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Electronic Fabry-Pérot interferometry is a powerful method to probe quasiparticle charge and
anyonic braiding statistics in the fractional quantum Hall regime. We extend this technique to the hierarchy
ν ¼ 2=5 fractional quantum Hall state, possessing two edge modes that in our device can be interfered
independently. The outer edgemode exhibits interference similar to the behavior observed at the ν ¼ 1=3 state,
indicating that the outer edgemode at ν ¼ 2=5 has properties similar to the single mode at ν ¼ 1=3. The inner
mode shows an oscillation pattern with a series of discrete phase jumps indicative of distinct anyonic braiding
statistics. After taking into account the impact of bulk-edge coupling, we extract an interfering quasiparticle
chargee� ¼ 0.17� 0.02 and anyonic braidingphase θa ¼ ð−0.43� 0.05Þ × 2π,which serve as experimental
verification of the theoretically predicted values of e� ¼ 1

5
and θa ¼ −ð4π=5Þ.
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I. INTRODUCTION

The fractional quantum Hall effect [1] is the archetype
of a strongly interacting topological phase of matter hosting
anyonic excitations. Quantum Hall states at fractional
filling factors of the form ν ¼ ð1=2pþ 1Þ are described
by the Laughlin wave function [2]. Higher-order fractional
states ν ¼ ðn=2pnþ 1Þ (n, p integers) may be understood
in terms of the hierarchical construction [3,4] or the
composite fermion model [5–7]. The elementary excita-
tions of fractional quantum Hall states are quasiparticles
carrying a fraction of an electron’s charge [2] and obeying
anyonic braiding statistics [4,8–11]. At the ν ¼ 1=3
Laughlin state, fractional charge has been observed through
resonant tunneling [12,13], shot noise [14,15], scanning
single electron transistor techniques [16], and interference
[17], while evidence for anyonic statistics has been
observed with Fabry-Pérot interferometry [18,19], in quasi-
particle collision experiments [20–22], and recently in
Mach-Zehnder interferometers [23].

It is natural to attempt to extend experimental probes of
exotic statistics to the hierarchy state ν ¼ 2=5, one of the
principal daughter states of ν ¼ 1=3. In the collider
geometry, recent shot-noise cross-correlation experiments
have reported novel behavior at ν ¼ 2=5 [21,22], provid-
ing evidence for sensitivity to statistical properties of e=5
quasiparticles, where e is the charge of an electron. Two-
particle time-domain shot-noise experiments indicate that
quantum coherence can be maintained for e=5 anyons at
ν ¼ 2=5 [24]. Theoretically, Mach-Zehnder interferom-
etry provides a method to probe the statistics of edge
quasiparticles via interference visibility [25–27] and
may also be sensitive to non-Abelian statistics [28].
Electronic Fabry-Pérot interferometry is a powerful probe
of quasiparticle charge and statistics and has been studied
in numerous theoretical [27,29–40] and experimental
works [41–51], with recent experiments extending the
measurement technique to the quantum Hall effect in
graphene [52–54].
Here we describe the operation of a Fabry-Pérot inter-

ferometer and quantitative analysis of braiding statistics at
ν ¼ 2=5. There are challenges to extending interferometry
to more fragile, higher-order states. The energy gap at
ν ¼ 2=5 is significantly smaller than at ν ¼ 1=3, making it
important to use a high-quality heterostructure with rea-
sonably high electron density so that an incompressible
state can be achieved both in the bulk 2DEG and in a
confined device. Also, ν ¼ 2=5 is expected to have two
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distinct charged edge modes, making it important to
independently interfere both the inner and outer modes.
At ν ¼ 2=5, the bulk quasiparticles and the tunneling
charge on the inner edge mode are expected to carry
fractional charge e=5 [6,7,55,56]. The expected value of the
anyonic phase for braiding one e=5 quasiparticle around
another (or exchanging positions twice) is θa ¼ −2π ×
ð2p=2pnþ 1Þ, yielding θa ¼ −2π × 2

5
[4,55,57,58]. Our

measurements and analysis demonstrate that Fabry-Pérot
interferometry may be used to quantitatively determine
fractional charge and anyonic braiding statistics in complex
multi-edge-mode fractional quantum Hall states and hold
promise for study of putative non-Abelian states as well.
A quantum Hall Fabry-Pérot interferometer uses two

quantum point contacts (QPCs) to partially reflect incident
edge states which propagate around the gate-defined edge
of the 2DEG. Interference occurs between coherent waves
backscattered at each of the QPCs. In the limit of weak
backscattering, the quantum Hall interferometer generates a
phase difference given by Eq. (1) [31,55]:

θ

2π
¼ e�

AB
Φ0

þ NQP
θa
2π

: ð1Þ

Note that this interference phase is for counterclockwise
propagation of a quasiparticle around the loop with
magnetic field in the −ẑ direction. Equation (1) includes
the Aharonov-Bohm (AB) phase and the anyonic phase
contribution θa, with NQP the number of quasiparticles
localized inside the interferometer. e� is the dimensionless
ratio of the quasiparticle charge to the bare electron charge,
B is the magnetic field, and A is the area of the interference
path around which the edge states circulate; this area is
defined by the QPC gates and side gates. Φ0 ≡ ðh=eÞ is the
magnetic flux quantum. A list of symbols is given in
Table 1 in the Supplemental Material [59]. For ν ¼ 1=3,
theory predicts e� ¼ 1

3
and θa ¼ ð2π=3Þ, while for ν ¼ 2=5,

e� ¼ 1
5
and θa ¼ ð−4π=5Þ [4,11,35,55,58,60,61]. Note that

the charge e=5 at ν ¼ 2=5 is associated with localized
quasiparticles in the bulk and the tunneling charge on the
inner edge mode. The outer edge belonging to the lowest
composite fermion Lambda level [5,7] is expected to
support charge e=3 quasiparticles, as at ν ¼ 1=3. This
has been confirmed in shot-noise experiments [56].
If the chemical potential is in an energy gap so that the

bulk is incompressible and the quasiparticle number is
fixed as B and side gate voltage VSG are varied, then the
conductance G will oscillate with a flux period of Φ0=e�.
At fixed filling factor, increasing magnetic field increases
the number of electrons in the quantum Hall condensate,
equal to νAB=Φ0. At specific values of B and VSG, local
variations in the disorder potential landscape may favor the
addition of a holelike quasiparticle (or the removal of an
electronlike quasiparticle) inside the bulk rather than the
continuous addition of charge that keeps the filling factor

fixed, leading to a discrete change in phase by −θa. Note
that ν ¼ 2=5 has smaller quasiparticle charge compared to
ν ¼ 1=3, making the Aharonov-Bohm phase evolve more
gradually with changes in magnetic field, and a larger
magnitude of θa; these two factors will make the discrete
jumps in phase when the quasiparticle number changes a
more dramatic effect than at ν ¼ 1=3, since the anyonic
phase contribution is much larger relative to the slowly
varying Aharonov-Bohm component.
Equation (1) neglects the effects of bulk-edge coupling,

which can cause the area of the interference path to change
when charge in the bulk changes (either in the condensate
or in the form of localized quasiparticles). In the presence
of finite bulk-edge coupling, the interference phase will be
modified [36,38,55]:

θ

2π
¼ e�

ĀB
Φ0

− κ
e�

Δν

�
e�NQP þ νin

ĀB
Φ0

− q̄b

�
þ NQP

θa
2π

:

ð2Þ

In Eq. (2), Ā is the ideal area of the interference path (not
including variations δA due to the bulk-edge coupling), Δν
is the difference between the filling factor corresponding to
the interfering edge state and the filling factor of the next-
outer fully transmitted edge state, νin is the filling factor
corresponding to the interfering edge state, and q̄b is the
charge of ionized impurities and induced charge on
the metallic gate resulting from the applied gate voltages.
κ ≡ −ðδqi=δqbÞ is the effective bulk-edge coupling
parameter which describes how much the charge on the
interfering edge mode (qi) changes (and thus area changes)
in response to a change in bulk charge [the total excess
bulk charge is the term in parentheses in Eq. (2),
δqb ≡ e�NQP þ νinðĀB=Φ0Þ − q̄b]. Note that qb and qi
are measured in units of the bare electron charge e.

II. MEASUREMENTS AT ν = 1

The primary device studied in this work, labeled device
A, consists of two QPCs which partially reflect edge
modes, and a pair of side gates to define an interference
path. An SEM image of an identical device is shown
in Fig. 1(a). This device has lithographic dimensions
1 × 1 μm2, and is fabricated on a GaAs=AlGaAs hetero-
structure utilizing the screening well design similar to our
previous experiments [17]; this heterostructure reduces
bulk-edge coupling, making it possible to observe the
anyonic phase when the localized quasiparticle number
changes [18]. The degree of residual bulk-edge coupling
is controlled through heterostructure and device
design [19]. The heterostructure and device are detailed
in Supplemental Material Fig. 1 and Sec. I [59] (simu-
lations are done with the NEXTNANO software package
[62]). The electron density is n ≈ 1.05 × 1011 cm−2 and
mobility μ ≈ 9 × 106 cm2=V ⋅ s. Note that this density is
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higher than in previous devices used to probe braiding at
ν ¼ 1=3 [18,19]; higher density enables a more robust ν ¼
2=5 state. Conductance measurements are made using
standard lock-in amplifier techniques with a typical exci-
tation voltage of 10 μV and frequency of 13 Hz, and are
performed in a dilution refrigerator at a temperature of
T ¼ 10 mK except where otherwise noted.
Figure 1(b) shows conductance variation δG (with a

smooth background subtracted) versus magnetic field B
and side-gate-voltage variation δVSG at the integer quantum
Hall state ν ¼ 1. Note that ΔVSG is relative to −1.8 V in all
measurements, and the side-gate-voltage excursions around
this value are small so that the area changes by only a few
percent. Since at ν ¼ 1 the dominant tunneling charge is the
electron, the interference phase will be determined by the
AB phase in Eq. (1), and the oscillation period will be Φ0,
making it possible to extract the effective area of the
interferometer and the lever arm ∂Ā=∂VSG relating a change
in gate voltage to change in area (see Supplemental
Material Sec. II and Fig. 2 [59]). Negatively sloped lines

of constant phase are a signature of Aharonov-Bohm
interference [36,44,55], while weak modulations in the
pattern suggest small but finite bulk-edge coupling. The
magnetic field period ΔB ¼ 11 mT gives the effective
area A ¼ ðΦ0=ΔBÞ ≈ 0.38 μm2. This indicates an approxi-
mate depletion length of 200 nm around the gates, con-
sistent with previous measurements and simulations
of similar devices [17–19]. The gate-voltage oscillation
period is ΔVSG ¼ 8.5 mV yielding ð∂Ā=∂VSGÞ ¼
ðΦ0=BΔVSGÞ ¼ 0.11 μm2V−1.

III. MEASUREMENTS AT ν = 2=5

In Fig. 2(a), we show measurements of the bulk Hall
resistance Rxy (black) at high magnetic field in the frac-
tional quantum Hall regime, measured in a region of 2DEG
away from the interferometer. Prominent resistance pla-
teaus occur at ν ¼ 1=3 and ν ¼ 2=5. Measurement of the
diagonal resistance across the device RD is displayed in red,
with a small negative voltage of −0.3 V on the QPCs and
side gates in order to deplete the electrons under the gates
but not induce significant backscattering in the QPCs.
Given any backscattering in the device, RD will generally
be higher than Rxy, but note there is a wide range of
magnetic field at ν ¼ 1=3 where RD ≈ 3ðh=e2Þ while the
Rxy remains quantized, indicating nearly full transmission
of the edge state through the device. At ν ¼ 2=5, there is a
range of magnetic field approximately 200 mTwide where
RD ≈ 2.5ðh=e2Þ, indicating that both edge modes are nearly
fully transmitted through the device with minimal con-
duction through the bulk.
In Fig. 2(b), we show conductance versus QPC gate

voltage for the two QPCs individually at ν ¼ 2=5. There is
a wide primary plateau with G ≈ 0.4e2=h where both edge
modes are nearly fully transmitted through the device. As
VQPC is made more negative, conductance decreases and
then reaches a second, intermediate plateau atG ≈ 1

3
ðe2=hÞ,

indicating that the inner edge state is fully reflected while
the outer one (which carries conductance 1

3
ðe2=hÞ) is fully

transmitted. Beyond this second plateau, the outer edge
state starts to be reflected, and conductance drops until
reaching zero. Tuning the QPCs to values between the first
and second plateaus corresponds to partial reflection of the
inner mode, while tuning conductance between the second
plateau and zero conductance corresponds to partially
reflecting the outer edge mode while the inner one is fully
reflected; thus, it is possible to set VQPC on both QPCs to
select which edge mode is interfered. This in situ tuning of
individual edge mode transmission is critical to our experi-
ment. Approximate gate operating points for interference of
the inner mode and outer mode are indicated with arrows in
the figure (these points are not exact since there is a small
amount of cross-coupling between the gates).
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FIG. 1. (a) False-color SEM image of an interferometer with the
same dimensions as the device used in our experiment. Red lines
indicate propagating edge states. The illustrated configuration
corresponds to the case of ν ¼ 2=5, where there are two edge
states. (b) Conductance oscillations at ν ¼ 1 versus magnetic
field and side gate voltage VSG. The negatively sloped lines of
constant phase indicate Aharonov-Bohm regime behavior, while
weak modulations suggest small but finite bulk-edge coupling.
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IV. INTERFERENCE OF THE OUTER MODE

We begin our analysis with examination of interference
at ν ¼ 2=5 by considering the outer edge mode. Figure 3
shows conductance oscillations with the QPCs tuned to
weakly backscatter the outer edge mode [with approxi-
mately 85% transmission for the outer edge mode; approxi-
mate operating points are indicated in Fig. 2(b)]. There is a
central region where lines of constant phase follow a
negative slope, indicative of Aharonov-Bohm interference,
with lines of constant phase becoming nearly flat at higher
and lower field. This behavior is very similar to interference
observed at ν ¼ 1=3, where the transitions from AB
interference to nearly flat lines of constant phase are caused
by transitions from an incompressible to a compressible
bulk; in the compressible regions, quasiparticles and quasi-
holes are removed and created withΦ0 period. The fact that
the outer edge mode interference at ν ¼ 2=5 exhibits a
similar phenomenon indicates that this edge mode has the
same properties as the single-edge state at ν ¼ 1=3, in
agreement with theoretical expectations [35,55] and recent
experiments probing the outer edge at ν ¼ 2=5 [21–23,63].
In the composite fermion model [5–7], this similarity can
be understood from the fact that both the ν ¼ 1=3 edge
state and the outer edge state at ν ¼ 2=5 are generated from
the lowest Lambda level, and therefore are expected to have
the same properties. While the localized quasiparticles of
the bulk 2=5 state have charge e=5, as discussed in

Ref. [55], when the inner mode is fully reflected (resulting
in a filling factor ν ≤ 1=3 in the QPCs), it is expected
that the overall charge inside the device should be quan-
tized in units of e=3 [35,55], and thus, the relevant θa
in Eq. (1) is 2π=3 since the localized inner puddle with
Δν ¼ 1

15
can be considered to be composed of charge e=3

anyon quasiparticles.
While the outer edge state at ν ¼ 2=5 shares properties

with the ν ¼ 1=3 edge state, the properties of the bulk are
different, which leads to some differences in the interfer-
ence behavior. The energy gap of the ν ¼ 2=5 state is
significantly smaller than ν ¼ 1=3, leading to a narrower
region of magnetic field where the device exhibits neg-
atively sloped incompressible-regime oscillations [64]. We
measure an activated transport energy gap Δ2=5 ¼ 3.6 K at
ν ¼ 2=5; based on the model of Rosenow and Stern [64],
the range of field where the bulk is incompressible
should be given by ΔBinc ¼ ðΔΦ0C=νe�e2Þ, with C ≈
4.4 × 10−3 F

m2 the combined capacitance per unit area of
the screening layers and Δ ¼ 3.6 K the energy gap. Using
measured parameters for our device, this yields an expected
incompressible region of approximately 430 mT, in rea-
sonable agreement with our observed region of approx-
imately 300 mT where the outer mode exhibits negatively
sloped oscillations.
There are additional important differences in behavior

between the single-edge mode at ν ¼ 1=3 and the outer
mode at ν ¼ 2=5. At ν ¼ 2=5, even when the inner puddle
is gapped and incompressible, the edge of the inner puddle
remains gapless. Thus, charge can be added to the inner
edge mode when the magnetic field and gate voltage are
varied, resulting in changes in the inner puddle. Because of
disorder, even in the interior of the incompressible inner

(a) (b)

FIG. 2. (a) Diagonal resistance RD measured across the
interferometer with the 2DEG under the gates just depleted so
that current flows through the device (red), compared to bulk
transport Rxy (black). While RD is generally larger than Rxy due to
scattering induced within the device, at ν ¼ 1=3 and ν ¼ 2=5
there are regions where RD reaches the bulk value of Rxy,
indicating full transmission of the edge states with minimal
scattering through the middle of the interferometer. (b) Conduct-
ance measured across the interferometer as a function of the
QPC voltage for each individual QPC at ν ¼ 2

5
, B ¼ 10.58 T.

The conductance starts at the full value of G ¼ 2
5
ðe2=hÞ, and

decreases as more negative voltage is applied to bring the edges
together and induce backscattering. A clear intermediate plateau
at G ¼ 1

3
ðe2=hÞ is visible, indicating full reflection of the inner

edge while the outer edge state is fully transmitted. Approximate
operating points for interference of the inner and outer modes are
indicated with circles and arrows.
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FIG. 3. Conductance oscillations versus B and δVSG for the
outer mode at ν ¼ 2

5
. The oscillations resemble those observed at

ν ¼ 1=3, with a central incompressible region with negatively
sloped lines of constant phase, and the lines of constant phase
becoming nearly flat at higher and lower fields when the density
of states in the center of the device is high. Discrete jumps in
phase due to changing quasiparticle number are less clearly
identifiable than at ν ¼ 1=3.
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puddle there will be a finite density of localized e=5
quasiparticle states such that when B and δVSG are varied,
these localized states are occupied. The addition of an e=5
quasiparticle combined with a small change in charge on
the edge of the inner puddle can result in a change in the
overall number of e=3 quasiparticles by one, resulting in a
phase jump for the outer edge. However, whether this
change in quasiparticle number occurs at a particular
value of gate voltage and magnetic field will depend
sensitively on the energy function and interaction param-
eters within the device. While at ν ¼ 1=3, transitions in
the number of localized quasiparticles were seen to occur
along nearly straight positively sloped lines in the B-δVSG
plane [18,19] (since each e=3 quasiparticle is localized at
a particular point in the bulk), at ν ¼ 2=5 the charge of the
e=3 quasiparticles is divided among the localized e=5
quasiparticles, the condensate charge, and charge at the
edge of the inner puddle, and so the dependence of NQP on
B and δVSG will be more complicated. Figure 3 does show
modulations in the incompressible region, which likely
correspond to the creation of localized quasiparticles and
modulations of θ via θa, although it might be considered
that the e=3 quasiparticles have “lost their identity” [55] in
forming the inner condensate.
To further investigate the correspondence between the

outer mode at ν ¼ 2=5 and the edge mode at ν ¼ 1=3, we
monitor interference over the entire range of magnetic field
from ν ¼ 2=5 to ν ¼ 1=3 as shown in Fig. 4(d). The
progression in the state of the interferometer from ν ¼ 2=5
to ν ¼ 1=3 is sketched in Figs. 4(a)–4(c). Because the QPC
voltage required to weakly backscatter the outer mode at
2=5 is slightly more negative than the voltage required to
backscatter the single-edge state at ν ¼ 1=3 (likely due to
the outer edge state moving inward as field is increased and
the inner edge state vanishes), for this measurement we
continuously adjust the QPC voltages as B is varied in order
to maintain interference. QPC 1 is varied from −2.35 V at
ν ¼ 2=5 to −2.17 V at ν ¼ 1=3, and QPC 2 is varied from
−2.25 V at ν ¼ 2=5 to −2.07 V at ν ¼ 1=3. Bulk magneto-
transport is shown in Fig. 4(e). The oscillations are
continuous from ν ¼ 2=5 to ν ¼ 1=3, verifying that the
edge state persists in both quantum Hall states.
Interestingly, while at both ν ¼ 1=3 and ν ¼ 2=5 the

lines of constant phase become nearly flat above and below
the incompressible region, in the transition region between
ν ¼ 2=5 and ν ¼ 1=3 the lines adopt a shallow positive
slope and interference is greatly suppressed. While positive
slope is frequently associated with strong bulk-edge cou-
pling effects in interferometers, when the outermost edge is
being interfered, Coulomb effects generally result in zero
slope rather than positive slope [36,47,55], so bulk-edge
coupling cannot easily explain the positive slope in this
transition region. A possible explanation for the positive
slope is that in this range of magnetic field the area enclosed
by the edge state shrinks, since it transitions from being an

outer edge state to being the only edge state in the system,
which might cause it to move slightly inward. In other
words, the position of the incompressible strip of filling
ν ¼ 1=3, which forms the interior boundary of the 1=3 edge
mode, moves inward until it merges into a global filling of
ν ¼ 1=3 in the central puddle [65]. The magnetic field
period in the positively sloped region is approximately
92 mT, corresponding to approximately 8Φ0; this is a
relatively weak magnetic field dependence. The gate period
is approximately 6 mV, nearly the same as in the incom-
pressible regions on the flanks of ν ¼ 2=5 and ν ¼ 1=3.
It is also noteworthy that in this transition region the
interference amplitude is dramatically suppressed. This
may occur because in this region, the bulk of the 2DEG
is highly conductive (as can be seen from the large peak
in Rxx), leading to significant smearing of the localized
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FIG. 4. (a) Schematic of outer mode interference at ν ¼ 2=5.
(b) Schematic of interference in the highly compressible region
midway between ν ¼ 2=5 and ν ¼ 1=3. (c) Schematic of inter-
ference of the single edge at ν ¼ 1=3. (d) Interference of the outer
edge mode spanning filling factor ν ¼ 2=5 to ν ¼ 1=3 [panel (d)]
compared to bulk transport Rxx and Rxy [panel (e)]. The conduct-
ance oscillations are largely continuous from ν ¼ 2=5 to ν ¼ 1=3.
The QPCs are continuously adjusted as magnetic field is varied in
order to maintain weak backscattering. There is is a clear
suppression of interference amplitude in the region where Rxx
has a peak between ν ¼ 2=5 and ν ¼ 1=3, suggesting that high
conductivity in the bulk suppresses interference. Interference at
ν ¼ 1=3 is consistent with previous works [17–19], with a wide
incompressible region with a small number of discrete phase jumps
due to anyonic statistics, with the lines of constant phase flatting
out at high and low field when the bulk becomes compressible.

FABRY-PÉROT INTERFEROMETRY AT THE ν ¼ 2=5 … PHYS. REV. X 13, 041012 (2023)

041012-5



quasiparticle number as the transitions are broadened [40],
as well as a less well-defined interference path.
At ν ¼ 1=3, we observe behavior consistent with our

previous experiments: There is a wide incompressible
region where the device exhibits negatively sloped AB
interference with a few discrete jumps in phase, with lines
of constant phase flattening out at lower and higher
magnetic fields when the bulk becomes compressible.
More data at ν ¼ 1=3 are shown in Supplemental
Material Fig. 8 and discussed in Sec. VIII [59]. The width
of the incompressible region is approximately 600 mT,
approximately a factor of 2 larger than at ν ¼ 2=5,
reflecting the larger energy gap of the state.

V. INTERFERENCE OF THE INNER MODE

In Fig. 5(c), we show conductance as a function of
the side-gate-voltage variation δVSG (this side-gate-voltage
variation is relative to −1.8 V and applied symmetrically to
both side gates) and magnetic field B with the QPCs tuned
to weak backscattering of the inner mode [both QPCs
initially tuned to approximately 75% transmission of
the inner mode; approximate operation points shown in
Fig. 2(b)]. A schematic of this interference process is
shown in Fig. 5(a).
In contrast to the relatively simple behavior of ν ¼ 1

where clear lines of constant phase follow a negative
slope, for ν ¼ 2=5 the behavior is not a simple sinusoidal
function of B and δVSG. Instead, there are many discrete
jumps in phase [indicated with dashed lines in Fig. 6(a)],
which follow a positive slope in the B and δVSG plane.
These discrete jumps in phase create a checkerboardlike
pattern in the conductance. It is also noteworthy that the
amplitude is small, approximately an order of magnitude
smaller than interference of the outer mode at ν ¼ 2=5
or at ν ¼ 1=3; this hints that interference of the edge
mode is significantly more prone to decoherence [40].
Nevertheless, the interference pattern is temporally stable
and repeatable in subsequent scans (see Supplemental
Material Fig. 3 and Sec. III [59]).
The positive slope of the transition lines of the discrete

jumps [dashed line in Fig. 6(a)] in the B-VSG plane is
consistent with previous observations of anyonic statistics
for the ν ¼ 1=3 state. If the side gates coupled only to
the edge states, then the gates would not affect the
localized quasiparticle number, and the discrete jumps
would be vertical (occurring only as a function of B).
However, real devices have some coupling of the side
gate to the bulk, leading to an excess bulk charge δqb ¼
ðνĀδB=Φ0Þ − αbulkδVSG þ e�NQP, causing the contours of
fixed bulk charge (across which, quasiparticle transitions
happen) to have slope ðdVSG=dBÞ ¼ ðνĀ=Φ0αbulkÞ≈
0.64 mV=mT. The observed slope is approximately
0.8 mV=mT, close to the value calculated from these
simple charge balance considerations.

Vertical cuts of conductance versus δVSG at fixed B
[indicated with the blue arrow in Fig. 5(c), plotted in blue in
Fig. 5(d)] show nonsinusoidal behavior due to the discrete
jumps in phase. In stark contrast, line cuts parallel to (but in
between) the discrete jumps in phase [indicated by the red
arrow in Fig. 5(c), plotted in red in Fig. 5(d)] do show clear
sinusoidal oscillations, indicating that along these contours
the number of localized quasiparticles is fixed, and the
phase variation is only due to the continuously varying
Aharonov-Bohm phase in Eq. (1).
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FIG. 5. (a) Schematic of interference for the inner mode at
ν ¼ 2=5. (b) Schematic of resonant tunneling when the bulk is
compressible and many quasiparticles are present inside the
interferometer. (c) Conductance versus B and δVSG for the inner
mode at ν ¼ 2

5
. There is a central region where a checkerboard

pattern forms with discrete jumps in the oscillation pattern
indicative of anyonic statistics. At higher and lower magnetic
fields where the bulk becomes compressible, the interference
oscillations disappear, and weak positively sloped oscillations
occur, which are most likely explained by conduction through the
bulk rather than an interference process. (d) Vertical cut of
conductance versus δVSG (blue) in the incompressible regime.
Since this cut intersects several of the discrete jumps in phase, the
behavior is nonsinusoidal. On diagonal cuts parallel to (but in
between) the discrete jumps in phase (red), the quasiparticle
number is fixed, so the conductance oscillates sinusoidally due to
the continuously varying Aharonov-Bohm phase. Red and blue
dashed lines in (a) indicate where each cut is taken.
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VI. FRACTIONAL CHARGE

In regions between the discrete jumps, where the phase
varies only due to the Aharonov-Bohm contribution, the
gate-voltage oscillation period is approximately 14 mV.
With the gate lever arm ð∂Ā=∂VSGÞ ¼ 0.11 μm2V−1, this
implies a flux period of approximately 4Φ0 if bulk-edge
coupling is neglected. To quantitatively extract the effective
quasiparticle charge, we must account for both the change
in area due to direct coupling of the gate to the edge and the
effect of bulk-edge coupling from Eq. (2). This analysis
yields the following equation for the gate-voltage oscil-
lation period ΔVSG when the bulk is incompressible:

ΔVSG ¼ Φ0

Be�

�
∂Ā
∂VSG

þ καbulkΦ0

ΔνB

�
−1
; ð3Þ

where αbulk ¼ ð∂q̄b=∂VSGÞ and κ ¼ −ðδqi=δqbÞ. κ ¼ 0.17
is extracted for our device from finite bias conductance
measurements (see Supplemental Material Fig. 6

and Secs. 6 and 7 [59] and Refs. [66–75]) and αbulk ¼
0.06 mV−1 is determined with the aid of zero magnetic
field Coulomb blockade spectroscopy (see Supplemental
Material Sec. II [59]). Applied to our device with
ΔVSG ¼ 14 mV, Eq. (3) yields e� ¼ 0.17� 0.02 for
the inner mode (here, uncertainty is estimated from the
FWHM of the Fourier-transform peak), close to the
theoretical value of e=5. This confirms the interference
of fractionally charged quasiparticles at ν ¼ 2=5 and
supports previous measurements of fractional charge at
ν ¼ 2=5 [56].
It is noteworthy that in the regions between the discrete

jumps where the quasiparticle number is constant, the
phase evolves with gate voltage but appears to be nearly
independent of magnetic field [as shown in Fig. 6(b)]. This
contrasts with the naive expectations of Eq. (1), which
would imply a phase evolution with B and Φ0=e� oscil-
lation period. On the other hand, Eq. (2) implies that in
the incompressible region where NQP is fixed, there will
be a crossover from negatively sloped AB oscillations
to positively sloped oscillations at a critical value of

κ ¼ ðΔν=νinÞ ¼ ð1=15Þ
ð2=5Þ ¼ 1

6
; this κ corresponds to the tran-

sition from the Aharonov-Bohm to the Coulomb-
dominated regime for ν ¼ 2=5, and also applies to the
regime of a compressible bulk. Note that a significantly
larger bulk-edge coupling parameter is required for integer
quantum Hall states to transition from Aharonov-Bohm
to Coulomb-dominated interference, with the critical value
being κ ¼ 0.5.
This critical value of 1

6
for ν ¼ 2=5 is very close to the

value of κ ¼ 0.17 from finite-bias measurements; thus,
bulk-edge coupling does account for the weak B depend-
ence in the incompressible regions between the discrete
jumps. It is interesting to note that while the intrinsic bulk-
edge coupling quantified by κ is not particularly strong, its
impact at ν ¼ 2=5 is significant. Simulations of interfer-
ence for the inner mode illustrating this effect for different
values of κ are shown in Supplemental Material Fig. 3 and
discussed in Sec. III [59].
Next we discuss in detail the discrete jumps in phase,

which are indicated with dashed lines in Fig. 6(a).
Qualitatively, these discrete jumps in phase are more
dramatic features than the anyonic phase jumps which
have been previously observed at ν ¼ 1=3 [18,19], con-
sistent with the larger magnitude of θa at ν ¼ 2=5 com-
pared to ν ¼ 1=3. In Fig. 6(b), we plot the interference
phase versus magnetic field (the phase is extracted via
Fourier-transform along diagonal cuts of conductance; see
Supplemental Material Fig. 4 and Sec. IV [59]). Steps in the
phase occur corresponding to the discrete jumps indicated
in Fig. 6(a). Since there is weak magnetic field dependence
in the regions between the jumps, the Aharonov-Bohm
contribution to the phase is small, so the steps in phase
correspond primarily to the transitions in quasiparticle
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FIG. 6. (a) Conductance versus side gate voltage and magnetic
field for the inner mode at ν ¼ 2

5
[enlarged view of the incom-

pressible region from Fig. 5(c)] with dashed lines indicating the
positions of discrete jumps in phase. (b) Phase extracted via
Fourier transform versus magnetic field. Discrete steps in the
phase correspond to the discrete jumps visible in (a). The values
of each phase jump (calculated from the difference of θ on each
plateau between the jumps) are indicated in the table to the right
of the plot.
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number (this is supported by the fact that the phase is nearly
flat in the regions between the discrete jumps, even without
subtracting an AB component). The values of the phase
jumps (calculated as the difference in average phase on the
plateaus on either side of the jump) are listed in the table
inset in Fig. 6(b). Interestingly, there are both positive and
negative jumps in phase, in contrast to the naive expectation
of Δθ ¼ −θa ¼ ð4π=5Þ in the absence of bulk-edge
coupling (the negative sign comes from that the fact that
increasing B is expected to remove quasiparticles or
equivalently add quasiholes). The presence of both positive
and negative jumps in phase indicates that bulk-
edge coupling, even at κ ≃ 0.17, is indeed an important
factor.

VII. QUASIPARTICLE STATISTICS

With bulk-edge coupling, the change in interference
phase when a quasiparticle is removed based on Eq. (2)
is Δθ ¼ −θa þ κ½ðe�Þ2=Δν�; for the inner mode of
ν ¼ 2=5 with e� ¼ 1=5, Δν ¼ 2=5 − 1=3 ¼ 1=15, and
θa ¼ ð−4π=5Þ, this yields

Δθ
2π

¼ −
θa
2π

þ κ
ðe�Þ2
Δν

¼
�
2

5
þ κ

3

5

�
: ð4Þ

The factor of 1=Δν makes interference at ν ¼ 2=5
significantly more sensitive to bulk-edge coupling than
at ν ¼ 1=3. This implies that a moderate bulk-edge cou-
pling parameter of κ ¼ 1

6
(the same critical value as for the

Aharonov-Bohm slope) can push Δθ to the transition point
of 0.5 × 2π, where the phase jumps cross over from
positive to negative. Thus, our observation of a mix of
positive and negative phase jumps may be explained by an
average bulk-edge coupling parameter of κ ≈ 1

6
≈ 0.167,

with small variations in the exact coupling of individual
localized quasiparticle states to the edge leading to some
quasiparticle transitions giving a positive change in phase
and some negative (with the phase defined from −π toþπ).
On the other hand, based on Eq. (4), it is more convenient to
define jumps in phase from 0 to 2π in order to quantitatively
account for the effect of bulk-edge coupling. The values
of the discrete jumps are listed in the inset of Fig. 6(b);
for the negative jumps, the value shifted into the range 0 to
2π is shown in parentheses. We calculate the average Δθ̄
using the values from 0 to 2π, which yields Δθ̄ ¼ ð0.53�
0.05Þ × 2π (note that the standard deviation is 0.15 × 2π,
and the uncertainty is estimated by the standard error).
This average value is somewhat higher than the ideal
value of Δθ ¼ −θa ¼ ð4π=5Þ, but as indicated by Eq. (4),
finite bulk-edge coupling tends to increase Δθ, so an
experimental value somewhat higher than the ideal value
is expected.
Based on Eq. (4), the anyonic phase can be extracted

from the phase jumps as θa ¼ −Δ̄θ þ 2πκ½ðe�Þ2=Δν�.

Using the value of κ ¼ 0.17 extracted from finite bias
measurements yields θa ¼ −ð0.43� 0.05Þ × 2π, in good
agreement with the value of θa ¼ −ð4π=5Þ predicted from
theory [4,35,55,57] and numerical work [58,61]. Thus,
our experiment confirms the theoretical prediction of any-
onic braiding statistics at ν ¼ 2=5 with statistical angle
θa ¼ −ð4π=5Þ. This is the first quantitative experimental
determination of the anyonic braiding phase at the hier-
archy ν ¼ 2=5 state.

VIII. BEHAVIOR IN THE COMPRESSIBLE
REGIME

As can be seen in Fig. 5(c), there is a limited range of
field where the checkerboard pattern of interference created
by discrete jumps in phase is visible; above and below this
region there are weak oscillations with a large magnetic
field period (corresponding to approximately 4Φ0) and a
positive slope in the B-ΔVSG plane. The values of magnetic
field where these transitions occur are similar to those
where the bulk transitions from incompressible to com-
pressible when interfering the outer mode, as seen in
Fig. 3, suggesting that the transition in behavior also
occurs due to the bulk becoming compressible. Coulomb-
dominated interference [36,44,46,55] can result in pos-
itively sloped oscillations in both compressible and
incompressible regimes. However, the positive-slope
oscillations in the compressible regions are not consistent
with interference in the fully compressible regime. With a
fully compressible bulk, an e=5 quasiparticle or quasihole
would be added or removed with each Φ0=2 increase in
flux in order to keep the density of the 2DEG constant.
This would result in oscillations with Φ0 magnetic field
period based on Eq. (1) (the lines of constant phase could
be positive or negative depending on the degree of bulk-
edge coupling, but this Φ0 period would remain the
same), much smaller than observed.
Additionally, the expected slope of Coulomb-dominated

oscillations would be smaller than what is observed, with the
steepest possible slope being for κ ¼ 1, for which Eq. (3)
yieldsΔVSG ≈ 4.4 mVandΔB ¼ Φ0 ≈ 11.5 mT,yieldinga
slope of 0.38 mV=mT (this would also be the slope for
Coulomb-dominated compressible-regime interference).
This slope is far smaller than the slope of 0.8 mV=mT of
the observed oscillations in the compressible region, giving
additional support for the fact that these oscillations cannot
be explained by Coulomb-dominated interference.
The observed slope approximately equal to 0.8 mV=mT

is close to the value of the slope of the quasiparticle
transitions seen in Fig. 6(a). This suggests that the peaks in
conductance correspond a Coulomb-blockaded resonant
tunneling process through the middle of the interferometer
(similar to process ii in Ref. [36]) rather than a true
interference process where tunneling occurs only at the
QPCs; this possible process is illustrated in Fig. 5(b). In this
process, conductance peaks occur when a particular
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quasiparticle state in the bulk becomes resonant with
chemical potential, and since the change in energy of these
states depends most acutely on the electrostatic charging
energy, contours of constant conductance would be
expected to follow the same slope as lines of constant
excess bulk charge, i.e., ðdVSG=dBÞ ¼ ðνĀ=Φ0αbulkÞ≈
0.64 mV=mT, which is the same slope as for the quasi-
particle transition lines. The oscillation periods would
depend on what fraction of quasiparticle states couple
strongly enough to both the upper and lower edges of the
interferometer to exhibit a conductance resonance; the
relatively large and somewhat irregular period may
suggest that this applies to only a fraction of quasiparticle
states in the bulk.
This bulk contribution to conductance is consistent with

the observation from Fig. 2(a) that conductance through
the device is quantized only in a very narrow window of
magnetic field even when minimal backscattering is
induced in the QPCs. On the other hand, the absence of
compressible-regime interference for the inner mode is
interesting, given that the outer mode does show interfer-
ence in this regime. A possible explanation for this is
thermal smearing of the quasiparticle number, leading to
topological dephasing [76]. A rapid suppression of ampli-
tude with the temperature was previously observed at
ν ¼ 1=3 in the compressible regime due to this mechanism
[18] (note also that for the outer mode at ν ¼ 2=5, the
amplitude is significantly suppressed in the compressible
regimes as can be seen in Fig. 3). For the inner mode at
ν ¼ 2=5, the relevant energy scale for confining quasipar-
ticles should be much smaller due to the small quasiparticle
charge e=5, making it plausible that the oscillations are so
strongly thermally smeared that they are not measurable.
Even in the incompressible regime, we find a small
temperature decay scale T0 ¼ 26 mK (see Supplemental
Material Fig. 7 and Sec. VIII [59]), so it appears reasonable
that interference is unmeasurable in the compressible
regime where the temperature decay scale will be even
smaller. This is supported by simulations (Supplemental
Material Fig. 5 [59]).

IX. CONCLUSIONS

We measure conductance oscillations due to interference
of the inner and outer edge modes at ν ¼ 2=5. The outer
mode exhibits behavior similar to ν ¼ 1=3, supporting the
expectation that the outer edge state at ν ¼ 2=5 has the
same properties as the single-edge state at ν ¼ 1=3,
although the smaller energy gap results in a narrower
range of magnetic field over which the bulk is incom-
pressible. The inner edge exhibits oscillations with a
gate-voltage period consistent with an interfering charge
e� ¼ 0.17� 0.02, close to the theoretically predicted value
of 1

5
. Discrete jumps in phase with average value Δ̄θ ¼ 0.53

are observed; after taking into account the impact of bulk-
edge coupling, we extract an anyonic braiding phase

θa ¼ ð−0.43� 0.05Þ × 2π, close to the theoretically antici-
pated value θa ¼ −ð4π=5Þ. These measurements give
experimental support to the theoretical prediction of any-
onic quasiparticles at the ν ¼ 2=5 state, and demonstrate
that Fabry-Pérot interferometry can be extended to frac-
tional quantum Hall states with multiple edge modes to
make quantitative measurements.

Note added in proof.—We note that θa as defined in Eq. (1)
and measured in our interference experiment is twice the
statistical angle θ that defines the phase acquired in a single
exchange of anyon positions. Measurement of θa deter-
mines θ modulo π, not modulo 2π. We thank Nick Read for
illuminating conversations on this point.
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