For a
fixed t01=t0, ρz is 0 (nonzero) for V below (above) a critical
value. Therefore, spontaneous sublattice polarization can
be driven by V above a critical value. This qualitatively
explains why the LP-FMz becomes the ground state at
small twist angles, as V=t0 increases with decreasing twist
angle. The state with a spontaneous finite ρz can also be
described as a charge density wave state with imbalanced
charge density at the A and B sites. In tMoTe2, the A and B
orbitals have opposite layer polarization, and therefore,
spontaneous sublattice polarization also leads to sponta-
neous layer polarization.

3. Fermi surface instability

At large twist angles, the Coulomb interaction can
become less dominant compared to the single-particle
kinetic energy, and the fermiology associated with the
Fermi surface can become important. In Fig. 11, we plot the
noninteracting Fermi surface at half-filling (i.e., ν ¼ 1) of
the topmost moiré valence bands for θ ¼ 4.5°. There is an
approximate Fermi surface nesting, and the nesting vector
Q is approximately equal to κ− − κþ, which can drive the
Fermi surface instability with a

ffiffiffi
3

p
×

ffiffiffi
3

p
real-space tex-

ture. This instability exactly explains the formation of the
O − 120°AF� state at large twist angles.

FIG. 10. Phase diagram of the Haldane-V model. Phase (i) is
the QAHI phase with ρz ¼ 0 and quantized Chern number
jCj ¼ 1. Phase (iii) is sublattice polarized with ρz ≠ 0 and
topologically trivial with jCj ¼ 0. There is an intermediate phase
(ii) with ρz ≠ 0 but jCj ¼ 1.
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APPENDIX C: COMPARISON
OF DIFFERENT MODELS

In this appendix, we present a comparison of results
obtained, respectively, from one-band, two-band, and
three-orbital models, as summarized in Fig. 12. First, in
the one-band model [Fig. 12(a)], we project the interacting
Hamiltonian onto the topmost moiré valence bands, where
each valley contributes one band. As shown in Fig. 12(a),
the valley-polarized state at ν ¼ 1 is always the QAHI in
the one-band model. This model fails to capture the
LP-FMz state, the topologically trivial FMz state, and the
O − 120°AF� state. (2) In the two-band model, we project
the interacting Hamiltonian onto the first two moiré valence

bands, where each valley contributes two bands. As shown
in Fig. 12(b), the two-band model captures the LP-FMz
state for small twist angles and its transition to the QAHI
state above a critical angle, but it fails to describe the
topologically trivial FMz and O − 120°AF� states.
Quantitatively, the transition angle between the LP-FMz
and QAHI states is underestimated in the two-band model
compared to the three-orbital model shown in Fig. 3(b).
The additionalO orbital in the three-orbital model is crucial
in correctly finding all competing states such the topologi-
cally trivial FMz and the O − 120°AF� states.
The QAHI state is the same ground state for one-band,

two-band, and three-orbital models for a certain range of
twist angles. However, there is a crucial difference in the
size of the charge gap. As shown in Fig. 13, the one-band
and two-band models generally overestimate the charge
gap compared to the three-orbital model. In the three-
orbital model, the charge gap has a charge-transfer nature
since it is determined by electrons and holes located at
different real-space orbitals but within the same valley. The
one-band model completely fails to capture this charge-
transfer gap and, therefore, overestimates the charge gap.
We also perform theHartree-Fock calculation in the plane-

wave basis without projecting onto the first three bands,
which leads to quantum phase diagrams that quantitatively
agreewith those from the three-orbital model, as we report in

FIG. 11. Noninteracting Fermi surface (white dashed line) at
half filling of the topmost moiré valence bands. The color map
shows the energy dispersion in the first moiré Brillouin zone. The
vector Q indicates an approximate nesting.

One-band model Two-band model

FIG. 12. Energy per moiré unit cell of competing states relative
to the LUP-VP states at ν ¼ 1, ϵ ¼ 15, and d ¼ 20 nm. The
results are obtained using (a) one-band and (b) two-band models,
respectively. Other parameter values are the same as those used in
Fig. 3(b).

FIG. 13. (a)–(c) HF band structure for the ν ¼ 1 QAHI phase at
θ ¼ 2.5° calculated with one-band, two-band, and three-orbital
models, respectively. The solid and dotted lines, respectively, plot
bands from the þK and −K valleys. (d) Charge gap of the QAHI
phase obtained from one-band (red), two-band (green), and three-
orbital (blue) models for the twist angle range from 2° to 2.9°,
where the QAHI phase is the same ground state in all three
models. Parameter values are the same as those used in Fig. 12.
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a follow-upwork [67]. Therefore, the three-orbitalmodel can
be viewed as a minimal model that provides a unified
description of competing phases over a large range of twist
angles.
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Nature (London) 579, 359 (2020).

[26] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi, J.
Hone, V. Elser, K. F. Mak, and J. Shan, Correlated insulat-
ing states at fractional fillings of moiré superlattices, Nature
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