
Observation of a Prethermal Uð1Þ Discrete Time Crystal

Andrew Stasiuk 1,* and Paola Cappellaro 1,2

1Department of Nuclear Science and Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

and Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 29 March 2023; revised 20 July 2023; accepted 8 September 2023; published 26 October 2023)

A time crystal is a state of periodically driven matter that breaks discrete time-translation symmetry.
Time crystals have been demonstrated experimentally in various programmable quantum simulators, and
they exemplify how nonequilibrium, driven quantum systems can exhibit intriguing and robust properties
absent in systems at equilibrium. These robust driven states need to be stabilized by some mechanism, with
the preeminent candidates being many-body localization and prethermalization. This introduces additional
constraints that make it challenging to experimentally observe time crystallinity in naturally occurring
systems. Recent theoretical work has developed the notion of prethermalization without temperature,
expanding the class of time-crystal systems to explain time-crystalline observations at (or near) infinite
temperature. In this work, we conclusively observe the emergence of a prethermal Uð1Þ time-crystalline
state at quasi-infinite temperature in a solid-state NMR quantum emulator by verifying the requisites of
prethermalization without temperature. In addition to observing the signature period-doubling behavior,
we show the existence of a long-lived prethermal regime whose lifetime is significantly enhanced by
strengthening an emergent Uð1Þ conservation law. Not only do we measure this enhancement through the
global magnetization, but we also exploit on-site disorder to measure local observables, ruling out the
possibility of many-body localization and confirming the emergence of long-range correlations.
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I. INTRODUCTION

The proposal for the existence of time crystals posited
that there exist systems that might break discrete time-
translation symmetry [1], in analogy to spatial symmetry
breaking in conventional crystals. However, it was quickly
shown that such a feat is impossible for quantum systems at
equilibrium [2]. In out-of-equilibrium systems, however,
there is no fundamental restriction forbidding the emer-
gence of time-crystalline order [3].
Specifically, in periodically driven, many-body quantum

systems, it has been demonstrated that there exist long-lived
states of matter that break discrete time-translation symmetry
[3]. To engineer such robust driven states, there must be a
mechanism to prevent Floquet heating so as to avoid driving

the system to infinite temperature. For a closed quantum
system with disorder, many-body localization (MBL) is
sufficient to prevent Floquet heating [4]. Thus, early experi-
ments sought to use this phenomenon, though doubts have
been cast on initial attempts at observing MBL discrete time
crystals (DTCs) in an ion-trap quantum simulator due to the
system’s dimensionality. Recently, there have been more
conclusive observations of discrete time crystals stabilized
by MBL in superconducting qubit processors [5,6].
However, the phenomenon of MBL is hard to achieve
experimentally as it requires both strong disorder and
short-range interactions. Such stringent conditions make
the MBL DTCs difficult to realize experimentally [7].
Instead of MBL, a different mechanism to avoid

Floquet heating can be pursued, namely, the phenomenon
of prethermalization [8]. In particular, prethermal quan-
tum systems exhibit lifetimes that are exponential in the
Floquet driving frequency, without the need for any
source of disorder [9,10]. However, prethermal time
crystals require long-range interactions and low temper-
atures to meaningfully induce spontaneous symmetry
breaking (SSB) [3]. Prethermal discrete time crystals
(PDTC) have also been experimentally observed in

*astasiuk@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 041016 (2023)

2160-3308=23=13(4)=041016(14) 041016-1 Published by the American Physical Society

https://orcid.org/0000-0002-2600-6940
https://orcid.org/0000-0003-3207-594X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.041016&domain=pdf&date_stamp=2023-10-26
https://doi.org/10.1103/PhysRevX.13.041016
https://doi.org/10.1103/PhysRevX.13.041016
https://doi.org/10.1103/PhysRevX.13.041016
https://doi.org/10.1103/PhysRevX.13.041016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


quantum systems with high purity initial states due to low
temperatures or hyperpolarization [11–13].
As the explorations into out-of-equilibrium quantum

systems have matured, many experimental platforms have
demonstrated the emergence of time-crystalline signatures
under periodic driving. In addition to observations in small-
scale simulators such as ion traps [11] and superconducting
qubits [13], time-crystalline order has been observed in
large-scale devices such as dipolar NV ensembles [12,14]
and solid-state NMR systems [15,16] (see Ref. [17] for a
more complete list of recent theoretical and experimental
progress across various systems).
In the case of NMR and other high-entropy simulators,

there has been some confusion as to the cause of the
observed emergent time-crystalline state, as the system was
at too high a temperature to exhibit the effects of sponta-
neous symmetry breaking and not disordered enough to
be stabilized by MBL [15–17]. However, recent work has
shown that a third type of time crystal is possible, a
prethermal Uð1Þ time crystal, allowing for prethermaliza-
tion without temperature [18]. It is likely that some
previous high-temperature studies of time crystallinity have
been instances of prethermal Uð1Þ DTCs. However, veri-
fication of this fact requires the measurement of local
observables previously thought to be inaccessible in
NMR and other large-scale systems restricted to global
control [18]. Furthermore, there are theoretical proposals
for additional stabilization mechanisms, such as mesonic
domain-wall confinement, which may be applicable in
intermediate-temperature systems [19].
In this work, we drive a macroscopic solid-state NMR

system [20] to engineer time crystallinity and verify that we
observe a prethermal Uð1Þ time crystal by comparing local
to global observables. In particular, we utilize a recently
developed technique to leverage on-site disorder to measure
spatially averaged, truly local observables in large quantum
ensembles without universal or single-site control [21,22].

II. METHODS

Our system is a quasi-1D nuclear spin ensemble. This is
achieved experimentally using a single-crystal sample of
fluorapatite. The crystal structure of fluorapatite is given
in Fig. 1.
The crystal is placed in a large (about 7.1 T) magnetic

field aligned along the crystal’s c axis, so the intrachain
coupling is approximately 40 times larger than the inter-
chain coupling [24]. Within the rotating frame generated
by the magnetic field, our system Hamiltonian has three
main components: dipolar z, locally disordered z, and
collective control.

HðtÞ ¼ HDz þHdis þHcðtÞ: ð1Þ

Concretely, each component of the Hamiltonian is as
follows:

HDz ¼
1

2

X
i<j

Jij(ŜðiÞz ŜðjÞz −
1

2

�
ŜðiÞx ŜðjÞx þ ŜðiÞy ŜðjÞy

�
);

Hdis ¼
X
i

ωiŜ
ðiÞ
z ;

HcðtÞ ¼ fðtÞ( cosðϕÞŜx þ sinðϕÞŜy);

where Jij ¼ J0=ji − jj3 (J0 ¼ 32.843 krad s−1), and we
have defined the global magnetization operators

Ŝν ¼
1

2

X
i

σ̂ðiÞν ; ν∈ fx; y; zg: ð2Þ

The locally disordered field arises from the heteronuclear
interaction of the fluorine and phosphorus spins. Finally,
the collective control drive can be amplitude modulated via
the function fðtÞ to produce square pulses of length 1.02 μs
resulting in π=2 rotations, with a minimum interpulse delay
of 2.5 μs. The transverse rotation axis is determined by the
phase ϕ, which has a resolution of 1 degree. Then, arbitrary
x- and y-axis rotations are performed using the following
decomposition,

RyðθÞ ¼ Ryð−π=2ÞRzðθÞRyðπ=2Þ: ð3Þ

Note that z-axis rotations of an angle θ are performed by
phase shifting all subsequent pulses by the same angle, θ,
called virtual-z gates [25,26].
As is standard in NMR, our initial state is well

represented by the reduced density matrix δρð0Þ ¼ Ŝz.
As the main observable of interest is also the magnetization

FIG. 1. Crystal structure of fluorapatite, Ca5ðPO4Þ3F, with an
emphasis on the spin-full nuclei. Intrachain fluorine (blue) bonds
and nearest-neighbor fluorine-phosphorus (blue-red) bonds are
shown. Additionally, the spin-less nuclei of oxygen (yellow) and
calcium (green) are included with no bonds shown. The spin-full
isotopes of calcium and oxygen are less than 1% natural
abundance and neglected. The vertical crystal c-axis length is
6.805 Å (with two 19F per unit cell), while the horizontal a; b axes
are 9.224 Å long [23].
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along the z axis, we can write the signal as an infinite-
temperature two-point correlator,

mzðtÞ ¼ tr(ρ̂ðtÞŜz) ≈ tr(δρ̂ðtÞŜz) ¼ hŜzðtÞŜziβ¼0: ð4Þ

By exploiting the dephasing induced by the disordered
field, we can also generate states and observables that
provide access to local correlations [21]. By use of spectral
sequences [27,28], we turn off the dipolar interactions
while leaving the disordered field on, so spin i locally

evolves under the Hamiltonian ωiŜ
ðiÞ
z for a time τd. After

phase cycling, we are left with a state of the form

δρ̂ ¼
X
i

ξiŜ
ðiÞ
z ; ð5Þ

where ξi¼ sinðωiτdÞ are independent and identically dis-
tributed random variables with zero mean. Importantly,
we have previously shown that E½ξiξj� ≈ δij, where E
denotes the spatiotemporal expectation value of the random
variables [21].
In order to demonstrate a Uð1Þ DTC, we engineer the

simplest periodic sequence that can display such behavior.
We alternate between a collective rotation, RνðθÞ ¼ eiθŜν ,
and evolution under a Hamiltonian HD (which might be
obtained via Floquet Hamiltonian engineering, as described
below) for a time T (which is thus the Floquet and DTC
period). We often refer to the combination of these two
steps as evolution with periodic kicking, in analogy to
pushing a swing. Without loss of generality, to vary the
effective kicking frequency ω ∼ 1=T, we can either vary the
interaction time between kicks or vary the interaction
strength of HD between equally spaced kicks. To this
effect, we consider variations of the dimensionless inter-
action magnitude, defined as

γ ¼ Jeff=ω ¼ uT0J0; u ≥ 0: ð6Þ

In Eq. (6), γ can be varied either by changing the evolution
time T ¼ uT0 (Sec. III A) or by using Hamiltonian
engineering sequences (Wei16 and Peng24 in Sec. III B)
to vary Jeff ¼ uJ0 while keeping the evolution time
(here, T0 ¼ 120 μs) fixed. Given J0T0 ¼ 3.94 radians,
γ ¼ 1.25πu.
We utilize the control to perform high-fidelity Floquet

engineering sequences such as Wei16 [29], which allows
for rescaling the spin-spin interactions [30], and the Peng24
time-suspension sequence [31], which aims at canceling
the whole Hamiltonian. To illustrate this technique, and
the fidelity of our control, we perform repeated θ ¼ π and
ð1 − 2ϵÞπ kicking on an effectively noninteracting ensem-
ble of nuclear spins, HD ¼ 0. This is achieved using the
Peng24 time-suspension sequence, which decouples inter-
actions over a T ¼ 120 μs Floquet period [31]. As shown

in Fig. 2, the noninteracting decay envelope closely fits a
stretched exponential model, given in Eq. (7),

SðtÞ≡ hŜzðtÞŜzi ¼ a exp ( − ðt=τÞb)þ c: ð7Þ

The long-lived signal (τ ≈ 6573 μs, compared to a free
induction decay time of approximately 30 μs) and precise
beating frequency confirm that the compiled pulse tech-
nique can perform an arbitrary, high-fidelity rotation in
conjunction with a Hamiltonian engineering sequence.

III. RESULTS

We explore our system’s ability to exhibit time crystal-
linity using a variety of techniques. First, we vary the
effective Floquet period via two physical implementations
to evaluate the robustness of our control scheme. Further, in
an effort to distinguish between trivial and nontrivial period
doubling, we demonstrate our ability to generate robust
period doubling as a function of the deviation from perfect
π kicking, ϵ. To that end, we show the emergence of a long-
lived prethermal regime near the period-doubling phase
boundary. Finally, we conclusively diagnose our system as
a prethermal Uð1Þ time crystal by showing its insensitivity
to disordered fields and the rapid decay of local observables
without beating. Given this diagnosis, we enhance Uð1Þ
conservation by adding a stroboscopic z field and demon-
strate a significant lengthening of the prethermal timescale.

A. Variable interaction time

To explore the large γ > ð5=16Þπ (u > 0.25) regime, we
particularize to θ ¼ 170° and repeatedly drive the system
with variable physical delay T ¼ uT0 between kicks.

FIG. 2. Magnetization of noninteracting spin ensembles under
repeated kicking. Each Floquet cycle is T ¼ 120 μs long,
comprising evolution under the time-suspension sequence fol-
lowed by an RyðθÞ unitary, with θ∈ f170; 180g degrees. Perfect π
kicking gives trivial period doubling, with a stretched exponential
(b ¼ 0.70) decay with a timescale of τ ≈ 6.573 ms [Eq. (7),
a ≈ 1, c ≈ 0]. The θ ¼ ð1 − 2ϵÞπ kicking results in beating with a
frequency of 1

2
� ϵ decaying on a similar timescale.

OBSERVATION OF A PRETHERMAL Uð1Þ … PHYS. REV. X 13, 041016 (2023)

041016-3



In other words, γ is varied by physically varying the
driving period. Here, HD ¼ HDz is generated by the
natural system Hamiltonian, so there are no Trotter errors.
At large values of γ, equivalent to a low driving frequency
here, we find that the four-parameter model given in
Eq. (7) remains a good fit. The decay is close to a simple
exponential, with the exponential parameter b nearly
unity, taking values between 0.92 and 0.94 for select
values of γ ∈ ½ð5=16Þπ; ð5=4Þπ�. This indicates that the
emergence of period doubling in this regime is a
decoherence-dominated effect.
Importantly, we notice that the decay timescale as a

function of γ, τðγÞ, is linear with a positive slope. By
changing to nondimensional units, this linear trend implies
that the nondimensional decay constant τF ¼ τ=T is
bounded above by about 37 Floquet periods. This provides
additional evidence that the increase in signal lifetime with
increasing γ (decreasing driving frequency) is not a time-
crystalline effect. Indeed, time crystals have lifetimes that
can be generically enhanced by increasing the interaction
strength. Thus, we determined that the period-doubling
signature for γ > ð5=16Þπ is trivial and not time crystalline.
Explicit details of this analysis are provided in Appendix C.
In the small γ < ð5=16Þπ regime (u∈ ð0; 0.25�), we find

a transition between beating and period-doubled responses.
Near the boundary of the transition, there is a breakdown
in the fitting of the envelope to a single exponential. The
departure from stretched exponential behavior is good
evidence that this period doubling is not a decoherence
effect; rather, it is evidence of a genuine time crystal. The
real-time responses of a time crystal and a melted crystal
are shown in Fig. 3. In Fig. 4, we demonstrate our ability to
induce period doubling in the magnetization signal by
increasing γ, an oft-cited hallmark of time crystallinity.
Further, in the small γ regime where either beating or period
doubling occurs, we find that the single exponential model
is a bad fit for the signal’s decay. In fact, when the observed

signal mzðtÞ is transformed to − log jmzðtÞj, it becomes
evident that there are two exponential timescales present.
We see a short and rapid decay followed by a much slower
decay rate—strong evidence for prethermalization and
genuine time crystallinity. In fact, the slow decay rate of
the prethermal state is expected to be exponentially sup-
pressed by increasing the driving frequency [3,11,18,32].
Details of this fitting can be found in Appendix C.
In the current implementation, the accessible driving

frequencies are experimentally limited. Indeed, we note
that the ð1 − 2ϵÞπ pulse takes approximately 4.5 μs to
perform. In other words, the effective pulse length is

FIG. 3. Time traces of the magnetization response for noncrystalline (left panel) and time-crystalline (right panel) systems under
θ ¼ 170° driving. The interaction strength is set by the physical interaction time, T ¼ uT0. Notice the dramatic order-of-magnitude
improvement in signal lifetime of the time crystal over the melted crystal.

FIG. 4. Fourier transform of the magnetization signal,
F(mzðtÞ), for various interaction magnitudes γ ¼ uJ0T0 under
170° kicking. The interaction magnitude is set by physically
varying the time between consecutive RyðθÞ unitary kicks. For
small γ, the signals show beating consistent with the θ ≠ π drive.
At large enough γ (γ > π=8), the beating is replaced with a single
“period-doubled” peak, often taken to herald a system’s trans-
formation to a time crystal.
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longer than the interaction time of the smallest considered
γ, γ ¼ π=40 (T ¼ uT0 ¼ 2.5 μs). The interaction
Hamiltonian during the drive can be a possible source of
confounding error, especially for small γ, where the driving
period uT0 is on the order of the pulse length. We eliminate
this source of confounding error in the next section by
fixing T and varying the effective interaction strength,
J ¼ uJ0, directly.

B. Variable interaction strength

To reduce the effect of the finite pulse width, we now
utilize Hamiltonian engineering to fix the interaction time
T ¼ T0 and vary the interaction strength Jeff ¼ uJ0. This
allows for higher resolution and control in the interaction
magnitude γ and is expected to reduce error sources for small
γ experiments. The range of interaction magnitudes allowed
by Wei16 is limited and cannot achieve large values of γ;
namely, γ ≥ ð5=12Þπ is forbidden. The large γ regime is well
analyzed in the previous section, and in this section, we
intend to particularize only to the small γ regime.
By varying the interaction magnitude γ and the kicking

angle θ¼ð1−2ϵÞπ, we can estimate the boundary between
signals displaying time-translation symmetry breaking
(TTSB) and trivial beating. To do so, we take the discrete
Fourier transform of the measured signal. Given our
signal SðnTÞ, for n ¼ 0; 1;…; N − 1, the Fourier signal
is given by

PðkÞ ¼ 1ffiffiffiffi
N

p
XN−1

n¼0

SðnTÞe−i2πknN ; ð8Þ

where k∈ f0; 1;…; N − 1g. We find the existence of two
main structures in the Fourier signal (Fig. 4): a peak at
f ¼ 1

2
, P1=2 ¼ jPðN=2Þj, and a pair of peaks at f ¼ 1

2
� ϵ,

Pϵ ¼ jPðN=2� NϵÞj. Then, to estimate the transition
boundary, we consider the difference P1=2 − Pϵ. The values
of this metric are plotted in Fig. 5 for various values
of γ and ϵ. Notably, the boundary curve corresponding to
P1=2 − Pϵ ¼ 0 is linear in ϵ and γ, plotted as a dashed
black line.
Using this metric, we experimentally determine a

“phase boundary” between a TTSB and a beating mag-
netization signal, as done previously [33,34]. In light of
recent analyses of time crystallinity in NMR systems, this
metric is insufficient to conclusively characterize time
crystallinity [17]. However, we can conclude that below
the fitted boundary line at P1=2 − Pϵ ¼ 0, beating is
dominant, and thus the observed behavior is not time
crystalline. Instead, in the blue regions above the boundary
line, Fig. 5 simply indicates that the observed signal might
be time crystalline.
As discussed in Sec. III A, an interaction magnitude that

is too large results in a trivial exponential decay, and thus, it
is not genuinely time crystalline. Further, we have carefully

verified that an interaction magnitude that is too small also
fails to be time crystalline. We expect, then, that genuine
long-lived time crystals should emerge just past the
crystallization boundary. In this regime, we expect to see
a prethermal lifetime that is exponential in the driving
frequency [17,18,20]. Namely, once prethermalization has
occurred, we expect to find a significant increase in any
present decay timescale. In the remaining sections, we will
focus on analyzing the period-doubled region of the phase
diagram and argue that, near the boundary, we observe
prethermalization and hence genuine time crystallinity.
It has previously been argued that at infinite temperature,

and in short-range interacting 1D systems, spontaneous-
symmetry-breaking (SSB) prethermal discrete time crystals
are forbidden [3,8,17]. In this section, we have demon-
strated compelling evidence to support the observation of a
prethermal Uð1Þ time crystal, which is robust and long-
lived even in a quasi-1D system at an effective infinite
temperature [18]. In the following sections, we verify that
this is indeed the case by enhancing the prethermal lifetime
and conclusively ruling out MBL.

C. Behavior of spatiotemporal correlations

Further verification of time crystallinity and Uð1Þ pre-
thermalization requires exploration of additional observ-
ables, as emphasized by Luitz et al. [18]. In particular,
the emergent Uð1Þ conservation law is global. In other
words, our prethermal Hamiltonian conserves global, also
called “collective,” magnetization but not local magnetiza-
tion. This phenomenon has previously been understood in
the context of spin diffusion in solid lattices, wherein,

FIG. 5. Difference in selected Fourier peak magnitudes of the
observed magnetization under variable interaction magnitude (γ)
and deviation from perfect π kicking (ϵ). Blue (red) shaded
regions indicate a larger (smaller) period-doubled response than
beating. Experimental data were collected for points at vertices of
the grid lines; peak differences are smoothed within each grid for
easier visualization. Using smoothed interpolations of the data,
we estimate the intersection of beating and period doubling for
each instance of ϵ. The resulting intersections lead to the fitted
phase boundary, shown as a dashed black line.
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initially, local magnetization is transported through the
lattice [35,36]. In contrast, if the emergent time-crystalline
behavior was induced via MBL, then instead of global Uð1Þ
conservation, we should find an extensive number of local
integrals of motion (LIOMs) [37,38]. Then, LIOMs will
either conserve local magnetization or the local magnetiza-
tion will oscillate between states of overlapping LIOMs [39].
By suppressing the effects of disorder during Floquet
engineering, we a priori do not expect to find the emergence
of MBL. However, given the presence of disordered fields in
our system, we will verify that no localization emerges.
The Wei16 engineering sequence, in addition to

providing variable interaction magnitude in fixed time,
allows us to modulate the strength of the disorder
induced by nearby unpolarized phosphorus spins by
varying the efficiency of refocusing the interaction. We
exploited this capability to find no significant difference
in the global magnetization’s response to periodic driving
from no disorder up to the maximum allowable disorder
under Wei16 (see Fig. 12 in Appendix F). This alone may
be sufficient evidence to suggest that many-body locali-
zation is not occurring. However, there may be additional
sources of disorder, such as drive field inhomogeneity,
which reside outside of our primary model [15]. To
conclusively rule out MBL as the source of time
crystallinity, we utilize on-site disorder to produce a
randomly polarized state (and observable), given by
Eq. (5). The procedure to create such a state and
observable was developed on this system and previously
verified [20,21]. In particular, we measure truly local
magnetization with an observable signal of the form

SlocðtÞ ¼
X
i

D
σ̂ðiÞz ðtÞσ̂ðiÞz

E
β¼0

: ð9Þ

In Fig. 6, we illustrate the different behavior of local
and global magnetization signals. Namely, we confirm
that the local observable does not exhibit long-lived
oscillations between local integrals of motion and it
decays much more rapidly relative to the global signal.
Thus, we confidently conclude that the observed time
crystallinity is not induced by MBL. In Appendix D, we
show that this decay is due to coherent Hamiltonian
evolution by demonstrating the long-time persistence of
the state when interactions are turned off. Indeed, with no
interactions, the dynamics become trivial, single-spin
dynamics, and we expect no difference between local
and global correlations. The measured local observable
under time suspension decays with a similar profile to the
case of global magnetization in the noninteracting case
(Fig. 2.) A more detailed discussion of the analysis of the
local state under time suspension can be found in
Appendix D. With this evidence in hand, we can con-
clusively confirm that the blue region of Fig. 5 is indeed
time crystalline, for driving frequencies not too small.

The rapid decay of local magnetization further
solidifies the notion that, under time-crystalline evolution,
short-range correlated states evolve into long-range corre-
lated states. This is evidenced by the fact that our global
magnetization signal at long times must be dominated by
nonlocal correlations since SlocðtÞ → 0 faster than SðtÞ, and
thus the longer-lived signal,

SðtÞ − SlocðtÞ ¼
X
i≠j

D
σ̂ðiÞz ðtÞσ̂ðjÞz

E
β¼0

; ð10Þ

is dominated by nonlocal correlations.

D. Enhancing Uð1Þ conservation
In an ideal closed system under the dipolar Hamiltonian

ĤDz, the magnetization in the z direction is exactly
conserved. Further, the anticommutativity of expð−iπŜyÞ
with Ŝz and commutativity of expð−iπŜyÞwith ĤDz leads to
the long-lived magnetization toggling response known as
period doubling. This results in the emergent Uð1Þ con-
servation of the effective zeroth-order two-period Floquet
Hamiltonian. The emergent symmetry can be further
enhanced by adding a field of strength h in the z direction,
HD ¼ HDz þ hŜz. Luitz et al. [18] have previously shown
that the time-averaged effective Hamiltonian over two
periods is given by

Ĥeff ¼
T

T þ ϵ

�
ĤDz þ

ϵeff
T

Ŝy þ heff Ŝz

�
þOð1=ωÞ: ð11Þ

Equivalent to considering the average two-period evolu-
tion, we could have chosen to consider a toggling frame

FIG. 6. Decay of local and global magnetization signals for
θ ¼ 170° kicking with γ ¼ π=8 (u ¼ 0.1.) The locally magnet-
ized spin signal decays much more rapidly than the global one,
as local magnetization is not conserved by the prethermal
Hamiltonian. Furthermore, there is no oscillatory behavior out-
side of period doubling, indicating that eigenstates compatible
with MBL are induced. As usual, a Floquet period corresponds to
120 μs of real-time evolution.
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in which we undo the π rotation in each period, leaving
only the ϵ rotation. Corrections to the time-averaged
Hamiltonian are of order 1=ω ∼ T. The parameters heff
and ϵeff are defined via the transformation into the
toggling frame of the effective two-period Hamiltonian.
So long as the effective magnitude of the Ŝy perturbation
ϵeff is small relative to the other energy scales of the
Hamiltonian, namely, heff þ J0T0, the Ŝz magnetization is
approximately conserved. The emergent Uð1Þ conserva-
tion is thus enhanced with decreasing ϵeff and increasing
heff . Our phase diagram, Fig. 5, clearly demonstrates that
the Uð1Þ conservation law is enhanced with decreasing ϵ
at h ¼ 0. It remains to demonstrate the effect of nonzero h.
To this end, we introduce a stroboscopic Ŝz field over the
Floquet period T,

HD ¼ hŜz þ uĤDz
; ð12Þ

where the maximum field possible is restricted by perio-
dicity, so that 0 ≤ hT0 ≤ π, generated by a virtual-z
rotation of angle hT0 during each Floquet period. Since
½ĤDz

; Ŝz� ¼ 0, there is no additional Trotter error induced
by including the stroboscopic field term.
When the introduced z field takes a maximal value of

hT0 ¼ π, we have that heff ¼ ϵeff ¼ 0, even with ϵ ≠ 0.
Intuitively, this result can be understood by focusing on the
effects of the rotations on a single spin. During each period,
the z field results in an RzðπÞ rotation that inverts the axis
of the applied RyðθÞ rotation. Thus, to zeroth order, the Ry

rotations cancel out, and their effect will only enter to
higher order. In contrast, all other choices of 0 ≤ hT0 < π
leave a finite rotation around a transverse axis, resulting in
magnetization that wraps around the Bloch sphere, only

returning to its origin point when nθ ¼ 0 mod 2π (again
neglecting higher-order terms in the Floquet expansion).
We repeatedly perform the experimental and fitting

procedures detailed in Fig. 7 for variable hT0 ¼ kπ=4 with
k ¼ f0; 1; 2; 3; 4g, for θ ¼ 170°. We record the results
of the two-time scale fitting in Table I for each value in
hT0, making note of the γ value at which the fitting was
performed. Specific fitting details are given in Appendix E
in Fig. 11. We note that the two-timescale signature of
prethermalization is most pronounced near the period-
doubling boundary, where the timescales differ by a factor
of 5 or more. This trend is consistent with the fact that the
prethermal lifetime increases with increasing driving fre-
quency, ω ∝ 1=γ. Thus, the addition of the stroboscopic z
field increases the prethermal lifetime by stabilizing the
time crystal at driving frequencies that would otherwise be
unachievable without the addition of a z field.
Table I indicates a strong enhancement of the timescale

of the prethermal regime when a z field is present. As
previously developed, there are three notable regimes.
The weakest conservation of Uð1Þ symmetry occurs for
hT0 ¼ 0, corresponding to a prethermal timescale of about

Floquet kicking periods, n Floquet kicking periods, n

FIG. 7. Plots of the log-transformed magnetization, − log ðjhŜzðnTÞŜzjiÞ as a function of Floquet kicking periods, n, for θ ¼ 170°, and
select interaction magnitudes γ, in which period-doubled behavior is dominant and the driving frequency is not too slow. Notably, we see
the existence of two exponential timescales shown via the linear fits in black. A short timescale, τ1 ≈ 7.2 Floquet cycles (dashed line),
present at early experimental times, shown on the left, gives way to a longer-lived timescale, τ2 ≈ 30.8 Floquet cycles (dot-dashed line),
after an initial prethermalization period, shown on the right. The partition between early and late times is made to optimize the quality of
the linear fits in both regimes. As usual, a Floquet period corresponds to 120 μs of real-time evolution.

TABLE I. Fitted timescales to prethermal Uð1Þ time-crystalline
magnetization signals under a variable z field and fixed θ ¼ 170°.

hT0 γ τ1 (cycles) τ2 (cycles)

0 7π
80

7.2 30.8

π=4 π
16

4.6 55.9

π=2 π
16

6.3 49.2

3π=4 π
20

8.7 49.8

π π
40

10.6 77.5

OBSERVATION OF A PRETHERMAL Uð1Þ … PHYS. REV. X 13, 041016 (2023)

041016-7



31 Floquet cycles. The introduction of a nonzero sub-
maximal field, 0 < hT0 < π, causes the transverse-field
perturbation in the prethermal Hamiltonian to become
increasingly off resonant. In these cases, the prethermal
timescale is generically enhanced to around 50 Floquet
cycles. At maximal field, hT0 ¼ π, the transverse-field
perturbation is averaged out in the toggling frame, and the
prethermal timescale is further enhanced to 77.5 Floquet
cycles. In real-time units, this corresponds to a timescale
of about 9.3 ms. The maximum-field timescale is a
dramatic improvement over the zero-field timescale, as
expected [18].

IV. CONCLUSION

In this work, we have demonstrated the ability to create
and melt (see Fig. 5) time-crystalline order in an infinite-
temperature quasi-1D nuclear spin ensemble.
The DTC behavior leads to a characteristic period-

doubling response, which we analyzed by reconstructing
an approximate phase diagram as a function of perturbation
and driving rate. Noting, however, that the assumption that
period doubling is a conclusive determinant for time
crystallinity has recently been demonstrated to be false,
we sought further proofs of time-crystalline order. Indeed,
we note that spontaneous symmetry breaking should be
forbidden in our system. First, our experimental system can
be considered quasi-one dimensional and so short range, as
the interchain and intrachain couplings differ by a factor of
about 40. Even if the assumption that our system is an
ensemble of one-dimensional spin chains fails at longer
times and the dipolar interaction 1=r3 can then be consid-
ered long range, the high temperature still precludes time
crystallinity due to prethermalization with temperature
necessary for a SSB PDTC.
We argue instead that our system fully demonstrates

“prethermalization without temperature.” Notably, we
utilized a new technique to verify the fast decay of local
observables to conclusively rule out stabilization due to
many-body localization, such that we observe a prether-
mal Uð1Þ time crystal. Thanks to this insight, we further
introduce a z field to successfully strengthen Uð1Þ con-
servation and significantly extend the time crystal’s life-
time. As proposed by Luitz et al., we expect that most, if
not all, high-temperature DTC studies have been instances
of prethermal Uð1Þ time crystals [18]. Our work provides
an accessible path towards experimental verification of
prethermalization without temperature in NMR through
the disordered state and observable. In particular, we
believe that Rovny et al.’s ADP sample has sufficient
disorder generated by nearby hydrogen atoms to probe
local observables.
Our results also indicate that the time-crystalline phase is

characterized by long-range correlations. An interesting

future direction would be to try to utilize Hamiltonian
engineering to perform time reversal on a time-crystalline
system, as done in previous NMR DTC experiments
[15,16], and thus explore generated localization lengths.
In a time-crystalline system, we expect to measure rapidly
growing localization lengths as the initial state evolves into
a long-range spatiotemporal correlated state, in contrast to
the local integrals of motion present in an MBL state.
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APPENDIX A: HAMILTONIAN ENGINEERING

Within the main text, we utilized two central
Hamiltonian engineering sequences, Wei16 and Peng24.
Wei16 is a 16-pulse sequence, composed of four similarly
structured four-pulse blocks [29]. Unless otherwise speci-
fied, a pulse corresponds to a π=2 rotation about a particular
transverse axis of the Bloch sphere obtained by turning on
the rf driving for tp ¼ 1.02 μs. Each four-pulse block
corresponds to 6τ0 of time, where τ0 ¼ 5 μs is the delay
primitive for the entire sequence. It is prudent to choose τ0
to be as short as possible in order to minimize Trotter errors
while still ensuring that interpulse delays τ0 − tp are not
too short. For our spectrometer, τ0 ¼ 5 μs is as short as
feasible, given that the electronics require a minimum pulse
separation of 2.5 μs to change the phase for the next
applied pulse. Under Wei16, the internal Hamiltonian given
in Eq. (1) can be transformed to a model with six free
parameters—three controlling the interaction Hamiltonian
and three controlling the orientation of the local field.
Notably, with collective rotations, we cannot change the
sum of the coefficients of the interaction Hamiltonian since
the subspace generated by the dipolar interaction along x, y,
and z, written spanfHDx

;HDy
;HDz

g, is a two-dimensional
vector space. This can be seen clearly by recalling one of
the central identities used to perform time suspension,
HDx

þHDy
þHDz

¼ 0. The constraint is directly captured
in the Floquet Hamiltonian defined as

HF ¼ 1

2

X
i<j

Jij(ðu−wÞŜðiÞx ŜðjÞx þ ðv− uÞŜðiÞy ŜðjÞy

þ ðw− vÞŜðiÞz ŜðjÞz )þ 1

3

X
i

ωi

�
aŜðiÞx þ bŜðiÞy þ cŜðiÞz

�
:

ðA1Þ
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τ1 ¼ τ0ð1þ c − vþ wÞ; τ2 ¼ τ0ð1þ b − uþ vÞ;
τ3 ¼ τ0ð1 − aþ u − wÞ;
τ01 ¼ τ0ð1 − c − vþ wÞ; τ02 ¼ τ0ð1 − b − uþ vÞ;
τ3 ¼ τ0ð1þ aþ u − wÞ: ðA2Þ

Each of the parameters appearing above are combined to
produced the physical pulse delays for the sequence. In
general, a four-pulse sequence is defined by five delays
and four orientations, which we collect using the following
notation: Pðt1;n1; t2; n2; t3; n3; t4; n4; t5Þ, a standard nota-
tion for our group [21,29]. Unlike strings of unitary
operators, this notation is read from left to right, in the
order they are physically applied during an experiment.
Namely, the generic pulse sequence corresponds to “wait
for t1, then apply a pulse in the n1 direction, then wait for
t2;…” and so on. Concretely, the Wei16 sequence is given
by the string of four pulse blocks shown in Eq. (A3).
We use the standard notation x̄ ¼ −x, which helps save

horizontal space. In this sequence, there is a great deal
of reflection symmetry. Generally, symmetrized pulse
sequences perform better than their unsymmetrized coun-
terparts, which can be formalized by computing leading-
order error terms.
The Peng24 sequence differs from Wei16 in that it is

constructed by symmetrizing a pulse sequence reliant on a
threefold symmetry, which differs significantly from the
usual twofold-symmetry four-pulse blocks demonstrated
above. Additionally, as a time-suspension sequence, the
target Hamiltonian is much simpler, HF ¼ 0. In particular,
we chose Peng24, as it is a 24-pulse sequence correspond-
ing to 24τ0 of evolution time, equivalent to that of Wei16,
allowing for a direct comparison. We can write Peng24 in
the same way as we wrote Wei16, taking the standard pulse
block to include three orientations and four delays in order
to better emphasize the symmetry group. Since Peng24 is
the symmetrized Angle12, we define Angle12 in Eq. (A4)
and solidify how it is used to define Peng24 (first
introduced as yxx24) [31].

Pðτ1;x; τ2; y;2τ3; y; τ02;x; τ01ÞPðτ01;x; τ2; y;2τ03;y; τ02;x; τ1ÞPðτ1; x̄; τ02; ȳ;2τ03; ȳ; τ2; x̄; τ01ÞPðτ01; x̄; τ02; ȳ;2τ3; ȳ; τ2; x̄; τ1Þ; ðA3Þ

Angle12 ¼ P

�
τ0
2
; ȳ; τ0; x; τ0; x̄;

τ0
2

�
P

�
τ0
2
; y; τ0; x̄; τ0; x̄;

τ0
2

�
P

�
τ0
2
; ȳ; τ0; x; τ0; x̄;

τ0
2

�
P

�
τ0
2
; y; τ0; x; τ0; x;

τ0
2

�
: ðA4Þ

As stated, Peng24 is formed by symmetrizing Angle12,
which is done by performing Angle12, followed by
Angle12. The overbar on Angle12 means to perform
Angle12, albeit with the signs of each pulse orientation
reversed, x → x̄, etc. Hence, Peng24 ¼ Angle12Angle12.

APPENDIX B: RANDOM-STATE GENERATION

The procedure for generating the random state, and thus
local observables in NMR, was first introduced by Peng
et al. on this experimental platform [21]. Extensive details
on the generation of random Zeeman states and random
double-quantum states, along with a discussion and veri-
fication of their properties, can be found in the
Supplemental Material [40]. Here, we reproduce some
of the details relevant to our experiments, particularly
the generation of random Zeeman states.
The goal is to find a unitary operator that maps our initial

state to the disordered state,

Ûd∶ Ŝz →
X
i

ξiŜ
ðiÞ
z ; ðB1Þ

generated only using collective rotations. This is possible
due to the local field generated by the heteronuclear
interaction of our fluorine chain with nearby phosphorus
atoms,

Hdis ¼
X
i;j

JFPij ŜðiÞz ÎðjÞz ≈
X
i

ωiŜ
ðiÞ
z : ðB2Þ

The Zeeman polarization of the phosphorus spin, ÎðiÞz , is
well approximated as a classical random variable that
takes values of �0.5 with equal probability. Over the
timescale of a given experiment, the state of a given
phosphorus spin is approximately fixed, so the interaction
is a source of quenched disorder. To make use of the
disordered field, we turn off the dipolar interaction
using a well-known spectral sequence, WAHUHA8.
The WAHUHA sequence [28] is a four-pulse decoupling
sequence, which we symmetrize to form the eight-pulse
sequence WAHUHA8:

WAHUHA8 ¼ Pðτ0; x; τ0; y; 2τ0; ȳ; τ0; x̄; τ0Þ
× Pðτ0; x̄; τ0; ȳ; 2τ0; y; τ0; x; τ0Þ: ðB3Þ

In addition to decoupling the dipolar interaction of
the fluorine atoms, WAHUHA8 leaves the disordered-
field orientation unchanged, with a resulting Floquet
Hamiltonian of

HWHH ¼ 1

3

X
i

hiŜ
ðiÞ
z ¼

X
i

ωiŜ
ðiÞ
z : ðB4Þ
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Other eight-pulse spectral sequences can alter the orienta-
tion of the disordered field, such as MREV-8 [27], which is
undesirable for this procedure.
The final ingredient needed to construct Ûd is phase

cycling, an NMR technique in which multiple experimental
signals are added (or subtracted) together in order to cancel
unwanted terms generated during evolution. All data within
the main text used phase cycling to reduce systemic sources
of noise generated by experimental imperfections and
electronic control error. With this in mind, we present
the procedure for generating random Zeeman states below.
(1) The state is initialized via thermalization by waiting

5T1, so δρ1 ¼ Ŝz.
(2) The state is rotated by a pulse along the y axis, so

δρ2 ¼ Ŝx. The state no longer commutes with the
disordered field and will begin to evolve.

(3) Immediately following the previous step, the
WAHUHA8 sequence is performed 18 times in a
row, corresponding to τd ¼ 60τ0 × 18 ¼ 1.08 ms of
total evolution under the disordered Hamiltonian.

The resulting state is then δρ3 ¼
P

i cosðωiτdÞŜðiÞx þ
sinðωiτdÞŜðiÞy .

(4) To get the disordered phase tagging along ŜðiÞz , a π=2
rotation is performed about the x or y axis. The
choice is arbitrary as long as it is consistent; it will be
clear that this choice determines whether the phase
tagging is the sine or cosine of the disordered field.
As an odd function, the choice of sine over cosine
ensures the random phase tagging is zero mean
even in the presence of finite temperatures. In this
and previous works, x is chosen, leading to the

state δρð1Þ4 ¼ P
i cosðωiτdÞŜðiÞx − sinðωiτdÞŜðiÞz . Two-

fold phase cycling on the sign of the x pulse is
performed. The first state is subtracted from
another state generated by following steps (1)–(3),
finally performing a x̄ pulse resulting in δρð2Þ4 ¼P

i cosðωiτdÞŜðiÞx þ sinðωiτdÞŜðiÞz . The subtraction
of these states yields the desired result:

δρ4 ¼ δρð2Þ4 − δρð1Þ4 ∝
P

i sinðωiτdÞŜðiÞz .
(5) Finally, a fourfold phase cycling is performed to

reduce systematic error. The initial and final states
resulting from steps (1)–(4) are entirely unchanged
if all pulses are shifted in phase by 90 degrees.
Including this phase-cycling step reduces error
and leads to a larger signal, resulting in a
procedure that requires an eightfold phase cycling
to generate Ûd.

We have given a procedure for generating the random
Zeeman state from the initial thermal state. The procedure
to generate the random Zeeman observable is precisely the
procedure used to generate the random Zeeman state, albeit
in reverse. Following steps (1)–(5) in reverse will engineer
Û†

d, leading to the desired observable. However, this

procedure would require 8 × 8 ¼ 64-fold phase cycling,
so each data point would take 4.25 minutes to acquire and
would include a significant amount of noise. In engineering
Û†

d, we omit the fourfold phase cycling detailed in step (5),
so we only need to perform a 16-fold phase cycle. It has
previously been argued that, under certain circumstances,
the number of scans required can be reduced further [21].
For all experimental data shown in the text involving local
observables, 16-fold phase cycling is used.

APPENDIX C: FITTING TO PERIOD-DOUBLED
DECAYS, VARIABLE INTERACTION TIME

Here, we detail the fitting procedure to the period-
doubled response under time-crystalline driving, where
the interaction period is variable. The model of interest
is a stretched exponential function with four parameters,

SðtÞ ¼ a exp ( − ðt=τÞb)þ c; ðC1Þ

previously introduced in this work in Eq. (7). The fitting is
performed in Python using SciPy’s curve_fit function
[41]. We consider T ∈ f15; 30; 45; 60; 90; 120g μs, which
corresponds to dimensionless interaction magnitudes γ ∈
f5π=32; 5π=16; 15π=32; 5π=8; 15π=16; 5π=4g. The results
are shown in Fig. 8.
In Fig. 8, there are two points of note. First, the fitting for

T ¼ 15 μs (left plot) shows a systematic error: The model
is a bad fit for the given data. In this case, the two-timescale
fitting procedure is a better choice, and it matches the
notion that high driving frequency leads to prethermal time
crystallinity. As we continue to increase the Floquet period
T, we similarly argue that the two-timescale fitting pro-
cedure is a bad choice. In Fig. 9, we show the results of
the two-timescale fitting procedure for T ¼ 15; 30 μs. The
T ¼ 15 fitting demonstrates a strongly resolved transition
between timescales; the T ¼ 30 plot indicates that there
might be a second timescale, but the transition between
prethermalizing and prethermal timescales is weak.
Notably, the choice of the cutting point between timescales
does not significantly impact the fitting results. Hence,
the argument in favor of prethermalization is quite weak,
so we take the single stretched-exponential fit to be
sufficiently explanatory. Second, while there is a clear
and apparent increase in the signal lifetime as the kicking
period T increases, we recall that this corresponds to
decreasing ω. In the limit of increasing ω, we expect that
the dynamics are not prethermal; rather, they are
decoherence dominated. When analyzing the lifetime
dependency as a function of the driving period, we notice
that τ is a linearly increasing function of the driving period
T in this regime, demonstrated in Fig. 8 (right). The linear
trend, 37.11T − 453.39 (μs), can be expressed in terms
of the number of periods by dividing by the driving
period T, becoming τFðTÞ¼37.11–453.39=T (periods).
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This expression highlights that there is an apparent upper
bound to the lifetime of the signal, 37.11 Floquet periods.
Thus, we have evidence that the dynamics for experiments
in which γ is too large are decoherence dominated and not
prethermal. Then, the period-doubling dynamics are trivi-
ally generated by decoherence and not time crystalline.
Conversely, when γ is too small, the time crystal melts,
and period doubling fails. Determining the transition
point between prethermal time-crystalline dynamics and
decoherence-dominated dynamics would require defining a
suitable witness for cleanly differentiating between these
modalities, beyond the analysis we performed above.

APPENDIX D: LOCAL Z-MAGNETIZATION
STATE MANIPULATIONS

In order to further verify our ability to produce a robust
local state, we consider the case where interactions are

turned off entirely. Indeed, we want to ensure that the rapid
decay observed in Fig. 6 is due to time-crystal-inducing
interactions and not due to poor state preparation. In
Fig. 10, we demonstrate that the local magnetization signal

FIG. 9. Two-timescale fitting for the T ¼ 15 μs DTC experi-
ment and the T ¼ 30 μs DTC experiment in nondimensional
units of Floquet periods.

FIG. 8. Left panel: exemplary fitting results for variable interaction-time DTC experiments, plotted in nondimensional Floquet periods
instead of evolution time for a more uniform comparison. For each fit, the relevant extracted parameters are the nondimensional decay
timescale τF ¼ τ=T (units of Floquet periods) and the exponential stretching parameter b. Right panel: interpolation of the signal
lifetimes extracted from fittings as shown on the left panel, as a function of the Floquet period T, τðTÞ ¼ aT − b. The fitted parameters
are a ¼ 37.11 (nondimensional) and b ¼ 453.39 μs.

FIG. 10. Results of local z state experiments under periodic
driving with interactions turned off via Peng24. In the top panel,
signals are shown for kicking angles θ ¼ 0°; 170°; 180°. We
notice that the decay envelope is similar for all three cases, as in
the global z case, albeit decaying more rapidly. In the bottom
panel, we show the fitting of the θ ¼ 180° signal to the four-
parameter model given in Eq. (7).
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persists for long times when interactions are turned off
with Peng24. In fact, the observed decay envelope fits
well to the four-parameter model of Eq. (7), with a
sublinear exponential argument similar to the noninter-
acting global magnetization response. The timescale
of the decay is shorter for the local magnetization than
global magnetization, τ ¼ 1.5 ms, as compared to the
6.5-ms decay timescale for the global observable, shown
in Fig. 2. Importantly, this is still quite long compared
to T2 ≈ 30 μs.
It is also important to note that our ability to transfer

population from the disordered state back to a directly
measurable observable is predicated on the disorder being
fixed over the timescale of a single experiment. Namely, if
the disordered field has changed significantly as a result of
the flipping of nearby phosphorus spins, then we would see
a complete loss of signal upon measuring. We expect that
the timescale of variation for the phosphorus spins is
generated by spin diffusion or by a T1 process. In either
case, we believe that the timescale is quite long, given that
we are able to refocus the disordered state after over 6 ms of
evolution under a time-suspension sequence. The decay
timescale measured, τ ¼ 1.5 ms, reflects decay due to both
Trotter errors in the time-suspension sequence and refocus-
ing errors due to the disordered-field variation. Naively
assuming additive rates and identical noise processes,
we can estimate the timescale of disorder variation to be
τP≈ð1=1.5−1=6.5Þ−1¼1.95ms. In summary, the results
of Fig. 10 demonstrate that our state preparation procedure
and control scheme are not the causes of the rapid decay
seen in Fig. 6.

APPENDIX E: TWO-TIMESCALE FITTING
RESULTS, VARIABLE INTERACTION

STRENGTH

In Fig. 11, we show the two-timescale fitting results for
stroboscopic z-field strengths of hT ¼ π=2; π. This fitting
procedure is performed for all hT ∈ fπ=4; π=2; 3π=4; πg to

populate Table I. The fitting for hT ¼ 0 is shown in Fig. 7.
Concretely, τ1 gives the decay timescale of the initial state
to the prethermal time-crystalline state, and τ2 gives the
lifetime of the prethermal time-crystalline state.
For each value of hT, an optimal γ is selected to

maximize the two-timescale contrast. Generally, for larger
values of hT, smaller values of γ are used. For a prethermal
time crystal, τ2 is expected to depend exponentially on γ.
We notice the symptoms of this effect in that the quality of
the fit is increasingly sensitive to large changes in γ with
increasing hT. Unfortunately, direct analysis of this expo-
nential growth is not feasible on our system. First, in the
limit ω → ∞, γ → 0, our signal will still decay due to
various decoherence and Hamiltonian engineering effects.
Second, we have demonstrated that decreasing γ below the
phase boundary melts the time-crystalline order. It would
be interesting to consider taking γ to be arbitrarily close to
the phase boundary; however, we lack the control reso-
lution to explore this regime.
The fitting in Fig. 7 shows that the prethermal timescale

is robust to changes in γ, which can be attributed to the
fact that the transition to the time-crystalline phase occurs
near γ ¼ ð7π=80Þ. Thus,Δγ ¼ ðπ=40Þ is a small fraction of
the interaction magnitude at the transition point. Even so,
the contrast between timescales is most pronounced for
γ ¼ ð7π=80Þ. However, for hT ¼ π, the transition point to
the time-crystalline phase occurs near γ ¼ π=40ðu ¼ 0.02Þ.
Given our resolution in γ is limited to π=80, we are
limited to (proportionally) large changes in the interaction
magnitude relative to the transition point. If our timing
control allowed for a higher resolution in u, then we could
reconstruct a phase diagram for each hT similar to Fig. 5.
Qualitatively, we expect the transition boundary to be
“pushed down” with increasing hT, increasing the
phase-space area occupied by the time-crystalline state.
Most notably, this allows for exploring smaller values of γ,
hence larger ω, while maintaining time crystallinity, thus
allowing for further exploration of the predicted exponen-
tial dependency on ω.

FIG. 11. Two-timescale fitting results for various applied stroboscopic z fields, in nondimensional units of Floquet periods. The data
generated by this procedure are used to populate the entries of Table I.
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APPENDIX F: EFFECTS OF DISORDERED
FIELDS

Using Wei16, we can vary the effective disorder
strength over a single Floquet period. Concretely, we have
two tunable parameters, u, v, such that our Floquet
Hamiltonian is

ĤF ¼ v
3

X
i

ωiσ̂
ðiÞ
z

þ u
2

X
i<j

J0

�
ŜðiÞz ŜðjÞz −

1

2
ðŜðiÞx ŜðjÞx þ ŜðiÞy ŜðjÞy Þ

�
: ðF1Þ

Above, ωi is the locally disordered field induced by the
unpolarized phosphorus spins, and 0 ≤ v ≤ 0.4 is the
allowed parameter range under Wei16. Then, for selected
kicking angles θ and interaction strengths γ, we can
investigate the effect of disorder on the stability of our
time crystal. The results of this investigation are given in
Fig. 12. In summation, we see no evidence that increasing
disorder leads to a longer-lived signal; hence, MBL is likely
not the stabilization mechanism for this time crystal.
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