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The quantum Jarzynski equality and the Crooks relation are fundamental laws connecting equilibrium
processes with nonequilibrium fluctuations. They are promising tools to benchmark quantum devices
and measure free energy differences. While they are well established theoretically and also experimental
realizations for few-body systems already exist, their experimental validity in the quantum many-body
regime has not been observed so far. Here, we present results for nonequilibrium protocols in systems with
up to 16 interacting degrees of freedom obtained on trapped ion and superconducting qubit quantum
computers, which test the quantum Jarzynski equality and the Crooks relation in the many-body regime. To
achieve this, we overcome present-day limitations in the preparation of thermal ensembles and in the
measurement of work distributions on noisy intermediate-scale quantum devices. We discuss the accuracy
to which the Jarzynski equality holds on different quantum computing platforms subject to platform-
specific errors. The analysis reveals the validity of Jarzynski’s equality in a regime with energy dissipation,
compensated for by a fast unitary drive. This provides new insights for analyzing errors in many-body
quantum simulators.
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I. INTRODUCTION

More than a century after the foundations of thermody-
namics and equilibrium statistical mechanics were laid, the
field of nonequilibrium physics remains an area of active
research. The study of how macroscopic properties arise
from microscopic quantum dynamics initiated the develop-
ment of quantum thermodynamics [1–3]. Significant theo-
retical breakthroughs include the widely applicable
eigenstate thermalization hypothesis [4–8] and a handful
of interesting cases of its violation [9–11]; at the same
time, ongoing experimental progress made it possible to
cool down highly controlled systems to temperatures

dominated by quantum rather than thermal fluctuations
[12–15]. Despite this progress, we still lack a comprehen-
sive theoretical framework or a complete set of principles
to describe macroscopic phenomena in nonequilibrium
physics.
A remarkable achievement in the field is the Jarzynski

equality [16,17]. It establishes a mathematical relation
between the work W applied in a time-dependent process
and the free energy difference ΔF between the initial
thermal ensemble and the thermal ensemble associated with
the final Hamiltonian:

he−βWiPðWÞ ¼ e−βΔF ⇔ lnhe−βWdissiPðWÞ ¼ 0; ð1Þ

where β ¼ T−1 is the inverse temperature (we work in units
kB ¼ 1 and ℏ ¼ 1) and Wdiss ¼ W − ΔF is the dissipated
work done during the process; the average h·iPðWÞ is
performed over the work distribution PðWÞ obtained from
repeated applications of the protocol. Remarkably, Eq. (1)
holds for any nonequilibrium protocol without restrictions;
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for close-to-equilibrium processes, it reduces to the well-
known fluctuation-dissipation theorem [16].
The classical Jarzynski equality was verified in a

number of experiments, ranging from stretching of single
molecules [18,19] to mechanical systems [20], optical
tweezers [21], and electronic systems [22–24].
For quantum systems, a difficulty has been identified

with measuring work [25–27]. Nevertheless, Jarzynski’s
equality was generalized to closed quantum systems
[28,29], systems subject to dephasing [30], general unital
[31] and stochastic [32] quantum maps, and systems with
feedback control [33,34]. Recently, there have been
increasing efforts to extend the quantum Jarzynski equal-
ity to generic open systems using one-point-measurement
schemes and the notion of “optimal guessed” quantum
work [35–37].
In the following, we focus on a formulation of the

quantum Jarzynski equality valid for unital quantum
channels, where work is defined by means of a two-
point-measurement scheme [28–30]: Let us denote the
initial energy levels by Ei

m and final energy levels by
Ef
n. In the following, we refer to a projective measurement

in an eigenstate of the initial or final Hamiltonian as an
energy measurement; the measurement output is the cor-
responding eigenenergy Ei

m or Ef
n, respectively. Thework is

then defined as the difference between the measured final
and initial energies:

W ¼ Ef
n − Ei

m: ð2Þ

While this definition does not generalize to the most
general open systems, together with recent progress in
quantum simulation, it allows for the experimental test
of Eq. (1) using trapped ions [12,38], cold atoms [39],
nuclear magnetic resonance (NMR) experiments [40],
nitrogen-vacancy (NV) centers [41], and superconducting
qubits [42].
Besides its fundamental importance in quantum statis-

tical physics, testing the quantum Jarzynski equality is also
of practical interest, as it allows us to measure free energy
differences, which can be used, e.g., to characterize the
onset of chemical reactions. In a recent study, Jarzynski’s
equality was used to extract approximate free energy
differences in two- or three-qubit systems using minimally
entangled typical thermal states [43].
In this work, we propose the idea that the quantum

Jarzynski equality using a two-point-measurement scheme
provides a valuable benchmark for the performance of
quantum devices. The only requirement for the equality to
hold is the doubly stochastic property of the underlying
dynamics (see Appendix A and Refs. [29,38] for more
details). This property is fulfilled for all unital channels,
including pure unitary dynamics and dephasing noise.
However, it does not hold for processes with energy
dissipation. By experimentally testing Eq. (1), it is, in
principle, possible to isolate contributions of processes
violating double stochasticity present during the dynamics
and the measurement, which is of fundamental interest for
improving current quantum technologies.
At the same time, a complete understanding of

Jarzynski’s equality in a quantum many-body setting is
still lacking. Previous verification experiments with
quantum simulators were performed for single-, two-,
and three-particle systems [12,38–43]. It is, therefore,
crucial to close this gap and investigate systems of L≳ 8
spin-1=2 particles, where many-body characteristics begin
to emerge [44,45].
In the many-body regime (i.e., for many interacting

degrees of freedom), the work distribution broadens with
the square root of the system size [6], which requires an
exponentially large number of projective measurements in
order to estimate the left-hand side of Eq. (1). Moreover,
for quantum systems, further challenges arise: First, work
fluctuations are not a measurable observable in quantum
mechanics [25]. Hence, testing the quantum Jarzynski
equality presumes the ability to measure in the energy
eigenbasis. This is notoriously difficult in practice, since
many-body energy eigenstates are typically volume-law
entangled in real space. Second, preparing a quantum
many-body system in a close-to-perfect thermal state can
be demanding and often comes with a substantial over-
head of resource costs [46,47]. For these and related

FIG. 1. Schematics of our protocol to test the quantum
Jarzynski equality [cf. Eq. (1)] in the quantum many-body
regime. We simulate the dynamics of a system of interacting
qubits initiated in a thermal state of the transverse-field Ising
chain Hi. The qubits then evolve under a nonequilibrium process
on a quantum computer affected by energy dissipation. Finally,
we extract the work distribution for the quantum circuit with
respect to the final Hamiltonian Hf . At the same time, we
independently compute the exact theory prediction for the free
energy difference. We compare both results against each other to
test the validity of Jarzynski’s equality (red box).
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reasons, the quantum many-body regime provides formi-
dable challenges.
In the present study, we use classical presampling or

midcircuit measurements to prepare thermal ensembles. In
particular, midcircuit measurements allow us to prepare a
thermal ensemble of the transverse-field Ising model [48]
for up to L ¼ 16 qubits. In contrast to many common
approaches [46,47,49–51], this enables us to prepare the
thermal initial state of the transverse-field Ising model
without the overhead of using ancilla qubits. This innova-
tion allows us to reach system sizes one order of magnitude
larger compared to previous studies, which opens the
possibility of using the Jarzynski equality as a benchmark
for many-body quantum devices.
In a simulation on digital quantum computers, we test

Jarzynski’s equality for up to L ¼ 16 qubits in a system
of strongly interacting spins subject to a nonequilibrium
protocol. We also analyze the quantum Crooks relation [52]
[cf. Eq. (18)] for L ¼ 8 qubits—an infinitesimal version of
Jarzynski’s equality—which had hitherto been tested only
for a single two-level system [40,53]. Unlike earlier experi-
ments [12,38,40,43], we do not use a parametric quench but
a protocol of random entangling gates.
Moreover, we compare the accuracy of our results with

the relaxation times on the quantum processor and identify
a novel feature in this regime of nonequilibrium qubit
dynamics: We show that Jarzynski’s equality holds approx-
imately even in the presence of accumulating dissipation
effects, so long as the execution time of gates is short
compared to the thermal qubit relaxation time (so-called
T1). In addition, we show that our nonequilibrium protocol
improves the results in comparison to a pure energy
dissipation process.
This paper is organized as follows: After introducing

the challenges and their resolutions to test the quantum
Jarzynski equality on a digital quantum computer in Sec. II,
we provide results for the Jarzynski equality and the Crooks
relation in Sec. III. In Sec. IV, we develop a theory to
understand the results in the presence of energy dissipation.
Finally, we compare our results with previous experiments
in Sec. V and discuss the potentials of our work for
benchmarking quantum devices and measuring free energy
differences.

II. SIMULATION ON QUANTUM COMPUTERS

As already pointed out in the introduction, a quantum
simulation of Jarzynski’s equality in the many-body regime
faces some restrictive challenges.
First and foremost, the work distribution requires the

measurement of initial and final eigenenergies [25];
cf. Eq. (2). At the moment, this is feasible only for a
suitable choice of the initial and final Hamiltonians and
requires the ability to measure in their respective eigenbases.
We emphasize that the ability to apply general unitary

transformations is a distinctive feature of digital quantum

computers. In contrast, this is currently not possible, in
general, for analog quantum simulators, such as cold atom
systems [54]; at present, this renders obtaining quantum
work distributions in the many-body regime elusive on
such platforms.
Second, the verification of Eq. (1) requires the prepa-

ration of an initial thermal ensemble. Most approaches for
Gibbs state preparation require an overhead of ancilla
qubits [46,47,49–51]. This uses up valuable qubits and
makes the study of thermal states in the many-body regime
difficult for the current generation of noisy intermediate-
scale quantum (NISQ) devices.
Finally, the number of required measurements increases

with system size: According to Refs. [55,56], the number of
shots s scales approximately at least as

s ≈ e−βhWdissiPðWÞ : ð3Þ

To get an estimate for hWdissiPðWÞ, we can use the
fluctuation-dissipation relation [7] to obtain the relation

hWdissiPðWÞ ≈
β

2
hW2

dissiPðWÞ: ð4Þ

Recall that the variance of generic nonadiabatic work
distribution scales linearly with the system size L [6].
As a consequence, the number of required shots scales at
least exponentially in the system size:

s ¼ Oðe−β2LÞ: ð5Þ

We stress that this scaling can even become worse in the
case of generic nonequilibrium protocols, which can create
long tails in the work distribution [55,56].
In the following, we describe in detail how we tackle

each of these challenges. In Sec. II A, we motivate our
choice for the initial and final Hamiltonians. Section II B
elucidates our choice of nonequilibrium protocol, which is
summarized diagrammatically in Fig. 2.

A. Choice of initial and final Hamiltonian

Jarzynski’s equality depends neither on the specific form
of the initial or final Hamiltonians nor on the protocol we
evolve the state with. However, a suitable choice of these
ingredients can help to address the above-mentioned
challenges and enables its verification through a simulation
on a quantum device operated in the many-body regime.

1. Initial and final Hamiltonians

Notice that determining the exponentiated work distri-
bution requires measuring the initial and final energy, i.e.,
two-point measurements [25]. In general, this can be
achieved by applying a unitary transform to switch from
the computational (i.e., the Pauli z basis) into the energy
eigenbasis, which is equivalent to diagonalizing the initial
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and final Hamiltonian, respectively. For generic systems,
this requires a circuit of at least polynomial depth in the
number of qubits L, using a quantum phase estimation
algorithm [57]. However, for systems equivalent to free-
fermionic models, circuits increasing logarithmically with
system size suffice [48].
Apart from this practical restriction, the validity of

Eq. (1) imposes no further restrictions on the choice of
initial and final Hamiltonians. Thus, we choose the initial
Hamiltonian to be the transverse-field Ising model with
periodic boundary conditions [58]:

Hi ¼
XL
l¼1

σxlσ
x
lþ1 þ

XL
l¼1

σzl: ð6Þ

This system is integrable and can be mapped to free
fermions through a Jordan-Wigner transformation. It can
be diagonalized using a shallow circuit as described
in Ref. [48].
Although Hi is equivalent to a free-fermion model,

its many-particle eigenstates are entangled and, there-
fore, feature genuine quantum correlations; thus, the
circuit dynamics in the many-body regime goes beyond
existing work on single- and few-particle models
previously analyzed in the context of verifying
Jarzynski’s equality [12,38,40,42,43,59].
As a final Hamiltonian, we chose the simple Hamiltonian

Hf ¼
XL
l¼1

σzl; ð7Þ

which is already diagonal in the computational basis,
such that measurements in the eigenbasis of Hf are
straightforward. Overall, the choice of the initial and final
Hamiltonians, which are either already diagonal in the

computational basis or where a circuit is known to
diagonalize them in practice, enables us to perform a
two-point-measurement protocol to determine the work;
this is essential to measure the left-hand side of the
Jarzynski equality [cf. Eq. (1)].
The partition functions for the initial and final ensembles

(and, thus, the free energy difference) can be computed
exactly for our choice of Hamiltonians. The transverse-field
Ising model is equivalent to a system of noninteracting
fermions:

H ¼
XL=2

k¼−L=2þ1

ωka
†
kak þ Ec; ð8Þ

with the energies ωk defined in Appendix C; the energy
offset is given by Ec ¼ 1 −

ffiffiffi
2

p
(as mentioned above, we

work in units kB ¼ 1 and ℏ ¼ 1). The free energy, there-
fore, reads as

Fi ¼ Ec −
1

β

XL=2
k¼−L=2þ1

lnð1þ e−βωkÞ: ð9Þ

Since the energy offset Ec enters as a constant additive term
both in the definition of the work W [Eq. (2)] and in the
free energy Fi above, and because the latter appear in the
exponents on both sides of Eq. (1), we can ignore Ec in
the following discussion. The free energy of the final
Hamiltonian is then

Ff ¼ −
L
β
ln

�
2 cosh

�
β

2

��
: ð10Þ

In order to validate Eq. (1), it is, therefore, sufficient to
focus on measuring the average exponentiated work.

FIG. 2. The protocol of our quantum experiments. (a) The unitary rotation gate defined in Eq. (13) and subsequent measurements
prepare a thermal ensemble of the transverse-field Ising model. The measurement has two effects: It prepares a thermal ensemble and is
used as the initial energy measurement to determine the work distribution. (b) Transformation from the initial energy to the
computational basis using a Bogoliubov (red) and a Fourier transformation (light blue). The gates are defined in Appendix C, the
fermionic SWAP operators (dark green) keep track of the correct sign structure under permutation. (c) Now we apply the actual
nonequilibrium protocol. In our case, we execute a “random” circuit with k ¼ 3 blocks. Each block consists of a layer of single-qubit
Haar random unitary gates (different colors) and a sequential CNOT layer. (d) Final measurement of the qubits in the computational basis
corresponding to the final energy measurement of Eq. (7). More details about the thermal state preparation and its accuracy in the
quantum simulation can be found in Appendix C.
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2. Gibbs ensemble preparation: Midcircuit measurements
vs classical presampling

To test the Jarzynski equality, we need to prepare a
thermal ensemble with respect to the initial Hamiltonian
on the quantum simulator. This is a difficult task on
quantum devices, in general, since energy eigenstates are
not necessarily accessible; however, the mapping of the
Ising model to a model of noninteracting fermions allows
us to use the initial energy measurement to prepare the
thermal ensemble using a shallow circuit, as we now
explain [see also parts (a) and (b) of the circuit in Fig. 2].
The thermal density matrix for a system of noninteract-

ing fermions can be written as

ρ ¼ 1

Zi

X
m

e−βE
i
m jmihmj ð11Þ

¼ 1

Zi
⊗
k
ðe−βωk j1ih1jk þ j0ih0jkÞ; ð12Þ

where ωk denotes again the energy of the single-particle
eigenmodes. In the case of free fermions, each energy
eigenstate jmi is uniquely defined by the collection of
excited single-particle eigenmodes. This allows us to
introduce an equivalence between bit strings and eigen-
states: We can map an occupied single-particle eigenmode
k to the kth qubit in the excited state, written as j1ik. In the
initial state j0i⊗L, all qubits are in the j0i state; thus, an
excitation of the kth mode is equivalent to applying an X
gate to qubit k.
Midcircuit measurements. Starting from the product state

j0i⊗L, we can implement the Gibbs ensemble in two steps:
(i) To prepare a thermal ensemble in the free-fermion basis,
we start from the state j0i and first apply a rotation gate Uk
to each qubit, of the form

Uk ≡UðθkÞ ¼
�
cos θk − sin θk
sin θk cos θk

�
; ð13Þ

with θk implicitly defined by

sin2 θk ¼
e−βωk

1þ e−βωk
; ð14Þ

(ii) we then perform a subsequent measurement of all
qubits. The angles θk are chosen such that this projective
measurement collapses the state with probability equal to
that of the Gibbs ensemble; hence, the measurement
statistics correspond to sampling from the Gibbs state in
Eq. (12). These two steps constitute part (a) of our circuit
protocol; see Fig. 2.
To complete the procedure, we have to apply a

transformation from the energy to the computational
eigenbasis. This transformation consists of a fermionic
Bogoliubov transform and a fermionic Fourier transform

(cf. Appendix C); these constitute part (b) of our circuit (see
Fig. 2). In the case of L ¼ 2k spins (k∈N), the Fourier
transform can be decomposed into fermionic SWAP gates
and two-body Fourier transform gates, which can be
efficiently implemented on a quantum computer [48].
We emphasize that, besides its use for Gibbs state

preparation, the midcircuit measurement simultaneously
serves as a measurement of Ei

m, which is necessary to
determine the work distribution.
Classical presampling. Unfortunately, midcircuit mea-

surements are currently not feasible on all present-day
quantum computing platforms. Wherever they are not
available, we use classical presampling [41,48,60]. To this
end, we prepare a randomly chosen many-body eigenstate
jmi with probability equal to its Boltzmann weight,
following Eq. (11). This is equivalent to sampling a bit
string directly from the Boltzmann distribution provided bit
string preparation can be performed with unit fidelity.
Since, at the end of the day, we want to perform a

quantum simulation end to end, we avoid classical
presampling whenever possible and stick to midcircuit
measurements for the largest system sizes L ¼ 16.
Furthermore, classical presampling requires preparing dif-
ferent circuits corresponding to each different initial bit
string, while the use of midcircuit measurements requires
only one circuit for all possible initial bit strings. As a
consequence, this results in a speedup for the execution of
the simulation.
After having discussed the difficulties related to meas-

uring work and thermal state preparation, we now move on
to address the remaining challenges concerning the expo-
nential scaling of measurement shots and free energy
differences.

B. Nonequilibrium protocol

In contrast to previous experiments, the local control
over qubit interactions offers significant freedom in the
choice of nonequilibrium protocol; cf. part (c) of our circuit
in Fig. 2. Our goal is to devise a protocol that makes use of
the intrinsic features of quantum computers in order to
address the exponential scaling of the number of required
measurements with the system size.
Because of the local nature of gates on digital quantum

computers, we choose a circuit whose dynamics does
not describe a parametric deformation between the
initial and final Hamiltonians. This allows us to explore
nonequilibrium protocols distinct from previous
experiments [12,40].
Instead, in our digital quantum simulations, we apply a

protocol made out of k sequential blocks, as shown in
Fig. 2(c). Each block consists of a layer of single-qubit
Haar random unitary gates, followed by a sequential layer
of CNOT gates. In comparison to pure Haar random circuits,
our circuit allows for a more native and shallow imple-
mentation on NISQ devices; moreover, k ¼ L − 1 blocks
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are sufficient to build up bipartite von Neumann entangle-
ment in the system close to the Page value [61], as we
demonstrate in a classical emulation in Appendix D.
Our choice of a nonequilibrium protocol results in a

work distribution PðWÞ that approaches a Gaussian for
system sizes L≳ 8 (cf. Appendix D). Thus, the tails of the
work distribution exhibit a Gaussian decay and do not
dominate the average of the exponentiated work [55,56].
However, the number of measurements to determine

the distribution of the exponentiated work still scales
exponentially with the system size L and, thus, even-
tually gives rise to a bottleneck in testing Eq. (1). In our
case, we find that, for the case of L ¼ 16, 216 measure-
ments are sufficient. As we show below, this is feasible
on current devices.
In order to determine the final energy (and, with it, the

work), we perform up to 224 measurements on super-
conducting quantum computing architectures and between
212 (Quantinuum) and 216 (IonQ) measurements on trapped
ion platforms. The reason for the smaller number of
measurements on trapped ion devices is the higher simu-
lation cost of the quantum simulation due to lower protocol
repetition rates, which restricts us to use fewer data points.
For further details, see Appendix B.
Last, it is curious to note that the separation of parts (b)

and (c) in our protocol (Fig. 2) is somewhat arbitrary. On
the one hand, part (b) belongs naturally together with part
(a) in a thermal state preparation subprotocol. On the other
hand, we can interpret part (b) as part of the nonequilibrium
protocol (c) applied to the system. Since Jarzynski’s
equality holds for arbitrary protocols, equilibrium or non-
equilibrium, the accuracy of implementation of part (b) is
not crucial for the accuracy to which we verify Jarzynski’s

equality, provided the errors are systematic and are, thus,
identical across trials. Note that this does not compromise
the many-body character of our circuit: Indeed, the entan-
glement created by the circuit reaches the maximal Page
curve; cf. Fig. 9 in Appendix D.

III. JARZYNSKI EQUALITY AND CROOKS
RELATION ON A NOISY QUANTUM DEVICE

After having discussed the details of the implementation
of a test for the many-body quantum Jarzynski equality on
quantum devices, we now provide simulation results for the
test of Jarzynski’s equality and Crooks’ relation on present-
day quantum computing platforms.

A. Jarzynski relation in the few- and many-body regime

The results presented below are obtained in experiments
on the ibmq_guadalupe superconducting quantum proces-
sor [62]. A detailed comparison with other digital quantum
architectures is included in Appendix G. For the technical
details of the various devices including gate fidelities and
relaxation times T1 and T2, we refer the interested reader to
Appendix B 3.
In Fig. 3, we display the deviations from Jarzynski’s

equality as a function of the inverse temperature. The three
panels show the same data but viewed through the lens of
different quantifiers of the deviation.
Let us open up the discussion in Fig. 3(a) by introducing

the plain deviation quantifier lnhe−βWdissiPðWÞ, which van-
ishes whenever Jarzynski’s equality holds. The curves
show an approximately linear scaling with the inverse
temperature β in the high-temperature limit. The dominant
contributions to this deviation quantifier originate from

FIG. 3. Testing Jarzynski’s equality on a digital quantum computer using midcircuit measurements as a function of inverse
temperature β, for three different systems sizes L ¼ 4, 8, 16. (a) he−βWdissiPðWÞ as a function of inverse temperature β. The unnormalized
data depend on temperature and system size: Deviations from Jarzynski’s equality for a dissipation-free system are sensitive to the
system size L and grow with increasing inverse temperature. (b) ΔFsim=ΔF as a function of inverse temperature β. The normalization
largely removes the dependence on temperature and system size. (c) The same data but now normalized by the maximum possible
deviation [see Eq. (17)]. The dashed red line shows the prediction from our theory derived in Sec. IV. Jarzynski’s equality holds better
than one part in ten, irrespective of the system size; the deviation agrees well with our theoretical prediction. We take 216 measurements
on ibmq_guadalupe; the number of blocks in the circuit (cf. Fig. 2) is seven for L ¼ 4, 8 and three for L ¼ 16. Further technical details of
the device can be found in Appendix B 3.

HAHN, DUPONT, SCHMITT, LUITZ, and BUKOV PHYS. REV. X 13, 041023 (2023)

041023-6



violations of double stochasticity with equal contributions
from all final energy eigenstates. By contrast, for inverse
temperatures β ≳ 1, the deviations are determined by
processes involving the ground state of the final system.
As a consequence, the deviations for large β ≳ 1 converge
to a constant value, which depends on the concrete effect of
energy dissipation on the process. For a detailed discussion,
see Appendix E 2. The comparison between the three
system sizes in Fig. 3(a) reveals increasing absolute
deviations from Jarzynski’s equality with increasing L.
We suspect that this is due to the increasing number of
qubits to be read out: A primary contribution to the overall
error arises from measurement errors, and, hence, the error
in the work measurement scales linearly with system size.
We provide a more detailed analysis of various errors in
Sec. IV and Appendix E. For a meaningful and systematic
comparison of the results for different system sizes, we,
therefore, consider different quantifiers for relative devia-
tions in Figs. 3(b) and 3(c).
Figure 3(b) shows the ratio ΔFsim=ΔF, introduced in

previous work [12,42]. Here,

ΔFsim ¼ −
1

β
lnhe−βWiPðWÞ ð15Þ

is the free energy difference obtained from the distribution
average of the exponentiated work andΔF is the theoretical
prediction for the free energy difference. Any deviations
from the ideal, dissipation-free case are indicated by
deviations of the ratio from unity. We observeΔFsim=ΔF >
90% for all inverse temperatures and only a weak system-
size dependence, since the latter is absorbed by the scaling
of the denominator.
Since ΔF is a protocol-dependent quantity and not

immediately accessible for a given setting, we introduce
another normalization, which facilitates a straightforward
quantitative comparison with previous experiments and
which is tailored to quantify the amount of energy
dissipation in the system. For this purpose, we consider
the process of dissipative decay to the ground state of the
final system as the natural reference for deviations from the
Jarzynski equality, because it constitutes its worst possible
violation. The resulting work obtained by the two-point-
measurement scheme when starting from an initial energy
Ei is W ¼ Ef

0 − Ei. Accordingly, we introduce

e−βWdecay ≡ e−βðE
f
0
−EiÞþβΔFsim ; ð16Þ

where the right-hand side is the ratio of the exponentiated
energy differences for the purely dissipative process and
ΔFsim for the true process simulated on the quantum
computer. The bar ð·Þ denotes an average over the initial
thermal ensemble.
This allows us to define the relative deviation from the

theoretical prediction:

EðβÞ ¼
���� lnhe−βWdissiPðWÞ

ln e−βWdecay

����: ð17Þ

This quantity is bounded from below and above. Whenever
Jarzynski’s equality holds, we have EðβÞ ¼ 0. On the other
hand, for a purely dissipative process, EðβÞ ¼ 1. In contrast
to previous deviation quantifiers, the normalization in EðβÞ
by the worst-case scenario allows us to directly compare the
amount of dissipation in our simulations and previous
experiments; cf. Table I in Sec. V. Moreover, small
deviations from the equality can be resolved logarithmi-
cally, while the upper bound simultaneously justifies a
quantitative interpretation.
The relative deviation from Jarzynski’s equality as

defined in Eq. (17) is plotted in Fig. 3(c). Consistently
with Fig. 3(b), the results are largely independent of the
inverse temperature β, and the relative deviations do not
exceed 10%. As for the previous normalization ΔFsim=ΔF,
EðβÞ exhibits only a weak system-size dependence.
Because increasing the system size requires a larger circuit
depth via the subcircuits (b) and (c) in Fig. 2, one could
naïvely expect that scaling to large system sizes is quickly
hampered by dissipation effects which accumulate with
increasing circuit size. However, this appears not to be the
case in the observed behavior in Fig. 3, where we show data
up to L ¼ 16 qubits. Therefore, we now briefly investigate
our circuit’s susceptibility to energy dissipation.
The purely dissipative process leading to the right-hand

side of Eq. (16) can be emulated on a NISQ device by
applying a so-called “idle process” [63]: This is a similar
process as the one described in Fig. 2 but with the circuit
parts (b) and (c) replaced by free evolution for a variable
duration tidle. In other words, the two measurements at the
end of circuit part (a) and in part (d) are separated by the
idle time tidle. Hence, to access the regime of validity of
Eq. (16), we have to apply an idle process of time
tidle ≫ T1, with T1 being the dissipation time.
Figure 4 shows the relative deviation from Jarzynski’s

equality for an idle process, as a function of the waiting
time tidle for L ¼ 8 qubits. As expected, for large waiting
times tidle ≳ T1, E → 1 reaches the limit of a pure dis-
sipative process. We now want to compare the time
required to reach the purely dissipative regime with the
execution time of the circuit from Fig. 2. Before we do
this, notice first that the average dissipation time of
ibmq_guadalupe is T1 ≈ 118 μs, while the execution time
for our circuit [Figs. 2(a)–2(d)] is Tc ¼ 57 μs for L ¼ 8
qubits; hence, Tc=T1 ≈ 0.48 (cf. diamonds on dashed
vertical line in Fig. 4) [for comparison, for 16 qubits we
have Tc=T1 ≈ 2.95]. Furthermore, the normalized deviation
of the quantum Jarzynski equality Eq. (17) does not depend
on the number of entangling blocks, as is shown in Fig. 12
in Appendix D 4.
Comparing the deviation values with the idle process, the

accuracy of the process from Fig. 3 appears quite striking,
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since the deviation there is up to more than one order of
magnitude smaller than an idle protocol of the samewaiting
time, tidle ¼ Tc. In fact, the deviation values are comparable
to those of the idle process with the smallest idle time
investigated, from which we can deduce that the main
source of deviations from Eq. (1) originates in part (d) of
the protocol.
To sum up, our nonequilibrium circuit has the property

of preventing energy dissipation effects from accumulating,
despite increasing circuit execution time; this is, in turn,
reflected in Jarzynski’s equality being obeyed to a high
degree of accuracy even in the many-body regime of
L ¼ 16 qubits. We discuss this observation in more detail
in Sec. IV.

B. Crooks relation in the many-body regime

While Jarzynski’s equality is a statement about work-
averaged processes, we can also check to what extent
its infinitesimal (or in-sample) version, the Crooks
relation [29,52]

ln

�
PFðWÞ
PRð−WÞ

�
¼ βðW − ΔFÞ; ð18Þ

holds (see Appendix A for a derivation). To the best of our
knowledge, the latter was tested only in two-level quantum
systems so far [40,53].
For a process described by a sequence of unitary gates and

ignoring noise for the time being, the backward process can
be implemented in a straightforward way by reversing the
gate order and taking the inverse of each individual gate.
We tested theCrooks relation forL ¼ 8 qubits, using 224 ≈

1.7 × 107 measurements to reduce statistical fluctuations

due to a limited number ofmeasurements. The corresponding
data are shown in Fig. 5. The validity of the Crooks relation
requires that all data points lie on the black line, apart from
statistical fluctuations arising from a finite number of mea-
surements. Indeed, the data follow the trend predicted by the
Crooks relation. However, the deviation between the theory
prediction and the measurement outcomes cannot solely be
explained by the statistical uncertainty due to a limited
number of measurements: The ratio between occurrences
of forward and backward processes in Eq. (A3) is up to one
order of magnitude larger than expected due to statistical
errors. These deviations are a consequence of the presence of
energy dissipation in the device.

IV. THEORETICAL ANALYSIS

In order to understand the small deviations in the
validation measurement for the Jarzynski equality and
the strong fluctuations in the Crooks relation, we analyze
a simplified single-qubit toy model subject to a periodic
application of a single-qubit rotation gate instead of a
random sequence of gates. As we discuss below, the main
results of this analysis extrapolate also to the protocol
from Fig. 2.

A. Single-qubit case

Consider first a single qubit. The Hilbert space is two-
dimensional, such that the state can be expressed by a
vector jψi ¼ ðu1; u2Þ. To be more concrete, jψGi ¼ ð1; 0Þ
defines the “physical” ground state of the qubit, whereas
jψEi ¼ ð0; 1Þ denotes an excited state.
Consider the single-qubit density matrix ρ:

ρ ¼
�
ρ11 ρ12

ρ21 ρ22

�
: ð19Þ

FIG. 5. Test of the Crooks relation ln ½PFðWÞ=PRð−WÞ� as a
function of the work W. The black line denotes the theoretical
prediction for a noiseless device [Eq. (18)]. Although the results
from the quantum simulation follow the theory prediction,
deviations indicate the violation of double stochasticity. The
data shown here are for β ¼ 1.0, 224 ∼ 1.7 × 107 shots, and L ¼ 8
qubits on ibmq_guadalupe.

FIG. 4. Relative deviation from Jarzynski’s equality as a
function of the waiting time tidle (solid lines), for four different
inverse temperatures β, at L ¼ 8. The x axis is normalized by the
average waiting time T1 ¼ 118 μs [64]. For comparison, the
diamonds denote the results for our protocol shown in Fig. 3(b),
placed at their respective execution time (dashed vertical line).
The application of gates between the two measurements in the
protocol (cf. Fig. 2) improves the accuracy of our results by up to
more than one order of magnitude.
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We analyze the repeated (periodic) application to the qubit
of a unitary gate U of the form

U ¼
�
cos α − sin α

sin α cos α

�
: ð20Þ

The density matrix vector evolves according to

ρ → UρU†: ð21Þ

Let us assume that the excited state has a finite lifetime T1;
thus, we can use a single-amplitude damping channel [65]
to describe this effect. The time evolution over one period is
then given by

F ðρÞ ¼
X2
i¼1

KiðUρU†ÞK†
i : ð22Þ

Here, F ðρÞ is a completely positive trace-preserving
map on the space of density matrices with a unique largest
eigenvalue λ ¼ 1 for p > 0. The Kraus operators Ki
describing the damping process are given by

K1 ¼
�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
�

and K2 ¼
�
0

ffiffiffiffi
p

p
0 0

�
: ð23Þ

The parameter p is the fraction of the excited state
population which decays to the ground state after one
application of F . It is related to the relaxation time T1 and
the gate time Tg via

p ¼ 1 − exp

�
−
Tg

T1

�
: ð24Þ

Repeating the process N times, the density matrix evolves
in the long time limit as

lim
N→∞

FNðρÞ ¼ ρ0: ð25Þ

A simple calculation gives, for p > 0,

ρ0 ¼
�
1=2þ fðp; αÞ gðp; αÞ

gðp; αÞ 1=2 − fðp; αÞ

�
; ð26Þ

with

fðp; αÞ ¼ p½1 − ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
cosð2αÞ�

2½1 − pþ ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p �½1 − cosð2αÞ� ð27Þ

and

gðp; αÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p
sinð2αÞ

2½1 − pþ ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p �½1 − cosð2αÞ� : ð28Þ

Jarzynski’s equality holds for fðp; αÞ ¼ 0, which is indeed
the case at p ¼ 0.
Our quantum simulations testing Jarzynski’s equality

are in the regime Tg=T1 ≪ 1. In order to understand this
regime, we perform an expansion of fðp; αÞ around p ¼ 0;
together with Eq. (24), this gives

fðp; αÞ ¼ 1

4
pþOðp2Þ ¼ 1

4

Tg

T1

þO
�
T2
g

T2
1

�
: ð29Þ

This regime is approached in the case of an infinitely fast
drive, as can be seen from the relation in Eq. (29). Note that
the actual time of the protocol does not matter in this case,
since this analysis holds in the limit of infinitely many
periods N → ∞. Indeed, there is no obstruction if the
protocol time greatly exceeds the relaxation timescale T1.

B. Extension to multiple qubits

Although we restricted the analysis to the case of a
single qubit with a periodic protocol, we can apply it to
random gates and multiqubit systems. For simplicity, let
us take into account only the independent decay of qubits
in the excited state to their ground state and ignore many-
particle effects for a moment. Although this is a crude
simplification, it turns out that it gives quantitatively good
results, such that this approximation is well justified
a posteriori. The relevant physical parameter is p, as
defined in Eq. (24). The application of single-qubit gates
can be interpreted as a drive applied to the system, which
repopulates excited states and, thus, compensates for the
deviations from Jarzynski’s equality caused by the energy
dissipation process.
To make a quantitative estimate for our experiment, we

determine the parameter p and the measurement error of
ibmq_guadalupe. The execution time of single-qubit gates
is negligible in comparison to two-qubit gates Tg, so p is
given by

p ¼ 1 − e−Tg=T1 ¼ 3 × 10−3; ð30Þ

see Appendix B 3 for the characteristic timescales of the
device. Thus, in our approximation, the effect of two-qubit
entangling gates enters only via the gate time Tg.
Furthermore, averaging over the angle α for each single
rotation gate, fðp; αÞ reduces to

f0ðpÞ ¼
p

2½1 − pþ ffiffiffiffiffiffiffiffiffiffiffi
1 − p

p � ≈ 8 × 10−4: ð31Þ

In addition, we have to factor in the dissipation during
the measurement process, i.e., excited qubits which are
misidentified to be in the ground state. In the following, we
neglect the opposite case, i.e., a qubit in the ground state
misidentified to be in the excited state. For the device
ibm_guadalupe, we get an approximate measurement error
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of p0 ≈ 0.04. The steady-state probability for each single
qubit to be in the excited state is then given by

pexc ¼
�
1

2
− f0ðpÞ

�
ð1 − p0Þ

¼ 1

2
− p0 − f0ðpÞ − f0ðpÞp0: ð32Þ

Since f0ðpÞ ≪ p0, the model predicts that the deviations
from our experiment are almost exclusively due to meas-
urement imperfections. The analytically estimated
deviation from a dissipation-free evolution is indicated
as a red dashed line in Fig. 3. Taking the simplifications of
our analysis into account, the result agrees quantitatively
well with our simulation results and suggests that meas-
urement errors are indeed the dominant source for devia-
tions from the quantum Jarzynski equality.

C. Relation to DiVincenzo’s third criterion

The compensation for energy dissipation is reminiscent
of DiVincenzo’s criteria for quantum computing [66]. To be
more concrete, the third criterion states that scalable
quantum computing requires long decoherence times in
comparison to the timescale of operational gates.
In our case, we are not interested in scalable fault-

tolerant quantum computing but in a weaker question,
namely, under which conditions the quantum Jarzynski
equality Eq. (1) is fulfilled. This requires only long
dissipation timescales. In contrast to fault-tolerant quantum
error correction, it is not necessary to actively correct for
errors; the dynamics itself already compensates for the
energy dissipation. Put differently, the application of
single-qubit gates can be interpreted as a repopulation of
excited states. The quantum Jarzynski equality, thus, holds
in an effective way, although every single component of the
dynamics is spoiled by energy dissipation.

V. DISCUSSION AND OUTLOOK

We propose a protocol to test the quantum Jarzynski
equality and the Crooks relation in the many-body regime
on near-term quantum computing devices, in the presence
of different errors. We push the state of the art for the
quantum simulation of Jarzynski’s equality up to 16 qubits
and for the Crooks relation to eight qubits, respectively. We
identified the implementation of two-point work measure-
ments, the preparation of a thermal ensemble on a digital
quantum simulator, and the exponential growth of the
required number of measurements as the major practical
challenges to reach the many-body regime.
To address the first two challenges, we develop a protocol

sequence that prepares a canonical ensemble by using
midcircuit measurements. While for small system sizes
classical presampling is still feasible, midcircuit measure-
ments allow us to prepare thermal ensembles for up to
L ¼ 16 qubits without running multiple independent experi-
ments and without any overhead incurred by using ancilla
qubits. Taking the transverse-field Ising model and an Sz

model as exemplary initial and final Hamiltonians, respec-
tively, we perform energy measurements with circuits
scaling at most logarithmically in the system size L. This
approach is exact for Hamiltonians equivalent to single-
particle systems; it is currently an open question whether, to
what accuracy, and under which conditions one could
prepare thermal ensembles for more general Hamiltonians
using similar protocols. A possible route could be to use
variation quantum eigensolvers for the preparation of ther-
mal ensembles for nonintegrable systems [67].
While the exponential (in the system size) number of

projective measurements still appears as the dominant
bottleneck in testing the quantum Jarzynski equality when
increasing the number of degrees of freedom, we are able to
collect enough measurement data to test the latter for up to
L ¼ 16 qubits. As a side product, our protocol in Fig. 2
reveals the ingredients of Eq. (1) in a simple way: The
quantum Jarzynski equality is a relation between initial and

TABLE I. Comparison of different experiments for the validation of the quantum Jarzynski equality, using the
normalized deviation defined in Eq. (17). The relative accuracy E of our simulations is comparable with previous
experiments on few-qubit systems. More details for the extraction of the data and the determination of β are
provided in Appendix G.

Experiment Experimental platform
System
size L

Inverse
temperature β

Relative
deviation EðβÞ

This work Superconducting qubits 16 0.7 0.061(3)
Ref. [43] Superconducting qubits 3 1.0 0.03(1)
Ref. [42] Superconducting qubits 1 1.0 0.02(2)
Ref. [12] Trapped ions: vibrational modes 1 1.13 0.02(2)
Ref. [38] Trapped ions: two hyperfine levels 1 1.3 0.03(9)
Ref. [40] NMR 1 0.15 0.17(8)
Ref. [39] Hyperfine levels of 87Rb 1 1.75 0.00(4)
Ref. [41] NV centers 1 0 0
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final eigenenergies and a double-stochastic transfer matrix
connecting them. Any other terms, including the trans-
formation to a computational basis, can be absorbed into
the transition process itself. The quantum Jarzynski equal-
ity, thus, probes only the double stochasticity of the process
and not the accuracy of different parts of the protocol.
Let us also compare our results to previous experiments

on the quantum Jarzynski equality; cf. Table I. To this end,
we first extract the results for the left-hand side of Eq. (1) and
the theory prediction of the free energy of the corresponding
experiments; then we compute the maximum deviation of
an idle process [cf. Eq. (16)], which gives us the normalized
deviation defined in Eq. (17) for each experiment
(cf. Appendix G for details). The comparison shown in
Table I clearly suggests that the accuracy of our results is
comparable with most of the earlier experiments; however,
we reach an order of magnitude larger system sizes, where
quantum many-body effects become pronounced.
Moreover, in contrast to previous experiments, the pro-

tocol duration of our circuits is comparable to, or even
exceeds, the average dissipation time T1 of the NISQ
devices; therefore, energy dissipation is no longer negligible.
We check that our results do not depend on the specific
choice of randomness in our protocol. Furthermore, we
demonstrate that the relative accuracy of our results is almost
independent of system size and circuit depth. We also
develop a theoretical model which predicts the empirical
observations in a quantitative manner. By employing a fast
drive that compensates for energy dissipation, we, thus, find
the Jarzynski equality to be effectively valid in this regime,
even though the dynamics is not doubly stochastic.
While these observations are interesting on their own,

our work demonstrates two promising practical applica-
tions: First, testing the equality can be used to investigate
errors on NISQ devices in new ways. Since Jarzynski’s
equality is sensitive only to processes violating double
stochasticity, it can be used to quantify and single out this
effect. Even though simpler protocols to determine the
dissipation time T1 of devices exist [65], our approach can
be used as the generalization of these approaches to the
many-qubit regime: Jarzynski’s equality can not only be
used to detect the decay of excited states as shown in our
analysis in Sec. IV, but it is, more generally, sensitive to
any violation of double stochasticity. It remains an open
question for future studies to investigate to what extent this
allows us to refine our understanding of correlated error
processes on modern quantum devices. For instance, the
commonly used protocol for measuring T1 can be inter-
preted as special cases of testing the Jarzynski equality for a
single spin system, as we show explicitly in Appendix F.
Second, our analysis emphasizes important limitations
concerning the measurement of free energy differences—
one of the promising applications of the Jarzynski equality:
In generic nonintegrable systems, the exact work distribu-
tions can be extracted only by diagonalizing the circuits,

which requires at least polynomially deep circuits using
quantum phase estimation [68] and is, thus, infeasible in the
many-body regime. It remains an exciting question for future
research to find approximations to Eq. (1), which allow for a
scalable method to extract free energies using the quantum
Jarzynski equality in the many-body regime [43].
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APPENDIX A: QUANTUM JARZYNSKI
EQUALITY AND CROOKS RELATION

Let us recall the derivation of the quantum Jarzynski
equality [28,30]. Consider a system described by a
HamiltonianHi with eigenstatesHijmii ¼ Ei

mjmii, coupled
to a thermal reservoir of inverse temperature β. The system
is, thus, described by a thermal ensemble with the density
matrix ρ ¼ Z−1

i

P
m e−βE

i
m jmiihmij, and Zi ¼

P
m e−βE

i
m is

the partition function. We now decouple the system from the
reservoir and let it evolve according to a dynamical process
U (not necessarily unitary; see below). At the end of this
process, the instantaneous final Hamiltonian Hf of the

system has eigenstates Hfjnfi ¼ Ef
njnfi. We denote by

Km→n the transition probability from the initial eigenstate
jmii to the final eigenstate jnfi.
While the dynamical process U need not be unitary, we

require that the transition probabilities satisfy the following
two sum rules:X

n

Km→n¼1 ∀ m and
X
m

Km→n¼1 ∀ n: ðA1Þ
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The left-hand equality reflects the conservation of proba-
bility. The right-hand sum rule is less obvious and implies
the so-called double stochasticity of the matrix Kmn; this
condition is fulfilled for unitary dynamics Km→n ¼
jhnfjUjmiij2 but is also conserved throughout evolution
in the presence of additional decoherence noise [38]. By
contrast, energy dissipation violates the right-hand sum rule
condition [38,69].
Using these definitions, we can now prove the quantum

Jarzynski equality for the process introduced above:

he−βΔWiPðWÞ ¼
1

Zi

X
m;n

e−βE
i
mKm→ne−βWnm

¼ 1

Zi

X
m;n

Km→ne−βE
f
n ¼ 1

Zi

X
n

e−βE
f
n

¼ Zf

Zi
¼ e−βΔF; ðA2Þ

where we use Wnm ¼ Ef
n − Ei

m according to Eq. (2) and
double stochasticity of Km→n in the second line, and the
definition of free energy Fi ¼ −β lnZi in the last line. We
note that Jarzynski’s equality imposes no restrictions on the
initial and final Hamiltonians; in particular, they need not
be identical.
There exists an infinitesimal (i.e., work-resolved) version

of Jarzynski’s equality, called the Crooks relation [29,52].
The Crooks relation states that

PFðWÞ
PRð−WÞ ¼ eβðW−ΔFÞ: ðA3Þ

Here, PFðWÞ denotes the probability of extracting an
amount of work W for a given (so-called forward) process
and PRð−WÞ for the reverse (or backward) protocol, which
can be expressed as

PFðWÞ ¼ e−βE
i
m

Zi
Km→n

����
Ei
m−E

f
n¼W

; ðA4Þ

PRð−WÞ ¼ e−βE
f
n

Zf
Km←n

����
Ef
n−Ei

m¼−W
: ðA5Þ

The Jarzynski equality follows by rearranging the Crooks
relation and integrating it over the work W.

APPENDIX B: COMPARISON OF DIFFERENT
NISQ ARCHITECTURES

In the following section, we give a brief overview of
the different quantum computing platforms, the noise they
are affected by, and their significance for the test of
Jarzynski’s equality.

1. NISQ architecture characteristics

In order to test the effect of different noise types, we
run our circuits on five different devices using two
different architectures: superconducting qubits (ibm_perth,
ibmq_guadalupe, and Rigetti Aspen-11) and trapped ion
platforms (Quantinuum H1 and an 11-qubit system of
IonQ). We extract the exponential of the work [Eq. (2)] to
test the Jarzynski equality; cf. Eq. (1). As mentioned above,
the latter is valid also in the presence of noise which does
not violate double stochasticity and is sensitive only to
errors that violate the second sum rule in Eq. (A1). The size
of the deviation from the theoretical prediction Eq. (1),
valid for an ideal dissipationless device, gives us, therefore,
information about the amount processes violating double
stochasticity during the simulation.
The quality of qubits is often measured by means of the

average gate times Tg and the relaxation times T1 and T2.
The timescale of dephasing errors, T2, is not relevant for
our purposes, since depolarizing errors do not violate
double stochasticity [30,38]. Only the thermal relaxation
time T1 or, more concretely, the ratio q ¼ Tg=T1 matters, as
it sets the decay rate for excited states; cf. Sec. III. While
the two-qubit fidelities for all architectures fall between
95% and 99.5%, the q factor depends strongly on the
underlying architecture.
As discussed in Sec. IV, the accuracy to which the

Jarzynski equality Eq. (1) holds in experimental setups
depends on (a) the ratio between gate time Tg and the
relaxation time T1, (b) measurement errors, and (c) stat-
istical errors due to a finite number of measurements. The
statistical error reduces with the square root of the number
of measurements. Thus, by testing to what accuracy Eq. (1)
holds, we gain information about processes violating
double stochasticity in the quantum device. The two-qubit
gate time for IonQ devices is Tg ∼ 200 μs, and the
relaxation time T1 ∼ 107 μs, resulting in a factor qIonQ ∼
Oð105Þ. On the other hand, the timescales for IBM plat-
forms are Tg∼400 ns and T1∼160 μs, yielding qIBM ∼ 400.
Based on these estimates, we anticipate obtaining signifi-
cantly smaller deviations from Jarzynski’s equality Eq. (1)
on trapped ion compared to superconducting platforms.
Furthermore, due to the high-quality factor qIonQ, we can
assign deviations from the Jarzynski equality on trapped
ion platforms solely to measurement errors.

2. Comparison on different devices

Besides presenting results for the largest system sizes
and the most resource-intensive simulations (see the
main text), it is worth comparing the performance of the
different devices on smaller systems. This is necessary to
obtain an overview of the scaling with system size L of the
simulations and the expected resource costs. Furthermore,
it allows us to get valuable insights about the quality of the
experimental platforms.
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For a direct comparison of the performance on the five
different devices, we estimate the validity of Jarzynski’s
equality using 216 measurement shots and L ¼ 4, 8 qubits.
In the case of Quantinuum, we are restricted by the smaller
number of measurements to L ¼ 4 qubits and to a different
sampling scheme due to the higher financial resource
costs for circuit evaluation on these devices: We sample
each eigenstate 200 times and weigh the results by the
Boltzmann distribution during classical postprocessing. In
this way, we are able to extract data for different inverse
temperatures with a total of 4000 shots.
Because of hardware limitations on Rigetti and IonQ that

prevent the use of midcircuit measurements, in order to
make a fair comparison between the various devices, in the
following we use classical presampling for the preparation
of the Gibbs ensemble.
We emphasize that the comparison in this section is not

a statement about the quality of the different devices for
an accurate simulation of a quantum circuit: As explained
in Sec. A, the quantum Jarzynski equality is sensitive
only to noise channels violating double stochasticity, and,
thus, a good accuracy for the validation of the circuit does
not imply an accurate evaluation of the corresponding
quantum circuit.
Accuracy of the results. The results for L ¼ 4 qubits are

shown in Fig. 6 for five different values of the inverse
temperature β; for L ¼ 8 and a fixed β ¼ 0.7, see Table II.
The error bars indicate the statistical uncertainty due to a
finite number of measurements.
We apply no error mitigation; instead, we consider the

measurement process itself as part of the protocol with its

own errors, which, depending on their origin, may or may
not violate the double-stochasticity condition. Moreover, in
the case of IonQ, error mitigation is infeasible, since the
data collection continues over a few days. However, we can
still obtain rough estimates for the measurement errors and
their impact on the validity of Jarzynski’s equality.
The errors for the IonQ, Rigetti, and IBM devices

are within 2%–5%, even for large values of β and L ¼ 8
qubits. Note that the theory predicted value from Eq. (1),
lnhe−βWdissiPðWÞ ¼ 0, does not fall within the error bars for
the superconducting architectures—a direct manifestation
of violations of double stochasticity.
Even if deviations from Jarzynski’s equality are not

detectable with the current experiment, a closer look reveals
that the measurement process itself is an energy-dissipative
process in this case: Our quantum simulations reveal that
excited qubits are detected in the ground state with a
probability of roughly 1%. This process violates the second
sum rule in Eq. (A1) and, thus, leads to a weak violation
of the quantum Jarzynski equality. As discussed in
Appendix E, our simulations reveal a means to detect
the readout error as a residual deviation in the limit of
infinite measurements.
It is also insightful to compare the deviation from Eq. (1)

with and without error-prone midcircuit measurements on
an IBM quantum device. In the case of L ¼ 8 qubits, the
error is increased by almost a factor of 2 due to the first
measurement, as is shown in Table II. This already shows
that most of the deviation from the theoretical prediction is
due to the measurement process.
On Rigetti’s Aspen-11, we find it is essential to disable

“fencing” to obtain quality results on par with other
devices. Fencing makes two-qubit gates executed sequen-
tially, even when acting on different qubits within the same
circuit layer. While this reduces crosstalk and increases the
fidelity of the individual operations, it leads to circuits with
a longer execution time, making relaxation effects through
T1 more prominent.
Run-time and resource cost. Regarding the execution

time, note that different physical platforms have different

FIG. 6. Validation of the Jarzynski equality Eq. (1) for L ¼ 4
qubits as a function of inverse temperature β on ibm_perth (blue
line), Rigetti Aspen-11 (orange line), and IonQ (green line),
65536 shots with classical sampling. Red line: comparison with a
circuit executed on Quantinuum H1 with a slightly different
sampling (see the text) and 4000 shots. The data for super-
conducting platforms are denoted by circles and for trapped ions
by squares. The trapped ion platforms show a better performance
than the superconducting qubit architectures, since lnhe−βWdissi is
closest to zero—the theory prediction value.

TABLE II. Accuracy of the Jarzynski equality for β ¼ 0.7,
executed on different devices for an extension of the protocol
from Fig. 2 to L ¼ 8 qubits. The case for midcircuit measure-
ments is shaded in gray. The values for the run-times on IonQ and
Rigetti are extrapolated, using information about the compiled
circuit and gate times. The accuracy of the results on ibmq_gua-
dalupe is comparable to that on the trapped ion device IonQ.

Device j lnhe−βWdissiPðWÞj Run-time

ibmq_guadalupe 0.05(4) 51 μs
IonQ 0.03(4) ≈20 ms
Rigetti Aspen-11 0.04(3) ≈18 μs
ibmq_guadalupe
(midcircuit meas.)

0.10(4) 57 μs
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run-times. In the case of superconducting qubits, gates are
implemented as a sequence of microwave pulses, where
the average duration of each such gate is of the order of
10–100 ns [70]; thus, the overall circuit duration for L ¼ 8
qubits is of the order of 50 μs. In the case of trapped ions,
gates are implemented via two-photon Raman processes,
with gate times ranging from 10 to 100 μs [71]. As a
consequence, the execution time for a circuit is also 3
orders of magnitude longer, which presents a relevant
bottleneck for us when increasing the system size or the
number of measurement shots.
The use of different architectures also affects the

simulation cost. The simulation cost on trapped ion systems
is at least 30 times higher than on superconducting qubits,
which is caused by the longer circuit evaluation times.
This is the major bottleneck we encounter for simulations
on trapped ion devices: It limits the number of circuit
evaluations to 216 and the system size to L ¼ 8 qubits on
IonQ and to 4000 evaluations on L ¼ 4 qubit systems on
Quantinuum H1, respectively.
Ability to perform midcircuit measurements. In the end,

we want to perform a quantum simulation without any
classical presampling. The thermal state preparation intro-
duced in Sec. II A 2 requires the ability to perform mid-
circuit measurements. From the above platforms, only the
IBM and Quantinuum devices are currently capable of
performing this task.

3. Technical data of the various quantum devices

The technical details, including coherence times, ther-
malization times, and gate times, as well as the average
two-qubit fidelities on the different devices we used, are
shown in Table III.

APPENDIX C: PREPARATION OF A THERMAL
DISTRIBUTION FOR THE TRANSVERSE-FIELD

ISING MODEL

In the following section, it is explained how the
eigenstates of the transverse-field Ising model are mapped
to computational basis states of the quantum simulator by a

shallow circuit. This step is crucial to test the quantum
Jarzynski equality on current devices.

1. Theory

As we discuss in the main text, the transverse-field
Ising model can be mapped to a noninteracting fermionic
Hamiltonian. It is, therefore, possible to prepare it in a
Gibbs ensemble, using the protocol described in Sec. II A 2,
and with the additional help of a unitary transformation
between the energy and spin bases of the system. The
different transformation steps are explained here in detail,
following Ref. [48].
The transverse-field Ising model is given by the

Hamiltonian

H0 ¼
XL
i¼1

σxi σ
x
iþ1 þ

XL
i¼1

σzi : ðC1Þ

The transverse field here is chosen of the same strength
as the Ising interaction, although this is not a necessary
requirement for testing Jarzynski’s equality using our
protocol. In order to simplify the realization on a quantum
computer, we impose periodic boundary conditions and
add an additional Pauli string to eliminate unwanted terms
that appear in the Jordan-Wigner transformation:

H ¼
XL
i¼1

σxi σ
x
iþ1 þ

XL
i¼1

σzi þ σy1σ
z
2…σzL−1σ

y
L: ðC2Þ

Note that the multibody term becomes negligible in the
thermodynamic limit.
As a first step, we transform the Hamiltonian into

fermionic modes using a Jordan-Wigner transform:

cj ¼
�Y

i<j

σzi

�
σxj þ iσyj

2
; c†j ¼

σxj þ −σyj
2

�Y
i<j

σzi

�
:

ðC3Þ

TABLE III. Technical data of the various quantum devices. T1 is the relaxation rate of diagonal matrix elements in the density matrix,
while T2 denotes the relaxation rate of off-diagonal elements [65]. Tg denotes the average execution time of the native two-qubit gate on
each of these devices. The average two-qubit fidelity is the average fidelity of the system-specific two-qubit gate. q denotes the ratio
between T1 and gate time Tg, as introduced in Appendix B. While the qubit fidelity is comparable for all devices, T1 varies over several
orders of magnitude, depending on the underlying architecture.

Device name No. of qubits T1 ðμsÞ T2 ðμsÞ Tg ðμsÞ Average two-qubit fidelity q

ibm_perth [62] 7 134 146 0.44 0.988 3.0 × 102

ibmq_guadalupe [62] 16 106 119 0.4 0.99 2.6 × 102

IonQ [71] 11 1010 2 × 103 200 0.96 5.0 × 107

Rigetti Aspen-11 [72] 40 30 14 0.18 ∼0.93 1.7 × 102

quantinuum.hqs-lt-s1 [73] 20 >109 3 × 106 28 0.997 >3 × 107

HAHN, DUPONT, SCHMITT, LUITZ, and BUKOV PHYS. REV. X 13, 041023 (2023)

041023-14



This gives the following fermionic Hamiltonian:

H ¼
XL
i¼1

1

2

�
c†i ciþ1 þ c†iþ1ci þ ciciþ1 þ c†iþ1c

†
i

	
þ c†i c

†
iþ1:

ðC4Þ

The wave function can be expressed as

jψi ¼
X

i1;…;iL¼0;1

ψ i1;…;iL ji1…iLi

¼
X

i1;…;iL¼0;1

ψ i1;…;iLðc†1Þi1…ðc†LÞiL jΩLi: ðC5Þ

Here, jΩNi is the vacuum state; i.e., cijΩNi ¼ 0. Note that
the coefficients of the wave function do not change;
thus, the Jordan-Wigner transformation does not add any
additional gates to the quantum circuit. However, we have
to keep track of fermionic signs when swapping fer-
mionic modes.
The next step is to apply a Fourier transform:

c̃†k ¼
1ffiffiffiffi
N

p
XL−1
j¼0

eið2πj=LÞkc†j ; k ¼ −
L
2
þ 1;…;

L
2
: ðC6Þ

The Fourier transform for L ¼ 2m (m∈N) qubits can
be implemented with a quantum circuit of depth logðLÞ.
To see how, we split the Fourier transform into even and
odd sites:

XL
j¼1

eið2πj=LÞkc†j

¼
XðL=2Þ−1
j0¼0

�
e2πik=ðL=2Þj0c†

2j0 þ e2πik=Le2πik=ðL=2Þj0c†
2j0þ1

	
:

ðC7Þ

The two terms on the right-hand side independently
represent a Fourier transform for L=2 fermions. The case
L ¼ 2m is particularly appealing, since we can keep
iterating this step until we end with a Fourier transform
of only two fermions, which can be easily implemented
using two-qubit gates.
To do so, we need the fermionic SWAP gate (note the sign

structure and green gates in Fig. 7)

fSWAP ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1

1
CCCA ðC8Þ

and the Fourier gates (light blue gates in Fig. 7)

Fk ¼

0
BBBBBB@

1 0 0 0

0 1ffiffi
2

p e
2πik
Lffiffi
2

p 0

0 1ffiffi
2

p −e
2πik
Lffiffi
2

p 0

0 0 0 −e2πik
L

1
CCCCCCA
: ðC9Þ

In our case, we have to restrict to L ≤ 16, due to a limited
number of available qubits.
The above transformations lead to the Hamiltonian

H ¼
XL=2

k¼−L=2þ1

�
1 − cos

�
2πk
L

��
c̃†kc̃k

− i sin

�
2πk
L

�
ðc̃†−kc̃†k þ c̃−kc̃kÞ: ðC10Þ

Finally, in order to diagonalize the Hamiltonian, we have to
apply a Bogoliubov transformation:

ak ¼ ukc̃k þ ivkc̃
†
−k;

a†k ¼ ukc̃k − ivkc̃
†
−k: ðC11Þ

This transformation can be achieved with gates (red gate in
Fig. 7) of the form

Bk ¼

0
BBBBB@

cos ϕk
2

0 0 i sin ϕk
2

0 1 0 0

0 0 1 0

i sin ϕk
2

0 0 i cos ϕk
2

1
CCCCCA; ðC12Þ

where [48]

ϕk ¼ arccos

0
B@ 1 − cosð2πkL Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1 − cosð2πkL Þ�2 þ sin2ð2πkL Þ
q

1
CA: ðC13Þ

FIG. 7. A circuit to prepare the thermal ensemble of the
transverse Ising Hamiltonian. The unitaries Ui are rotation gates
defined in Eqs. (13) and (14). The ensemble arising from repeated
measurements is described by a Gibbs state. After the measure-
ment, the circuit realizes a transformation from the energy
eigenbasis of the transverse-field Ising model to the computa-
tional basis. Here, Fi are Fourier gates and Bi Bogoliubov gates.
Note that fermionic SWAP gates are required that contain an extra
sign compared to qubit SWAP gates.

QUANTUM MANY-BODY JARZYNSKI EQUALITY AND … PHYS. REV. X 13, 041023 (2023)

041023-15



The transformation steps for L ≥ 4 qubits are analogous
to the case described above. This casts the Hamiltonian in
diagonal form:

H ¼
XL=2

k¼−L=2þ1

ωka
†
kak þ Ec; ðC14Þ

with eigenenergies

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 − cos

�
2πk
L

��
2

þ sin2
�
2πk
L

�s
: ðC15Þ

Here, Ec is a constant energy offset Ec ¼ 1 −
ffiffiffi
2

p
. Note that

we ignore this term in the work distributions and free
energy computations, since it appears only as a constant
factor in the partition function Zi, which is not relevant for
testing the validity of Eq. (1).
In order to prepare the Gibbs state, we consider the

diagonalized Hamiltonian. In this case, a thermal ensemble
can be prepared using projective measurements, as
explained in Sec. II A 2. To apply a transformation back
into the computational basis, we have to reverse the unitary
Fourier and Bogoliubov transformations described above.
The corresponding circuit is shown in Fig. 7.

2. Accuracy of the thermal state preparation
using midcircuit measurement

Let us now investigate the accuracy of the midcircuit
measurement state preparation. To do so, we detect the
probability to prepare a state jmii after part (a) of the
protocol displayed in Fig. 2 and compare it with
the probability distribution of the canonical ensemble.
The results are shown in Fig. 8, using the data for
L ¼ 8 qubits from Fig. 3. The quantum simulation prepares
the correct thermal ensemble for different inverse

temperatures β and the entire range of initial energies.
Note that we observe a slight temperature dependence in
the fluctuations: Low-energy states are prepared more often
than predicted by theory; higher-energy states are slightly
underrepresented. As we discuss in Sec. IV, the measure-
ment itself is a dissipative process, causing decay from the
excited to the ground state of the qubits.
In general, device imperfections do not allow us to

perfectly prepare a given target state. In our case, we obtain
instead of an eigenstate jϕii of the transverse-field Ising
model, a density matrix ρisim. To determine the quality of
the state preparation process, we obtain the form of the
density matrix for L ¼ 4 qubits using quantum state
tomography [68]. This allows us to compute the average
single-particle fidelity

F ¼
X2L
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfρsimi jϕiihϕijgL

p
≈ 0.59: ðC16Þ

As before, we apply no error mitigation in this case.

APPENDIX D: ANALYSIS OF THE
NONEQUILIBRIUM PROTOCOLS

This section is dedicated to an analysis of the specific
circuit protocols we select to use in this study. We show
here numerically that we are operating in a nontrivial
quantum many-body regime, by computing the operator
entanglement entropy of our circuits [74], and the work
distribution they give rise to. Finally, we present results for
different choices of the one-body random unitary gates and
show that the specific choice of random gates has only a
minor impact on the accuracy for validation of Eq. (1).

1. Operator entanglement entropy

We analyze our circuits from an entanglement perspective
and show that our ideal circuits are sufficient to create
entanglement close to the Page value. This, in turn, dem-
onstrates that we operate in the quantum many-body regime.
For a given system, we can choose complete basis sets of

operators fAig and fBig which are orthonormal and have
support only on subsystem A and its complement B ¼ Ac,
respectively. An operator O can now be decomposed as

O ¼
X
i;j

Oi;jAi ⊗ Bj: ðD1Þ

This allows us to define the notion of a reduced operator
density matrix ρAop with matrix elements

ðρAopÞi;j ¼
X
k

Oi;kO�
j;k: ðD2Þ

In the following, we consider subsets of the form
A ¼ f0;…xg, where x is the position of the last qubit

FIG. 8. Probability PðEi
mÞ to measure a given eigenstate

Hijmii ¼ Ei
mjmii as a function of energy Ei

m, quantum simu-
lations (filled dots) vs theory prediction e−βE

i
m=Zi (dashed lines),

for different inverse temperatures β, at L ¼ 8. The simulation
prepares up to small fluctuations the correct thermal state.
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included in the subset. The operator entanglement entropy
for such a partition is defined as [74]

S1ðxÞ ¼ −trðρAop ln ρAopÞjA¼f0;…;xg: ðD3Þ

We now compute the operator entanglement entropy
of the unitary operator of our protocol for different
partitions. The results are shown in Fig. 9. It is clear that
our chosen operators with L − 1 blocks already exhibit
an entanglement (operator) entropy close to the Page
value [61], SPage ¼ L ln 2 − 1=2.

2. Work distribution

The work distributions PFðWÞ for two different inverse
temperatures β ¼ 0.1 and β ¼ 1.0 are shown in Fig. 10, for
the protocol from Fig. 2. We obtain an approximately
Gaussian distribution for both temperatures.
At this point, it is interesting to compare the work

distribution with the free energy difference. The free energy
difference is marked in Fig. 10 by a dashed black line
and the average work by a dashed magenta line. Since
ΔF < hWiPF

, the second law of thermodynamics holds,
as expected. However, it is also visible that with a
finite probability the extracted work hWiPF

for single
realizations is smaller than the free energy difference; such
data points are known as “microscopic violations” of the
second law [75].
Furthermore, in order to demonstrate that our circuit

operates away from the adiabatic regime, we compute
hβWdissi and compare it to Eq. (1); see Table IV. Since

Wdiss ≫ 0, it follows that the adiabatic approximation does
not hold for our chosen protocols.

3. Different circuit realizations

Let us also check the effect of different single-qubit
random unitaries on our results. To do so, we repeat our
experiment for four qubits and three layers on ibm_perth for
different circuit realizations, by choosing different random
unitary gates. As we can see in Fig. 11, the deviation from
Jarzynski’s equality does not depend strongly on the
particular choice of random gates in our circuits.

4. Dependence on the number of circuit blocks

Finally, we investigate the deviations from Eq. (1) as a
function of the nonequilibrium-protocol length. To do this,
we consider the blocks introduced in part (c) of the circuit
in Fig. 2; we can then stack multiple such blocks with
different unitaries one after the other to increase the circuit
depth. As is shown in Fig. 12, the deviations barely scale
with the size of the nonequilibrium protocol for more than
2–3 blocks. In this case, most of the errors accumulated

FIG. 9. Classically computed operator entanglement entropy
S1ðxÞ, Eq. (D3) of the circuits as a function of the cut position x,
for a different number of blocks of the nonequilibrium protocol
(legend), for L ¼ 8 qubits. We choose L − 1 blocks for our
simulations; see Fig. 2. The dashed horizontal lines indicate the
Page curve SPage ¼ 2z ln 2 − 22z−L−1, with z ¼ minðz; L − zÞ.
L − 1 blocks are sufficient to generate an entanglement curve
close to the Page curve.

FIG. 10. Histograms of the work distribution PFðWÞ for the
protocol in Fig. 2 with seven blocks and L ¼ 8 qubits: theory
prediction (red line) vs experimental simulations (blue line).The
free energy difference ΔF is indicated by a dashed black line and
the average work by a magenta line. Although the measured work
can be smaller than the free energy for some shots, the average
work is larger than the free energy difference, and the second law
of thermodynamics, thus, holds. The work distributions have a
nearly Gaussian shape. The absence of strong tails in the work
distribution reduces the number of required measurements.

TABLE IV. he−βWdissi and βWdiss, experimental data for L ¼ 8
qubits. The data indicate that our chosen protocol is away from
the adiabatic regime, for which hWdissi ¼ 0.

β lnhe−βWdissi hβWdissi
0.1 0.01 0.004
0.5 0.08 0.27
1.0 0.23 1.03
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during the circuit are compensated for by applications of
single-qubit random gates, as is explained in Sec. IV.

APPENDIX E: STATISTICAL FLUCTUATIONS
DUE TO A FINITE NUMBER OF

MEASUREMENTS

The following section gives a quantitative analysis of the
statistical uncertainties in the case of a finite number of
measurements.

1. General theory

For the scrambling circuits we choose in our simulations,
we can use additional assumptions to get simple estimates
for the size of the statistical fluctuations. This is especially

helpful if we want to estimate the number of shots needed
to estimate the free energy difference to a given accuracy.
To do so, consider the quantity

ΔP ¼ he−βðΔW−ΔFÞi: ðE1Þ

This is just another representation of Jarzynski’s equality
from Eq. (1). Given a perfect experimental realization
including an infinite number of measurements, we expect
ΔP ¼ 1. All deviations from this value can, therefore, be
assigned to statistical errors or errors coming from noise
violating double stochasticity. Note that we consider ΔP
instead of Eq. (1), since this representation is easier to
handle analytically. Furthermore, in the limit of small
deviations, the first-order Taylor expansions around unity
for ΔP, and zero for Eq. (1), agree with one another.
Given the eigenenergies of the initial and final

Hamiltonians, we compute the contribution eβΔF ¼ Zi=Zf

exactly. Thus, any error originates from the measurement of
the work distribution. We write

he−βWi ¼
X
m;n

PmKm→ne−βðE
i
m−E

f
nÞ: ðE2Þ

Here, Pm denotes the probability to prepare a given initial
eigenstate, and Km→n is the transition matrix of the process,
defined in Appendix A. In the optimal case of infinitely
many measurements and error-free preparation, we have
Pm ¼ e−βE

i
m=Zi.

There are two generic ways for errors to occur. The first
one is as a statistical error in Pm:

Pm ¼ 1

Zi
e−βE

i
m þ δPm: ðE3Þ

The first term on the right-hand side in the above equation
is the probability distribution of the canonical ensemble.
The second term denotes the statistical error for the
measurement probability of each state jmii, which satisfies
the sum rule

P
m δPm ¼ 0. For a large enough number of

states, we can assume the errors Pm to be independent of
one another and neglect this constraint. The statistical error
of measurement probability for each state jmii can be
modeled by a binomial distribution: For each shot, we
obtain this state with probability e−βE

i
m=Zi and measure

another state with probability 1 − e−βE
i
m=Zi; then, the

statistical uncertainty is given by the variance of the
binomial distribution and scales as

δPm ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−βE

i
m

Zi

�
1 −

e−βE
i
m

Zi

�
1

s

s
; ðE4Þ

FIG. 11. Validation of the Jarzynski equality for L ¼ 4 qubits
as a function of inverse temperature β for different choices of
random unitaries in the nonequilibrium protocol, simulated on
ibm_perth. The accuracy of the result is in all cases comparable;
i.e., it does not depend strongly on the choice of the random
single-qubit gates in the protocol of Fig. 2.

FIG. 12. Test of the Jarzynski equality Eq. (1) as a function of
the circuit depth of the nonequilibrium protocol. The legend
shows different inverse temperatures β for a system of L ¼ 8
qubits. A single block here is defined in part (c) of the circuit
introduced in Fig. 2. The deviations from Eq. (1) are almost
independent of the number of blocks in the nonequilibrium
protocol.
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where s denotes the number of shots. This expression is the
variance of a binomial distribution for an event occurring
with probability e−βE

i
m=Zi.

The second way an error can occur is through a
measurement of Km→n. We can write

Km→n ¼ K̃m→n þ δKm→n; ðE5Þ

where K̃m→n comprises any unitary or doubly stochastic
contributions that Jarzynski’s equality is insensitive to.
Using the (simplifying) assumption that the correct size of
each matrix element is roughly 1=D with D ¼ 2L (this is
justified by using a scrambling circuit and becomes more
accurate with increasing system size L ≫ 1), the error of
δKm→n scales with the number of measurement shots as

δKm→n ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zi

Dse−βE
i
m

r
: ðE6Þ

This is again the standard deviation for a binomial process
of an event with probability 1=D and an effective number of
repetitions se−βE

i
m=Zi. We use here ð1 − 1=DÞ ≈ 1.

Taking these considerations into account, we can now
divide the contributions of the fluctuations into four parts:

ΔP ¼ 1 ðE7Þ

þ Zi

Zf

X
m;n

δPmK̃m→ne−βðE
i
m−E

f
nÞ ðE8Þ

þ 1

Zf

X
m;n

δKm→ne−βE
f
n ðE9Þ

þ Zi

Zf

X
m;n

δPmδKm→ne−βðE
i
m−E

f
nÞ: ðE10Þ

Equation (E7) is Jarzynski’s equality. Assuming that all
terms Km→n ∼ 1=N (as a consequence of using random
circuits, which should not prefer any particular eigenstate
transitions) and invoking the central limit theorem (the
variance of a sum is the sum of the variances), we find that
the second term [Eq. (E8)] scales as

ðE8Þ ∝ Zi

D
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

eβE
i
m

Zi

�
1 −

e−βE
i
m

Zi

�s
: ðE11Þ

In turn, the third term is proportional to

ðE9Þ ∝
ffiffiffiffiffiffi
Zi

Ds

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

1

e−βE
i
m

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

e−2βE
f
n

Z2
f

vuut ; ðE12Þ

and the last term is of the order of

ðE10Þ ∝ Ziffiffiffiffi
N

p
sZf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

e2βE
i
m

�
1 −

e−βE
i
m

Zi

�s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

e−2βE
f
n

r
:

ðE13Þ
Let us now test these expressions and the underlying

assumptions we make above. Figure 13 shows the scaling
of the errors for a noise-free quantum simulation (red
line) and a comparison with the exact error bars using the
exact size of the matrix elements (blue line). The data
show that the simplification we use to compute error bars
is well justified.

2. High- and low-temperature expansions
for deviations from Jarzynski’s equality

The goal of this section is to explain the dependence
of deviations from Eq. (1) in quantum simulations, as is
shown in Fig. 3. In order to make the discussion more
transparent, we ignore errors in the preparation of the initial
state and due to a finite number of measurements and focus
here on the violations of double stochasticity instead. To be
more concrete, we consider only errors of type Eq. (E9).
High-temperature expansion. The conservation of prob-

ability gives X
m;n

δKm→n ¼ 0: ðE14Þ

FIG. 13. Classically emulated validation of the Jarzynski equal-
ity Eq. (1) for L ¼ 8 qubits as a function of the number of shots,
noise-free results at inverse temperature β ¼ 0.1. The green error
bars indicate the error due to a finite number of measurements in
the emulation. The orange error bars are computed using the
simplification of roughly equal-size transition matrix elements (see
the text). Blue line: classical emulation, but now with thermal noise
of similar size as on ibmq_guadalupe. The impact of shot noise
becomes negligible with an increasing number of measurements
(error bars decrease), such that the effects of violating double
stochasticity become visible (remaining finite plateau value).
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Furthermore, if we denote by D the Hilbert space dimen-
sion, a Taylor expansion for small β gives

ΔP ¼ 1þ β

D

X
m;n

δKm→nE
f
n þOðβ2Þ: ðE15Þ

We note that due to Eq. (E14) this expression is insensitive
to constant shifts of the overall energy.
For high temperatures, the deviation scales linearly with

inverse temperature β. Transitions toward all states, there-
fore, give rise to maximum deviation.
Low-temperature expansion. The behavior drastically

changes, if one instead considers inverse temperatures
larger than the inverse gap to the ground state energy

Ef
0 . In this case, Zf ≈ e−βE

f
0 and only transitions to the

ground state contribute:

ΔP ≈ 1þ
X
m

δKm→0: ðE16Þ

The deviation converges in this case toward a constant
value, determined by the violations of double stochasticity
with respect to the ground state.
Comparison with simulations. To test the approxi-

mations above, we extract the transition matrix from
data for β ¼ 0.05 and L ¼ 8. Afterward, we weigh all
transitions using the weights of the canonical ensemble
which allows us to construct curves for all values of β.
The results are shown in Fig. 14: The deviations
from Eq. (1) for dissipation-free simulations agree
perfectly with the high- and low-temperature expansion
described above.

APPENDIX F: RELATION BETWEEN T1
MEASUREMENT AND THE JARZYNSKI

EQUALITY

In the following section, we illustrate the connection
between the standard measurement scheme for T1 [65] and
the quantum Jarzynski equality. This derivation also illus-
trates how the latter can be interpreted as a generalization of
all experimental protocols detecting processes violating
double stochasticity like energy dissipation.
Consider a single-particle system described by the

Hamiltonian

Hi ¼ Hf ¼ Eðj1ih1j − j0ih0jÞ: ðF1Þ

The specific choice of the energies does not matter, as long
as they are nondegenerate.
We can interpret the standard protocol to measure the

thermal relaxation time T1 as a dynamical process con-
necting the initial and final ensemble:

First, apply an X gate to excite the qubit, followed by
some waiting time t. The fraction of decayed states is, thus,
given by

p1 ¼ 1 − e−
t
T1 : ðF2Þ

Similar to the analysis presented in the main text, jψGi ¼
ð1; 0Þ defines the “physical” ground state of the qubit,
whereas jψEi ¼ ð0; 1Þ denotes an excited state.
In order to simplify our analysis, we assume that the state

preparation is perfect and statistical errors due to a finite
number of measurements are negligible. Furthermore, we
assume that there are no unwanted excitations during
the process from the ground state to the excited state,
i.e., δK0→1 ¼ 0.
To determine the deviation from the Jarzynski equality

Eq. (E7), we have to determine the transition matrix Km→n,
which is given by

Km→n ¼
�
1 p1

0 1 − p1

�
: ðF3Þ

The assumptions above are sufficient to determine the
deviation terms in Eqs. (E7)–(E10):

δK1→0 ¼ −δK1→1 ¼ p1; ðF4Þ

δK0→1 ¼ δK0→0 ¼ 0; ðF5Þ

δP0 ¼ δP1 ¼ 0: ðF6Þ

FIG. 14. j lnðΔPÞj Eq. (E1) as a function of β (orange line),
together with the high-temperature expansion Eq. (E15) (dotted
black line) and the zero-temperature limit Eq. (E16) (red line).
The transition matrix is extracted from simulation data with
L ¼ 8 and β ¼ 0.05. The deviations from Eq. (1) for a
dissipation-free simulation agree perfectly with the high- and
low-temperature expansions (see the text).
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The first two relations follow from Eq. (F3), and the third is
a consequence of perfect state preparation.
The evaluation of Eqs. (E7)–(E10) gives, together with

Eqs. (F1) and (F4),

ΔP ¼ 1þ p1 tanh βE: ðF7Þ

The deviation p1 tanh βE is proportional to the decayed
population. This means that the standard protocol to
measure T1 is a special case of testing deviations from
the quantum Jarzynski equality.

APPENDIX G: COMPARISON WITH PREVIOUS
EXPERIMENTS

In this appendix, we discuss the details of the compari-
son of our results to previous work; cf. Table I.
We use the definition from Eq. (17) to compare our

simulation with previous experiments on systems with a
finite Hilbert space dimension. To do so, we extract the
Hamiltonian, the inverse temperature β, and the measure-
ment data for the validation of Eq. (1) from the simu-
lations. Using these data, the evaluation of Eq. (17) is
straightforward.
In the experiments in Refs. [38,40,42,43], the underlying

Hamiltonian is either a spin-1=2 system or the transverse-
field Ising model with up to three qubits. We extracted the
data for the validation from Fig. 3 in Ref. [43], Fig. 3 in
Ref. [38], Fig. 3 in Ref. [40], Fig. 3 in Ref. [42], and Table 1
in Ref. [39]. The case in Ref. [41] is special: In their setup,
the authors choose β ¼ 0, where Jarzynski’s equality is
trivially obeyed, as can be directly seen from Eq. (1).
The trapped ion experiment [12] is modeled by a

harmonic oscillator, i.e., a system with an infinite-
dimensional Hilbert space. In order to compare with the
other experiments that deal with systems with a finite-
dimensional Hilbert space, we evaluate Eq. (17) and
introduce an artificial cutoff for the harmonic oscillator
Hilbert space by taking only the first ten modes into
account; the experimental data concerning the occupation
of the different modes shows that this is a valid approxi-
mation. We normalize β by the energy gap of the harmonic
oscillator. For the extraction of the data, we consider
Table 1 in Ref. [12], using a ramp time of 5 μs.
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