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The requirements for fault-tolerant quantum error correction can be simplified by leveraging structure in
the noise of the underlying hardware. In this work, we identify a new type of structured noise motivated by
neutral-atom qubits, biased erasure errors, which arises when qubit errors are dominated by detectable
leakage from only one of the computational states of the qubit. We study the performance of this model
using gate-level simulations of the XZZX surface code. Using the predicted erasure fraction and bias of
metastable 171Yb qubits, we find a threshold of 8.2% for two-qubit gate errors, which is 1.9 times higher
than the threshold for unbiased erasures and 7.5 times higher than the threshold for depolarizing errors.
Surprisingly, the improved threshold is achieved without bias-preserving controlled-NOT gates and, instead,
results from the lower noise entropy in this model. We also introduce an XZZX cluster state construction
for measurement-based error correction, hybrid fusion, that is optimized for this noise model. By
combining fusion operations and deterministic entangling gates, this construction preserves the intrinsic
symmetry of the XZZX code, leading to a higher threshold of 10.3% and enabling the use of rectangular
codes with fewer qubits. We discuss a potential physical implementation using a single plane of atoms and
movable tweezers.
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I. INTRODUCTION

Quantum error correction (QEC) is essential to protect
fragile quantum states during computation [1–3]. To
achieve scalable quantum computation, the rate at which
errors are introduced must be below a threshold error rate
that depends on the noise model and error correction
approach [4–7]. Recently, significant work has focused
on identifying or engineering the structure of noise in
qubits, which can lead to higher thresholds and reduced
overhead if paired with appropriate gate operations and
QEC architectures. For example, biased Pauli noise models
can be engineered in superconducting cat qubits [8–10] and
certain neutral-atom qubits [11]. Given the availability of
bias-preserving gates [12], this can lead to significantly
improved thresholds and lower overhead for the XZZX
surface code, which has special symmetries facilitating
decoding this type of noise [13,14]. Another example is
qubits where errors can be converted with high probability

into erasure errors. This model has been proposed for
appropriately engineered qubit encodings and gates in
neutral atoms [15], trapped ions [16], and superconducting
qubits [17,18] and leads to significantly increased thresh-
olds [15–17,19–21].
In this work, we identify a new structured error, biased

erasure error, that arises when noise is dominated by
erasures from only one computational state of the qubit.
This model is physically motivated by metastable 171Yb
qubits, where erasures result from leakage out of the j1i
computational state into levels whose population can be
continuously monitored using cycling transitions that do
not affect the qubit levels [15,22]. We refer to this as a (Z-)
biased erasure model, as detecting transitions outside the
computational states reveals that the qubit was previously
in j1i, and can be represented as a Z error with 50%
probability. The biased erasure model has more structure
than the conventional erasure model, where observing an
erasure yields no information about the prior state of the
qubit [15–17,19–21,23]. Indeed, the error rate at which the
quantum capacity of such a channel becomes positive is
twice that of the conventional erasure channel, indicating
that error correction threshold for the biased erasure
channel can be much higher than that of the conventional
erasure channel [24].
In this work, we study the performance of error correc-

tion against biased erasures at the circuit level in several
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contexts. We first consider the XZZX surface code with
conventional, circuit-based syndrome extraction. We find a
threshold of 8.2% when biased erasures comprise Re ¼
0.98 of the two-qubit gate errors, as predicted for 171Yb
under optimal conditions [15]. This is nearly double the
threshold of 4.3% for a conventional erasure model and
approximately 8 times the threshold in a comparable
depolarizing error model. The high threshold, compared
to depolarizing noise, highlights the benefit of engineering
qubits with this favorable error model. Remarkably, this
high threshold is obtained using only the native gate set of
neutral-atom qubits: single-qubit gates and controlled-Z
(CZ) gates, without bias-preserving controlled-NOT (CX) gates.
We attribute the higher threshold to a lower noise entropy
when erasures are biased compared to when they are not.
We also introduce a measurement-based QEC architec-

ture, hybrid fusion, that is specifically tailored for neutral-
atom qubits with biased erasure noise. This approach
combines fusion operations with deterministic entangling
gates to construct an XZZX cluster state while preserving
the symmetry of the XZZX code under biased noise,
without requiring bias-preserving CX gates. In fusion-based
error correction, an error-correcting code is built by fusing
together few-body entangled resource states using mea-
surements of two-qubit Pauli operators X ⊗ X and Z ⊗ Z.
This method has been studied in linear optical quantum
computing, where nondeterministic heralded fusions are
the native entangling operation [25–29], and has the benefit
of preserving the symmetry of the XZZX code when the
fusion errors are biased [29]. We present a bias-preserving
fusion circuit for qubits with biased erasures and combine
this operation with deterministic entangling gates to
develop a measurement-based error correction architecture
with a high threshold and reduced overhead. With this
approach, we find an even higher threshold of 10.3% for
Re ¼ 0.98. We also discuss other potential advantages of
this approach for neutral atoms including robustness
against atom loss and relaxed requirements for erasure
detection and atom replacement.

This noise model is physically motivated by metastable
171Yb qubits [15]. Recent experimental work has demon-
strated high-fidelity gates and validated the basic concept of
erasure conversion in this platform, by performing mid-
circuit detection of erasure errors with a strong bias from
one of the two qubit levels [30]. Erasure-dominated error
models may also be engineered in other qubits with
prevalent erasure errors such as metastable trapped-ion
qubits [16], superconducting qubits encoded in the jgi; jfi
levels of transmons [17], or dual-rail superconducting
qubits [18] (see Refs. [31,32] for recent experimental
demonstrations). The high thresholds and reduced require-
ments for bias-preserving gate operations may encourage
the development of new qubits or encodings. Finally, this
work may stimulate further development of fusion-based
QEC architectures for neutral atoms.
The main results of our work are summarized in Table I.

We introduce the biased erasure error model in Sec. II and
study its behavior using circuit-based error correction in
Sec. III. In Sec. IV, we introduce the hybrid-fusion
architecture and study its performance. We discuss further
opportunities for optimization in Sec. V and conclude
in Sec. VI.

II. BIASED ERASURE ERRORS IN
NEUTRAL ATOMS

To motivate the biased erasure model, we consider how
it arises naturally in neutral-atom qubits. In this platform,
the dominant source of errors are two-qubit gates imple-
mented using the Rydberg blockade [33–36] (single-qubit
and idling errors are comparatively much lower [30]). The
only fundamental effect limiting the fidelity of two-qubit
gates is the finite lifetime of the Rydberg state that is
populated transiently during the gate [37]. In the particular
case of 171Yb [35,38], encoding the qubit in the nuclear
spin sublevels of the metastable 3P0 level has the property
that the majority of the decay events populate disjoint
subspaces whose occupation can be detected efficiently,

TABLE I. Summary of thresholds derived in this work for the XZZX surface code under various error models and QEC architectures.
Thresholds are obtained using an MWPM decoder and are reported for several values of Re. The first three rows give thresholds using
circuit-based syndrome extraction (Sec. III), for unbiased erasures [15], and using the biased erasure model in Sec. II. The latter error
model is studied with and without bias-preserving CX gates, where the former case corresponds to the native gates (single-qubit gates
and CZ) of the neutral-atom platform. The last line is the hybrid-fusion error correction scheme introduced in Sec. IV, with native gates.
The final two columns indicate additional properties discussed in detail in Sec. V: whether the dominant errors produce pairs of
syndromes lying in 2D planes of the decoding graph (reducing qubit overhead in the limit of large bias) and whether midcircuit atom
replacement is necessary to recover from erasure errors. The dagger indicates that this numerically simulated threshold increases to
17.7% when using an erasure decoder at large system sizes (see the text).

Model Re ¼ 0 Re ¼ 0.98 Re ¼ 1 Preserves 2D symmetry? Avoids atom replacement?

Circuit, unbiased erasures 1.1% 4.3% 5.0% N N
Circuit, biased erasures, native gates 1.1% 8.2% 10.3% N N
Circuit, biased erasures, BCX 1.1% 9.0% 12.8% Y N
Hybrid-fusion, native gates 1.0% 10.3% 14.7%† Y Y
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which converts these errors into erasure errors [15,22].
Recent additional work has derived gate protocols to
convert other errors such as quasistatic laser noise and
Doppler shifts into erasure errors through a similar
mechanism [39,40].
In this work, we consider an additional property of the

physical error model of metastable 171Yb qubits, which is
that excitation to the Rydberg state jri occurs only from
the qubit state j1i and never from j0i [Fig. 1(a)] [11]. To
illustrate the behavior of this model, consider a hypo-
thetical single-qubit operation involving excitation from
j1i to jri, where the only possible error is a decay from jri
to a detectable, disjoint state jei. In the absence of an error,
the qubit is coherently deexcited back to j1i at the end of
the gate. This results in a quantum channel with Kraus
operators:

K0 ¼ j0ih0j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2pe

p
j1ih1j þ jeihej; ð1Þ

Ke ¼
ffiffiffiffiffiffiffiffi
2pe

p
jeih1j: ð2Þ

The probability of an error, averaged over both computa-
tional states, is pe.
Upon detection of an atom in jei, the qubit is reinitialized

into j1i or replaced by a new qubit in j1i, described by the
recovery operator R̂ ¼ j1ihej. The combined channel can
be expressed by the Kraus operators:

W0 ¼ j0ih0j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2pe

p
j1ih1j; ð3Þ

We ¼ R̂Ke ¼
ffiffiffiffiffiffiffiffi
2pe

p
j1ih1j: ð4Þ

We obtain an effective Pauli channel using the identity
j1ih1j ¼ ðI − ZÞ=2 and the Pauli twirl approximation
(PTA), which may be achieved in practice by inserting
random single-qubit Pauli gates after atom replacement
[41–43]. The portion of the channel describing the erasure
error is

WeρW
†
e ¼ pe

2
ðIρI þ ZρZÞ: ð5Þ

Since the resulting state has at most a Z error, we refer to
this as a biased erasure error model.
To model a two-qubit CZ gate, we incorporate two

additional considerations. First, the leakage of one atom
can result in a dephasing error on the other atom as well
[44]. Therefore, a two-qubit gate with an average erasure
probability pe is modeled by drawing an operator from the
set fI; Zg⊗2 with uniform probability pe=4. Second, there
is also a finite rate of nonerasure errors such as decays from
jri back to the qubit subspace. We model these as
depolarizing errors with total rate pp by drawing an
operator from the set fI; X; Y; Zg⊗2nfI ⊗ Ig with uniform
probability pp=15. The relative probability of these errors is
given by the branching ratio R ¼ pe=ðpe þ ppÞ, which
depends on the underlying physics of the qubit. For
metastable 171Yb, we predict R ¼ 0.98 [15].
In this work, we consider only errors during two-qubit

gates, which are by far the dominant errors for neutral
atoms. A discussion of the role of measurement, single-
qubit gate, and idling errors on the unbiased erasure model
can be found in Ref. [15].

Z

I
(a) (b) (c)

Z

XZ

Z

Z

FIG. 1. (a) Biased erasures arise when erasures (leakage to a detectable state jei) occur from only one qubit state, j1i, such that
recovery by replacement or reinitialization in the same state results in at most a Z error. (b) Threshold error rates as a function of Re,
under different error models: unbiased erasures (blue), biased erasures with native gates (orange), and biased erasures with bias-
preserving CX (BCX) gates (green). The stars denote Re ¼ 0.98. (c) Illustrative circuit measuring the two-qubit stabilizer ZX using
native gates. When an erasure is detected during a two-qubit gate (purple star, depicting fluorescence detection of an atom in jei), the
affected atom is replaced in j1i and the resulting state is described by an error drawn from fI; Zg⊗2, but the manner in which this error
propagates depends on its space-time location in the circuit. If the error occurs during the Z measurement (top), it propagates to the end
of the circuit as a Z error. If the error occurs during the X measurement (bottom), it propagates to the end of the circuit as an X error.
Knowledge of the error location makes this information available to the decoder, lowering the entropy of the noise.

HIGH-THRESHOLD CODES FOR NEUTRAL-ATOM QUBITS WITH … PHYS. REV. X 13, 041013 (2023)

041013-3



Lastly, we note that the no-jump error also contributes a
Z-biased Pauli error with probability Ap2

e because of the
asymmetry in the erasure probability from the two qubit
states [11,15]. Continuing the previous example of a single-
qubit gate, the evolution under the Kraus operator from
Eq. (3) is

W0ρW
†
0 ≈

�
1 − pe −

p2
e

4

�
IρI þ p2

e

4
ZρZ: ð6Þ

Here, we apply the PTA and take the limit pe ≪ 1.
We find a Pauli error rate of Ap2

e with A ¼ 1=4 in Eq. (6),
but for the two-qubit gate we estimate A ≈ 1=12 [44]. We
incorporate this by increasing the Pauli error probability to
p0
p ¼ pp þ Ap2

e. In the resulting model, erasures constitute
a fraction Re of all errors, with Re given by

Re ¼
pe

p0
p þ pe

¼ R
1þ AR2ðpp þ peÞ

: ð7Þ

To present a more generalizable model of biased erasures,
we consider the error model to be defined by the indepen-
dent parameters Re and p ¼ p0

p þ pe. Far below the
threshold (p ≪ 1), the behavior of 171Yb can be estimated
by setting Re ¼ R ¼ 0.98. However, the performance near
the threshold is slightly different, since Re < R. We note
that Re ¼ 1 is not physically attainable for any value of R
but may be achievable in other physical models of biased
erasure if both computational states leak with equal rates
but to disjoint final states such that the Z information is
preserved.

III. CIRCUIT-BASED QEC WITH
BIASED ERASURES

We quantify the advantage of the biased erasure model
using circuit-level simulations of the XZZX code. The
simulations use square codes with distance d up to 13,
implemented as d rounds of noisy stabilizer measurements
followed by a final, noiseless stabilizer measurement [44].
The error syndromes are decoded using a minimum-weight
perfect matching (MWPM) decoder, adjusting edge
weights in each shot to incorporate the location of the
erasure errors. The stabilizer simulations and construction
of the decoding graph are implemented with STIM [45],
while the decoding is implemented with PyMatching [46].
Except where noted, the simulations do not consider bias-
preserving CX gates. Therefore, CX gates are implemented
using CZ gates, conjugated by Hadamard (H) gates, which
convert Z errors on the target qubit into X errors.
In Fig. 1(b), we show the threshold error rate pth as a

function of Re. For comparison, we show three cases:
unbiased erasures, biased erasures using only the native
gates of the Rydberg platform, and biased erasures incor-
porating hypothetical bias-preserving CX gates.

For large values of Re, biased erasures result in
significantly higher thresholds than unbiased erasures,
even in the absence of bias-preserving gates. For example,
at the value Re ¼ 0.98 projected for metastable 171Yb
qubits, the threshold is 8.2%, nearly twice the value with
unbiased erasures (pth ¼ 4.3%) and nearly 8 times the
threshold with depolarizing noise (Re ¼ 0, pth ¼ 1.1%).
The latter two thresholds are slightly higher than those
reported in Ref. [15], because we use the slightly more
accurate MWPM decoder, instead of a weighted Union
Find decoder.
Previous works using the XZZX surface code to correct

biased Pauli noise leverage its particular symmetry which
guarantees that the pairs of error syndromes created by
Z errors on the data and ancilla qubits lie in disconnected
2D planes [13,14]. This advantage vanishes in the absence
of bias-preserving gates (see, for instance, Ref. [8]). The
fact that we observe high thresholds with only the native
gates, and relatively little additional improvement from in-
corporating bias-preserving CX gates for Re < 1 [Fig. 1(b)],
suggests that other mechanisms are responsible. This is
reinforced by a separate calculation showing that the
Calderbank-Shor-Steane and XZZX surface codes give
almost the same threshold for biased erasures with native
gates at Re ¼ 0.98.
The high threshold with native gates arises from two

mechanisms. First, the biased erasure model has a lower
error probability than the unbiased erasure model: After
returning to the qubit space, the probability of an error in
the biased erasure model is 3=4, compared to 15=16 for the
unbiased model. Second, even though Z errors can be
converted into X errors in the absence of bias-preserving
gates, detecting erasures after every gate allows this
evolution to be tracked, lowering the entropy of noise
[Fig. 1(c)] and reducing the impact of bias-preserving gates
on the threshold.
Previous works on biased Pauli errors have also pro-

posed using a thin rectangular XZZX code with a smaller
distance for the low-rate error [8,13], which provides an
additional reduction in qubit overhead. This is not possible
in the biased erasure model, without bias-preserving CX

gates, because the dominant Z errors get converted to X
errors. However, we see in the next section that this can be
overcome using an alternate approach based on fusions.
For estimating the performance of biased erasure models

in other qubit platforms that may have varying degrees
of bias, and for including potential bias-degrading effects
in 171Yb, we parametrize a finite bias version and compute
thresholds as a function of bias in Supplemental
Material [44]. We find that the rate of erasures from the
low-probability state (here, j0i) must be approximately
100 times less than the high-probability state to take full
advantage of the bias (similar to the case of biased Pauli
noise [8,13]). While these simulations do not include errors
in single-qubit gates, measurements, or idling qubits, we
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believe that these do not have a significant effect, because
these operations are comparatively higher fidelity for
neutral-atom qubits [30].

IV. HYBRID-FUSION QEC

Measurement-based error correction (MBEC) is an
alternative approach to error correction based on perform-
ing local measurements on a many-body 3D entangled
state called a fault-tolerant cluster state [47–51]. In the
standard approach to realize a fault-tolerant cluster
state, called foliation, one dimension of the cluster
state effectively simulates time along which a planar
encoded state is propagated via teleportation [52–55].
Indeed, the commonly used Raussendorf-Harrington-
Goyal or Raussendorf-Bravyi-Harrington cluster state
[52,53,56] teleports the standard Calderbank-Shor-
Steane surface code. Similarly, the recently introduced
XZZX cluster state teleports the XZZX surface code [57].
Given planar arrays with a finite number of qubits, a
computation of length scaling exponentially with the size
of the array can be performed by using as few as two of
these arrays at a time [53] and teleporting the logical state
back and forth between them. After a slice is measured, it
is reinitialized into a cluster state.
Fusion-based error correction (FBEC) is a particular

approach for MBEC in which the cluster state is grown by
fusing together few-body entangled resource states.
Fusions are entangling operations carried out by perform-
ing destructive two-qubit measurements of X ⊗ X and
Z ⊗ Z. FBEC has been widely studied for linear optical
quantum computing, because fusions are the native entan-
gling operations in that platform [25–29]. Recently, a
fusion-based construction of the XZZX code was proposed
that can maintain the symmetry of that code under biased
noise if the fusion errors are biased [29].
In this section, we introduce a hybrid-fusion construc-

tion of the XZZX cluster state with biased erasures that
combines fusion operations and deterministic entangling
gates, which is optimized for the error model and
capabilities of metastable 171Yb qubits. After reviewing
the XZZX cluster state, we introduce an eight-qubit
resource state (hereafter, 8-ring) and present its con-
struction. Next, we design a bias-preserving fusion
circuit that ensures that biased erasures in the physical
gates affect only the X ⊗ X measurements, preserving
Z ⊗ Z. Finally, we present the hybrid cluster state
construction protocol that uses both fusions and direct
CZ gates to entangle a collection of 8-ring resource states.
The operations and resource states are designed to
minimize the number of CZ gates while ensuring that
biased erasures at any step maintain the two-dimensional
symmetry of the XZZX code. This simplifies the decod-
ing problem, enabling higher thresholds and lower over-
head [14,29], which we demonstrate using circuit-level
simulations.

A. The XZZX cluster state

The XZZX cluster state [57] is a stabilizer state defined
on a graph with an X-type or Z-type qubit at each vertex,
represented by • and○, respectively, in Fig. 2(a). There is a
stabilizer centered at each vertex. The stabilizer centered at
a X-type qubit is the product of the Pauli X operator of that
qubit, the Pauli Z operators of all adjacent X-type qubits,
and the Pauli X operators of all the adjacent Z-type qubits.
The stabilizer centered at a Z-type qubit is the product of
the Pauli Z operator of that qubit and the Pauli Z operators
of all adjacent X-type qubits. There is no edge between two
Z-type qubits in the states considered here. Multiplying the
stabilizers centered on the faces of a unit cell gives the
six-body cell stabilizer, which is a product of Pauli X
operators on the X-type qubits and Pauli Z operators on the
Z-type qubits on the faces of the cell, as shown in Fig. 2(b).
Measuring all Z-type qubits in the Z basis and all X-type
qubits in the X basis teleports the XZZX surface code
through this cluster state.
In the XZZX cluster state, a Z error on an X-type qubit or

an X error on a Z-type qubit causes its neighboring cell
stabilizers to flip [57]. To simultaneously perform error
correction, the value of each cell stabilizer is constructed by
adding the measurements outcomes of qubits around the
faces of the unit cells. Importantly, Z errors on X-type
qubits cause only pairs of defects, or error syndromes, that
are confined to lie in disconnected 2D layers, leading
to more accurate decoding of errors and higher thresholds
[13,14,57]. This feature reflects the symmetry that arises
within the stabilizer group of the XZZX code under Z
errors. To take advantage of this feature (i.e., by using a
rectangular code), it is necessary to ensure that the
dominant physical noise during cluster state preparation
preserves this symmetry, by only introducing Z errors on
X-type qubits.
This property is satisfied when using CZ gates with

biased erasures to directly entangle X-type qubits.
However, without a bias-preserving CX gate, it is not
possible to directly entangle X- and Z-type qubits without
converting the dominant Z-biased erasures to X-biased
erasures and, thus, introducing unwanted X errors on the
Z-type qubits. To overcome this challenge, our approach is
to isolate the generation of entanglement between X- and
Z-type qubits in the creation of 8-ring resource states that
are postselected on the absence of erasures. These are then
joined together into layers using adaptive fusion measure-
ments which preserves the noise bias so that dominant
Z-biased erasures do not introduce errors on Z-type qubits.
Finally, the layers are joined to form the 3D cluster state
using only CZ gates on X-type qubits.

B. The resource state

The cluster state is assembled out of a collection of
8-ring resource states. The 8-ring state is defined by the
graph in Fig. 2(c) and can be prepared using the circuit in
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Fig. 2(d). This circuit involves eight CZ gates between
neighboring X- and Z-type qubits on a ring. Biased erasures
can result in unwanted X errors on Z-type qubits. However,
postselecting completed rings on the absence of erasures
allows these errors to be removed while at the same time
increasing the overall fidelity of the resource state. Using
the notation in Sec. II, in the limit where Re ≈ 1 and
pe ≪ 1, the success probability is 1 − 8pe, and the error
probability of successful resource states is approximately
8p0

p. Many copies of this resource state can be prepared in
parallel, and the successful ones can be moved into the
positions for cluster state construction, described next,
using movable optical tweezers [33,58].

C. Adaptive, bias-preserving fusion measurements

A fusion measurement is a destructive two-qubit meas-
urement of X ⊗ X and Z ⊗ Z. Figure 2(e) presents an
adaptive fusion measurement circuit with the property that
biased erasures during two-qubit gates cause only an
erasure of the X ⊗ X measurement outcome. In the ideal
evolution without errors, the ancilla qubit measures
Zi ⊗ Zj using CZ gates, followed by the single-qubit
measurements Xi ⊗ Ij and Ii ⊗ Xj, from which Xi ⊗ Xj

can be computed [44].
In order to concentrate dominant errors into the Xi ⊗ Xj

measurements and preserve the Zi ⊗ Zj information, we
check for erasure errors in the two CZ gates, as shown in

Ancilla

Qubit 

Qubit 

(a) (b) (c) (d) (e)

(f) (g) (h)

FIG. 2. (a) A unit cell of the XZZX cluster state, with two examples of stabilizers centered on X- (•) and Z- (○) type qubits as
described in the main text. (b) The cell stabilizer obtained by multiplying the stabilizers centered at all faces of a unit cell. (c) The 8-ring
resource states used to build the cluster state. (d) Circuit to generate the resource state with 171Yb atoms. The state is postselected on the
absence of detected erasure errors. We draw only a single erasure detection step at the end of the circuit to reflect that the precise space-
time location of the errors is not needed. In practice, a fluorescence detection is performed after every gate. (e) Circuit for adaptive, bias-
preserving fusion measurements with 171Yb atoms. Erasure detection (via fluorescence, purple lines) is performed following each gate. If
any erasures occur, the measurement basis of the fusion qubits is changed from X to Z, ensuring that the value of Z ⊗ Z is preserved at
the expense of X ⊗ X. (f)–(h) Extended protocol for conceptual understanding of how the cluster state error correction is realized. For
reference, in (h) we highlight in green a planar array of qubits encoded in XZZX surface code that is being propagated in time (left to
right), generating the XZZX cluster state. Note that the entire cluster state shown does not need to be built at once and can be realized
using a small number of such planar arrays of qubits which are reused over time (see Ref. [44]).
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Fig. 2(e), and adapt the subsequent operations based on the
location of these errors. In particular, when an erasure is
detected, the protocol is aborted, and each fusion qubit is
measured independently in the Z basis with the measure-
ment outcomesmi (¼ 0 or 1) andmj (¼ 0 or 1). The overall
evolution is as if the atoms i, j are fused, with the Zi ⊗ Zj

measurement outcome ¼ mi ⊕ mj, but the Xi ⊗ Xj meas-
urement outcome is erased. We note that the Z measure-
ment needs to be performed only on the fusion qubit that is
not erased, because observing the erasure is equivalent to
measuring the erased atom in j1i. Therefore, the erased
qubits also do not need to be replaced, unlike the approach
in Sec. III and Ref. [15].

D. Constructing the XZZX cluster state

We now present a technique to construct the full XZZX
cluster state using 8-rings, fusion measurements, and
deterministic entangling gates. We first present the most
intuitive version of the protocol [Figs. 2(f)–2(h)] and then a
contracted version (Fig. 3).

1. Intuitive protocol

In step 1, copies of postselected 8-ring resource states
[Figs. 2(c) and 2(d)] are arranged in a plane as shown in

Fig. 2(f). In step 2, an X ⊗ X measurement is performed on
pairs of Z-type qubits at the neighboring corners. This
measurement joins the pair of measured qubits into a single
effective Z-type qubit with logical Z operator Z̄ ¼ Z ⊗ Z,
giving a single 2D layer of the XZZX cluster state shown in
Fig. 2(g) [27,29]. To ensure that the postmeasurement state
is the stabilizer state defined by the graph in Fig. 2(g), a
Pauli Z correction is applied to the two X-type qubits
adjacent to one of the measured Z-type qubits conditional
on the outcome of the X ⊗ X measurement [29]. In
practice, this correction is tracked in software.
In step 3, copies of such 2D lattices are stacked on top of

each other in a staggered manner such that the X-type
qubits in one layer align with those in the next, while the
Z-type qubits in one layer lie on top of a face in the next
layer [Fig. 2(h)]. In step 4, a CZ gate is applied between
each X-type qubit in layer k and another X-type qubit at the
same location in layer kþ 1 as shown in Fig. 2(h). This
gives the entire 3D XZZX cluster state. Importantly, the CZ

gates commute with each other and may be applied in any
order. Here, we follow a specific order: For each X-type
qubit connected to unit cells to its left and right, the CZ gate
with the X-type qubit in the layer above it is performed
before the CZ gate with the layer below. If an erasure is
detected in the first CZ gate, the second CZ gate is omitted to
avoid introducing additional errors.
Now that we have the cluster state, we measure each

qubit to teleport the XZZX surface code through the cluster
state and to reconstruct the cell stabilizers in Fig. 2(b) for
error correction. This is divided into two substeps. In step
5(a), we measure each X-type qubit in X basis. In step 5(b),
we measure each effective Z-type qubits in the effective Z̄
basis, by measuring Z ⊗ Z on the physical Z-type qubits
composing the effective qubit. This outcome is not affected
by biased erasures, since the fusion circuit ensures that the
Z ⊗ Z result is preserved.

2. Contracted protocol

We now observe that these operations can be regrouped
to shorten the protocol. First, step 5(b) commutes with steps
5(a), 4, 3, and 2 and can, therefore, be performed simulta-
neously with step 2. Steps 5(b) and 2 together constitute a
fusion measurement, which removes Z-type qubits from the
cluster state entirely. This fusion measurement is imple-
mented using the circuit in Fig. 2(e). Furthermore, the
staggered layer stacking and CZ gates in steps 3 and 4,
respectively, can also be performed concurrent with or
before the fusion measurements, as they act on a different
subset of the qubits. Thus, the sequence of operations in the
shortened protocol, summarized in Fig. 3, begins by
preparing several copies of postselected resource states
and moving them in position to form layers stacked in a
staggered manner (steps 1 and 3), which is followed by
fusions [steps 2 and 5(b)] and CZ gates between layers
(step 4), and finally measurement of X qubits in the X basis

FIG. 3. Proposed shortened protocol for high-threshold hybrid-
fusion QEC with the XZZX cluster state using fusions and
CZ gates.
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[step 5(a)]. Note that, in the case of a biased erasure during
a fusion, we do not obtain the X ⊗ X measurement
information, which means we cannot determine the Pauli
correction on the two neighboring X-type qubits as dis-
cussed in Sec. IV C. This is effectively a random Pauli
Z ⊗ Z error on these qubits. This correlated two-qubit error
does not reduce the distance, as it is not oriented along a
logical operator.
We also point out that accumulation of coherent errors,

such as from the no-jump evolution, are suppressed,
because every qubit is measured frequently (at most
after four CZ gates). As with the circuit-based approach,
additional suppression can be realized by twirling,
inserting random Pauli gates before the CZ gates in
resource state generation, fusion circuit, and in interlayer
entangling steps.

E. Threshold results

We evaluate the performance of our hybrid-fusion
architecture under the biased erasure noise model by
estimating the thresholds for different Re (Fig. 4). Our
simulations account for noise in the CZ gates used in the
resource state generation circuit, the fusion circuit, and the
direct entanglement in step 4. Errors are decoded using
the MWPM decoder and a d × d × d cluster state, with d
up to 13, which is equivalent to teleporting a d × d planar
XZZX code while performing d rounds of stabilizer
measurements in the circuit-based approach.
For Re ¼ 0.98, we obtain a threshold of 10.3%, higher

than that achieved with the circuit-based approach with or
without bias-preserving CX gates. In the other extreme of
Re ¼ 0when all source of noise is depolarizing Pauli noise,
we obtain a threshold of 1%, similar to the threshold with
circuit-based error correction at the same value of Re.
In the limit Re ¼ 1, we achieve a threshold of 14.7%.

This threshold can also be determined from the

bond-percolation threshold of the union-jack lattice and
is expected to be approximately 17.7% [44]. The observed
threshold in Fig. 4 is smaller than this because of finite size
effects that are more prominent in the extreme case of
Re ¼ 1 when the decoding graph is 2D. To confirm, we use
a fast erasure decoder [59] to simulate extremely large
lattices (d × d × 5 up to d ¼ 61) and recover the threshold
predicted by percolation theory in this limit. Since the
erasure decoder and MWPM decoder achieve the same
accuracy for erasure errors, we believe that we should
achieve the same thresholds for both decoders at Re ¼ 1,
but simulating such large lattices with MWPM is computa-
tionally prohibitive.

F. Comparison to other approaches to
generating a cluster state

The benefit of the hybrid-fusion approach can be under-
stood by comparison to alternative cluster state construc-
tions. Compared to directly entangling all the qubits in the
cluster state, our hybrid-fusion approach results in the same
number of biased erasure errors on the final cluster state but
ensures that the error syndromes lie in disconnected 2D
layers. However, the number of CZ gates, and, thus, the
rough Pauli error rate on the final cluster state, is increased
by a factor of 4=3. Therefore, our approach should out-
perform direct entanglement except when Re is very small
and Pauli errors are more important to correct than biased
erasures.
On the other hand, we can compare to an all-fusion

strategy like the 6-ring construction of Ref. [29]. Our
strategy again has the same number of biased erasure errors
on the final cluster state but uses 2=3 the number of CZ

gates. Therefore, our approach outperforms the all-fusion
construction except when Re ≳ 0.99, where the higher
percolation threshold of the decoding graph in the all-
fusion approach gives a slight advantage.

V. DISCUSSION

We now make several comparisons between the pre-
sented circuit-based and hybrid-fusion approaches. Our
hybrid-fusion protocol can be viewed as implementing
QEC on a state encoded in a planar XZZX code as it is
being teleported to another planar array of qubits. This is an
alternative to using repeated rounds of quantum nondemo-
lition stabilizer measurements as in conventional circuit-
based error correction but still allows transversal one- and
two-qubit logical gate operations available for the planar
surface code. In Supplemental Material, we explicitly show
how our hybrid-fusion protocol can be implemented with
just a few planar arrays of qubits, starting and stopping with
a 2D encoded XZZX surface code [44]. We note that
neutral atoms are ideally suited to the high degree of
connectivity required to implement hybrid fusion: Dynamic
rearrangement of qubits is already used to postselect filled

FIG. 4. Threshold error rates for the hybrid-fusion architecture
as a function of erasure fraction, Re. The star denotes Re ¼ 98%,
while the green square marks the percolation threshold corre-
sponding to the decoding graph for Re ¼ 1 (see the text).
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tweezer sites [60,61], and coherent qubit transport has also
been demonstrated [33,58].
The hybrid-fusion approach has other advantages

beyond the higher threshold, which we outline here but
do not quantitatively analyze. As discussed, our construc-
tion preserves the system symmetry of the XZZX code
under biased noise by ensuring that the high-probability Z
erasures run along layers in Fig. 2(h). Thus, the same
logical error rate can be achieved with fewer layers when
Re is large and the erasure are highly biased. This amounts
to using a thin, rectangular XZZX surface code, which
becomes a repetition code when Re ¼ 1 and the erasures
are infinitely biased [13]. This allows for reduced overhead
compared to the circuit-based approach, which requires a
square XZZX code in the absence of bias-preserving gates.
This property is summarized for each QEC architecture in
Table I.
Second, the teleportation process converts lost atoms

into Pauli errors, ensuring a finite threshold against loss
errors or undetected erasures without additional leakage
reduction units [62–66]. We leave an analysis of the
threshold for a given loss rate to future work.
Finally, hybrid-fusion QEC relaxes the requirements for

erasure detection and subsequent atom replacement. In the
circuit-approach proposed in Ref. [15] and considered in
Sec. III, the space-time location of each erasure error in the
circuit must be resolved, and the affected qubits must be
replaced or reinitialized as the computation proceeds. In the
hybrid-fusion approach, this requirement is relaxed, in a
way that is slightly different for the three steps involving
two-qubit gates. For resource state preparation (step 1 of
the protocol in Sec. IV D), it is necessary only to determine
if an erasure occurred at some point during the 8-ring
preparation, and if it did, the entire state is discarded.
Therefore, there is no need to replace affected qubits, and
the necessary spatiotemporal resolution of the erasure
detection is significantly coarser. During the fusion oper-
ations [steps 2 and 5(b)], erasures must be detected
immediately as the measurement basis is conditioned on
this outcome, but the affected atoms do not need to be
replaced. Finally, in the layer-joining CZ gates (step 4),
atom replacement is not necessary, as the atoms are
immediately measured. In summary, we find that condi-
tionally replacing atoms at precise space-time locations is
never required (as indicated in Table I), and in some cases
erasures can be detected with coarser resolution. These may
give rise to considerable experimental simplifications.

VI. CONCLUSION

In summary, we have introduced a new noise model,
biased erasure, that is physically motivated by metastable
171Yb qubits but may also be engineered in other qubit
platforms. We have studied two realistic QEC architectures
under this noise model. The first is a circuit-based
approach, where the improvement with the biased erasure

model arises from the reduced entropy of this noise model,
enabling more effective decoding. We obtain a threshold of
8.2% for the predicted metastable 171Yb erasure fraction.
The second is a hybrid-fusion approach with a systematic
code construction that gives rise to system symmetries
under the biased erasure model. In this approach, we obtain
a threshold of 10.3% for the metastable 171Yb noise model.
Compared to circuit-based syndrome extraction, this
approach has the additional benefits of potentially enabling
rectangular surface codes with lower overhead (in the limit
of a large erasure fraction), robustness against atom loss,
and simplified requirements for detecting and handling
erasure errors in real time.
While in this work we focus on thresholds for quantum

memory, we can apply Clifford gates using standard
techniques such as braiding [52,53], lattice surgery [67,68],
or other code deformations [69]. These can be straightfor-
wardly adapted to our hybrid-fusion approach bymodifying
the large-scale shape of our cluster state but using the same
underlying resource states and without affecting the thresh-
olds [27,55,70]. In addition, we can consider entangling
logical surface-code qubits via transversal CNOT gates as
proposed in [71], thanks to the movability of neutral-atom
qubits [33,58]; this may allow for significant overhead
reduction compared to lattice surgery. To apply non-
Clifford gates, we can inject noisy magic states and perform
magic-state distillation [72]. We note that the erasure errors
during magic-state injection may be removed by postse-
lection, so that injected magic states are susceptible only to
low-probability Pauli errors. This will aid in reducing the
overhead cost of magic-state distillation.
There are several opportunities for further simplification

and optimization of the hybrid-fusion approach for scalable
fault-tolerant quantum computing. First, the threshold for
hybrid-fusion QEC may be further improved by postselect-
ing on larger resource states [28]. This will decrease the rate
of successfully generating the resource states, but it is still
an experimentally viable route with deterministic, high-
fidelity gates. For example, given a gate with 99.9% CZ

fidelity, resource state chunks involving 100 CZ gates could
be postselected with 90% success probability. Second, we
can explore error correction beyond the planar surface
code, as the hybrid-fusion approach naturally allows
conversion of the planar surface code to a 3D surface
code with transversal non-Clifford gates [73–77], which
may lead to significant overhead reduction compared to
alternative protocols for non-Clifford gates that rely on
magic-state distillation.
Finally, our hybrid-fusion-based construction provided a

means to preserve the symmetries of the XZZX code
without bias-preserving CX gates by using postselection
and short-depth circuits. This approach also provides a path
for high-threshold QEC with biased-Pauli-noise qubits
without bias-preserving CX gates, which is an open chal-
lenge so far.
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