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We present comprehensive theoretical studies on the lattice relaxation and the electronic structures in
general nonsymmetric twisted trilayer graphenes. By using an effective continuum model, we show that the
relaxed lattice structure forms a patchwork of moiré-of-moiré domains, where a moiré pattern given by
layer 1 and 2 and another pattern given by layer 2 and 3 become locally commensurate. The atomic
configuration inside the domain exhibits a distinct contrast between chiral and alternating stacks, which are
determined by the relative signs of the two twist angles. In the chiral case, the electronic band calculation
reveals a wide energy window (>50 meV) with low density of states, featuring sparsely distributed
highly one-dimensional electron bands. These one-dimensional states exhibit a sharp localization at the
boundaries between supermoiré domains, and they are identified as a topological boundary state between
distinct Chern insulators. The alternating trilayer exhibits a coexistence of the flat bands and a
monolayerlike Dirac cone, and it is attributed to the formation of moiré-of-moiré domains equivalent
to the mirror-symmetric twisted trilayer graphene.
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I. INTRODUCTION

Two-dimensional moiré materials have been the focus of
extensive research in recent years. These systems exhibit a
long-range moiré pattern resulting from lattice mismatch,
which profoundly influences their electronic properties.
Twisted bilayer graphene (TBG), as the most prominent
example of a moiré system, exhibits the generation of flat
bands due to the moiré superlattice effect, leading to a
variety of correlated quantum phases [1–19].
In addition to the extensive study of twisted bilayers in

the past decade, the scope of investigation has extended
to encompass multilayer systems including three or more
layers. Particular attention has recently been directed
toward twisted trilayer graphene (TTG), which consists
of three graphene layers arranged in a specific rotational
configuration [20–48].
The system is characterized by twist angles θ12 and θ23

(Fig. 2), which represent the relative rotation of layer 2 to 1,
and 3 to 2, respectively. The special case of θ12 ¼ −θ23 is
called the mirror-symmetric TTG [21–36], where layer 1
and layer 3 are aligned precisely, resulting in a single moiré
periodicity. Recent transport measurements observed cor-
related insulator phases and robust superconductivity in
mirror-symmetric TTGs at a certain magic angle [32–36].

Beyond the symmetric case, TTG offers a vast parameter
space that remains largely unexplored. In general TTGs
with θ12 ≠ −θ23, the system has two different moiré
patterns originating from the interference of layer 1 and 2
and that of layer 2 and 3 [20,37–49]. These two periodic-
ities are generally incommensurate, giving rise to a quasi-
crystalline nature in the system [44,50,51]. When the two
moiré periods are close but slightly different, in particular,
an interference of competing moiré structures generates a
super-long-range moiré-of-moiré pattern [37–40]. A sim-
ilar situation occurs also in composite multilayer systems
consisting of graphene and hexagonal boron nitride
[52–63]. Previous researches investigated the electronic
properties of general TTGs with various angle pairs by
using several theoretical approaches [20,38,40,42–48]. A
recent experimental study also reported superconductivity
in some asymmetric TTGs [44].
Generally, twisted moiré systems are under a strong

influence of lattice relaxation in the moiré scale, which also
significantly modifies the electronic properties. In TBG,
for instance, an in-plane lattice distortion forms commen-
surate AB- (Bernal) stacking domains [64–78], and it opens
energy gaps in the electronic spectrum to isolate low-
energy flat bands [73,74,78]. The lattice relaxation occurs
also in trilayer moiré systems, where the moiré-of-moiré
period superstructure was observed [79–81]. Such a large-
scale relaxation was also theoretically simulated for various
trilayer systems [37,47,48,61,62].
In this paper, we study the lattice relaxation and the

electronic band structure in nonsymmetric TTGs. TTG is
classified into two groups depending on the relative
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direction of rotation angles: the cases of θ12θ23 > 0 and
< 0, which are referred to as chiral and alternating TTGs,
respectively [42–44]. Here we consider chiral and alter-
nating TTGs having various combinations of twist angles
ðθ12; θ23Þ. We obtain the optimized lattice structure using
the effective continuum approach used for TBG [73,82,83]
and compute the electronic structure by a continuum band
calculation method including the lattice relaxation [78].
We find that there are two distinct length scale relaxa-

tions in the moiré-of-moiré and moiré scales, which give
rise to a formation of a patchwork of supermoiré domains
as schematically shown in Fig. 1. In theses domains, the
first moiré pattern given by layer 1 and 2 (moiré 12) and the
second pattern by layer 2 and 3 (moiré 23) are deformed to
become commensurate. The atomic configuration inside
the domain exhibits a distinct contrast between chiral and
alternating TTGs: In the chiral case, the two moiré patterns
are arranged such that the AA spots of moiré 12 and those
of moiré 23 repel each other, leading to shifted configu-
rations [Fig. 1(a)]. In the alternating case, in contrast,

the AA spots attract each other, resulting in a fully
overlapped structure equivalent to the mirror-symmetric
TTG [Fig. 1(b)]. The energetic stability of these supermoiré
domain formations can be explained by considering a
competition of lattice relaxation in the two moiré patterns.
In the band calculation, we find that the spectrum of the

chiral TTG has an energy window more than 50 meV
wide with low density of state, where highly one-
dimensional electron bands are sparsely distributed.
The wave function of the one-dimensional bands is
sharply localized at the boundary between the supermoiré
domains. By calculating the Chern number of the local
band structure of the commensurate domain, the one-
dimensional state is shown to be a topological boundary
state between distinct Chern insulators. On the other
hand, the alternating TTG exhibits a coexistence of
the flat bands and a monolayerlike Dirac cone, resem-
bling the energy spectrum of the mirror-symmetric TTG
[32–36]. Here the moiré-of-moiré relaxation significantly
reduces the hybridization of the Dirac cone with other
states, restoring its highly dispersive feature.
The paper is organized as follows. In Sec. II, we define

the lattice structure of TTG and introduce the continuum
method to calculate the lattice relaxation and the electronic
band structure. In Sec. III, we investigate the chiral TTGs.
We obtain the relaxed lattice structure and demonstrate
the formation of the moiré-of-moiré domain pattern in
Sec. III A. We calculate the band structure including the
lattice relaxation in Sec. III B, where we show the emer-
gence of the one-dimensional boundary states on the
domain walls. In Sec. IV, we conduct similar analyses
for the alternating TTGs.

II. MODEL

A. Geometry of TTG

We define a TTG by stacking three graphene layers
labeled by l ¼ 1, 2, and 3, with relative twist angles θ12

(from layer 1 to 2) and θ23 (from layer 2 to 3). The
configuration is schematically depicted in Figs. 2(a) and 2
(b), for the chiral case (θ12θ23 > 0) and the alternating case
(θ12θ23 < 0), respectively. The primitive lattice vectors of

layer l are defined by aðlÞi ¼ RðθðlÞÞai where a1 ¼ að1; 0Þ
and a2 ¼ að1=2; ffiffiffi

3
p

=2Þ are the lattice vectors of unrotated
monolayer graphene, a ¼ 0.246 nm is the graphene’s
lattice constant. R is the rotation matrix, and θðlÞ is the
absolute twist angle of layer l given by θð1Þ ¼ −θ12,
θð2Þ ¼ 0, and θð3Þ ¼ θ23. Accordingly, the primitive recip-

rocal lattice vectors become bðlÞi ¼ RðθðlÞÞbi, where b1 ¼
ð2π=aÞð1;−1= ffiffiffi

3
p Þ and b2 ¼ ð2π=aÞð0; 2= ffiffiffi

3
p Þ are the

reciprocal lattice vectors without rotation. The Dirac points
of graphene layer l are intrinsically located at the corners

of Brillouin zone (BZ), KðlÞ
ξ ¼ −ξð2bðlÞ1 þ bðlÞ2 Þ=3, where

ξ ¼ �1 is the valley index.

FIG. 1. Schematic illustration of the moiré-of-moiré domain
structures in (a) chiral TTG and (b) alternating TTG with close
twist angles. Right-hand figures represent relative arrange-
ments of two moiré patterns within the domains, where blue
and red dots indicate AA stacking of moiré 12 (between layer 1
and 2) and of moiré 23 (between layer 2 and 3), respectively
(see also Fig. 2).
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FIG. 2. (a) Schematics of moiré-of-moiré pattern of chiral TTG, where blue and red dots represent AA stacking points of moiré 12
(between layer 1 and 2) and of moiré 23 (between layer 2 and 3), respectively. The inset illustrates the stacking structure of a chiral TTG,
where green, black, and orange represent the layer 1, 2, and 3, respectively. (b) Local structures of moiré-of-moiré pattern in (a), where
circles, filled triangles, and empty triangles indicate AA, AB, and BA stacking of individual moiré patterns. (c) Local atomic structures
at specific points in (b), where Al and Bl are the graphene’s sublattice in layer l. The lower panels [(d)–(f)] are the corresponding figures
for the alternate TTG.
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In this paper, we consider TTGs with small twist angles
(jθ12j; jθ23j≲ 10°). Then the system is governed by two
competing moiré patterns, one from the layer 1 and 2 and
the other from layer 2 and 3. The reciprocal lattice vectors

for these moiré patterns are given by Gll0
i ¼ bðlÞi − bðl

0Þ
i ,

where ðl; l0Þ ¼ ð1; 2Þ or (2,3). The moiré lattice vectors
can be obtained from Gll0

i · Lll0
j ¼ 2πδij, and explicitly

written as

L12
1 ¼ a

2 sin ðθ12=2ÞRð−θ
12=2Þ

�
0

−1

�
;

L23
1 ¼ a

2 sin ðθ23=2ÞRðθ
23=2Þ

�
0

−1

�
; ð1Þ

and Lll0
2 ¼ Rð60°ÞLll0

1 . The moiré lattice constant is given
by Lll0 ¼ jLll0

1 j ¼ jLll0
2 j ¼ a=j2 sin ðθll0=2Þj.

When absolute twist angles are close ðjθ12j ≈ jθ23jÞ, an
interference between the two moiré patterns gives rise to a
higher order structure called a moiré-of-moiré pattern as
shown in Fig. 2. Here the upper and lower rows correspond
to the chiral and alternating structures, respectively. For
the chiral twist, the left-hand panel [Fig. 2(a)] illustrates the
overlapped moiré patterns where blue and red dots re-
present the AA spots of moiré 12 and 23, respectively. The
local structure can be viewed as a pair of nontwisted moiré
superlattices with a relative translation, as illustrated in
Fig. 2(b). Here shaded and empty triangles represent AB
and BA stacking regions of individual moiré patterns,
respectively. By defining AB and BA points (the centers
of triangles) by α and β, respectively, the local stacking
configuration of the two moiré patterns is labeled by αα, αβ,
and βα. Figure 2(c) depicts the local structure in the atomic
scale. Here Al and Bl represent the graphene’s sublattice in
layer l. We define the sublattice Cl as the center of the

hexagon in the honeycomb lattice. For instance, BAC
stacking represents B1, A2, and C3 are vertically aligned.
The lower panels [Figs. 2(d)–2(f)] are the corresponding

figures for the alternate twist. The key difference from the
chiral case lies in the 180° rotation of the moiré 23 (red
lattice) due to the opposing sign of θ23. This results in the
flipping of the positions of AB and BA. Consequently, the
local atomic structure (shown in the rightmost panels)
differs between the chiral and alternating structures, even
though the relative arrangement of AA spots is identical.
We define AB and BA points in the inverted moiré 23
pattern by β0 and α0, respectively, and label the local
structure in the alternating TTG by αα0, αβ0, and βα0, as
in Fig. 2(e).

B. Commensurate TTGs

Generally the two moiré patterns in a TTG are not
commensurate, and the spatial period of moiré-of-moiré
pattern is infinite. However, there are special angle sets
ðθ12; θ23Þ where the two patterns happen to have a finite
common period. In such a case, we can express the moiré-
of-moiré primitive lattice vectors L1 and L2 in terms of
integers n;m; n0 and m0 as

L1 ¼ nL12
1 þmL12

2 ¼ n0L23
1 þm0L23

2 ;

L2 ¼ Rð60°ÞL1: ð2Þ

The moiré-of-moiré reciprocal lattice vectors are given
by the condition Gi · Lj ¼ 2πδij. The corresponding twist
angles are obtained by solving Eqs. (1) and (2) for variables
θ12 and θ23, as

θ12 ¼ θðn;m; n0; m0Þ; θ23 ¼ −θðn0; m0; n; mÞ; ð3Þ

where

θðn;m; n0; m0Þ ¼ 2 tan−1
ffiffiffi
3

p fmð2n0 þm0Þ − ð2nþmÞm0g
ð2nþmÞð2n0 þm0Þ þ 3mm0 þ ð2n0 þm0Þ2 þ 3m02 : ð4Þ

The spatial period of the supermoiré pattern is given by
L ¼ L12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2 þ nm

p
¼ L23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02 þm02 þ n0m0p

.
In alternating TTGs with θ12 ≈ −θ23, the relative angle

between two moiré lattice vectors nearly vanishes, resulting
in an extremely large commensurate moiré-of-moiré unit
cell. To treat such cases, we neglect the tiny misorientation
of the moiré lattice vectors L12

j and L23
j , while retaining

their norms. In this approximation, the moiré-of-moiré
commensurate period is expressed as

L1 ¼ nL12
1 ¼ n0L23

1 ; L2 ¼ Rð60°ÞL1; ð5Þ

instead of Eq. (2). Note that Eq. (3) does not apply to this
approximate commensurate structure.
In this paper, we consider commensurate chiral TTGs,

C1, C2, and C3, and commensurate alternating TTGs, A1,
A2, and A3, defined in Table I. We employ the exact
commensurate formulas Eqs. (2) and (3) for C1, C2, C3,
and A3, while we utilize the approximate formula, Eq. (5),
for A1 and A2. Figure 3(a) maps ðθ12; θ23Þ of these systems
in two-dimensional space, where the color code represents
the ratio of the two moiré periods, min ðL12=L23; L23=L12Þ.
The moiré-of-moiré structures of these TTGs without
lattice relaxation are illustrated in Figs. 3(b) and 3(c),
respectively.
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We show the schematics of the Brillouin zone of a
chiral TTG for a commensurate case of ðθ12; θ23Þ ¼
ð13.2°; 8.61°Þ and ðn;m; n0; m0Þ ¼ ð1; 2; 1; 1Þ in Fig. 4.
Here, green, black, and orange hexagons represent the first
BZ of layer 1, 2, and 3, respectively. Blue and red hexagons
represent the BZ for the first moiré patterns given by l¼1, 2
and the second pattern given by l ¼ 2, 3, respectively.
Finally, the gray hexagon in Fig. 4(b) is the BZ of the
moiré-of-moiré pattern. It is identified by aligning the
moire BZs (blue and red hexagons) at the shared center as
in Fig. 4(c) and drawing a hexagon with its side connecting

the nearest corner points of the two moire BZs. This
procedure is analogous to deriving the moiré BZ from the
two graphene’s BZs. We label the corner points of the
moiré-of-moiré BZ by κ and κ0, the midpoint of a side by μ,
and the center by γ as in Fig. 4(b).

C. Continuum method for multiscale lattice relaxation

We adopt a continuum approximation [73,82,83] to
describe the lattice relaxation on TTG. Let sðlÞðRXÞ be
the displacement vector of sublattice X ¼ A or B at a two-
dimensional position RX of layer l ¼ 1, 2, 3. Here we
consider a long-rage lattice relaxation which has much
longer scales than graphene’s lattice constant. The dis-
placement vectors can then be expressed by continuous
functions in real space as sðlÞðRAÞ ¼ sðlÞðRBÞ ¼ sðlÞðrÞ. We
ignore the out-of-plane component of the displacement
vector in this model, as it does not much contribute to the
commensurate domain formation. The optimized lattice
structure can be obtained by minimizing the total energy
U ¼ UE þU12

B þ U23
B , where UE is the elastic energy and

Ull0
B is the interlayer binding energy between layers l and l0.

We assume that U12
B and U23

B are given by the interlayer
interaction energy of the twisted bilayer graphene [73], and
neglect a remote interaction between layer 1 and 3. The UE

andUll0
B can be expressed as functionals of the displacement

TABLE I. Definition of commensurate chiral TTGs (C1, C2,
C3) and commensurate alternating TTGs (A1, A2, A3) consid-
ered in this paper. The asterisk (*) symbol for A1 and A2
indicates the use of the approximation of Eq. (5) to obtain the
commensurate structures.

ðθ12; θ23Þ ðn;m; n0; m0Þ L12=L23

C1 (1.79°, 1.58°) (2, 7, 2, 6) 0.88
C2 (2.64°, 2.45°) (7, 7, 7, 6) 0.93
C3 (1.54°, 0.64°) (7, 5, 3, 2) 0.42

A1 ð1.48°;−1.18°Þ ð5; 0;−4; 0Þ� 0.80
A2 ð1.42°;−1.22°Þ ð7; 0;−6; 0Þ� 0.86
A3 ð1.47°;−0.62°Þ ð7; 12;−3;−5Þ 0.42

FIG. 3. (a) Two-dimensional map of ðθ12; θ23Þ of TTGs considered in this paper. The color code represents the ratio of the two moiré
periods, min ðL12=L23; L23=L12Þ. Diagonal dashed lines indicate θ12 ¼ �θ23, and a horizontal dashed line represents twisted
monolayer-bilayer graphene (tMBG). Right: moiré-of-moiré patterns without lattice relaxation of (b) chiral TTGs (C1, C2, and
C3) and (c) alternating TTGs (A1, A2, and A3). Blue and red dots indicate the AA spot of moiré 12 (between layer 1 and 2) and moiré
23 (between layer 2 and 3), respectively, and gray area represents the moiré-of-moiré unit cell. All scale bars indicate 20 nm.
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field sðlÞðrÞ. We solve the Euler-Lagrange equation to
obtain the optimized sðlÞðrÞ self-consistently.
The elastic energy of strained TTG is written in a

standard form [84,85] as

UE ¼
X3
l¼1

1

2

Z �
ðμþ λÞ

�
sðlÞxx þ sðlÞyy

�
2

þ μ
n�

sðlÞxx − sðlÞyy
�
2 þ 4

�
sðlÞxy
�
2
o�

d2r; ð6Þ

where λ ¼ 3.25 eV=Å2 and μ ¼ 9.57 eV=Å2 are

graphene’s Lamé factors [71,86], and sðlÞij ¼ ð∂isðlÞj þ
∂js

ðlÞ
i Þ=2 is the strain tensor. The interlayer binding energy

of adjacent layers ðl; l0Þ ¼ ð1; 2Þ; ð2; 3Þ is given by [73]

Ull0
B ¼

Z
d2r
X3
j¼1

2V0 cos
h
Gll0

j · rþ bj · ðsðl0Þ − sðlÞÞ
i
; ð7Þ

where b3 ¼ −b1 − b2, Gll0
3 ¼ −Gll0

1 − Gll0
2 . We take V0 ¼

0.160 eV=nm2 [87,88].
We introduce

w ¼ sð1Þ þ sð2Þ þ sð3Þ;

u ¼ sð1Þ − 2sð2Þ þ sð3Þ;

v ¼ sð1Þ − sð3Þ; ð8Þ

and rewrite U as a functional of w, u, and v. Here w
represents an overall translation of three layers, while u
and v are relative slidings which are mirror even and odd,
respectively, with respect to the middle layer. In the
subsequent analysis, we fix w to zero and focus solely
on u and v, as w does not alter the interlayer registration and
therefore does not impact the formation of moiré domains.
The Euler-Lagrange equation is written as

K̂uþ 6V0

X3
j¼1

n
sin
h
G12

j · r − bj · ðuþ vÞ=2
i

þ sin
h
G23

j · rþ bj · ðu − vÞ=2
io

bj ¼ 0; ð9Þ

K̂vþ 2V0

X3
j¼1

n
sin
h
G12

j · r − bj · ðuþ vÞ=2
i

− sin
h
G23

j · rþ bj · ðu − vÞ=2
io

bj ¼ 0; ð10Þ

where

K̂ ¼
� ðλþ 2μÞ∂2x þ μ∂2y ðλþ μÞ∂x∂y

ðλþ μÞ∂x∂y ðλþ 2μÞ∂2y þ μ∂2x

�
: ð11Þ

We assume sðlÞ’s (so u and v) are periodic in the
original moiré-of-moiré period, and define the Fourier
components as

uðrÞ ¼
X
G

uGeiG·r; vðrÞ ¼
X
G

vGeiG·r; ð12Þ

where G ¼ m1G1 þm2G2 are the moiré-of-moiré recipro-
cal lattice vectors. We also introduce fll

0
G;j by

FIG. 4. (a) Brillouin zone of chiral TTG for a commensurate
case of ðθ12;θ23Þ¼ð13.2°;8.61°Þ and ðn;m; n0; m0Þ ¼ ð1; 2; 1; 1Þ.
Green, black, and orange hexagons represent the first Brillouin
zone of graphene layer 1, 2, and 3, respectively. Blue and red
hexagons represent the BZ for the moiré patterns given by l¼1, 2

and that by l ¼ 2, 3, respectively. (b) Magnified plot near KðlÞ
þ ,

where gray hexagons are the BZs of the moiré-of-moiré pattern.
(c) The moiré BZ’s (blue and red hexagons) aligned at the shared
center indicated by a black dot. The moiré-of-moiré BZ (a gray
hexagon) is identified by drawing a hexagon with its side
connecting the nearest corner points of the moire BZs.
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sin½G12
j · r − bj · ðuþ vÞ=2� ¼

X
G

f12G;je
iG·r;

sin½G23
j · rþ bj · ðu − vÞ=2� ¼

X
G

f23G;je
iG·r: ð13Þ

Equation (9) is then written as

uG ¼ −6V0

X3
j¼1

�
f12G;j þ f23G;j

�
K̂−1

G bj;

vG ¼ −2V0

X3
j¼1

�
f12G;j − f23G;j

�
K̂−1

G bj; ð14Þ

where

K̂G ¼
 
ðλþ 2μÞG2

x þ μG2
y ðλþ μÞGxGy

ðλþ μÞGxGy ðλþ 2μÞG2
y þ μG2

x

!
: ð15Þ

We obtain the optimized uG and vG by solving Eqs. (13)
and (14) in an iterative manner. In the calculation, we only
consider a finite number of the Fourier components in
jGj < 3max ðjnj; jmj; jn0j; jm0jÞ, which are sufficient to
describe the lattice relaxation in the systems considered.
It should be noted that the components of G ¼ 0 cannot
be determined by this scheme, since K̂G becomes 0 in

Eq. (14). Here we treat sðlÞG¼0 as parameters, and perform the
above iteration for different parameter choices. We finally
choose the solution having the lowest total energy. The
dependence onG ¼ 0 component arises because the moiré-
of-moiré structure depends on a relative translation of
the two moiré patterns, and hence it cannot be eliminated
by a shift of the origin unlike twisted bilayer graphene.
Practically, it is sufficient to consider only the lateral sliding
of layer 3 with the other two layers fixed.

D. Continuum Hamiltonian with lattice relaxation

We compute the band structure of the TTGs by using
an electronic continuum model [89–94] that incorporates
lattice relaxation [78]. The effective Hamiltonian for valley
ξ is written as

HðξÞ ¼

0
BB@

H1ðkÞ U†
21

U21 H2ðkÞ U†
32

U32 H3ðkÞ

1
CCA: ð16Þ

The matrix works on a six-component wave function

ðψ ð1Þ
A ;ψ ð1Þ

B ;ψ ð2Þ
A ;ψ ð2Þ

B ;ψ ð3Þ
A ;ψ ð3Þ

B Þ, where ψ ðlÞ
X represents

the envelope function of sublattice X (¼ A, B) on layer l
(¼ 1, 2, 3). The HlðkÞ is the 2 × 2 Hamiltonian of
monolayer graphene and Ull0 is the interlayer coupling
matrix, in the presence of the lattice distortion. TheHlðkÞ is
given by

HlðkÞ ¼ −ℏv
�
RðθðlÞÞ−1

�
k − KðlÞ

ξ þ e
ℏ
AðlÞ
��

· σ; ð17Þ

where v is the graphene’s band velocity, σ ¼ ðξσx; σyÞ, and
σx, σy are the Pauli matrices in the sublattice space ðA; BÞ.
We take ℏv=a ¼ 2.14 eV [95]. The AðlÞ is the strain-
induced vector potential that is given by [84,96,97]

AðlÞ ¼ ξ
3

4

βγ0
ev

 
sðlÞxx − sðlÞyy

−2sðlÞxy

!
; ð18Þ

where γ0 ¼ 2.7 eV is the nearest neighbor transfer energy
of intrinsic graphene and β ≈ 3.14.
The interlayer coupling matrices U21 and U32 are given

by

Ul0l ¼
X3
j¼1

Uje
iξδkðll

0Þ
j ·rþiQj·ðsðl0Þ−sðlÞÞ; ð19Þ

where we defined

δkll
0

1 ¼0; δkll
0

2 ¼ ξGll0
1 ; δkll

0
3 ¼ ξðGll0

1 þGll0
2 Þ; ð20Þ

Q1¼Kξ; Q2¼Kξþξb1; Q3¼Kξþξðb1þb2Þ; ð21Þ

and

U1 ¼
�

u u0

u0 u

�
; U2 ¼

�
u u0ω−ξ

u0ωþξ u

�
;

U3 ¼
�

u u0ωþξ

u0ω−ξ u

�
: ð22Þ

The parameters u ¼ 79.7 meV and u0 ¼ 95.7 meV are
interlayer coupling strength between AA/BB and AB/BA
stack region, respectively [95,98]. In the band calculation,
we take Fourier components within the radius of jGj ≤
2max ðjnj; jmj; jn0j; jm0jÞ as the basis of Hamiltonian. We
neglect remote interlayer hoppings between layer 1 and 3.

III. CHIRAL TTGs

A. Multiscale lattice relaxation

We study the lattice relaxation in the TTGs of C1(1.79°,
1.58°), C2(2.64°, 2.45°), and C3(1.54°, 0.64°) by using the
method described in Sec. II C. Figure 5 summarizes the
optimized moiré structures for the three systems. In each
row, the left-hand panel shows the moiré pattern 12 (given
by layer 1 and 2), and the middle panel shows moiré pattern
23 (by layer 2 and 3) after the relaxation. Here the color
represents the local interlayer binding energy Ull0

B , where
bright and dark regions correspond to the AA stack and
AB/BA stack, respectively. Tiny magenta dots indicate
the original AA stack points without lattice relaxation for
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reference. In the rightmost panel, we overlap the two moiré
structures in a single diagram, where blue and red points
represent the AA stack of the moiré 12 and 23, respectively.
A rhombus in each panel represents the moiré-of-moiré unit
cell, and all scale bars indicate 20 nm.

We first consider C1 and C2 which have relatively close
twist angles ðθ12; θ23Þ. In the rightmost panels of Figs. 5(a)
and 5(b), we see that locally commensurate αβ and βα
domains (indicated by triangles) are formed. In these
domains, the lattice relaxation equalizes the two moiré

FIG. 5. Relaxed moiré patterns in chiral TTGs. (a) C1 ðθ12; θ23Þ ¼ ð1.79°; 1.58°Þ, (b) C2 (2.64°, 2.45°), and (c) C3 (1.54°, 0.64°). In the
each row, the left-hand and middle panels are the moiré 12 (between layer 1 and 2) and moiré 23 (between layer 2 and 3) patterns after
the relaxation. The color corresponds to the local interlayer binding energy Ull0

B , where bright and dark regions correspond to the AA
stack and AB/BA stack, respectively. Small magenta dots indicate the AA stack points without lattice relaxation for the reference. The
right-hand panel combines the two moiré patterns in a single plot, where blue and red points indicate the AA stack of the moiré 12 and
23, respectively. Black triangles represent αβ=βα domains. A rhombus in each panel shows the moiré-of-moiré unit cell, and all scale
bars indicate 20 nm.
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periods which were initially different, to achieve a com-
mensurate structure. The formation of locally commensu-
rate domains is more clearly seen in Fig. 6, which plots
the distribution of the total interlayer binding energy
U12

B þU23
B in nonrelaxed (left) and relaxed (right) cases.

At the same time, we also have the lattice relaxation in a
smaller scale as in twisted bilayer graphene, which shrinks
AA regions and expands AB/BA regions in each of two
moiré patterns. Therefore, we have the relaxations in the
moiré-of-moiré scale (αβ=βα domains) and in moiré scale
(AB/BA domains) at the same time. The following ques-
tions naturally arise. (i) What distribution of displacement
vectors leads to the multiscale lattice relaxation? (ii) Why
does such a structure exhibit energetic preference? These
questions can be answered by examining the obtained
lattice displacement as follows.
Figure 7(a) shows the distribution of the displacement

vector sðlÞðrÞ on layer 1, 2, and 3 for the case of C1. The
middle row, Fig. 7(b), plots a coarse-grained component
s̄ðlÞðrÞ, which is calculated by averaging sðlÞðrÞ over a scale
of moiré unit cell around the point r. The bottom row
[Fig. 7(c)] displays magnified plots of sðlÞðrÞ − s̄ðlÞðrÞ (i.e.,
the local component with the coarse-grained part sub-
tracted) within the region enclosed by a dashed square
in Fig. 7(a).
In Fig. 7(b), we clearly see that s̄ð1Þ and s̄ð3Þ rotate

counterclockwise around the center of the αβ and βα
domains, while s̄ð2Þ rotates in the clockwise direction.
This behavior is closely linked to αβ=βα domain formation,
and it can be comprehended by examining the problem in
the k space. Figure 8 depicts the relocation of BZ corners
of layer 1, 2, and 3 in the C1 system under the
lattice relaxation. Figure 8(a) is for the original non-

distorted configuration. We define q121 ¼ Kð2Þ
þ − Kð1Þ

þ and

q231 ¼ Kð3Þ
þ − Kð2Þ

þ , where KðlÞ
þ is the BZ corner of layer l

near ξ ¼ þ valley. The vectors q121 and q231 are associated
with the periods of the moiré pattern 12 and that of 23,
respectively. When these vectors are equal, two moiré
periods completely match.
The lattice displacement in Fig. 7(b) works precisely to

align the two vectors. In the case of C1, the angle between
layer 1 and 2 is larger than the angle between layer 2 and 3
(θ12 > θ23), so the layer 2 rotates clockwise, and the layer 1
and layer 3 rotate counterclockwise to achieve θ12 ¼ θ23

[Fig. 8(b)]. There is still a tiny angle difference between q121
and q231 . This can be eliminated by slightly expanding BZs
layer 1 and 3, and shrinking BZ of layer 2, to finally obtain
the perfect matching [Fig. 8(c)]. In the real space, this
corresponds to a shrink of layer 1 and 3 and an expansion of
layer 2. These changes are actually observed in Fig. 7(a),
where the vector fields rotate around the center of the
αβ=βα domain. In the final structure of Fig. 8(c), the moiré
12 and the moiré 23 become perfectly commensurate. In
terms of the reciprocal lattice vectors of the graphene
layers, this situation is described as a singular condition
that the reciprocal lattice vectors add up to zero, or

bð1Þi − 2bð2Þi þ bð3Þi ¼ 0 (i ¼ 1, 2) [49].
To understand the energetic stability of αβ=βα domains,

we examine the local moiré-scale lattice relaxation. Let us
first consider the twisted bilayer graphene, which has only
a single moiré pattern. There the lattice relaxation takes
place such that the AB/BA stack region expands and the
AA stack region shrinks [73]. This is realized by a local
interlayer rotation around AA and AB/BA stack points.
Around AB/BA, specifically, the layer 1 and 2 oppositely
rotate to reduce the local twist angle. The AB/BA region is
then enlarged, because the length scale of the moiré pattern
is enlarged in decreasing the twist angle. In AA spots, on
the contrary, the layer 1 and 2 rotate to increase the local
twist angle to shrink the AA region.
The same deformation occurs also in TTG, where all

three layers undergo relaxation to expand AB/BA domain
in each of the two moiré patterns. However, as the middle
layer l ¼ 2 is shared by the two interference patterns, there
can be a frustration such that, for instance, a local move-
ment of the layer 2 leads to the expansion of the AB region
in one moiré pattern while causing its contraction in the
other. Therefore, the relative displacement of the two moiré
superlattices should be determined in such a way that the
middle layer distortion can lower the total energies of the
two moiré patterns at the same time.
Figure 9(a) is a schematic to illustrate the favorable local

rotation of the middle layer, for the moiré 12 (between
l ¼ 1, 2) and moiré 23 (between l ¼ 2, 3). The orange and
green arc arrows correspond to clockwise and counter-
clockwise directions, respectively. Here we notice that the
direction of rotation is opposite for moiré 12 and moiré 23,
since layer 1 and layer 3 are originally twisted in opposite

FIG. 6. Density plot of the total interlayer binding energy
U12

B þ U23
B in nonrelaxed (left) and relaxed (right) TTG of C2.

The black rhombus indicates the moiré-of-moiré unit cell, and the
red triangles in right-hand panel indicate emergent αβ=βα
domains.
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directions with respect to layer 2. When AA stack points of
moiré 12 and moiré 23 are aligned (αα stacking), the
rotation direction of layer 2 is completely frustrated, as
shown in Fig. 9(b), and therefore αα stacking is energeti-
cally unfavorable. The optimized structure is αβ stacking

[Fig. 9(c)], where the rotation angles coincide in two out of
three regions.
The mechanism of the moiré-of-moiré domain formation

is summarized as follows. At the moiré scale, the local
rotation [Fig. 7(c)] leads to a reduction of AA regions

FIG. 7. Distribution of the displacement vector in each layer of C1: ðθ12; θ23Þ ¼ ð1.79°; 1.58°Þ. (a) Original nonaveraged distribution
sðlÞðrÞ (l ¼ 1, 2, 3). (b) Coarse-grained component s̄ðlÞðrÞ. (c) Moiré-scale component sðlÞðrÞ − s̄ðlÞðrÞ in a region indicated by the white
square in the top panel. Black arrows represent the displacement vector, and color indicates its norm. Red arc arrows schematically show
the direction of rotation in moiré-of-moiré scale. In (a) and (b), the white rhombus represents a moiré-of-moiré unit cell, while in (c) the
blue rhombus represents a moiré unit cell.
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and an enlargement of AB regions in the moiré patterns
(12 and 23), just as in twisted bilayer graphene. In contrast,
a rotation in the moiré-of- moiré scale [Fig. 7(b)] adjusts the
periodicities of the moiré 12 and 23, achieving local
commensurability of the two patterns [Fig. 8(b)]. These
rotations in the different scales work cooperatively to
minimize the total energy. This cooperative mechanism
is intuitively explained by the frustration picture in Fig. 8,

which requires the two moiré patterns to align to avoid a
frustration of the rotation direction in the moiré scale.
When the two angles θ12 and θ23 are not close to each

other, αβ=βα domains do not appear any more, but still a
locally commensurate moiré-of-moiré structure emerges.
Figure 5(c) shows the relaxed structure for the C3 TTG.
Since the unit areas of the two moiré patterns differ by
nearly 3, we have commensurate domains where a single
red triangle includes three blue triangles. We also see red
AA points always come to the center of blue triangles. This
can also be understood in terms of the alignment of the
favorable rotation angles explained above.

B. Electronic properties

Using the electronic continuum model introduced in
Sec. II D, we calculate the band structure of TTGs in the
presence of the lattice relaxation. Figures 10(a) and 10(b)
show the energy bands (near Kþ valley) and the corre-
sponding density of states (DOS) calculated for the case
C1 and C2, respectively. The labels κ; γ; μ; κ0 are symmetric
points of the moiré-of-moiré BZ defined in Fig. 4.
We immediately notice that the spectrum exhibits dis-

tinct energy windows characterized by relatively low DOS,
which span in the energy range of 20 < jEj < 90 meV
for C1, and in the range 90 < jEj < 180 meV for C2. The
windows are sparsely filled with energy bands. Figure 10(c)
shows the Fermi surface at EF ¼ 117 meV in the C2,
which is indicated by the horizontal red line in Fig. 10(b).
We see that the Fermi surface is composed of three
intersecting lines arranged with a trigonal symmetry,
indicating the dispersion is nearly one dimensional. The
band velocities of these one-dimensional bands (normal to
the Fermi surface) are oriented to the moiré-of-moiré lattice
vectors L1, L2 and L3 (¼ −L1 þ L2). Figure 10(d) plots the
distribution of the squared wave amplitudes of an eigen-
state marked by a red point in Fig. 10(c). The wave function
actually takes a highly one-dimensional form, and it is
sharply localized within the domain walls dividing αβ and
βα regions. Each of the three Fermi surfaces corresponds to
one-dimensional states running along the domain walls
in the corresponding directions. The states with different
directions are barely hybridized. We also have a low-DOS
region near E ¼ 0 in the C2, while this is remnant of the
graphene’s Dirac cone and the energy bands are not one
dimensional.
The existence of one-dimensional channels on the

domain walls indicates that the αβ and βα regions are
locally gapped with different topological numbers, and
associated topological boundary modes emerge between
the domains, as shown in Fig. 1. To verify this, we calculate
the band structures and the Chern numbers of uniform TTG
having αβ=βα stacking. The Hamiltonian of such a uniform
system can be obtained by assuming the BZ-corner
arrangement in Fig. 8(c), where q121 ¼q231 ≡q. This corre-
sponds to a TTG where θ12 ¼ θ23 and layer 2 is slightly

FIG. 8. Relocation of BZ corners in the C1 system under the
lattice relaxation. The panels depict (a) the original nondistorted
configuration, (b) the configuration with rotation included, and
(c) with expansion and shrinkage taken into account. Green, black,
and orange line are the BZ of layer 1, 2, and 3, and gray arrows
indicate the direction of rotation and expansion and shrink.

FIG. 9. (a) Schematic figure of the preferred direction of the
middle layer (l ¼ 2), for the moiré 12 (between l ¼ 1, 2) and
moiré 23 (between l ¼ 2, 3). Orange and green arc arrows
correspond to clockwise and counterclockwise directions, re-
spectively. Bottom row: overlapped figures for (b) αα stack and
(c) αβ stack.
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expanded in relative to layer 1 and 3. The two moiré periods
then become identical, and we have G12

j ¼ G23
j ≡ GM

j and
q ¼ ð2GM

1 þ GM
2 Þ=3. The Hamiltonian for this system is

obtained from Eq. (16) as

HðξÞ ¼

0
BB@

Hðkþ ξqÞ U†
21

U21 HðkÞ U†
32

U32 Hðk − ξqÞ

1
CCA; ð23Þ

where

HðkÞ ¼ −ℏvk · σ; ð24Þ

U21 ¼
X3
j¼1

Ujeiξδkj·r; U32 ¼
X3
j¼1

Ujeiξδkj·ðr−r0Þ;

δk1 ¼ 0; δk2 ¼ ξGM
1 ; δk3 ¼ ξðGM

1 þ GM
2 Þ; ð25Þ

and we neglect the strain-induced vector potentials which
does not affect the topological nature argued here. HereU21

and U32 differ by the parameter r0, which specifies the
relative displacement between the two moiré patterns. The
αβ and βα stackings correspond to r0 ¼ ðLM

1 þ LM
2 Þ=3 and

2ðLM
1 þ LM

2 Þ=3, respectively, where LM
j is the common

moiré lattice vector given by GM
i · LM

j ¼ 2πδij.
Here we consider uniform αβ and βα TTGs with

θ12 ¼ θ23 ¼ 2.54°, which approximate the local structures

of αβ and βα domains in the C2. Figure 11 plots the energy
bands in ξ ¼ þ valley calculated by Eq. (23). We observe
energy gaps in the electron and hole sides in the region
50 < jEj < 180 meV, which approximately coincides with
the energy window of the C2 [Fig. 10(b)]. Between the
gaps in the electron and hole sides, we have two bands
touching at the charge neutrality point. The total Chern
number for the two-band cluster is found to be ∓1 for αβ
and βα, respectively. The absolute Chern number in the
upper gap can also be calculated, and it turns out to be
∓1=2 for αβ and βα, respectively. This is obtained by

FIG. 10. (a),(b) Electronic band structures and the density of states of Kþ valley calculated for (a) C1 and (b) C2 with the lattice
relaxation incorporated. The k-space path ðκ − γ − μ − κ0Þ is defined in Fig. 4. (c) Fermi surface of the C2 at EF ¼ 117 meV [indicated
by a red dotted horizontal line in (b)]. Three red arrows represent the directions of band velocities, which are parallel to the moiré lattice
vectors L1, L2, and L3 (¼ −L1 þ L2). (d) Distribution of the squared wave amplitude of an eigenstate state, indicated by a red point in
(c). Red rhombus represents a moiré-of-moiré unit cell.

FIG. 11. Local band structure of the αβ (left) and βα (right)
structure with θ ¼ 2.54°. Black and blue numbers indicate the
Chern numbers for bands and gaps, respectively. κM; γM; μM; κ0M
are the labels for the common moiré BZ, where κM and κ0M are
corner points, μM is the midpoint of a side, and γM is the center of
the BZ.
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opening mass gap (adding asymmetric energies to A and B
sublattices in all the graphene layers) to lift the band
touching at the Dirac point. Since the difference of the
Chern number of the upper gap between the αβ and βα
regions is 1, we have a single edge mode (per a single
valley) at the domain boundary. This coincides with the
number of the one-dimensional modes per a single direc-
tion in the moiré-of-moiré superlattice band Fig. 10. The

Chern number of the valley ξ ¼ −1 is negative of ξ ¼ þ1
valley due to the time reversal symmetry. Therefore the
TTG is a quantized valley Hall insulator when the Fermi
energy is in the energy window.
The energy windows and one-dimensional domain-wall

states also appear in the C1 case [Fig. 10(a)], which has a
smaller moiré-of-moiré period. The degree of one dimen-
sionality is not as pronounced as in the C2 configuration, as

FIG. 12. Relaxed moiré patterns in alternating TTGs. (a) A1: ðθ12; θ23Þ ¼ ð1.48°;−1.18°Þ, (b) A2: ð1.42°;−1.22°Þ, and (c) A3:
ð1.47°;−0.62°Þ, corresponding to Fig. 5 for the chiral TTGs.
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evidenced by the appearance of small gaps at the inter-
sections of bands. The hybridization tends to be greater
when the moiré-of-moiré period is smaller.
Finally, the band structure in Fig. 10 closely resembles

the marginally stacked twisted bilayer graphene in a strong
perpendicular electric field [99–105]. There the topological
one-dimensional edge states arise since the AB and BA
regions in the moiré pattern have opposite valley Chern
numbers in the electric field. The chiral TTG realizes a
similar situation in the moiré-of-moiré scale, without the
need for an applied electric field. This can be achieved in
any chiral TTGs where θ12 and θ23 are close to each other,
such that the two moiré periods are comparable.

IV. ALTERNATING TTGs

A. Multiscale lattice relaxation

Alternating TTGs display distinct relaxed structures
that differ entirely from the chiral cases. Figure 12 shows
optimized moiré structures calculated for alternating TTGs
(a) A1 ðθ12; θ23Þ ¼ ð1.48°;−1.18°Þ, (b) A2 ð1.42°;−1.22°Þ,
and (c) A3 ð1.47°;−0.62°Þ, corresponding to Fig. 5 for
chiral TTGs. In the A1 and A2, we observe a formation of
commensurate αα0 domains, where AA spots of the two
moiré patterns completely overlap [see Fig. 2(e)]. This is in
sharp contrast to the chiral TTGs, where AA spots are
repelled to each other, giving rise to αβ=βα domains. The
atomic structure of αα0 domain corresponds precisely to
the mirror-symmetric TTG with θ12 ¼ −θ23. In the A3 case
[Fig. 12(c)], where the two moiré periods are not compa-
rable, we observe a different type of commensurate domain
with the ratio of the lattice periods fixed at 2, reflecting the
original moiré-period ratio L23=L12 ≃ 2.3. Here the AA
stacking points of the red and blue moiré lattices are
vertically aligned as in αα0 domains observed in A1 and A2.

The formation of the commensurate domains can be
attributed to a specific type of lattice distortion that differs
from the chiral case. Figure 13 shows the distribution of the
coarse-grained displacement vector s̄ðlÞðrÞ in the A1 case
[corresponding to Fig. 7(b) for the chiral case]. We observe
that the layer 1 and layer 3 rotate anticlockwise and
clockwise directions, respectively, around αα0 domain
center. In k space, accordingly, the Brillouin zone corners
of layers 1 and 3 move to overlap as shown in Fig. 14. This
corresponds to the symmetric TTG ðθ12 ¼ −θ23Þ where the
layer 1 and layer 3 are perfectly aligned.
The stability of αα0 domain is also explained by con-

sidering moiré-scale lattice relaxation. As discussed in
Sec. III A, the graphene layers in TTG undergo sponta-
neous distortion to expand the AB/BA regions for the moiré
patterns 12 and 23, giving a competitive environment for
the shared layer 2. Figure 15(a) depicts the preferred
orientation of layer 2 for the two moiré patterns in

FIG. 13. Distribution of the coarse-grained displacement vector s̄ðlÞðrÞ in A1: ðθ12; θ23Þ ¼ ð1.48°;−1.18°Þ, corresponding to Fig. 7(b)
for the C1.

FIG. 14. Relocation of BZ corners in the A1: ðθ12; θ23Þ ¼
ð1.48°;−1.18°Þ under the lattice relaxation. The panels depict
(a) the original nondistorted configuration and (b) the relaxed
configuration.
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alternating TTG. In contrast to the chiral stack [Fig. 9], the
rotation direction is identical for both moiré patterns, since
layer 1 and layer 3 are rotated in the same direction relative
to the layer 2. Consequently, there is no frustration when
the moiré lattices are arranged in an αα0 stack as shown in

Fig. 15(b). In this structure, the motion of the shared layer 2
allows for the simultaneous relaxation of the moiré patterns
12 and 23, resulting in an energy advantage compared
to partially frustrated configurations like the αβ0 stack
[Fig. 15(c)]. The stability of αα0 stack in nearly symmetric
TTGs was pointed out in the previous theoretical works
[22,26,47,48], and it was observed in recent experi-
ments [79,81].

B. Electronic properties

We calculate the band structure for alternating TTGs
of A1 ð1.48°;−1.18°Þ, A2ð1.42°;−1.22°Þ using the method
described in Sec. II. The energy band and DOS
for A1 and A2 are displayed in Figs. 16(a) and 16(b),
respectively. In each figure, the right-hand and left-hand
panels correspond to the TTGs with and without the lattice
relaxation, respectively. Black curves represent the energy
bands, and blue straight lines indicate the intrinsic Dirac
bands of layer 1 and layer 3 without the interlayer coupling.
Red dots indicate the amplitude projected onto the mirror-
odd plane wave states, as defined by

wðoddÞ
nk ¼

X
X¼A;B

jhψnkjk; X; oddij2;

jk; X; oddi ¼ 1ffiffiffi
2

p ðjk; X; 1i − jk; X; 3iÞ; ð26Þ

where ψnk is the eigenstates, and jk; X; li is the plane
wave at sublattice Xð¼ A;BÞ on layer l. We take the path

FIG. 15. (a) Schematic of the preferred distorting direction of
the middle layer (l ¼ 2) in an alternating TTG, corresponding to
Fig. 9 for a chiral TTG.

FIG. 16. Energy bands and DOS for alternating TTGs. (a) A1: ð1.48°; 1.18°Þ and (b) A2: ð1.42°; 1.22°Þ. The left- and right-hand panels
in each figure show the results without and with the lattice relaxation, respectively. Black curves represent the energy bands, and blue
straight lines indicate the intrinsic Dirac bands of layer 1 and layer 3 without the interlayer coupling. Red dots indicate the amplitude

projected onto the mirror-odd plane wave states (see the text). The path is taken as Kð1Þ
þ → Kð3Þ

þ → Kð2Þ
þ in the extended k space shown in

the inset.
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Kð1Þ
þ → Kð3Þ

þ → Kð2Þ
þ on a straight line in the extended k

space, as shown in insets of Fig. 16.
In the band structures with the lattice relaxation, we

observe numerous flat bands concentrated around zero
energy, and these bands are surrounded by a region
where dispersive energy bands are sparsely distributed.
These features coincide with the mirror-symmetric TTG
ðθ12 ¼ −θ23Þ, where the low-energy spectrum is composed
of a flat band with even parity and a Dirac cone with odd
parity against the mirror inversion [21,22]. We see that the
red dots roughly form a conical dispersion, and it is
regarded as a remnant of the symmetric TTG’s Dirac cone
having odd parity. In the nonrelaxed calculations, we notice
that the flat bands and Dirac cones are strongly hybridized,
and the conical dispersion of the red dots is not clearly
resolved. These results suggest that the formation of αα0
domains (equivalent to the mirror-symmetric TTG) sup-
ports the spectral separation of the flat bands and the Dirac-
cone-like bands. Therefore, we expect that asymmetric
TTGs slightly away from the symmetric condition θ12 ¼
−θ23 acquire similar electronic properties to the symmetric
TTG, through the moiré-of-moiré lattice relaxation.
The electronic properties of TTG can be tuned by

applying a perpendicular electric field. We can introduce
the field effect to our model as H þ V, where H is the
original Hamiltonian of Eq. (16), and V is the on-site
potential term by perpendicular electronic field:

V ¼

0
B@

−ΔÎ2
0

ΔÎ2

1
CA: ð27Þ

Here Δ is the difference of the on-site energy and Î2
is a 2 × 2 unit matrix, and we simply assumed the
perpendicular electric field is constant between top layer
and bottom layer. Figure 17 shows the energy band of the
A2 with lattice relaxation, under the perpendicular electric

field Δ ¼ 50 and 100 meV. When the electric field is
applied, we observe the Dirac band moves along the
energy axes, and eventually the Dirac point emerges out of
the flat-band cluster. We also see that the electric fields
broaden the energy width of the flat-band region, and
enhances a hybridization between the flat bands and the
dispersive bands.

V. CONCLUSION

We have presented a systematic investigation on the
lattice relaxation and electronic properties of general non-
symmetric TTGs. For various chiral and alternating TTGs
with different twist angle combinations, we employ an
effective continuum approach similar to twisted bilayer
graphene, to obtain the optimized lattice structure. We also
computed the electronic band structure by using a con-
tinuum band calculation method incorporating lattice
relaxation effects. In the calculation of the lattice relaxa-
tion, we found that there are two distinct length scale
relaxations in the moiré-of-moiré scale and moiré scale.
This leads to a formation of a patchwork of moiré-of-moiré
domains, where the two moiré patterns become locally
commensurate with a specific relative arrangement. The
preferred structure of moiré-of-moiré domains can be
explained by an intuitive picture based on the frustration
of the lattice relaxation, where the AA spots in the
competing moiré patterns interact with each other with
attractive or repulsive force. Specifically, the chiral TTGs
prefer a shifted stacking to avoid the overlap of AA spots in
the individual moiré patterns. In contrast, the alternating
TTGs exhibit a completely opposite behavior where AA
spots are perfectly overlapped. This insight offers valuable
guidance for estimating the preferred domain structures in
general twisted multilayers without the need for extensive
numerical calculations.
In the band calculations, the chiral TTG exhibits an

energy window where highly one-dimensional electron
bands are sparsely distributed. By calculating the Chern
number of the local band structure within the commensu-
rate domains, we identify one-dimensional domain boun-
dary states as topological boundary states between distinct
Chern insulators. The alternating TTG exhibits a clear
separation of the flat bands and a monolayerlike Dirac
cone, as a consequence of the formation of commensurate
domains equivalent to the symmetric TTG.
While our study focuses on commensurate twisted

TTGs, the domain formation in incommensurate cases
can be conjectured by the intuitive picture for the formation
of locally commensurate domains. The calculation of C3
[Fig. 5(c)] provides a glimpse into this scenario, where
various types of locally commensurate domains coexist and
form a mosaic pattern to fit the original moiré period
difference. Since it is a commensurate TTG, the entire
domain pattern is also periodic with a unit cell of gray
rhombus, as a result of the shared common periodicity

FIG. 17. Plots similar to Fig. 8 for A2: ð1.43°;−1.28°Þ with the
perpendicular electric field of (a) Δ ¼ 50 meV and (b) 100 meV.
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between the moiré patterns. In contrast, in incommensurate
cases, we anticipate a similar formation of locally com-
mensurate domains but with a quasiperiodic arrangement.
Finally, the theoretical model presented in this paper

holds significant potential for applications in a wide range
of moiré-of-moiré multilayers composed of various 2D
materials. The complex lattice relaxation can be determined
by just a small number of parameters, such as the elastic
constants and the registry-dependent interlayer potential
between neighboring layers (i.e., interlayer binding energy
at AA, AB, and BA stacking), which are already known for
most two-dimensional materials. Once these parameters are
determined, we can optimize the moiré-of-moiré domain
structure, allowing us to predict the geometric shape of the
domains. Subsequently, we can calculate the electronic
structure to examine the topological properties of the
system. As a result, our theoretical scheme serves as a
fundamental tool and guiding principle for topological
band engineering in twisted multilayers beyond graphene
trilayers. Studying supermoiré multilayer systems, which
offer numerous configuration possibilities, presents an
opportunity to explore a new realm beyond traditional
moiré bilayers, expanding the scope of research in the field
of materials science.

Note added.—Recently, we became aware of related
preprints which partially overlap with the present
work [106,107].
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Heterostructure, Science 367, 900 (2020).

[13] G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang,
L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi et al.,
Tunable Correlated Chern Insulator and Ferromagnet-
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without Displacement Field, Phys. Rev. B 103, 195411
(2021).

[29] F. Xie, N. Regnault, D. Călugăru, B. A. Bernevig, and B.
Lian, Twisted Symmetric Trilayer Graphene. II. Projected
Hartree-Fock Study, Phys. Rev. B 104, 115167 (2021).

[30] D. Guerci, P. Simon, and C. Mora, Higher-Order Van
Hove Singularity in Magic-Angle Twisted Trilayer Gra-
phene, Phys. Rev. Res. 4, L012013 (2022).

[31] M. Christos, S. Sachdev, and M. S. Scheurer, Correlated
Insulators, Semimetals, and Superconductivity in Twisted
Trilayer Graphene, Phys. Rev. X 12, 021018 (2022).

[32] Y. Zhang, R. Polski, C. Lewandowski, A. Thomson, Y.
Peng, Y. Choi, H. Kim, K. Watanabe, T. Taniguchi, J.
Alicea, F. von Oppen, G. Refael, and S. Nadj-Perge,
Promotion of Superconductivity in Magic-Angle Graphene
Multilayers, Science 377, 1538 (2022).

[33] Z. Hao, A. M. Zimmerman, P. Ledwith, E. Khalaf, D. H.
Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath,
and P. Kim, Electric Field-Tunable Superconductivity in
Alternating-Twist Magic-Angle Trilayer Graphene,
Science 371, 1133 (2021).

[34] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Tunable Strongly Coupled Superconduc-
tivity in Magic-Angle Twisted Trilayer Graphene, Nature
(London) 590, 249 (2021).

[35] Y. Cao, J. M. Park, K. Watanabe, T. Taniguchi, and P.
Jarillo-Herrero, Pauli-Limit Violation and Re-entrant
Superconductivity in Moiré Graphene, Nature (London)
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Trilayer Graphene, Phys. Rev. B 107, 035109 (2023).

[49] A. Dunbrack and J. Cano, Intrinsically Multilayer Moiré
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Moiré Patterns in Twisted Bilayer Graphenes, Phys.
Rev. B 90, 155451 (2014).

[69] M. van Wijk, A. Schuring, M. Katsnelson, and A. Fasolino,
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tron-Phonon Interaction, Phys. Rev. B 101, 195425
(2020).

[79] S. Turkel, J. Swann, Z. Zhu, M. Christos, K. Watanabe,
T. Taniguchi, S. Sachdev, M. S. Scheurer, E. Kaxiras,
C. R. Dean, and A. N. Pasupathy, Orderly Disorder in
Magic-Angle Twisted Trilayer Graphene, Science 376,
193 (2022).

[80] Y. Li, M. Xue, H. Fan, C.-F. Gao, Y. Shi, Y. Liu, K.
Watanabe, T. Tanguchi, Y. Zhao, F. Wu et al., Symmetry

MULTISCALE LATTICE RELAXATION IN GENERAL TWISTED … PHYS. REV. X 13, 041007 (2023)

041007-19

https://doi.org/10.1103/PhysRevB.104.035306
https://doi.org/10.1103/PhysRevResearch.4.013028
https://doi.org/10.1103/PhysRevResearch.4.013028
https://doi.org/10.1038/s41565-019-0547-2
https://doi.org/10.1038/s41565-019-0547-2
https://doi.org/10.1021/acs.nanolett.8b05061
https://doi.org/10.1021/acs.nanolett.8b05061
https://doi.org/10.1126/sciadv.aay8897
https://doi.org/10.1126/sciadv.abd3655
https://doi.org/10.1021/acs.nanolett.9b04058
https://doi.org/10.1088/2053-1583/ab891a
https://doi.org/10.1088/2053-1583/ab891a
https://doi.org/10.1021/acs.nanolett.0c01427
https://doi.org/10.1103/PhysRevB.103.115419
https://doi.org/10.1103/PhysRevB.103.115419
https://doi.org/10.1103/PhysRevB.103.075122
https://doi.org/10.1103/PhysRevB.103.075423
https://doi.org/10.1103/PhysRevB.103.075423
https://doi.org/10.1103/PhysRevB.104.045413
https://doi.org/10.1103/PhysRevB.104.045413
https://arXiv.org/abs/2102.08594
https://doi.org/10.1103/PhysRevB.84.045404
https://doi.org/10.1103/PhysRevB.84.045404
https://doi.org/10.1021/nl204547v
https://doi.org/10.1021/nl4013979
https://doi.org/10.1021/nl4013979
https://doi.org/10.1073/pnas.1309394110
https://doi.org/10.1103/PhysRevB.90.155451
https://doi.org/10.1103/PhysRevB.90.155451
https://doi.org/10.1088/2053-1583/2/3/034010
https://doi.org/10.1088/2053-1583/2/3/034010
https://doi.org/10.1021/acs.nanolett.6b02870
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1088/2053-1583/4/1/015018
https://doi.org/10.1088/2053-1583/4/1/015018
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.101.099901
https://doi.org/10.1103/PhysRevB.98.224102
https://doi.org/10.1103/PhysRevB.98.195432
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1038/s41563-019-0346-z
https://doi.org/10.1103/PhysRevB.99.205134
https://doi.org/10.1103/PhysRevB.101.195425
https://doi.org/10.1103/PhysRevB.101.195425
https://doi.org/10.1126/science.abk1895
https://doi.org/10.1126/science.abk1895


Breaking and Anomalous Conductivity in a Double-Moiré
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Phys. Rev. B 107, 115301 (2023).

[84] H. Suzuura and T. Ando, Phonons and Electron-Phonon
Scattering in Carbon Nanotubes, Phys. Rev. B 65, 235412
(2002).

[85] P. San-Jose, A. Gutiérrez-Rubio, M. Sturla, and F. Guinea,
Electronic Structure of Spontaneously Strained Graphene
on Hexagonal Boron Nitride, Phys. Rev. B 90, 115152
(2014).

[86] K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino,
Finite Temperature Lattice Properties of Graphene
Beyond the Quasiharmonic Approximation, Phys. Rev.
Lett. 102, 046808 (2009).

[87] A.M. Popov, I. V. Lebedeva, A. A. Knizhnik, Y. E. Lozovik,
and B. V. Potapkin, Commensurate-Incommensurate Phase
Transition in Bilayer Graphene, Phys. Rev. B 84, 045404
(2011).

[88] I. V. Lebedeva, A. A. Knizhnik, A. M. Popov, Y. E.
Lozovik, and B. V. Potapkin, Interlayer Interaction and
Relative Vibrations of Bilayer Graphene, Phys. Chem.
Chem. Phys. 13, 5687 (2011).

[89] J. M. B. Lopes dos Santos, N. M. R.. Peres, and A. H.
Castro Neto, Graphene Bilayer with a Twist: Electronic
Structure, Phys. Rev. Lett. 99, 256802 (2007).

[90] R. Bistritzer and A. MacDonald, Moiré Bands in Twisted
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