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Imaging is of great importance in everyday life and various fields of science and technology.
Conventional imaging is achieved by bending light rays originating from an object with a lens. Such
ray bending requires space-variant structures, inevitably introducing a geometric center to the lens. To
overcome the limitations arising from the conventional imaging mechanism, we consider imaging elements
that employ a different mechanism, which we call reciprocal lenses. This type of imaging element relies on
lateral ray shifting, enabled by momentum-space-variant phase modulations in periodic structures. As such,
it has the distinct advantage of not requiring alignment with a geometric center. Moreover, upright real
images can be produced directly with a single reciprocal lens as the directions of rays are not changed. We
realize an ultrathin reciprocal lens based on a photonic crystal slab. We characterize the lateral ray shifting
behavior of the reciprocal lens and demonstrate imaging. Our work gives an alternative mechanism for
imaging and provides a new way to modulate electromagnetic waves.
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I. INTRODUCTION

Lenses have played a fundamental role in imaging since
they were first introduced. They are essential in producing
images and enabling us to see objects ranging from bacteria
to distant stars [1–3]. While lenses made from biological
light-bending structures have evolved in animal species
from every major phylum, artificial lenses have revolu-
tionized almost every field of science and technology, from
semiconductor device fabrication [4,5] to observation of the
cosmos [6,7]. In the past decade, a new type of lens called
“metalenses” has been developed. Unlike conventional
lenses which are bulky, metalenses use subwavelength
resonators to modulate electromagnetic waves [8–17].
However, like conventional lenses, metalenses have limi-
tations due to their need for precise alignment to produce
high-quality images. In addition, a single lens will obey the
Gaussian lens formula and can only produce inverted real
images, requiring a system of lenses to obtain upright real
images. In this work, we introduce another class of lenses,
called “reciprocal lenses,” which follow a distinct lens

formula and have a different imaging mechanism. A single
reciprocal lens has no geometric center and can produce
upright real images. Our experimental realization of an
ultrathin reciprocal lens in the microwave range not only
verifies the imaging mechanism of reciprocal lenses but
also demonstrates the potential for practical applications.

II. REVISITING CONVENTIONAL LENSES

We first revisit the concept and imaging mechanism of
conventional lenses before we introduce the notion of
“reciprocal lenses.” Only the far-field propagation of waves
will be considered, andwe take theviewpoint of rayoptics for
ease of understanding. In a nutshell, an ideal lens focuses
electromagnetic waves by bending rays differently at differ-
ent positions in the lens plane, as illustrated in Fig. 1. The lens
is assumed to be cylindrically symmetric about the z axis for
simplicity, and we reduce the system to a two-dimensional
problem in thex-z plane for now.For each ray intersecting the
lens plane at x, the angle of propagation would change by
ΔθðxÞ. In the paraxial limit, the angle change ΔθðxÞ equals
−ΔkxðxÞ=k0, whereΔkx is the change in the projected wave
vector of the ray in the lens plane and k0 is the free-space
wave vector. The lens can focus rays emitted from a point
source to another point, following the Gaussian lens formula
1=uþ 1=v ¼ ΔθðxÞ=x ¼ 1=f (u, v: the distances from the
object and the image to the lens in the z direction; f: the focal
length of the lens) [1–3]. Therefore, we obtain

ΔkxðxÞ ¼ −k0x=f: ð1Þ
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Such a change in the wave vector can arise from a space-
variant extra phase φðxÞ passing through the lens plane. The
gradient of the phase change ∂φðxÞ=∂x determines the wave
vector change [18,19]; thus, we have

ΔkxðxÞ ¼ ∂φðxÞ=∂x ¼ −k0x=f;

φðxÞ ¼ −
k0x2

2f
þ const: ð2Þ

The constant can be neglected here. In other words, any
optical element with a phase profile φðxÞ ¼ −k0x2=2f can
function as a lens [3,19] because it can focus rays and images
in theparaxial limit.A conventional lens introduces thephase
profile by refraction through a bulk material. Alternatively,
the required phase profile can be realized by specific space-
variant resonances in a thin metalens.

III. RECIPROCAL LENSES: IMAGING ELEMENTS
BASED ON RAY SHIFTING

After reviewing the focusing and imaging mechanism of
lenses, an interesting question arises: Can electromagnetic
waves be focused to produce images without bending rays?
The answer is affirmative, as focusing and imaging can be
realized by ray shifting. If each ray emitted by a point
source can be shifted in the z direction by an identical
distance f̃ after passing through some structure, an image
of the source will be produced.
Rays are straight lines that have no distinct starting or

ending points. While it is difficult to find a structure that

can shift rays in the z axis, a ray with an incident angle θ
can be shifted in the x axis by a distance Δx to produce
an identical effect. In the paraxial limit, it will be
ΔxðθÞ ¼ f̃ · θ. Since we have kx ≈ −k0θ, we can express
Δx with the in-plane wave vector kx:

ΔxðkxÞ ¼ −f̃kx=k0: ð3Þ

The shifts of rays result from the extra phase gradient in the
wave-vector space (momentum space) passing through the
structure [20]; therefore, we have

∂ϕðkxÞ
∂kx

¼ −ΔxðkxÞ ¼ f̃kx=k0;

ϕðkxÞ ¼
f̃k2x
2k0

þ const: ð4Þ

We can conclude that any structure that provides an
isotropic quadratic momentum-space phase modulation
ϕðkkÞ ∼ jkkj2 can function as a “lens,” which has a very
different mechanism for focusing and imaging. Unlike
lenses that are spatially variant, such a “lens” can be
spatially homogeneous with no specific geometric center.
As long as u < f̃ − l (l: the thickness of the lens), the image
of the source will appear on the opposite side of the
reciprocal lens and thus will be real. Moreover, the image of
an object produced by this kind of lens will be upright as
the directions of the rays remain unchanged.

FIG. 1. Schematics of the proposed imaging mechanism compared to existing mechanisms. From the viewpoint of ray optics, imaging
is realized by bending rays at different positions. Conventional lenses bend rays by refraction using a curved high-refractive index
medium. Metalenses bend rays by using metasurfaces carrying subwavelength resonators and are thinner than conventional lenses. All
these lenses produce inverted real images. There is another class of lenses, which we call “reciprocal lens.” Instead of bending rays, they
produce images by angle-dependent shifting of rays, as illustrated. Bulky reciprocal lenses can be realized in theory based on negative
refraction. Here, we report our experimental realization of an ultrathin reciprocal lens by implementing a photonic crystal slab. One
particular ray for each mechanism has been highlighted to show the difference. As shown, the image produced by our reciprocal lens is
upright but real.

WENZHE LIU et al. PHYS. REV. X 13, 031039 (2023)

031039-2



We refer to this class of “lenses” as “reciprocal lenses”
for two reasons: First, the distance between the source and
the image is a constant, leading to a different lens formula,

uþ v ¼ f̃: ð5Þ

The form of this lens formula [Eq. (5)] is the reciprocal of
the well-known Gaussian lens formula 1=uþ 1=v ¼ 1=f.
As such, while reciprocal lenses cannot focus incoming
waves from infinitely distant objects, they are well suited
for near-field imaging of objects in close proximity to the
lens plane. The phase distribution function [Eq. (4)] is also
the reciprocal of that of lenses [Eq. (2)]. Note that f̃ in
Eq. (5) plays a similar role to the focal length f if we
compare the formula with the Gaussian one. Thus, we can
define f̃ as the focal length of a reciprocal lens.
Second and most importantly, reciprocal lenses are based

on the ray-shifting effect we derived, which is the recip-
rocal counterpart effect of ray bending. Rather than
changing θðxÞ, the propagation directions of rays at differ-
ent positions, reciprocal lenses modulate xðθÞ, the positions
of rays with different incident angles. The roles of x and θ
(or kx) are exchanged.
Conceptually, slabs supporting negative refraction can be

viewed as examples of reciprocal lenses [21–31], as
illustrated in Fig. 1 (Veselago-Pendry lenses). An arbitrary
ray will be bent twice on passing through the slab,
effectively resulting in a shift that corresponds to the
z-direction propagation phase gained by the ray. The focal
length f̃ of such a slab is lð1 − n0=n1Þ, where l is the
thickness of the slab, n0 is the background refractive index,
and n1 is the refractive index of the slab. When a reciprocal
lens based on negative refraction is combined with the
evanescent-wave-amplification effect, subwavelength im-
aging can be realized in the near field [23,25,28]. Different
materials including indefinite media and hyperbolic meta-
materials have been proposed to realize negative refraction
lenses [32–37]. However, there are difficulties in realizing a
bulky slab with negative refraction [29,30]. For example,
achieving 3D all-angle negative refraction typically neces-
sitates the use of intricate structures [38–40]. Moreover,
producing reciprocal lenses based on negative refraction
still entails bending rays at the interfaces, and the dis-
placement of rays depends on the propagation phase given
by a slab that is thick enough so that the bulk dispersion is
well defined. As a result, such a lens may occupy a
significant amount of space in the optical path, potentially
leading to practical limitations.

IV. REALIZATION OF AN ULTRATHIN
RECIPROCAL LENS

In this work, we eliminate the bulky structure and realize
a reciprocal lens based on the ray-shifting effect only.
Instead of leveraging the propagation phase, we apply

guided resonances supported by a two-dimensional (2D)
photonic crystal (PhC) slab [41–47] to induce the momen-
tum-space phase modulation, which allows the resulting
reciprocal lens to be ultrathin. When the incident and
outgoing polarization states of the plane waves passing
through the PhC slab are the same (copolarization con-
dition), it can be shown that a specific photonic band
of guided resonances could give approximately a jkkj2-
dependent resonant phase modulation to the transmitted
waves with kk ≈ 0 [45,47]. The derivations and discussions
of the transmissive phase induced by a 2D PhC slab are
detailed in Appendix A. If the phase modulation meets the
requirements that it is positively quadratic and sufficiently
isotropic, the PhC slab will behave like a reciprocal lens.
The operation of a 2D PhC slab does not require a precisely
defined 3D bulk dispersion, and its functionality is not
contingent on effective medium theory. As a result, it offers
advantages over negative refraction lenses, which require
both (more information can be found in Appendix D). Note
that such an ultrathin reciprocal lens cannot recover the
evanescent waves carrying subwavelength information;
therefore, it cannot perform subdiffraction-limit imaging.
We designed and fabricated a 2D-PhC-slab reciprocal

lens operating in the microwave range using printed circuit
boards (PCBs). As shown in Fig. 2(a), a one-millimeter-
thick PCB (permittivity: 6.15; loss tangent: 0.002) struc-
tured with circular holes and printed with hexagonal
metallic patches acts as the core 2D-PhC-slab layer. The
holes are arranged periodically in a honeycomb array, and
the distance between two neighboring holes rcell is
3.648 mm. In each unit cell, there is a patch in the middle
of the six holes on each side of the PCB. Such a lattice is
C6v symmetric. The structured core layer supports both
transverse-electric-like (TE-like) and transverse-magnetic-
like (TM-like) guided resonances as a result of the Bragg
scattering of the periodic array, which is necessary in our
design for momentum-space phase modulation. The core
layer is clad by two background layers (thickness:
4.725 mm; permittivity: 2.2; loss tangent: 0.0009), taking
the possibility of multilayer stacking into consideration.
In our experiments, the input and output waves are

chosen to both be left-handed (or right-handed) circularly
polarized. Combining the circular symmetry of the polari-
zation states and the C6v symmetry of the structure, the
system is C6 symmetric, which guarantees good isotropic
phase modulation provided by the reciprocal lens in the
momentum space. It can be seen from the measured angle-
resolved phase spectra [right panel of Fig. 2(b)] that the
momentum-space phase modulation of the reciprocal lens
is nearly the same for the two different high-symmetry
directions Γ-K and Γ-M near kk ¼ 0. Note that the
momentum-space-variant transmittance at the working
frequency also affects the quality of focusing and imaging.
In order for the transmittance to approach unity and to have
a large enough phase span, we tune the radii of the holes
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(rhole: 1.113 mm) and the patches (rpatch: 1.094 mm),
respectively. Consequently, one pair of TE-like degenerate
resonances overlap with another pair of TM-like resonan-
ces in the spectrum, leading to a high copolarized trans-
mittance [48–50]. Detailed discussions about enhancing the
transmittance by overlapping degenerate resonances can be
found in Appendixes B and C. As shown in the left panel of
Fig. 2(b), the measured transmittance is high near kk ¼ 0
(in about the 10 degrees range) over a moderate spec-
tral range.
We choose a working frequency of 28.5 GHz [marked by

a dashed line in Fig. 2(b)], where the momentum-space
phase distribution best fits the positive quadratic depend-
ence and gives the greatest focal length. The kk phase
modulation function along the Γ-K direction at the working
frequency is measured and plotted in Fig. 2(c). As
mentioned, the phase induced by the structure follows
the quadratic rule over a specific range of kk. By curve
fitting, we find that the focal length f̃ at 28.5 GHz is about
7–8 cm, which is nearly 7 times the wavelength. In
addition, we measure the shift of a Gaussian beam (waist
radius of about 4.57 cm) with different central wave vectors
in the sample plane, which is plotted in Fig. 2(d). The
incident in-plane wave vectors are chosen to be in the Γ-K

direction. The beam shifts confirm that the momentum-
space phase modulations induced by the designed structure
can shift rays in the expected way as illustrated in Fig. 1 and
described by Eq. (4); i.e., it can work as a reciprocal lens.
Constrained by the high-transmittance region in momen-
tum space, we estimate the resolution of our reciprocal lens
to be about 3.2 cm in the focal plane.
As shown in Fig. 3, we demonstrate the imaging effect of

the designed ultrathin reciprocal lens by measuring the
transmitted field pattern directly. We use a metallic plate
with an “F”-shaped slot cut in it as the imaging object,
which is shown in Fig. 3(a). The object is set at a position
marked as z ¼ 0, and the slot is illuminated uniformly by a
horn antenna. First, one layer of the designed reciprocal
lens is placed at z ¼ 3 cm. Consequently, we observe a
clear, upright, real image of the object “F” slot at z ¼
7.5 cm with sharp boundary profiles [Fig. 3(c)]. The image
is the same size as the object. For comparison, a diffracted
pattern of the object is seen if the reciprocal lens is
removed.
In addition, reciprocal lenses can be stacked to increase

the focal length. By stacking multiple identical reciprocal
lenses, the momentum-space phase modulation may be
enlarged additively, giving a focal length several times the
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FIG. 2. Characteristics of the designed ultrathin reciprocal lens. (a) Photo of the core layer of the designed reciprocal lens comprising a
honeycomb array of circular holes etched on a PCB, whose permittivity is 6.15 and loss tangent is 0.002 (Arlon TC600). A hexagonal
metallic patch is printed at the center of each honeycomb unit cell. The structured PCB acts as a photonic crystal slab and is clad by two
background layers (Arlon DiClad 880, permittivity: 2.2; loss tangent: 0.0009). Left inset: schematics of the unit cell. Right inset:
zoomed-in photo of the structure. (b) Angle-resolved transmittance and transmissive phase-change spectra of the structure (with
circularly copolarized input and output). (c) Phase-change curve along the Γ-K direction at a working frequency of 28.5 GHz. In a
specific wave-vector (angle) range, the phase induced by the reciprocal lens (solid curve) follows the quadratic rule we desired, of which
the fitted quadratic dependence is plotted as the dashed curve. (d) Beam shifts for different incident angles corresponding to the
momentum-space phase gradient. The shifts of the beam centroids for different incident angles (blue diamonds) follow the
displacements calculated from the momentum-space phase gradients (black curve). It can be seen that the beam shift has the expected
linear dependence on the in-plane wave vector.
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original one. To demonstrate this fact, we apply two layers
of the designed reciprocal lens placed at z ¼ 8 cm, stacked
immediately on top of each other. We note that the
thickness of the cladding layers has been chosen to reduce
the interaction between the photonic crystal slabs in the
stacked reciprocal lens. If we simply stack the photonic
crystal slabs on top of each other without the spacers, the
interaction between the resonances of adjacent photonic
crystal slabs may affect the total transmittance and trans-
missive phase so that the focal length will not be additive
and may degrade the performance of the stacked reciprocal
lens. From the measured momentum-space phase distribu-
tion [Fig. 3(b)], we find that the phase modulation is nearly
doubled, leading to a focal length of about 15–16 cm. We
confirm the increased focal length by measuring the field
profile as well. The image produced at z ¼ 16 cm is of
good quality, while the field without the stacked reciprocal
lens at z ¼ 16 cm is more strongly diffracted [Fig. 3(d)].
We also used several different shapes of objects, such as
“H,” “K,” and “S,” to further test the imaging effect of the
one-layer reciprocal lens. All the shapes are well imaged, as
shown in Fig. 3(e). The acute angles of “K” and curved
edges of “S” are well reproduced in the images, indicating
that there is no constraint on the shape of objects. The two
images of the “H”-shaped slot, which are obtained from

separate imaging tests, appear to be almost identical,
proving the imaging repeatability. The detailed experimen-
tal setups can be found in Appendix E.

V. CONCLUSIONS

In summary, we have introduced and experimentally
demonstrated the concept of the PhC-slab-based “reciprocal
lens,” a novel imaging component that produces upright but
real images without bending rays. Unlike conventional
lenses and metalenses, our reciprocal lens has no geometric
center and the object-image distance is a constant. Composed
of an ultrathin periodic structure, our reciprocal lens is not
only simple to fabricate but also easy to integrate, and it can
imagemultiple objects simultaneously due to its nonlocality.
The reciprocal lens based on a PhC slab presents a novel
paradigm, which adds to the array of optical elements
available for imaging and wavefront reshaping. These lenses
have potential applications in niche areas, such as volume-to-
volume imaging and optical image stabilization. These
applications can be realized by reducing the cost of reciprocal
lenses with an optical building block technique, enhancing
their performancewith optimization algorithms, and refining
optical range fabrication methods. Looking forward, by
incorporating additional forms of momentum-space modu-
lation, such as those used for phase contrast [51–54] or edge
visualization imaging [55–57], itmay be possible to integrate
multiple functionalities into a single photonic crystal recip-
rocal lens design. Furthermore, this breakthrough can serve
as inspiration for other types of ray-shifting-based optical
devices, such as spectrometers.
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APPENDIX A: MOMENTUM-SPACE PHASE
MODULATION INDUCED BY A PHOTONIC

BAND OF GUIDED RESONANCES

First, let us consider a single-resonance temporal
coupled mode theory (TCMT) [58] of a periodic structure
with in-plane wave vector kk. The system is considered to
have σz about the x-y plane and C2v symmetry about the z
axis. No diffractive radiation is involved, and since the
system has a C2 symmetry, it is not necessary for us to take
the −kk resonance into consideration. As a result, there will
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FIG. 3. Imaging by reciprocal lens. (a) The “z ¼ 0 cm” photo
showing the object, which is a metallic plate with an “F”-shaped
slot cut into it. A horn antenna is used to illuminate the slot.
(b) Measured transmissive phase distributions for the one-layered
(black curve) and two-layered (blue curve) reciprocal lenses.
(c) One layer of our designed reciprocal lens applied at z ¼ 3 cm,
where an upright real image of the “F”-slot can be seen clearly at
z ¼ 7.5 cm. In comparison, only a diffracted pattern can be seen
without the reciprocal lens. (d) Two layers of the designed
reciprocal lens cascaded to increase the focal length to about
15–16 cm. (e) Several different shapes of objects used to
demonstrate the imaging effect.
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be four channels to consider (�kz and two orthogonal
polarization states). Thus, we can write the TCMT
equations:

d
dt

jAi ¼ ð−iΩ0 − Γ0ÞjAi þKTjini;
jouti ¼ Sjini ¼ Cjini þDjAi: ðA1Þ

In the first equation, jAi ¼ A is the resonance amplitude,
Ω0 ¼ ω0 is the resonant frequency of the resonance, and
Γ0 ¼ γ0 is the decay rate. Since the system works in the
microwave range, the metallic parts of the structure can be
considered lossless. Therefore, γ0 corresponds to the
radiation loss. The vector K¼ðkua;kda;kub;kdbÞT ¼ðka;αzka;
kb;αzkbÞT is the coupling coefficient between the resonance
and the ingoing plane waves on an arbitrary orthogonal
polarization basis ða; bÞ, where αz ¼ �1 is a parity number
linking the upside radiation and the downside radiation
because of the sample-plane mirror symmetry. We will
explain jini below.
In the second equation, jini and jouti are the input and

output amplitude vectors, C is the direct amplitude scatter-
ing matrix without the influence of the resonance, S is
the resonance-involved amplitude scattering matrix of the
structure, and D is the coupling coefficient between the
resonance and the outgoing plane waves. The detailed
forms of the vectors and matrices are

jini¼

0
BBB@

inua
inda
inub
indb

1
CCCA; jouti¼

0
BBB@

outua
outda
outub
outdb

1
CCCA;

C¼

0
BBB@
raa taa rab tab
taa raa tab rab
rba tba rbb tbb
tba rba tbb rbb

1
CCCA; S¼

0
BBB@
r̃aa t̃aa r̃ab t̃ab
t̃aa r̃aa t̃ab r̃ab
r̃ba t̃ba r̃bb t̃bb
t̃ba r̃ba t̃bb r̃bb

1
CCCA;

D¼

0
BBB@

da
αzda
db
αzdb

1
CCCA: ðA2Þ

Note that we have a specific natural polarization basis
ðp; sÞ under which tpsðrpsÞ and tspðrspÞ vanish, consider-
ing the physics of the direct scattering process.
Furthermore, the difference between tppðrppÞ and tssðrssÞ
can be approximately neglected if the incident angle is
small.
The system is energy conserved and has a time-reversal

symmetry. Consequently, we have several equations:

D†D ¼ 2γ0; CD� ¼ −D; K ¼ D: ðA3Þ

The first equation gives us

jdaj2 þ jdbj2 ¼ γ0: ðA4Þ

On the ðp; sÞ basis, the second equation gives some extra
insights:

ds
d�s

¼ −ðrss þ αztssÞ;
dp
d�p

¼ −ðrpp þ αztppÞ;

jrpp;ss þ αztpp;ssj ¼ 1;

tpp;ssr�pp;ss ∈ I; tpp;ss=rpp;ss ∈ I: ðA5Þ

In the vicinity of the Γ point (normal incident inputs and
outputs), rs þ αzts ≈ rp þ αztp. Therefore, the phase differ-
ence between ds and dp is close to zero in this case. In other
words, the polarization eigenstate of radiation of the
resonance shall be almost linear.
Given a real frequency ω, we can solve Eq. (A1) for the

scattering matrix,

S ¼ Cþ DKT

iðω0 − ωÞ þ γ0
: ðA6Þ

We can straightforwardly write down the copolarized
transmission coefficient:

t̃ii¼ tiiþ
αzd2i

iðω0−ωÞþγ0
¼ tii

iðω0−ωÞþγ0þαzd2i
tii

iðω0−ωÞþγ0

¼ tii
iðω0−ωÞþγ0− ½ðαz riitii þ1Þjdij2þðαz rijtii þ

tij
tii
Þdid�j �

iðω0−ωÞþγ0
:

ðA7Þ

As mentioned, we assume near normal incidence. In such a
case, we neglect the difference between tppðrppÞ and
tssðrssÞ, and assume tpp ¼ tss ¼ t; rpp ¼ rss ¼ r. Then,
the cross-polarized transmission coefficients in any basis
will be zero, while tii ¼ tjj ¼ t; rii ¼ rjj ¼ r. As a result,
Eq. (A7) can be simplified to

t̃ii ≈ t
iðω0 − ωÞ þ γ0 − ðαzr=tþ 1Þjdij2

iðω0 − ωÞ þ γ0
: ðA8Þ

For convenience, we define two real numbers to simplify the
equation, p ¼ jdij2=γ20 ∈ ½0; 1� and q ¼ −ir=t∈ ½−∞;þ∞�.
Subsequently, Eq. (A8) can be rewritten as
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t̃ii ≈ t
iðω0 − ωÞ þ γ0 − ðiαzqþ 1Þpγ0

iðω0 − ωÞ þ γ0

¼ t
iðω0−ω

γ0
− αzpqÞ þ ð1 − pÞ
i ω0−ω

γ0
þ 1

: ðA9Þ

Thus, the copolarized transmissive phase is composed of
three parts, ϕ1;ϕ2, and ϕ3:

ϕ ¼ argðt̃iiÞ ¼ ϕ1 þ ϕ2 þ ϕ3

¼ argðtÞ þ arg

�
ð1 − pÞ þ i

�
ω0 − ω

γ0
− αzpq

��

− arg

�
1þ i

ω0 − ω

γ0

�
: ðA10Þ

The first part of Eq. (A10) corresponds to the direct
transmission. This part is obviously an even function of
the in-plane wave vector kk and varies slowly. We can
assume it to be

ϕ1ðω; kkÞ ≈ c1k2k þ c0; ðA11Þ

where c1 is a small, positive, real constant. For the second
and third parts, there are ω0-related terms bringing in
momentum-space dispersions. It is known that photonic
bands formed by guided resonances generally have quad-
ratic dispersions along different azimuthal directions near
high-symmetry points like the Γ point, i.e.,

ω0ðkkÞ ≈ ωe þ c2k2k ðkk ≈ 0Þ: ðA12Þ

Here, ωe ¼ ω0ð0Þ. By a Taylor series expansion with the
assumption p ≠ 1, we obtain

ϕ2ðω; kkÞ ≈ arg

�
ð1 − pÞ þ i

�
ωe − ω

γ0
− αzpq

��

þ
γ0ð1 − pÞc2k2k

γ20ð1 − pÞ2 þ ðωe − ω − αzpqγ0Þ2
;

ϕ3ðω; kkÞ ≈ − arg

�
1þ i

�
ωe − ω

γ0

��
−

γ0c2k2k
γ20 þ ðωe − ωÞ2 :

ðA13Þ

Hence, we substitute Eqs. (A11) and (A13) into Eq. (A10)
to obtain

ϕðω;kkÞ≈ϕðω;0Þþ
�
c1þ

γ0ð1−pÞc2
γ20ð1−pÞ2þðωe−ω−αzpqγ0Þ2

−
γ0c2

γ20þðωe−ωÞ2
�
k2k: ðA14Þ

As long as p ≠ 0 (in other words, the input polarization
state is not perpendicular to the polarization eigenstate of
the resonance and hence does not excite the resonance), the
resonant phase terms will not cancel each other.
If the photonic band considered does not have bound

states in the continuum (BICs) near (or at) the Γ point, γ0
should vary slowly with kk. Here, p corresponds to how
strongly the resonance is excited by the incidence, and it
will not be strongly dependent on kk when the azimuthal
angle of kk is fixed. Note that q is stable in a moderate
range of ω and kk, and c1, c2 are constants along a specific
azimuthal direction of kk. On the other hand, ω, ωe, and αz
are all constants. As such, the quadratic coefficient can be
viewed as a constant. Now, we can conclude that a photonic
band of guided resonances can give a momentum-space
phase modulation with a quadratic dependence in a specific
azimuthal direction of kk. Usually, c1 in an ultrathin
dielectric structure is small, and the resonance-induced
quadratic phase modulation dominates. A negative c2
should give a positive quadratic phase modulation, which
is necessary for a reciprocal lens.

APPENDIX B: ENHANCING TRANSMITTANCE
BY OVERLAPPING TWO PAIRS OF

DEGENERATE STATES

We mention that if only one photonic band of guided
resonances is applied, the efficiency of the copolarized
transmission will be pretty low when ω is close to ω0ðkkÞ.
For example, if p ¼ 1 (the input polarization state is
parallel to the polarization eigenstate of the resonance)
and ω ¼ ω0 − αzqγ0 in Eq. (A8), the copolarized trans-
mission coefficient will become 0. Moreover, we know that
polarization eigenstates of guided resonances supported by
a photonic crystal slab are almost linear in the vicinity of
the Γ point when the system has aC2 symmetry. Without an
at-Γ BIC, the momentum-space distribution of polarization
eigenstates on a single photonic band in such a case can
only have a C2v symmetry at most [59,60]. As a result, the
order of rotational symmetry of a phase modulation given
by a single photonic band cannot exceed 2. In other words,
the phase modulation will be anisotropic, in general. These
are not ideal for the realization of a reciprocal lens.
There are two key points to overcome these disadvan-

tages. First, we need to remove the low-efficiency regions.
In order to accomplish that, we can apply multiple
resonances overlapping in the spectral range (degenera-
cies). The form of the transmission coefficient would be
different. Second, we expect the system to have higher-
order symmetries. With degeneracies, the polarization
eigenstate distribution on a photonic band can have sixfold
rotational symmetry at the maximum without involving a
BIC [59,60]. We can further apply input and output
polarization states, which have higher-order rotational
symmetries, as well to match with the rotational symmetry
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of the polarization eigenstates. As such, the system can
have higher-order symmetries. The best choice of the input
(output) beam’s polarization is the circular polarization if
we do not take vector beams into account.
Here, let us construct the multiresonance TCMT on the

circular polarization basis. We start from a two-resonance
configuration with a Γ-point radiative degeneracy that is
protected by a C6v symmetry. Now, jAi is a 2 × 1 column
vector ðAI; AIIÞT. Correspondingly, D and K are 4 × 2
matrices:

D ¼ K ¼

0
BBBBB@

dIr dIIr
αzdIr αzdIIr
dIl dIIl
αzdIl αzdIIl

1
CCCCCA
: ðB1Þ

Meanwhile, we suppose that the eigenfrequency matrix Ω0
and the decay ratio matrix Γ0 are 2 × 2 diagonal matrices
on an orthogonal basis:

Ω0 ¼
�
ωI
0 0

0 ωII
0

�
; Γ0 ¼

�
γI0 0

0 γII0

�
: ðB2Þ

Note that the above assumption implies dird
j�
r þ dild

j�
l ¼ 0;

i.e., the polarization eigenstates of the two resonances are

orthogonal to each other. This is true for resonances in the
vicinity of the degeneracy in momentum space.
Still assuming tpp ¼ tss ¼ t; rpp ¼ rss ¼ r, we can

write down the new form of the copolarized transmission
coefficient:

t̃ii ≈ t −
ðαzrþ tÞjdIij2
iðωI

0 − ωÞ þ γI0
−

ðαzrþ tÞjdIIi j2
iðωII

0 − ωÞ þ γII0
ði ¼ l; rÞ:

ðB3Þ

Note that we here have a Γ-point degeneracy. Therefore, the
two bands have the same ω0 and γ0 at the Γ point. Their
approximate expressions will be

ωI
0ðkkÞ ≈ ωe þ cI2k

2
k; ωII

0 ðkkÞ ≈ ωe þ cII2 k
2
k;

γI0ðkkÞ ≈ γII0 ðkkÞ ≈ γ0ðkk ≈ 0Þ: ðB4Þ

Note that the polarization eigenstates of the resonances are
almost linear. On the circular polarization basis, this means
that

pI
i ¼ jdIij2=γ0 ≈ 1=2; pII

i ¼ jdIIi j2=γ0 ≈ 1=2: ðB5Þ

We have

t̃ii ≈ t
−2cI2cII2 k4k þ iðcI2 þ cII2 Þ½γ0 − iqαzγ0 − 2iðω − ωeÞ�k2k − 2i½qαzγ0 þ ðω − ωeÞ�½γ0 − iðω − ωeÞ�

2½γ0 − iðω − ωe − cI2k
2
kÞ�½γ0 − iðω − ωe − cII2 k

2
kÞ�

: ðB6Þ

We find that when kk ¼ 0, t̃ii will be

t̃iið0Þ ¼ −t
iqαzγ0 þ iðω − ωeÞ
γ0 − iðω − ωeÞ

; ðB7Þ

which is a typical Fano line-shape function with an inevitable zero point. This is not the result we want. However, we have
removed the terms containing p that may induce strong anisotropy to the momentum-space phase modulation given by the
PhC slab.
The transmissive phase can be divided into four parts:

ϕ1ðω; kkÞ ¼ argðtÞ ≈ c1k2k þ c0;

ϕ2ðω; kkÞ ≈ arg

�
1þ i

�
ωe − ω

γ0

��
þ 1

2

ðcI2 þ cII2 Þγ0k2k
γ20 þ ðω − ωeÞ2

−
π

2
sgn

�
qαzγ0 −

2ðωe þ cI2k
2
k − ωÞðωe þ cII2 k

2
k − ωÞ

2ωe þ cI2k
2
k þ cII2 k

2
k − 2ω

�
;

ϕ3ðω; kkÞ ≈ − arg

�
1þ i

�
ωe − ω

γ0

��
−

cI2γ0k
2
k

γ20 þ ðω − ωeÞ2
;

ϕ4ðω; kkÞ ≈ − arg

�
1þ i

�
ωe − ω

γ0

��
−

cII2 γ0k
2
k

γ20 þ ðω − ωeÞ2
: ðB8Þ

Thus, the total transmissive phase is
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ϕðω; kkÞ ≈ c0 − arg

�
1þ i

�
ωe − ω

γ0

��
−
π

2
sgn

�
qαzγ0 −

2ðωe þ cI2k
2
k − ωÞðωe þ cII2 k

2
k − ωÞ

2ωe þ cI2k
2
k þ cII2 k

2
k − 2ω

�

þ
�
c1 −

1

2

ðcI2 þ cII2 Þγ0
γ20 þ ðω − ωeÞ2

�
k2k: ðB9Þ

Note that the quadratic dependence is still present.
In the next step, we apply more resonances to remove the

zero point. We add two other resonances with a Γ-point
degeneracy, whose x-y-plane mirror parity is different from
the ones discussed. For simplicity, we assume that this pair
of resonances has the same dispersion as the aforemen-
tioned pair. The matrices would be

D ¼ K ¼

0
BBB@

dIr dIIr dIr dIIr
dIr dIIr −dIr −dIIr
dIl dIIl dIl dIIl
dIl dIIl −dIl −dIIl

1
CCCA;

Ω0 ¼

0
BBB@

ωI
0 0 0 0

0 ωII
0 0 0

0 0 ωI
0 0

0 0 0 ωII
0

1
CCCA;

Γ0 ¼

0
BBB@

γ0 0 0 0

0 γ0 0 0

0 0 γ0 0

0 0 0 γ0

1
CCCA: ðB10Þ

We obtain the expression of the copolarized transmission
coefficient:

tii ≈ t

�
1−

γ0
γ0 − iðω−ωe − cI2k

2
kÞ
−

γ0
γ0 − iðω−ωe − cII2 k

2
kÞ
�

¼ t
−cI2cII2 k4k þ ðcI2 þ cII2 Þðω−ωeÞk2k − ðω−ωeÞ2 − γ20
½γ0 − iðω−ωe − cI2k

2
kÞ�½γ0 − iðω−ωe − cII2 k

2
kÞ�

:

ðB11Þ

The direct reflection coefficient r disappears from the
expression when we overlap the two pairs of resonances.
The squared modulus of tii would be

jtiiðω; kkÞj2

¼ jtj2
½γ20 þ ðωe þ cI2k

2
k − ωÞðωe þ cI2k

2
k − ωÞ�2

½γ20 þ ðωe þ cI2k
2
k − ωÞ2�½γ20 þ ðωe þ cI2k

2
k − ωÞ2� :

ðB12Þ

Clearly, Eq. (B11) is no longer a Fano line-shape function.
The fraction on the right side of Eq. (B12) is close to unity
when kk is small and will reach 1 with kk ¼ 0. Meanwhile,
if the structure is mainly composed of dielectric material, jtj
can easily be tuned to approach 1 as well. The numerator
can still give zero-amplitude points but only when

jkkj2 >
2γ0

jcI2 − cII2 j
and

ω ¼ ωe þ
1

2
ðcI2 þ cII2 Þk2k �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcI2 − cII2 Þ2k4k − 4γ20

q
:

ðB13Þ

As long as the difference between cI2 and cII2 is small, the
zero points will be far away from kk ¼ 0. We have now
successfully removed the zero point in the vicinity of
kk ¼ 0, achieving a very high efficiency.
We can further look into the phase of Eq. (B11). The

numerator gives abrupt �π phase changes only when
Eq. (B13) is satisfied. The main parts contributing to the
transmissive phase in this case are t and the denominator of
the fraction, which will be

ϕ1ðω; kkÞ ¼ argðtÞ ≈ c1k2k þ c0;

ϕ2ðω; kkÞ ≈ − arg

�
1þ i

�
ωe − ω

γ0

��
−

cI2γ0k
2
k

γ20 þ ðω − ωeÞ2
;

ϕ3ðω; kkÞ ≈ − arg

�
1þ i

�
ωe − ω

γ0

��
−

cII2 γ0k
2
k

γ20 þ ðω − ωeÞ2
;

ðB14Þ

and the total phase will be

ϕðω; kkÞ ≈ c0 þ π − 2 arg
�
1þ i

�
ωe − ω

γ0

��

þ
�
c1 −

ðcI2 þ cII2 Þγ0
γ20 þ ðω − ωeÞ2

�
k2k: ðB15Þ

Compared to Eq. (B9), the quadratic factor of phase
modulation given by the resonances is doubled. This is
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favorable for our realization of a well-performing recipro-
cal lens.
In conclusion, the above discussions show that we can

apply two pairs of resonances (symmetry-protected degen-
eracies) that have opposite x-y-plane mirror parities (one
transverse-electric-like degeneracy and one transverse-
magnetic-like degeneracy) but the same ω-kk dispersions
to enhance the transmission efficiency. In practice, theω-kk
dispersions of the two pairs of resonances cannot be
identical. However, they can overlap to a certain extent
by parameter tuning so that the above discussions are
approximately applicable. Furthermore, the existence of
degeneracies, along with the choice of circularly polarized
input/output polarization states, allows us to design a
system with a higher-order rotational symmetry. Making
the structure C6v symmetric, the momentum-space phase
modulation has a C6 symmetry, and the quadratic factors cI2
and cII2 of the phase modulation would be nearly isotropic
along different azimuthal directions in momentum space.
As long as cI2 þ cII2 is negative, the phase modulation
dominated by the resonant phase can be positive quadratic.
We can design a PhC-slab-based reciprocal lens with a
good performance based on the principles discussed.

APPENDIX C: SIMULATED BAND STRUCTURES
OF THE DESIGNED STRUCTURE AND THE

CORRESPONDING TRANSMISSION SPECTRA

We designed our reciprocal lens based on the designing
principle we discussed in the previous section; the exper-
imental results are shown in the main text. The simulation
results are supplemented here in Fig. 4. We modify the radii
of the patches (1.058 mm) and holes (1.076 mm) to better
match our experimental results. Note that the difference in
resonant frequencies may result from the difference
between the modeled materials and the practical ones.
One can see that the two degeneracies almost overlap in the
spectra as we proposed, leading to a high transmittance.

APPENDIX D: DIFFERENCE BETWEEN
RESONANCE-BASED RECIPROCAL LENSES
AND THE NEGATIVE REFRACTION LENSES

Negative refraction lenses can be viewed as examples of
reciprocal lenses. However, our realization of the ultrathin
reciprocal lens is different from negative refraction lenses.
The difference can be seen in Fig. 5.
As shown in Fig. 5, most realizations of negative-

refraction lenses, including slabs made of hyperbolic or
indefinite metamaterial, are based on dispersion modifica-
tion. To be more specific, the metamaterial applied for a
negative-refraction lens producing 2D images is designed
to have a particular dispersion in 3D momentum space. At a
specific frequency, the dispersion appears as a 3D isofre-
quency surface (k-surface), and such a surface negatively
refracts the incident plane waves (rays) at the interface. The
refraction angle varies with the incident angle. As a result,
negative refraction occurs at the incident interface of the
slab and again at the other interface after the propagation of
rays inside the slab, effectively leading to different ray
displacements. In other words, effective medium theory is
used to describe these structures. The modes inside the
medium have well-defined plane-wave-like propagations,
and it is the optical path length inside the media that causes
the ray shifts. As such, to achieve high transmittance and
optimal performance, it is necessary that the media have a
sufficient thickness.
However, in our realization, we have introduced a new

way to realize ray-shifting lenses. We point out that only a
2D momentum-space distribution of the transmittance and
transmissive phases is required to realize the ray-shifting
imaging. To introduce such a distribution, it is not neces-
sary to design a 3D metamaterial and consider optical path
lengths. Instead, the momentum-space phase modulation
required to shift the rays can be induced by the guided
resonance supported by the ultrathin 2D PhC slab. We only
need to design the dispersion of guided resonances in 2D
momentum space. With a relaxed structural requirement,
we are able to make the thickness of the resonant layer in
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FIG. 4. Simulation results. (a) Eigenfrequency simulation results. The blue and green lines correspond to the transverse-electric-like
resonances (even mirror-symmetric), which are degenerate at the Γ point enforced by the C6v symmetry of the structure, while the purple
and red lines correspond to the transverse-magnetic-like resonances (odd mirror-symmetric). The shaded areas with the corresponding
colors represent the linewidths of the resonances. (b) Simulated transmittance spectra. (c) Simulated transmissive phase spectra.
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our realization only one-tenth of the wavelength, while the
entire structure with the cladding layers is only one
wavelength thick. Thus, effective medium theories are
not applicable to our structure, and no z-direction propa-
gation can be defined for the guided resonances. In other
words, there is no “k-surface” spanned in 3D momentum
space in our structure as our structure works as an interface
rather than a medium.
In summary, we design the transmissive phase and

amplitude in 2D momentum space by implementing guided
resonances rather than designing the bulk dispersion of a
metamaterial in 3D momentum space. Our structure has no
effective medium description or “k-surface” spanned in 3D
momentum space, and our realization is hence distinct from
negative refraction slabs. Reciprocal lenses based on guided
resonances are easy to design and can be made ultrathin.

APPENDIX E: EXPERIMENTAL SETUPS

In this appendix, we show the experiment setups. The
spectra in Fig. 2(b) are obtained by utilizing an angle-
resolved spectra measuring system, as shown in Fig. 6(a).
We have two circularly polarized lens antennas connected
to a vector network analyzer (VNA, Keysight N5245B) via
coaxial cables. One of the antennas acts as the source
(transmitter), and the other works as the receiver; the two
antennas face each other. The photonic crystal slab sample
that functions as the designed reciprocal lens can be
mounted on a sample rack with a rotatable stage in the

middle of the antennas. Both antennas are arranged far
away from the stage; hence, plane-wave incidence can be
assumed. We measure the amplitudes and phases of the
transmitted waves with and without the sample mounted
so that the transmission coefficients can be calculated.
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FIG. 5. Difference in the mechanisms of the ray-shifting effect led by negative refraction and by resonances. The momentum-space
phase distribution necessary for ray shifts is induced by the optical path lengths in negative refraction slabs. The 3D dispersions of
negative refraction slabs have been carefully designed to control the path lengths. On the other hand, the phase modulation is induced by
the coupling between guided resonances and free-space plane waves in our realization. Only 2D dispersion engineering is necessary.
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uring system. (b) Beam-profile measuring system for angle-
resolved beam-shift measurements. (c) Imaging testing system.
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By scanning the frequency with the VNA (with time
grating) and changing the incident elevation angle θ, we
are able to obtain the angle-resolved spectra. We can also
rotate the sample azimuthally to change the direction
measured in wavevector space. A few absorbing layers
are attached to the surrounding walls and the table below to
reduce the undesired background scattering noise.
On the other hand, the beam-shifting data in Fig. 2(c) are

obtained with a beam profile measuring system, which is
shown in Fig. 6(b). In this system, the position and the
angle of the sample rack are fixed. A lens antenna works as
the beam source from which a Gaussian-like beam is
emitted. The antenna is placed close to the sample rack
this time. The incident elevation angle θ can be changed by
rotating the lens antenna. We measure the outgoing field
profiles with a scanning probe on the other side of the
sample rack. The beam shifts can be obtained by sub-
tracting the positions of beam centroids without the
reciprocal lens from the ones with the reciprocal lens.
For the imaging tests, the profile measuring system is

slightly modified. As plotted in Fig. 6(c), the horn antenna
is now arranged far away to give a plane-wave incidence. A
metallic plate with a letter-shaped slot cut, whose position
is marked as “z ¼ 0,” is placed in front of the reciprocal
lens, which is located at z ¼ 3 cm for the single-layered
sample and z ¼ 8 cm for the double-layered sample. The
slot in the plate is illuminated uniformly by the horn
antenna and acts as the object to be imaged. On the other
side of the reciprocal lens, the scanning probe captures the
transmitted field at a specific z (7.5 cm for the single-
layered sample and 16 cm for the double-layered sample).

APPENDIX F: MEASURED BEAM PROFILES IN
BEAM-SHIFTING EXPERIMENTS

In the main text, we show the measured shifts of beams
with different incident angles given by the reciprocal lens.
In Fig. 2, we only plot the centroids of the beams. We plot
the measured intensity distributions of the transmitted
beams in Fig. 7. Because the input beam is not a perfect

Gaussian beam and the output beam is not measured in its
transverse plane [see Fig. 6(b)], the positions of the
centroids slightly deviate from the positions of the intensity
peaks.
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