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We present a method for deriving bulk and edge invariants for interacting, many-body localized Floquet
systems in two spatial dimensions. This method is based on a general mathematical object which we call a
flow. As an application of our method, we derive bulk invariants for Floquet systems without symmetry, as
well as for systems with U(1) symmetry. We also derive new formulations of previously known single-
particle and many-body invariants. For bosonic systems without symmetry, our invariant gives a bulk
counterpart of the rational-valued Gross-Nesme-Vogts-Werner index p=q quantifying transport of quantum
information along the edge.
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I. INTRODUCTION

Periodically driven systems, also known as Floquet
systems, can realize interesting topological phases that
have no stationary analog [1,2]. One illustrative example of
such a system is introduced in Refs. [3,4]. In these works,
the authors construct a single-particle Floquet system in
two spatial dimensions with the property that (i) there are
chiral edge modes propagating in each Floquet band gap
and (ii) all of the Floquet bands have vanishing Chern
number.
This example leads to a puzzle, since it is not obvious how

the information about the number of chiral edge modes is
encoded in the bulk dynamics. This puzzle is resolved in
Ref. [4], which shows that the number of chiral edgemodes is
determined by a particularwindingnumber that characterizes
the time evolution of the bulk bands during a single period.
Note that thiswinding number characterizes the bulk “micro-
motion,” or motion within a period, as opposed to the
stroboscopic dynamics [5]. This bulk-boundary correspon-
dence is further explored in Refs. [6–10].
In this paper, we consider an analogous problem involving

many-body Floquet systems in two spatial dimensions. A
prototypical example of such a system is the “SWAP circuit”, a
many-body Floquet system constructed out of either bosonic
or fermionic degrees of freedom living on the sites of the
square lattice [11,12]. Like the single-particle example
mentioned above, the SWAP circuit displays interesting

stroboscopic dynamics at its edge. In particular, when the
SWAP circuit is defined on a latticewith a boundary, one finds
that the lattice sites near the edge undergo a unit translation
during each driving period. This behavior is significant,
because translations cannot be generated by a local, 1D
Hamiltonian [13]. In this sense, the SWAP circuit has
“anomalous” edge dynamics, just like the single-particle
example discussed above. More quantitatively, the anoma-
lous edge dynamics of the SWAP circuit or its relatives can be
characterized by an edge invariant—known as the Gross-
Nesme-Vogts-Werner (GNVW) index—which takes values
in the rational numbers [11,14–16].
Again, we are faced with a puzzle: We have an edge

invariant for these systems (i.e., the GNVW index), but we
lack a corresponding bulk topological invariant analogous
to the above single-particle winding number. A similar
puzzle exists for U(1)-symmetric generalizations of the
SWAP circuit [17–19]: There, too, we have an edge invariant
that quantifies the anomalous edge dynamics in these
systems, but the corresponding bulk invariant is missing
(though some progress is made in this direction in
Ref. [20]) [21]. The goal of this paper is to construct these
missing bulk invariants.
We investigate this problem in the context of two-

dimensional “many-body localized” Floquet systems.
The reason we focus on many-body localized (MBL)
Floquet systems is that these systems either do not thermal-
ize or take a long time to thermalize. As a result, they can
display a rich array of long-lived dynamics [1], unlike
generic interacting many-body Floquet systems, which heat
up by absorbing energy from the drive [22–27].
Our central result is a method for constructing both bulk

and edge invariants for 2D MBL Floquet systems with
different symmetry groups G. We also show that our bulk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 031038 (2023)

2160-3308=23=13(3)=031038(29) 031038-1 Published by the American Physical Society

https://orcid.org/0000-0002-2151-4743
https://orcid.org/0000-0002-5765-6591
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.031038&domain=pdf&date_stamp=2023-09-28
https://doi.org/10.1103/PhysRevX.13.031038
https://doi.org/10.1103/PhysRevX.13.031038
https://doi.org/10.1103/PhysRevX.13.031038
https://doi.org/10.1103/PhysRevX.13.031038
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and edge invariants are equal to one another, thereby
establishing a bulk-boundary correspondence for these
systems. Our results are summarized in Table I and
Fig. 1. Notably, we find a bulk invariant for general 2D
MBL Floquet systems without symmetry, as well as for
systemswith U(1) symmetry. The first invariant gives a bulk
formulation of the GNVWindex, while the second invariant
gives a bulk counterpart of the edge invariants in Ref. [17].
We also derive different formulations of previously known
edge invariants and single-particle invariants.
Our method for constructing invariants involves a math-

ematical object which we call a “flow.” A flowΩA;BðUÞ is a
real-valued function of a unitaryU and two subsets of lattice
sites A and B that obeys certain properties. We show that if
one can find a flow for some symmetry group G, then one
can immediately construct corresponding bulk and edge
invariants for general 2D MBL Floquet systems.
The paper is structured as follows. For simplicity, we first

present our results for a special kind ofMBLFloquet system
called a “unitary loop”; later, we explain how to extend our
results to general 2D MBL Floquet systems. In Sec. II, we
review the definitions of MBL Floquet systems and unitary
loops, and we give a precise statement of the problem we
wish to solve. Section III presents the main results of this
paper:We introduce the concept of a flow, andwe show how
to construct bulk and edge invariants from flows. In Sec. IV,
we discuss a special kind of flow, called a “spatially additive
flow,” and we derive additional formulas for bulk and
edge invariants for spatially additive flows.We then study the
general results of the preceding two sectionswith three illus-
trative examples: single-particle systems (Sec. V), interact-
ing systems with U(1) symmetry (Sec. VI), and interacting

systems without symmetry (Sec. VII). In Sec. VIII, we
discuss the extension of our results from unitary loops to
generalMBLFloquet systems.We concludewith some open
questions in Sec. IX. Additional details and technical
arguments can be found in the appendices.

II. SETUP AND DEFINITIONS

In this section, we explain the basic setup of our
problem and the objects that we study, namely, MBL
Floquet systems and unitary loops. We also explain the
connection between d-dimensional unitary loops and
(d − 1)-dimensional locality-preserving unitaries describ-
ing their stroboscopic edge dynamics [11,28].

A. MBL Floquet systems

We begin by recalling the definition of an MBL Floquet
system. Consider a bosonic [29] many-body system built
out of k-state spins living on an infinite d-dimensional
lattice. We assume that the Hamiltonian is periodic in time:

Hðtþ TÞ ¼ HðtÞ; ð2:1Þ

where T is the period. We also assume that HðtÞ is local in
the sense that it can be written as a sum of terms of the form

HðtÞ ¼
X
r

HrðtÞ; ð2:2Þ

where HrðtÞ is supported near site r. Let UF denote the
Floquet unitary that describes the stroboscopic dynamics:

UF ¼ T e−i
R

T

0
dtHðtÞdt: ð2:3Þ

An “MBL Floquet system” is a system of this type with the
property that UF is many-body localized; i.e., UF can be
written as a product of mutually commuting quasilocal
unitaries [11]:

UF ¼
Y
r

Ur; ½Ur;Ur0 � ¼ 0; ð2:4Þ

where each Ur is a unitary supported within a finite
distance ξ of site r (possibly with exponentially decaying
tails). The significance of the above condition (2.4) is that it
guarantees that UF does not spread operators beyond the
distance scale ξ, no matter how many times it is applied;
consequently, the stroboscopic dynamics described by UF
does not result in thermalization. One scenario where UF
could take the form in Eq. (2.4) is in a disordered system if
the disorder causes a complete set of Hermitian, mutually
commuting, quasilocal conserved operators (“l-bits”) to
emerge. However, it is unclear if this scenario occurs in
spatial dimension greater than one [30]. In this work, we do
not address this issue: We simply view Eq. (2.4) as an
interesting class of nonthermalizing Floquet systems,

(a) (b) (c) (d)

FIG. 1. Schematic geometries of the four types of bulk
invariants that we discuss. (a) The most general bulk invariant
(3.17), which applies to all the systems studied in this work,
involves three overlapping disklike regions A, B, and C. (b) Our
invariant (4.4), which applies to single-particle systems and
U(1)-symmetric many-body systems, involves three nonoverlap-
ping adjacent regions I, J, and K. (c) We also obtain bulk
invariants (6.17) for these systems involving regions I, J, and C
as well as (d) invariants via flux threading on a torus (6.25).

TABLE I. A summary of the bulk and edge invariants presented
in this work.

Single-particle
Many-body,

U(1) symmetry
Many-body,
no symmetry

Edge Eq. (5.2) Eq. (6.3) Eq. (7.3)
Bulk Eq. (5.6) Eq. (6.4) Eq. (7.4)
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and we are not concerned with how these systems are
realized—whether from disorder, fine-tuning, or some
other mechanism.
In this paper, we mostly focus on a special class of MBL

Floquet systems, namely, those with trivial stroboscopic
dynamics:

UF ¼ 1: ð2:5Þ
It turns out that this special case contains all of the

relevant physics of MBL Floquet systems but in a simpler
setting. Later, in Sec. VIII, we show that our results can be
straightforwardly extended to general MBL Floquet sys-
tems obeying Eq. (2.4), but for now we focus on systems
obeying Eq. (2.5). Our task is, thus, to find bulk and edge
invariants for MBL Floquet systems obeying Eq. (2.5).

B. Unitary loops

An equivalent way to think about MBL Floquet systems
with UF ¼ 1 is as “unitary loops.” Here, a unitary loop is a
one-parameter family of unitaries fUðtÞ∶t ∈ ½0; T�g, gen-
erated by a local Hamiltonian (2.2), with the property that

UðTÞ ¼ Uð0Þ ¼ 1: ð2:6Þ
In this language, our problem is to find bulk and edge
invariants for unitary loops.
But what does it mean to construct an invariant for a

unitary loop? To answer this question, we need to define a
notion of equivalence similar to the notion of adiabatic
equivalence in equilibrium systems. We say that two
unitary loops fUðtÞg and fU0ðtÞg are “equivalent,” denoted
fUðtÞg ∼ fU0ðtÞg, if they can be smoothly deformed into
one another. That is, fUðtÞg ∼ fU0ðtÞg if there exists a one-
parameter family of unitary loops, fUsðtÞ∶s ∈ ½0; 1�g,
depending smoothly on s, such that

U0ðtÞ ¼ UðtÞ; U1ðtÞ ¼ U0ðtÞ: ð2:7Þ

Importantly, this interpolation must maintain the loop
condition (2.6) for all s. That is,

UsðTÞ ¼ 1 ð2:8Þ
for all s ∈ ½0; 1�. We note that a similar notion of equiv-
alence can be defined for more general MBL Floquet
systems: In that case, we say that two MBL Floquet
systems are equivalent if they can be smoothly deformed
into one another while maintaining the MBL property (2.4).

C. Locality-preserving unitaries

Another concept that we need below is a “locality-
preserving unitary” (LPU). Roughly speaking, a locality-
preserving unitary U is a unitary that transforms local
operators to nearby local operators. More precisely, if Or is
an operator supported on site r, then U†OrU is supported

within a finite distance ξ of the site r (up to exponential
tails). We refer to the length scale ξ as the “operator
spreading length” of U.
There is a natural way to define equivalence classes of

LPUs. We say that two LPUs U and U0 are equivalent,
denoted U ≃U0, if they differ by a “locally generated
unitary” (LGU) W:

U ¼ W ·U0: ð2:9Þ

Here, a locally generated unitary W is a unitary that can be
generated by the time evolution of a local Hamiltonian over
a finite period of time:

W ¼ T e−i
R

1

0
HðsÞds: ð2:10Þ

For some of our arguments, we find it useful to consider
LPUs with strict locality properties. We say that a unitaryU
is a strict LPU with operator spreading length ξ if, for any
operator Or supported on site r, the operator U†OrU is
strictly supported within a finite distance ξ of r, without any
exponential tails.
We also find it useful to consider a special class of LGUs

with strict locality properties which we call “finite depth
local unitaries” (or FDLUs). An FDLU is a unitary that can
be written as a finite depth quantum circuit. More specifi-
cally, we say thatW is an FDLU of depth n and radius λ, if
W can be written as a finite depth quantum circuit of depth
n, where each layer is a product of local unitary gates
supported in (nonoverlapping) balls of radius λ. Note that
every LGU can be approximated to arbitrarily small error
by an FDLU using a Trotter expansion.

D. Mapping between d-dimensional unitary loops
and (d − 1)-dimensional LPUs

We now explain an important mapping between
d-dimensional unitary loops and (d − 1)-dimensional
LPUs [11,28]. The basic idea is that, given anyd-dimensional
unitary loop fUðtÞg, we can construct a corresponding
(d − 1)-dimensional LPU by considering the dynamics of
UðtÞ near a physical boundary or “edge” (here, we use the
term edge because we are primarily interested in the case
d ¼ 2, where the boundary is one dimensional).
The precise construction is as follows. Given a

d-dimensional unitary loop with Hamiltonian HðtÞ, we
restrict the Hamiltonian to a large, but finite, ball C by
discarding all terms that have support outside of C. We
denote the restricted Hamiltonian byHCðtÞ. We then define
a boundary or edge unitary by

Uedge ¼ T e−i
R

T

0
dtHCðtÞ: ð2:11Þ

By comparing this definition with Eq. (2.6), it is clear that
Uedge acts trivially deep in the interior of C—that is, Uedge
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is supported within a finite distance of the boundary of C
(up to exponential tails). Thus, Uedge can be thought of as a
(d − 1)-dimensional unitary acting on the boundary of B. It
is also clear that Uedge is locality preserving, by Lieb-
Robinson bounds. [31] Note that, in the context of Floquet
systems, Uedge has a simple physical meaning: It describes
the stroboscopic edge dynamics of the Floquet system
corresponding to fUðtÞg.
Importantly, one can show that the above mapping is

consistent with the two equivalence relations in the
sense that

fUðtÞg ∼ fU0ðtÞg ⇒ Uedge ≃ U0
edge: ð2:12Þ

(see Appendix A for a proof). One implication of this result
is that one can classify (or at least partially classify) unitary
loops and Floquet systems by studying their corresponding
edge unitaries.

E. Incorporating symmetries

We now discuss how to incorporate symmetries into these
definitions. Consider a symmetry group G and a corre-
sponding collection of on-site unitary symmetry trans-
formations fUg∶ g ∈ Gg. We say that a unitary loop
fUðtÞg is “G symmetric” if it is generated by aG-symmetric
Hamiltonian HðtÞ; i.e., UgHðtÞU−1

g ¼ HðtÞ for all
t ∈ ½0; T�. Likewise, we say that two G-symmetric unitary
loops are equivalent if they can be smoothly deformed into
one another while preserving the symmetry; i.e., fUsðtÞg
should be generated by a local G-symmetric Hamiltonian
HsðtÞ for all s ∈ ½0; 1�.
We can also incorporate symmetry into the definition of

an LPU in a natural way. We say that an LPU U is G
symmetric if U commutes with the symmetry transforma-
tion Ug for all g ∈ G. Likewise, we say that two
G-symmetric LPUs are equivalent if they differ by a locally
generated unitaryW whose generating HamiltonianHðsÞ is
G symmetric for all s ∈ ½0; 1�. Finally, we say that an
FDLU is G symmetric if all of its local unitary gates are G
symmetric.

F. Bulk and edge invariants

One of the main goals of this paper is to construct bulk
and edge invariants for unitary loops. Here, a “bulk
invariant” is a real-valued function M(fUðtÞg) defined
on unitary loops, with the property that it is invariant under
the equivalence relation (2.7) in the sense that

M(fUðtÞg) ¼ M(fU0ðtÞg) if fUðtÞg ∼ fU0ðtÞg: ð2:13Þ

Likewise, an “edge invariant” is a real-valued function
defined on the edge unitaries FðUedgeÞ that is invariant
under the equivalence relation defined in (2.9) in the
sense that

FðUedgeÞ ¼ FðU0
edgeÞ if Uedge ≃U0

edge: ð2:14Þ

In this paper, we construct bulk and edge invariants for
two-dimensional unitary loops (or, equivalently, two-
dimensional Floquet systems). That is, we construct bulk
invariants M(fUðtÞg) for 2D unitary loops and edge
invariants FðUedgeÞ for their 1D edge unitaries. Our
invariants have the additional feature of obeying a bulk-
boundary correspondence:

M(fUðtÞg) ¼ FðUedgeÞ: ð2:15Þ

III. GENERAL THEORY OF FLOWS

In this section, we define a general mathematical object
called a flow. This mathematical object is our main tool for
constructing bulk and edge invariants for unitary loops.

A. Prologue: A single-particle example

To motivate our definition, we begin with an example of
a flow in single-particle systems. Consider a single-particle
system defined on a d-dimensional lattice Λ. Let U be a
single-particle unitary transformation, i.e., a jΛj × jΛj
unitary matrix Uab ¼ hajUjbi, where a; b ∈ Λ. Given
any two subsets of lattice sites A; B ⊂ Λ, we can define
a real number ωA;BðUÞ by

ωA;BðUÞ ¼
X
a∈A

X
b∈B

ðjUabj2 − δabÞ: ð3:1Þ

We can think of ωA;BðUÞ as providing a quantitative
measure of how much the unitary U transports particles
from B to A. The first term

P
a∈A

P
b∈B jUabj2 measures

the magnitude of the matrix elements of U between B and
A, while the second term −

P
a∈A

P
b∈B δab is a constant

offset that guarantees that ωA;BðUÞ ¼ 0 if U ¼ 1.
The quantity ωA;BðUÞ has two important properties.

First, for any unitary VA that is supported entirely in A
or its complement Ā and for any unitary U,

ωA;BðVAUÞ ¼ ωA;BðUÞ: ð3:2Þ

Likewise, for any unitary VB that is supported entirely in B
or its complement B̄,

ωA;BðUVBÞ ¼ ωA;BðUÞ; ð3:3Þ

where again U is a general unitary. To derive the first
property (3.2), notice that any VA of this kind does not mix
the sites within A with those outside of A; therefore,P

a∈A jðVAUÞabj2 ¼
P

a∈A jUabj2. The second property
(3.3) follows from similar reasoning.
The above two properties (3.2) and (3.3) are important,

because they guarantee that ωA;BðUÞ depends on U only in
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a very limited way. As a result, we can construct bulk and
edge invariants out of ωA;BðUÞ.
The idea is as follows: Consider the case where Λ is a

one-dimensional lattice, and suppose that U is a 1D unitary
transformation that is locality preserving in the sense that it
mixes only nearby lattice sites a; a0 ∈ Λ. Choose A and B
to be two large overlapping intervals. In this case, we can
use Eqs. (3.2) and (3.3) to prove that

ωA;BðVUÞ ¼ ωA;BðUÞ;

for any unitary V supported within an interval smaller than
the overlap of A and B. The reason is that any such V is
either fully supported within A or Ā, in which case we can
use Eq. (3.2), or it is supported deep within B or B̄, in
which case we can use Eq. (3.3) after first commuting V
through U:

ωA;BðVUÞ ¼ ωA;BðU½U−1VU�Þ ¼ ωA;BðUÞ:

Here, in the second equality, we are using the fact that U is
locality preserving and V is supported deep within B or B̄
and, therefore, U−1VU is supported within B or B̄. Note
that we neglect in this section exponentially decaying tails
from conjugation by U and the exponentially small error
they would give to the equation above.
By repeating the above argument multiple times, it

follows that

ωA;BðVNVN−1…V1UÞ ¼ ωA;BðUÞ;

for any collection of unitaries V1;…; VN that are supported
within small intervals, as long as we take A, B and A ∩ B
sufficiently large. Next, consider any unitary W that is
generated by a local (1D) Hamiltonian over a finite period
of time. Any such W can be approximately arbitrarily
closely by a product of the form VNVN−1…V1. Hence, we
deduce that

ωA;BðWUÞ ¼ ωA;BðUÞ;

in the limit of large A, B and large overlap A ∩ B. More
precisely, this identity holds provided that we choose
A ¼ ½a1; a2� and B ¼ ½b1; b2� so that b1 − a1, a2 − b1,
and b2 − a2 are all sufficiently large compared with ξW
and ξU, where ξW is the operator spreading length ofW and
ξU is the operator spreading length of U. We conclude that
ωA;BðUÞ satisfies Eq. (2.14) and, therefore, defines an edge
invariant for 2D unitary loops [32].
It turns out that one can also use ωA;BðUÞ to construct

bulk invariants for 2D unitary loops (see Sec. VA). Thus,
ωA;BðUÞ provides a powerful tool for constructing both
edge and bulk invariants for unitary loops in single-particle
systems.

Motivated by this example, we now define the notion of a
flow for many-body systems.

B. Definition of flow

Consider a many-body system defined on a d-dimen-
sional lattice Λ with an on-site symmetry group G. In this
context, we can define a general mathematical object that
we call a flow.
Definition 1.—A flow ΩA;BðUÞ is a function that outputs

a real number given a G-symmetric unitary U and two
subsets of lattice sites A;B ⊂ Λ and that has the following
properties:
(1) ΩA;BðVAUÞ ¼ ΩA;BðUÞ if suppðVAÞ ⊂ A or Ā.
(2) ΩA;BðUVBÞ ¼ ΩA;BðUÞ if suppðVBÞ ⊂ B or B̄.
(3) ΩA1∪A2;B1∪B2

ðU1 ⊗ U2Þ ¼ ΩA1;B1
ðU1Þ þ ΩA2;B2

ðU2Þ
for any U1, U2 defined on disjoint sets of lattice sites
Λ1, Λ2 with A1; B1 ⊂ Λ1 and A2; B2 ⊂ Λ2.

(4) ΩA;Bð1Þ ¼ 0.
Each of these properties has a simple intuitive meaning.

The first two properties tell us thatΩA;BðUÞ is insensitive to
G-symmetric unitaries that are supported entirely within A
or B or their complements Ā and B̄. This is compatible with
the idea that, roughly speaking, ΩA;BðUÞ measures total
transport between A and B. The third property tells us that
the flow is additive under the tensor product (or “stacking”)
operation. The last property is simply a normalization
convention.
Notice that the function ωA;BðUÞ defined in Eq. (3.1)

obeys all of the above properties if we translate them to a
single-particle framework—i.e., replacing the tensor prod-
uct U1 ⊗ U2 with a direct sum U1 ⊕ U2. Thus, ωA;BðUÞ
can be thought of as a single-particle analog of a flow.
At this point, we should mention that there is a subtlety

in the interpretation of the direction of transport: While a
flow measures transport of states from B to A, it measures
transport of operators from A to B. While in Sec. III A we
mention that ωA;BðUÞ measures transport of particles from
B to A, in the many-body setting, it is often easiest to
interpret the flow as transport of operators from A to B.

C. Examples of flows

Here, we briefly present two many-body examples of
flows that are discussed later in the paper.

1. Example 1: U(1) symmetry

Our first example of a flow applies to lattice many-body
systems with a global U(1) symmetry. More specifically,
consider lattice systems that conserve a total U(1) chargeQ
of the form Q ¼ P

r Qr, where Qr is a Hermitian operator
supported on lattice site r ∈ Λ. Define

ΩA;BðUÞ ¼ hU†QAUQBiρ − hQAQBiρ; ð3:4Þ

where

BULK-BOUNDARY CORRESPONDENCE FOR INTERACTING … PHYS. REV. X 13, 031038 (2023)

031038-5



QA ¼
X
r∈A

Qr; QB ¼
X
r∈B

Qr ð3:5Þ

and where the expectation value h·iρ is taken in the mixed
state

ρ ¼ 1

Z
eμQ; Z ¼ TrðeμQÞ; ð3:6Þ

for some real-valued “chemical potential” μ.
It is easy to check that ΩA;BðUÞ satisfies all the require-

ments for a flow. For example, to establish the first property
in the above definition, we need to show that ΩA;BðUÞ is
invariant under replacingU → VAU for anyU(1)-symmetric
VA supported in A or Ā. To prove this statement, notice that
any such VA commutes with QA and, hence,

hðVAUÞ†QAðVAUÞQBiρ ¼ hU†QAUQBiρ: ð3:7Þ
It follows immediately that ΩA;BðVAUÞ ¼ ΩA;BðUÞ.
Note that the parameter μ can take any real value, so this

construction gives not just one flow but rather a continuous
family of flows. We discuss this flow and its applications in
more detail in Sec. VI.

2. Example 2: No symmetry

Our second example of a flow applies to interacting
systems without any symmetry constraints. To explain this
example, we first need to review the definition of
ηðA;BÞ—a real-valued “overlap” between two operator
algebras A and B, introduced in Ref. [13].
Let A and B be any two operator algebras consisting

of operators acting on some finite-dimensional Hilbert
space. Let fOag be a complete orthonormal basis of
operators in A—that is, a collection of operators such that
(i) fOag is a complete basis for A and (ii) fOag satisfies
trðO†

aOa0 Þ ¼ δaa0 , where we use the lowercase symbol “tr”
to denote a normalized trace defined by trð1Þ ¼ 1.
Similarly, let fObg be a complete orthonormal basis for
B. The “overlap” ηðA;BÞ is defined by

ηðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Oa∈A;Ob∈B

jtrðO†
aObÞj2

s
: ð3:8Þ

One can check that ηðA;BÞ depends only on the algebrasA
and B and not on the choice of orthonormal bases fOag and
fObg. Also, it is not hard to show that ηðA;BÞ ≥ 1, since
the two algebras A and B both contain the identity
operator 1.
With this notation, we are now ready to give an example

of a flow for interacting systems without symmetries. Let A
and B be any two subsets of lattice sites, A; B ⊂ Λ, and let
A and B denote the corresponding operator algebras,
consisting of operators supported on A and B, respectively.
We can define a flow by

ΩA;BðUÞ ¼ log

�
ηðU†AU;BÞ
ηðA;BÞ

�
: ð3:9Þ

Again, it is easy to check that ΩA;BðUÞ satisfies all the
properties of a flow. For example, to prove the first property
of a flow, namely, that ΩA;BðUÞ is invariant under replacing
U → VAU for any VA supported on A or Ā, notice that

η½ðVAUÞ†AðVAUÞ;B� ¼ ηðU†AU;BÞ; ð3:10Þ

since VA can only shuffle operators in A and, therefore,
V†
AAVA ¼ A.
The above flow (3.9) is closely related to the GNVW

index for classifying 1D locality-preserving unitaries [13].
There is also a close analogy between Eq. (3.9) and the
single-particle flow from Eq. (3.1). To see this analogy, it is
useful to rewrite Eq. (3.1) in the form given in Eq. (5.1),
which reveals that the single-particle flow measures the
change in the overlap of PA and PB due toU, where PA and
PB are single-particle projection operators onto sites in A
and B, respectively. Analogously, the above flow (3.9)
measures the change in the overlap of the operator algebras
A and B due to the action ofU. We discuss this flow and its
applications in more detail in Sec. VII.

D. Properties of flows

We now state two important properties of flows that
follow from Definition 1. First some notation: We define
the l boundary of a set A, ∂lA, as

∂lA ¼ fr ∈ Λ∶distðr; AÞ ≤ l and distðr; ĀÞ ≤ lg: ð3:11Þ

One can think of ∂lA as a “thickened boundary” which
consists of all lattice sites that are within distance l from
the boundary of A. With this notation, we can now state the
two properties of ΩA;BðUÞ.
Theorem 1.—LetU be aG-symmetric strict LPU with an

operator spreading length ξ. Let W be a G-symmetric
FDLU of depth n which is built out of unitary gates
supported in balls of radius λ. Then,
(1) ΩA;BðWUÞ ¼ ΩA;BðW0UÞ, where W0 is obtained by

removing all gates from W except for those fully
supported in ð∂2nλAÞ ∩ ð∂2nλþξBÞ, and

(2) ΩA;BðUÞ ¼ ΩAna;BðUÞ for any a ∉ ∂4ξB. ΩA;BðUÞ ¼
ΩA;BnbðUÞ for any b ∉ ∂4ξA.

We refer to the first property as Theorem 1.1 and the
second as Theorem 1.2. Each of these properties tell us that
ΩA;BðUÞ is invariant under some kind of change in A, B, or
U. The first property says that ΩA;BðWUÞ does not change
if we remove gates fromW that are far from the intersection
of the two boundaries of A and B. The second property says
thatΩA;BðUÞ is invariant under adding or removing a lattice
site a ∈ A as long as a is far from the boundary of B, and
similarly ΩA;BðUÞ is invariant under adding or removing a
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lattice site b ∈ B as long as b is far from the boundary of A.
We prove Theorem 1 in Appendix B.
We now state two useful corollaries of Theorem 1.
Corollary 1.—Let U be a G-symmetric strict LPU with

an operator spreading length ξ. Let W be a G-symmetric
FDLU of depth n which is built out of unitary gates
supported in balls of radius λ. If ð∂2nλAÞ ∩ ð∂2nλþξBÞ ¼ ∅,
then

ΩA;BðWUÞ ¼ ΩA;BðUÞ: ð3:12Þ

Corollary 2.—LetW be aG-symmetric FDLU of depth n
which is built out of unitary gates supported in balls of
radius λ. Then,

ΩA;BðWÞ ¼ ΩA;BðW0Þ; ð3:13Þ

where W0 is obtained by removing all gates from W except
for those fully supported in ð∂2nλAÞ ∩ ð∂2nλBÞ.
Both corollaries are immediate consequences of

Theorem 1.1.

E. Edge invariants from flows

We now explain how to construct an edge invariant for
2D unitary loops given any flow ΩA;BðUÞ. As usual, our
invariant FðUedgeÞ is defined on 1D LPUs Uedge. However,
we present the definition in the special case whereUedge is a
1D strict LPU, because this allows for a simpler and more
rigorous analysis.
Our invariant is defined as follows. Given a 1D strict

locality-preserving unitary Uedge with operator spreading
length ξ, we choose two overlapping intervals: A ¼ ½a1; a2�
and B ¼ ½b1; b2� with a1 < b1 < a2 < b2 such that
b1 − a1, a2 − b1, and b2 − a2 are larger than 4ξ (see
Fig. 2). We then define

FðUedgeÞ ¼ ΩA;BðUedgeÞ: ð3:14Þ

In order for this definition to be unambiguous, we need
to check that ΩA;BðUedgeÞ does not depend on the choice of
A and B. Conveniently, this follows immediately from
Theorem 1.2. Indeed, Theorem 1.2 guarantees that we can
shift any of the endpoints ai → ai � 1 or bi → bi � 1, as
long as b1 − a1, a2 − b1, and b2 − a2 are larger than 4ξ. By
shifting end points using Theorem 1.2, we can show that

ΩA;BðUedgeÞ ¼ ΩA0;B0 ðUedgeÞ; ð3:15Þ

for any other choice of A0 ¼ ½a01; a02� and B0 ¼ ½b01; b02�
obeying the constraint that b01 − a01, a

0
2 − b01, and b02 − a02

are larger than 4ξ.
To complete the discussion, we need to check that

FðUedgeÞ is a true edge invariant, i.e., FðWUedgeÞ ¼
FðUedgeÞ for any G-symmetric locally generated unitary
W. For simplicity, we check this invariance in the case
where W is a G-symmetric FDLU. More specifically,
suppose W is an FDLU of depth n built out of gates of
radius λ. We wish to show that FðWUedgeÞ ¼ FðUedgeÞ. To
prove this, we first choose A and B so that b1 − a1, a2 − b1,
and b2 − a2 are larger than 4ðnλþ ξÞ, because the oper-
ator spreading length of WUedge is nλþ ξ. The desired
identity ΩA;BðWUedgeÞ ¼ ΩA;BðUedgeÞ then follows from
Corollary 1.
A general property of the above edge invariant (3.14)

that is worth mentioning is that it is odd under spatial
reflections. That is,

ΩA;BðUÞ ¼ −ΩB;AðUÞ ð3:16Þ

for any overlapping intervals A and B with the geometry
discussed above. In other words, switching the direction that
we call “positive” switches the sign of the edge invariant.We
prove this result in Corollary 5 in Appendix B using general
properties of flows. (Note that the above antisymmetry
property does not apply to general subsets A;B ⊂ Λ—only
to the specific case of overlapping intervals in 1D.)

F. Bulk invariants from flows

For any flow ΩA;BðUÞ, we can also construct a corre-
sponding bulk invariant for 2D unitary loops. This bulk
invariant, denoted M(fUðtÞg), is defined as follows. Let
UðtÞ ¼ T exp ½−i R t

0 dt
0Hðt0Þ� be a 2D unitary loop. We

choose three overlapping disklike regions A, B, and C as
illustrated in Fig. 3. These disks must be large enough that
all distances are much larger than the “Lieb-Robinson
length” l of fUðtÞg defined by l ¼ vLRT, where vLR is the
Lieb-Robinson velocity associated with HðtÞ.
We define the bulk invariant M(fUðtÞg) by

M(fUðtÞg) ¼ ΩC
A;B(fUðtÞg): ð3:17Þ

where

ΩC
A;B(fUðtÞg) ¼

Z
T

0

dt
∂

∂tC
ΩA;B(UðtÞ); ð3:18Þ

Here, we define the operation “∂=∂tC” as follows. For any
function G½UðtÞ�,

FIG. 2. We use overlapping intervals A and B to define our edge
invariant FðUedgeÞ ¼ ΩA;BðUedgeÞ.
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∂

∂tC
G½UðtÞ� ¼ lim

ϵ→0

G½e−iϵHCðtÞ · UðtÞ� −G½UðtÞ�
ϵ

; ð3:19Þ

where HCðtÞ consists of all the terms in HðtÞ ¼ P
r HrðtÞ

(2.2) that are supported in region C:

HCðtÞ ¼
X
r∈C

HrðtÞ: ð3:20Þ

In explicit examples of ΩC
A;B(fUðtÞg), we see that

the operation ∂=∂tC can be implemented in a simple
way. This is because the flow ΩA;BðUðtÞÞ can often be
expressed in terms of Heisenberg-evolved operators
OðtÞ ¼ U†ðtÞOUðtÞ. Recall that the usual time derivative
of a Heisenberg-evolved operator OðtÞ is given by

∂

∂t
OðtÞ ¼ iU†ðtÞ½HðtÞ; O�UðtÞ:

To instead compute ∂=∂tC, we simply replace HðtÞ →
HCðtÞ in the commutator, i.e.,

∂

∂tC
OðtÞ ¼ iU†ðtÞ½HCðtÞ; O�UðtÞ:

G. Showing that ΩC
A;B(fUðtÞg) does not depend

on choice of A, B, and C

To show that our bulk invariant is well defined, we need
to show that ΩC

A;B(fUðtÞg) does not depend on the choice
of A, B, and C, as long as they are sufficiently large. We
now prove this claim.
To begin, consider another large disklike region C0 that

surrounds the other intersection point of ∂A and ∂B, which
is not in C (see Fig. 3). Let UCðtÞ and UC0 ðtÞ be the
unitaries generated by HCðtÞ and HC0 ðtÞ, respectively:

UCðtÞ ¼ T exp

�Z
t

0

HCðsÞds
�
;

UC0 ðtÞ ¼ T exp

�Z
t

0

HC0 ðsÞds
�
: ð3:21Þ

Below, we prove the following two identities using the
general properties of flows. First, we show that

ΩC
A;B(fUðtÞg)þ ΩC0

A;B(fUðtÞg) ¼ 0: ð3:22Þ

Second, we show that

ΩC
A;B(fUðtÞg) ¼

Z
T

0

dt
d
dt

ΩA∩C;B∩C(UCðtÞ): ð3:23Þ

Using these two identities, it is easy to see that
ΩC

A;B(fUðtÞg) is independent of the choice of A, B, and
C. Indeed, the fact that ΩC

A;B(fUðtÞg) does not depend
on C follows from Eq. (3.22), since the second term
ΩC0

A;B(fUðtÞg) is manifestly independent of C and the
two terms sum to zero. Likewise, to see that
ΩC

A;B(fUðtÞg) does not depend on A and B, notice that
Eq. (3.23) implies thatΩC

A;B(fUðtÞg) does not change if we
modify A and B outside of C. By the same logic,
Eqs. (3.22) and (3.23) together tell us that ΩC

A;B(fUðtÞg)
does not change if we modify A and B outside of C0.
Combining these two observations, we see that
ΩC

A;B(fUðtÞg) does not change under any modification
of A and B.
In addition, Eq. (3.22) tells us thatΩC

A;B(fUðtÞg)must be
invariant under any deformation of UðtÞ that is far away
from C0. It is also invariant under any deformation of UðtÞ
far away from C by definition, so it is invariant under any
local deformations of UðtÞ, as long as C and C0 are
sufficiently far separated.
We now derive the two identities (3.22) and (3.23). To

begin, we claim that

ΩA;B(UðtÞ) ¼ ΩA;B(UCðtÞUC0 ðtÞ); ð3:24Þ

as long as the regions C and C0 are sufficiently large. To see
this, first suppose that UðtÞ is an FDLU (rather than an
LGU). In that case, Corollary 2 implies that we can remove
all the gates fromUðtÞ except for those near the intersection
of the boundaries of A and B. In particular, this means we
can remove all the gates from UðtÞ except for those
supported in C and C0, implying Eq. (3.24) in this case.
More generally, for any UðtÞ that is generated by the time
evolution of a local Hamiltonian HðtÞ, we can always
approximate UðtÞ by an FDLU with arbitrarily small error.
Hence, Eq. (3.24) must hold up to this error. We expect that
this error vanishes exponentially in the separation between
C and C0, so Eq. (3.24) becomes exact in the limit of large
A, B, and C.

FIG. 3. We use three overlapping disklike regions A, B, and C
to define our bulk invariant M(fUðtÞg) ¼ ΩC

A;B(fUðtÞg). The
boundaries of A and B intersect at two points: one in region C and
one in another region C0.
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Having established Eq. (3.24), we next observe that
property 3 in the definition of a flow (or, more precisely,
Lemma 1 in Appendix B) guarantees that

ΩA;B(UCðtÞUC0 ðtÞ)
¼ ΩA;B(UCðtÞ)þΩA;B(UC0 ðtÞ): ð3:25Þ

Combining this equation with Eq. (3.24), we deduce that

ΩA;B(UðtÞ) ¼ ΩA;B(UCðtÞ)þ ΩA;B(UC0 ðtÞ): ð3:26Þ

Now consider the quantity ð∂=∂tCÞΩA;B(UðtÞ). By
definition,

∂

∂tC
ΩA;B(UðtÞ)

¼ lim
ϵ→0

ΩA;B(e−iϵHCðtÞ · UðtÞ) − ΩA;B(UðtÞ)
ϵ

: ð3:27Þ

Substituting the identity (3.26) for ΩA;B(UðtÞ) and using
the analogous identity for ΩA;B(e−iϵHCðtÞ ·UðtÞ), we derive

∂

∂tC
ΩA;B(UðtÞ) ¼ lim

ϵ→0

ΩA;B(e−iϵHCðtÞ ·UCðtÞ)þΩA;B(UC0 ðtÞ) −ΩA;B(UCðtÞ) −ΩA;B(UC0 ðtÞ)
ϵ

¼ lim
ϵ→0

ΩA;B(e−iϵHCðtÞ ·UCðtÞ) −ΩA;B(UCðtÞ)
ϵ

¼ d
dt

ΩA;B(UCðtÞ): ð3:28Þ

Likewise,

∂

∂tC0
ΩA;B(UðtÞ) ¼ d

dt
ΩA;B(UC0 ðtÞ): ð3:29Þ

Comparing Eq. (3.26) with Eqs. (3.28) and (3.29), we
deduce that

d
dt
ΩA;B(UðtÞ)¼ ∂

∂tC
ΩA;B(UðtÞ)þ ∂

∂tC0
ΩA;B(UðtÞ): ð3:30Þ

Integrating both sides from time t ¼ 0 to t ¼ T, we obtain

ΩC
A;B(fUðtÞg)þΩC0

A;B(fUðtÞg) ¼
Z

T

0

dt
d
dt

ΩA;B(UðtÞ)

¼ 0; ð3:31Þ

where the last equality follows from the fact that
UðTÞ ¼ Uð0Þ ¼ 1. This proves Eq. (3.22).
To prove Eq. (3.23), we integrate Eq. (3.28) from t ¼ 0

to t ¼ T to obtain

ΩC
A;B(fUðtÞg) ¼

Z
T

0

dt
d
dt

ΩA;B(UCðtÞ): ð3:32Þ

We then note that ΩA;B(UCðtÞ) ¼ ΩA∩C;B∩C(UCðtÞ) for
any flow: This again follows from property 3 in the
definition of the flow, since UCðtÞ acts trivially outside
of C. Equation (3.23) follows immediately.
Before concluding this section, it is worth noting that the

bulk invariant (3.17) is odd under spatial reflections, just
like the edge invariant. That is,

ΩσðCÞ
σðAÞ;σðBÞ(fUðtÞg) ¼ sgnðσÞΩC

A;B(fUðtÞg); ð3:33Þ

where A, B, and C are three overlapping disklike regions
with the geometry in Fig. 3 and where σ is a permutation of
A, B, and C and sgnðσÞ is the parity of σ. Equation (3.33)
follows the corresponding property of the edge invariant
(3.16) together with the bulk-boundary correspondence that
we prove in the next section.

H. Bulk-boundary correspondence

We now prove the bulk-boundary correspondence that
we claim earlier:

FðUedgeÞ ¼ M(fUðtÞg): ð3:34Þ

Here, FðUedgeÞ is the edge invariant defined in Eq. (3.14),
M(fUðtÞg) is the bulk invariant defined in Eq. (3.17), and
Uedge is related to UðtÞ via Eq. (2.11).
To this end, we note that Eq. (3.23) implies that

M(fUðtÞg) ¼ ΩC
A;B(fUðtÞg)

¼
Z

T

0

d
dt

ΩA∩C;B∩C(UCðtÞ)dt

¼ ΩA∩C;B∩CðUCðTÞÞ: ð3:35Þ

Next, note that UCðTÞ ¼ Uedge is supported in the 1D
circle ∂ξC, and the subsets of A and B that Uedge acts on are
the intersections of A and B with ∂ξC, which form two
overlapping intervals, like our setup for FðUedgeÞ (Fig. 2).
Therefore,
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ΩA∩C;B∩C(UCðTÞ) ¼ FðUedgeÞ: ð3:36Þ

Putting together Eqs. (3.35) and (3.36), we obtain the
desired result M(fUðtÞg) ¼ FðUedgeÞ.

IV. SPATIALLY ADDITIVE FLOWS

We say that a flow ΩA;BðUÞ is “spatially additive” if it
obeys

ΩA∪B;CðUÞ ¼ ΩA;CðUÞ þ ΩB;CðUÞ;
ΩA;B∪CðUÞ ¼ ΩA;BðUÞ þ ΩA;CðUÞ; ð4:1Þ

where, in the first line, A and B are two disjoint sets of
lattice sites and, in the second line, B and C are similarly
two disjoint sets of lattice sites. Equivalently, a flow is
spatially additive if it can be written as a sum of the form

ΩA;BðUÞ ¼
X
a∈A

X
b∈B

Ωa;bðUÞ: ð4:2Þ

Note thatΩa;b(fUðtÞg)must vanish when the indices a and
b are far apart, in order to be consistent with Theorem 1.2.
A nice property of spatially additive flows is that we can

write down alternative expressions for the edge invariant
FðUedgeÞ and the bulk invariant M(fUðtÞg) that are based
on a nonoverlapping geometry. In particular, the formula
for FðUedgeÞ is

FðUedgeÞ ¼ ΩI;JðUedgeÞ − ΩJ;IðUedgeÞ; ð4:3Þ

where I and J are two adjacent, nonoverlapping intervals.
Likewise, the formula for M(fUðtÞg) is

M(fUðtÞg) ¼ ΩI
J;K(fUðtÞg) −ΩI

K;J(fUðtÞg)
þΩJ

K;I(fUðtÞg) −ΩJ
I;K(fUðtÞg)

þΩK
I;J(fUðtÞg) − ΩK

J;I(fUðtÞg); ð4:4Þ

where I, J, and K are three disjoint regions, meeting at a
single point, of the form shown in Fig. 4. We derive these

formulas and discuss some technical advantages of additive
flows in Appendix C. Note that Eq. (4.4) is reminiscent of
the real space Chern number formula in Ref. [33]; we make
this connection more explicit in Appendix D.

V. SINGLE-PARTICLE SYSTEMS

We begin by applying our construction to single-particle
systems, expanding on the example that we introduce at the
beginning of Sec. III.

A. Definition of FðUedgeÞ and M(fUðtÞg)
Our starting point is the single-particle flow ωA;BðUÞ

given in Eq. (3.1). We can write this flow in a more
convenient way in terms of projection matrices PA and PB
into the sets A and B (Fig. 2):

ωA;BðUÞ ¼ TrðU†PAUPBÞ − TrðPAPBÞ: ð5:1Þ

Here, PA is a jΛj × jΛj diagonal matrix with matrix
elements equal to 1 for the sites in A and 0 elsewhere,
and PB is defined similarly. As we mention earlier, it is easy
to see that ωA;BðUÞ satisfies the definition of flow (in the
single-particle sense).
Using Eq. (3.14), we can construct an edge invariant:

FðUedgeÞ ¼ TrðU†
edgePAUedgePBÞ − TrðPAPBÞ: ð5:2Þ

To get some intuition for this edge invariant, consider the
case where Uedge is a translation by x: i.e., U†

edgePrUedge ¼
Prþx, where Pr is the projector Pr ¼ jrihrj. Then, Uedge

shifts the overlap of PA and PB by x so that FðUedgeÞ ¼ x.
Moving on to the bulk invariant, Eq. (3.17) gives

M(fUðtÞg)¼ΩC
A;B(fUðtÞg)

¼ i
Z

T

0

dtTrfUðtÞ†½HCðtÞ;PA�UðtÞPBg: ð5:3Þ

To make sense of this invariant, we have to define what we
mean by HCðtÞ for single-particle Hamiltonians. As in the
many-body case, we define HCðtÞ ¼

P
r∈C HrðtÞ, where

HðtÞ ¼ P
r HrðtÞ is a decomposition of H into local terms

supported near r. In the single-particle case, there is a
natural way to define the local terms HrðtÞ, namely,

HrðtÞ ¼
1

2
fHðtÞ; Prg: ð5:4Þ

Again, Pr denotes the projection onto site r, and f·; ·g
denotes the anticommutator. By construction, HrðtÞ is
supported in a finite neighborhood around r [assuming
HðtÞ is a finite range Hamiltonian]. Substituting this into
the definition of HCðtÞ, we obtain

FIG. 4. For spatially additive flows, our bulk invariant can be
computed using three nonoverlapping adjacent regions I, J, and
K [see Eq. (4.4)].
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HCðtÞ ¼
1

2
fHðtÞ; PCg; ð5:5Þ

so that our bulk invariant takes the form

MðfUðtÞg) ¼ i
2

Z
T

0

dtTr(UðtÞ†½fHðtÞ; PCg; PA�UðtÞPB):

ð5:6Þ

B. Relation to previously known invariants

We now relate our invariants (5.2) and (5.6) to previously
known edge and bulk invariants for 2D unitary loops,
discussed in Refs. [3,4]. We start with the edge invariant in
Refs. [3,4], which applies to translationally invariant
systems. It is given by the momentum space formula

nðUedgeÞ ¼ −
i
2π

Z
dkTr

�
U†

edge
∂

∂k
Uedge

�
: ð5:7Þ

We claim that our edge invariant FðUedgeÞ (5.2) is
equivalent tonðUedgeÞ in the translationally invariant case, i.e.,

FðUedgeÞ ¼ nðUedgeÞ: ð5:8Þ

To show this, we make a particular choice for the two over-
lapping intervals A and B in the definition of FðUedgeÞ (5.2).
Specifically, we choose A ¼ ð−∞; 0� and B ¼ ½−L;∞Þ,
where L is a large positive number which we send to ∞.
For this choice of A and B, Eq. (5.2) reduces to

FðUedgeÞ ¼ lim
L→∞

TrðU†
edgePð−∞;0�UedgeP½−L;∞Þ − P½−L;0�Þ

¼ TrðU†
edgePð−∞;0�Uedge − Pð−∞;0�Þ

¼ TrðU†
edge½Pð−∞;0�; Uedge�Þ: ð5:9Þ

We note that the above formula is exactly the expression
for the flow F ðUedgeÞ given in Eq. (112) in Ref. [33],
except with a projector onto ð−∞; 0� rather than ½0;∞Þ. To
proceed further, one can use the argument given in
Appendix C.1.3 in Ref. [33] to rewrite this expression in
k space. As explained in Ref. [33], when we go to k space,
the real space trace is replaced by an integral over a k-space
trace:

Trð·Þ → 1

2π

Z
dkTrð·Þ; ð5:10Þ

while the commutator is replaced by a derivative:

½Pð−∞;0�; Uedge� → −i
∂Uedge

∂k
: ð5:11Þ

Note that there is an extra minus sign, because we use the
projector onto sites ð−∞; 0� rather than ½0;∞Þ. Making

these replacements, we recover the previously known
formula (5.7).
Next, consider the bulk invariantW(fUðtÞg) in Ref. [4],

which is given by the momentum space formula

W(fUðtÞg)¼ 1

8π2

Z
dtdkxdky

×Tr

�
U† ∂

∂t
U

�
U† ∂

∂kx
U;U† ∂

∂ky
U

��
; ð5:12Þ

where we drop the t dependence from UðtÞ for brevity.
We claim that our bulk invariant M(fUðtÞg) (5.6) is

equivalent to W(fUðtÞg):

M(fUðtÞg) ¼ W(fUðtÞg): ð5:13Þ

To see this, we make a particular choice for the three
regions A, B, and C in the definition of M(fUðtÞg) (5.6).
Specifically, we choose A to be the left half plane X−, B to
be the upper half plane Yþ, and C to be a disk DL centered
at the origin with a radius L, where L is a large number
which we send to infinity. With these choices, Eq. (5.6)
reduces to

M(fUðtÞg)¼ lim
L→∞

i
2

Z
T

0

dtTr(U†½fHðtÞ;PDL
g;PX−

�UPYþ)

¼ lim
L→∞

i
2

Z
T

0

dt

×Tr(U†fHðtÞ;PDL
gU½U†PX−

U;PYþ�)

¼ i
Z

T

0

dtTr(U†HðtÞU½U†PX−
U;PYþ�);

ð5:14Þ

where the second equality follows from the cyclicity
of the trace. To proceed further, we replace U†PX−

U →
U†½PX−

; U� in the above expression. One can then use the
same method as in Appendix C.1.3 in Ref. [33] to rewrite
this expression in k space, replacing the commutators with
derivatives as in Eq. (5.11). The result is

M(fUðtÞg) ¼ 1

4π2

Z
dtdkxdky

× Tr

�
U† ∂

∂t
U

∂

∂ky

�
U† ∂

∂kx
U

��
; ð5:15Þ

One can then massage this expression into the form (5.12)
by adding the following derivative term to the integrand:

−
1

2
∂kyTrðU†

∂tUU†
∂kxUÞ þ 1

2
∂tTrðU†

∂ky∂kxUÞ

−
1

2
∂kxTrðU†

∂ky∂tUÞ: ð5:16Þ
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C. Relation to current

In this section, we relate the bulk invariantM(fUðtÞg) to
the current—a more familiar physical quantity. We do this
in two different ways. First, we express M(fUðtÞg) in
terms of circulating bulk currents, which are related to the
quantized orbital magnetization density described in
Ref. [5]. Second, we relate M(fUðtÞg) to the quantized
current that flows between a fully filled region and an
empty region in a noninteracting fermion system, which is
also described in Ref. [5].
We begin by deriving the circulating current formula.

Our derivation starts with the nonoverlapping formula for
M(fUðtÞg), given in Eq. (4.4). This formula consists of a
sum of six terms of the form ΩK

I;J(fUðtÞg). Using the
explicit formula for ΩK

I;J(fUðtÞg) (5.6), together with the
fact that I, J, and K are nonoverlapping, we can expand
each of these terms as

ΩK
I;J(fUðtÞg)

¼ i
2

Z
T

0

dtTrfUðtÞ†½PKHðtÞPI − PIHðtÞPK�UðtÞPJg:

ð5:17Þ

Recall that, according to the standard definition of the
current operator, the (Heisenberg-evolved) current operator
from site k to i is given by

IkiðtÞ ¼ iU†ðtÞ½PkHðtÞPi − PiHðtÞPk�UðtÞ: ð5:18Þ

Comparing this definition with Eq. (5.17), we see that

ΩK
I;J(fUðtÞg) ¼ 1

2

Z
T

0

dtJ J
K;IðtÞ; ð5:19Þ

where

J J
K;IðtÞ ¼

X
i∈I

X
j∈J

X
k∈K

hjjIkiðtÞjji ð5:20Þ

and where jji denotes the single-particle state where the
particle is on site j. Substituting this expression into the
nonoverlapping formula for M(fUðtÞgÞ (4.4) and using
the observation thatΩK

I;J ¼ −ΩI
K;J (or, equivalently, that the

current is antisymmetric), we derive

M(fUðtÞgÞ¼
Z

T

0

dt½J J
K;IðtÞþJ I

J;KðtÞþJ K
I;JðtÞ�: ð5:21Þ

The above formula for M(fUðtÞg) has a nice intuitive
picture: M(fUðtÞgÞ is given by the time integral of the
expectation value of current across the K, I boundary
in states initially in region J (together the cyclic

permutations). Therefore, it measures the cyclic micro-
motion of localized bulk states. We show in Appendix D
that, if UðtÞ ¼ expð−i2πPt=TÞ for a time-independent
Chern band projector P, we can perform the time integral
explicitly to obtain the real space formula for the Chern
number given in Ref. [33].
Next, we relate M(fUðtÞg) to the quantized current

that flows at the boundary of a fully filled region and an
empty region, as explained in Ref. [5]. This current is
defined as

I(fUðtÞg) ¼ 1

T

Z
T

0

dtJ C
I;JðtÞ; ð5:22Þ

where I and J are finite, adjacent regions as illustrated in
Fig. 5(a) and C is a large region that overlaps with both I
and J.
We begin by defining three adjacent regions I, J, and K

as illustrated in Fig. 5(b). We can connect this setup to our
overlapping geometry (Fig. 3) by defining A ¼ I ∪ J and
B ¼ J ∪ K. According to Eq. (3.33), ΩC

A;B(fUðtÞg) ¼
ΩA

B;C(fUðtÞg) ¼ −ΩB
A;C(fUðtÞg), so

M(fUðtÞg)¼ 1

2
½ΩA

B;C(fUðtÞg)−ΩB
A;C(fUðtÞg)�: ð5:23Þ

Because the flow is spatially additive in this case,
we have [dropping the argument ðfUðtÞg) for clarity of
notation]

M(fUðtÞg) ¼ 1

2
ðΩI

J;C þ ΩI
K;C þ ΩJ

J;C þ ΩJ
K;CÞ

−
1

2
ðΩJ

I;C þ ΩJ
J;C þΩK

I;C þΩK
J;CÞ: ð5:24Þ

Simplifying by canceling the ΩJ
J;C terms and using

ΩI
K;C ¼ ΩK

I;C ¼ 0 (because I is far separated from K),
we have

M(fUðtÞg) ¼ 1

2
ðΩI

J;C þΩJ
K;C −ΩJ

I;C −ΩK
J;CÞ: ð5:25Þ

(a) (b)

FIG. 5. (a) A quantized current flows from I to J at the
boundary of a fully filled region C. (b) To show that this
quantized current is equal to M(fUðtÞg)=T, we use a topologi-
cally equivalent setup to our overlapping geometry (Fig. 3) with
A ¼ I ∪ J and B ¼ J ∪ K.
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We can now write Eq. (5.25) in terms of currents:

M(fUðtÞg) ¼ 1

2

Z
T

0

dtJ C
I;JðtÞ þ J C

J;KðtÞ: ð5:26Þ

Finally, we claim that J C
J;KðtÞ ¼ J C

I;JðtÞ. Intuitively, this
is true because all the quantities above are topological and
do not depend on the choice of location in the lattice. More
rigorously, J C

J;KðtÞþJ C
J;I þJ C

J;JðtÞþJ C
J;ΛnðI∪J∪KÞðtÞ¼ 0

by current conservation. Also, J C
J;JðtÞ ¼ 0, and

J C
J;ΛnðI∪J∪KÞðtÞ ¼ 0, where the second current vanishes

because there is no current flowing through the top and
bottom edges of J. This means that J C

J;KðtÞ þ J C
J;IðtÞ ¼ 0,

so J C
J;KðtÞ ¼ −J C

J;IðtÞ ¼ J C
I;JðtÞ. In conclusion,

M(fUðtÞg) ¼
Z

T

0

dtJ C
I;JðtÞ: ð5:27Þ

Putting this together with Eq. (5.22), we obtain

IðfUðtÞg) ¼ M(fUðtÞg)
T

: ð5:28Þ

This is the desired formula relating M to the quantized
current IðfUðtÞg).

VI. INTERACTING SYSTEMS
WITH U(1) SYMMETRY

We now apply our methods to interacting systems with
U(1) symmetry, expanding on the example from Sec. III C.
Many of our results closely parallel the single-particle case
discussed above.

A. Definition of FðUedgeÞ and M(fUðtÞg)
Our basic setup is the same as the example discussed

in Sec. III C: We consider a 2D lattice with a finite-
dimensional local Hilbert space on each site, each with an
identical on-site charge operator Qr that has non-negative
integer eigenvalues. We assume that the Hamiltonian HðtÞ
conserves the total U(1) charge Q ¼ P

r Qr. Our task is to
construct bulk and edge invariants for unitary loops of
this kind.
Our starting point is the flow given in Eq. (3.4):

ΩA;BðUÞ ¼ hU†QAUQBiρ − hQAQBiρ: ð6:1Þ

Here, the expectation value h·iρ is taken in the mixed state

ρ ¼ eμQ

Z
; Z ¼ TreμQ; ð6:2Þ

where μ is a real-valued “chemical potential” and QA ¼P
r∈A Qr and QB ¼ P

r∈B Qr denote the total charge in
regions A and B, respectively.

To construct an edge invariant, we substitute this flow
into Eq. (3.14), which gives

FðUedgeÞ ¼ hU†
edgeQAUedgeQBiρ − hQAQBiρ; ð6:3Þ

where A and B are overlapping intervals (Fig. 2).
Likewise, we can obtain a bulk invariant by substituting

this flow into Eq. (3.17):

M(fUðtÞg) ¼ ΩC
A;B(fUðtÞg)

¼ i
Z

T

0

dthUðtÞ†½HCðtÞ; QA�UðtÞQBiρ: ð6:4Þ

B. Relation to previously known invariants

We begin by discussing the connection between Eq. (6.3)
and the edge invariant in Ref. [17]. The latter invariant takes
values in the set of rational functions of a formal parameter
z and is denoted by π̃ðzÞ. To define π̃ðzÞ, let A be a large
interval and let QA ¼ P

r∈A Qr. Consider the action of the
edge unitary Uedge on QA. Since Uedge is a U(1)-symmetric
LPU, we know that

U†
edgeQAUedge ¼ QA þOL þOR; ð6:5Þ

where OL and OR are local operators acting near the left
and right end points, respectively, of A. Next, we write
QA ¼ QL þQR, where QL and QR are the total charges
within the left and right half of the interval, respectively, for
some partition of the interval into two subintervals. The
invariant π̃ðzÞ is then defined as

π̃ðzÞ ¼ TrðzQRþORÞ
TrðzQRÞ ; ð6:6Þ

where the trace is taken over an interval that contains the
support of both QR and QR þOR. We can think of π̃ðzÞ as
measuring howUedge acts on the charge operator. The basic
idea is that the traces in the numerator and denominator of
Eq. (6.6) are generating functions in a formal parameter z
that encode the eigenvalue spectra of QR þOR and QR,
respectively. The ratio of these two generating functions
measureswhetherUedge performs a net translation of charge.
To get a feeling for π̃ðzÞ, it is useful to consider a

prototypical example where each lattice site has two states
carrying U(1) charges 0 and q, respectively. In this case, if
Uedge is a unit translation to the right, then one finds
π̃ðzÞ ¼ ð1þ zq=2Þ. For comparison, in this example, the
flow FðUedgeÞ from Eq. (6.3) evaluates to

FðUedgeÞ ¼
q2eμq

1þ eμq
−

q2e2μq

ð1þ eμqÞ2 : ð6:7Þ

More generally, what is the relationship between
FðUedgeÞ and π̃ðzÞ? Below, we show that

BULK-BOUNDARY CORRESPONDENCE FOR INTERACTING … PHYS. REV. X 13, 031038 (2023)

031038-13



FðUedgeÞ ¼
d2

dμ2
log π̃ðeμÞ: ð6:8Þ

An important implication of this identity is that the two
invariants FðUedgeÞ and π̃ðzÞ carry equivalent information
in the sense that FðUedgeÞ determines π̃ðzÞ and vice versa.
Indeed, although they differ by two derivatives, the con-
stants of integration are fixed by log π̃ðeμÞjμ¼0 ¼ 0 and
ðd=dμÞ log π̃ðeμÞjμ¼−∞ ¼ 0. The former comes from the
fact that the trace in the numerator and the trace in the
denominator of Eq. (6.6) are over the same space, while
the latter comes from our convention that Qr has non-
negative integer eigenvalues.
We now derive the above relation (6.8). Substituting

Eq. (6.5) into the expression for the edge invariant (6.3)
gives

FðUedgeÞ ¼ hORQBiρ þ hOLQBiρ: ð6:9Þ

To simplify this further, we note that the correlation
function hOLQBiρ can be factored as

hOLQBiρ ¼ hOLiρhQBiρ; ð6:10Þ

since OL and QB are supported in nonoverlapping regions
and ρ has vanishing correlation length. At the same time,
we can see that hOLiρ ¼ −hORiρ by taking expectation
values off both sides of Eq. (6.5) above. Putting this
together, we derive

FðUedgeÞ ¼ hORQBiρ − hORiρhQBiρ: ð6:11Þ

The next step is to use the factorization property again to
deduce that hORQB̄iρ ¼ hORiρhQB̄iρ, where B̄ denotes the
complement of B. Therefore, we are free to add hORQB̄iρ −
hORiρhQB̄iρ to the right-hand side of Eq. (6.11), which
gives

FðUedgeÞ ¼ hORQiρ − hORiρhQiρ; ð6:12Þ

where Q is the total charge. To complete the derivation, we
rewrite the right-hand side as

FðUedgeÞ ¼
d
dμ

hORiρ ¼
d2

dμ2
log π̃ðeμÞ; ð6:13Þ

where the second equality follows from the identity hORi ¼
d
dμ log π̃ðeμÞ derived in Ref. [17].
As for the bulk invariant (6.4), there is nothing to

compare it to: We are not aware of any other explicit
formulas for bulk invariants for strongly interacting Floquet
systems with U(1) symmetry. That said, there is a con-
nection between M(fUðtÞg) and the bulk magnetization

density described in Ref. [20]; we explain this connection at
the end of the next section.

C. Relation to current

In this section, we discuss how to express the bulk
invariant in terms of U(1) currents. This discussion parallels
the single-particle case (Sec. V C). As in that section, we
derive two different expressions for M(fUðtÞg): one in
terms of circulating currents and one in terms of a U(1)
current that flows at the boundary between two regions at
different chemical potentials [17].
We begin by deriving a formula for M(fUðtÞg) in terms

of circulating currents. The first step is to define the
Heisenberg-evolved U(1) current operator IkiðtÞ. We use
the following definition:

IkiðtÞ ¼ ifU†ðtÞ½HkðtÞ; Qi�UðtÞ −U†ðtÞ½HiðtÞ; Qk�UðtÞg:
ð6:14Þ

Note that this is a reasonable definition, since Iki ¼ −I ik
and

P
i IkiðtÞ ¼ −ðdQk=dtÞ.

Next, consider the expression (6.4) for ΩC
A;B, and set

A ¼ I, B ¼ J, and C ¼ K, where I, J, and K are non-
overlapping regions with the geometry shown in Fig. 4.
Comparing this expression with Eq. (6.14), we see that

ΩK
I;JðfUðtÞg) −ΩI

K;JðfUðtÞg) ¼
Z

T

0

dtJ J
K;IðtÞ; ð6:15Þ

where J J
K;IðtÞ is now given by

J J
K;IðtÞ ¼

X
i∈I

X
j∈J

X
k∈K

hIkiðtÞQjiρ: ð6:16Þ

Substituting Eq. (6.15) into the nonoverlapping formula
for M(fUðtÞg) (4.4), we arrive at an expression for
M(fUðtÞg) which looks just like the single-particle
case (5.21):

M(fUðtÞg) ¼
Z

T

0

dt½J J
K;IðtÞ þ J I

J;KðtÞ þ J K
I;JðtÞ�:

The only difference from Eq. (5.21) is that J J
K;IðtÞ is now

given by Eq. (6.16). This is our desired formula for
M(fUðtÞg) in terms of circulating currents.
We now move on to our second formula forM(fUðtÞg).

Again, this formula looks identical to the single-particle
case:

M(fUðtÞg) ¼
Z

T

0

dtJ C
I;JðtÞ; ð6:17Þ

where I, J, and C are three regions with the geometry
shown in Fig. 5. The derivation of this formula is also the
same as the single-particle case (see Sec. V C), but the
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physical interpretation of this formula is different. To
understand this interpretation, let μ and μ0 be two real
numbers and consider a mixed state σðμ; μ0Þ of the form

σðμ; μ0Þ ¼ e
P

r
μrQr

Z
; Z ¼ Trðe

P
r
μrQrÞ; ð6:18Þ

where

μr ¼
�
μ if r ∈ C;

μ0 if r ∉ C:
ð6:19Þ

We can think of σðμ; μ0Þ as describing a state in which C is
held at chemical potential μ, while the complement of C is
at chemical potential μ0. Previously, Ref. [17] argued that if
we initialize a Floquet system with Hamiltonian HðtÞ in
such a state, then there will be a time-averaged current I
that flows along the boundary of C and that the size of this
current depends only on μ and μ0. By definition, this current
is given by

Iðμ; μ0Þ ¼ 1

T

Z
T

0

dt
X
i∈I

X
j∈J

hI ijðtÞiσðμ;μ0Þ; ð6:20Þ

where I ijðtÞ is defined as in Eq. (6.14). We now show that
there is a close connection between this current I and the
right hand side of Eq. (6.17), namely,

∂

∂μ
Iðμ; μ0Þjμ0¼μ ¼

1

T

Z
T

0

dtJ C
I;JðtÞ: ð6:21Þ

To see this, note that

∂

∂μ
σðμ; μ0Þjμ0¼μ ¼ ðQC − hQCiσðμ;μÞÞσðμ; μÞ: ð6:22Þ

Substituting this into Eq. (6.20), and using the fact that
hI ijðtÞiσðμ;μÞ ¼ 0, gives the desired identity (6.21).
Equation (6.21) is interesting, because it provides a

simple physical interpretation to our bulk invariant
M(fUðtÞg): Comparing with Eq. (6.17), we see that the
bulk invariant M(fUðtÞg) is equal to the derivative
Tð∂=∂μÞIðμ; μ0Þjμ0¼μ. In other words,M(fUðtÞg) describes
the linear response of the current I to changing the
chemical potential μ (with μ0 fixed).
One application of Eq. (6.21) is that it reveals a

connection between the bulk invariant M(fUðtÞg) and
the bulk magnetization density described in Ref. [20]. To
derive this connection, recall that Ref. [20] argues that the
time-averaged current Īpq across a cut with end points p
and q is given by Īpq ¼ m̄p − m̄q, where m̄p and m̄q are the
bulk magnetization densities at the end points. Applying
this relation to the current Iðμ; μ0Þ gives

Iðμ; μ0Þ ¼ hm̄piμ − hm̄qiμ0 ; ð6:23Þ

where h·iμ denotes the expectation value at chemical
potential μ, i.e., the expectation value in the mixed state
ρðμÞ defined in Eq. (3.6). Comparing Eq. (6.23) with
Eqs. (6.21) and (6.17), we deduce that

M(fUðtÞg) ¼ T
∂

∂μ
hm̄piμ: ð6:24Þ

In other words,M(fUðtÞg) is proportional to the derivative
of the expectation value of the bulk magnetization density
hm̄piμ with respect to the chemical potential μ [34].

D. Bulk invariant from flux threading

We now derive an expression for M(fUðtÞg) which is
based on flux threading through an L × L torus and which
is analogous to the single-particle k-space formula (5.12).
Specifically, our flux threading formula for M(fUðtÞg) is

M(fUðtÞg)

¼−
1

2

Z
T

0

dt
�
U†

f
∂

∂t
Uf

�
U†

f
∂

∂θx
Uf;U

†
f
∂

∂θy
Uf

�	
ρ

; ð6:25Þ

where Uf ≡Ufðt; θx; θyÞ describes the unitary time evo-
lution in the presence of flux θx and θy through the two
holes of the torus. That is, Uf is defined by

Ufðt; θx; θyÞ ¼ T e−i
R

t

0
dt0Hfðt0;θx;θyÞ; ð6:26Þ

where Hfðt; θx; θyÞ is given by twisting HðtÞ by θx and θy
across two branch cuts running along x ¼ 0 and y ¼ 0.
More precisely, to define Hfðt; θx; θyÞ, let A be the vertical
strip −L=2 ≤ x ≤ 0 and B be the horizontal strip 0 ≤ y ≤
L=2 as shown in Fig. 6. Then, Hfðt; θx; θyÞ is defined by

FIG. 6. In the case of U(1)-symmetric systems, we can compute
our bulk invariant using the above torus geometry (opposite
sides of the rectangle are identified). Our construction involves
choosing vertical and horizontal strips A and B and then
“twisting” the Hamiltonian HðtÞ using the corresponding charge
operators QA and QB (6.27).
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Hfðt;θx;θyÞ
¼ eiðθxQAþθyQBÞHðtÞe−iðθxQAþθyQBÞ

− ½eiðθxQAþθyQBÞHL=2ðtÞe−iðθxQAþθyQBÞ−HL=2ðtÞ�; ð6:27Þ

where HL=2ðtÞ is the sum of the terms in HðtÞ with support
near the lines at x ¼ −L=2 or y ¼ L=2.
We emphasize that Eq. (6.25) holds for any choice of

fluxes θx and θy, so, in particular, the right-hand side is
independent of θx and θy (at least in the limit L → ∞).
We now derive the above formula (6.25) forM(fUðtÞg).

Our derivation proceeds in four steps. First, we claim that

M(fUðtÞg) ¼ ΩC
A;BðfUðtÞg); ð6:28Þ

where A and B are the two regions defined above, C is a
disk around x ¼ y ¼ 0, and ΩC

A;BðfUðtÞg) is defined as
in Eq. (6.4).
This statement is not as obvious as it sounds, since A, B,

and C do not have the usual topology of three overlapping
disklike regions. To prove Eq. (6.28), it suffices to show
that ΩC

A;BðfUðtÞg) ¼ ΩC
A;BðfUðtÞg), where A and B are

the disklike regions shown in Fig. 3. Once we show this,
then the claim follows immediately, since A, B, and C
have the usual topology and, therefore, ΩC

A;BðfUðtÞg) ¼
M(fUðtÞg). To see why ΩC

A;B ¼ ΩC
A;B, note that replac-

ing QB → QB in the integrand in Eq. (6.4) amounts
to removing a collection of terms of the form
Trð½U†HCU;U†QAU�QiρÞ, with i ∈ BnB. One can then
check that each of these terms vanishes, since (i) each Qi

commutes with U†HCU (they have nonoverlapping sup-
port); (ii) all three of fQi;U†HCU;U†QAUg commute with
ρ; and (iii) the trace is invariant under cyclic permutations
of operators. The same argument explains why we can
replace QA → QA.
Having established Eq. (6.28), our next claim is that

M(fUðtÞg)

¼−i
2

Z
T

0

dthU†HCU½U†½QA;U�;U†½QB;U��iρ: ð6:29Þ

To derive this claim, recall the antisymmetry property of Ω
(3.33) which implies that

ΩC
A;B ¼ −ΩC

B;A: ð6:30Þ

Given this antisymmetry relation, Eq. (6.29) follows
directly from Eq. (6.28), since the right-hand side of
Eq. (6.29) is exactly the antisymmetrized combination
1
2
ðΩC

A;B − ΩC
B;AÞ.

To state our next claim, define

Ũðt; θx; θyÞ ¼ eiðθxQAþθyQBÞUðtÞe−iðθxQAþθyQBÞ: ð6:31Þ

We claim that we can replace U → Ũ in the right-hand
side of Eq. (6.29): that is,

M(fUðtÞg)

¼−i
2

Z
T

0

dthŨ†H̃CŨ½Ũ†½QA;Ũ�; Ũ†½QB;Ũ��iρ; ð6:32Þ

where H̃C ¼ eiðθxQAþθyQBÞHCe−iðθxQAþθyQBÞ. This identity
follows from Eq. (6.29) by using the fact that the extra
factors of e�iðθxQAþθyQBÞ commute withQA andQB together
with the cyclicity of the trace. In particular, using these two
facts, one can commute through the e�iðθxQAþθyQBÞ terms so
that they cancel with one another.
To complete the derivation, we need to show that

−i
2

Z
T

0

dthŨ†H̃CŨ½Ũ†½QA; Ũ�; Ũ†½QB; Ũ��iρ

¼ −
1

2

Z
T

0

dt
�
U†

f
∂

∂t
Uf

�
U†

f
∂

∂θx
Uf; U

†
f

∂

∂θy
Uf

�	
ρ

:

ð6:33Þ

To this end, notice that Ufðt; θx; θyÞ can be written as a
product of the form

Ufðt; θx; θyÞ ¼ UL=2ðt; θx; θyÞŨðt; θx; θyÞ; ð6:34Þ

where UL=2 is a unitary operator supported along the two
lines x ¼ −L=2 and y ¼ L=2 on the torus. We then have

U†
f

∂

∂θx
Uf ¼ Ũ† ∂

∂θx
Ũ þ Ũ†U†

L=2

�
∂

∂θx
UL=2

�
Ũ

¼ iŨ†½QA; Ũ� þ Uθx;−L=2; ð6:35Þ

where Uθx;−L=2 is an operator that varies with θx and is
supported near x ¼ −L=2 and where we have suppressed
the ðt; θx; θyÞ arguments for brevity, Similarly, we have

U†
f

∂

∂θy
Uf ¼ iŨ†½QB; Ũ� þUθy;L=2; ð6:36Þ

where Uθy;L=2 is an operator that varies with θy and is
supported near y ¼ L=2. Putting these together, we get
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− ½Ũ†½QA; Ũ�; Ũ†½QB; Ũ��

¼
�
U†

f
∂

∂θx
Uf −Uθx;−L=2; U

†
f

∂

∂θy
Uf −Uθy;L=2

�

¼
�
U†

f
∂

∂θx
Uf; U

†
f

∂

∂θy
Uf

�
þOL=2; ð6:37Þ

where OL=2 is defined by

OL=2 ¼
�
U†

f
∂

∂θy
Uf; Uθx;−L=2

�
þ
�
Uθy;L=2; U

†
f

∂

∂θx
Uf

�

þ ½Uθx;−L=2; Uθy;L=2�: ð6:38Þ

Notice that OL=2 is supported along the lines x ¼ −L=2
and y ¼ L=2.
Substituting Eq. (6.37) into Eq. (6.32) and using the

fact that

U†
fH̃CUf ¼ Ũ†H̃CŨ; ð6:39Þ

we get

M(fUðtÞg)

¼ i
2

Z
T

0

dt

�
U†

fH̃CUf

�
U†

f
∂

∂θx
Uf; U

†
f

∂

∂θy
Uf

�	
ρ

þ i
2

Z
T

0

dthU†
fH̃CUfiρhOL=2iρ: ð6:40Þ

We now claim that

hOL=2iρ ¼ 0; ð6:41Þ

so that the second term vanishes. To see this, notice that
OL=2 is a sum of commutators of operators (U†

fð∂=∂θxÞUf,
Uθx;−L=2, andUθy;L=2), all of which commute with ρ. Hence,
hOL=2i ¼ TrðOL=2ρÞ vanishes by the cyclicity of the trace.
All that remains is to show that we can replace H̃C → Hf

in the first term of Eq. (6.40) above. To see this, note that
Hf − H̃C ¼ P

r Hfr is a sum of local terms Hfr supported
far away from x ¼ 0 and y ¼ 0. Thus, replacing H̃C → Hf

amounts to adding a collection of terms of the form
TrðU†

fHfrUf½U†
fð∂=∂θxÞUf;U

†
fð∂=∂θyÞUf�ρÞ. But each

of these terms vanishes by the cyclicity of the trace,
since U†

fHfrUf commutes with either U†
fð∂=∂θxÞUf,

which is supported near x ¼ 0, or U†
fð∂=∂θyÞUf, which

is supported near y ¼ 0, and all three of the operators
fU†

fHfrUf;U
†
fð∂=∂θxÞUf;U

†
fð∂=∂θyÞUfg commute with ρ.

VII. INTERACTING SYSTEMS
WITHOUT SYMMETRY

We now discuss the case of interacting systems without
any symmetry, expanding on the example discussed in
Sec. III C. In this case, because the flow is not spatially
additive, we can only obtain a bulk invariant in the
overlapping geometry, and there is no obvious analog of
“current” and “magnetization” in these systems.

A. Definition of FðUedgeÞ and M(fUðtÞg)
Our starting point is the flow given in Eq. (3.9):

ΩA;BðUÞ ¼ log

�
ηðU†AU;BÞ
ηðA;BÞ

�
: ð7:1Þ

Recall that A and B are operator algebras consisting of
all operators supported on the two subsets of lattice sites A
and B, respectively, while η is an overlap for operator
algebras defined by

ηðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Oa∈A
Ob∈B

jtrðO†
aObÞj2

s
; ð7:2Þ

where the sum runs over an orthonormal basis of operators in
A and B satisfying trðO†

aOa0 Þ¼δaa0 and trðO†
bOb0 Þ¼δbb0 .

Here, the lowercase symbol “tr” denotes a normalized trace
defined by trð1Þ ¼ 1.
We can construct an edge invariant by substituting this

flow into Eq. (3.14):

FðUedgeÞ ¼ ΩA;BðUedgeÞ; ð7:3Þ

where A and B are intervals illustrated in Fig. 2.
Likewise, we can construct a bulk invariant by substitut-

ing this flow into Eq. (3.17):

M(fUðtÞg) ¼ i
2

Z
T

0

dt

P
Oa;Ob

trfU†ðtÞ½HCðtÞ; O†
a�UðtÞObgtr½U†ðtÞO†

aUðtÞOb�� þ c:c:P
Oa;Ob

jtr½U†ðtÞO†
aUðtÞOb�j2

ð7:4Þ

where “c.c.” denotes the complex conjugate of the first term
in the numerator.
Unlike the other examples that we discuss, we do not

have a physical interpretation for this bulk invariant. That

said, the basic structure of M(fUðtÞg) is reminiscent of a
time-averaged expectation value: It is an integral over time,
with the integrand expressed in terms of Heisenberg-
evolved operators evaluated at time t. Note also that
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M(fUðtÞg) does not involve spatially restricting or trun-
cating UðtÞ, so it is truly a bulk quantity. Putting this
together, it seems possible that M(fUðtÞg) has a direct
physical interpretation, but we leave this question for
future work.

B. Relation to previously known invariants

We now discuss the relationship between our edge
invariant and the edge invariant indðUedgeÞ presented in
Refs. [11,13]. The latter invariant (also known as the
GNVW index) takes rational values, p=q ∈ Q, and is
defined as follows. Let A and B be two large adjacent
intervals, and let A and B be the corresponding operator
algebras consisting of all operators supported on A and B.
Then, the edge invariant indðUedgeÞ is defined by

indðUedgeÞ ¼
ηðU†

edgeAUedge;BÞ
ηðA; U†

edgeBUedgeÞ
: ð7:5Þ

We prove in Appendix F that

FðUedgeÞ ¼ log ½indðUedgeÞ�: ð7:6Þ

Thus, our edge invariant FðUedgeÞ is closely related to the
previously known invariant for classifying 1D locality-
preserving unitaries without any symmetries. Notice that
while FðUedgeÞ uses overlapping intervals A and B,
log½indðUedgeÞ� is defined in Eq. (7.5) with adjacent
intervals, so the proof of Eq. (7.6) is nontrivial.
Once again, there is no previously known bulk invariant

that we can compare with M(fUðtÞg).

VIII. GENERAL MBL FLOQUET CIRCUITS

In this section, we show how to generalize our edge and
bulk invariants from unitary loops to general MBL Floquet
systems.
We begin with the edge invariants. To describe these, we

first have to explain how to define edge unitaries for general
MBL Floquet systems. This definition is similar to the
unitary loop case: Given a (2D) MBL Floquet system with
Hamiltonian HðtÞ, we restrict the Hamiltonian to a finite
disk C by discarding all terms that have support outside of
C. Denoting the restricted Hamiltonian by HCðtÞ, we then
define an edge unitary by [11]

Uedge ¼ T e−i
R

T

0
dtHCðtÞ ·

Y
r∈C

U†
r ; ð8:1Þ

where the Ur operators are those that appear in the
decomposition UF ¼ Q

r Ur (2.4). Just like the unitary
loop case, Uedge is a 1D LPU supported near the boundary
of C.

Having defined Uedge, we can now describe the edge
invariant. As before, our invariant FðUedgeÞ is defined on
1D LPUs Uedge. Given such an LPU, we choose two large
overlapping intervals A and B, and then we define our edge
invariant FðUedgeÞ in exactly the same way as in the unitary
loop case:

FðUedgeÞ ¼ ΩA;BðUedgeÞ: ð8:2Þ

We now move on to the bulk invariant M(fUðtÞg). Let
A, B, and C be three overlapping disklike regions as in
Fig. 3. We define M(fUðtÞg) similarly to the unitary loop
case, except that we time average over many periods:

M(fUðtÞg) ¼ lim
A;B;C;n→∞

1

n

Z
nT

0

dt
∂

∂tC
ΩA;B(UðtÞ): ð8:3Þ

Here, the notation “limA;B;C;n→∞” means that we should
take the size of the regions A, B, and C to infinity, in
addition to taking n to infinity. More specifically, it is
important that this limit is taken in such a way that the
linear size of the regions A, B, and C grows faster than n.
This ensures that A, B, and C are much larger than the
relevant Lieb-Robinson length l ¼ vLRnT—the length
scale at which our invariant converges.
To complete our discussion, we now show that the above

invariants (8.2) and (8.3) obey the same bulk-boundary
correspondence as in the unitary loop case:

FðUedgeÞ ¼ M(fUðtÞg): ð8:4Þ

Our derivation proceeds in two steps. First, we show that

M(fUðtÞg) ¼ lim
A;B;C;n→∞

1

n
ΩA;B(UCðTÞn); ð8:5Þ

where UCðtÞ is the unitary generated by HCðtÞ:

UCðtÞ ¼ T e−i
R

t

0
dt0HCðt0Þ: ð8:6Þ

Then, we show that

lim
A;B;C;n→∞

1

n
ΩA;B(UCðTÞn) ¼ FðUedgeÞ: ð8:7Þ

Together, Eqs. (8.5) and (8.7) imply Eq. (8.4).
To show Eq. (8.5), we use the identity (3.28), that is,

∂

∂tC
ΩA;B(UðtÞ) ¼ d

dt
ΩA;B(UCðtÞ):

This gives
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M(fUðtÞg) ¼ lim
A;B;C;n→∞

1

n

Z
nT

0

d
dt

ΩA;B(UCðtÞ)

¼ lim
A;B;C;n→∞

1

n
ΩA;B(UCðTÞn); ð8:8Þ

where in the second line we use UCðnTÞ ¼ ½UCðTÞ�n.
To show Eq. (8.7), we use

UCðTÞ ¼ Uedge ·
Y
r∈C

Ur; ð8:9Þ

which follows from the definition of Uedge (8.1). We
assume that all of the Ur terms in this expression commute
with Uedge: We can make this assumption without loss of
generality, since we can always incorporate any Ur terms
that do not commute into the definition of Uedge without
affecting the value of the edge invariant FðUedgeÞ.
Substituting this expression into ΩA;B(UCðTÞn), we

obtain

ΩA;BðUCðTÞnÞ ¼ ΩA;B

��Y
r∈C

Un
r

�
Un

edge

�
: ð8:10Þ

To proceed further, we note that we can remove all the Ur

terms that are supported entirely in A or Ā using Definition
1.1, since we can freely move these operators to the
beginning of the product using the fact that all the operators
commute. Likewise, we can remove all the Ur terms that
are supported entirely in B or B̄ by moving them to the end
of the product and using Definition 1.2. After removing
these terms, we are left with only the terms that have
support in all four regions A, Ā, B, and B̄—i.e., terms that
lie at the intersection of ∂A and ∂B:

ΩA;B(UCðTÞn) ¼ ΩA;B

�� Y
r∈∂A∩∂B

Un
r

�
Un

edge

�
: ð8:11Þ

Given that ultimately we are interested in the limit of
large A, B, and C, we can assume, in particular, that A, B,
and C are large enough that ðQr∈∂A∩∂B U

n
r Þ and Uedge are

supported on disjoint regions. Then, we can apply
Lemma 1 from Appendix B to write the flow as a sum
of two flows:

ΩA;B(UCðTÞn)

¼ ΩA;BðUn
edgeÞ þ ΩA;B

� Y
r∈∂A∩∂B

Un
r

�
: ð8:12Þ

To evaluate the first term, ΩA;BðUn
edgeÞ, we note that

Uedge is supported near the boundary of C, so we can
truncate A and B to two intervals supported near the
boundary of C. After this truncation, ΩA;BðUn

edgeÞ reduces
to the edge invariant

ΩA;BðUn
edgeÞ ¼ FðUn

edgeÞ ¼ nFðUedgeÞ; ð8:13Þ

where the second equality follows from the additivity of the
edge invariants under composition (see Corollary 4 in
Appendix B). Notice that in this setup we take A;B → ∞
faster than n, so A and B are sufficiently large [according to
the definition of FðUedgeÞ in Sec. III E] compared to the
operator spreading length of Un

edge.
Next, consider the second term, ΩA;Bð

Q
r∈∂A∩∂B U

n
r Þ.

This term involves a unitary that is supported in a disk
of radius ξ (the length scale associated with the quasilocal
unitaries Ur). Since ξ is independent of the size of A, B, C,
or n, it follows that ΩA;Bð

Q
r∈∂A∩∂B U

n
r Þ is bounded by a

constant that is independent of the size of A, B, C, or n [35].
Therefore, the second term vanishes in the limit of

interest, and we obtain

lim
A;B;C;n→∞

1

n
ΩA;BðUCðTÞnÞ ¼ FðUedgeÞ: ð8:14Þ

This completes our derivation of the bulk-boundary cor-
respondence for general MBL Floquet systems (8.4).

IX. DISCUSSION

In this work, we show how to derive bulk and edge
invariants for 2D MBL Floquet systems using a special
mathematical object which we call a flow. Using this
approach, we obtain bulk and edge invariants for single-
particle Floquet systems, interacting many-body Floquet
systems with U(1) symmetry, and interacting Floquet
systems without any symmetry.
Throughout this paper, we focus on two symmetry

groups: the U(1) symmetry group and the trivial group
(i.e., no symmetry at all). More generally, we expect that
our approach should give topological invariants that at least
partially classify systems with other continuous symmetry
groups. [36] On the other hand, finite symmetry groups
may be problematic. The issue is that Floquet phases with
finite symmetry group G are believed to be classified by
both the GNVW index and an additional index that takes
values in the (finite) cohomology group H2(G;Uð1Þ)
[28,38]. The latter, cohomology-valued index is probably
out of reach of our flow-based approach. One way to see the
obstruction is to note that our bulk invariant [(3.17) and
(3.18)] is expressed in terms of an integral, which seems
incompatible with the finite group structure of
H2(G;Uð1Þ). Therefore, we probably need other methods
to construct invariants in this case. (As an aside, we note
that the main problem here involves bulk invariants; by
contrast, it is possible to construct edge invariants using
similar ideas to the ones presented here, using a different
kind of flow which is multiplicative and complex valued,
rather than additive and real valued [39].)
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While we focus on bosonic systems in this paper, our
results can be straightforwardly generalized to fermionic
systems. In particular, the flows that we construct for
bosonic systems with U(1) symmetry (6.1) and without
symmetry (7.1) apply equally well to the fermionic case.
The corresponding edge and bulk invariants are also valid
in the fermionic case. The only new element is that these
invariants can take values that are not possible in purely
bosonic systems. For example, in the case of fermionic
systems without symmetry, the edge invariant FðUedgeÞ can
take the value logð ffiffiffi

2
p Þ when Uedge is a “Majorana trans-

lation” [40].
One question raised by this work is whether there is any

connection between our invariants for Floquet systems and
previously known invariants for stationary topological
phases. In the single-particle case, there is indeed a close
relationship between these two types of invariants. For
example, the single-particle invariant M(fUðtÞg) (5.3) is
closely related to the Chern number, as shown in
Appendix D. By analogy, one might wonder if our
many-body Floquet invariants, with and without U(1)
symmetry, are related to many-body stationary invariants
like the electric or thermal Hall conductance (see, e.g., the
modular commutator formula for the thermal Hall con-
ductance [41–43]). If such a connection exists, it would be
very interesting, since the two types of invariants describe
different objects: The stationary invariants describe proper-
ties of (gapped) ground states, while our Floquet invariants
describe properties of unitary operators.
Another question is to understand the physical inter-

pretation of Eq. (7.4), i.e., the bulk counterpart of the
GNVW index. Unlike the invariants for U(1)-symmetric
systems, we do not know how to relate this invariant to
current operators. On the other hand, previous work has
shown that the edge invariant (7.5) can be interpreted in
terms of transport of quantum information [15,16,44], so it
is possible that the bulk invariant could also have an
interpretation of this kind.
One possible direction for future work would be to

consider the generalization of MBL Floquet systems
discussed in Refs. [45,46]. In this generalization, one
requires that UN

F is many-body localized for some finite
integer N, but UF itself need not be many-body localized.
(An illustrative example of such a system is the dynamical
Kitaev honeycomb model studied in detail in Ref. [46],
which becomes many-body localized after two periods.) In
these systems, we cannot use Eq. (8.1) to define an effective
edge unitary, so it is not possible to write down a mean-
ingful edge invariant. However, it may be possible to find
bulk invariants for these systems.
It would also be interesting to consider the partially

many-body localized Floquet systems discussed in
Ref. [20]. These systems are built out of fermionic degrees
of freedom and are localized up to n-body terms.
Reference [20] shows that multiparticle correlations in

these systems produce a family of integer-valued topologi-
cal invariants that generalize the winding number
WðfUðtÞg). It would be interesting to try to study flows
and the bulk-boundary correspondence for these systems.
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APPENDIX A: EQUIVALENCE OF
CLASSIFICATION OF UNITARY LOOPS

AND EDGE UNITARIES

In this appendix, we show that if two unitary loops
fUðtÞg and fU0ðtÞg are equivalent in the sense of Sec. II B,
then the corresponding edge unitaries Uedge and U0

edge are
equivalent in the sense of Eq. (2.9).
Let fUðtÞg and fU0ðtÞg be two d-dimensional unitary

loops that are equivalent in the sense that there exists a one-
parameter family of unitary loops fUsðtÞg, depending
smoothly on s, with U0ðtÞ ¼ UðtÞ and U1ðtÞ ¼ U0ðtÞ. Let
Uedge and U0

edge be the corresponding (d − 1)-dimensional
edge unitaries, defined as in Eq. (2.11).Wewish to show that
U0

edge ¼ WUedge for some (d − 1)-dimensional locally gen-
erated unitary W. To see this, consider the edge unitary
corresponding to fUsðtÞg, whichwe denote byUedgeðsÞ, and
then define a Hermitian operator HedgeðsÞ by

HedgeðsÞ ¼ i

�
d
ds

UedgeðsÞ
�
U†

edgeðsÞ: ðA1Þ

By construction,

d
ds

UedgeðsÞ ¼ −iHedgeðsÞUedgeðsÞ ðA2Þ

so that

Uedgeð1Þ ¼ T exp

�
−i

Z
1

0

HedgeðsÞds
�
· Uedgeð0Þ: ðA3Þ

UsingUedgeð1Þ¼U0
edge andUedgeð0Þ¼Uedge, we deduce that

U0
edge ¼ T exp

�
−i

Z
1

0

HedgeðsÞds
�
·Uedge: ðA4Þ

To complete the proof, we need to show HedgeðsÞ is a local
(d − 1)-dimensional Hamiltonian. To this end, letOr andOr0

be local operators supported on sites r and r0, and consider
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the double commutator ½½HedgeðsÞ; Or�; Or0 �. We now argue
that the operator norm of this double commutator is expo-
nentially small in the distance jr − r0j, which establishes the
locality of HedgeðsÞ. First, we rewrite the commutator
½HedgeðsÞ; Or� as

½HedgeðsÞ; Or�

¼ −iUedgeðsÞ
d
ds

½U†
edgeðsÞOrUedgeðsÞ�U†

edgeðsÞ: ðA5Þ

It follows that

k½½HedgeðsÞ; Or�; Or0 �k

¼





�
d
ds

½U†
edgeðsÞOrUedgeðsÞ�; U†

edgeðsÞOr0UedgeðsÞ
�



:
ðA6Þ

Now, by Lieb-Robinson bounds, the operator U†
edgeðsÞ×

Or0UedgeðsÞ is supported within a finite distance of site r0

with exponential tails. Similarly, the operator ðd=dsÞ×
½U†

edgeðsÞOrUedgeðsÞ� is supported within a finite distance
of site r, again with exponential tails. It follows that the
commutator between these operators is exponentially small
in the distance jr − r0j, as we wish to show.

APPENDIX B: PROOF OF THEOREM 1

In this appendix, we prove Theorem 1.

1. Two lemmas

Our proof uses two lemmas which apply to any flow
ΩA;BðUÞ. The first lemma says that flows are additive under
composition of unitaries supported in disjoint regions.
Lemma 1 (generalized stacking).—Let U1 and U2

be (G-symmetric) unitaries supported on disjoint subsets
Λ1;Λ2 ⊂ Λ. For any A1; B1 ⊂ Λ1, and A2; B2 ⊂ Λ2,

ΩA1∪A2;B1∪B2
ðU1U2Þ ¼ ΩA1;B1

ðU1Þ þ ΩA2;B2
ðU2Þ: ðB1Þ

Proof.—The claim follows straightforwardly from
Definitions 1.3 and 1.4 by thinking of U1 as a tensor
product U1 ⊗ 1 and U2 as 1 ⊗ U2 and using
ðU1 ⊗ 1Þð1 ⊗ U2Þ ¼ U1 ⊗ U2, where U1 is defined on
Λ1 and U2 is defined on Λ2.
The second lemma says that, for any LPU U, the tensor

product U ⊗ U† is always an FDLU.
Lemma 2.—LetU be a (G-symmetric) strict LPU with an

operator spreading length ξ, defined on a lattice Λ. For any
such U, the tensor product U ⊗ U†, acting on the bilayer
system Λ × f1; 2g, can be realized as a (G-symmetric)
FDLU of depth 2 built out of gates of radius ξ.

Proof.—We rewrite U ⊗ U† as

U ⊗ U† ¼ ðSWAP0ÞðSWAPÞ; ðB2Þ

where SWAP is the unitary transformation that swaps the
two layers and

SWAP0 ¼ ð1 ⊗ U†ÞSWAPð1 ⊗ UÞ: ðB3Þ

It is easy to see that SWAP is an FDLU of depth 1 built out of
gates of radius 1 while SWAP0 is an FDLU of depth 1 built
out of gates of radius ξ. Since U ⊗ U† is a composition of
these two FDLUs, the claim follows immediately.

2. Main argument

We are now ready to prove Theorem 1.
Proof.—Item (i): Let U be a strict LPU with an operator

spreading length ξ, and let W be an FDLU of depth n:

W ¼ WnWn−1…W1: ðB4Þ

Let

W0 ¼ W0
nW0

n−1…W0
1; ðB5Þ

where eachW0
i is obtained by removing all unitary gates from

Wi except for those fully supported in ∂2nλA ∩ ∂2nλþξB. We
wish to show thatΩA;BðWUÞ ¼ ΩA;BðW0UÞ. To this end, we
decompose eachWi as a product,Wi ¼ W0

iV
A
i V

B
i , whereV

A
i

consists of all the gates in Wi whose region of support
contains sites deeper than 2nλ within A or Ā, and where VB

i
consists of all the remaining gates in Wi whose region of
support contains sites deeper than 2nλþ ξwithinB or B̄. We
now show that we can remove each VA

i and VB
i without

affecting ΩA;BðWUÞ. First consider VA
1 and VB

1 . Note that

ΩA;BðWUÞ ¼ ΩA;BðWn…W0
1V

A
1V

B
1UÞ

¼ ΩA;BðṼA
1Wn…W0

1UṼB
1 Þ; ðB6Þ

where ṼA
1 ¼ ðWn…W2ÞVA

1 ðWn…W2Þ† and ṼB
1 ¼ U†VB

1U.
Next, notice that ṼA

1 can be written as a product of
unitaries, each of which is supported either entirely in A
or entirely in Ā, since Wn…W2 has an operator spreading
length of at most 2ðn − 1Þλ. Therefore, by Definition 1.1,
we can remove ṼA

1 without affecting the value of ΩA;B.
Similarly, ṼB

1 is a product of unitaries, each of which is
supported entirely in B or entirely in B̄, since U has an
operator spreading length ξ. Therefore, we can also remove
ṼB
1 according to Definition 1.2. Removing these two

operators from Eq. (B6), we obtain

ΩA;BðWUÞ ¼ ΩA;BðWn…W0
1UÞ: ðB7Þ
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In exactly the same way, we can remove VA
2 and VB

2 by
moving VA

2 to the left and VB
2 to the right and then applying

Definitions 1.1 and 1.2 to remove the conjugated operators
ṼA
2 and ṼB

2 . Continuing in this way, we can remove all the
VA
i and VB

i operators until we are left with

ΩA;BðWUÞ ¼ ΩA;BðW0
n…W0

1UÞ ¼ ΩA;BðW0UÞ: ðB8Þ

This completes the proof of the first part of the theorem.
Item (ii): Let U be a strict LPU with operator spreading

length ξ, defined on a lattice Λ, and let A;B ⊂ Λ. We wish
to show that ΩA;BðUÞ ¼ ΩAna;BðUÞ for any site a ∈ A such
that a ∉ ∂4ξB. To prove this, consider the bilayer system
Λ × f1; 2g, and define two subsets A;B ⊂ Λ × f1; 2g by

A ¼ A × f1g; B ¼ B × f1; 2g: ðB9Þ

\ This setup is illustrated in Fig. 7. Consider the unitary
W ¼ U ⊗ U†, acting on Λ × f1; 2g. From Definition 1.3,
it is easy to see that

ΩA;BðWÞ ¼ ΩA;BðUÞ; ðB10Þ

e.g., by setting

U1 ¼ U; U2 ¼ U†;

A1 ¼ A; A2 ¼ ∅;

B1 ¼ B; B2 ¼ B:

At the same time, using Lemma 2, we know thatW is an
FDLU of depth 2 built out of gates of radius ξ. Therefore,
using Theorem 1.1,

ΩA;BðWÞ ¼ ΩA;BðW0Þ; ðB11Þ

where W0 is obtained from W by removing all the unitary
gates inW except for those fully supported in ∂4ξB (In fact,
Theorem 1.1 tells us that we can remove all the gates except
for those supported in ∂4ξA ∩ ∂4ξB, so it is actually a
stronger statement than what we need here—where we
remove fewer gates). Note that here, by ∂4ξB, we mean sites

that are within 4ξ of both B and B̄ in the direction parallel to
the two layers.
To proceed further, note that the support of W0 does not

contain the point a × 1; therefore, by Lemma 1,

ΩA;BðW0Þ ¼ ΩAnfa×1g;BðW0Þ: ðB12Þ

Also, by the same reasoning as in Eq. (B11),

ΩAnfa×1g;BðW0Þ ¼ ΩAnfa×1g;BðWÞ ðB13Þ

while, by the same reasoning as in Eq. (B10),

ΩAnfa×1g;BðWÞ ¼ ΩAna;BðUÞ: ðB14Þ

Combining Eqs. (B10)–(B14), we deduce that

ΩA;BðUÞ ¼ ΩAna;BðUÞ; ðB15Þ

proving the claim. In exactly the same way, we can show
that ΩA;BðUÞ ¼ ΩA;BnbðUÞ for any site b ∈ B such that
b ∉ ∂4ξA. This completes our proof of item (ii).

3. Three more corollaries

In Sec. III D, we listed two corollaries of Theorem 1. We
now discuss three additional corollaries.
Corollary 3 (conservation law).—Let U be a (G-sym-

metric) strict LPU with operator spreading length ξ. Then,
ΩA;BðUÞ ¼ 0 if ∂4ξA ∩ B ¼ ∅ or A ∩ ∂4ξB ¼ ∅.
Proof.—This is an immediate consequence of

Theorem 1.2.
Corollary 4 (additivity under composition).—Let U1 and

U2 be (G-symmetric) strict LPUs defined on a lattice Λ,
with operator spreading length ξ. Then ΩA;BðU1U2Þ ¼
ΩA;BðU1Þ þΩA;BðU2Þ if ∂4ξA ∩ ∂5ξB ¼ ∅.
Proof.—The basic idea is to relate the composition of

two unitaries to a tensor product. Consider a bilayer
system Λ × f1; 2g, and define subsets A ¼ A × f1; 2g
andB ¼ B × f1; 2g. Consider the unitaryU1U2 ⊗ 1 acting
on this bilayer system. By Definitions 1.3 and 1.4,

ΩA;BðU1U2 ⊗ 1Þ ¼ ΩA;BðU1U2Þ: ðB16Þ

At the same time,

ΩA;BðU1U2 ⊗ 1Þ¼ΩA;B(ðU1⊗U†
1ÞðU2⊗U1Þ): ðB17Þ

Notice thatU1 ⊗ U†
1 is an FDLU of depth twowith gates of

radius ξ, according to Lemma 2. Therefore, by Corollary 1,
U1 ⊗ U†

1 can be dropped—that is,

ΩA;B(ðU1 ⊗ U†
1ÞðU2 ⊗ U1Þ) ¼ ΩA;BðU2 ⊗ U1Þ: ðB18Þ

Putting this all together, we deduce that

FIG. 7. The bilayer system used in the proof of Theorem 1.2.
Here,A ¼ A × f1g is a subset of Λ × f1g, while B ¼ B × f1; 2g
is a subset of Λ × f1; 2g. The thickened boundary ∂4ξB consists
of sites within 4ξ of the left and right edges of B.
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ΩA;BðU1U2Þ ¼ ΩA;BðU2 ⊗ U1Þ
¼ ΩA;BðU1Þ þ ΩA;BðU2Þ; ðB19Þ

where the second equality follows from Definition 1.3.
Corollary 5 (antisymmetry).—Let U be a (G-symmetric)

strict LPU with operator spreading length ξ defined on a 1D
lattice Λ. Then ΩA;BðUÞ ¼ −ΩB;AðUÞ for any two over-
lapping intervals A ¼ ½a1; a2� and B ¼ ½b1; b2� such that
b1 − a1, a2 − b1, and b2 − a2 are larger than 4ξ.
Proof.—We begin with two intervals A0 and B0 defined

by A0 ¼ ½0; 40ξ� and B0 ¼ ½5ξ; 35ξ�, respectively, as shown
in Fig. 8(a). By Corollary 3, we know that

ΩA0;B0 ðUÞ ¼ 0: ðB20Þ

Also, using Theorem 1.2, we can remove any sites in A0
that are outside of ∂4ξB0, without affecting the value of
ΩA0;B0 ðUÞ. In particular, we have

ΩA0;B0 ðUÞ ¼ ΩAl∪Ar;B0 ðUÞ; ðB21Þ

where Al ¼ ½0; 10ξ� and Ar ¼ ½30ξ; 40ξ�. Applying
Theorem 1.2 again, but this time to the sites in B0, we have

ΩAl∪Ar;B0 ðUÞ ¼ ΩAl∪Ar;Bl∪Br
ðUÞ; ðB22Þ

where Bl ¼ ½5ξ; 15ξ� and Br ¼ ½25ξ; 35ξ�. The resulting
system is shown in Fig. 8(b). Combining Eqs. (B20)–(B22),
we derive

ΩAl∪Ar;Bl∪Br
ðUÞ ¼ 0: ðB23Þ

Below, we argue that

ΩAl∪Ar;Bl∪Br
ðUÞ ¼ ΩAl;Bl

ðUÞ þ ΩAr;Br
ðUÞ: ðB24Þ

Once we establish Eq. (B24), the corollary follows easily.
Indeed, let A ¼ ½a1; a2� and B ¼ ½b1; b2� be any two over-
lapping intervals such that b1 − a1, a2 − b1, and b2 − a2 are
larger than 4ξ. Then, since ΩA;BðUÞ is independent of the
choice ofA andB for large enough intervals (see Sec. III E),we
know that

ΩA;BðUÞ ¼ ΩAl;Bl
ðUÞ ðB25Þ

(since Al is located to the left of Bl) and

ΩB;AðUÞ ¼ ΩAr;Br
ðUÞ ðB26Þ

(since Ar is located to the right of Br). The corollary now
follows from these equalities together with Eqs. (B23)
and (B24).
All that remains is to show Eq. (B24). To do this, we use

the same trick as in the main proof in Appendix B 2: We
consider a bilayer system Λ × f1; 2g and define subsets

Al ¼ Al × f1g; Bl ¼ Bl × f1; 2g; ðB27Þ

and similarly forAr andBr. Again, we consider the unitary
W ¼ U ⊗ U† acting on Λ × f1; 2g, and we note that
Definition 1.3 implies that

ΩAl∪Ar;Bl∪Br
ðUÞ ¼ ΩAl∪Ar;Bl∪Br

ðWÞ: ðB28Þ

Also, using Theorem 1.1, we know that

ΩAl∪Ar;Bl∪Br
ðWÞ ¼ ΩAl∪Ar;Bl∪Br

ðW0Þ; ðB29Þ

whereW0 is obtained fromW by removing all unitary gates
except for those contained in ∂4ξðBl ∪ BrÞ.
To proceed further, we decompose W0 into a product

of two unitaries supported in disjoint regions, shown in
Fig. 8(c). Specifically, we use W0 ¼ WlWr, where Wl is
supported in ½ξ; 19ξ� and Wr is supported in ½21ξ; 39ξ�.
Then, by Lemma 1, we have

ΩAl∪Ar;Bl∪Br
ðW0Þ ¼ ΩAl;Bl

ðWlÞ þΩAr;Br
ðWrÞ: ðB30Þ

Also, by the same reasoning as in Eq. (B29), we know that

ΩAl;Bl
ðWlÞ ¼ ΩAl;Bl

ðWÞ;
ΩAr;Br

ðWrÞ ¼ ΩAr;Br
ðWÞ ðB31Þ

and, by the same reasoning as Eq. (B28),

ΩAl;Bl
ðWÞ ¼ ΩAl;Bl

ðUÞ;
ΩAr;Br

ðWÞ ¼ ΩAr;Br
ðUÞ: ðB32Þ

Combining Eqs. (B28)–(B32) proves the claim (B24).

(a)

(b)

(c)

FIG. 8. The bilayer system used in the proof of Corollary 5.
(a) We consider two intervals A ¼ ½0; 40ξ� and B ¼ ½5; 35ξ� on a
spin chain. (b) Using Theorem 1.2, we remove sites in A and B to
get A0 ¼ Al ∪ Ar and B0 ¼ Bl ∪ Br, respectively. (c) To complete
the proof, we again consider a bilayer system, and we use
Theorem 1.1 to truncate W ¼ U ⊗ U† to W0 ¼ WlWr.
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APPENDIX C: DERIVATION OF
NONOVERLAPPING FORMULAS

In this appendix, we consider spatially additive flows,
i.e., flows obeying

ΩAB;CðUÞ ¼ ΩA;CðUÞ þΩB;CðUÞ;
ΩA;BCðUÞ ¼ ΩA;BðUÞ þΩA;CðUÞ; ðC1Þ

and we derive the “nonoverlapping” formulas (4.3) and
(4.4) for their edge and bulk invariants.
We begin with the edge invariant FðUedgeÞ. Recall that

this invariant is defined by FðUedgeÞ ¼ ΩA;BðUedgeÞ where
A and B are two overlapping intervals. To derive the
nonoverlapping formula (4.3), we decompose A and B into
three nonoverlapping intervals I, J, and K, with A ¼ I ∪ J
and B ¼ J ∪ K. This is illustrated in Fig. 9. Using Eq. (C1)
and omitting the argument Uedge in ΩA;BðUedgeÞ for brevity,
we have

FðUedgeÞ ¼ ΩA;B ¼ ΩI;J þ ΩI;K þΩJ;J þΩJ;K: ðC2Þ

Next, we simplify the above expression using Corollary 3,
which says that ΩA;B ¼ 0 if the boundaries of A and B are
much further apart than the operator spreading length of
Uedge. This means that ΩI;K ¼ 0 and

ΩJ;J þ ΩJ;K þΩJ;I ¼ ΩJ;I∪J∪K ¼ 0: ðC3Þ

Substituting −ΩJ;I for ΩJ;J þ ΩJ;K, we obtain the desired
nonoverlapping formula for FðUedgeÞ:

FðUedgeÞ ¼ ΩI;J − ΩJ;I: ðC4Þ

Next, we consider the bulk invariant M(fUðtÞg), which
is defined byM(fUðtÞg) ¼ ΩC

A;B(fUðtÞg). First, we define
four nonoverlapping regions I0, J0, L0, and M0, as shown in
Fig. 10. In particular, A ¼ I0 ∪ J0 and B ¼ J0 ∪ L0. Using
Eq. (C1) and omitting UðtÞ in ΩA;B(UðtÞ) for brevity,
we have

M(fUðtÞg) ¼
Z

T

0

dt
∂

∂tC
ΩA;B(UðtÞ)

¼
Z

T

0

dt
∂

∂tC
ðΩI0;J0 þ ΩI0;L0 þΩJ0;J0 þ ΩJ0;L0 Þ:

ðC5Þ

We claim that the second term,
R
T
0 dtð∂=∂tCÞΩI0;L0 , van-

ishes. To see this, note that Eq. (3.35) implies thatZ
T

0

dt
∂

∂tC
ΩI0;L0 ¼ ΩI0∩C;L0∩CðUCðTÞÞ:

One can see that the right-hand side vanishes using the
fact that UCðTÞ is supported near the boundary of C
and the fact that I0 ∩ ∂C and L0 ∩ ∂C are far apart
and then applying Corollary 2. By the same reasoning,R
T
0 dtð∂=∂tCÞΩJ0;M0 ¼ 0. Subtracting

R
T
0 dtð∂=∂tCÞΩI0;L0

and adding
R
T
0 dtð∂=∂tCÞΩJ0;M0 to Eq. (C5) and defining

K0 ¼ L0 ∪ M0, we get

M(fUðtÞg) ¼
Z

T

0

dt
∂

∂tC
ðΩI0;J0 þ ΩJ0;J0 þ ΩJ0;K0 Þ: ðC6Þ

Next, we define I ¼ I0 ∩ C, J ¼ J0 ∩ C, and K ¼
ðL0 ∪ M0Þ ∩ C as in Fig. 10, and we split ∂=∂tC into three
pieces:

∂

∂tC
¼ ∂

∂tI
þ ∂

∂tJ
þ ∂

∂tK
: ðC7Þ

Substituting this expression into Eq. (C6) gives three terms
involving ∂=∂tI, ∂=∂tJ, and ∂=∂tK. We start with the ∂=∂tI
term. To simplify this term, we note that

∂

∂tI
ΩI0∪J0∪K0;J0 ¼ 0 ðC8Þ

by Corollary 2 together with the observation that I is far
away from the point where the boundaries of I0 ∪ J0 ∪ K0
and J0 intersect. It follows that

FIG. 9. To derive the nonoverlapping formula for the edge
invariant, we partition A ∪ B into three nonoverlapping intervals
I, J, and K.

FIG. 10. To derive the nonoverlapping formula for the bulk
invariant, we partition A ∪ B ∪ C into four nonoverlapping sets
I0, J0, L0, and M0. We denote their intersection with C by I, J, L,
and M, with K ¼ L ∪ M.
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∂

∂tI
ΩI0;J0 þ

∂

∂tI
ΩJ0;J0 ¼ −

∂

∂tI
ΩK0;J0 ; ðC9Þ

so that the ∂=∂tI term can be rewritten asZ
T

0

dt
∂

∂tI
ðΩI0;J0 þ ΩJ0;J0 þΩJ0;K0 Þ

¼
Z

T

0

dt
∂

∂tI
ðΩJ0;K0 −ΩK0;J0 Þ: ðC10Þ

Similarly, using ð∂=∂tKÞΩJ0;I0∪J0∪K0 ¼ 0, we can rewrite the
∂=∂tK term asZ

T

0

dt
∂

∂tK
ðΩI0;J0 þΩJ0;J0 þ ΩJ0;K0 Þ

¼
Z

T

0

dt
∂

∂tK
ðΩI0;J0 − ΩJ0;I0 Þ ðC11Þ

Finally, using

∂

∂tJ
ΩI0∪J0∪K0;J0 ¼

∂

∂tJ
ΩI0∪J0∪K0;K0 ¼ ∂

∂tJ
ΩK0;I0∪J0∪K0 ¼ 0;

we can rewrite the ∂=∂tJ term asZ
T

0

dt
∂

∂tJ
ðΩI0;J0 þ ΩJ0;J0 þΩJ0;K0 Þ

¼
Z

T

0

dt
∂

∂tJ
ðΩK0;I0 − ΩI0;K0 Þ ðC12Þ

Putting together Eqs. (C10)–(C12), we get

M(fUðtÞg) ¼
Z

T

0

dt
∂

∂tI
ðΩJ0;K0 −ΩK0;J0 Þ

þ
Z

T

0

dt
∂

∂tJ
ðΩK0;I0 −ΩI0;K0 Þ

þ
Z

T

0

dt
∂

∂tK
ðΩI0;J0 −ΩJ0;I0 Þ: ðC13Þ

To simplify further, we note that we can truncate I0, J0,
and K0 to I, J, and K using spatial additivity. For example,
by spatial additivity,

∂

∂tI
ΩJ0;K0 ¼ ∂

∂tI
ΩJ;K þ ∂

∂tI
ΩJ;Ko

þ ∂

∂tI
ΩJo;K

þ ∂

∂tI
ΩJo;Ko

; ðC14Þ

where Jo ¼ J0nJ and Ko ¼ K0nK. The latter three terms
all vanish using Corollary 2, since I is far from the inter-
section of the boundaries of J; Ko, and Jo; K and Jo, Ko,
respectively. Hence, we deduce that ð∂=∂tIÞΩJ0;K0 ¼
ð∂=∂tIÞΩJ;K . Applying the same truncation argument to

the other terms, we obtain the desired nonoverlapping
formula:

M(fUðtÞg) ¼
Z

T

0

dt
∂

∂tI
ðΩJ;K −ΩK;JÞ

þ
Z

T

0

dt
∂

∂tJ
ðΩK;I −ΩI;KÞ

þ
Z

T

0

dt
∂

∂tK
ðΩI;J −ΩJ;IÞ: ðC15Þ

APPENDIX D: M(fUðtÞg) FOR A STATIONARY
HAMILTONIAN

Consider a single-particle system whose time-indepen-
dent Hamiltonian H is a projector. For such a system, the
time evolution operator UðtÞ ¼ e−iHt satisfies Uð2πÞ ¼ 1,
so it forms a unitary loop with T ¼ 2π. For this system, we
evaluate M(fUðtÞg) using Eq. (5.21) and show that it is
equal to the Chern number of the band thatH projects onto.
Recall that, to use Eq. (5.21), we partition the plane into

three nonoverlapping regions I, J, and K that meet at a
point. Note that J I

K;IðtÞ is given by

J J
K;IðtÞ ¼ iTr(U†ðtÞðPKHPI − PIHPKÞUðtÞPJ): ðD1Þ

Integrating J J
K;IðtÞ over a period, using

UðtÞ ¼ 1þ ðe−it − 1ÞH; ðD2Þ

givesZ
2π

0

dtJ J
K;IðtÞ ¼ 4πiTrðHPKHPIHPJ −HPIHPKHPJÞ:

ðD3Þ

Then, from Eq. (5.21) and the fact that the trace is
invariant under cyclic permutations, we have

M(fUðtÞg) ¼ 12πiTrðHPKHPIHPJ −HPIHPKHPJÞ:
ðD4Þ

The projector onto the ground state of H is PGS ¼ 1 −H.
Substituting 1 − PGS forH in Eq. (D4), we get precisely the
real space formula for the Chern number of the ground state
of H [33].

APPENDIX E: AN IDENTITY RELATING η
FOR SETS AND THEIR COMPLEMENT

In this appendix, we derive an identity for η that we
need in Appendix F. Consider a unitary transformation U
defined on a lattice spin system. Let A and B be two subsets
of spins, and let Ā and B̄ be their complements. Also, let A
and B be operator algebras consisting of all operators
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supported in A and B, and let Ā and B̄ be the corresponding
operator algebras for Ā and B̄. The identity that we prove is
as follows:

ηðU†AU;BÞ ¼ dNAþNB

dN
ηðU†ĀU; B̄Þ: ðE1Þ

Here, NA and NB denote the number of spins in regions A
and B, respectively, while N denotes the total number of
spins in the lattice.
To begin, we rewrite the definition of η (7.2) using

the unnormalized trace Tr (instead of the normalized
trace “tr”):

ηðU†AU;BÞ

¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Oa;Ob

jTrðU†O†
aUObÞj2

s
: ðE2Þ

Here, theOa operators are normalized so that TrðO†
aOa0 Þ ¼

δaa0 . Note that, in Eq. (7.2), the prefactor dðNAþNBÞ=2=dN is
hidden in the normalized trace tr.
To proceed further, it is useful to introduce a second copy

of our lattice spin system. We then use the fact that a
product of traces can be written as a trace over a tensor
product to rewrite η as expression involving two copies of
our lattice:

ηðU†AU;BÞ ¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Oa;Ob

Tr½ðU† ⊗ U†ÞðO†
a ⊗ OaÞðU ⊗ UÞðOb ⊗ O†

bÞ�
s

¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr

�
ðU† ⊗ U†Þ

�X
Oa

O†
a ⊗ Oa

�
ðU ⊗ UÞ

�X
Ob

Ob ⊗ O†
b

��s
: ðE3Þ

Next, we use the identity X
Oa

O†
a ⊗ Oa ¼ SWAPA;

X
Ob

O†
b ⊗ Ob ¼ SWAPB; ðE4Þ

where SWAPA denotes the unitary operator that acts like a SWAP within region A and acts like the identity outside of A, and
similarly for SWAPB. With this identity, we can write

ηðU†AU;BÞ ¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðU† ⊗ U†ÞðSWAPAÞðU ⊗ UÞðSWAPBÞ�

q
: ðE5Þ

Next, we insert SWAP2 ¼ 1 in this equation, where SWAP exchanges the entire chains 1 and 2:

ηðU†AU;BÞ ¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðU† ⊗ U†ÞðSWAPAÞðSWAP2ÞðU ⊗ UÞðSWAPBÞ�

q
: ðE6Þ

Using the fact that ½SWAP; U ⊗ U� ¼ 0, we can commute the SWAP through and rewrite this expression as

ηðU†AU;BÞ ¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðU† ⊗ U†ÞðSWAPA · SWAPÞðU ⊗ UÞðSWAP · SWAPBÞ�

q
: ðE7Þ

Notice that

SWAPA · SWAP ¼ SWAPĀ; SWAP · SWAPB ¼ SWAPB̄: ðE8Þ

This allows us to simplify the above expression as follows:

ηðU†AU;BÞ ¼ dðNAþNBÞ=2

dN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½ðU† ⊗ U†ÞðSWAPĀÞðU ⊗ UÞðSWAPB̄Þ�

q
¼ dNAþNB

dN
ηðU†ĀU; B̄Þ; ðE9Þ

where in the last line we use N ¼ NA þ NĀ ¼ NB þ NB̄. This concludes the proof of Eq. (E1).
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APPENDIX F: OVERLAPPING FORMULA
FOR THE GNVW INDEX

In this appendix, we derive Eq. (7.6); i.e., we show that
our edge invariant FðUÞ is related to the GNVW index
indðUÞ by

FðUÞ ¼ log indðUÞ: ðF1Þ
This amounts to proving the following identity. Let A and B
be two large overlapping intervals in some spin chain, and
let A and B be operator algebras consisting of all operators
supported on A and B. Likewise, let A0 and B0 be two large
nonoverlapping adjacent intervals, and let A0 and B0 be the
corresponding operator algebras. The identity we need to
prove is

ηðU†AU;BÞ
ηðA;BÞ ¼ ηðU†A0U;B0Þ

ηðA0; U†B0UÞ : ðF2Þ

Here, the left-hand side is the exponential of our edge
invariant exp½FðUÞ�, while the right-hand side is the
standard formula for the GNVW index indðUÞ.
To establish the identity (F2), we consider a 1D chain in

a periodic ring geometry. We consider two intervals C and
D that are adjacent (but nonoverlapping) at the bottom part
of the chain and that overlap at the top part of the chain (see
Fig. 11). We partitionC andD into two pieces,C¼C−∪Cþ
and D ¼ D− ∪ Dþ, where Cþ and C− are the parts of C in
the upper and lower half of the chain, and similarly for Dþ
and D−.
Let C, D, C� and D� be the corresponding operator

algebras and consider the quantity ηðC; U†DUÞ. Because
operators that have support near the middle ofC orD do not
contribute to η, we can factor ηðU†CU;DÞ into two terms:

ηðU†CU;DÞ ¼ ηðU†CþU;DþÞηðU†C−U;D−Þ: ðF3Þ

Next, let C̄ and D̄ be the complements ofC andD and let C̄
and D̄ be the corresponding algebras. By the identity (E1),

ηðU†CU;DÞ ¼ dNCþND

dN
ηðU†C̄U; D̄Þ: ðF4Þ

At the same time, if we compare the interval C̄ to D−, and
likewise we compare D̄ to C−, we can see that

ηðU†C̄U; D̄Þ ¼ ηðU†D−U; C−Þ; ðF5Þ

since these two pairs of intervals are identical in the region
where they touch, i.e., the region that contributes to η. Hence,
we have

ηðU†CU;DÞ ¼ dNCþND

dN
ηðU†D−U; C−Þ: ðF6Þ

To proceed further, we note that the prefactor
dNCþND=dN can be rewritten as

dNCþND

dN
¼ dNC∩D

¼ dNCþ∩Dþ

¼ ηðCþ;DþÞ; ðF7Þ

so Eq. (F6) can be written as

ηðU†CU;DÞ ¼ ηðCþ;DþÞηðU†D−U; C−Þ: ðF8Þ

Substituting this identity into Eq. (F3) gives

ηðU†CþU;DþÞ
ηðCþ;DþÞ

¼ ηðU†D−U; C−Þ
ηðU†C−U;D−Þ

¼ ηðU†D−U; C−Þ
ηðD−; U†C−UÞ : ðF9Þ

Finally, identifying Cþ and Dþ with the overlapping
intervals A and B, and identifying D− and C− with the
nonoverlapping intervals A0 and B0 we recover the desired
identity (F2).
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(2022).

[17] Carolyn Zhang and Michael Levin, Classification of
Interacting Floquet Phases with Uð1Þ Symmetry in Two
Dimensions, Phys. Rev. B 103, 064302 (2021).

[18] Frederik Nathan, Dmitry Abanin, Erez Berg, Netanel H.
Lindner, and Mark S. Rudner, Anomalous Floquet Insula-
tors, Phys. Rev. B 99, 195133 (2019).

[19] Paolo Glorioso, Andrey Gromov, and Shinsei Ryu, Effective
Response Theory for Floquet Topological Systems, Phys.
Rev. Res. 3, 013117 (2021).

[20] Frederik Nathan, Dmitry Abanin, Netanel Lindner, Erez
Berg, and Mark Spencer Rudner, Hierarchy of Many-Body
Invariants and Quantized Magnetization in Anomalous
Floquet Insulators, SciPost Phys. 10, 128 (2021).

[21] Specifically, Ref. [20] describes how to construct bulk
invariants in terms of a bulk magnetization operator (in the

case of fermionic Fock spaces) but does not obtain explicit
formulas for these invariants.

[22] Luca D’Alessio and Marcos Rigol, Long-Time Behavior of
Isolated Periodically Driven Interacting Lattice Systems,
Phys. Rev. X 4, 041048 (2014).

[23] Achilleas Lazarides, Arnab Das, and Roderich Moessner,
Equilibrium States of Generic Quantum Systems Subject to
Periodic Driving, Phys. Rev. E 90, 012110 (2014).

[24] Pedro Ponte, Anushya Chandran, Z. Papić, and Dmitry A.
Abanin, Periodically Driven Ergodic and Many-Body
Localized Quantum Systems, Ann. Phys. (Amsterdam)
353, 196 (2015).

[25] Achilleas Lazarides, Arnab Das, and Roderich Moessner,
Fate of Many-Body Localization under Periodic Driving,
Phys. Rev. Lett. 115, 030402 (2015).

[26] Pedro Ponte, Z. Papić, François Huveneers, and Dmitry A.
Abanin, Many-Body Localization in Periodically Driven
Systems, Phys. Rev. Lett. 114, 140401 (2015).

[27] Dmitry A. Abanin, Wojciech De Roeck, and François
Huveneers, Theory of Many-Body Localization in Periodi-
cally Driven Systems, Ann. Phys. (Amsterdam) 372, 1
(2016).

[28] Rahul Roy and Fenner Harper, Floquet Topological Phases
with Symmetry in All Dimensions, Phys. Rev. B 95, 195128
(2017).

[29] We discuss the generalization of our results to fermionic
systems in Sec. IX.

[30] Wojciech De Roeck and François Huveneers, Stability and
Instability towards Delocalization in Many-Body Localiza-
tion Systems, Phys. Rev. B 95, 155129 (2017).

[31] See Sec. VIII for the definition of Uedge for general MBL
Floquet circuits.

[32] The invariant ωA;BðUÞ is closely related to the flow of a
unitary matrix, described in Appendix C.1 in Ref. [33].

[33] Alexei Kitaev, Anyons in an Exactly Solved Model and
beyond, Ann. Phys. (Amsterdam) 321, 2 (2006), Special
Issue.

[34] Note that Ref. [20] discusses magnetization as a function of
the particle number. We can relate this to magnetization as a
function of the chemical potential using the fact that the
average particle density for the fermionic Fock space setting
in Ref. [20] at a given chemical potential is given by
eμ=1þ eμ.

[35] Here, we are assuming that ΩA;BðUÞ is a continuous
function of U and, hence, it is bounded on a compact set.

[36] Note that there may be additional difficulties to many-body
localizing systems with non-Abelian symmetries [37].

[37] Andrew C. Potter and Romain Vasseur, Symmetry Con-
straints on Many-Body Localization, Phys. Rev. B 94,
224206 (2016).

[38] Dominic V. Else and Chetan Nayak, Classification of
Topological Phases in Periodically Driven Interacting
Systems, Phys. Rev. B 93, 201103(R) (2016).

[39] Carolyn Zhang, Topological Invariants for Symmetry-
Protected Topological Phase Entanglers, Phys. Rev. B
107, 235104 (2023).

[40] Lukasz Fidkowski, Hoi Chun Po, Andrew C. Potter, and
Ashvin Vishwanath, Interacting Invariants for Floquet

CAROLYN ZHANG and MICHAEL LEVIN PHYS. REV. X 13, 031038 (2023)

031038-28

https://doi.org/10.1103/PhysRevLett.119.186801
https://doi.org/10.1103/PhysRevLett.119.186801
https://doi.org/10.1088/1367-2630/17/12/125014
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1007/s00023-018-0657-7
https://doi.org/10.1007/s00023-018-0657-7
https://doi.org/10.1007/s00023-019-00794-3
https://doi.org/10.1007/s00023-019-00794-3
https://doi.org/10.1007/s00023-019-00794-3
https://doi.org/10.1103/PhysRevB.105.064304
https://doi.org/10.1103/PhysRevB.105.064304
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1103/PhysRevLett.118.115301
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1007/s00220-012-1423-1
https://doi.org/10.1103/PhysRevLett.124.100402
https://doi.org/10.1103/PhysRevLett.124.100402
https://doi.org/10.1103/PhysRevB.98.054309
https://doi.org/10.1103/PhysRevB.98.054309
https://doi.org/10.1007/s00023-022-01193-x
https://doi.org/10.1007/s00023-022-01193-x
https://doi.org/10.1007/s00023-022-01193-x
https://doi.org/10.1103/PhysRevB.103.064302
https://doi.org/10.1103/PhysRevB.99.195133
https://doi.org/10.1103/PhysRevResearch.3.013117
https://doi.org/10.1103/PhysRevResearch.3.013117
https://doi.org/10.21468/SciPostPhys.10.6.128
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevE.90.012110
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1016/j.aop.2014.11.008
https://doi.org/10.1103/PhysRevLett.115.030402
https://doi.org/10.1103/PhysRevLett.114.140401
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1016/j.aop.2016.03.010
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevB.95.155129
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.107.235104
https://doi.org/10.1103/PhysRevB.107.235104


Phases of Fermions in Two Dimensions, Phys. Rev. B 99,
085115 (2019).

[41] Isaac H. Kim, Bowen Shi, Kohtaro Kato, and Victor V.
Albert, Modular Commutator in Gapped Quantum Many-
Body Systems, Phys. Rev. B 106, 075147 (2022).

[42] Isaac H. Kim, Bowen Shi, Kohtaro Kato, and Victor V.
Albert, Chiral Central Charge from a Single Bulk Wave
Function, Phys. Rev. Lett. 128, 176402 (2022).

[43] Ruihua Fan, From Entanglement Generated Dynamics to
the Gravitational Anomaly and Chiral Central Charge,
Phys. Rev. Lett. 129, 260403 (2022).

[44] Zongping Gong, Lorenzo Piroli, and J. Ignacio Cirac,
Topological Lower Bound on Quantum Chaos by
Entanglement Growth, Phys. Rev. Lett. 126, 160601
(2021).

[45] Andrew C. Potter and Takahiro Morimoto, Dynamically
Enriched Topological Orders in Driven Two-Dimensional
Systems, Phys. Rev. B 95, 155126 (2017).

[46] Hoi Chun Po, Lukasz Fidkowski, Ashvin Vishwanath, and
Andrew C. Potter, Radical Chiral Floquet Phases in a
Periodically Driven Kitaev Model and beyond, Phys. Rev. B
96, 245116 (2017).

BULK-BOUNDARY CORRESPONDENCE FOR INTERACTING … PHYS. REV. X 13, 031038 (2023)

031038-29

https://doi.org/10.1103/PhysRevB.99.085115
https://doi.org/10.1103/PhysRevB.99.085115
https://doi.org/10.1103/PhysRevB.106.075147
https://doi.org/10.1103/PhysRevLett.128.176402
https://doi.org/10.1103/PhysRevLett.129.260403
https://doi.org/10.1103/PhysRevLett.126.160601
https://doi.org/10.1103/PhysRevLett.126.160601
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.96.245116
https://doi.org/10.1103/PhysRevB.96.245116

