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First-principles calculations of phonons are often based on the adiabatic approximation and on Brillouin-
zone samplings that might not always be sufficient to capture the subtleties of Kohn anomalies. These
shortcomings can be addressed through corrections to the phonon self-energy arising from the low-energy
electrons. The exact self-energy involves a product of a bare and a screened electron-phonon vertex
[Rev. Mod. Phys. 89, 015003 (2017)]; still, calculations often employ two adiabatically screened vertices,
which have been proposed as a reliable approximation for self-energy differences [Phys. Rev. B 82, 165111
(2010)]. We assess the accuracy of both approaches in estimating the phonon spectral functions of model
Hamiltonians and the adiabatic low-temperature phonon dispersions of monolayer TaS2 and doped MoS2.
We find that the approximate method yields excellent corrections at low computational cost, due to its
designed error cancellation to first order, while using a bare vertex could in principle improve these results
but is challenging in practice. We offer an alternative strategy based on downfolding to partially screened
phonons and interactions [Phys. Rev. B 92, 245108 (2015)]. This is a natural scheme to include electron-
electron interactions and tackle phonons in strongly correlated materials and the frequency dependence of
the electron-phonon vertex.

DOI: 10.1103/PhysRevX.13.041009 Subject Areas: Computational Physics,
Condensed Matter Physics

I. INTRODUCTION

The interplay between interacting electrons and lattice
vibrations in solids gives rise to diverse phenomena ranging
from the quantitative, such as changes in the electric [1] or
thermal conductivities [2], to the qualitative, such as
instabilities toward charge [3] and superconducting order
[4]. Accordingly, the simulation of lattice dynamics is an
exceptionally well established branch of condensed-matter
physics [5]. Readily accessible total energies from density-
functional theory (DFT) [6,7] and the development of
density-functional perturbation theory (DFPT) [5,8,9] have

significantly advanced this field. Nowadays, phonon
frequencies and normal modes are obtained routinely and
at reasonable computational cost, enabling even high-
throughput studies [10,11]. For a wide range of materials,
from semiconductors [12,13] to metals [14], the agreement
between theory and experiment is remarkable.
Nevertheless, DFPT still depends on crucial approxima-

tions: First, the adiabatic or Born-Oppenheimer approxi-
mation [15] implicitly assumes that the dynamics of
electrons and ions happens on two well separated energy
scales. However, in some materials the relevant energies of
the electrons are similar to or even smaller than those of the
phonons, leading to nonadiabatic effects [16–25]. Second,
calculations are in practice limited to a sparse sampling of
the Brillouin zone (BZ) or, equivalently, short-range
interatomic force constants. This poses a problem for
materials close to a lattice instability, signaled by Kohn
anomalies [26] driven by a strong long-range electronic
response. Furthermore, the exchange-correlation energy is
described by an approximate functional. Thus, DFT-based
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methods will inevitably fail for strongly correlated materi-
als where the single-electron picture breaks down [27].
A popular approach in cases where the abovementioned

approximations cannot be applied is to amend the results
through suitable corrections to the self-energy of the
electrons [28,29] and phonons [16,30–34]. Here, one
usually faces a difficulty referred to as “double counting”
or “overscreening” [35–37]: An effect that is accounted for
in DFT must be removed before a more elaborate descrip-
tion of the same effect can be applied. This is closely
related to the concept of “downfolding” [38–40]: The full
problem is mapped to an ab initio low-energy effective
system with a significantly reduced number of degrees of
freedom [41]. Established downfolding methods for the
electron-electron and electron-phonon interactions [42]
are the constrained random-phase approximation (cRPA)
[38,43] and constrained density-functional perturbation
theory (cDFPT) [44], respectively. While for the former
several implementations in popular simulation software
exist [45–49], a general workflow for the latter is at an
earlier development stage [44,50,51].
In this work, we revisit the problem of obtaining

adiabatic and nonadiabatic phonons at a low electronic
temperature that are converged with respect to the sampling
of the BZ, originally addressed in Ref. [16]. In doing so, we
also react to the recently revived controversy about the
correct screening of the electron-phonon vertices in the
phonon self-energy: It is universally acknowledged that
both perturbative [35–37,52] and nonperturbative treat-
ments of the problem based on the Hedin-Baym equations
[30] yield a phonon self-energy with one bare and one
screened vertex. Still, there are strong arguments [16] that
the traditional choice [18,19,53–56] of two screened
vertices can not only be ascribed to the fact that these
are readily available from DFPT, but is indeed preferable
for phonon self-energy differences as long as the screened
vertex is approximated at the DFT level.
Here, by comparing the two approaches and supporting

them with numerical results for monolayer TaS2 and
n-doped MoS2, we will detail the following. (i) Working
with one bare vertex is exact and thus allows for systematic
improvements. However, the quality of the result depends
on the achievable precision of the screened vertex. The
computational cost is increased by the necessity to sum
over many electronic bands, but a possible way around
this problem has recently been published [57]. Also,
the bare vertex is not routinely obtained in a pseudopo-
tential framework. In practice, some authors have approxi-
mated the bare vertex by unscreening the DFPT vertex
with model dielectric functions [22,58], but their accuracy
is limited by the validity of these models. (ii) The estab-
lished approach with two screened vertices [16] yields
excellent results at low cost for a wide parameter range.
Its robustness can be explained by a designed cancellation
of errors to first order.

We also illustrate a third option (iii) based on down-
folding via cDFPT [44], which can be shown to be
equivalent to (i) with a computational cost similar to (ii).
By splitting the electronic transitions into an “active sub-
space” and its complement, the “rest subspace,” we can
gradually switch between the bare and the screened vertex
and settle for the optimum.Whenever we deal with strongly
correlated materials [29,59] or wish to also describe the
frequency dependence of the electron-phonon vertex
[30,52], which is beyond the scope of this work, it becomes
necessary to explicitly consider the electron-electron inter-
action. We believe that in these cases downfolding via a
combination of cRPA and cDFPT, as opposed to (i), is a
viable option because it provides a complexity reduction
without introducing a double-counting problem. In fact,
within such a framework, the ideas of (ii) can still be
applied [60].
Importantly, not only the bare but also the partially

screened quantities are, in good approximation, adiabatic—
in an Engelsberg-Schrieffer sense [61,62]—and indepen-
dent of the electronic temperature since the rest system is
gapped. As a consequence, they are also smooth in large
parts of reciprocal space, which facilitates interpolation and
ensures convergence already at coarse BZ sampling.
Nevertheless, there is also a drawback since the absence
of these screening effects is accompanied by the emergence
of long-range Fröhlich terms. Since the associated dis-
continuities in the derivatives of phonon dispersion and
electron-phonon coupling render a straightforward Fourier
interpolation impossible, an accurate description of these
long-range terms, which allows us to subtract and add them
before and after interpolation, is needed.
We implemented approaches (i), (ii), and (iii), in

QUANTUM ESPRESSO [63–65] and the EPW code [66–68],
see Supplemental Material [69], independently of an
existing realization of (ii) [70]. On this basis, we can
efficiently study the fine features of Kohn anomalies [71],
which arise from the active subspace, at the required (and
otherwise prohibitive) ultradense BZ sampling and with
frequency dependence.
This paper is organized as follows. In Sec. II, we present

the relevant theoretical concepts and formulas, which are
illustrated using simple models in Sec. III. Subsequently, in
Sec. IV, we describe our ab initio implementation, results
from which are shown in Sec. V. We finish by summarizing
our work and discussing possible generalization of the
scheme in Sec. VI.

II. THEORY

In this section, we review the theoretical background,
including the phonon Green’s function (Sec. II A), down-
folding (Sec. II B), the diagrams describing the screening of
phonons and interactions (Sec. II C), approximate phonon
self-energies (Sec. II D), their symmetrization (Sec. II E),
Friedel and Fröhlich long-range effects (Sec. II F), and
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the basics of Wannier-Fourier interpolation (Sec. II G).
We employ Hartree atomic units where me ¼ e ¼ ℏ ¼
4πϵ0 ¼ 1.

A. Phonon Green’s function and dynamical matrix

The lattice dynamics of a material can be described by the
phonon Green’s function or, more precisely, the retarded
displacement-displacement correlation function [72]:

GR−R0κακ0βðT; t − t0Þ ¼ −iΘðt − t0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MκMκ0

p
× h½ûRκαðtÞ; û†R0κ0βðt0Þ�iT; ð1Þ

where the Heaviside function Θ ensures that a displace-
ment introduced at time t0 can only propagate forward in
time t > t0, u and M are atomic displacements and
masses, R;R0 are Bravais lattice vectors, κ; κ0 and α, β
enumerate basis atoms and Cartesian directions, h� � �iT
denotes an ensemble average at electronic temperature T,
and ½� � � ; � � �� is the commutator. Knowledge of the
correlations between any two atomic displacements at
different times and positions as in Eq. (1) completely
characterizes the lattice dynamics.
Because of translational invariance, Eq. (1) depends on

differences of times t − t0 and lattice vectorsR −R0, which
allows for a Fourier transform to frequency ω and phonon
momentum q,

GqðT;ωÞ ¼
1

ω21 −DqðT;ωÞ
; ð2Þ

with the screened dynamical matrix D. Here, ω is defined
on the whole complex plane and the retarded phonon
Green’s function is obtained at ωþ i0þ with ω real and 0þ
a positive infinitesimal. The right-hand side of Eq. (2) is a
matrix inversion in the basis of displacements κα; κ0β, and
1 is the corresponding identity matrix.
The link to experiments such as inelastic neutron- or

x-ray-scattering spectroscopy [22] is the phonon spectral
function. It assigns an intensity to each combination of
energies ω and crystal momenta q and thus provides the
quasiparticle band structure, where applicable, including
many-body effects such as broadening and satellites. We
compute the phonon spectral function as [73]

AqðT;ωÞ ¼ −
2ω

π
Tr Im GqðT;ωþ i0þÞ: ð3Þ

Instead, the static (ω ¼ 0) adiabatic phonon frequencies
ωqν as obtained from DFPT, usually at high electronic
smearing σ, follow from the eigenvalue equation for the
dynamical matrix:

Dqðσ; 0Þeqν ¼ ω2
qνeqν; ð4Þ

where eqν are the phonon eigenvectors with mode index ν.

B. Screened, partially screened,
and bare quantities

In a typical ab initio calculation, all electronic states
are treated equally. However, the relevant physics often
takes place in a small subset of these states, namely the
low-energy states close to the Fermi level, which we refer
to as active states. In particular, if an ab initio calculation
for chosen parameters and approximations fails to con-
verge or capture the effects of interest, this is likely due
to processes within this subset of active states alone,
while the rest might already be properly described.
Before resorting to more elaborate treatments, it is thus
instructive to consider the different subsets of states and
corresponding energy scales separately [33,34].
While pure ab initio approaches always address the

full system, the downfolding approach [38,42–44] uses
ab initio calculations to construct tractable low-energy
systems with active states only, thus reducing the number
of degrees of freedom significantly. This approach is
exact, provided the complexity reduction is properly
compensated by the partial screening of the system
parameters. While the full system consists of simple
bare elementary particles and interactions, the parameters
of the downfolded system usually acquire dependences
on the involved quantum numbers and are in general also
frequency dependent [38,74]. The chosen active states
must thus span an energy window large enough that low-
energy effects and related dependences can be safely
neglected and at the same time small enough to keep the
computational cost affordable.
A typical choice of active and rest states is sketched in

Fig. 1. Note that here, for convenience but departing from
what is usually done, we define the active subspace not as
the set of active states but as the set of transitions
between them.
The full system with bare parameters would be recovered

if all states were counted among the active states. Hence,
special care has to be taken in the context of pseudopo-
tentials. Since quasiparticle energies and interactions
decrease with screening, the bare quantities in an all-
electron calculation are larger than those in a pseudopo-
tential framework with less core states.

C. Random-phase approximation (RPA)

In this section, we review the formulas that describe the
electronic screening of phonons and interactions in the
framework of the random-phase approximation (RPA)
[40,75–77]. In this approximation, the electronic response
is determined by the bare polarizability of the system. In
terms of Feynman diagrams, we consider all possible
diagrams consisting of bare phonons, the bare electron-
phonon interaction, the bare electron-electron interaction,
and electron-hole “bubbles.” In the static case (ω ¼ 0),
this is equivalent to the screening in DFPT as long as
the electrons are given by the adiabatically screened

PHONON SELF-ENERGY CORRECTIONS: TO SCREEN, OR NOT … PHYS. REV. X 13, 041009 (2023)

041009-3



Kohn-Sham states and the exchange-correlation kernel is
included in the bare electron-electron interaction [30,44].
A summary of the most relevant symbols used in the
following is provided in Table I.

1. Electron-electron interaction

We start with the screening of the electron-electron
interaction, for which the RPA has been originally derived

[75]. In the basis of electronic eigenstates, used throughout
the paper, the bare Coulomb interaction can be written as

vqkmnk0m0n0 ¼ hkþ qm;k0n0jv̂jkn;k0 þ qm0i; ð5Þ

with electron momentum k, band indices m, n, and the
virtual photon momentum transfer q. We purposely used
the symbol q as in Eq. (2) to highlight the fact that in RPA
the phonon and photon momentum transfers have to be the
same—this is no longer true beyond RPA. More precisely,
Eq. (5) quantifies the scattering of two electrons from
single-particle states jkni and jk0 þ qm0i into states
jkþ qmi and jk0n0i, respectively. In the basis of electronic
positions, it has the well-known diagonal representa-
tion hr; r0jv̂jr; r0i ¼ 1=jr − r0j.
The interaction between two electrons is, however,

screened by the polarizability of all other electrons.
Taking the formation of any number of electron-hole pairs
into account, the screened electron-electron interaction
WðT;ωÞ is related to the bare Coulomb interaction v via

ð6Þ

where q is transferred from the right to the left. As a
formula,

Wqkmnk0m0n0 ðT;ωÞ ¼ vqkmnk0m0n0 þ
X

k00m00n00
vqkmnk00m00n00

× χbqk00m00n00 ðT;ωÞWqk00m00n00k0m0n0 ðT;ωÞ;
ð7Þ

where the summation is over all pairs of band indices.
WðT;ωÞ as defined here is also used in the GW approxi-
mation [78–80]. The summation over an infinite number of

FIG. 1. Visualization of active (A) and rest (R) subspaces of
electronic transitions based on a generic band structure. A only
includes transitions between a chosen set of low-energy states
highlighted in orange, R all remaining transitions. Note that there
is in general an infinite number of empty states beyond the shown
energy range.

TABLE I. List of symbols used in this paper. Subscript momenta and band indices have been omitted for brevity.

Phonon Green’s function Electron-phonon coupling Bare electron susceptibility Miscellaneous

Gb bare gb bare χbðT;ωÞ full ω frequency argument
GpðT;ωÞ partially screened gpðT;ωÞ partially screened χb;RðT;ωÞ rest subspace T electronic temperature
GðT;ωÞ screened gðT;ωÞ screened χb;AðT;ωÞ active subspace σ ab initio smearing

Dynamical matrix Electron-electron interaction Phonon self-energy R Bravais lattice

Db bare v bare ΠðT;ωÞ ¼ gb χbðT;ωÞ gðT;ωÞ G reciprocal lattice

DpðT;ωÞ partially screened UðT;ωÞ partially screened ΠRðT;ωÞ ¼ gb χb;RðT;ωÞ gpðT;ωÞ k fermionic momentum

DðT;ωÞ screened WðT;ωÞ screened ΠAðT;ωÞ ¼ gpðT;ωÞ χb;AðT;ωÞ gðT;ωÞ q bosonic momentum

Basis indices Long-range electrostatics Π00ðT;ωÞ ¼ gðσ; 0Þ χb;AðT;ωÞ gðσ; 0Þ ϵ electronic energy

s, p electronic orbitals ϵ dielectric constant Πp0ðT;ωÞ ¼ gpðσ; 0Þ χb;AðT;ωÞ gðσ; 0Þ f electronic occupation

m, n electronic bands Z� Born effective charge ΠpTðT;ωÞ ¼ gpðσ; 0Þ χb;AðT;ωÞ gðT; 0Þ M atomic mass

κ; κ0 basis atoms Q quadrupole tensor Πb0ðT;ωÞ ¼ gb χb;AðT;ωÞ gðσ; 0Þ τ atomic position
α, β Cartesian directions L separation parameter ΠbTðT;ωÞ ¼ gb χb;AðT;ωÞ gðT; 0Þ u atomic displacement
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bands can be circumvented via the Sternheimer approach
[57,81–83].
The bare electronic susceptibility or “polarizability,”

from which any T or ω dependence originates, reads

χbqkmnðT;ωÞ ¼
2

N

fðεkn=TÞ − fðεkþqm=TÞ
εkn − εkþqm þ ω

; ð8Þ

where ε and f are the electronic energies and occupations,
the factor 2 accounts for the spin, and N is the number of k
points.
The most important contributions in Eq. (8) come from

transitions between occupied and empty states with similar
energies, i.e., from the low-energy electrons near the Fermi
level. This suggests to split the screening in Eq. (6) into two
steps, namely the downfolding to a low-energy system and
the renormalization to recover physical results. We label
the subset of transitions between properly chosen low-
energy active states as A and the remaining transitions as
the rest R (cf. Fig. 1). The bare susceptibility can then be
decomposed as

χbqkmnðT;ωÞ ¼ χb;AqkmnðT;ωÞ þ χb;RqkmnðT;ωÞ; ð9Þ

where the first and second term can only be nonzero if the
transition from jkni to jkþ qmi is part of A and R,
respectively.
First, in the downfolding step, the partially screened

electron-electron interaction UðT;ωÞ is calculated from the
bare Coulomb interaction v:

ð10Þ

This is known as the cRPA [38,43]. The corresponding
formula is equivalent to Eq. (7), except that the summation
is constrained to the transitions in R. In general, the
partially screened UðT;ωÞ depends on T and ω [38,74].
However, excluding low-energy transitions makes the
system effectively gapped and the dependence on T and
ω can be controlled via the size of the active subspace [84].
Second, in the renormalization step, the screened

WðT;ωÞ can be recovered from the partially screened
UðT;ωÞ [38,74],

ð11Þ

The corresponding formula is again equivalent to Eq. (7),
but now the summation is constrained to the finite number
of active bands. This allows us to evaluate the low-energy
response, which requires a dense BZ sampling at low
electronic temperature, at an affordable computational cost.

2. Electron-phonon interaction

The change of the electronic energies upon ionic dis-
placements is also screened by the surrounding electrons.
Without this screening, the bare electron-phonon coupling
in the electronic eigenbasis reads

gbqκαkmn ¼
1ffiffiffiffiffiffiffi
Mκ

p hkþ qmj ∂V̂
b

∂uqκα
jkni; ð12Þ

with the bare external potential Vb acting on an electron
amid the ensemble of ions. In the position representation,
we have hrjV̂bjri ¼ −

P
Rκ Zκ=jRþ τκ þ uRκ − rj, where

Zκ and τ are ionic charges and equilibrium positions within
the unit cell.
The screened electron-phonon interaction can be written

as g ¼ ϵ−1gb with the dielectric function ϵ ¼ 1 − vχb,
similarly to the screened electron-electron interaction
W ¼ ϵ−1v of Eq. (6), or, using diagrams, as (cf. Appendix I
of Ref. [85])

ð13Þ

Translated to a formula, it reads

gqκαkmnðT;ωÞ ¼ gbqκαkmn þ
X
k0m0n0

vqkmnk0m0n0

× χbqk0m0n0 ðT;ωÞgqκαk0m0n0 ðT;ωÞ: ð14Þ

Also the renormalization of the electron-phonon cou-
pling can be split into two steps: The partially screened
gpðT;ωÞ is obtained from the bare gb,

ð15Þ

which can be accomplished using cDFPT [44]. The
screened gðT;ωÞ follows from the partially screened
gpðT;ωÞ,

ð16Þ

The corresponding formulas are equivalent to Eq. (14).
Using the alternative expression for the inverse dielectric

function ϵ−1 ¼ 1þWχb and the corresponding formulas
for the active and rest subspace, we can also write Eqs. (13),
(15), and (16) as

ð17Þ
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ð18Þ

ð19Þ

In practice, these explicit definitions can be more conven-
ient if UðT;ωÞ and WðT;ωÞ are known.

3. Phonons

Finally, we consider how electronic screening affects the
phonons. Without any electronic response, the bare inter-
atomic force constants read [5]

Cb
R−R0κακ0β¼

Z
d3r

∂
2VbðrÞ

∂uRκα∂uR0κ0β
nðrÞþ ∂

2Φ
∂uRκα∂uR0κ0β

; ð20Þ

with the electron density n and the classical electrostatic
energy Φ ¼ 1=2

P
Rκ≠R0κ0 ZκZκ0=jRþ τκ þ uRκ −R0 −

τκ0 − uR0κ0 j of the ensemble of ions, which is often called
Ewald energy. The corresponding bare phonon Green’s
function Gb follows from the bare dynamical matrix
Db ¼ Cb=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MκMκ0

p
and Eq. (2).

As derived step by step in Sec. 5.1 of Ref. [86], the
screened phonon Green’s function GðT;ωÞ satisfies

ð21Þ

or, using matrices in the basis of ionic displacements,

GqðT;ωÞ ¼ Gb
q þGb

q · ΠqðT;ωÞ ·GqðT;ωÞ; ð22Þ

where we have defined the phonon self-energy as an
electron-hole bubble connected to a bare—to avoid double
counting the Coulomb interaction—and a screened elec-
tron-phonon vertex:

Πqκακ0βðT;ωÞ¼
X
kmn

ḡbqκαkmnχ
b
qkmnðT;ωÞgqκ0βkmnðT;ωÞ: ð23Þ

The bar denotes the complex conjugate. If we multiply
Eq. (22) with the matrix inverses ðGbÞ−1 and G−1ðT;ωÞ
from the left and right, respectively, and insert Eq. (2), we
are left with a simple additive formula for the screened
dynamical matrix:

DqðT;ωÞ ¼ Db
q þ ΠqðT;ωÞ: ð24Þ

Eventually, also the screening of the phonons can be split
into two steps. First, the partially screened GpðT;ωÞ is
derived from the bare Gb:

ð25Þ

Just like Eq. (21), Eq. (25) can be rewritten as an additive
equation for the dynamical matrix:

Dp
qðT;ωÞ ¼ Db

q þ ΠR
qðT;ωÞ: ð26Þ

In the second step, the screened GðT;ωÞ is retrieved from
the partially screened GpðT;ωÞ:

ð27Þ

Again, this translates into a simple addition of dynamical
matrix and phonon self-energy:

DqðT;ωÞ ¼ Dp
qðT;ωÞ þ ΠA

q ðT;ωÞ: ð28Þ

The phonon self-energy can thus be decomposed in the
same way as the bare susceptibility in Eq. (9) [cf. Eq. (57)
of Ref. [33] or Eq. (4.29) of Ref. [34]]:

ΠqðT;ωÞ ¼ ΠA
q ðT;ωÞ þ ΠR

qðT;ωÞ: ð29Þ

In the following, we will focus on corrections to the first
term, which reflects the relevant physics of the active
subspace.

D. Approximations to the phonon self-energy

As outlined in the previous section, the exact phonon
self-energy [Eq. (23)] is calculated using one bare and one
screened electron-phonon vertex. However, expressions
with two screened vertices are often used in practice. In
Ref. [16], the connection between these two formulations is
established: Using Eq. (13), and leaving T and ω depend-
ences understood for brevity, we can recast the phonon self-
energy as

ð30Þ
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ð31Þ

ð32Þ

i.e., as a phonon self-energy with two screened vertices less
a double-counting term [cf. Eq. (4.23) of Ref. [87] and
Eq. (4.5) of Ref. [88] ]. All of the above expressions
evaluate to the same result as long as all their constituents
are exact. If however—for reasons that will become evident
soon—each occurrence of the electron response gχb or χbg
in Eqs. (30) and (31) (only the mauve parts) is replaced by
an approximation to it, their values will differ. Here, by
construction Eq. (31) will deviate least from the exact
value. This is because its partial functional derivative with
respect to χbg vanishes:

ð33Þ

The same holds true for the derivative with respect to gχb.
This is not the case for the right-hand side of Eq. (30):

ð34Þ

Equation (31) is a stationary functional of the electron
response [16]. Consequently, an approximate electron
response yields errors only at second order. Hence, it
appears to be a reasonable approximation to replace the
electron response in Eq. (31) by the static (ω ¼ 0) and
high-smearing (T ¼ σ) responsewe obtain from an ab initio
calculation using DFPT:

ð35Þ

Since the approximate double-counting term does not
depend on T or ω, we only have to focus on the first term
when correcting ab initio phonon self-energies.
Using Eq. (16) and the fact that the partially screened

UðT;ωÞ and gpðT;ωÞ exclude low-energy screening and
are thus only weakly T and ω dependent (in the phononic
energy range), a corresponding expression can be derived
for the active-subspace phonon self-energy ΠAðT;ωÞ:

ð36Þ

For later analysis, we define the following five approxi-
mate active-subspace phonon self-energies:

ð37Þ

ð38Þ

ð39Þ

ð40Þ

ð41Þ

With Eq. (37), the approach of Ref. [16] to approximate
converged low-temperature nonadiabatic phonons based on
adiabatic high-smearing calculations can be formulated as

DqðT;ωÞ ≈D00
q ðT;ωÞ≡Du

qðσ; 0Þ þ Π00
q ðT;ωÞ; ð42Þ

Du
qðσ; 0Þ≡Dqðσ; 0Þ − Π00

q ðσ; 0Þ; ð43Þ

where we have defined the “unscreened” dynamical matrix
Duðσ; 0Þ. Note that in the original publication, a slightly
different approach via phonons at the high electronic temper-
ature T∞, chosen such that they can be safely interpolated, is
proposed. Equation (42) is equivalent for σ ≈ T∞.
With Eq. (38), the corresponding cDFPT-based

formula is

DqðT;ωÞ ≈Dp0
q ðT;ωÞ≡Dp

qðσ; 0Þ þ Πp0
q ðT;ωÞ; ð44Þ

Dp
qðσ; 0Þ≡Dqðσ; 0Þ − Πp0

q ðσ; 0Þ; ð45Þ

where the partially screened dynamical matrix Dpðσ; 0Þ is
calculated via unscreening Dðσ; 0Þ from DFPT but could
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also be directly obtained from a self-consistent cDFPT
calculation. We note that the choice between unscreening
and constraining is also relevant in other contexts [89].
A shortcoming of Eq. (38) is that the bare suscep-

tibility is generally calculated at a different electronic
temperature than the screened vertex. Taking the temper-
ature dependence of the screened vertex into account
yields Eq. (39) and

DqðT;ωÞ ≈ DpT
q ðT;ωÞ≡Dp

qðσ; 0Þ þ ΠpT
q ðT;ωÞ: ð46Þ

This will be insightful but is useless in practice since
gðT; 0Þ is as computationally expensive as DðT; 0Þ.
In the limit of an infinitely large active subspace,where the

partially screened vertex becomes bare, and for a single
electronic temperature T ¼ σ, Eqs. (44) and (45) are equiv-
alent to Eq. (145) of Ref. [30]. In practice, the phonon self-
energy with one bare vertex might also be calculated for a
finite number of active bands as in Eq. (40), which leads to

DqðT;ωÞ ≈Db0
q ðT;ωÞ≡Dub

q ðσ; 0Þ þ Πb0
q ðT;ωÞ; ð47Þ

Dub
q ðσ; 0Þ≡Dqðσ; 0Þ − Πb0

q ðσ; 0Þ: ð48Þ

Note that the unscreened Dub ≠ Db for finite active sub-
spaces. Also here, a variant with temperature-corrected
screened vertex can be studied. With Eq. (41),

DqðT;ωÞ ≈ DbT
q ðT;ωÞ≡Dub

q ðσ; 0Þ þ ΠbT
q ðT;ωÞ: ð49Þ

Importantly, the quality of Eqs. (42)–(49) is not deter-
mined by how close the approximate phonon self-energies
defined in Eqs. (37)–(41) are to the exact phonon self-
energy—in fact, the absolute values can be quite different.
Instead, what matters is the difference ΠAðT;ωÞ−ΠAðσ;0Þ,
the deviations from which we can quantify.
For the asymmetric formulations using one bare or

partially screened vertex we can readily recognize that

Πb0=p0
q ðT;ωÞ − Πb0=p0

q ðσ; 0Þ ≈ ΠA
q ðT;ωÞ − ΠA

q ðσ; 0Þ
þ
X
kmn

ḡb=pqκαkmnðσ; 0Þχb;AqkmnðT;ωÞ

× ½gðσ; 0Þ − gðT;ωÞ�qκ0βkmn; ð50Þ

where the error in the phonon self-energy correction is
linear both in the bare or partially screened vertex and
in the error of the screened vertex. Equation (50)
becomes exact for gpðT;ωÞ ¼ gpðσ; 0Þ, i.e., for a large
enough active subspace. Since the strength of the
partially screened vertex increases with the size of
the active subspace (asymptotically approaching the
bare vertex), we expect larger errors in Eq. (47) than
in Eq. (44), especially for small low-energy active
subspaces.

For the symmetric formulation using two screened
vertices, via the straightforward derivation in Appendix A,
we can analogously show that

Π00
q ðT;ωÞ−Π00

q ðσ;0Þ≈ΠA
q ðT;ωÞ−ΠA

q ðσ;0Þ
−1=N2

X
kmnk0m0n0

½gðσ;0Þ−gðT;−ω̄Þ�qκαkmnW
−1
qkmnk0m0n0 ðT;ωÞ

× ½gðσ;0Þ−gðT;ωÞ�qκ0βk0m0n0 ; ð51Þ

where the error is only quadratic in the error of the screened
vertex and where W−1 ¼ v−1ϵ is the inverse screened
electron-electron interaction [cf. Eq. (6)]. Equation (51)
becomes exact for gpðT;ωÞ ¼ gpðσ; 0Þ and UðT;ωÞ ¼
Uðσ; 0Þ [cf. Eq. (36)].
Finally, we remark that throughout the paper by the

word “static” we mean ω ¼ 0 and by “dynamical” that
a quantity has a frequency dependence ω. With the
word “nonadiabatic” we refer to an Engelsberg-
Schrieffer [61] type of nonadiabaticity, i.e., a non-
adiabatic electronic renormalization of adiabatic pho-
nons [16,62]. However, we still neglect adiabatic effects
beyond the Migdal theorem [90] arising from vertex
corrections, which are of the order

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=M

p
and thus

usually much smaller.

E. Symmetrization of the phonon self-energy

The approximate phonon self-energies Πp0 and Πb0 have
been defined such that the screened vertex is situated on the
right of the electron-hole bubble. An equivalent definition
with the screened vertex on the left is possible. While for
the exact Π both choices yield the same result, this is no
longer true when the bubbles contained in g through
Eq. (13) or Eq. (16) are approximated (cf. Fig. 3 of
Ref. [37]). To ensure that the static Πb0=p0ðT; 0Þ are
Hermitian [50] and the dynamical Πb0=p0ðT;ωÞ fulfill the
fluctuation-dissipation theorem [37], for the rest of the
paper we replace ḡb=pqκαkmnðσ; 0Þgqκ0βkmnðσ; 0Þ by

Gqκακ0βkmn ≡ 1

2

�
ḡb=pqκαkmnðσ; 0Þgqκ0βkmnðσ; 0Þ

þ ḡqκαkmnðσ; 0Þgb=pqκ0βkmnðσ; 0Þ
�

ð52Þ

in Eqs. (38) and (40) and similarly in Eqs. (39) and (41).
Note that complex conjugation of the coupling inverts the
scattering process in the static case where the bare
susceptibility is real and invariant under q ↔ −q. In the
dynamical case, care has to be taken to keep the frequency
argument in the correct quadrant of the complex plane
[cf. Eq. (51)].
By construction, G is a Hermitian matrix in the basis of

displacements κα; κ0β for each q, k and m, n. It has at most
two nonzero eigenvalues λð1Þ > λð2Þ of opposite sign
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belonging to the normalized eigenvectors vð1;2Þ, i.e., a
spectral representation

Gκακ0β ¼ ḡð1Þκα g
ð1Þ
κ0β − ḡð2Þκα g

ð2Þ
κ0β; ð53Þ

with gð1;2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jλð1;2Þj

q
vð1;2Þ. As long as gb=p and g mostly

differ in magnitude but not in direction, the negative
eigenvalue is negligibly small and the phonon self-energy
can be rewritten with the same effective vertex gð1Þ on both
sides. This applies if the dielectric function is largely
independent of or diagonal in the electronic indices.
For small q, long-range effects that will be discussed in
Sec. II F 2 enhance the orthogonal component of gb=p and
thus the negative eigenvalue.

F. Long-range effects

1. Friedel long-rangedness

In a metal, the bare electronic susceptibility usually has
sharp features at finite momenta in reciprocal space or,
equivalently, it is long-range in real space. This can
be referred to as Friedel [91], Peierls [92], or Kohn [26]
long-rangedness. These features are generated by the
low-energy system; i.e., they affect χb;AðT;ωÞ while
χb;RðT;ωÞ [cf. Eq. (9)] can safely be assumed to be
smooth in reciprocal space or short-range in real space.
This long-rangedness is inherited by the other screened
quantities discussed in Sec. II C, i.e., GðT;ωÞ or DðT;ωÞ,
gðT;ωÞ, and WðT;ωÞ. All remaining quantities are bare
or partially screened and thus smooth, which allows us
not only to calculate them using coarse integration
meshes but also to interpolate them easily. We show
an example of Friedel long-range effects for a one-
dimensional model in Fig. 2(a).

2. Fröhlich long-rangedness

The bare and partially screened phonons and electron-
phonon coupling do not show any Friedel long-rangedness.
However, as soon as the metallic screening is removed,
we deal with another type of long-range phenomenon
usually observed in insulators and semiconductors, which
we will refer to as Fröhlich or Coulomb long-rangedness,
most clearly recognizable in the bare Coulomb interac-
tion vðr; r0Þ ¼ 1=jr − r0j itself. In the absence of metallic
screening, this propagates into the bare or partially screened
quantities and manifests as divergences or discontinuities at
the center of the BZ, which would lead to Gibbs oscillations
when performing a naive Fourier interpolation. However,
analytical models for these effects exist [13,31,93–104],
allowing us to split the electron-phonon coupling and the
dynamical matrix into a long-range (L) and a short-range
part (S), the latter of which can be easily interpolated.
Here, we will apply a recent approach to model the

long-range electrostatics of two-dimensional materials

[101,105,106], including dipolar and quadrupolar terms,
wherewe neglect the effect of the out-of-plane polarizability
on the dynamical matrix.We decompose the bare or partially
screened dynamical matrix and electron-phonon coupling as

Db=p
qκακ0β ¼ DS

qκακ0β þDL
qκακ0β; ð54Þ

gb=pqκαRsp ¼ gSqκαRsp þ gLqκαδR0δsp; ð55Þ

where s and p label electronic orbitals located in the
unit cells at the origin and R, respectively. The long-range
parts read

DL
qκακ0β ¼ D̃L

qκακ0β − δκκ0
X
κ00

D̃L
0κακ00β; ð56Þ

D̃L
qκακ0β ¼

X
G≠−q

aqþGb̄qþGκαbqþGκ0β; ð57Þ

gLqκα ¼
X
G≠−q

aqþGbqþGκα; ð58Þ

where the summations over in plane reciprocal lattice vectors
G converge fast. The scalar part (independent of κ and α) is

aq ¼ 2πfLðqÞ
Ajqj

�
1þ cfLðqÞ

2jqj qTðϵ − 1Þq
�
−1
; ð59Þ

with the unit cell areaA and height c, the dielectric constant ϵ,
and the cutoff functionfLðqÞ ¼ 1− tanhðjqjL=2Þ. The range-
separation parameterL is chosen such that the real-space force
constants are minimized. The vectorial part is given by

bqκα ¼
e−iqτκffiffiffiffiffiffiffi
Mκ

p
�
iZ�

καqþ 1

2
qTQκαq

�
; ð60Þ

including the Born effective charges Z�
καβ and the quadrupole

tensorsQκαββ0 . Note that neither phonons nor effective charges
from cDFPT calculations fulfill the acoustic sum rule. In the
bare system, ϵ ¼ 1 and Z� ¼ Z1 with nuclear charge Z.

G. Wannierization and Fourier interpolation

In practice, calculations of the electronic energies and
especially the dynamical matrices and electron-phonon
couplings are limited to a coarse grid of k and q points
in the BZ. The points in between are usually obtained via
Fourier interpolation, i.e., by a discrete Fourier transform
into a localized representation and the smoothest possible
back transform to arbitrary points. The phononic degrees
of freedom already have a natural localized basis, namely
the Cartesian ionic displacement directions; for the elec-
trons, the basis of Wannier functions [107], i.e., localized
orthogonal orbitals, is used.
For instance, the interpolant of the short-range part of the

electron-phonon coupling [66] as used in the EPW code
[66–68] reads

PHONON SELF-ENERGY CORRECTIONS: TO SCREEN, OR NOT … PHYS. REV. X 13, 041009 (2023)

041009-9



gSqνkmn¼
X

RκαR0sp

eqκανψ̄kþqsmgSRκαR0spψkpneiðqRþkR0Þ; ð61Þ

where e and ψ are the eigenvectors of dynamical matrix
and Wannier Hamiltonian, for which equivalent formu-
las hold.
Having handled the Fröhlich long-rangedness (Sec. II F 2),

we can safely interpolate all quantities except those related to
χb;AðT;ωÞ at low T, which has to be evaluated on a dense
mesh because of the inherent Friedel long-rangedness
(Sec. II F 1).

III. MODEL RESULTS

Inspired by Ref. [37], to illustrate selected formulas
given in the previous section, we will now apply them to
minimal models for which the dynamical phonon self-
energy ΠðT;ωÞ in RPA as defined in Eq. (23) is accessible.
First, in Sec. III A, we consider a one-dimensional chain
with nearest-neighbor hopping parameter, force con-
stant, and electron-phonon coupling, similar to what has
been used by Peierls [92] and Su et al. [108]. Second, in
Sec. III B, we consider the lowest band of a periodic
homogeneous electron gas with Fröhlich electron-phonon
coupling. We complement both models with suitable elec-
tron-electron interactions to realize different screening levels
of the electron-phonon coupling. As there is only one
electronic band, which is considered as active, no distinction
between bare and partially screened quantities is made here.

A. Generalized one-dimensional Peierls model

We model the electron and phonon dispersion as well as
the electron-phonon and electron-electron interaction as

εk ¼ −t cosðkÞ; ð62Þ

Db
q ¼ ω2

0½1 − cosðqÞ�; ð63Þ
gqkðT; 0Þ ¼ ig0½sinðkÞ − sinðkþ qÞ�; ð64Þ

Uq ¼ U0 − V0 log½sinðjqj=2Þ�; ð65Þ

wherewe choose t¼ 1 eV,ω0 ¼ 50 meV, g0 ¼ 0.02 eV3=2,
a local U0 ¼ 1 eV, and a nonlocal V0 ¼ 0.5 eV. At half
filling, the Fermi wave vector is kF ¼ π=2 and the chemical
potential zero.
Note that while Db and U are bare, we define an

adiabatically screened gðT; 0Þ, from which the bare gb

follows through unscreening using Eq. (16). The screened
WðT;ωÞ, gðT;ωÞ, and DðT;ωÞ are then obtained via
Eqs. (6), (17), and (21). Our choice for the coupling has
the disadvantage that gb rather than g depends on electronic
temperatureT and the filling kF via a k-independent “on site”
term. This however ensures a physically sound gðT; 0Þ—
describing the displacement-induced change of the hopping

parameter t—and does not invalidate our central findings,
displayed in Figs. 2(a)–2(c).
In Fig. 2(a), we show the relation between static low-

energy electronic screening and long-range force constants at
half filling, as discussed in Sec. II F 1. The force constants are
obtained from DðT; 0Þ via a discrete Fourier transform. At
the high electronic temperature of T ¼ 1 eV, the phonon
dispersion is smooth and the corresponding force constants
decay to nearly zero already after the first neighboring site.
As soon as the electronic temperature is lowered, a Kohn
anomaly [26] in the phonon dispersion emerges at the BZ
boundary q ¼ 2kF ¼ π, and the force constants become
long-range exhibiting Friedel oscillations [91], whereby the
sign changes from one site to the other. For the chosen
parameters, the phonons become soft (imaginary frequen-
cies) below the charge-density wave (CDW) temperature
TCDW ¼ 6.16 meV, indicating the onset of the dimerization.
We now turn to the nonadiabatic case. Figure 2(b) shows

the phonon spectral function in RPA using Eq. (3) at T ¼
25 meV for kF ¼ π=2 (orange shade) and kF ¼ π=3
(mauve shade), together with the corresponding adiabatic
phonon frequencies (solid lines). In practice, we replace the
infinitesimal 0þ by a small value of 0.4 meVand sample the
BZ using 55 440 k points. There are no noteworthy non-
adiabatic effects in the vicinity of the Γ point, toward which
the coupling vanishes. However, when approaching the
Kohn anomaly, whose position q ¼ 2kF moves away from
the BZ boundary upon doping, the branch starts to broaden
significantly.
In Fig. 2(c), we show cross sections through the phonon

spectral function at the Kohn anomaly. We compare the
results using ΠðT;ωÞ in RPA [Eq. (23)] (solid lines) with
corresponding data from Π00ðT;ωÞ [Eq. (37)] (dashed
lines) and Πb0ðT;ωÞ [Eq. (40)] (dotted lines). Here, we
first calculate DðT; 0Þ in static RPA, to which we add
phonon self-energy differences according to Eqs. (42) and
(47). As we do not change the electronic temperature, no
distinction between low σ and high T is made. While at half
filling all approaches agree since g ¼ gb by symmetry,
away from it they start to deviate. The approach using two
screened vertices remains close to the RPA result, while the
combination of bare and approximately screened vertices
overestimates the linewidth. This is consistent with the
linear and quadratic errors quantified in Sec. II D. Indeed,
subtracting the second and third lines of Eqs. (50) and (51),
accessible for this model, from the approximate Db0ðT;ωÞ
and D00ðT;ωÞ, respectively, we recover the RPA result.
The quadratic error simplifies to hgqkðT; 0Þ − gqkðT;ωÞi2k=
WqðT;ωÞ, where h� � �ik denotes the k average.

B. Generalized three-dimensional Fröhlich model

As a second model, similar to the one considered in
Sec. V C of Ref. [37], we now consider the lowest band of a
periodic homogeneous electron gas,
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ϵk ¼ 1

2m�min
G

jkþGj2; ð66Þ

with an effective massm� ¼ 2me in a cell of lattice constant
a ¼ 10 Å (defining the reciprocal lattice vectors G), a
constant Einstein phonon of frequency

ωb
q ¼ ω0; ð67Þ

with ω0 ¼ 25 meV, the Fröhlich electron-phonon coupling

gbq ¼ ig0max
G

1

jqþGj ; ð68Þ

with g0 ¼ 55 meV3/2/Å, and the Coulomb interaction

Uq ¼ U0max
G

1

jqþGj2 ; ð69Þ

with U0 ¼ 5 meV=Å2. We choose kF ¼ π=2a.
Our model differs from the one of Ref. [37] in the choice

of parameters, which in our case do not describe MgB2.
Also, Ref. [37] considers the full k and q dependence of the
extended system. We obtain the screened quantities as
described in the previous section, Sec. III A, this time using
T ¼ η ¼ 3 meV in combination with 2403 k points. In
addition, we approximate the phonon linewidth as [37]

γð00=b0Þq ¼ −
1

ω0

Im Πð00=b0Þ
q ðω0 þ iηÞ: ð70Þ

The results are shown in Fig. 2(d). Interestingly, for
the selected phonon momentum q≡ qx ¼ kF=2, the pho-
non self-energy in RPA yields a nontrivial phonon line
shape with a satellite at about 68 meV (solid line).
This feature is not captured by the screened-screened
approach (dashed line), which means that it is encoded
in the infinite series of dynamical electron-hole bubbles
included in gðT;ωÞ. However, the main phonon peak at
about 13 meV is relatively well reproduced. Again, the
bare-screened approach (dotted line) overestimates the
linewidth. This can also be seen in the inset, where
γ from Eq. (70) is shown as a function of q. As the
coupling in this model does not depend on k, the quadratic
error of D00ðT;ωÞ simplifies even more and reads
½gqðT; 0Þ − gqðT;ωÞ�2=WqðT;ωÞ.
The findings presented above suggest that the approach

of Ref. [16] can indeed be used to estimate the frequency-
dependent dynamical matrix based on adiabatic results. It is
however not clear to what extent the conclusions drawn
from these models can be transferred to realistic materials
simulated ab initio. This question will be addressed in the
following sections. Since here, different from the model
case, nonadiabatic reference data are missing, we will not

FIG. 2. Results for the generalized (a)–(c) one-dimensional Peierls and (d) three-dimensional Fröhlich models. (a) Adiabatically
screened phonon dispersion in RPA with Kohn anomaly for different electronic temperatures T at half filling. The inset depicts the
corresponding interatomic force constants, where dashed lines are guides for the eye. (b) Phonon spectral function in RPA together with
adiabatic phonon dispersion at T ¼ 25 meV at half filling (orange) and one-third filling (mauve). (c) Cross section through the spectral
function at the Kohn anomaly according to Eq. (24) (RPA), Eq. (42) (“screened-screened”), and Eq. (47) (“bare-screened”).
(d) Corresponding figure for the Fröhlich model for a selected Fermi wave vector kF and phonon momentum q. The inset depicts the
linewidth according to Eq. (70) as a function of q.
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consider the transition from the static to the dynamical case
but rather from high to low electronic temperature.

IV. IMPLEMENTATION

We implemented routines to perform cDFPT calculations,
based on existing code provided by the authors of Ref. [44],
and to renormalize the phonons according to Eqs. (42)–(49)
in the PHONON and EPW codes [66–68], which are part of the
QUANTUM ESPRESSO distribution [63–65]. The correspond-
ing patch is provided in Supplemental Material [69].
The implementation of constrained theories such as cRPA

and cDFPT on top of existing programs to perform uncon-
strained RPA or DFPT calculations is straightforward and
requires onlyminor modifications of the source code [44]. In
fact, the most difficult aspect is the definition of suitable
electronic active subspaces, i.e., the identification of the band
indices (usually sorted by energy in ab initio codes) that
belong to the active bands for eachk point. In fortunate cases,
an appropriate low-energy subspace is isolated from all other
bands [50]. In thegeneral case, however, the active bandswill
be entangled with other bands.
For simplicity, we define the cDFPT active subspace via

an energy window, but a selection via band indices or
orbital projections is also possible [109]. We use a slightly
modified version of the PHONON code with additional input
parameters cdfpt_min and cdfpt_max, which define
the lower and upper bounds of the energy window, as well
as bare to suppress the electronic response.
The calculation and interpolation of the electron-phonon

coupling aswell as the phonon renormalization are donewith
the EPW code [66–68]. Usually, the EPW code reads a single
directory dvscf_dir including the dynamical matrices D
and the change of the self-consistent potential ∂V fromDFPT
as calculated with the PHONON code. We define a second
input parameter cdfpt_dir pointing to analogous data
Db=p and ∂Vb=p from a bare or cDFPT calculation. This
directory also contains the values of cdfpt_min and
cdfpt_max, which for convenience are used to set the
default “frozen window” for the generation of Wannier
functions [110]. If both dvscf_dir and cdfpt_dir
are specified, the modified code performs the calculation of
the electron-matrix elements gðσ; 0Þ and gb=pðσ; 0Þ and the
Fourier interpolation of the dynamical matrices Dðσ; 0Þ and
Db=pðσ; 0Þ and thematrix elements in the sameway. The fact
that identical basis transforms are employed on both the
DFPT and the cDFPT data ensures a consistent gauge.
Finally, we evaluate phonon self-energies and spectral
functions for arbitrary q points using dense k meshes and
small electronic temperatures.
Besides the above, we introduced additional inputs for

the EPW code: Since the cDFPT quantities do not always
fulfill the acoustic sum rule [39], enforcing it can be disabled
using asr_typ=’none’. To properly handle the long-
range terms in cDFPT, we define lpolarc and read the
file quadrupolec.fmt in addition to the existing

lpolar and quadrupole.fmt. Using unscreen_
fine, Duðσ; 0Þ and Dub=pðσ; 0Þ can be calculated on the
dense instead of coarse BZ meshes [cf. Eqs. (43), (45), and
(48)]. We select T and the corresponding smearing function f
via temps and types. Finally, the i0þ appearing in the
phonon spectral function in Eq. (3) is set in practice via two
smearings, degaussw and degaussq, using Eq. (79)
defined later.

V. AB INITIO RESULTS

In this section, we apply the above to monolayer TaS2, for
which we calculate screened, partially screened, and bare
phonons (Sec. VA), the corresponding electron-phonon
coupling (Sec. V B), renormalized phonons using the differ-
ent approaches (Secs. V C andVD), and the phonon spectral
function (Sec. V E). To test for general validity, we perform
additional calculations for n-doped MoS2; see Appendix B.
The trigonal-prismatic transition-metal dichalcogenide

TaS2 is long known to be a showplace of competing
CDWs [111] and superconductivity [112,113], which are
suppressed and enhanced, respectively, when reducing the
material thickness to the monolayer [114,115]. Based on
cDFPT results [50], the lattice instability and associated
Kohn anomalies are exclusively due to low-energy electronic
screening from an isolated half-filled band at the Fermi level.
These signs of significant electron-phonon coupling andwell
separable electronic energy scales make monolayer TaS2 an
ideal system to test the discussed methods and to study the
different levels of electronic screening.
In the ab initio calculations, we apply the Perdew-Burke-

Ernzerhof (PBE) functional [116] and corresponding norm-
conserving pseudopotentials with nonlinear core correction
and without semicore (SC) states from the PSEUDODOJO

table [117,118] at an energy cutoff of 100 Ry. We separate
periodic images of the layer using a unit-cell height of 15 Å
together with a truncation of the Coulomb interaction in this
direction [119]. The relaxed lattice constant is a ¼ 3.34 Å.
For the high-smearing starting point, we use a Marzari-
Vanderbilt smearing [120] of σ ¼ 20 mRy in combination
with uniform 12 × 12 k- and q-point meshes (including Γ),
sufficient for this smearing. Reference low-temperature data
are generated using a Fermi-Dirac smearing ofT ¼ 1.9 mRy
(300 K) and 48 × 48 k points. Minimizing forces to below
1 μRy=bohr yields a layer thickness (sulfur-sulfur distance)
of d ¼ 3.13 Å, which is recomputed for each considered
smearing and k mesh but does not change significantly. For
the Fourier interpolation, we use one-shotWannier functions
obtained from projections onto atomic orbitals (cf. Fig. 3) to
ensure perfect symmetry, with the exception of the 22-bands
case where we use maximally localized Wannier functions
(MLWF) [107] with (i) a Ta-2s orbital, (ii) a 1s orbital
vertically centered between two S atoms, and (iii) another
three 1s orbitals halfway between (i) and (ii) as initial
projections for the additional five conduction bands.
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A. From screened to bare phonons

The Kohn-Sham band structure of monolayer TaS2 from
DFT is shown in Figs. 3(a)–3(e). At the Fermi level, there is
a half-filled isolated band of Ta-dz2 , -dx2−y2 , and -dxy orbital
character. These orbitals also span the two lower empty
bands, which partially overlap but do not hybridize with the
two higher empty bands of Ta-dxz and -dyz character. The
occupied bands are formed by four isolated blocks of (in
order of decreasing energy) six S-p, two S-s, three Ta-p,
and one Ta-s band.
To trace the transition from screened to bare phonons and

interactions, we perform cDFPT calculations for active
subspaces of different size, including zero (DFPT), one,
five, 13, 17, and 22 bands. Note that even if all bands
explicitly calculated in DFT were considered active, the
infinite number of empty bands accounted for via the
Sternheimer approach as well as the core bands hidden into
the pseudopotential would still contribute to the screening
(cf. Appendix C).
The corresponding Fourier-interpolated phonon disper-

sions are shown in Figs. 3(f)–3(j). The DFPT phonon

dispersion, obtained fromDðσ; 0Þ via Eq. (4), is reproduced
as a reference in each panel using solid orange lines. It
features a softening of the longitudinal-acoustic branch,most
pronounced at q ¼ 2=3 M, signaling the tendency toward
the experimentally observed3 × 3CDW[111]. Interestingly,
at the highMarzari-Vanderbilt smearing of σ ¼ 20 mRy, the
system is dynamically stable with no imaginary frequencies.
The partially screened phonons, obtained from Dpðσ; 0Þ,

corresponding to the different choices of active bands, are
shown using solid mauve lines. Excluding electronic
screening from within the isolated band only [Fig. 3(f)]
already removes all q-dependent softening of the longi-
tudinal branch, which is now highest in energy among the
acoustic branches. For five active bands [Fig. 3(g)], the
situation is similar, except that the acoustic sum rule is no
longer fulfilled because we freeze long-wavelength dipole-
allowed transitions [39], and the acoustic phonons acquire
a finite energy at Γ (cf. Appendix C). This effect is even
more pronounced for 13 [Fig. 3(h)], 17 [Fig. 3(i)], and 22
[Fig. 3(j)] active bands, where the partially screened
dispersions have shifted to much higher energies, the
originally acoustic phonons reaching about 175 meV in

FIG. 3. (a)–(e) Electronic band structure of monolayer TaS2 from DFT. Possible choices for sets of active bands of increasing size are
shown using thick mauve lines. All colored bands (mauve or orange) have been Wannierized based on projections onto the indicated
atomic orbitals. (f)–(j) Corresponding phonon dispersions for a high Marzari-Vanderbilt smearing of σ ¼ 20 mRy. Screened and
partially screened phonons from DFPT and cDFPT are shown using solid lines, renormalized (screened cDFPT and unscreened DFPT)
phonons using dashed lines.
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the latter case. Note that some of the branches feature a
finite slope near Γ, which is due to the lack of metallic
screening and corresponds to long-range interactions in
real space. We used the electrostatic model introduced in
Sec. II F 2 to properly interpolate these phonons, the
details of which are found in the next section.
If we renormalize the partially screened phonons evalu-

ating Eq. (44) at ω ¼ 0 using exactly the same smearing
T ¼ σ and BZ sampling as in the ab initio calculation, we
obtain the dashed mauve lines in Figs. 3(f)–3(j). They
coincide with the DFPT result for all sizes of the active
subspace, showing that the phonon self-energy with one
partially screened and one screened vertex is exact as long
as all involved quantities are exact too. Note that all
quantities entering Eq. (44) have been directly computed
using DFPT and cDFPT on the coarse grid and only the
resulting Dp0ðσ; 0Þ has been Fourier interpolated along the
high-symmetry lines shown in Figs. 3(f)–3(j).
Finally, in Figs. 3(f)–3(j) we also show the unscreened

phonons from Duðσ; 0Þ according to Eq. (43), again
calculated on the original coarse mesh and interpolated

only in the end, using dashed orange lines. Since gðσ; 0Þ is
smaller than gpðσ; 0Þ, Π00ðσ; 0Þ is smaller than Πp0ðσ; 0Þ.
As a consequence, also the unscreened phonon frequencies
are lower than (or at most equal to) the cDFPT ones; some
q-dependent softening is still present albeit hardly dis-
cernible because of the large smearing chosen. A practical
advantage is the absence of long-range terms [87,121]; the
slope of all branches vanishes toward Γ.

B. From screened to bare electron-phonon coupling

Now we will discuss the screened and partially screened
electron-phonon coupling gðσ; 0Þ and gpðσ; 0Þ corres-
ponding to the different active subspaces. In Fig. 4, the
absolute value of the interpolated coupling with the
isolated electronic band at the Fermi level is shown as
a function of q with k ¼ 0 for all nine phononic
eigenmodes. Reference data from direct DFPT and cDFPT
calculations are shown using black dots. Tick marks have
been placed at those q points that are part of the 12 × 12

mesh on which the interpolation is based. The interpolated

FIG. 4. Electron-phonon coupling of monolayer TaS2 from (a) DFPT and (b)–(f) cDFPT for different sizes of the active subspace at a
Marzari-Vanderbilt smearing of σ ¼ 20mRy. We show the absolute value of the coupling to the isolated low-energy electronic band as a
function of q with k ¼ 0 for all phononic eigenmodes and using different approaches to handle the long-range part. The black dots
indicate direct DFPTand cDFPT results and serve as a reference. The insets show the decay of the maximum absolute value of the short-
range part (max jgSRj) with the length of the lattice vector jRj [cf. Eq. (61)].
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quantities are guaranteed to match the reference data at
these original q points by construction.
In the case of the screened gðσ; 0Þ from DFPT shown in

Fig. 4(a), the interpolated coupling matches the reference
coupling everywhere. Here the system is metallic such that
the coupling is continuous and smooth at the zone center,
and due to the high electronic smearing there are no sharp
features away from Γ either. Thus, the coupling is short-
ranged (inset).
However, as soon as low-energy screening is excluded,

peaks at Γ emerge whose magnitude increases with the
number of active bands, and the overall magnitude of the
coupling increases too, as seen in Figs. 4(b)–4(f). A naive
Fourier interpolation of these data yields the gray curves,
which by definition match the reference at all original q
points but are wrong in the vicinity of Γ. This is because the
peaks belong to the long-range part, which has to be
subtracted before interpolation and added back afterward,
as detailed in Sec. II F 2. The insets show the decay in real
space with (gray) and without (mauve and orange) long-
range part.
Using the equations in Sec. II F 2 with the dielectric

constant ϵ and Born effective charges Z� as obtained from
the cDFPT calculation but neglecting the term in Eq. (60)
that involves the quadrupole tensors Q, which cannot be
calculated from perturbation theory with QUANTUM

ESPRESSO at present, we obtain the orange lines. Most of
the reference points are reproduced, but there are still
deviations for the two modes that peak when approaching Γ
in Figs. 4(b) and 4(c) as well as for the third mode with
appreciable coupling for small q in Figs. 4(b)–4(f). The
former discrepancy is likely due to inaccuracies in ϵ or Z�.
The latter however occurs for a phonon mode where the
atoms move in the out-of-plane direction and can be traced
back to the missing term with QSz in Eq. (60).
The quadrupole tensors Q could be calculated ab initio

with ABINIT [122,123], albeit only within the local-density
approximation and PBE exchange-correlation functionals
and without nonlinear core correction [124]. We instead
choose an approach similar to the one in Ref. [100] and fit
the quadrupole tensors minimizing the error in the inter-
polated phonons and coupling for all reference q points
marked with black dots in Figs. 4(b)–4(f) [125]. The
resulting contributing elements of Q together with those
of ϵ and Z� from cDFPT and the optimal L are listed in
Table II. As shown using mauve lines in Figs. 4(b)–4(f), the
coupling to the out-of-plane mode is correctly interpolated
when the quadrupole term is taken into account.

C. Comparison of approaches

After the analysis of the screened and partially screened
phonons and interactions calculated for the high Marzari-
Vanderbilt smearing of σ ¼ 20 mRy and a coarse momen-
tum grid, we will now use Eq. (42) (with two screened
vertices), Eqs. (44) and (46) (with one partially screened
vertex), as well as Eqs. (47) and (49) (with one bare vertex)

to estimate the screened phonons for a low electronic
temperature (Fermi-Dirac smearing) of T ¼ 1.9 mRy and
dense momentum grids. On this basis, we will compare the
different approaches with special focus on the influence of
the number of active bands. The results are shown in Fig. 5
together with converged reference points from direct DFPT
calculations. At this electronic temperature, the system is
dynamically unstable, as indicated by imaginary frequen-
cies, and exhibits relatively sharp Kohn anomalies. The
adiabatically renormalized phonon dispersions have not
been interpolated but calculated for each q point along the
path separately, using a converged 96 × 96 k mesh. Only
the underlying quantities, namely the electronic energies ϵ,
the screened dynamical matrix Dðσ; 0Þ, and the screened,
partially screened, and bare electron-phonon coupling
gðσ; 0Þ, gpðσ; 0Þ, and gb, have been interpolated. Alter-
natively, the interpolation could be performed at the level of
the unscreened Duðσ; 0Þ and partially screened Dpðσ; 0Þ
instead of the screened Dðσ; 0Þ, but this degrades the
results because errors accumulate; see Appendix D. In
all self-energy calculations, the chemical potential has been
adjusted to the respective smearing function f and elec-
tronic temperature σ or T.
Figures 5(a)–5(e) display the renormalized phonons

from D00ðT; 0Þ according to Eq. (42), which is equivalent
to the approach suggested in Ref. [16]. Most reference
points are well reproduced—even the shape of the soft
mode, which is remarkable since it is completely absent in

TABLE II. Parameters used in the long-range terms of the
phonons shown in Figs. 3(f)–3(j) and the electron-phonon
coupling in Figs. 4(b)–4(f). The in-plane dielectric constants ϵ
and Born effective charges Z� (e) stem from cDFPT calculations.
The independent elements of the quadrupole tensors Q (e bohr)
have been optimized by fitting the interpolants to reference
cDFPT data. The out-of-plane elements QSααz do not contribute.
The other elements are either zero or follow from Qκxxy ¼
Qκxyx ¼ Qκyxx ¼ −Qκyyy and Qκzxx ¼ Qκzyy, with QS0α ¼
ð1 − 2δαzÞQSα, where S0 denotes the other S atom. The range-
separation parameters L (bohr) have been optimized at Q ¼ 0 for
simplicity. See Appendix C for more information about the bare
values (“All”), where the last line is for different pseudopotentials
with SC states. We report values for neighboring Ta and S atoms
with τS − τTa ¼ ð0; a= ffiffiffi

3
p

;−d=2Þ. Note that the optimized values
of the bare QSzyy are remarkably close to Z�

Sd ¼ 35.44 ebohr and
Z�
S;SCd ¼ 82.69 ebohr.

Bands ϵ Z�
Ta Z�

S QTayyy QSyyy QSzyy L

1 3.93 2.13 −0.53 6.20 1.25 4.39 6.8
5 3.30 2.84 −0.43 6.21 1.82 5.48 6.4
13 1.62 3.97 2.07 3.84 −2.64 15.01 5.4
17 1.61 6.75 2.06 6.22 −2.59 14.80 5.3
22 1.13 8.74 3.96 9.71 −1.01 19.73 5.5
All 1.00 13.00 6.00 0.23 0.38 35.06 3.8

SC all 1.00 27.00 14.00 7.31 0.23 82.08 3.8
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the high-smearing data used as the starting point, shown
using thin gray lines. The agreement is even better for
larger active subspaces, for which the approximations
leading to Eq. (36) are less severe since the T dependence
of U and gp is strongly suppressed. We note that here the
active subspace merely defines the number of bands
summed over since no downfolding to partially screened
quantities is involved in this approach. Only near Γ, the
acoustic sum rule is slightly broken, resulting in unphysical
finite energies of the acoustic modes. This might be related
to small changes in the atomic positions upon cooling the
system, which are not captured by the discussed methods.
The corresponding results from Dp0ðT; 0Þ according

to Eq. (44) are shown in Figs. 5(f)–5(j), where Fig. 5(f)
represents the proposed use of an optimal active
subspace and Fig. 5(j) is the closest we get to using
a bare vertex (cf. Appendix C). The cDFPT-based
approach throughout overestimates the phonon soften-
ing, more severely the larger the active subspace. This
may be surprising since the diagrammatically correct

combination of partially screened and screened vertices
is used. However, opposed to the partially screened
coupling gpðT; 0Þ ≈ gpðσ; 0Þ, the correct screened cou-
pling gðT; 0Þ ≉ gðσ; 0Þ depends significantly on T, a fact
that is not properly accounted for. When using the larger
gðσ; 0Þ in place of gðT; 0Þ in Πp0ðT; 0Þ, we underestimate
the screening of the coupling and thus overestimate the
screening of the phonons. In the approach of Ref. [16]
in turn, the error in the phonon self-energy correction
only enters at second order in the error of the coupling,
as quantified in Eq. (51).
To prove that the overscreening seen in the cDFPT-based

approach is indeed due to the failure to adjust the screened
coupling to the target temperature, we also calculate the
phonons from DpTðT; 0Þ according to Eq. (46). The only
difference to the previous approach is that we take the
correctly screened coupling gðT; 0Þ from the low-temperature
reference calculation [126]. Since the direct DFPT calcula-
tion of gðT; 0Þ is computationally as expensive as the direct
calculation of the DðT; 0Þ we are interested in—indeed

V
V

V
V

V

FIG. 5. Renormalized acoustic phonon dispersion of monolayer TaS2 for a Fermi-Dirac smearing of T ¼ 1.9 mRy based on ab
initio calculations performed at a Marzari-Vanderbilt smearing of σ ¼ 20 mRy for different sizes of the active subspace according to
(a)–(e) Eq. (42) (“screened-screened”), (f)–(j) Eq. (44) and (k)–(o) Eq. (46) (“partially screened-screened”), and (p)–(t) Eq. (47) and
(u)–(y) Eq. (49) (“bare-screened”). The thin gray lines and black dots are the same in all panels and indicate converged direct DFPT
results for smearings σ (starting point) and T (reference), respectively. Panel (f) corresponds to the downfolding approach with optimal
active subspace.
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they are calculated at the same time—this approach has no
practical utility beyond this proof of concept. As expected, in
Figs. 5(k)–5(o), the reference points are largely reproduced
now, showing that it is in principle possible to obtain accurate
results based on partially screened quantities. “However,”
as already stated byCalandra et al., “such a procedure requires
an accurate self-consistent determination of the screened
potential” [16].
The growing overscreening with the number of active

bands in Figs. 5(f)–5(j) presages large errors in the limit of
using a bare vertex, when the screened vertex is not
corrected. This is confirmed by the phonon dispersions
from Db0ðT; 0Þ according to Eq. (47) in Figs. 5(p)–5(t),
which exhibit deviations similar to the ones already seen in
Fig. 5(j), yet much more pronounced since the bare exceeds
the partially screened coupling [cf. Eq. (50)]. Just like the
results from D00ðT; 0Þ in Figs. 5(a)–5(e), Db0ðT; 0Þ con-
verges very fast with the number of bands summed over, as
the vertices are fixed and the temperature dependence of the
bare susceptibility stems largely from the single band at the
Fermi level. Note that the bare vertex (unlike the partially
screened ones) and derived quantities depend on the
pseudopotential. The influence of SC states is discussed
in Appendix C.
Finally, we also repeat the calculation with the bare

vertex using the temperature-adjusted screened vertex. This
approach is in principle exact, at least in the limit of an
infinite number of bands. Indeed,DbT according to Eq. (49)
yields phonons with an overscreening error, which however
decreases slowly with the number of bands summed over;
see Figs. 5(u)–5(y). In practice, a partially screened vertex
that matches the number of bands promises to be a good
alternative to the bare vertex that is incompatible with the
concept of a finite active subspace.
Taken together, it is clear that the method of Ref. [16] is

the easiest to use and best performing one in this context.
However, we would like to argue in favor of using a
partially screened vertex for the optimal subspace, see
Fig. 5(f), for two reasons: (i) The Friedel long-rangedness is
exactly removed, guaranteeing a smooth partially screened
phonon dispersion as in Fig. 3(f), and (ii) the result can be
systematically improved as shown in the following.

D. Correction of the screened vertex

To overcome the problem with the cDFPT-based
approach, we need to have precise control of the screened
vertex and solve Eq. (16). However, to our knowledge, it is
currently not possible to calculate the necessary partially
screened electron-electron interaction U as a function of
all three momenta and four electronic band indices and
consistent with existing cDFPT implementations. Even
though eventually there will be no way around this, in
this section we present two alternative correction methods
that approximate or circumvent the calculation of U at no
significant additional computational cost.

First, we can make the simplistic assumption that the
dependence on electronic degrees of freedom can be
neglected or averaged out. Then we can approximately
solve Eq. (16) for

Uq ≈
P

καkmnjgqκαkmnðσ; 0Þ − gpqκαkmnðσ; 0ÞjP
καkmnjgqκαkmnðσ; 0Þχb;Aqkmnðσ; 0Þj

: ð71Þ

The corrected screened electron-phonon coupling follows as

gcorr IqκαkmnðT; 0Þ ≈ gqκαkmnðσ; 0Þ
ϵqðσÞ
ϵqðTÞ

; ð72Þ

with the q-dependent and otherwise scalar dielectric
function

ϵqðTÞ ≈ 1 −Uq

X
kmn

χb;AqkmnðT; 0Þ: ð73Þ

Second, we make the ansatz that the change in the
electron-phonon coupling for the electronic degrees of
freedom is linear,

gcorr IIqκαkmnðT; 0Þ ¼ gpqκαkmnðσ; 0Þ þ xqκαðTÞ½gqκαkmnðσ; 0Þ
− gpqκαkmnðσ; 0Þ�; ð74Þ

with an unknown x that has to be determined for each
phonon displacement separately. Further, again assuming
that the smearing dependence of U and gp is weak
[cf. Eq. (36)] and can be neglected, Eq. (16) for σ and
T can be written as

gðσÞ ¼ gp þ Uχb;AðσÞgðσÞ; ð75Þ

gðTÞ ¼ gp þUχb;AðTÞgðTÞ; ð76Þ

where we have left all subscripts, summations, and pre-
factors understood for brevity and the only unknown is U.
Using the ansatz from Eq. (74) and inserting Eq. (75) into
Eq. (76), we obtain

UfxðTÞχb;AðσÞgðσÞ − xðTÞχb;AðTÞ½gðσÞ − gp�
− χb;AðTÞgpg ¼ 0; ð77Þ

where U and χb;AgðpÞ are matrices and vectors in the
electronic degrees of freedom, respectively. We equate
the expression in curly braces with zero and approximately
solve for

xqκαðTÞ ¼
P

kmnjχb;AðTÞgpjqκαkmnP
kmnjχb;AðσÞgðσÞ − χb;AðTÞ½gðσÞ − gp�jqκαkmn

:

ð78Þ

In Fig. 6, we compare the renormalized phonons
according to Eq. (44) with and without the correction of
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the screened vertex from Eqs. (72) and (74) for the optimal
case of a single active band. Here we stress that the
discussed corrections are not suitable for much larger
active subspaces because their number of free parameters
does not increase with the number of bands. We find that
the simple correction from Eq. (72) (red dashed lines)
reduces the deviation from the reference data by about half
on average. Still, the quality of the correction depends
rather strongly on q, being more effective at the leading
instability near 2=3 M than at M. In turn, the correction
from Eq. (74) (orange dashed lines), which also takes into
account changes in the k dependence of the coupling,
yields almost the same accuracy as the method of Eq. (42)
with two screened vertices. However, this correction fails
for small momenta since the ansatz of a linear change of the
coupling becomes unsuitable as soon as the long-range part
of gp dominates.
To summarize, it is to some extent possible to correct the

screening of the electron-phonon coupling for changes in
the electronic temperature, even without performing a full
ab initio calculation of the electron-electron interaction.
These corrections are, however, not universally applicable
and limit the possibilities for systematic improvements;
e.g., there is no obvious way to include an ω dependence in
Eq. (74). Finally, it is important to bear in mind that the
error bars from the approximations made in DFT are likely
as large as, if not larger than, the discussed deviations from
the converged DFPT calculation.

E. Spectral function

Having convinced ourselves that the approach with two
screened vertices and the one with one partially screened
vertex yield excellent adiabatic results, we will now turn to
the nonadiabatic case, ω ≠ 0. According to the original
Ref. [16], the former approach should provide error
cancellation also with respect to the frequency dependence.
With this work, we believe to have settled the debate on
which method to use in the static case for practical
calculation and shown that the approach with the bare
vertex should not be used. However, we emphasize that the
dynamical case [127,128] is still an open question for
which the community has no reference calculation to
compare with, beyond experimental data and model results
as discussed in Sec. III. In particular, it has been claimed
that the classical phonon concept breaks down in the
nonadiabatic case, and that theories at the level of time-
dependent DFT thus cannot have access to phonon line-
widths at all [128].
Since the computational time scales approximately

quadratically with the number of bands, and because the
results in Figs. 5(a) and 5(f) are adequate, we will work
with a single active band. The quantity of interest is the
phonon spectral function as defined in Eq. (3). In practice,
the imaginary infinitesimal 0þ is approximated by two
different finite smearing parameters [129]:

GqðT;ωþ i0þÞ ≈ 1
ðωþ iδÞ21 −DqðT;ωþ iηÞ : ð79Þ

While η only affects phonon branches with nonzero
electron-phonon coupling, δ broadens all branches equally.
The former must be large enough to ensure that the spectral
function is converged with respect to the chosen k mesh,
but small enough to avoid artificial frequency shifts. The
latter aids the graphical representation, since it prevents
infinitely sharp delta peaks.
The results are shown in Fig. 7, together with the

corresponding adiabatic ω ¼ 0 result for comparison. We
used a Fermi-Dirac smearing of T ¼ 1 meV in combina-
tion with η ¼ 2 meV, δ ¼ 0.05 meV, and 2000 × 2000 k
points. Note that the resulting sharp features cannot be
expected in a self-consistent theory [127], where the
screening of electrons and phonons is reciprocal, or in
the presence of electronic correlations, due to the resulting
breakdown of the single-electron picture and associated
broadening.
The phonon spectral functions in Figs. 7(a)–7(c) have

been calculated for pristine TaS2 without electron doping.
In Fig. 7(a) the dynamical matrix DðT;ωÞ is approximated
by D00ðT;ωÞ according to Eq. (42), and in Figs. 7(b)
and 7(c) by Dp0ðT;ωÞ according to Eq. (44), with and
without handling of the long-range terms as in Fig. 4(b).
Overall, the results from the three approaches are very
similar. One prominent feature is the discontinuity of

No correction

Correction I

Correction II

FIG. 6. Comparison of correction schemes for the screened
electron-phonon vertex. We show the same data as in Fig. 5(f),
supplemented with corrected results according to Eqs. (72) and
(74). The inset is a close-up of the framed region including the
leading soft modes.
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long-wavelength optical modes, which separates regions of
nonadiabatic phonon hardening and significant broadening
on the side of smaller and larger q, respectively. This can be
explained by which intraband electron-hole excitations—
we only deal with a single band—are allowed: The range of
possible excitation energies is zero for q ¼ 0 and fans out
into a continuum with increasing q. As soon as ω falls
below the maximum excitation energy, the denominator of
the bare susceptibility in Eq. (8) can become arbitrarily
small. Resemblant features can also be observed in the
vicinity of the K point. Traces of these discontinuities
extend vertically across the whole frequency range, similar
to previous results on n-doped monolayer MoS2 [130].
Beyond that, we find an overall broadening of the branches
that couple to the low-energy electronic band, which also
have a nonzero renormalization in the adiabatic case
[cf. Fig. 3(f)].
However, there is one important difference between the

approaches. The phonon spectral function from D00ðT;ωÞ
in Fig. 7(a) is strictly positive by construction and in good
approximation fulfills the sum rule requiring that its
frequency integral amounts to the number of phonon modes
(except where the lowest mode becomes unstable and thus
falls below the integration range). In contrast, the result
fromDp0ðT;ωÞ in Fig. 7(b) exhibits some negative spectral
weight in the vicinity of the Γ point, shown in mauve and
more visible in the inset. This is unphysical, breaks the sum
rule, and is a direct consequence of the approximations

involved. Note that none of the affected q points are part of
the original ab initio mesh and interpolation errors are
involved. Interestingly, this problem is absent when the
long-range part of the partially screened dynamical matrix
and coupling gp is not handled as described in Sec. II F 2
and a naive Fourier interpolation is used instead; see
Fig. 7(c). This does not imply that gp with long-range
handling is less accurate, the opposite is true, but unlike the
naively interpolated one it is very different from the screened
g for smallq.More precisely, there is a significant orthogonal
component as a consequence of which the symmetrized
outer product ḡpg is no longer positive-definite as anticipated
in Sec. II E. This effect is quantified in Appendix E. In
combination with the fact that gp and thus the linear error in
Eq. (50) is larger when accounting for the long-range part,
this leads to the unphysical features in Fig. 7(b).
An interesting question is how nonadiabatic renormal-

ization influences the adiabatic Kohn anomalies, i.e., the
stability of the system. To investigate this, we resort to
D00ðT;ωÞ again. In Fig. 7(a), no such effect is visible in the
sense that the longitudinal-acoustic mode does not display
any significant nonadiabatic renormalization close to the
instability. Indeed, processes in a large energy window
of the order of 100 meV contribute to the softening [50],
while nonadiabatic effects occur on an energy scale that is
about one order of magnitude smaller. This changes when
hole doping moves the Van Hove singularity—located
at the minimum of the low-energy band along Γ–K

V V V V

FIG. 7. Phonon spectral function of monolayer TaS2 together with adiabatic phonon dispersion at an electronic temperature of
T ¼ 1 meV for (a)–(c) the undoped case and (d) the hole-doped case, where the Van Hove singularity is at the Fermi level. The spectral
function is evaluated following Eq. (79) starting from a nonadiabatic dynamical matrix according to (a),(d) Eq. (42) and (b),(c) Eq. (44),
where the long-range part is properly handled only in (b). The insets contain close-ups of the long-wavelength and high-frequency
region. The bottom panels show the frequency integral of the spectral function from 0 to 50 meV; horizontal lines are drawn at values of
8 and 9 for reference.
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[cf. Figs. 3(a)–3(e)], which is actually a saddle point—to
the Fermi level, where it leads to a logarithmic divergence
of the phonon self-energy [50]. If we realize this situation
via a rigid shift by about 0.15 eV of the low-energy band
for the calculation of Π00ðT;ωÞ—the unscreening via
Π00ðσ; 0Þ is still done without doping—we obtain the
result in Fig. 7(d). Most effects seen in the undoped case
are even more pronounced here, but we also observe that
some spectral weight of the soft modes—now located at
different q points, especially between Γ and K—remains in
the positive energy range. While this system is dynamically
unstable both with and without nonadiabatic effects, there
might be similar scenarios or materials where nonadiabatic
damping of the CDW occurs [25,131,132].

VI. CONCLUSIONS

Comparing different approaches to calculate phonon
dispersions at low electronic temperature with an affordable
computational cost, we have explored the central findings
of Ref. [16]. First, correcting a static phonon self-energy
with two screened electron-phonon vertices is an excellent
approximation, which in particular allows us to work with a
constant approximate coupling as obtained from usual
ab initio calculations. Second, it is in principle possible
to work with one bare vertex [30,35–37,52], but this
requires precise control of the static screened vertex and
is not advantageous in practice. We have given expressions
for the associated errors, and we have shown that using one
partially screened vertex is a viable alternative.
The static results suggest that the cancellation benefit of

the approach with two screened vertices with respect to
changes in the electronic temperature could be extended to
frequency dependence, but this remains to be definitely
proven, beyond our encouraging findings for simple
models. After all, changes in the adiabatic dynamical
matrix are in many regards different from the complete
phonon self-energy of out-of-equilibrium many-body
theory [37]. In this context, the approach with a partially
screened vertex could be useful as it allows us to incor-
porate the frequency dependence not only in the bare
susceptibility but also in the active-subspace electron-
phonon coupling in a controlled manner. An important
step in this direction would be the affordable and consistent
computation of the partially screened electron-electron
interaction with all relevant dependences, which occurs
in the equations for the renormalization of the electron-
phonon vertex [Eq. (16)].
On top of this, the stationary functional of Ref. [16]

[Eq. (31)], where all DFPT vertices—both in the discussed
first term and in the double-counting term—are replaced by
properly screened vertices from RPA or beyond, can still be
useful to minimize the error in the phonon self-energy [60].
The fact that the double-counting term is not accessible in
DFPT and can be successfully circumvented in the dis-
cussed correction method does not make it less relevant for

the theory. Without it, the phonon self-energy with two
screened vertices will in general be too small, which is
important when comparing absolute values rather than
differences, as done here.
We have provided an easy to use implementation of

consistent screened, partially screened, and bare phonons
and electron-phonon interactions from DFPTand cDFPT in
the PHONON and EPW codes of QUANTUM ESPRESSO. Here,
special care has been taken of dipolar and quadrupolar
long-range terms present in the partially screened and bare
quantities.
Finally, we remark that we are here limited to the

harmonic approximation and that anharmonic effects can
be important in materials close to a lattice instability, where
the energy landscape is by definition anharmonic [133], or
in systems such as superconducting hydrides, which have
attracted a lot of attention recently. It is likely that not only
nonadiabatic but also anharmonic effects are often gen-
erated by the low-energy electronic system [134]. An
interesting open question in this context is whether similar
properties as the stationary functional can also be derived
and taken advantage of for higher-order terms.

The source code and data associated with this work are
also available in the Materials Cloud Archive [135].
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APPENDIX A: ERROR OF APPROACH
WITH TWO SCREENED VERTICES

Here we quantify the error associated with using the
“approximated force-constant functional” of Ref. [16],
i.e., the error in the phonon self-energy resulting from
an approximate electronic response χbg in Eq. (31). In
compact notation, Eq. (31) reads

gbχbg ¼ gχbg − gχbvχbg ðA1Þ

¼ ½gb þ gχbv�χb½gb þ vχbg� − gχbvχbg: ðA2Þ

We now add an error δ to gχb and χbg, which corresponds to
an error Δg ¼ vδ in the screened electron-phonon coupling
g [cf. Eq. (13)]. Equation (A2) then becomes

½gb þ ðgχb þ δÞv�χb½gb þ vðχbgþ δÞ�
− ðgχb þ δÞvðχbgþ δÞ

¼ ½gþ δv�χb½gþ vδ� − ðgχb þ δÞvðχbgþ δÞ ðA3Þ

¼ gχbgþ gχbvδþ δvχbgþ δvχbvδ

− gχbvχbg − gχbvδ − δvχbg − δvδ ðA4Þ

¼ gbχbgþ δðvχbv − vÞδ ðA5Þ

¼ gbχbgþ δvðχb − v−1Þvδ ðA6Þ

¼ gbχbg − ΔgW−1Δg; ðA7Þ

where we have used Eqs. (13) and (A1) and defined the
inverse screened electron-electron interaction W−1 ¼ v−1ϵ
[cf. Eq. (6)]. The error in the phonon self-energy is
quadratic in Δg.

APPENDIX B: APPLICATION TO n-DOPED MoS2

The same procedure applied previously to monolayer
TaS2 is here utilized for another transition-metal dichalco-
genide, monolayer MoS2. While TaS2 is intrinsically
metallic, in semiconducting MoS2 doping is needed to
introduce some metallic screening and enhance electron-
phonon interaction. The unavoidable Lifshitz transition
changes the phase space for electron scattering, leading to
significant nonadiabatic renormalization of optical phonons
[51,130]. Electron doping also induces a predicted [136]
and experimentally observed [137] CDW. Moreover,
enhanced electron-phonon interaction upon doping has
been theoretically proposed to induce superconductivity
[138], which was later measured [139].
Here we consider a total charge of −0.1e per unit cell,

and the Fermi level is accordingly increased and crossing
the K valley, as seen in Fig. 8(a). The corresponding relaxed
lattice constant is 3.19 Å. For consistency, all ab initio

parameters are kept identical to the ones chosen for TaS2
(cf. Sec. V), and we verified that convergence was reached
also in this case. The valence band and the first four
conduction bands have d-orbital character. Since the
valence band is energetically isolated from the lower bands,
the active subspace is naturally defined by its lowest point
and the top of the fourth conduction band. This choice of
the five-band active subspace is similar to the one shown in
Fig. 3(b) for TaS2.
The corresponding phonon dispersions for a smearing

of σ ¼ 20 mRy are shown in Fig. 8(b). A small doping-
induced phonon softening at the M point can be observed in
the DFPT phonon dispersion (solid orange lines) and is
expected to increase with decreasing electronic temper-
ature. The partially screened dispersion (solid mauve lines)
lacks this feature and also violates the acoustic sum
rule; the entire dispersion is shifted upward in energy.
Unscreened phonon frequencies (dashed orange lines),
obtained by subtracting the approximate self-energy with
two screened vertices [Eq. (43)], are generally equal to
or lower in energy than the cDFPT phonons. Finally, the

V
V

FIG. 8. Electron-phonon interaction of n-doped monolayer
MoS2. (a) Electronic band structure with the conduction-band
valleys at K (partially occupied) and close to 1=2 K ¼ Q (empty).
Note that q ¼ M connects occupied and empty valleys. (b) High-
smearing phonon dispersions [cf. Fig. 3(g)]. (c) Electron-phonon
coupling between the conduction band and the longitudinal-
acoustic phonon mode at q ¼ M as a function of initial electron
momentum k. There is a significant coupling at k ¼ K and Q,
i.e., between the occupied and empty valleys. The maximum
coupling is, however, in between these two points, where the
bare electronic susceptibility is low. (d) Renormalized phonon
dispersion according to Eqs. (42) and (44) [cf. Figs. 5(b) and 5(g)],
where the black dots are the reference low-smearing DFPT results.
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DFPT result can be restored (dashed mauve lines) by
renormalizing the cDFPT phonons using the phonon self-
energy with one partially screened vertex [Eq. (44)],
confirming all the conclusions from Sec. VA.
The partially screened and unscreened phonons in

Fig. 8(b) are very similar, except for the slope near Γ,
which is due to the long-range terms present in cDFPT
[140]. This similarity is attributed to the fact that the
electron-phonon coupling, shown in Fig. 8(c), does not
differ significantly between cDFPT and DFPT. Therefore,
the two approaches to estimate the phonon dispersion at
low electronic temperature T ¼ 1.9 mRy yield similar
results, as seen in Fig. 8(d). Using the high-smearing
coupling, both schemes soften the branch at the M point
in good agreement with the low-temperature DFPT refer-
ence (black dots). In the case of lightly electron-doped
MoS2, the overscreening effects are smaller than in TaS2
due to the much smaller Fermi surface.
Finally, to visualize the origin of the phonon softening in

n-doped monolayer MoS2 [51], we show in Fig. 9 the
“fluctuation diagnostics” [50] of the phonon self-energy
due to the predominantly (84%) longitudinal-acoustic
mode. The phonon momentum q ¼ M superimposes the
occupied and empty conduction-band valleys at k ¼ K and
Q, leading to the dominant contributions to the phonon
self-energy [Fig. 9(a)]. The k-space structure of the phonon
self-energy and the bare susceptibility [Fig. 9(b)] are very
similar. This is because in all regions of significant bare
susceptibility there is also an appreciable electron-phonon
coupling [Fig. 9(c)], although the maximum of the coupling
is dormant due to a vanishing bare susceptibility. The
situation is different for q ¼ K, where only a weak phonon
softening is observed, notwithstanding that this q point
exactly superimposes Fermi contours at neighboring K

points. Indeed, the corresponding phonon self-energy
[Fig. 9(d)] is overall small in spite of a significant bare
susceptibility [Fig. 9(e)], since the latter occurs in k space
regions where the electron-phonon coupling is small
[Fig. 9(f)]. This analysis therefore explains why the
phonon-induced softening is strongest at the M point in
lightly doped monolayer MoS2.

APPENDIX C: BARE QUANTITIES IN A
PSEUDOPOTENTIAL FRAMEWORK

As noted in the main text, a cDFPT calculation with all
bands explicitly accounted for in DFT does not yield bare
phonons and interactions since excitations between these
active bands and an infinite number of empty bands still
contribute to the screening. In turn, the bare quantities can
be calculated in practice by simply setting the electronic
response to ionic displacements to zero. However, the
results for bare atomic nuclei will be different from that in a
pseudopotential context.
To quantify the influence of the pseudoization, in Fig. 10

we present results obtained for two different choices of
pseudopotentials. On the one hand, we use the same
potentials as for the results shown in the main text, see
Sec. V, which have a combined charge of 25e in the unit
cell of TaS2. On the other hand, we include SC states in the
valence shell, which increases the combined charge to 55e
per cell.
The bare phonon dispersions are depicted in Fig. 10(a)

[141]. While the bare phonons without SC states reach
about twice the energies of the partially screened pho-
nons for 22 active bands [Fig. 3(j)], they are still
separated from those with SC states by a gap of about
2.4 eV. Again, the acoustic sum rule is broken, which has
a straightforward physical interpretation in this case:
Suppressing any electronic response will prevent the
“frozen” electron density to move along with uniformly
displaced ions, thus inducing a restoring force and
associated plasma oscillations [142]. Moreover, the
Born effective charges will be identical to the bare
(pseudo)ionic charges (cf. Table II), which are clearly
positive and thus cannot add up to zero.
Also the bare electron-phonon coupling shown in

Fig. 10(b) significantly exceeds the largest calculated
partially screened values [cf. Fig. 4(f)] and grows with
the number of states in the valence manifold. To correctly
interpolate them, it is again necessary to consider not only
dipolar but also quadrupolar long-range terms. The respec-
tive parameters are listed in Table II. Note the mentioned
relation between the optimized quadrupole-tensor elements
and the Born effective charges.
Finally, in the sameway the bare coupling depends on the

pseudopotential, the renormalized phonons according to
Eq. (47) are expected to change. Indeed, Fig. 10(c) reveals
that the overscreening of the longitudinal-acoustic mode,
already observed in Fig. 5(p), is more pronounced with SC

FIG. 9. Fluctuation diagnostics of phonon softening in n-doped
monolayer MoS2 at T ¼ 1.9 mRy. We show the k-dependent
(a),(d) phonon self-energy, (b),(e) bare susceptibility, and (c),(f)
electron-phonon coupling between the conduction band and the
longitudinal-acoustic mode for (a)–(c) q ¼ M and (d)–(f) q ¼ K.
Solid black and dashed white lines show the Fermi contours at k
and kþ q.

BERGES, GIROTTO, WEHLING, MARZARI, and PONCÉ PHYS. REV. X 13, 041009 (2023)

041009-22



states. As anticipated in Eq. (50), the error in the dynamical
matrix is linear in the bare coupling. We show the one-band
case here, which proved to be sufficiently converged. We
stress that when the screened vertex is correctly dealt with as
in Eq. (49), the result will still converge toward the correct
solution with increasing number of bands, albeit slower than
shown in Figs. 5(u)–5(y).
The surprising behavior of the bare electron-phonon

coupling without SC states near 1=4 K, a close-up of
which is shown in the inset of Fig. 10(b), can be explained
in terms of a peculiar hybridization between phonon
modes. As shown in the inset of Fig. 10(a), the respective
modes experience two avoided crossings. The first one
near 1=4 K is hardly distinguishable from a real crossing
in the full plot. The second one near 1=12 K is very subtle
but manifests in a swapping of longitudinal and transverse
character. We have performed additional reference calcu-
lations in its vicinity to rule out a real crossing. In both
cases, the ability to couple to the low-energy electrons
is transferred from one continuous mode to the other,
resulting in abrupt changes of the mode-resolved electron-
phonon coupling.

APPENDIX D: UNSCREENING ON COARSE
VERSUS FINE BZ MESH

In Sec. V C, we have obtained the unscreened and
partially screened dynamical matrices Duðσ; 0Þ and
Dpðσ; 0Þ by subtracting phonon self-energies Π00ðσ; 0Þ

and Πp0ðσ; 0Þ from the interpolated DFPT dynamical
matrix Dðσ; 0Þ that have been calculated for the same q
points and dense k mesh as the subsequently added
Π00ðT; 0Þ and Πp0ðT; 0Þ [cf. Eqs. (43) and (45)]. The
results have been shown in Figs. 5(a)–5(j).
Alternatively, we can obtain Duðσ; 0Þ and Dpðσ; 0Þ—the

latter even self-consistently with cDFPT—for coarse q and
k meshes, and Fourier interpolate them to the q points on
which Π00ðT; 0Þ and Πp0ðT; 0Þ have been calculated.
Corresponding results are shown in Fig. 11.
Starting from the self-consistent cDFPT phonons

demonstrates the exactness of the equations in Sec. II C,
but it suffers from independent numerical errors—mostly
due to interpolation and the modeling of long-range
interactions—in Dpðσ; 0Þ and the electron-phonon cou-
plings gpðσ; 0Þ and gðσ; 0Þ entering Πp0ðT; 0Þ, which add
up in the resulting screened Dp0ðT; 0Þ. Further taking into
account that both Dpðσ; 0Þ and Πp0ðT; 0Þ are in our case
up to one order of magnitude larger than their sum
Dp0ðσ; 0Þ [87], we run the risk of “catastrophic cancel-
lation,” which always occurs when adding imprecise
large numbers of similar magnitude and opposite sign.
As a consequence, in Figs. 11(f)–11(j) we find significant
errors near Γ, especially for large active subspaces
(arrows), which have been absent in Figs. 5(f)–5(j)
due to a cancellation of interpolation errors in the
couplings. For 22 bands, the interpolation suffers from
an inferior localization of Wannier functions [cf. inset of
Fig. 4(f)]. Away from Γ, the results hardly differ.

Long.

Trans.

With SC

Without SC

FIG. 10. Bare (a) phonon dispersion [cf. Figs. 3(f)–3(j)], (b) electron-phonon coupling (cf. Fig. 4), and (c) corresponding estimated
low-temperature phonon dispersion from Eq. (47) [cf. Fig. 5(p)] of monolayer TaS2 for pseudopotentials with (mauve) and without
(orange) SC states in the valence shell. Longitudinal and transverse mode characters are represented by dark and light color shades,
respectively. The insets in panels (a) and (b) are close-ups of avoided crossings.
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In turn, the renormalized phonon dispersions in
Figs. 5(a)–5(e) and 11(a)–11(e) are almost indistinguish-
able. This is because the DFPTelectron-phonon coupling is
much smaller and smooth at Γ and can accordingly be
interpolated more precisely.

APPENDIX E: INDEFINITENESS OF
COMBINED COUPLING MATRIX

As mentioned in Sec. II E, the matrix G [Eq. (52)],
formed as a symmetrized outer product of a partially
screened vertex gp and an approximate screened vertex
g, is in general not positive-definite, except if g ¼ αgp with
a non-negative scalar scaling factor α. As a consequence,
the approximations using one bare or partially screened
vertex can lead to artifacts such as the negative spectral
weight in Fig. 7(b), which notably has only been observed
when correctly handling the long-range part of gp.
To better understand this, in Figs. 12(a) and 12(b), we

display the two nonzero eigenvalues of G (mauve lines) for
the single active band of monolayer TaS2 as a function of
q with k ¼ 0 [cf. Figs. 4(a) and 4(b)], both without and
with handling of the long-range part. For comparison, we
also show the corresponding result obtainedwhen replacing
gp by g (gray lines), which yields the symmetric formu-
lation with two screened vertices. Away from Γ, the
negative eigenvalue is negligibly small, which means that
the phonon self-energy with one partially screened vertex
and one screened vertex could be written using an effective
intermediate vertex on both sides of the electron-hole
bubble; see Sec. II E. As expected, the positive eigen-
value is larger than its screened-screened counterpart.
Approaching Γ however, the negative value becomes
significant, and the behavior is very different depending
on whether the long-range part is handled or not, except on
the original qmeshwhere the curves coincide by definition.
For the naive Fourier interpolation [Fig. 12(a)], the negative
eigenvalue vanishes again for smallest q; with long-range
handling [Fig. 12(b)], it peaks instead.

This can be understood by looking at the relative
orientation of gp and g as vectors in 3Nat-dimensional
space, whereNat is the number of basis atoms. In Figs. 12(c)
and 12(d), we show the normalized real part of their
scalar product, Re ḡp · g=ðjgpjjgjÞ, the inverse cosine
of which can be seen as the angle between gp and g.
Note that Re ḡp · g ¼ Tr G. Values of 1, 0, and −1 indicate
that gp and g are parallel, orthogonal, and antiparallel.
Toward Γ, the physically correct vertices become increas-
inglyorthogonal [Fig. 12(d)], asgp can be large formodes for

V
ia

V
ia

FIG. 11. Renormalized phonon dispersion according to (a)–(e) Eq. (42) and (f)–(j) Eq. (44) as in Figs. 5(a)–5(j), except that the Fourier
interpolation of the dynamical matrix has been performed at the level of Duðσ; 0Þ and Dpðσ; 0Þ instead of Dðσ; 0Þ. Arrows point to the
resulting numerical artifacts.

FIG. 12. Indefiniteness of the symmetrized partially screened-
screened coupling matrix G [Eq. (52)]. As in Figs. 4(a) and 4(b),
we show data for the single active band of monolayer TaS2 as a
function of q with k ¼ 0. Gray lines represent corresponding
screened-screened results. (a),(b) Nonzero eigenvalues without
and with handling of the long-range part. (c),(d) Relative
orientation of partially screened and screened coupling.
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which g is fully suppressed bymetallic screening (cf. Fig. 4).
However, the erroneous naive interpolation makes gp be-
have similarly to g for smallest q, restoring parallelism
[Fig. 12(c)]. Coincidentally, this turns out to be beneficial in
the context of calculating the approximateDp0ðT;ωÞ, as seen
in Fig. 7(c). Note that we have only discussed selectedmatrix
elements here. For instance, for some initial electron
momenta k ≠ 0 we have observed that the negative eigen-
value can even dominate, indicating that the vertices are
partially antiparallel. Discarding the negative eigenvalue
would also guarantee a positive spectral weight but lead to
other problems such as a broken acoustic sum rule.
The presence of the negative eigenvalue implies that it

is in general impossible to evenly spread the dielectric
screening over two electron-phonon vertices attached to the
bare electronic susceptibility. Hence, symmetric formula-
tions must move some or all screening to the susceptibility;
e.g., Π ¼ gbχgb with χ ¼ ϵ−1χb or Π ¼ gðχb − vχbvÞg as
used in Ref. [16].
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