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Continuum mechanics describes compressive failure as a standard bifurcation in the response of a
material to an increasing load: Damage, which initially grows uniformly in the material, localizes within
a thin band at failure. Yet, experiments recording the acoustic activity preceding localization evidence
power-law-distributed failure precursors of increasing size, suggesting that compressive failure is a critical
phenomenon. We examine here this apparent contradiction by probing the spatial organization of the
damage activity and its evolution until localization during compression experiments of 2D cellular solids.
The intermittent damage evolution measured in our experiments is adequately described by a nonstationary
depinning equation derived from damage mechanics and reminiscent of critical phenomena. In this
description, precursors are damage cascades emerging from the interplay between the material’s disorder
and the long-range stress redistributions following individual damage events. Yet, the divergence of their
characteristic size close to failure, which we observe in our experiments, is not the signature of a transition
toward criticality. Instead, the system remains at a fixed distance to the critical point at all stages of the
damage evolution. The divergence results from the progressive loss of stability of the material as it is
driven toward localization. Thus, our study shows that compressive failure is a standard bifurcation for
which the material disorder plays a marginal role. It also implies that the precursory acoustic activity
behaves as a tracer of the evolution of materials toward failure and can therefore be used to assess their
residual lifetime.
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Statistical Physics

I. INTRODUCTION

Damage localization is the standard mode of failure of
materials under compression. Decoding this degradation
process is therefore the cornerstone of the design of reliable
and safe structures such as buildings, bridges, tunnels, and
a countless number of mechanical parts under compressive
loading conditions. During their life in service, these
structures may progressively lose their mechanical integ-
rity. Comprehending damage evolution to predict their
remaining lifetime is an essential component of modern
tools of structural design and predictive maintenance. Yet,
the appropriate theoretical concepts for describing damage
spreading and ultimately localization are still vigorously
debated and constitute an active topic of research [1–4].
Continuum damage mechanics is a powerful approach

for describing the compressive failure of materials such as
rocks, ceramics, or mortar [5–8]. In this framework,
discrete damage mechanisms like microcrack growth are

described at a continuum scale through the degradation of
the local elastic stiffness of the material [9–15]. Beyond
some critical load level, this softening leads to a bifurcation
from the homogeneous damage field to a localized damage
that grows only within a thin band and leads to material
failure [16,17].
In parallel, and almost independent of the develop-

ment of damage mechanics, the intermittent dynamics
of damage growth preceding compressive failure has
attracted a lot of attention. Acoustic emissions have been
used as a preferential means of experimental investigation.
Experimental measurements reveal that damage grows
through bursts that display robust scale-free statistics
[6,11,18–26]. Accounting for material disorder, various
theoretical works [27–31] have proposed to describe failure
as a discontinuous (first-order) phase transition where the
precursory damage events emerge from the sweeping of an
instability. These ideas were primarily discussed in the
context of toy models of failure, using, e.g., random fuse
models. As a result, a direct comparison with the statistical
properties of precursors measured experimentally was not
possible, leaving unresolved the applicability of these
concepts to real materials. Motivated by the observation
of an increase of the precursors’ size close to localization
[23,26,32–35], an alternative scenario in which compres-
sive failure is described as a continuous (second-order)
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phase transition was also proposed [26,33,36–41]: Similar
to a large range of driven disordered elastic systems
[42–44], the bursts of activity characterizing the response
of damaging materials was interpreted as critical fluctua-
tions, or avalanches, that are reminiscent of the so-called
depinning transition, a critical phenomenon emerging from
the competition between disorder and elastic interactions.
Above a depinning threshold, damage is thus expected to
grow at some finite speed, eventually leading to failure.
When approaching this critical point, the material should
then display scale-free fluctuations with diverging length
and timescales, a feature that has been observed in some
compression experiments [26,41].
Despite the appeal of such a scenario, it comes in

direct contradiction with continuum damage models which
describe compressive failure as a standard bifurcation
taking place in homogeneous solids, for which material
disorder and hence precursors play a minor role. The
objective of this work is to reconcile these two seemingly
incompatible scenarios: Is compressive failure a standard
bifurcation or a depinning transition? Are its precursors
the result of a transition toward a critical point? These
interrogations have crucial engineering implications: Do
precursory damage events foretell impending failure?
Recently, we examined this issue in a 1D toy model
[45]. However, the generalization of our results to real
materials was limited by the short-range interactions and
the system dimension considered in our model. Here, we
follow a different approach: We start from the in-depth
characterization of the damage precursors in a model
experimental system. Subsequently, experimental observa-
tions are confronted with the competing scenarios, yielding
our two main results:

(i) The scale-free statistics of the precursory activity is
reminiscent of the avalanche dynamics during de-
pinning of a driven disordered elastic interface. Yet,
in stark contrast with the critical transition scenario,
the divergence of the length and the timescales of
precursors close to failure results from the on-
coming localization, a standard bifurcation taking
place in homogeneous solids.

(ii) This approach toward bifurcation does not drive the
damaging solid toward a critical point. Instead, it
remains at some finite distance from criticality
during the whole process of damage accumulation.

Our article is structured as follows. First, we present our
experimental setup (Sec. II). We carry out a compres-
sion test of cohesionless soft cellular solids. We show that
this material behaves like an elastodamageable medium,
ensuring the applicability of our findings to other brittle
materials. The characteristic features of the precursory
damage activity are then analyzed at both the global scale
(using the force-displacement response of the specimen)
and the local scale (using full-field measurements of the
mechanical quantities). This multiscale characterization
provides the complete (nonstationary) statistical structure

of precursors that follows robust scaling laws. To ration-
alize these experimental observations, we use damage
mechanics that we extend to disordered solids (Sec. III).
We derive the evolution equation of the damage field
that reveals the complex connection with driven dis-
ordered elastic interfaces and depinning transition. Our
approach also captures damage localization that is
described as a standard instability. In Sec. IV, we come
back to our experimental data and validate several non-
standard aspects of the proposed depinning model. The
compatibility of both competing scenarios with our exper-
imental observations is discussed in Sec. V. We argue that
damage spreading is reminiscent of the nonstationary
depinning dynamics of a driven disordered elastic interface
that culminates in a standard bifurcation at localization.
Section VI provides a direct engineering application of our
work. We bring the experimental proof of concept that
precursors can be harnessed for predicting the residual
lifetime of structures. The analysis of the acoustic emis-
sions recorded during our experiments is presented in
Sec. VII. Their statistical similarity to the acoustic pre-
cursors recorded during the failure of standard brittle
solids ensures the generality of our results. The numerical
resolution of the proposed damage model is carried out in
Sec. VIII. It provides a comprehensive interpretation of the
statistics of failure precursors observed in our experiments.
Finally, the broader implications of the proposed nonsta-
tionary depinning scenario of other phenomena including
amorphous plasticity are discussed in Sec. IX. The methods
employed in our experiments and our model are briefly
presented in Appendixes A and B. A thorough description
is provided in the Supplemental Material [46].

II. EXPERIMENTAL INVESTIGATION
OF FAILURE PRECURSORS

A. Damage localization

Taking inspiration from Poirier et al.’s experiments [47],
we perform compression tests of 2D cohesionless soft
cellular solids as shown in Fig. 1(a). The results pre-
sented below are based on ten different experiments during
which the evolution of the material microstructure and
the associated damage is tracked using full-field measure-
ments (see Appendix A 1 for a detailed description of our
experimental setup). Following Karimi et al. [48], the effect
of friction between cells is described at a mesoscopic
continuum scale by introducing an equivalent elastodam-
ageable medium. As shown in the following sections and
justified in detail in Appendix A 2, such a cohesionless
cellular solid is a model system that mimics the jerky
dissipative response of brittle disordered solids under
compression. Dissipation taking place at the scale of
the individual cells is tracked in space and time using a
high-speed camera (see Appendixes A 4 and A 5 and
Supplemental Material [46] Secs. 1 and 2 for details).
We thus circumvent the drawbacks inherent to x-ray
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tomography that provides the detailed spatial structure of
damage events in 3D materials but at the cost of temporal
resolution [49,50]. We also overcome the limitations of
acoustic emissions that provide highly resolved time series
but with a rather poor spatial resolution [51,52].
First, we focus on the average mechanical response

of the specimen. A typical force-displacement curve
recorded during a compression test under displacement
control conditions is shown in Fig. 1(b). As evidenced from
the snapshots of the experiments taken at different load
levels [top inset of Fig. 1(b) and Supplemental Material
Video S1 [46] ], the specimen initially deforms rather
uniformly, even beyond the linear elastic regime. We
consider the deviation to cell circularity beyond the elastic
limit as a measure of the damage level, d∘. As shown in the
inset of Fig. 1(c), the larger the d∘, the lower the Young’s
modulus Eðd∘Þ of the material, as expected for elastodam-
ageable media. Together with its Poisson ratio νðd∘Þ ≃ ν∘
that remains nearly constant, the function Eðd∘Þ describes
the impact of damage on the mechanical response of our 2D
elastodamageable solid (see Appendix A 2). Damage is
observed to grow homogeneously from the elastic limit
F ¼ Fel until the peak load F ¼ Fc (refer to Supplemental
Material Table S1 [46] for a list of notations), except for the
cells close to the boundary where friction with the lateral
wall prevails. Tracking the collapsing of cells from their
deviation to circularity d∘ > 0.5, we observe that at peak
load, no cell has collapsed yet, except at the boundaries.
After peak load, however, a band consisting of progres-
sively collapsing cells appears, initiating from the top
corners of the structure. The localization band is clearly
visible farther away from peak load, as shown on the
snapshot in the upper right corner of Fig. 1(b). The onset
loading Δc of localization is inferred from the evolution of
the vertical strain hϵyyiR2

averaged over the bottom region
R2 of the specimen [indicated in Fig. 1(a)]: As displayed in
the lower inset of Fig. 1(b), for Δ > Δc, hϵyyiR2

saturates
and departs from the strain ϵextyy imposed by the loading
machine. On the contrary, the strain hϵyyiR1

measured in the
upper region R1 follows the imposed strain. This confirms
that damage localization starts at peak load. To confirm this
important result, we investigate the spatial distribution of
the damage growth rate near peak load (see Appendix A 5).
Before peak load, it is rather homogeneously distributed,
while right after peak load, its value is several times larger
in the thin band where cells start to progressively collapse.
This behavior is consistent with the observations made

in a wide range of brittle solids [51,53–56]. It is also
captured by the nonlocal damage models recently pro-
posed in Berthier et al. [57] and Dansereau et al. [58]
(see Supplemental Material Sec. S3F [46] for the analytical
prediction). If the experiments were under force-control
conditions, as in most real-life structural applications, a
sudden collapse of the cells resulting in the catastrophic
failure of the specimen would also occur at peak load.

B. Precursors as cascades of damage events

We now analyze the precursory damage activity
taking place before peak load. A closer examination of
the force-displacement curve in Fig. 1(c) reveals sudden
force drops of amplitude much larger than the precision
�0.05 N of our load cell. These drops are followed by a
linear increase of the force, recovering the force drop albeit
with a degraded macroscopic stiffness (lower slope). The
investigation of the specimen response under different
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FIG. 1. (a) Schematic of the compression experiment depicting
the front view of the hexagonal packing of soft cellular solids.
The box dimensions are 205 × 170 × 30 mm3. Owing to the
displacement Δ applied to the specimen through a piston moving
at a rate vext, the cells undergo a deformation that is recorded
using a high-speed camera. The following figures describe the
typical mechanical response of the specimens, as observed in one
of our experiments. (b) Force-displacement response of the
specimen. Top insets: The emergence of a localization band of
collapsed cells corresponding to highly localized deformations is
visible on the snapshots of the specimen taken at different load
levels. Bottom inset: The strain level averaged over the bottom
region R2 indicated in panel (a) saturates after localization for
Δ > Δc, while the one measured in the upper region R1 follows
the linear trend ϵextyy ¼ Δ=H ¼ vextt=L imposed by the loading
machine. (c) Construction of an equivalent-force-control experi-
ment from the mechanical response of the specimen measured
under displacement control. The start and end of a damage
precursor taking place at a constant force F0 are denoted by Δini
and Δend. The precursor size Sglobal ¼ ΔEd defined as the
dissipated energy during the event corresponds to half the work
of the external force ΔW ¼ F0ðΔend − ΔiniÞ. Inset: The stiffness
degradation of the effective medium with increasing damage.
(d) Variations of the precursor size S, in terms of dissipated
energy, with the distance to failure δ. Inset: A comparison of
precursor sizes computed from the global analysis and the local
analysis.
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loading rates shows similar behaviors. This alternating
sequence of damage growth and elastic reloading is
reminiscent of the avalanche dynamics observed in driven
disordered elastic systems [42–44]. We construct the
mechanical response of the specimen (in red) in an
equivalent-force-control experiment where displacement
jumps (from Δini to Δend) at constant force corresponding
to a cascade of damage growth, also called an avalanche
[Fig. 1(c)]. The precursors defined this way can be
shown to be statistically similar to those that would be
measured during an actual force-control experiment (see
Supplemental Material, Sec. S4 [46] for a numerical
validation). As under force-control conditions, damage
cascades take place at constant force, and the work of
the loading machine ΔW during the event can be shown to
contribute equally to the increase ΔEel of the elastic energy
and to the dissipation ΔEd by damage (see Appendix A 3).
Hence, ΔEd ¼ ΔW=2 ¼ ðΔend − ΔiniÞF0=2, and we define
this quantity as the precursor size Sglobal. The evolution of
Sglobal with the distance to failure δ ¼ ðFc − FÞ=ðFc − FelÞ
is shown in Fig. 1(d). The introduction of Fel ensures that
δ ¼ 1 corresponds to the beginning of the damage accu-
mulation regime. However, choosing another definition, as
e.g., ðFc − FÞ=Fc, does not modify our conclusions. We
note that the cascading dynamics and its amplification upon
approaching failure (δ → 0) observed in our 2D cellular
material under compression are reminiscent of the inter-
mittent damage activity evidenced by acoustic emissions in
standard brittle materials [see Fig. 1(d)].
Alternatively, we can also identify and characterize the

precursors at the local scale using our (time-resolved) full-
field measurement of the displacement and the damage field
[see Supplemental Material Sec. 1C and Figs. S1(c)–S1(f)
[46] for details on the local analysis]. From these quantities,
we compute the field of stored elastic energy in the effective
elastodamageable medium. Considering energy balance
at the local scale, we can thus determine the dissipation
energy density ρðx⃗;ΔÞ that we integrate over an avalanche
ρðx⃗Þ ¼ RΔend

Δini
ρðx⃗;ΔÞdΔ.

Maps of dissipation energy density ρðx⃗Þ depicting the
complex spatial structure of precursors are presented in
Fig. 2(a). We observe a diffuse pattern, yet containing
locally well-defined regions of varying intensity and size.
These clusters are reminiscent of the time- and space-
correlated structure of incremental damage events. In
practice, highly correlated individual damage events can
be grouped together by implementing a spatiotemporal
clustering algorithm on the fields ρðx⃗;ΔÞ recorded during
Δini < Δ < Δend. This segmentation reveals the clusterlike
structure of precursors illustrated in Fig. 2(b) (see also
Video S2 in the Supplemental Material [46]) for the
precursor shown in the second panel of Fig. 2(a).
The energy Slocal ¼

R
ρðx⃗Þdx⃗ dissipated during the cas-

cade compares well with the precursor size Sglobal inferred
from the force-displacement response; see Fig. 1(d). It is

also in good agreement with the precursor size computed
using the field of dissipated energy inferred from the
incremental damage field, thus validating the assumption
of local energy balance [see Supplemental Material Sec. S2,
Figs. S2(d) and S2(e) [46] ]. Finally, this agreement supports
the description of our cohesionless cellular solid as an
elastodamageable medium.

C. Statistical characterization of precursors

We now explore the properties of the damage cascades
observed in our experiments. First, their spatial extent is
determined from (thresholded) maps of dissipation energy
density [insets of Fig. 2(a)]. The employed threshold value
ρ� is inferred from the distribution of local dissipation
densities that follows an exponential decay PðρÞ ∝ e−ρ=ρ

�

[see Supplemental Material Sec. S1(c) and Fig. S1(g)
[46] ]. We extract the characteristic length ξ from the 2D
autocorrelation of the thresholded dissipation map
[Supplemental Material Sec. S1(d) and Fig. S1(h) [46] ].
The length grows with the avalanche size as S ∝ ξdf , where
df ≃ 1.07 is the fractal dimension; see Fig. 2(c). While
cascades spread over the whole specimen [see Fig. 2(a)], ξ
represents the spatial extent of the largest clusters con-
stituting the cascade. Interestingly, ξ reaches the specimen
size L upon approaching failure, which implies an upper
limit on the size of the precursors. An independent estimate
of the fractal dimension of the precursors is obtained from
the spatial distributions of the clusters. We identify the
location of their center of mass, as illustrated on the right
end of Fig. 2(b), and then compute the correlation function
CðrÞ ∝ rdf defined as the fraction of pairs of points whose
separation is less than r [59]. This provides a fractal
dimension df ≃ 1.15 [see inset of Fig. 2(c)] compatible
with the one obtained from the spatial distribution of the
individual damage events. Note that the spatial extent ξ of a
damage cascade is different from its size S that corresponds
to the energy dissipated by damage during the cascade.
We now seek to determine the characteristic duration of

damage cascades. We come back to the force-displacement
response and explore the sequence of load drops observed
within an avalanche. The precursor duration T is defined as
the number of load drops [also see Supplemental Material
Sec. S1B and Figs. S1(a) and S1(b) [46] ]. It scales with the
characteristic length ξ of the precursor as T ∝ ξz [see Fig. 2
(d)] with dynamic exponent z ≃ 0.53.
Thus, a damage cascade is characterized by its size, its

spatial extent, and its duration. All three quantities are
related to each other by scaling laws. The probability
distribution of these quantities is studied in Fig. 2(e), where
we focus on the distribution PðSÞ of precursor sizes, the
other distributions PðξÞ and PðTÞ being inferred from
the previous scaling laws. Considering all the precursors
(δ∈ ½0; 1�) or only the ones close to localization
ðδ∈ ½0; 0.01�Þ, both distributions follow a power-law sta-
tistics but with two different exponents βtot ≃ 2.34 and
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β ≃ 1.30, respectively. This difference results from the
increase of the size of the largest precursors upon approach-
ing failure (see Supplemental Material Sec. S4A [46,60]).
The exponent β is connected later with the marginal
stability of the material elements [61,62] that is investigated
in Sec. IVA.
Finally, we characterize the correlations in the sequence

of damage cascades. The distribution PðτwÞ of waiting
times separating two successive damage cascades is shown
in Fig. 2(f). It follows an exponential law PðτwÞ ∝ e−τw=τ

⋆
w,

defining a characteristic waiting time τ⋆w. This result is at
odds with the power-law distribution of waiting times
separating acoustic events in compression experiments
[21–23]. To confirm our observation, we perform addi-
tional experiments with a loading rate vext twice smaller.
Interestingly, we also measure an exponential distribution
but with a characteristic waiting time about twice larger
[see Fig. 2(f)]. We thus replace the waiting time τw by the
force increment τF separating two successive precursors,
so that distributions corresponding to different loading
rates collapse on a single curve, as shown on the inset of
Fig. 2(f). The exponential distribution of the waiting time,
characteristic of uncorrelated events described by a
Poisson process, suggests that precursors are triggered

independently from each other. This is further confirmed
by the spatial distribution of the seeds (first damage event)
of precursors that we define as the center of mass of the
cluster appearing at tðΔiniÞ. The fractal analysis of the
precursor seeds provides CðrÞ ∝ r2, a behavior reminiscent
of spatially uncorrelated events [see Fig. 2(g)].

III. THEORETICAL MODELING
OF COMPRESSIVE FAILURE

The statistical features of the precursors measured in our
experiments strikingly remind us of the avalanche dynam-
ics of elastic interfaces driven in disordered media. In these
models, an elastic interface responds to a continuously
increasing drive and exhibits scale-free avalanches or
crackling noise [42–44]. The size, spatial extent, and
duration of the avalanches are related by scaling laws with
universal exponents that depend on the interface elasticity
and its dimension. For interfaces with long-range elasticity,
avalanches are formed by a set of correlated clusters that are
spatially disconnected similar to damage clusters within a
cascade observed in our experiments [see Fig. 2(b)]. Taking
inspiration from Weiss et al. [40] and using the nonlocal
theory proposed by Dansereau et al. [58], we derive below

 (a)                                                                        (b)                                                                                   (f)                                    ~ 0.25  ~ 0.025  ~ 0.01
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FIG. 2. (a) Energy density maps ρðx⃗Þ and their corresponding binary thresholded formats (inset) of energy dissipation at various
distances to failure in a typical experiment. The common color bar depicting the scale for the dissipation energy density ρ (J=m2) is
presented under the first panel. The spatial extent of the cascades extracted using the autocorrelation of the thresholded maps is denoted
by the red bracket in the inset. (b) Evolution of clusters within a cascade [second panel in (a), at δ ≃ 0.025] with colors representing
unique cluster IDs. The center of mass of each cluster is shown in the background with a marker of the same color as the cluster. Here,
the third axis is time. The largest clusters appear in multiple slices of time. Scaling of the size (in terms of dissipated energy) (c) and
duration (d) of cascades, normalized by their maximum values, as a function of their characteristic spatial extent ξ, normalized by the
system size L. Inset in (c): pair correlation function of the centers of mass of the clusters within a cascade permitting to extract the fractal
dimension df ≃ 1.15. (e) Distribution of the cascade sizes obtained during the whole duration of experiments (diamonds) and in the
vicinity of final failure (circles). (f) Distribution of waiting time between cascades. The waiting time is defined as the difference in time
stamps of the arrival of two successive avalanches τwðsÞ ¼ tiðΔiniÞ − ti−1ðΔiniÞ. Inset: distribution of waiting times considered as the
difference in value of force τFðNÞ ¼ Fi − Fi−1. (g) Fractal analysis of the spatial distribution of the seeds of the precursors in a typical
experiment (inset) showing a behavior reminiscent of a spatial Poisson process (df ≃ 2). The statistical analyses are based on data
recorded during ten experiments.
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an evolution equation of the damage field in the specimen
for a compression test under force-control conditions. This
theoretical formulation sheds light on the connection with
models of driven disordered elastic interfaces. We provide
here the main ingredients of the derivation of the damage
evolution law, the detailed calculations being presented in
the Supplemental Material Secs. S3A–S3D [46].
First, we assume that the material behaves as an

elastodamageable solid. We thus introduce a damage field
dðx⃗; tÞ that describes the level of damage accumulated in
the specimen at the location x⃗ and time t. Damage growth is
inferred from a balance of energy by comparing two
quantities: the local driving force Y½dðx⃗; tÞ; t�, which
provides the rate of elastic energy released for an incre-
mental growth of damage, and the damage resistance
Yc½dðx⃗; tÞ�, which provides the material resistance to
damage and corresponds to the rate of energy dissipated
for an incremental growth of damage. The first quantity is
similar to the elastic energy release rate introduced in
fracture mechanics, which drives crack propagation and is a
quadratic function Y ∝ σ2∘ of the nominal compressive
stress σ∘ ¼ F=ðLWÞ applied by the test machine [63,64].
The damage resistance is equivalent to the fracture energy
introduced in fracture mechanics. Note that in our model,
Yc depends not only on x⃗ as precursors emerge from the
material inhomogeneities, but also on d as a damage event
in x⃗ may change the subsequent failure resistance in the
same material element. The damage then increases in the
material element x⃗ if the local value of the driving force
Yðx⃗Þ reaches the material resistance Ycðx⃗Þ.
To describe the damage field fluctuations resulting from

the material heterogeneities, we introduce a reference dam-
age level d∘ ¼ hdðx⃗; t∘Þi and the damage field perturbations
Δdðx⃗; tÞ ¼ dðx⃗; tÞ − d∘ over the time δt ¼ t − t∘ ≪ t∘ to
ensure that hΔdðx⃗; tÞix⃗ ≪ d∘. The driving force and the
damage resistance can then be linearized as Y½dðx⃗; tÞ; σ∘� ¼
Y∘ðd∘; σ∘Þ þ ΔY½Δdðx⃗; tÞ; σ∘� and Yc½dðx⃗; tÞ� ¼ Yc∘ðd∘Þ þ
ΔYc½Δdðx⃗; tÞ�. The zero-order equation Y∘ðd∘; σ∘Þ ¼
Yc∘ðd∘Þ provides the relationship between the reference
damage level d∘ and the reference applied load σ∘ ¼
σðt∘Þ. In the following, we investigate how the damage field
perturbations Δḋðx⃗; tÞ ∝ ΔY½Δdðx⃗; tÞ; σ∘� − ΔYc½Δdðx⃗; tÞ�
evolve over time. We write the total driving force as the
sum of three terms [40,58]

Δḋðx⃗; tÞ ∝ Kðσ∘Þ½vmðσ∘Þt − Δdðx⃗; tÞ� þ ψðσ∘Þ
� ½Δdðx⃗; tÞ − hΔdix⃗� − yc½x⃗; dðx⃗; tÞ�: ð1Þ

The first (local) termcomprises the effect of thedriving by the
test machine, where the driving speed vm ∝ vext sets the
damage growth rate. Considering a pseudo-interface of
position Δdðx⃗; tÞ, this term acts as a rigid plate moving at
a speed vm and pulling on the interface with springs of
stiffness K (see Supplemental Material Fig. S3 [46] for a
schematic representation). The second term is nonlocal. It
describes the interactions within the specimen, and its value

in x⃗ depends on the damage level Δdðx⃗; tÞ everywhere in
the specimen. In practice, the kernel ψðσ∘Þ [provided in
Eq. (B1)] describes the spatial structure of the redistribution
of driving force taking place in the aftermath of an individual
damage event. It decays as ψ ∝ 1=r2 [40,58]. Its angular
dependence is shown in Fig. 3(a) for the particular case of
uniaxial compression. It exhibits a quadrupolar symmetry
with nonpositive regions (in blue). Hence, only a fraction of
the neighboring elements are reloaded in the aftermath of a
damage event, while the others (located above and below the
damaged element) are actually unloaded. The third term
represents the effect ofmaterial disorder. Its spatial average is
close to zero as the contribution of the hardening hΔYcix⃗ ¼
ηhΔdix⃗ (where η is a hardening parameter and observed in
our experiments) is taken into account in the first term [see
Supplemental Material Sec. S2 and Figs. S2(b) and S2(c)
[46] ]. The presence of dðx⃗; tÞ as an argument of the disorder
term implies that the evolution equation (1) is strongly
nonlinear, leading to the rich phenomenology that we now
discuss.
Equation (1) provides a clear connection between damage

evolution and disordered elastic interfaces: The accumulated
damage field is analogous to a 2D elastic interface Δdðx⃗; tÞ
driven at the speed vm through a 3D disordered medium (see
Supplemental Material Sec. S3E, Fig. S3 [46]). As a result,
damage is expected to grow through bursts characterized by
scaling laws involving critical exponents reminiscent of the
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(b)                                                       (d)                                                 X
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FIG. 3. (a) Angular distribution of the long-range interaction
kernel derived theoretically for the case of uniaxial compression.
(b) 2D autocorrelation map of the incremental damage field of
precursors and angular distribution of the correlations at a fixed
distance as obtained from the 50 largest avalanches measured in
one of our experiments and our numerical simulations. (c) Var-
iations of the correlation function of the incremental damage field
with distance along the horizontal x axis and comparison with the
scaling ψ ∝ 1=δr2 of the theoretical interaction kernel (dashed
line). (d) Variations of the depth Δd� of the damage cascade with
the cascade size S. (e) Distribution of the local distance to failure
δYðx⃗Þ close and far from failure.
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so-called depinning transition.As a first test of ourmodel, we
compare the theoretically predicted exponents with the one
measured experimentally. Investigating the avalanche
dynamics of 2D interfaces with nonpositive interactions
in the context of amorphous plasticity, Lin et al. [61,65]
predicted the exponent values β ¼ 1.51, df ¼ 1.10, and z ¼
0.57 that agree reasonablywellwith the onesmeasured in our
experiments. Corrections to these predictions from the
numerical solution of the evolution equation (1) are provided
at the end of our manuscript in Sec. VIII. They improve
further the agreement with the experimentally measured
exponents.
Despite the ability of this approach to describe the

scaling behavior of precursors, we note that two important
features of the damage evolution equation (1) differ
from standard models of driven elastic interfaces. First,
the long-range elastic interactions result in both reloading
and unloading of material elements in the aftermath of a
damage event. Second, a subtler but more important feature
is that the evolution equation (1) describes a nonstationary
depinning scenario culminating in a bifurcation at the
localization threshold. In the following, we examine these
aspects in detail and discuss their implications for the
damage accumulation process preceding failure.

IV. ATYPICAL ASPECTS OF DAMAGE
EVOLUTION AS A DRIVEN DISORDERED

ELASTIC INTERFACE

A. Nonpositive elastic interactions

We describe below a methodology that we employ to
characterize the elastic interactions driving the cooperative
dynamics of damage. This method takes advantage of our
full-field characterization of damage precursors. Indeed, it
turns out that the spatial distribution of events within
an avalanche encrypts the range and the anisotropy of
the elastic interactions, as we see below. The first step
consists of computing the incremental damage field δdðr⃗Þ
during an avalanche. Its 2D autocorrelation function
Cðδ⃗rÞ ¼ hδdðr⃗Þ · δdðr⃗þ δ⃗rÞir⃗ averaged over several ava-
lanches is presented in Fig. 3(b). The angular distribution
(at a fixed distance) shows a clear quadrupolar symmetry
similar to the redistribution pattern of the theoretical
interaction kernel [Fig. 3(a)]. Remarkably, the correlation
along the horizontal axis where the reloading is maximal,
decays as CðδrÞ ∝ 1=δr2 [see Fig. 3(c)], a behavior also
in line with the theoretical predictions of the elastic
kernel, Eq. (B1). These observations support further the
applicability of the nonlocal damage mechanics to our
experiments.
The presence of an unloading region in the interaction

kernel has several important implications. First, at the scale
of a material element, the approach to failure is non-
monotonic as the local driving force for damage can both
increase and decrease over time. As a result, the probability

that an element damages more than once during a cascade
is low. In practice, the depth of the avalanches Δd� defined
as the average damage increment of the elements involved
in the cascade is constant and does not vary with the
precursor size S, as shown in Fig. 3(d) (see also
Supplemental Material Sec. S4A [46]). This is at odds
with the behavior of driven elastic interfaces with positive
interactions for which the depth of avalanches scales with
their size.
Another crucial, yet more subtle difference relates to the

distribution of the net driving force δYðx⃗Þ ¼ Ycðx⃗Þ − Yðx⃗Þ
that controls the (marginal) stability of the specimen.
δYðx⃗Þ > 0 provides the increment of driving force required
for triggering damage. Its distribution computed over all the
material elements is expected to scale as PðδYÞ ∝ δYθ

[61,62,65–67]. Positive interactions lead to θ ¼ 0, pointing
out the presence of a finite number of material elements
close to failure. On the contrary, the number of elements
close to failure vanishes for sign-changing interactions,
leading to θ > 0. The experimental determination of the
exponent θ is quite challenging, as it requires a priori
the knowledge of the material disorder. In practice, we
circumvent this difficulty by computing the driving force
Yðx⃗; tÞ [according to Supplemental Material Eq. (S4) [46] ]
at each time step for each material element and determine
Yc½dðx⃗; tÞ� retrospectively from the value of Yðx⃗; tÞ when
the material element damages [see Appendix A 4, and
Supplemental Material Sec. II and Fig. S2(a) [46] for
details on the method]. Figure 3(e) shows the distribution
PðδY=hδYiÞ close to and far from localization. In both
cases, we measure a positive exponent θ > 0, a particularly
nontrivial property that comes in support of the proposed
model. Interestingly, θ increases as the specimen
approaches failure, a feature that possibly arises from
the nonstationary nature of the evolution equation (1).
The exponent θ has been shown to be related to β ¼
2 − ðθ=θ þ 1Þðd=dfÞ [61] that characterizes the distribution
of precursor size S. This scaling relation predicts a slight
decrease of β upon approaching failure, a subtle effect that
is consistent with our experimental observations. A similar
trend of an increasing θ has been reported in direct
simulations of sheared amorphous solids that are also
characterized by sign-changing interactions [62,68].

B. Divergence of precursors

We now come back to the observations made in
Figs. 1(d) and 2(a) of an increase of the size and the
spatial extent of precursors close to failure. As shown
in Fig. 4(a), the average precursor size increases as a
power law with the distance to failure hSi ∼ 1=δ−α where
α ≃ 0.57. Following the scaling relations S ∝ ξdf and
T ∝ ξz, the associated length and timescales then also
diverge upon approaching failure. This is confirmed by
the variations of the precursor spatial extent directly
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measured from our local analysis (see Supplemental
Material Sec. 1 D [46]) in the inset of Fig. 4(a).
Notably, the activity rate dNS=dt, i.e., the number of

cascades per interval of time, is rather constant during
damage accumulation; see Fig. 4(b). This is in line with
our previous observation of an exponential distribution
of waiting times, supporting further that precursors emerge
from a (random) Poisson process. As the dissipation rate
dEd=dt during the intermittent damage evolution writes as
the product of the average precursor size with the precursor
rate dEd=dt ¼ hSidNS=dt, we obtain dEd=dt ∝ 1=δ−α. As
argued in the next section, the divergence of the dissipation
rate upon approaching peak load is reminiscent of damage
localization, a feature that results from the loss of stability
of the specimen. To further test this idea, we reanalyze our
data considering the actual displacement-imposed condi-
tions that also give rise to damage localization at peak load.
The dissipation rate then writes as the product of the
average load drop size hAi with their activity rate dNA=dt
[refer to Supplemental Material Sec. 1 B and Fig. S1(b)
[46] for the definition of precursors under displacement-
imposed loading conditions]. We observe that both load
drops hAi ∝ δ−αA and precursor rate dNA=dt ∝ δ−αNA

diverge on approaching localization; see Figs. 4(c) and
4(d). The exponent α ¼ αA þ αNA

≃ 0.44 characterizing
the divergence of the dissipation rate under displacement-
imposed conditions is close to 1=2, as expected, and
accounts for the numerical observations of Girard et al.
[33] who reported dEd=dt ∝ δ−0.4.

V. DAMAGE LOCALIZATION: DEPINNING
TRANSITION OR STANDARD BIFURCATION?

The divergence of the precursor size, and hence of the
characteristic timescale and length scale of precursors upon

approaching failure, supports a priori the interpretation of
compressive failure as a critical point [26,40]. However, the
comparison between the scaling exponents predicted by the
critical point scenario and the exponents measured in our
experiments tells a different story (see Table I).
To explain the difference between the theoretical pre-

dictions and our experimental observations, we further
develop the model proposed in Sec. III. We focus on the
nonstationary aspects of the evolution equation (1), namely,
the stiffness K and the driving speed vm that are given by
the following expressions:

Kðσ∘Þ ¼
∂ðYc∘ − Y∘Þ

∂d∘

����
σ∘
;

vmðσ∘Þ ¼ vext

�
∂Y∘=∂σ∘jd∘
Kðσ∘Þ

�
: ð2Þ

K controls the stability of the damage evolution. Indeed,
a negative value of K implies that the net driving force
Y − Yc increases with the damage level, leading to its
unstable growth and thus failure. It turns out that K goes to
zero upon approaching peak load (see Supplemental
Material Sec. S3F [46]), in line with the stability condition
under force-controlled conditions. The driving speed vm is
inversely proportional to K and hence goes to infinity. A
linear expansion of the damage evolution equation close to
peak load σ∘ < σc (see Supplemental Material Sec. S3G
[46]) provides the asymptotic behavior of the damage
growth rate Δ̇d ∼ 1=

ffiffiffi
δ

p
. As Δ̇d ∝ vm, owing to Eq. (2)

we obtain vm ∼ 1=
ffiffiffi
δ

p
and thus, K ∼

ffiffiffi
δ

p
.

What then are the consequences of the divergence of the
speed of the pseudo-interface at peak load? As the rate of
dissipated energy is controlled by the damage growth rate,
one expects dEd=dt ∝ 1=

ffiffiffi
δ

p
. Considering the intermit-

tency of damage evolution, the dissipation rate writes as
the product of the precursors’ size with the precursors’ rate,
dEd=dt ¼ hSidNS=dt. As dNS=dt remains constant during
the experiment [Fig. 4(b)], a feature expected for disordered

(a)                                                           (b)

(c)                                                           (d)

A
NA

FIG. 4. Variation with distance to failure of (a) the average
precursor size hSi, the average spatial extent of precursors hξi in
the inset, (b) the activity rate dNS=dt, (c) the average size of load
drop events hAi, and (d) the event activity rate dNA=dt. While S
and dNS=dt characterize the intermittent damage activity under
force-controlled conditions, A and dNA=dt are relevant for
displacement-imposed conditions. The product of both quantities
dEd=dt ¼ hSidNS=dt ¼ hAidNA=dt provides the dissipation
rate that also diverges as dEd=dt ∼ δ−α with α ¼ 1=2.

TABLE I. Comparison between the exponents predicted by the
critical point scenario that interprets failure as a depinning
transition and the exponents measured in our experiments. The
three exponents provided below describe the divergence as δ−γ of
the avalanche size S, its spatial extent ξ, and its duration T upon
approaching failure. The theoretical exponents describe the
behavior of a driven 2D interface with long-range nonpositive
elastic interactions approaching the depinning transition [26,61].

Critical point scenario Experiments

γ Prediction—2D γ

S νdf 1.27 α 0.57
ξ ν 1.16 α=df 0.53
T νz 0.66 zα=df 0.28
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elastic interfaces, it follows that hSi ∼ 1=
ffiffiffi
δ

p
, a prediction

that accounts for our experimental observations.
The implication of our model is clear: The divergence

of the size of the precursors close to failure, and hence
the divergence of the length scale and timescale of the
fluctuations, results from the presence of a standard
bifurcation at peak load. The progressive loss of stability
of the specimen upon approaching peak load is accom-
panied by a divergence of the damage growth rate (and
thus, a divergence of the precursor size), a behavior that has
nothing to do with the presence of disorder. This mecha-
nism is in stark contrast with the divergence of fluctuations
near a critical point, a feature that vanishes if the disorder is
shut down.
To further support this claim, we rewrite the damage

evolution law (1) using the new variable d
∼
ðx⃗Þ ¼ dðx⃗Þ ffiffiffi

δ
p

.

The obtained expression ensures a straightforward
connection with standard (stationary) depinning models
[42,44]:

Δḋ
∼

∝ K0½vm0t − Δd
∼
ðx⃗; tÞ� þ ψðd∘

ffiffiffi
δ

p
Þ=

ffiffiffi
δ

p

� ½Δd
∼
ðx⃗; tÞ − hΔd

∼
ix⃗� − yc½x⃗; d∼ðx⃗; tÞ�: ð3Þ

Under this form, the evolution equation displays both a
constant stiffnessK0 ¼ K=

ffiffiffi
δ

p
and a constant driving speed

vm0 ¼ vm
ffiffiffi
δ

p
. The normalized damage field d

∼
behaves as an

elastic interface driven at constant finite speed during the
whole damage accumulation regime. As a result, the
specimen remains at a fixed distance to the depinning
transition that corresponds to the limit vm0 → 0 and
K0 → 0. Our conclusions are in stark contrast with a
depinning scenario where the divergence of the precursory
activity results from the interpretation of compressive
failure as a critical transition and the evolution of the
specimen toward this critical point. In other words, the
increasing applied load drives the specimen toward insta-
bility without driving it toward more criticality. The
intricate connection between damage precursors and locali-
zation is illustrated in Fig. 5.
We now highlight the strategic value of our findings to

structural health monitoring. In our theoretical description
of compressive failure, the evolution of precursors is
described by robust scaling laws that are independent of
the material properties and the loading conditions. In
particular, as they apply for both force- and displace-
ment-driven experiments, they serve as early warning
signals of impending failure.

VI. FAILURE PREDICTION
FROM PRECURSORY ACTIVITY

We now harness the scaling behavior of the precursors
and bring an experimental proof of concept of their

predictive power by inferring the residual lifetime of our
specimen. We perform a retrospective failure prediction
using the cascade size S measured during the damage
accumulation regime. To do so, we follow the idea of
Anifrani et al. [69] and use the methodology proposed by
Mayya et al. [70]. Considering a time series of measured
precursory activity for the equivalent-force-controlled
experiment, the normalized distance to failure here writes
as δ ¼ ðtc − tÞ=tc where t ¼ 0 corresponds to F ¼ Fel and
t ¼ tc corresponds to F ¼ Fc. We rewrite the scaling law
for the cascade size variations as

hSi ¼ S0=
ffiffiffiffiffiffiffiffiffiffiffi
tc − t

p
; ð4Þ

where S0 is a constant. Rearranging the terms, we obtain
hSi2t ¼ hSi2tc þ S0, an expression that can be used for
performing a linear regression of our experimental dataset
ðt; SÞ shown in Fig. 6(a). The average size of the precursors
is obtained over a nonoverlapping time window of 10 s.
The prediction is made at time tcur so that only the
precursors recorded at time t < tcur can be used for the
prediction. Note, however, that we use only a short period
(here 100 s) before tcur to make the prediction.
The linear regression provides tpredc that is shown in

Fig. 6(b) as a function of tcur. As shown in the inset, the
error on the predicted failure time reduces as the prediction
is made closer to the actual failure time tc. The prediction

Bifurcation exponent :     

Nonstationary damage evolution
arises from sweeping of an instability 

Critical exponents :     

Intermittent damage growth
as depinning avalanches

Failure

FIG. 5. Interpretation of the two phenomena underlying com-
pressive failure of disordered solids. The left panel describes the
behavior of the specimen as it is driven to failure. The amplitude
of the fluctuations of the damage field (in red) and the dissipation
rate (yellow) increase near failure (δ ¼ 0). The spatial variations
hðdðx⃗Þ − hdðx⃗Þix⃗Þ2ix⃗ of the accumulated damage are essentially
zero before peak load (δ < 0) but rapidly increase after locali-
zation (δ > 0). The state of the specimen bifurcates from a
homogeneously growing damage to a localized damage growth.
This bifurcation is preceded by an increase vm ∼ δ−α of the
dissipation rate, and thus an increase of hSi ∼ δ−α of the
fluctuation amplitude. The right panel describes the process of
damage growth at a fixed distance to failure. By renormalizing
the nonstationary features of the evolution equation [see Eq. (3)],
we realize that the damage field behaves as an elastic interface
driven in a disordered medium at constant speed. vm0 ≃ vmδα at a
fixed distance above the critical point (here, the depinning
transition) even when we reach peak load (δ ¼ 0) and thus
bifurcation.
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lies within 10% error when the prediction is made in the last
25% of the total lifetime. Note that the same methodology
can be implemented using the duration or the rate of events
(under displacement-controlled conditions only), thus pro-
viding several independent measurements to forecast final
failure. Interestingly, the predictions are conservative by
providing shorter residual lifetime than the actual one.
Importantly, the proposed methodology does not require
monitoring from the beginning of the damage accumulation
phase. The robustness of our method strongly argues that
the statistical analysis of failure precursors based on the
proposed scenario is an efficient quantitative tool of
damage monitoring and lifetime prediction of structures.

VII. ACOUSTIC EMISSIONS

We now verify the generality of our results and their
applications to standard brittle solids. To this effect, we
analyze the acoustic emissions accompanying damage
growth in our experiments (see Appendix A 1 for exper-
imental details). A typical acoustic emission time-series
record is shown in Fig. 7(a). First, we observe bursts of
acoustic emissions separated by silent periods, a behavior
typical of compressive failure of brittle disordered materi-
als. Then, we see that the acoustic activity intensifies closer
to peak load, near localization, a behavior that is also
observed close to failure in standard brittle solids, and that
we explore in more detail below. The distribution of
acoustic event energy is shown in Fig. 7(b) and in the
inset. It follows a power law with an exponent βtotAE ≃ 1.45

that is slightly smaller when we consider only the acoustic
emissions close to failure βAE ≃ 1.21. Tracking now the
evolution of the acoustic activity, we find that the energy
hAAEi of the acoustic events increases as hAAEi ∝ δ−αAAE
upon approaching failure; see Fig. 7(c). The acoustic
activity rate dNAE=dt ∝ δ−αNAE also increases as a power
law upon approaching failure; see Fig. 7(d). As a result, the
rate of acoustic energy dEAE=dt defined as the product of
the average acoustic event energy with the activity rate
dEAE=dt ∝ hAAEi dNAE=dt increases as dEAE ∝ δ−αAE

where αAE ¼ αAAE
þ αNAE

≃ 1.35. A comparison of the
exponents measured in our experiments with the one
reported in the literature shows that damage spreading in
our experimental system shares strong similarities with
damage spreading in standard brittle solids. In particular,
the exponents βtotAE ≃ 1.4 and αNAE

≃ 0.7 measured in our
experiments are similar to the one measured in rocks
[23,71,72], coal [73], and concrete [26]. Beyond confirm-
ing the applicability of our experimental and theoretical
findings to a broad range of brittle materials, these results
confirm the versatility of acoustic emissions analysis as a
damage monitoring tool.
Wewould like to discuss the intricate connection between

acoustic emissions [74] and the mechanical energy cascades
that are thoroughly characterized in our experiments (see
Secs. II B and II C). We clearly observe that acoustic events
do not correspond to the damage cascades characterizing the
mechanical response of the specimen. First, we find that their
number (typically 103) during an experiment is much larger
than the number of mechanical precursors (typically 102).
Then, we observe that the exponent αAE characterizing the
increase of emitted acoustic energy upon approaching failure
is much larger than the exponent α describing the increase of
the dissipated rate of mechanical energy. Finally, we observe
that the rate of acoustic events increases upon approaching
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FIG. 6. (a) Time-series data of failure precursors obtained
during the compression test and data available for prediction
(red) at tcur. (b) Variation of the predicted remaining lifetime at
different instances tcur represented as a fraction of the time to
failure. The error bars provide intervals with 90% confidence
levels. Inset: error on the predicted remaining lifetime.
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FIG. 7. (a) Acoustic emissions recorded during a typical
experiment of compressive failure. (b) Distribution of acoustic
event energy recorded during the whole duration of experiments
(inset) and close to failure (main panel). Variations of the average
value of (c) the acoustic energy AAE and (d) their activity rate
dNAE=dt with distance to failure δ.
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failure, an observation in stark contrast with the constant
activity rate observed for damage cascades; see Fig. 4(b).
We infer that the acoustic emissions may rather be

reminiscent of the dissipative processes taking place at
much lower spatiotemporal scales within damage cascades.
Such a scenario also agrees with the power-law distribution
of interevent waiting time of acoustic events [23,52] that
contrasts with the exponential distribution observed here
for damage cascades; see Fig. 2(f). A deeper analysis of
our experimental data may be needed to understand the
connection between mechanical precursors and acoustic
events. Nevertheless, their increase upon approaching
failure may be harnessed for tracking damage growth
and predicting the residual lifetime of structures after
calibration of material specific exponents [70].

VIII. NUMERICAL SOLUTION OF THE DAMAGE
EVOLUTION EQUATION

To conclusively validate our interpretation of the
nonstationary avalanche dynamics preceding compressive
failure, we numerically solve the damage evolution equa-
tion (1) using a 2D cellular automata (see Appendix B) for
both force- (Supplemental Material Sec. S4A [46]) and
displacement- (Supplemental Material Sec. S4B [46]) con-
trol conditions. We recover that intermittent damage accu-
mulation culminates in a bifurcation that manifests as the
emergence of a localization band at peak load [Supplemental
Material Figs. S4(a), S4(b), S5(a), and S5(b) [46] ]. The
exponents characterizing the damage cascades are measured
numerically [SupplementalMaterial Figs. S4(c)–S4(j) and S5
(c)–S5(j) [46] ] using themethods employed for analyzing the
experimental data, thus allowing for a systematic comparison
with the statistical features of the precursors measured
experimentally. Numerical and experimental exponents are
provided in Table II. We also proceed to a comparison with
exponent values reported in the literature (see Supplemental
Material Table S2 [46]). The good agreement supports our
theoretical framework as an adequate description. Importantly,
the similarities between the statistics in force and equivalent-
force control validate our method of reconstruction of the

precursors from our experimental dataset and interpretation of
failure built from the analyses. We also verify numerically the
method employed to characterize the elastic interactions from
the incremental damage field in Fig. 3(b).

IX. IMPLICATIONS AND CONCLUSION

We would like to conclude by highlighting the impli-
cations of our findings. First, our results may be relevant for
any brittle solids such as rocks, concrete, and mortar, the
generality of our approach being bonded to damage
mechanics that we use to describe our experiments (see
Appendix 2). By showing that compressive failure is not a
critical phase transition, but instead a standard bifurcation,
we pave the way for reliable predictions of the failure load
of brittle solids and the use of precursory events to
anticipate their forthcoming failure. Indeed, this finding
implies that the stability analysis of a homogeneous
specimen is sufficient to predict the failure load of
disordered solids. This approach used in our study captures
the emergence of the localization band at peak load and,
more generally, the stress-strain response of the specimen.
Further experimental validations of the application of these
concepts to more complex materials are a part of ongoing
studies. Another direct implication of our finding is the
prediction of the forthcoming failure from the statistics of
precursors. The interpretation of compressive failure as a
standard bifurcation provides robust scaling laws that can
be harnessed to predict failure.
We also highlight the implications of our work for a

larger class of phenomena. Compressive failure is an
archetypical example of seemingly critical phenomena,
as it is preceded by precursors with diverging size and
duration upon approaching failure. We show that this
apparent criticality is not bounded to the presence of a
critical point. Instead, we show that a standard bifurcation
in the presence of disorder and long-range interactions
results in an intermittent response with fluctuations that
diverge on approaching the bifurcation point. We expect
these ideas to be relevant for understanding the relationship
between intermittent plastic flow and shear banding in
amorphous solids, where the nature of the yielding tran-
sition and the localization has been vigorously debated
during these recent years [61,68,75]. Our interpretation of
the specimen being at a finite distance above the critical
point as it evolves toward failure aligns well with the
conclusion drawn by Lin et al. [62] in the context of
amorphous plasticity. Using a discrete model of amorphous
plasticity, they show that avalanche size diverges upon
approaching failure. Yet, this divergence is not reminiscent
of a critical behavior. Instead, they show that the avalanche
size is controlled by the slope dσ=dϵ of the stress-strain
response. The scaling law hSi ∝ ½1=ðdσ=dϵÞ� proposed in
their study is compatible with the one obtained in our
experiments hSi ∝ ð1= ffiffiffi

δ
p Þ [see Fig. 4(a)]. This further

TABLE II. Exponents from experiments and the numerical
model.

Definition Experiments Simulationsa

df S ∝ ξdf 1.07� 0.07 1.15
z T ∝ ξz 0.53� 0.11 0.62
θ PðδYÞ ∝ δYθ 0.24� 0.03 0.35 (0.18)
β PðSÞ ∝ S−β 1.30� 0.11 1.36 (1.34)
α S ∝ δ−α 0.57� 0.04 0.48 (0.60)
z=df T ∝ Sz=df 0.49� 0.14 0.53 (0.64)
βtot βtot ¼ β þ 2−β

α
2.32� 0.18 2.2 (2.13)

aValues in brackets are from the equivalent-force-control
scenario.
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supports the relevance of the scenario proposed here for
sheared amorphous media.
In summary, we investigate experimentally the precursors

to localization during compressive failure of 2Dcohesionless
soft cellular solids. This model system is shown to behave
like a wide range of standard (and somehow more complex)
brittle materials under compression. We use this simplified
brittle disordered material to characterize in depth (i) the
highly correlated sequence of spatially coherent clusters of
failure events that compose precursors, (ii) the divergence
of the size, the spatial extent, and the duration of these
precursors upon approaching failure, (iii) the presence of the
long-range elastic interactions decaying as 1=r2 that drives
this cooperative dynamics, (iv) the power-law distributed
acoustic bursts accompanying these damage cascades, and
finally (v), the emergence of a localization band at peak load.
We characterize the nonstationary statistics of the damage
cascades observed during the damage accumulation regime
prior to localization.We then derive from continuumdamage
mechanics an evolution equation of the damage field that is
shown to account quantitatively for all the scaling properties
measured experimentally. The avalanche dynamics of dam-
age growth is thus shown to be reminiscent of a nonstationary
depinning scenario that reconciles the two competing
approaches proposed to describe compressive failure,
namely, standard bifurcation and critical transition.
Ultimately, failure precursors are shown to be merely

the by-products of the progressive loss of stability of the
specimen as it approaches localization. Contrary to the
critical transition scenario, specimens driven toward failure
stay at a fixed distance to criticality. Nevertheless, the
evolution of the statistical features of precursors can be
harnessed to anticipate and even predict the forthcoming
failure.
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APPENDIX A: EXPERIMENTAL
CHARACTERIZATION OF PRECURSORS

1. Experimental setup

Our specimen consists of a hexagonal packing of
about 1500 soft cylinders made of polypropylene placed
in a transparent Plexiglas box of dimensions 205×
170 × 30 mm3, as shown in Fig. 1(a). The cylinders are
25 mm long with a 5-mm diameter. Displacement is applied

to the upper layer through a Plexiglas beam using an AG-X
Shimadzu test machine. The force experienced by the
specimen is measured using a 10-kN load cell and sampled
at a rate of 100 Hz. During the test, images are recorded
every 0.1 seconds from the lateral side of the box using a
Baumer HXC20 camera with a resolution of 2048 ×
1088 pixels and binarized using the open-source FIJI

software [76]. Precursory activity recorded during ten
experiments with loading rate of 2 mm=min and two
experiments with loading rate of 1 mm=min are analyzed
to determine the statistical structure of precursors. The peak
load measured in our experiments is Fc ¼ 228� 4 N.
Acoustic emissions are recorded during four of the ten
experiments using two low-frequency sensors (type R3α
from Mistras Group, Physical Acoustics) that are placed on
the compression platens. The signals crossing the fixed
threshold 27 dB from the transducers are preamplified
(40 dB) and transferred to a PC1-2 acquisition system. A
detailed analysis in a study of acoustic emissions during
dislocations shows that the scaling exponents are robust
even for the range of the timing parameters that may result
in superposition of events [77]. Still, we account for the
cellular nature of the packing and set the event detection
time post the first crossing of threshold as well as the
lockout time for signals after the event as 500 μs.
Calibration of the timing parameters is performed by
recording signals from pencil lead breaks on metallic rods
placed within the cylindrical cells.

2. Cohesionless soft cellular solids under
compression as model brittle solids

We justify here why the packings of cohesionless soft
cells employed in our experiments can be considered as
model materials to investigate the intermittent response of
brittle disordered solids under compression. First, we show
that our packings of soft cells behave like standard
elastodamageable media, a description that has been shown
to accurately describe the compressive response of brittle
solids [5]. Then, we explain how friction between cells that
control the nonelastic response of our packings leads to a
mechanical response that is similar to the ones of brittle
solids under compression.
First, we validate the applicability of damage mechanics

to describe the average mechanical response of our pack-
ings of soft cells. We remind that elastodamageable solids
behave elastically until some critical load level is reached.
Then, damage (the level of which is described by an
internal variable noted d∘) increases. The impact of damage
on the mechanical response of the material is described by
the decrease of the material Young’s modulus Eðd∘Þ and
the variations of its Poisson ratio νðd∘Þ where d∘ is the
accumulated damage. In our experiments, d∘ is obtained
from the deviation of the cell geometry to cell circularity, a
definition that is justified below.
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The Young’s modulus of our packings is obtained from
the instantaneous specimen stiffness E ¼ ð1 − ν2Þσ∘=ϵ∘
leading to the following quadratic decrease: E ≃ E∘ −
a∘d2∘ . Its Poisson ratio ν ≃ 0.26 obtained from the ratio
−hϵxxi=hϵyyi computed in the central region of the speci-
men [see Fig. 8(c)], is found to be constant throughout our
experiments and nearly independent of the damage level d∘.
The force-displacement response predicted by elasto-

damageable theory is shown in Fig. 8(a). It results from the
balance Y½σ∘ðd∘Þ; Eðd∘Þ; ν� ¼ Ycðd∘Þ between the elastic
energy release rate Y and the damage energy Yc (see
Supplemental Material Sec. III. A [46] for the detailed
calculation). The predicted behavior captures our exper-
imental data very well. The macroscopic stress σ∘ and strain
ϵ∘ are computed here as parametric functions of the average
damage level d∘,

σ∘ðd∘Þ ¼
Eðd∘Þffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Yc∘ðd∘Þ
E0ðd∘Þ

s
;

ϵ∘ðd∘Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Yc∘ðd∘
E0ðd∘Þ

s
: ðA1Þ

The average damage resistance Yc∘ðd∘Þ is inferred from the
displacement fields measured by tracking the cell positions,
following the procedure described in Appendix A 4. Note
that beyond capturing the average mechanical response
of the packings of soft cells used in our experiments,
elastodamageable theory captures the fluctuations around
this average response, and in particular, the statistics of

failure precursors in its most subtle details. The application
of the elastodamageable theory to disordered brittle solids
is described in Sec. III of the Supplemental Material [46],
and the comparison of the predictions derived from this
model with our experimental observations is summarized
in Table II. Note also that the long-range interactions
decaying as 1=r2, a unique feature of elastodamageable
solids, is retrieved in our experiments [see Figs. 3(a)–3(c)].
Last but not least, elastodamageable theory predicts (see
Supplemental Material Sec. 3F [46]) the emergence of
localization at peak load, a prediction in perfect agreement
with our experimental observations (see Appendix A. 5 for
the experimental determination of the onset of damage
localization).
The applicability of damage mechanics to our packings

of soft cells supports the generality of our findings and their
applicability to a broad range of brittle disordered solids.
We now provide a microscopic interpretation of this
seemingly surprising behavior. The inelastic behavior of
our packings of soft cells is governed by the friction
between neighboring cells. This rearrangement of the cells
explains the local softening of the material that is appro-
priately described by a local decrease of the Young’s
modulus Eðd∘Þ within the theoretical framework of damage
mechanics. Meanwhile, cell rearrangements alter the geom-
etry of the initially circular cell. As a result, the deviation to
cell circularity is appropriate for these rearrangements and
the associated material softening, justifying the definition
of the damage level d∘ employed in our study. Friction is
very often considered as the central damage mechanism in
standard brittle solids under compression. This is clearly
evidenced by the large success of the Mohr-Coulomb
theory (a model that directly derives from the assumption
that the different regions of the material can slide on each
other) in describing the inelastic response of brittle materi-
als under compression.
Interestingly, Karimi et al. [48] previously noticed in

their numerical work that soft granular solids can be
described by damage mechanics. They also observed in
their simulations that such systems failed through the
emergence of a localization band at peak load and even
noticed that the size of the failure precursors diverge
as a power law, two observations in agreement with our
experimental observations.
Overall, these various observations support our central

assumption: Packings of frictional soft particles behave as
elastodamageable solids, a conclusion already drawn by
Houdoux et al. [78,79] from compression experiments
carried out on standard granular solids.

3. Precursor size in an equivalent-force-control scenario

We explain here why the energy dissipated by damage
during a precursory damage event follows the expression
Sglobal ¼ ðΔend − ΔiniÞF0=2. We compute first the elastic
energy stored in the specimen right before (for Δ ¼ Δini)
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FIG. 8. Suitability of damage mechanics to describe the average
mechanical response of the cohesionless frictional cellular solids
used in our experiments. (a) Comparison of the mechanical
response predicted by damage mechanics with the experimental
stress-strain curve. (b) Variations of the elastic modulus and the
average damage level during a representative experiment as
inferred from the global mechanical response and our tracking
of the cells’ position. (c) Determination of the Poisson ratio ν
inferred from the linear fit of the lateral strain vs the normal one
after averaging over the central gray region of the specimen
shown in the inset. ν ≃ ν∘ðd∘Þ ¼ 0.26 is found to be nearly
constant and independent of d∘.
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and right after (for Δ ¼ Δend) the precursory damage event.
They follow Eel;ini ¼ ΔiniF0=2 and Eel;end ¼ ΔendF0=2, res-
pectively. This leads to the following expression: ΔEel ¼
Eel;end − Eel;ini ¼ ðΔend − ΔiniÞF0=2 for the variation of the
total elastic energy stored in the specimen during one
precursory event. Note that this quantity is positive, mean-
ing that the stored elastic energy does increase during
a precursory event. We now compute the work of the
external force during such an event. As the force is constant
during the considered force-controlled scenario, we obtain
ΔW ¼ ðΔend − ΔiniÞF0. This quantity is defined positive
and corresponds to the energy injected by the loading
machine within the specimen during a precursory event.
The determination of the energy dissipated by damage
during a precursor is now in order. Observing that the
energy injected by the loading machine during one pre-
cursor compensates exactly the new elastic energy stored
in the specimen and the one dissipated by damage, one
obtains ΔW ¼ ΔEel þ Sglobal ⇒ Sglobal ¼ ΔW − ΔEel ¼
ðΔend − ΔiniÞF0=2. Interestingly, this balance of energy
during one precursor can be understood graphically from
the force-displacement response of the specimen during
the event. As shown in Fig. 1(c), the work ΔW ¼RΔend
Δini

FðΔÞdΔ ¼ F0

RΔend
Δini

dΔ ¼ ðΔend − ΔiniÞF0 of the
external force during one precursor corresponds to the
area of the rectangle located below the force plateau.
This rectangle can be divided into two other rectangles
of similar size ðΔend − ΔiniÞF0=2, one of them correspond-
ing to the additional stored energy ΔEel [represented in
gray in Fig. 1(c)], while the other one corresponding to the
dissipated energy ΔEd ¼ Sglobal (represented in yellow).
This equipartition of energy between the new stored elastic
energy and the dissipated one provides a simple way to
track the size of failure precursors during the phase of
damage accumulation.

4. Tracking damage evolution

The continuous image acquisition allows for the tracking
of both position and circularity (used here to define
damage) of individual cells. We then compute the dis-
placement fields uxðx⃗; tÞ and uyðx⃗; tÞ and the damage field
dðx⃗; tÞ of the effective elastodamageable medium following
the coarse-graining procedure described in Glasser and
Goldhirsch [80]. To resolve the damage cascades from the
image stack, we refer to the macroscopic response where an
equivalent-force-control scenario is constructed from the
sequence of load drops. We thus obtain the start and end of
each damage cascade that are noted tðΔiniÞ and tðΔendÞ,
respectively. The damage events belonging to the image
stack constituting the cascades are then clustered based on
their connectivity (26-connected neighborhood). This pro-
cedure provides a space-time dissipation map of failure
precursors composed of a series of highly correlated
clusters. We derive the strain field as ϵxxðx⃗Þ ¼ ðdux=dxÞ;

ϵyyðx⃗Þ ¼ ðduy=dyÞ and ϵxyðx⃗Þ ¼ 1
2
½ðdux=dyÞ þ ðdux=dyÞ�.

The field of elastic energy stored in the specimen per unit
volume is then obtained from the relation

Elocal
el ðx⃗; tÞ ¼ Elocalðx⃗; tÞ

2ð1 − ν2Þ ½ϵ
2
xxðx⃗; tÞ þ ϵ2yyðx⃗; tÞ

þ 2νϵxxðx⃗; tÞϵyyðx⃗; tÞ þ 2ð1 − νÞϵ2xyðx⃗; tÞ�:
ðA2Þ

The field of damage driving force is obtained as
Y½dðx⃗; tÞ� ¼ ðdElocal

el =ddÞ. The field of damage resistance
Yc½dðx⃗; tÞ� is inferred from the field of damage driving
force Y½dðx⃗; tÞ� computed in a retrospective manner. If
damage grows locally at ðx⃗0; tiÞ, we assign Yc½dðx⃗0Þ; ti� ¼
Y½dðx⃗0Þ; ti� as well as for the preceding time steps ðti−Þ. We
find that the average damage resistance Yc∘ðd∘Þ increases
with the damage level d∘. A linear approximation of the
hardening behavior Yc∘ðd∘Þ ∼ ηd∘ with a hardening coef-
ficient η ≃ 45 provides a good description of our exper-
imental data upto failure.

5. Onset of damage localization

We provide here the methodology employed to deter-
mine the localization threshold. The basic idea is to
compute the field of incremental damage growth at differ-
ent distances to peak load as shown in Fig. 9(a) to
determine whether it is homogeneous or localized. The
incremental damage field δdðx⃗Þ ¼ dðx⃗; δÞ − dðx⃗; δþ ϵÞ
where ϵ ≪ δ is shown for three different values of δ: right
before peak load (δ ¼ 0.02), at peak load (δ ¼ 0), and
right after (δ ¼ −0.02). We clearly see the localization of
the damage growth in a thin band for δ ¼ −0.02 from
which we infer that the localization starts at peak load.

The standard deviation σδdðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðδdðxÞ − hδdðx⃗ÞiyÞ2iy

q

(a)                                                             (b)                                   

(c)      

x

X

Y

FIG. 9. The incremental damage field δdðx⃗Þ is computed for
several locations δ near peak load as indicated by solid circles on
the force-displacement curve of panel (a). (b) δdðx⃗Þ is represented
right before (δ ¼ 0.02), at peak (δ ¼ 0), and right after
(δ ¼ −0.02). Note the localization of the damage activity in
the third panel suggesting that localization took place at peak
load. (c) This is further confirmed by the standard deviation
σδdðxÞ of the incremental damage field that is shown to increase
for δ < 0.
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is shown in Fig. 9(c) for several values of δ. Here also, we
see that σδdðxÞ increases above 0.01, suggesting that
localization takes place at peak load.

APPENDIX B: NUMERICAL MODELING
OF INTERMITTENT DAMAGE EVOLUTION

AND LOCALIZATION

To solve the damage evolution equation under quasistatic
loading conditions, we adopt the procedure described by
Berthier et al. [45]. We consider a grid of size L ¼ 21

discretized into L2 elements with periodic boundary con-
ditions. The interaction kernel is derived for the case of
uniaxial compression using the method described by
Dansereau et al. [58] and writes as

ψðd∘Þ ¼
�
E0ðd∘Þ2
Eðd∘Þ3

�
ð1 − ν2Þσ2∘

�
x4 − 3y4 þ 6x2y2

4πðx2 þ y2Þ3
�
: ðB1Þ

Interestingly, the kernel is independent of the type of
loading configuration (stress vs strain imposed loading
conditions). The amplitude of the kernel is also nonsta-
tionary, in contrast with the nonpositive interaction used
to describe amorphous plasticity [61,62]. The variations
of the elastic constant with the damage level is found to
follow E∘ ¼ E∘ð1 − d∘Þ2 with E∘ ¼ 1.0 MPa. We consider
a heterogeneous field of damage resistance Yc½dðx⃗; tÞ� that
evolves with the damage level dðx⃗; tÞ following the linear
hardening law Yc∘ ¼ Y∘

cð1þ ηd∘Þ, where Y∘
c ≃ 1.4 kJ=m3

and η ≃ 45 are measured experimentally. The stress (strain)
is gradually increased until the damage criterion is fulfilled
for one of the elements x⃗ ¼ x⃗0. The damage is increased
locally, and the values of driving force Yðx⃗0; tÞ and
resistance Ycðx⃗0Þ are updated. The nonlocal redistribution
of the driving force given by the kernel ψðd∘Þ may then
trigger a cascade of damage events. The cascade stops
when all elements are stable, following which, we increase
the stress (strain) again.
The reader is invited to refer to the Supplemental

Material [46] for a thorough description of the local
analyses of experimental precursors, the theoretical and
numerical modeling of damage accumulation, and the
analogy with driven disordered elastic interface.
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[62] J. Lin, T. Gueudré, A. Rosso, and M. Wyart, Criticality in
the approach to failure in amorphous solids, Phys. Rev.
Lett. 115, 168001 (2015).

[63] B. Lawn, Fracture of Brittle Solids (Cambridge University
Press, Cambridge, England, 1993).

[64] E. Berthier, Quasi-brittle failure of heterogeneous materi-
als: Damage statistics and localization, Ph.D. thesis,
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