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We present a method for deriving bulk and edge invariants for interacting, many-body localized Floquet
systems in two spatial dimensions. This method is based on a general mathematical object which we call a
Jflow. As an application of our method, we derive bulk invariants for Floquet systems without symmetry, as
well as for systems with U(1) symmetry. We also derive new formulations of previously known single-
particle and many-body invariants. For bosonic systems without symmetry, our invariant gives a bulk
counterpart of the rational-valued Gross-Nesme-Vogts-Werner index p /¢ quantifying transport of quantum

information along the edge.
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I. INTRODUCTION

Periodically driven systems, also known as Floquet
systems, can realize interesting topological phases that
have no stationary analog [1,2]. One illustrative example of
such a system is introduced in Refs. [3,4]. In these works,
the authors construct a single-particle Floquet system in
two spatial dimensions with the property that (i) there are
chiral edge modes propagating in each Floquet band gap
and (ii) all of the Floquet bands have vanishing Chern
number.

This example leads to a puzzle, since it is not obvious how
the information about the number of chiral edge modes is
encoded in the bulk dynamics. This puzzle is resolved in
Ref. [4], which shows that the number of chiral edge modes is
determined by a particular winding number that characterizes
the time evolution of the bulk bands during a single period.
Note that this winding number characterizes the bulk “micro-
motion,” or motion within a period, as opposed to the
stroboscopic dynamics [5]. This bulk-boundary correspon-
dence is further explored in Refs. [6-10].

In this paper, we consider an analogous problem involving
many-body Floquet systems in two spatial dimensions. A
prototypical example of such a system is the “SWAP circuit”, a
many-body Floquet system constructed out of either bosonic
or fermionic degrees of freedom living on the sites of the
square lattice [11,12]. Like the single-particle example
mentioned above, the SWAP circuit displays interesting
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stroboscopic dynamics at its edge. In particular, when the
SWAP circuit is defined on a lattice with a boundary, one finds
that the lattice sites near the edge undergo a unit translation
during each driving period. This behavior is significant,
because translations cannot be generated by a local, 1D
Hamiltonian [13]. In this sense, the SWAP circuit has
“anomalous” edge dynamics, just like the single-particle
example discussed above. More quantitatively, the anoma-
lous edge dynamics of the SWAP circuit or its relatives can be
characterized by an edge invariant—known as the Gross-
Nesme-Vogts-Werner (GNVW) index—which takes values
in the rational numbers [11,14-16].

Again, we are faced with a puzzle: We have an edge
invariant for these systems (i.e., the GNVW index), but we
lack a corresponding bulk topological invariant analogous
to the above single-particle winding number. A similar
puzzle exists for U(1)-symmetric generalizations of the
SWAP circuit [17-19]: There, too, we have an edge invariant
that quantifies the anomalous edge dynamics in these
systems, but the corresponding bulk invariant is missing
(though some progress is made in this direction in
Ref. [20]) [21]. The goal of this paper is to construct these
missing bulk invariants.

We investigate this problem in the context of two-
dimensional “many-body localized” Floquet systems.
The reason we focus on many-body localized (MBL)
Floquet systems is that these systems either do not thermal-
ize or take a long time to thermalize. As a result, they can
display a rich array of long-lived dynamics [1], unlike
generic interacting many-body Floquet systems, which heat
up by absorbing energy from the drive [22-27].

Our central result is a method for constructing both bulk
and edge invariants for 2D MBL Floquet systems with
different symmetry groups G. We also show that our bulk
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TABLEIL. A summary of the bulk and edge invariants presented
in this work.
Many-body, Many-body,
Single-particle U(1) symmetry no symmetry
Edge Eq. (5.2) Eq. (6.3) Eq. (7.3)
Bulk Eq. (5.6) Eq. (6.4) Eq. (7.4)

and edge invariants are equal to one another, thereby
establishing a bulk-boundary correspondence for these
systems. Our results are summarized in Table I and
Fig. 1. Notably, we find a bulk invariant for general 2D
MBL Floquet systems without symmetry, as well as for
systems with U(1) symmetry. The first invariant gives a bulk
formulation of the GNVW index, while the second invariant
gives a bulk counterpart of the edge invariants in Ref. [17].
We also derive different formulations of previously known
edge invariants and single-particle invariants.

Our method for constructing invariants involves a math-
ematical object which we call a “flow.” A flow @, 3(U) is a
real-valued function of a unitary U and two subsets of lattice
sites A and B that obeys certain properties. We show that if
one can find a flow for some symmetry group G, then one
can immediately construct corresponding bulk and edge
invariants for general 2D MBL Floquet systems.

The paper is structured as follows. For simplicity, we first
present our results for a special kind of MBL Floquet system
called a “unitary loop”; later, we explain how to extend our
results to general 2D MBL Floquet systems. In Sec. II, we
review the definitions of MBL Floquet systems and unitary
loops, and we give a precise statement of the problem we
wish to solve. Section III presents the main results of this
paper: We introduce the concept of a flow, and we show how
to construct bulk and edge invariants from flows. In Sec. IV,
we discuss a special kind of flow, called a “spatially additive
flow,” and we derive additional formulas for bulk and
edge invariants for spatially additive flows. We then study the
general results of the preceding two sections with three illus-
trative examples: single-particle systems (Sec. V), interact-
ing systems with U(1) symmetry (Sec. VI), and interacting
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FIG. 1. Schematic geometries of the four types of bulk
invariants that we discuss. (a) The most general bulk invariant
(3.17), which applies to all the systems studied in this work,
involves three overlapping disklike regions A, B, and C. (b) Our
invariant (4.4), which applies to single-particle systems and
U(1)-symmetric many-body systems, involves three nonoverlap-
ping adjacent regions I, J, and K. (c) We also obtain bulk
invariants (6.17) for these systems involving regions I, J, and C
as well as (d) invariants via flux threading on a torus (6.25).

systems without symmetry (Sec. VII). In Sec. VIII, we
discuss the extension of our results from unitary loops to
general MBL Floquet systems. We conclude with some open
questions in Sec. IX. Additional details and technical
arguments can be found in the appendices.

II. SETUP AND DEFINITIONS

In this section, we explain the basic setup of our
problem and the objects that we study, namely, MBL
Floquet systems and unitary loops. We also explain the
connection between d-dimensional unitary loops and
(d — 1)-dimensional locality-preserving unitaries describ-
ing their stroboscopic edge dynamics [11,28].

A. MBL Floquet systems

We begin by recalling the definition of an MBL Floquet
system. Consider a bosonic [29] many-body system built
out of k-state spins living on an infinite d-dimensional
lattice. We assume that the Hamiltonian is periodic in time:
H(t+T)=H(t), (2.1)

where T is the period. We also assume that H () is local in
the sense that it can be written as a sum of terms of the form

H(0) = S H,(1), 22)

where H,(t) is supported near site r. Let Uy denote the
Floquet unitary that describes the stroboscopic dynamics:

Up = Te—iﬁ)TdtH(r)dt‘ (2'3)
An “MBL Floquet system” is a system of this type with the
property that Uy is many-body localized; i.e., Uy can be
written as a product of mutually commuting quasilocal
unitaries [11]:

ur=[]v.

where each U, is a unitary supported within a finite
distance & of site r (possibly with exponentially decaying
tails). The significance of the above condition (2.4) is that it
guarantees that Uy does not spread operators beyond the
distance scale £, no matter how many times it is applied;
consequently, the stroboscopic dynamics described by U
does not result in thermalization. One scenario where U
could take the form in Eq. (2.4) is in a disordered system if
the disorder causes a complete set of Hermitian, mutually
commuting, quasilocal conserved operators (“Z-bits”) to
emerge. However, it is unclear if this scenario occurs in
spatial dimension greater than one [30]. In this work, we do
not address this issue: We simply view Eq. (2.4) as an
interesting class of nonthermalizing Floquet systems,

U, U] =0, (2:4)
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and we are not concerned with how these systems are
realized—whether from disorder, fine-tuning, or some
other mechanism.

In this paper, we mostly focus on a special class of MBL
Floquet systems, namely, those with frivial stroboscopic
dynamics:

Ur=1. (2.5)

It turns out that this special case contains all of the
relevant physics of MBL Floquet systems but in a simpler
setting. Later, in Sec. VIII, we show that our results can be
straightforwardly extended to general MBL Floquet sys-
tems obeying Eq. (2.4), but for now we focus on systems
obeying Eq. (2.5). Our task is, thus, to find bulk and edge
invariants for MBL Floquet systems obeying Eq. (2.5).

B. Unitary loops

An equivalent way to think about MBL Floquet systems
with Up = 1 is as “unitary loops.” Here, a unitary loop is a
one-parameter family of unitaries {U(7):7 € [0, T]}, gen-
erated by a local Hamiltonian (2.2), with the property that

U(T)=U(0) =1. (2.6)
In this language, our problem is to find bulk and edge
invariants for unitary loops.

But what does it mean to construct an invariant for a
unitary loop? To answer this question, we need to define a
notion of equivalence similar to the notion of adiabatic
equivalence in equilibrium systems. We say that two
unitary loops {U(#)} and {U’(¢)} are “equivalent,” denoted
{U(t)} ~{U'()}, if they can be smoothly deformed into
one another. Thatis, {U(z)} ~ {U’(¢)} if there exists a one-
parameter family of unitary loops, {U(#):s € [0, 1]},
depending smoothly on s, such that

Uop(t) = U(1).  Uy(t) = U'(1). (2.7)
Importantly, this interpolation must maintain the loop
condition (2.6) for all s. That is,

Uy T) =1 (2.8)
for all s € [0, 1]. We note that a similar notion of equiv-
alence can be defined for more general MBL Floquet
systems: In that case, we say that two MBL Floquet
systems are equivalent if they can be smoothly deformed
into one another while maintaining the MBL property (2.4).

C. Locality-preserving unitaries

Another concept that we need below is a “locality-
preserving unitary” (LPU). Roughly speaking, a locality-
preserving unitary U is a unitary that transforms local
operators to nearby local operators. More precisely, if O, is
an operator supported on site r, then UTO, U is supported

within a finite distance £ of the site r (up to exponential
tails). We refer to the length scale & as the ‘“operator
spreading length” of U.

There is a natural way to define equivalence classes of
LPUs. We say that two LPUs U and U’ are equivalent,
denoted U ~ U, if they differ by a “locally generated
unitary” (LGU) W:

U=w-U. (2.9)

Here, a locally generated unitary W is a unitary that can be

generated by the time evolution of a local Hamiltonian over
a finite period of time:

W= Te Jo HOMs, (2.10)

For some of our arguments, we find it useful to consider
LPUs with strict locality properties. We say that a unitary U
is a strict LPU with operator spreading length ¢ if, for any
operator O, supported on site r, the operator UTO,U is
strictly supported within a finite distance £ of r, without any
exponential tails.

We also find it useful to consider a special class of LGUs
with strict locality properties which we call “finite depth
local unitaries” (or FDLUs). An FDLU is a unitary that can
be written as a finite depth quantum circuit. More specifi-
cally, we say that W is an FDLU of depth n and radius 4, if
W can be written as a finite depth quantum circuit of depth
n, where each layer is a product of local unitary gates
supported in (nonoverlapping) balls of radius 1. Note that
every LGU can be approximated to arbitrarily small error
by an FDLU using a Trotter expansion.

D. Mapping between d-dimensional unitary loops
and (d —1)-dimensional LPUs

We now explain an important mapping between
d-dimensional unitary loops and (d — 1)-dimensional
LPUs [11,28]. The basic idea is that, given any d-dimensional
unitary loop {U(#)}, we can construct a corresponding
(d — 1)-dimensional LPU by considering the dynamics of
U(t) near a physical boundary or “edge” (here, we use the
term edge because we are primarily interested in the case
d = 2, where the boundary is one dimensional).

The precise construction is as follows. Given a
d-dimensional unitary loop with Hamiltonian H(r), we
restrict the Hamiltonian to a large, but finite, ball C by
discarding all terms that have support outside of C. We
denote the restricted Hamiltonian by H (7). We then define
a boundary or edge unitary by

Usgge = Te™ o 40, 2.11)
By comparing this definition with Eq. (2.6), it is clear that
Uegge acts trivially deep in the interior of C—that is, U,ge.
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is supported within a finite distance of the boundary of C
(up to exponential tails). Thus, U,qe. can be thought of as a
(d — 1)-dimensional unitary acting on the boundary of B. It
is also clear that U, is locality preserving, by Lieb-
Robinson bounds. [31] Note that, in the context of Floquet
systems, Ucqge has a simple physical meaning: It describes
the stroboscopic edge dynamics of the Floquet system
corresponding to {U(#)}.

Importantly, one can show that the above mapping is
consistent with the two equivalence relations in the
sense that

{U0)} ~{U(1)} = Uegee = U,

edge- (2.12)

(see Appendix A for a proof). One implication of this result
is that one can classify (or at least partially classify) unitary
loops and Floquet systems by studying their corresponding
edge unitaries.

E. Incorporating symmetries

We now discuss how to incorporate symmetries into these
definitions. Consider a symmetry group G and a corre-
sponding collection of on-site unitary symmetry trans-
formations {U,: g € G}. We say that a unitary loop
{U(t)} is “G symmetric” if it is generated by a G-symmetric
Hamiltonian H(r); ie., U,H(t)U,' =H(r) for all
t € [0, T]. Likewise, we say that two G-symmetric unitary
loops are equivalent if they can be smoothly deformed into
one another while preserving the symmetry; i.e., {U,(¢)}
should be generated by a local G-symmetric Hamiltonian
H(t) for all s € [0, 1].

We can also incorporate symmetry into the definition of
an LPU in a natural way. We say that an LPU U is G
symmetric if U commutes with the symmetry transforma-
tion U, for all g€ G. Likewise, we say that two
G-symmetric LPUs are equivalent if they differ by a locally
generated unitary W whose generating Hamiltonian H(s) is
G symmetric for all s € [0, 1]. Finally, we say that an
FDLU is G symmetric if all of its local unitary gates are G
symmetric.

F. Bulk and edge invariants

One of the main goals of this paper is to construct bulk
and edge invariants for unitary loops. Here, a “bulk
invariant” is a real-valued function M({U(¢)}) defined
on unitary loops, with the property that it is invariant under
the equivalence relation (2.7) in the sense that

M{U()}) =M{U'(1)}) if {U@)}~{U' (1)}

Likewise, an “edge invariant” is a real-valued function
defined on the edge unitaries F'(Ugqe) that is invariant
under the equivalence relation defined in (2.9) in the
sense that

(2.13)

(2.14)

F<U6dge) = F( édge) if Uedge = U/

edge*

In this paper, we construct bulk and edge invariants for
two-dimensional unitary loops (or, equivalently, two-
dimensional Floquet systems). That is, we construct bulk
invariants M({U(7)}) for 2D unitary loops and edge
invariants F(Ucqe.) for their 1D edge unitaries. Our
invariants have the additional feature of obeying a bulk-
boundary correspondence:

M{U(1)}) = F(Uedge)- (2.15)

III. GENERAL THEORY OF FLOWS

In this section, we define a general mathematical object
called a flow. This mathematical object is our main tool for
constructing bulk and edge invariants for unitary loops.

A. Prologue: A single-particle example

To motivate our definition, we begin with an example of
a flow in single-particle systems. Consider a single-particle
system defined on a d-dimensional lattice A. Let U be a
single-particle unitary transformation, i.e., a |A| X |A]
unitary matrix Uy, = (a|U|b), where a,b € A. Given
any two subsets of lattice sites A, B C A, we can define
a real number w, 3(U) by

wy (V) = Z Z(|Uab‘2 = Oap)-

acA beB

(3.1)

We can think of w, z(U) as providing a quantitative
measure of how much the unitary U transports particles
from B to A. The first term > .4 > ycp |Uap|* measures
the magnitude of the matrix elements of U between B and
A, while the second term — ) .4 > ,cp 04 1S @ constant
offset that guarantees that w, 3(U) =0 if U = 1.

The quantity w, z(U) has two important properties.
First, for any unitary V4 that is supported entirely in A
or its complement A and for any unitary U,

wp 3(VaU) = w4 3(U). (3.2)
Likewise, for any unitary Vp that is supported entirely in B
or its complement B,

wp3(UVp) = wy5(U), (3.3)
where again U is a general unitary. To derive the first
property (3.2), notice that any V4 of this kind does not mix
the sites within A with those outside of A; therefore,
S ea [(VaU) o> = 3en [Us. The second property
(3.3) follows from similar reasoning.

The above two properties (3.2) and (3.3) are important,
because they guarantee that w, 3(U) depends on U only in
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a very limited way. As a result, we can construct bulk and
edge invariants out of w, z(U).

The idea is as follows: Consider the case where A is a
one-dimensional lattice, and suppose that U is a 1D unitary
transformation that is locality preserving in the sense that it
mixes only nearby lattice sites a,a’ € A. Choose A and B
to be two large overlapping intervals. In this case, we can
use Egs. (3.2) and (3.3) to prove that

CUA,B(VU) = CUA,B(U),

for any unitary V supported within an interval smaller than
the overlap of A and B. The reason is that any such V is
either fully supported within A or A, in which case we can
use Eq. (3.2), or it is supported deep within B or B, in
which case we can use Eq. (3.3) after first commuting V
through U:

wp 5(VU) = 0, p(UUT'VU]) = w, 5(U).

Here, in the second equality, we are using the fact that U is
locality preserving and V is supported deep within B or B
and, therefore, U~!'VU is supported within B or B. Note
that we neglect in this section exponentially decaying tails
from conjugation by U and the exponentially small error
they would give to the equation above.

By repeating the above argument multiple times, it
follows that

(UA,B(VNVN—l---V1 U) = a)A,B(U)’

for any collection of unitaries V1, ..., Vy that are supported
within small intervals, as long as we take A, Band AN B
sufficiently large. Next, consider any unitary W that is
generated by a local (1D) Hamiltonian over a finite period
of time. Any such W can be approximately arbitrarily
closely by a product of the form VyVy_;...V;. Hence, we
deduce that

wA,B(WU) = wA,B(U)’

in the limit of large A, B and large overlap A N B. More
precisely, this identity holds provided that we choose
A= [dl,dz] and B = [bl’bﬂ so that bl —dap, dy — bl’
and b, — a, are all sufficiently large compared with &y,
and &, where &y is the operator spreading length of W and
&y is the operator spreading length of U. We conclude that
wy p(U) satisfies Eq. (2.14) and, therefore, defines an edge
invariant for 2D unitary loops [32].

It turns out that one can also use w, z(U) to construct
bulk invariants for 2D unitary loops (see Sec. V A). Thus,
w4 3(U) provides a powerful tool for constructing both
edge and bulk invariants for unitary loops in single-particle
systems.

Motivated by this example, we now define the notion of a
flow for many-body systems.

B. Definition of flow

Consider a many-body system defined on a d-dimen-
sional lattice A with an on-site symmetry group G. In this
context, we can define a general mathematical object that
we call a flow.

Definition 1.—A flow Q, z(U) is a function that outputs
a real number given a G-symmetric unitary U and two
subsets of lattice sites A, B C A and that has the following
properties:

(1) Qu5(V4U) =Q,5(U) if supp(V4) C A or A.

(2) Q4 5(UVp) =Q,5(U) if supp(Vp) C B or B.

(3) Qu,un,.8,u8, (U1 ® Uy) = Qy 5, (Uy) +Qy, 5,(Us)

for any U, U, defined on disjoint sets of lattice sites
Al’ A2 with Al,Bl C Al and A2,32 C A2.

“4) Q,5(1)=0.

Each of these properties has a simple intuitive meaning.
The first two properties tell us that Q4 z(U) is insensitive to
G-symmetric unitaries that are supported entirely within A
or B or their complements A and B. This is compatible with
the idea that, roughly speaking, Q, z(U) measures total
transport between A and B. The third property tells us that
the flow is additive under the tensor product (or “stacking”)
operation. The last property is simply a normalization
convention.

Notice that the function w, g(U) defined in Eq. (3.1)
obeys all of the above properties if we translate them to a
single-particle framework—i.e., replacing the tensor prod-
uct U; ® U, with a direct sum U; @ U,. Thus, w, 3(U)
can be thought of as a single-particle analog of a flow.

At this point, we should mention that there is a subtlety
in the interpretation of the direction of transport: While a
flow measures transport of states from B to A, it measures
transport of operators from A to B. While in Sec. III A we
mention that w, z(U) measures transport of particles from
B to A, in the many-body setting, it is often easiest to
interpret the flow as transport of operators from A to B.

C. Examples of flows

Here, we briefly present two many-body examples of
flows that are discussed later in the paper.

1. Example 1: U(1) symmetry
Our first example of a flow applies to lattice many-body
systems with a global U(1) symmetry. More specifically,
consider lattice systems that conserve a total U(1) charge Q
of the form Q = Y, Q,, where Q, is a Hermitian operator
supported on lattice site r € A. Define

Qu5(U) = (UQ UQp), — (Q4Q5) (3.4)

where
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(3.5)

01=> 0 Qz=)> 0

reA reB

and where the expectation value (-), is taken in the mixed
state

p= %e"g, Z = Tr(e"9), (3.6)
for some real-valued “chemical potential” p.

It is easy to check that Q, z(U) satisfies all the require-
ments for a flow. For example, to establish the first property
in the above definition, we need to show that Q, 3(U) is
invariant under replacing U — V 4 U for any U(1)-symmetric
V4 supported in A or A. To prove this statement, notice that
any such V4 commutes with Q4 and, hence,

(VAU) Q4(V4U)Qp), = (UTQAUQp),.

It follows immediately that Q4 z(V,U) = Q,4 3(U).

Note that the parameter u can take any real value, so this
construction gives not just one flow but rather a continuous
family of flows. We discuss this flow and its applications in
more detail in Sec. VL.

(3.7)

2. Example 2: No symmetry

Our second example of a flow applies to interacting
systems without any symmetry constraints. To explain this
example, we first need to review the definition of
n(A, B)—a real-valued “overlap” between two operator
algebras A and B, introduced in Ref. [13].

Let A and B be any two operator algebras consisting
of operators acting on some finite-dimensional Hilbert
space. Let {O,} be a complete orthonormal basis of
operators in A—that is, a collection of operators such that
(i) {0,} is a complete basis for A and (ii) {O,} satisfies
tr(0,0,) = 8,4, where we use the lowercase symbol “tr”
to denote a normalized trace defined by tr(1) = 1.
Similarly, let {O,} be a complete orthonormal basis for
B. The “overlap” n(.A, B) is defined by

2(A.B) = \/ S [1(0}0,)P.
0,eA,0,EB

(3.8)

One can check that (A, B) depends only on the algebras A
and BB and not on the choice of orthonormal bases { O, } and
{0, }. Also, it is not hard to show that (A, B) > 1, since
the two algebras A and B both contain the identity
operator 1.

With this notation, we are now ready to give an example
of a flow for interacting systems without symmetries. Let A
and B be any two subsets of lattice sites, A, B C A, and let
A and B denote the corresponding operator algebras,
consisting of operators supported on A and B, respectively.
We can define a flow by

n(UTAU, B)] (3.9)

QA,B(U) = 10g|: 7](-'47 B)

Again, it is easy to check that Q, z(U) satisfies all the
properties of a flow. For example, to prove the first property
of a flow, namely, that Q4 5z (U) is invariant under replacing
U — VU for any V, supported on A or A, notice that

nl(V4U)Y A(V,U), Bl = n(U AU, B),  (3.10)

since V, can only shuffle operators in 4 and, therefore,
VIAV, = A.

The above flow (3.9) is closely related to the GNVW
index for classifying 1D locality-preserving unitaries [13].
There is also a close analogy between Eq. (3.9) and the
single-particle flow from Eq. (3.1). To see this analogy, it is
useful to rewrite Eq. (3.1) in the form given in Eq. (5.1),
which reveals that the single-particle flow measures the
change in the overlap of P, and Py due to U, where P, and
Py are single-particle projection operators onto sites in A
and B, respectively. Analogously, the above flow (3.9)
measures the change in the overlap of the operator algebras
A and B due to the action of U. We discuss this flow and its
applications in more detail in Sec. VIL

D. Properties of flows

We now state two important properties of flows that
follow from Definition 1. First some notation: We define
the £ boundary of a set A, d,A, as

0,A = {r € A:dist(r,A) < ¢ and dist(r,A) < £}. (3.11)

One can think of d,A as a “thickened boundary” which
consists of all lattice sites that are within distance ¢ from
the boundary of A. With this notation, we can now state the
two properties of Q4 z(U).

Theorem 1.—Let U be a G-symmetric strict LPU with an
operator spreading length £. Let W be a G-symmetric
FDLU of depth n which is built out of unitary gates
supported in balls of radius 1. Then,

(1) Qup(WU) =Q,3(W'U), where W’ is obtained by
removing all gates from W except for those fully
supported in (0,,,A4) N (02,):¢B), and

(2) Qup(U) = Qp\op(U) forany a & 04:B. Q4 g(U) =
Q, 5\, (U) for any b & 0,:A.

We refer to the first property as Theorem 1.1 and the
second as Theorem 1.2. Each of these properties tell us that
Q, 5(U) is invariant under some kind of change in A, B, or
U. The first property says that , z(WU) does not change
if we remove gates from W that are far from the intersection
of the two boundaries of A and B. The second property says
that Q4 (U) is invariant under adding or removing a lattice
site a € A as long as a is far from the boundary of B, and
similarly ©, z(U) is invariant under adding or removing a

031038-6



BULK-BOUNDARY CORRESPONDENCE FOR INTERACTING ...

PHYS. REV. X 13, 031038 (2023)

lattice site b € B as long as b is far from the boundary of A.
We prove Theorem 1 in Appendix B.
We now state two useful corollaries of Theorem 1.
Corollary 1.—Let U be a G-symmetric strict LPU with
an operator spreading length . Let W be a G-symmetric
FDLU of depth n which is built out of unitary gates
supported in balls of radius . If (95,,A) N (02,14¢B) = @,
then
Qu (WU) = @ 5(U). (3.12)
Corollary 2.—Let W be a G-symmetric FDLU of depth n
which is built out of unitary gates supported in balls of
radius A. Then,
Q5(W) = Q 5(W), (3.13)
where W’ is obtained by removing all gates from W except
for those fully supported in (0,,,A) N (0,,,,B).

Both corollaries are immediate consequences of
Theorem 1.1.

E. Edge invariants from flows

We now explain how to construct an edge invariant for
2D unitary loops given any flow Q4 z(U). As usual, our
invariant F(Ueq,) is defined on 1D LPUs U,y,.. However,
we present the definition in the special case where Uqg, is a
1D strict LPU, because this allows for a simpler and more
rigorous analysis.

Our invariant is defined as follows. Given a 1D strict
locality-preserving unitary U,q,. With operator spreading
length &, we choose two overlapping intervals: A = [a;, a,]
and B =[b;,b,] with a; <b; <a, <b, such that
b, —ay, a, — by, and b, —a, are larger than 4¢ (see
Fig. 2). We then define

F(Uedge> = QA,B(Uedge>’ (314)

In order for this definition to be unambiguous, we need
to check that Q4 g(Ueq,e) does not depend on the choice of
A and B. Conveniently, this follows immediately from
Theorem 1.2. Indeed, Theorem 1.2 guarantees that we can
shift any of the endpoints a; - a; £ 1 or b; - b; £ 1, as
long as by — ay, a, — by, and b, — a, are larger than 4£. By
shifting end points using Theorem 1.2, we can show that

A= [al, ag}

< >

B = [by, )

FIG.2. Weuse overlapping intervals A and B to define our edge
invariant F( Uedge) = QAA,B(Uedge) .

QA,B(Uedge) = QA’,B’(Uedge>7 (315)

for any other choice of A’ = [a},d}] and B’ = [b],D)]
obeying the constraint that b} — a/, a5 — b}, and b}, — d)
are larger than 4¢.

To complete the discussion, we need to check that
F(Ugqgge) is a true edge invariant, ie., F(WUgg) =
F(Ueqge) for any G-symmetric locally generated unitary
W. For simplicity, we check this invariance in the case
where W is a G-symmetric FDLU. More specifically,
suppose W is an FDLU of depth n built out of gates of
radius A. We wish to show that F(WUeqge) = F(Ueqgge). To
prove this, we first choose A and B so that b, — ay, a, — by,
and b, — a, are larger than 4(nd + &), because the oper-
ator spreading length of WU, is nd+&. The desired
identity Q4 5(WUecqpe) = Q4 (Uecqge) then follows from
Corollary 1.

A general property of the above edge invariant (3.14)
that is worth mentioning is that it is odd under spatial
reflections. That is,

QA,B(U) = _QB,A(U) (3-16)

for any overlapping intervals A and B with the geometry
discussed above. In other words, switching the direction that
we call “positive” switches the sign of the edge invariant. We
prove this result in Corollary 5 in Appendix B using general
properties of flows. (Note that the above antisymmetry

property does not apply to general subsets A, B C A—only
to the specific case of overlapping intervals in 1D.)

F. Bulk invariants from flows

For any flow Q4 3(U), we can also construct a corre-
sponding bulk invariant for 2D unitary loops. This bulk
invariant, denoted M({U(t)}), is defined as follows. Let
U(t) =T exp[—i [} d/H(¢')] be a 2D unitary loop. We
choose three overlapping disklike regions A, B, and C as
illustrated in Fig. 3. These disks must be large enough that
all distances are much larger than the ‘“Lieb-Robinson
length” # of {U(t)} defined by ¢ = v g T, where v,y is the
Lieb-Robinson velocity associated with H(z).

We define the bulk invariant M ({U(¢)}) by

MUY = 05,{U0Y.  (.17)
where
oS ,({U(1)}) = / Tdt%QA,B(U(t)), (3.18)

Here, we define the operation “d/0t.” as follows. For any
function G[U(1)],
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FIG. 3. We use three overlapping disklike regions A, B, and C
to define our bulk invariant M({U(t)}) = QS ,({U(1)}). The
boundaries of A and B intersect at two points: one in region C and
one in another region C'.

: - Glemiteld) . U ()] = G[U(1)
5. GlU ()] =tim - ,

(3.19)

where H(t) consists of all the terms in H(t) = >, H (1)
(2.2) that are supported in region C:

Helt) = S H,(1).

reC

(3.20)

In explicit examples of Qf,({U(r)}), we see that
the operation 0/df- can be implemented in a simple
way. This is because the flow €, z(U()) can often be
expressed in terms of Heisenberg-evolved operators
O(t) = U'(t)OU(t). Recall that the usual time derivative
of a Heisenberg-evolved operator O(r) is given by

2 0(1) = i (0)[H(:), 01U ().

To instead compute d/0dtc, we simply replace H(r) —
H(t) in the commutator, i.e.,

%00) = iU (1)[Hc(1). OJU(1).

G. Showing that Q§ ;({U(t)}) does not depend
on choice of A, B, and C

To show that our bulk invariant is well defined, we need
to show that Q ,({U(z)}) does not depend on the choice
of A, B, and C, as long as they are sufficiently large. We
now prove this claim.

To begin, consider another large disklike region C’ that
surrounds the other intersection point of dA and 0B, which
is not in C (see Fig. 3). Let Uc(r) and Uq(t) be the
unitaries generated by H(¢) and H(t), respectively:

Uc(t) =T exp </OtHc(S)dS>,

Ue(t) = T exp ( A tHCr(s)ds) (3.21)

Below, we prove the following two identities using the
general properties of flows. First, we show that

Qi ,({U}) +Qf({U(}) =0.

Second, we show that

(3.22)

0, (U0) = [ dr Quncanc(Ueln). (.23

Using these two identities, it is easy to see that
Qf 53({U(1)}) is independent of the choice of A, B, and
C. Indeed, the fact that Qf ,({U(r)}) does not depend
on C follows from Eq. (3.22), since the second term
Qg:B({U (t)}) is manifestly independent of C and the
two terms sum to zero. Likewise, to see that
QS ;({U(r)}) does not depend on A and B, notice that
Eq. (3.23) implies that Qf ,({U(r)}) does not change if we
modify A and B outside of C. By the same logic,
Egs. (3.22) and (3.23) together tell us that Qf ,({U(1)})
does not change if we modify A and B outside of C'.
Combining these two observations, we see that
Qf 5;({U(1)}) does not change under any modification
of A and B.

In addition, Eq. (3.22) tells us that Qf ,({U(¢)}) must be
invariant under any deformation of U(r) that is far away
from C'. It is also invariant under any deformation of U(¢)
far away from C by definition, so it is invariant under any
local deformations of U(t), as long as C and C’ are
sufficiently far separated.

We now derive the two identities (3.22) and (3.23). To
begin, we claim that

Qup(U(1) = Qup(Uc()Uc (1)), (3.24)
as long as the regions C and C” are sufficiently large. To see
this, first suppose that U(¢) is an FDLU (rather than an
LGU). In that case, Corollary 2 implies that we can remove
all the gates from U(t) except for those near the intersection
of the boundaries of A and B. In particular, this means we
can remove all the gates from U(z) except for those
supported in C and C’, implying Eq. (3.24) in this case.
More generally, for any U() that is generated by the time
evolution of a local Hamiltonian H(r), we can always
approximate U(t) by an FDLU with arbitrarily small error.
Hence, Eq. (3.24) must hold up to this error. We expect that
this error vanishes exponentially in the separation between
C and C’, so Eq. (3.24) becomes exact in the limit of large
A, B, and C.
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Having established Eq. (3.24), we next observe that
property 3 in the definition of a flow (or, more precisely,
Lemma 1 in Appendix B) guarantees that

Qup(Uc(t)Uc (1))

=Qup(Uc(t)) +Qap(Uc(1)). (3.25)

Combining this equation with Eq. (3.24), we deduce that

Qup(U(1) = Qup(Uc(t)) + Qup(Uc (1)) (3.26)

Now consider the quantity (0/0fc)Qp(U(1)). By
definition,

afcszA.B(Um)
— g% Qy p(eicHe® . Ue(t)) - QA,B(U(I))_ (3.27)

Substituting the identity (3.26) for Q4 3(U(#)) and using
the analogous identity for Q4 z(e~™Hc() . U(t)), we derive

Q p(e™™ M Uc(1)) + Qup(Uc (1) = Qup(Uc(1)) = Q4 5(Uc (1))

0
—Q,5(U(1) = hn(}

atc €
1 Qy p(e™HeD . Up(t)) = Qq g (Uc(t))
= lim
e—0 €
d
= EQA,B(UCU))' (3.28)
I
: 1 o(C
Likewise, Q0 (U} = sen(0)QS,({U(N)}),  (3.33)
0 d . Lo .
5 Qup(U(1) = EQA,B(UC/(I)). (3.29)  where A, B, and C are three overlapping disklike regions
CI

Comparing Eq. (3.26) with Eqgs. (3.28) and (3.29), we
deduce that

d 0

G20 U(0) = 5- 0 (U(0) #5300 (VD). (330)

Integrating both sides from time t = 0 to t = 7', we obtain

9, (U0 + 95, (U0) = [ dr 5 2u(U0)

=0, (3.31)
where the last equality follows from the fact that
U(T) = U(0) = 1. This proves Eq. (3.22).

To prove Eq. (3.23), we integrate Eq. (3.28) from t = 0
to t = T to obtain

Qf,(U0) = [T Quwen).  (332)

We then note that Q, z(Uc(1)) = Quncanc(Uc(t)) for
any flow: This again follows from property 3 in the
definition of the flow, since U, () acts trivially outside
of C. Equation (3.23) follows immediately.

Before concluding this section, it is worth noting that the
bulk invariant (3.17) is odd under spatial reflections, just
like the edge invariant. That is,

with the geometry in Fig. 3 and where o is a permutation of
A, B, and C and sgn(o) is the parity of . Equation (3.33)
follows the corresponding property of the edge invariant
(3.16) together with the bulk-boundary correspondence that
we prove in the next section.

H. Bulk-boundary correspondence

We now prove the bulk-boundary correspondence that
we claim earlier:

F(Uedge) = M({U<t)}) (334)
Here, F(Ugge) is the edge invariant defined in Eq. (3.14),
M({U(1)}) is the bulk invariant defined in Eq. (3.17), and
Uegee is related to U(r) via Eq. (2.11).

To this end, we note that Eq. (3.23) implies that

M{U)}) =Qf ,({U(1)})
= /)T%QAnC,BnC(UC(I))dl

= QAr\C,BmC(UC(T))~ (3'35)

Next, note that Uc(T) = Ueqge is supported in the 1D
circle 9:C, and the subsets of A and B that U, acts on are
the intersections of A and B with 9;C, which form two
overlapping intervals, like our setup for F(Ueq,.) (Fig. 2).
Therefore,
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Qunc.nc(Uc(T))

Putting together Egs. (3.35) and (3.36), we obtain the
desired result M({U()}) = F(Uegge)-

- F(Uedge)' (336)

IV. SPATIALLY ADDITIVE FLOWS

We say that a flow Q, z(U) is “spatially additive” if it
obeys

Quup.c(U) =Q4c(U) + Qg (U),

Qu puc(U) = Q4 3(U) + Q c(U), (4.1)
where, in the first line, A and B are two disjoint sets of
lattice sites and, in the second line, B and C are similarly
two disjoint sets of lattice sites. Equivalently, a flow is
spatially additive if it can be written as a sum of the form

Q4 5(U) = Z Zga,b(U)‘

a€A beB

(4.2)

Note that Q, , ({U(¢)}) must vanish when the indices a and
b are far apart, in order to be consistent with Theorem 1.2.

A nice property of spatially additive flows is that we can
write down alternative expressions for the edge invariant
F(Usqgge) and the bulk invariant M({U(¢)}) that are based
on a nonoverlapping geometry. In particular, the formula
for F(Uegge) is

F(Uedge) = QI.J(Uedge) - QJ.I(Uedge)’ (43)

where I and J are two adjacent, nonoverlapping intervals.
Likewise, the formula for M({U(¢)}) is

M{U(0)}) = Q) (U} -, ({U(0)})
+Q,({U()}) - Q1 ({U(N)})
+Q,({U(0}) -7, ({U0)}),

where 7, J, and K are three disjoint regions, meeting at a
single point, of the form shown in Fig. 4. We derive these

(4.4)

FIG. 4. For spatially additive flows, our bulk invariant can be
computed using three nonoverlapping adjacent regions /, J, and
K [see Eq. (4.4)].

formulas and discuss some technical advantages of additive
flows in Appendix C. Note that Eq. (4.4) is reminiscent of
the real space Chern number formula in Ref. [33]; we make
this connection more explicit in Appendix D.

V. SINGLE-PARTICLE SYSTEMS

We begin by applying our construction to single-particle
systems, expanding on the example that we introduce at the
beginning of Sec. IIL

A. Definition of F(U,qz.) and M({U(t)})

Our starting point is the single-particle flow w, z(U)
given in Eq. (3.1). We can write this flow in a more
convenient way in terms of projection matrices P, and Pp
into the sets A and B (Fig. 2):

a)A.B(U) = TI'(U‘PAUPB) —Tr(PAPB). (51)
Here, P, is a |A| x |A| diagonal matrix with matrix
elements equal to 1 for the sites in A and O elsewhere,
and Pp is defined similarly. As we mention earlier, it is easy
to see that w, 3(U) satisfies the definition of flow (in the
single-particle sense).

Using Eq. (3.14), we can construct an edge invariant:

F(Uedge) = Tr(Unge

PAUedgePB) - Tr(PAPB)~ (52)
To get some intuition for this edge invariant, consider the
case where U, is a translation by x: i.e., UngeP,Uedge =
P,,, where P, is the projector P, = |r)(r|. Then, U
shifts the overlap of P, and Py by x so that F(Ueggee) = X.
Moving on to the bulk invariant, Eq. (3.17) gives

M{U(n}) =5 ,({U0})

—i / AT U H(1), PLU(D)PS). (5.3)
0

To make sense of this invariant, we have to define what we
mean by H(t) for single-particle Hamiltonians. As in the
many-body case, we define Hq(t) = ), H,(t), where
H(t) =", H,(1) is a decomposition of H into local terms
supported near r. In the single-particle case, there is a
natural way to define the local terms H ,(r), namely,

H,(0) = 3 {H(). P,). (5.4)

Again, P, denotes the projection onto site r, and {-,-}
denotes the anticommutator. By construction, H,(r) is
supported in a finite neighborhood around r [assuming
H(?) is a finite range Hamiltonian]. Substituting this into
the definition of H(¢), we obtain
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Helt) = 3 (H (). P, (55

so that our bulk invariant takes the form

MUUOY = [ a0, P} PIUOPS).
(5.6)

B. Relation to previously known invariants

We now relate our invariants (5.2) and (5.6) to previously
known edge and bulk invariants for 2D unitary loops,
discussed in Refs. [3,4]. We start with the edge invariant in
Refs. [3,4], which applies to translationally invariant
systems. It is given by the momentum space formula

i .0
n(Ueige) = =5~ / dkTr(U;dgeﬁUedge) (5.7)

We claim that our edge invariant F(Uegg) (5.2) is
equivalentto n(U, edge) in the translationally invariant case, i.e.,

F(Uedge) = n(Uedge)' (5.8)
To show this, we make a particular choice for the two over-
lapping intervals A and B in the definition of F(Uege) (5.2).
Specifically, we choose A = (—00,0] and B = [-L, ),
where L is a large positive number which we send to oo.
For this choice of A and B, Eq. (5.2) reduces to

F(Uedge) = gi_IEOTr(UngeP(—oo.O] UedgeP[—L,oo) - P[—L.O])
= Tr(Ul-dgeP(—oo.O] Uedge - P(—oo,()])

= Tr(Ulgel P (-o.0]: Uegel)- (5.9)

We note that the above formula is exactly the expression
for the flow F(Uecqge) given in Eq. (112) in Ref. [33],
except with a projector onto (—oo, 0] rather than [0, o). To
proceed further, one can use the argument given in
Appendix C.1.3 in Ref. [33] to rewrite this expression in
k space. As explained in Ref. [33], when we go to k space,
the real space trace is replaced by an integral over a k-space
trace:

1
Tr(-) —» == [ dkTr(- 5.10
() - 27[/ r(+), ( )
while the commutator is replaced by a derivative:
.aUed e
[P(—oo,0]7 Uedge] - —1 akg . (5.11)

Note that there is an extra minus sign, because we use the
projector onto sites (—oo, 0] rather than [0, co). Making

these replacements, we recover the previously known
formula (5.7).

Next, consider the bulk invariant W({U(#)}) in Ref. [4],
which is given by the momentum space formula

W({U(t)}):# / drd,dk,

P o .0
(v lulv-Luv.uvi-Lul). (512
% r( ot { ok, " ok, D (5-12)

where we drop the ¢ dependence from U(¢) for brevity.
We claim that our bulk invariant M({U(z)}) (5.6) is
equivalent to W({U(7)}):

M{U(D)}) =W{U@)}).

To see this, we make a particular choice for the three
regions A, B, and C in the definition of M({U(1)}) (5.6).
Specifically, we choose A to be the left half plane X_, B to
be the upper half plane Y, and C to be a disk D; centered
at the origin with a radius L, where L is a large number
which we send to infinity. With these choices, Eq. (5.6)
reduces to

(5.13)

MUUOD = fin 3 [ @it (5.2, Py JUPy )

R
= lim — dt
L—>m2 0

x Tr(U'{H(t),Pp, }U[U'Px_U.Py ])
_ / AT (U H(OU[U Py UL Py ),
0
(5.14)

where the second equality follows from the cyclicity
of the trace. To proceed further, we replace U'Py U —
U’ [Py _, U] in the above expression. One can then use the
same method as in Appendix C.1.3 in Ref. [33] to rewrite
this expression in k space, replacing the commutators with
derivatives as in Eq. (5.11). The result is

M{U@)Y) :4%2 / drdk,dk,
xTr<UT3Ui{UTa%UD, (5.15)

ot ok,
One can then massage this expression into the form (5.12)
by adding the following derivative term to the integrand:

1 1
- EakyTr(UTatUUT 0, U) + 5 0,Tr(U"0y 0, U)

1
=50, Tr(U" 0, 0,U). (5.16)
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C. Relation to current

In this section, we relate the bulk invariant M ({U(¢)}) to
the current—a more familiar physical quantity. We do this
in two different ways. First, we express M({U(r)}) in
terms of circulating bulk currents, which are related to the
quantized orbital magnetization density described in
Ref. [5]. Second, we relate M({U(r)}) to the quantized
current that flows between a fully filled region and an
empty region in a noninteracting fermion system, which is
also described in Ref. [5].

We begin by deriving the circulating current formula.
Our derivation starts with the nonoverlapping formula for
M({U(1)}), given in Eq. (4.4). This formula consists of a
sum of six terms of the form QF,({U(r)}). Using the
explicit formula for QF ,({U(1)}) (5.6), together with the
fact that /, J, and K are nonoverlapping, we can expand
each of these terms as

Qf,({u(n)})
=1 / " AT {U() PR H(1)P, — PH(1)PU(DP,).

(5.17)

Recall that, according to the standard definition of the
current operator, the (Heisenberg-evolved) current operator
from site k to i is given by

Tu(t) = iU (t)[P H(t)P; — P;H(t)PJU(1).  (5.18)

Comparing this definition with Eq. (5.17), we see that

o, (U =5 [Tk, (519

where

Tk =3 GIZu()

icl jel kek

(5.20)

and where |j) denotes the single-particle state where the
particle is on site j. Substituting this expression into the
nonoverlapping formula for M({U(t)}) (4.4) and using
the observation that Qf , = —Qj ; (or, equivalently, that the
current is antisymmetric), we derive

M({U(I)})_ATdt[j{{,I(t)+t7§,l((t)+*7;(,l(t)]' (5.21)

The above formula for M({U(z)}) has a nice intuitive
picture: M({U(t)}) is given by the time integral of the
expectation value of current across the K, I boundary
in states initially in region J (together the cyclic

permutations). Therefore, it measures the cyclic micro-
motion of localized bulk states. We show in Appendix D
that, if U(r) = exp(—i2zPt/T) for a time-independent
Chern band projector P, we can perform the time integral
explicitly to obtain the real space formula for the Chern
number given in Ref. [33].

Next, we relate M({U(r)}) to the quantized current
that flows at the boundary of a fully filled region and an
empty region, as explained in Ref. [S]. This current is
defined as

I({u(n}) I%Ardtjfj(t), (5.22)

where / and J are finite, adjacent regions as illustrated in
Fig. 5(a) and C is a large region that overlaps with both /
and J.

We begin by defining three adjacent regions /, J, and K
as illustrated in Fig. 5(b). We can connect this setup to our
overlapping geometry (Fig. 3) by defining A =17 U J and
B =J UK. According to Eq. (3.33), Q{,({U(1)}) =

Qs c({U(N}) = - c({U)}), so

MU} =508 (UMD Qe (U] (523)

Because the flow is spatially additive in this case,
we have [dropping the argument ({U(z)}) for clarity of
notation]

1
M{U(1)}) = 5 (Qg,c + fo(,c + Qf,c + Q§<,c)

1
Simplifying by canceling the Qj,c terms and using

Qf « =Qf - =0 (because / is far separated from K),
we have

Qe+ Qe —Qc—Qjc) (525)

N =

M{U@)}) =

@ J O gk

FIG. 5. (a) A quantized current flows from / to J at the
boundary of a fully filled region C. (b) To show that this
quantized current is equal to M({U(r)})/T, we use a topologi-
cally equivalent setup to our overlapping geometry (Fig. 3) with
A=]UJand B=JUK.
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We can now write Eq. (5.25) in terms of currents:

1 (T
MUUOD =5 [ aT5 0+ T5k0. (526
Finally, we claim that 7§ , (1) = J§,(1). Intuitively, this
is true because all the quantities above are topological and
do not depend on the choice of location in the lattice. More

rigorously, J§ () + TG, +T5,(t) + TG (o) (1) =0
Also, J§,(r)=0, and
JS Av(usuk) (1) = 0, where the second current vanishes

by current conservation.

because there is no current flowing through the top and
bottom edges of J. This means that 7§ (1) + J§ (1) = 0,

s0 JG k(1) ==T5,(t) = T, (1). In conclusion,

MUU()}) = A " Ts ). (5.27)
Putting this together with Eq. (5.22), we obtain
T({u(ny) = HIOD, (5.28)

This is the desired formula relating M to the quantized
current Z({U(¢)}).

VI. INTERACTING SYSTEMS
WITH U(1) SYMMETRY

We now apply our methods to interacting systems with
U(1) symmetry, expanding on the example from Sec. III C.
Many of our results closely parallel the single-particle case
discussed above.

A. Definition of F(Ugq,.) and M({U(t)})

Our basic setup is the same as the example discussed
in Sec. IIC: We consider a 2D lattice with a finite-
dimensional local Hilbert space on each site, each with an
identical on-site charge operator Q, that has non-negative
integer eigenvalues. We assume that the Hamiltonian H(¢)
conserves the total U(1) charge Q = > Q,. Our task is to
construct bulk and edge invariants for unitary loops of
this kind.

Our starting point is the flow given in Eq. (3.4):

Qu5(U) = (UTQ UQp), — (Q4Qp),- (6.1)

Here, the expectation value (), is taken in the mixed state

eHQ

P =7,

Z = Tret?,
V4

(6.2)

where p is a real-valued “chemical potential” and Q, =

> rea O, and Qp = > ,c5 O, denote the total charge in
regions A and B, respectively.

To construct an edge invariant, we substitute this flow
into Eq. (3.14), which gives
F(Uedge) = <UngeQAUedgeQB>p - <QAQB>p7 (63)
where A and B are overlapping intervals (Fig. 2).

Likewise, we can obtain a bulk invariant by substituting
this flow into Eq. (3.17):

MU} = 95,(U0O)
=i [T v (te(n. QU (0w, (64)

B. Relation to previously known invariants

We begin by discussing the connection between Eq. (6.3)
and the edge invariant in Ref. [17]. The latter invariant takes
values in the set of rational functions of a formal parameter
z and is denoted by 7(z). To define 7(z), let A be a large
interval and let Q4 = > ,c4 Q,. Consider the action of the
edge unitary Uggge 0N Q4. Since U,gge i a U(1)-symmetric
LPU, we know that

Uz,dgeQA Uegge = Q4 + Op + O, (6.5)
where O; and Oy, are local operators acting near the left
and right end points, respectively, of A. Next, we write
04 = QO + Qg, where Q; and Q are the total charges
within the left and right half of the interval, respectively, for
some partition of the interval into two subintervals. The
invariant 7(z) is then defined as

Or+0g
() = ) (6.6)
Tr(z%)

where the trace is taken over an interval that contains the
support of both QO and Qr + Og. We can think of 7(z) as
measuring how Uy, acts on the charge operator. The basic
idea is that the traces in the numerator and denominator of
Eq. (6.6) are generating functions in a formal parameter z
that encode the eigenvalue spectra of Qg + O and Qp,
respectively. The ratio of these two generating functions
measures whether U, qo. performs a net translation of charge.

To get a feeling for 7(z), it is useful to consider a
prototypical example where each lattice site has two states
carrying U(1) charges 0 and ¢, respectively. In this case, if
Ucgge 18 2 unit translation to the right, then one finds
7(z) = (1 4+ z7/2). For comparison, in this example, the
flow F(Usgqgge) from Eq. (6.3) evaluates to

q2€2;4q
(1+er)?”

2 phq
q-e
F(Uedge) = 1 + eﬂq -

(6.7)

More generally, what is the relationship between
F(Ueqqe) and 7(z)? Below, we show that
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d2

F(Uegge) = d—ﬂglogff(e”)-

(6.8)
An important implication of this identity is that the two
invariants F(U,qgee) and 77(z) carry equivalent information
in the sense that F(Uey,.) determines 7(z) and vice versa.
Indeed, although they differ by two derivatives, the con-
stants of integration are fixed by log 7 (e”)|,_, = 0 and
(d/du)log zt(e")|,—_o, = 0. The former comes from the
fact that the trace in the numerator and the trace in the
denominator of Eq. (6.6) are over the same space, while
the latter comes from our convention that Q, has non-
negative integer eigenvalues.

We now derive the above relation (6.8). Substituting
Eq. (6.5) into the expression for the edge invariant (6.3)
gives

F(Uegge) = (OrQ3), +(0L0B),- (6.9)
To simplify this further, we note that the correlation
function (O, Qp), can be factored as

<0LQB>p - <0L>p<QB>p’ (6-10)
since O; and Qjp are supported in nonoverlapping regions
and p has vanishing correlation length. At the same time,
we can see that (O;), = —(Og), by taking expectation
values off both sides of Eq. (6.5) above. Putting this
together, we derive
F(Uedge) = <0RQB>p - <0R>p<QB>p' (6'11)
The next step is to use the factorization property again to
deduce that (OzQj), = (Og),(Qp),. where B denotes the
complement of B. Therefore, we are free to add (O Qp), —
(Og),(Qp), to the right-hand side of Eq. (6.11), which
gives
F(Uige) = (020), ~ (02),(0),.  (6.12)
where Q is the total charge. To complete the derivation, we
rewrite the right-hand side as

d d’ .
F(Uedge) = <0R>p —1Ogﬂ(eﬂ)»

i arr: (6.13)

where the second equality follows from the identity (Og) =
d—‘ilog 7i(e") derived in Ref. [17].

As for the bulk invariant (6.4), there is nothing to
compare it to: We are not aware of any other explicit
formulas for bulk invariants for strongly interacting Floquet
systems with U(1) symmetry. That said, there is a con-
nection between M({U(z)}) and the bulk magnetization

density described in Ref. [20]; we explain this connection at
the end of the next section.

C. Relation to current

In this section, we discuss how to express the bulk
invariant in terms of U(1) currents. This discussion parallels
the single-particle case (Sec. V C). As in that section, we
derive two different expressions for M({U()}): one in
terms of circulating currents and one in terms of a U(1)
current that flows at the boundary between two regions at
different chemical potentials [17].

We begin by deriving a formula for M({U(¢)}) in terms
of circulating currents. The first step is to define the
Heisenberg-evolved U(1) current operator Z;;(¢). We use
the following definition:

Tyi(t) = i{UT()[Hy (1), QU(t) = UT(0)[H;(1), Q] U(1)}.
(6.14)

Note that this is a reasonable definition, since Z;; = —Z;
and >, Z;;(t) = —(dQy/at).

Next, consider the expression (6.4) for Qf ;. and set
A=1, B=J, and C = K, where I, J, and K are non-
overlapping regions with the geometry shown in Fig. 4.
Comparing this expression with Eq. (6.14), we see that

Qv -, v} = /)Tdfﬂw(f), (6.15)
where J% ,(t) is now given by

Ti(t) = Z Z Z<Iki(t)Qj>p'

icl jel kek

(6.16)

Substituting Eq. (6.15) into the nonoverlapping formula
for M({U(t)}) (4.4), we arrive at an expression for
M({U(t)}) which looks just like the single-particle
case (5.21):

MUU)}) = A "t T (1) + T (1) + T (0.

The only difference from Eq. (5.21) is that J% ,(¢) is now
given by Eq. (6.16). This is our desired formula for
M({U(t)}) in terms of circulating currents.

We now move on to our second formula for M ({U()}).
Again, this formula looks identical to the single-particle
case:

muoy = ["agge. e

where I, J, and C are three regions with the geometry
shown in Fig. 5. The derivation of this formula is also the
same as the single-particle case (see Sec. V C), but the
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physical interpretation of this formula is different. To
understand this interpretation, let x and y’ be two real
numbers and consider a mixed state o(u, ') of the form

> 0,
o(up') = 7 Z =Tr(e2),  (6.18)
where
u if reC,
Yy = { . (6.19)
u o if r & C.

We can think of o(u, i') as describing a state in which C is
held at chemical potential y, while the complement of C is
at chemical potential 4'. Previously, Ref. [17] argued that if
we initialize a Floquet system with Hamiltonian H(¢) in
such a state, then there will be a time-averaged current Z
that flows along the boundary of C and that the size of this
current depends only on u and y’. By definition, this current
is given by

T(u ) _/ S ST

i€l jeJ

(6.20)

where Z,;(¢) is defined as in Eq. (6.14). We now show that
there is a close connection between this current Z and the
right hand side of Eq. (6.17), namely,

9 / 1T
STy = [ TG0, (621
To see this, note that
2 000ty = (Qc = (bl (622

Substituting this into Eq. (6.20), and using the fact that
(Zij(1)) o(up) = 0, gives the desired identity (6.21).

Equation (6.21) is interesting, because it provides a
simple physical interpretation to our bulk invariant
M({U(r)}): Comparing with Eq. (6.17), we see that the
bulk invariant M({U(¢)}) is equal to the derivative
T(0/ou)Z(p,u')|y—,- In other words, M({U(t)}) describes
the linear response of the current 7 to changing the
chemical potential g (with y' fixed).

One application of Eq. (6.21) is that it reveals a
connection between the bulk invariant M({U(¢)}) and
the bulk magnetization density described in Ref. [20]. To
derive this connection, recall that Ref. [20] argues that the
time-averaged current 1 pq across a cut with end points p
and ¢ is given by 1 ,,, = m,, — i, where i, and /n,, are the
bulk magnetization densities at the end points. Applying
this relation to the current Z(p, ') gives

T(upt) = {iiy), = {ing)y. (6.23)
where (), denotes the expectation value at chemical
potential u, i.e., the expectation value in the mixed state
p(u) defined in Eq. (3.6). Comparing Eq. (6.23) with
Egs. (6.21) and (6.17), we deduce that

M{U))) = (6.24)

In other words, M ({U(¢)}) is proportional to the derivative
of the expectation value of the bulk magnetization density
(), with respect to the chemical potential y [34].

D. Bulk invariant from flux threading

We now derive an expression for M({U(r)}) which is
based on flux threading through an L x L torus and which
is analogous to the single-particle k-space formula (5.12).
Specifically, our flux threading formula for M({U(¢)}) is

M{U(1)})
1 9

d 9
_ T
- 2/0 d[<Ufa Ur [Ufae UrUrsa: Uf} >,,’ (623)

where U, = U((t,6,.0,) describes the unitary time evo-
lution in the presence of flux 6, and 6, through the two
holes of the torus. That is, U is defined by

Up(1,0,.0,) = Te Jo @000 (6 26)
where H(t,6,.0,) is given by twisting H(t) by 6, and 6,
across two branch cuts running along x =0 and y = 0.
More precisely, to define H(t, 6,,6,), let A be the vertical
strip —L/2 < x <0 and B be the horizontal strip 0 <y <
L/2 as shown in Fig. 6. Then, H(t,6,,0,) is defined by

L
Yy=73
B el niY
=0 : |
y A ‘\~ C'
- _L
r=—3 x=0
FIG. 6. In the case of U(1)-symmetric systems, we can compute

our bulk invariant using the above torus geometry (opposite
sides of the rectangle are identified). Our construction involves
choosing vertical and horizontal strips A and B and then
“twisting” the Hamiltonian H () using the corresponding charge
operators O, and Qp (6.27).
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H(t,6,.0,)
=e <9xQA+9yQB)H([)e_i(HxQA+9)rQB)

where H /(1) is the sum of the terms in H(t) with support
near the lines at x = —L/2 or y = L/2.

We emphasize that Eq. (6.25) holds for any choice of
fluxes €, and 8,, so, in particular, the right-hand side is
independent of 6, and 6, (at least in the limit L — o).

We now derive the above formula (6.25) for M({U(t)}).
Our derivation proceeds in four steps. First, we claim that

M{U0}) = Q4 {U(0)}). (6.28)

where A and B are the two regions defined above, C is a
disk around x =y =0, and Qf ;({U(r)}) is defined as
in Eq. (6.4).

This statement is not as obvious as it sounds, since A, B,
and C do not have the usual topology of three overlapping
disklike regions. To prove Eq. (6.28), it suffices to show
that Qf ;({U(1)}) = Q4 z({U(1)}), where A and B are
the disklike regions shown in Fig. 3. Once we show this,
then the claim follows immediately, since A, B, and C
have the usual topology and therefore, Q ,({U(1)}) =
M{U(1)}). To see why QF , = QC 5, note that replac-
ing Qg — QOp in the integrand in Eq. (6.4) amounts
to removing a collection of terms of the form
Tr([U'H U, UTQ4U]Q.p), with i € B\B. One can then
check that each of these terms vanishes, since (i) each Q;
commutes with UTH U (they have nonoverlapping sup-
port); (ii) all three of {Q;, U'H U, UTQ,U} commute with
p; and (iii) the trace is invariant under cyclic permutations
of operators. The same argument explains why we can

replace Q4 — Q4.
Having established Eq. (6.28), our next claim is that

M{U(1)})

_;ATLMUTHCU[UT 04.ULUT[Qp U]}, (6.29)

To derive this claim, recall the antisymmetry property of Q
(3.33) which implies that

Qf, = -5 . (6.30)

Given this antisymmetry relation, Eq. (6.29) follows
directly from Eq. (6.28), since the right-hand side of
Eq. (6.29) is exactly the antisymmetrized combination
3 Q05— Q54).

To state our next claim, define

0(t’ 9)6’ 9}) = ei(HxQA+9)'QB) U(t)e_i(ngA+aj*QB> . (6'31)

We claim that we can replace U — U in the right-hand
side of Eq. (6.29): that is,

M{U(1)})
= a0 D004 0], T (0. D)

> L (6.32)

where H = ¢/(0:Cat0,08) [ ¢=1(0:Ca+0,08)  This identity
follows from Eq. (6.29) by using the fact that the extra
factors of ¢*(%x21+0:05) commute with Q, and Q together
with the cyclicity of the trace. In particular, using these two
facts, one can commute through the e*(%:21+%:25) terms so
that they cancel with one another.

To complete the derivation, we need to show that

T o B 01004, 0). 1[0 D)),

T .0 d . 0
d{U.~U, U —U, U, —U .
< ! ot f{ roo, 100, Dp

(6.33)

To this end, notice that U (t, 6,,6,) can be written as a
product of the form

Us(t,6,,6,) = Up(1,60,,0,)T(1,0,,0,),  (6.34)

where Uy, is a unitary operator supported along the two
lines x = —L/2 and y = L/2 on the torus. We then have

0 0 9 3
.
Ufae U= UTgU—i-U UL/2<69 UL/2>U

=iU'[0,. U]+ Uo, -2 (6.35)

where Uy _; > is an operator that varies with 6, and is
supported near x = —L/2 and where we have suppressed

the (z,6,,6,) arguments for brevity, Similarly, we have

Ul 19 U, =il"[Qp, (6.36)

09 U]+ Ug, 125

where Uy 1/ is an operator that varies with 6, and is
supported near y = L /2. Putting these together, we get
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—[07104. 0], U'[Qp. U]

_vilu,-u vilu,—u
f 09 f 0.—L/2> ¥ f aev f 0,.L/2

[UT i Up. U} ‘

foo, 1" "1 a0, Uf] +Oupe,

(6.37)

where Oy, is defined by

0 0
O = {Uf %, Uy, Uy, _L/z] + [Ugyw, U;ﬁUf]
X

+ [Uo,-1)2; Uav.L/z]- (6.38)

Notice that Oy, is supported along the lines x = —L/2
and y = L/2.

Substituting Eq. (6.37) into Eq. (6.32) and using the
fact that

we get

M{U(1)})

:i/rdz<U*H U [UT 9y, v 2 UD
2 Jo e N A i VS
ifTo
w3 [ dnuicU) 0,

(6.40)

We now claim that

(Op)2), =0, (6.41)

so that the second term vanishes. To see this, notice that
Oy > is a sum of commutators of operators (U}(d/ 00,)Uy,
Uy, 12, and U 0,.L /2) all of which commute with p. Hence,
(Op)2) = Tr(Oy jpp) vanishes by the cyclicity of the trace.

All that remains is to show that we can replace He — H
in the first term of Eq. (6.40) above. To see this, note that
Hy— H-=Y, Hy, is a sum of local terms H s, supported
far away from x = 0 and y = 0. Thus, replacing A — Hy
amounts to adding a collection of terms of the form
Tr(UH U [U}(9/00,)U ;. U(0/96,)Uslp). But each
|

c(1). OL]U(1)0, }u[U' (1) O

of these terms vanishes by the cyclicity of the trace,
since U}L-H Uy commutes with either U}(d/ 00,)Uy,
which is supported near x = 0, or U}(a/ 00,)U, which
is supported near y =0, and all three of the operators
{U}HfrUf,U}(ﬁ/&@x)Uf,U}(a/()Hy)Uf} commute with p.

VII. INTERACTING SYSTEMS
WITHOUT SYMMETRY

We now discuss the case of interacting systems without
any symmetry, expanding on the example discussed in
Sec. III C. In this case, because the flow is not spatially
additive, we can only obtain a bulk invariant in the
overlapping geometry, and there is no obvious analog of
“current” and “magnetization” in these systems.

A. Definition of F(U,qg.) and M({U(t)})

Our starting point is the flow given in Eq. (3.9):
n(UT AU, B)

Q,p(U) =log|—F—5— 7.1

(V) =tog| " 7.1)

Recall that A and B are operator algebras consisting of
all operators supported on the two subsets of lattice sites A
and B, respectively, while 5 is an overlap for operator
algebras defined by

(7.2)

Og€A
OpeB

where the sum runs over an orthonormal basis of operators in
A and B satisfying tr(0,0,) =8,y and tr(0}0,) =8y
Here, the lowercase symbol “tr” denotes a normalized trace
defined by tr(1) = 1.
We can construct an edge invariant by substituting this
flow into Eq. (3.14):
F ( Uedge) =

QA,B<Uedge)’ (73)

where A and B are intervals illustrated in Fig. 2.
Likewise, we can construct a bulk invariant by substitut-
ing this flow into Eq. (3.17):

( )Oh] +c.c.

M{U() / Zo,, 0, tt{U" (1) [H

where “c.c.” denotes the complex conjugate of the first term
in the numerator.

Unlike the other examples that we discuss, we do not
have a physical interpretation for this bulk invariant. That

> 0,0, 10U ()0LU(H)0,)1?

(7.4)

|
said, the basic structure of M({U(t)}) is reminiscent of a
time-averaged expectation value: It is an integral over time,
with the integrand expressed in terms of Heisenberg-
evolved operators evaluated at time ¢. Note also that
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M({U(1)}) does not involve spatially restricting or trun-
cating U(t), so it is truly a bulk quantity. Putting this
together, it seems possible that M({U(z)}) has a direct
physical interpretation, but we leave this question for
future work.

B. Relation to previously known invariants

We now discuss the relationship between our edge
invariant and the edge invariant ind(Uqe.) presented in
Refs. [11,13]. The latter invariant (also known as the
GNVW index) takes rational values, p/q € Q, and is
defined as follows. Let A and B be two large adjacent
intervals, and let A and B be the corresponding operator
algebras consisting of all operators supported on A and B.
Then, the edge invariant ind(U.qge.) is defined by

Ul AU, B
ind(Usgge) = ul cdge T el ). (7.5)
;7(“4’ UedgeBUedge)
We prove in Appendix F that
F(Uedge) = IOg [ind(Uedge>]- (76)

Thus, our edge invariant F(Ueq,.) is closely related to the
previously known invariant for classifying 1D locality-
preserving unitaries without any symmetries. Notice that
while F(Ugq,e) uses overlapping intervals A and B,
log[ind(Uegee)] is defined in Eq. (7.5) with adjacent
intervals, so the proof of Eq. (7.6) is nontrivial.

Once again, there is no previously known bulk invariant
that we can compare with M({U(¢)}).

VIII. GENERAL MBL FLOQUET CIRCUITS

In this section, we show how to generalize our edge and
bulk invariants from unitary loops to general MBL Floquet
systems.

We begin with the edge invariants. To describe these, we
first have to explain how to define edge unitaries for general
MBL Floquet systems. This definition is similar to the
unitary loop case: Given a (2D) MBL Floquet system with
Hamiltonian H(¢), we restrict the Hamiltonian to a finite
disk C by discarding all terms that have support outside of
C. Denoting the restricted Hamiltonian by H (), we then
define an edge unitary by [11]

Uedge _ ,]-e—ifUT dtHe(t) | HUL

reC

(8.1)

where the U, operators are those that appear in the
decomposition Up =[], U, (2.4). Just like the unitary
loop case, Uegge is 2 1D LPU supported near the boundary
of C.

Having defined U,qe., wWe can now describe the edge
invariant. As before, our invariant F(U,gg) is defined on
1D LPUs U,gg.. Given such an LPU, we choose two large
overlapping intervals A and B, and then we define our edge
invariant F'(Ueq,.) in exactly the same way as in the unitary
loop case:

F(Uedge) = QA,B(Uedge)- (82)
We now move on to the bulk invariant M({U(7)}). Let
A, B, and C be three overlapping disklike regions as in
Fig. 3. We define M({U(t)}) similarly to the unitary loop
case, except that we time average over many periods:

MU} = lim 14"%19&3((]@)). (8.3)

\B.C.n—>co N otc

Here, the notation “limy p ¢, means that we should
take the size of the regions A, B, and C to infinity, in
addition to taking n to infinity. More specifically, it is
important that this limit is taken in such a way that the
linear size of the regions A, B, and C grows faster than n.
This ensures that A, B, and C are much larger than the
relevant Lieb-Robinson length ¢ = v;gnT—the length
scale at which our invariant converges.

To complete our discussion, we now show that the above
invariants (8.2) and (8.3) obey the same bulk-boundary
correspondence as in the unitary loop case:

F(Uegge) = M{U(D)}). (8.4)

Our derivation proceeds in two steps. First, we show that

MU} = lim

,B,C.n—>0

QAT (89

where U(¢) is the unitary generated by H(¢):

Ue(t) = Te™ Joe®), (8.6)
Then, we show that
. 1 .
lim _QA.B(UC(T) ) = F(Uedge)- (87)

A.B.Cin—soco

Together, Egs. (8.5) and (8.7) imply Eq. (8.4).
To show Eq. (8.5), we use the identity (3.28), that is,

0 d

51- n(U(0) = 2 n(Uc(n).

This gives
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MUY = lim / Lo, (U)

AB,C.n—oo dt

:ABléIZL ;QAB(UC( ) )

(8.8)

[Uc(T)])".

where in the second line we use Uc(nT) =
To show Eq. (8.7), we use

UC(T) = Uedge ' HUr’

reC

(8.9)

which follows from the definition of Uege (8.1). We
assume that all of the U, terms in this expression commute
with Ueqge: We can make this assumption without loss of
generality, since we can always incorporate any U, terms
that do not commute into the definition of U,g,. without
affecting the value of the edge invariant F(U,gge).
Substituting this expression into Q4 z(Uc(T)"), we

obtain
- ([
reC

To proceed further, we note that we can remove all the U,
terms that are supported entirely in A or A using Definition
1.1, since we can freely move these operators to the
beginning of the product using the fact that all the operators
commute. Likewise, we can remove all the U, terms that
are supported entirely in B or B by moving them to the end
of the product and using Definition 1.2. After removing
these terms, we are left with only the terms that have
support in all four regions A, A, B, and B—i.e., terms that
lie at the intersection of dA and 0B:

11 U?)Ugdge) (8.11)

re0ANIB

Q p(Uc(T) (8.10)

0, 5 (Ue(T)) = Qs ((

Given that ultimately we are interested in the limit of
large A, B, and C, we can assume, in particular, that A, B,
and C are large enough that (J],c54ngp U) and Uegee are
supported on disjoint regions. Then, we can apply
Lemma 1 from Appendix B to write the flow as a sum
of two flows:

Q, 5(Uc(T)")

:QA,B(Ugdge)""QA,B( H U'f)-

r€0ANOB

(8.12)

To evaluate the first term, Q4 3(Upy,,), We note that
Uegge 1s supported near the boundary of C, so we can
truncate A and B to two intervals supported near the
boundary of C. After this truncation, Q, p(Uly,.) reduces
to the edge invariant

QA,B(U:dge) = ( edge) - nF(Uedge)’ (813)

where the second equality follows from the additivity of the
edge invariants under composition (see Corollary 4 in
Appendix B). Notice that in this setup we take A, B — o
faster than n, so A and B are sufficiently large [according to
the definition of F(U,qe) in Sec. IIE] compared to the
operator spreading length of U edge”

Next, consider the second term, Q4 z(][,connos UT)-
This term involves a unitary that is supported in a disk
of radius & (the length scale associated with the quasilocal
unitaries U,). Since £ is independent of the size of A, B, C,
or n, it follows that Q4 z([[,coanos U) is bounded by a
constant that is independent of the size of A, B, C, or n [35].

Therefore, the second term vanishes in the limit of
interest, and we obtain

lim lQAB(UC( T)")

AB.Cin—>oco (814)

= F(Uedge)'

This completes our derivation of the bulk-boundary cor-
respondence for general MBL Floquet systems (8.4).

IX. DISCUSSION

In this work, we show how to derive bulk and edge
invariants for 2D MBL Floquet systems using a special
mathematical object which we call a flow. Using this
approach, we obtain bulk and edge invariants for single-
particle Floquet systems, interacting many-body Floquet
systems with U(1) symmetry, and interacting Floquet
systems without any symmetry.

Throughout this paper, we focus on two symmetry
groups: the U(1) symmetry group and the trivial group
(i.e., no symmetry at all). More generally, we expect that
our approach should give topological invariants that at least
partially classify systems with other continuous symmetry
groups. [36] On the other hand, finite symmetry groups
may be problematic. The issue is that Floquet phases with
finite symmetry group G are believed to be classified by
both the GNVW index and an additional index that takes
values in the (finite) cohomology group H?(G,U(1))
[28,38]. The latter, cohomology-valued index is probably
out of reach of our flow-based approach. One way to see the
obstruction is to note that our bulk invariant [(3.17) and
(3.18)] is expressed in terms of an integral, which seems
incompatible with the finite group structure of
H?(G,U(1)). Therefore, we probably need other methods
to construct invariants in this case. (As an aside, we note
that the main problem here involves bulk invariants; by
contrast, it is possible to construct edge invariants using
similar ideas to the ones presented here, using a different
kind of flow which is multiplicative and complex valued,
rather than additive and real valued [39].)
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While we focus on bosonic systems in this paper, our
results can be straightforwardly generalized to fermionic
systems. In particular, the flows that we construct for
bosonic systems with U(1) symmetry (6.1) and without
symmetry (7.1) apply equally well to the fermionic case.
The corresponding edge and bulk invariants are also valid
in the fermionic case. The only new element is that these
invariants can take values that are not possible in purely
bosonic systems. For example, in the case of fermionic
systems without symmetry, the edge invariant F(Ugee) can
take the value log(1/2) when Ucgee is a “Majorana trans-
lation” [40].

One question raised by this work is whether there is any
connection between our invariants for Floquet systems and
previously known invariants for stationary topological
phases. In the single-particle case, there is indeed a close
relationship between these two types of invariants. For
example, the single-particle invariant M({U(¢)}) (5.3) is
closely related to the Chern number, as shown in
Appendix D. By analogy, one might wonder if our
many-body Floquet invariants, with and without U(1)
symmetry, are related to many-body stationary invariants
like the electric or thermal Hall conductance (see, e.g., the
modular commutator formula for the thermal Hall con-
ductance [41-43]). If such a connection exists, it would be
very interesting, since the two types of invariants describe
different objects: The stationary invariants describe proper-
ties of (gapped) ground states, while our Floquet invariants
describe properties of unitary operators.

Another question is to understand the physical inter-
pretation of Eq. (7.4), i.e., the bulk counterpart of the
GNVW index. Unlike the invariants for U(1)-symmetric
systems, we do not know how to relate this invariant to
current operators. On the other hand, previous work has
shown that the edge invariant (7.5) can be interpreted in
terms of transport of quantum information [15,16,44], so it
is possible that the bulk invariant could also have an
interpretation of this kind.

One possible direction for future work would be to
consider the generalization of MBL Floquet systems
discussed in Refs. [45,46]. In this generalization, one
requires that UY is many-body localized for some finite
integer N, but Uy itself need not be many-body localized.
(An illustrative example of such a system is the dynamical
Kitaev honeycomb model studied in detail in Ref. [46],
which becomes many-body localized after two periods.) In
these systems, we cannot use Eq. (8.1) to define an effective
edge unitary, so it is not possible to write down a mean-
ingful edge invariant. However, it may be possible to find
bulk invariants for these systems.

It would also be interesting to consider the partially
many-body localized Floquet systems discussed in
Ref. [20]. These systems are built out of fermionic degrees
of freedom and are localized up to n-body terms.
Reference [20] shows that multiparticle correlations in

these systems produce a family of integer-valued topologi-
cal invariants that generalize the winding number
W({U(t)}). It would be interesting to try to study flows
and the bulk-boundary correspondence for these systems.
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APPENDIX A: EQUIVALENCE OF
CLASSIFICATION OF UNITARY LOOPS
AND EDGE UNITARIES

In this appendix, we show that if two unitary loops
{U(t)} and {U’(¢)} are equivalent in the sense of Sec. II B,
then the corresponding edge unitaries U,gq, and Uy, are
equivalent in the sense of Eq. (2.9).

Let {U(t)} and {U'(t)} be two d-dimensional unitary
loops that are equivalent in the sense that there exists a one-
parameter family of unitary loops {U,()}, depending
smoothly on s, with Uy(t) = U(z) and U,(t) = U'(z). Let
Uegge and Upy,, be the corresponding (d — 1)-dimensional
edge unitaries, defined as in Eq. (2.11). We wish to show that
Utgge = WUegge for some (d — 1)-dimensional locally gen-
erated unitary W. To see this, consider the edge unitary
corresponding to { U(¢) }, which we denote by U.qg (), and

then define a Hermitian operator Hegg(s) by

[(d §
Hedge(s) =1 (E Uedgc(s)) Uidge(s)' (Al)
By construction,
d :
EUedge(s) = _lHedge(S) Uedge(s) (AZ)

so that

Uaee1) = Texp (=i [ )45 ) - Ugel0). (83

Using Ugge (1) = Upgge and Ulggge (0) = Ulegge, We deduce that

1
Uédge = Texp <_i‘/0 Hedge(s)ds> ' Uedge- (A4)

To complete the proof, we need to show Hq,.(s) is a local
(d — 1)-dimensional Hamiltonian. To this end, let O, and O,
be local operators supported on sites r and 7/, and consider
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the double commutator [[Hg(s). O,], O,]. We now argue
that the operator norm of this double commutator is expo-
nentially small in the distance | — #/|, which establishes the
locality of Hegee(s). First, we rewrite the commutator

[Hedge (S) ’ Or} as

[Hedge (S) ’ Or}
d

= _iUedge(s) a [Unge(S) OrUedge(s)] Unge(s)' (AS)
It follows that

[[[Heqge(s). O], O]l

Lfl [Ule(5)0, Usigel5)]. Ulgee ()0, Uedge(s)] H

(A6)

Now, by Lieb-Robinson bounds, the operator U:dge(s) x
O, Ueqee(s) is supported within a finite distance of site 7/
with exponential tails. Similarly, the operator (d/ds) x

¥
[Uedge
of site r, again with exponential tails. It follows that the
commutator between these operators is exponentially small
in the distance |r — r/|, as we wish to show.

(8)O0,Uegge(s)] is supported within a finite distance

APPENDIX B: PROOF OF THEOREM 1

In this appendix, we prove Theorem 1.

1. Two lemmas

Our proof uses two lemmas which apply to any flow
Q4 3(U). The first lemma says that flows are additive under
composition of unitaries supported in disjoint regions.

Lemma 1 (generalized stacking).—Let U, and U,
be (G-symmetric) unitaries supported on disjoint subsets
Ay, Ay CA. Forany A;,B; C Ay, and A,, B, C Ay,
Qp,0a,.8,08,(U1Uz) = Qy 5, (Uy) + 4, 5,(Us). (B1)

Proof—The claim follows straightforwardly from
Definitions 1.3 and 1.4 by thinking of U, as a tensor
product U;®1 and U, as T1® U, and using
(U, @ 1)(1 ® U,) = U, ® U,, where U, is defined on
A; and U, is defined on A,.

The second lemma says that, for any LPU U, the tensor
product U @ U is always an FDLU.

Lemma 2.—Let U be a (G-symmetric) strict LPU with an
operator spreading length &, defined on a lattice A. For any
such U, the tensor product U ® U, acting on the bilayer
system A x {1,2}, can be realized as a (G-symmetric)
FDLU of depth 2 built out of gates of radius .

Proof.—We rewrite U @ U' as

U® U = (SWAP')(SWAP), (B2)
where SWAP is the unitary transformation that swaps the
two layers and

SWAP' = (1 ® U")SWAP(1 ® U). (B3)
It is easy to see that SWAP is an FDLU of depth 1 built out of
gates of radius 1 while SWAP’ is an FDLU of depth 1 built

out of gates of radius &. Since U ® U Tisa composition of
these two FDLUs, the claim follows immediately.

2. Main argument
We are now ready to prove Theorem 1.
Proof.-—Item (i): Let U be a strict LPU with an operator
spreading length &, and let W be an FDLU of depth n:

W=W,W,_.W,. (B4)

Let

W =W,W _ .. W, (B5)
where each W/, is obtained by removing all unitary gates from
W, except for those fully supported in 0,,,A N 0,,,,4:B. We
wish to show that Q, z(WU) = Q, 3(W'U). To this end, we
decompose each W; as a product, W; = W.VAVE where V4
consists of all the gates in W; whose region of support
contains sites deeper than 2n4 within A or A, and where V#
consists of all the remaining gates in W; whose region of
support contains sites deeper than 2n1 + & within B or B. We
now show that we can remove each V4 and V# without

affecting Q4 (WU ). First consider V4 and V2. Note that

QA,B(WU) = QA,B(Wn' . Wll V?Vf U)

= Qu3(ViW,.. W UVE), (B6)
where V{1 = (W,...W,)V4(W,...W,) and V¥ = UTVEU.
Next, notice that V4 can be written as a product of
unitaries, each of which is supported either entirely in A
or entirely in A, since W,,...W, has an operator spreading
length of at most 2(n — 1)A. Therefore, by Definition 1.1,
we can remove Vfl‘ without affecting the value of €, g.
Similarly, Vf is a product of unitaries, each of which is
supported entirely in B or entirely in B, since U has an
operator spreading length &. Therefore, we can also remove
\7? according to Definition 1.2. Removing these two
operators from Eq. (B6), we obtain

Q5 (WU) = Q, (W,..W|U). (B7)

031038-21



CAROLYN ZHANG and MICHAEL LEVIN

PHYS. REV. X 13, 031038 (2023)

In exactly the same way, we can remove V5 and V% by
moving V4 to the left and V¥ to the right and then applying
Definitions 1.1 and 1.2 to remove the conjugated operators
V4 and V2. Continuing in this way, we can remove all the
V4 and VB operators until we are left with
QA,B(WU) - QA,B(WZW&U) :QAJ;(W/U). (BS)
This completes the proof of the first part of the theorem.
Item (ii): Let U be a strict LPU with operator spreading
length &, defined on a lattice A, and let A, B C A. We wish
to show that Q4 z(U) = Q4\, 5(U) for any site a € A such
that a & dy:B. To prove this, consider the bilayer system
A x{1,2}, and define two subsets A,B C A x {1,2} by
A=Ax{1}, B =B x{1,2}. (B9)
\ This setup is illustrated in Fig. 7. Consider the unitary
W = U ® U, acting on A x {1,2}. From Definition 1.3,
it is easy to see that

Qy 5(W) = Q4 5(U). (B10)

e.g., by setting

U]:U, UZZUT,
A]:A, AZZQ,
B]IB, BZZB

At the same time, using Lemma 2, we know that W is an
FDLU of depth 2 built out of gates of radius &. Therefore,
using Theorem 1.1,

Qu (W) = Qq 5(W), (B11)
where W’ is obtained from W by removing all the unitary
gates in W except for those fully supported in dgzB (In fact,
Theorem 1.1 tells us that we can remove all the gates except
for those supported in 0d4:A N d4zB, so it is actually a

stronger statement than what we need here—where we
remove fewer gates). Note that here, by d,:B, we mean sites

A B .
Ax{l}ooooio 0.0 0 0 Eo
Ax{Q}oooo:_o_ o_io

({94§B

FIG. 7. The bilayer system used in the proof of Theorem 1.2.
Here, A = A x {1} isasubsetof A x {1}, while B = B x {1,2}
is a subset of A x {1,2}. The thickened boundary d,;B consists
of sites within 4¢ of the left and right edges of B.

that are within 4 of both B and B in the direction parallel to
the two layers.

To proceed further, note that the support of W’ does not
contain the point a x 1; therefore, by Lemma 1,

Qup(W') = Q4 (ax1y.8(W'). (B12)
Also, by the same reasoning as in Eq. (B11),
Qp\(ax1}.8(W') = Q4 (ax1}.8(W) (B13)
while, by the same reasoning as in Eq. (B10),
Qu\(ax1}.8(W) = Q4,0 5(U). (B14)
Combining Egs. (B10)-(B14), we deduce that
Qy 5(U) = Qaa (V). (B15)

proving the claim. In exactly the same way, we can show
that Q, 5(U) = Q4 p\,(U) for any site b € B such that
b & d4¢A. This completes our proof of item (ii).

3. Three more corollaries

In Sec. III D, we listed two corollaries of Theorem 1. We
now discuss three additional corollaries.

Corollary 3 (conservation law).—Let U be a (G-sym-
metric) strict LPU with operator spreading length £. Then,
QA,B(U) =0if 04514 NnB= @ or A N 0458 = @.

Proof—This is an immediate consequence of
Theorem 1.2.

Corollary 4 (additivity under composition).—Let U; and
U, be (G-symmetric) strict LPUs defined on a lattice A,
with operator spreading length &. Then @, 3(U,U,) =
Qu5(U1) + Q4 3(Uy) if 04A N 05:B = @.

Proof.—The basic idea is to relate the composition of
two unitaries to a tensor product. Consider a bilayer
system A x {1,2}, and define subsets A = A x {1,2}
and B = B x {1,2}. Consider the unitary U, U, ® 1 acting
on this bilayer system. By Definitions 1.3 and 1.4,

Qup(U Uy, @ 1) = Qy 5(U,U>). (B16)
At the same time,
Qup(U U, ®1)=Q, (U, ®U)(U,®U,)).  (B17)

Noticethat U; @ U 1 is an FDLU of depth two with gates of
radius &, according to Lemma 2. Therefore, by Corollary 1,

U ® UJ{ can be dropped—that is,
(U1 @U)(U, @ U))) = p(U, @ Uy). (BIS)

Putting this all together, we deduce that
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Qu (U U,) = Q4 5(U, @ Uy)

=Q,3(U1) +Q45(Uy), (B19)
where the second equality follows from Definition 1.3.

Corollary 5 (antisymmetry).—Let U be a (G-symmetric)
strict LPU with operator spreading length £ defined ona 1D
lattice A. Then @, 3(U) = —Qp4(U) for any two over-
lapping intervals A = [a;, a,] and B = [by, b,] such that
b, —ay, ay — by, and b, — a, are larger than 4¢.

Proof.—We begin with two intervals A’ and B’ defined
by A" = [0,40¢] and B’ = [5&, 35&], respectively, as shown
in Fig. 8(a). By Corollary 3, we know that

Qu (V) = 0. (B20)

Also, using Theorem 1.2, we can remove any sites in A’
that are outside of 0,:B’, without affecting the value of
Qy p(U). In particular, we have

QA’,B’(U> = QA,UA,,B’(U)’

where A; =[0,10¢] and A, = [30£,40¢].  Applying
Theorem 1.2 again, but this time to the sites in B’, we have

(B21)

Q4048 (U) = Q04 58, (U),

where B; = [5&,15¢] and B, = [25¢&,35¢]. The resulting
system is shown in Fig. 8(b). Combining Eqgs. (B20)-(B22),
we derive

(B22)

QA,UA,,BIUB,(U) =0. (B23)
Below, we argue that
Q0,808 (U) = Q4,5 (U) +Q4 5 (U). (B24)
A
@ - -

A
v

® A4 B ? B, A,
(c) A B, B, A,

A (o SRR
Ax {2} e o oo:ioo o o
Wy T W,

FIG. 8. The bilayer system used in the proof of Corollary 5.
(a) We consider two intervals A = [0,40¢] and B = [5,35¢] on a
spin chain. (b) Using Theorem 1.2, we remove sites in A and B to
get A’ = A; UA, and B' = B, U B,, respectively. (¢) To complete
the proof, we again consider a bilayer system, and we use
Theorem 1.1 to truncate W = U ® U' to W' = W,W,.

Once we establish Eq. (B24), the corollary follows easily.
Indeed, let A = [ay, a,] and B = [b;, b,] be any two over-
lapping intervals such that by — a;, a, — by, and b, — a, are
larger than 4¢. Then, since Q4 (U) is independent of the
choice of A and B for large enough intervals (see Sec. Il E), we
know that

QA,B(U) = QAI,B,(U) (B25)
(since A; is located to the left of B;) and
QpA(U) = Q4 5,(U) (B26)

(since A, is located to the right of B,). The corollary now
follows from these equalities together with Egs. (B23)
and (B24).

All that remains is to show Eq. (B24). To do this, we use
the same trick as in the main proof in Appendix B 2: We
consider a bilayer system A x {1,2} and define subsets

Al:AZX{l}, Bl:BlX{l,z}, (B27)
and similarly for A, and B,.. Again, we consider the unitary
W=U@® U" acting on A x {1,2}, and we note that
Definition 1.3 implies that

Qu,ua,.808,(U) = Q4 04, Bus, (W) (B28)
Also, using Theorem 1.1, we know that
Quua, BB, (W) = Qa s, Bus, (W), (B29)

where W' is obtained from W by removing all unitary gates
except for those contained in dy:(By U B;).

To proceed further, we decompose W’ into a product
of two unitaries supported in disjoint regions, shown in
Fig. 8(c). Specifically, we use W' = W;W,, where W, is
supported in [£,19¢] and W, is supported in [21&,39¢].
Then, by Lemma 1, we have

Qaua, BB, (W) = Q4 5, (W) + Q4 5. (W,). (B30)

Also, by the same reasoning as in Eq. (B29), we know that

QA,,B,(WI) = QA,,B.(W)’
Q, 5, (W;) = Q4 5,(W) (B31)
and, by the same reasoning as Eq. (B28),
QAI.BI(W) = QA,.BI(U)’
QA,,B,(W) = QA,,B,(U)- (B32)

Combining Eqgs. (B28)—(B32) proves the claim (B24).
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APPENDIX C: DERIVATION OF
NONOVERLAPPING FORMULAS

In this appendix, we consider spatially additive flows,
i.e., flows obeying

Qupc(U) = Quc(U) + Qg (U),

Qupc(U) = Q4 5(U) + Q4 c(U), (C1)

and we derive the “nonoverlapping” formulas (4.3) and
(4.4) for their edge and bulk invariants.

We begin with the edge invariant F(Ueq,.). Recall that
this invariant is defined by F(Uecqee) = 24 p(Uecqge) Where
A and B are two overlapping intervals. To derive the
nonoverlapping formula (4.3), we decompose A and B into
three nonoverlapping intervals /, J, and K, withA =1 U J
and B = J U K. This is illustrated in Fig. 9. Using Eq. (C1)
and omitting the argument U.q,e in Q4 5(Ueqge) for brevity,
we have

F(Uegge) = Qup = Q1)+ Qx +Q,, + Q. (C2)

Next, we simplify the above expression using Corollary 3,
which says that Q4 5 = 0 if the boundaries of A and B are
much further apart than the operator spreading length of
Uegge- This means that Q; x = 0 and

Qyy+Qx+Q)=Q 150k =0. (C3)

Substituting —Q; ; for Q; ; 4+ ; x, we obtain the desired
nonoverlapping formula for F(U.gge):

(C4)

Next, we consider the bulk invariant M({U(t)}), which
is defined by M({U(t)}) = Qf ;({U(7)}). First, we define
four nonoverlapping regions I’, J', L', and M’, as shown in
Fig. 10. In particular, A=1" U J' and B=J U L’. Using
Eq. (Cl) and omitting U(t) in Q4 p(U(t)) for brevity,
we have

A = >

< >

t— Pt

1 J K

FIG. 9. To derive the nonoverlapping formula for the edge
invariant, we partition A U B into three nonoverlapping intervals
1, J, and K.

FIG. 10. To derive the nonoverlapping formula for the bulk
invariant, we partition A U B U C into four nonoverlapping sets
I',J', L', and M’. We denote their intersection with C by I, J, L,
and M, with K = L U M.

MAU()}) = / Tdr%%ﬂ(r))

r o
= / dta_ (Qry+Qru +Qpy+Q 1)
0 Ic

(C5)

We claim that the second term, [! d1(d/dtc)Qp 1/, van-
ishes. To see this, note that Eq. (3.35) implies that

T 9
/ dta— Q1= Quncrnc(Uc(T)).
0 fc

One can see that the right-hand side vanishes using the
fact that U-(T) is supported near the boundary of C
and the fact that I’ N dC and L' N dC are far apart
and then applying Corollary 2. By the same reasoning,
JJdt(0/0tc)Qp py = 0. Subtracting [] dt(0/0tc)Qyp 1
and adding [[ d1(0/0tc)Qy py to Eq. (C5) and defining
K =L uM, we get

MUUOD = [ dr 2@+ Qs+ Q). (€6)

dtc

Next, we define I=I'nNC, J=JNnC, and K =
(L’ uM') n C as in Fig. 10, and we split 0/dt into three
pieces:

o 4 9 9
e C7
e o o, Do ()

Substituting this expression into Eq. (C6) gives three terms
involving d/0t;, 0/dt;, and 0/0tx. We start with the d/0¢,
term. To simplify this term, we note that

0
—Q/ 1 //:O
ar] I'uJ'UK'.J'

(C8)
by Corollary 2 together with the observation that [ is far
away from the point where the boundaries of I’ U J' U K’
and J' intersect. It follows that
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0 0 0
—Q// —Q//:——Q//, C9
a1, 1 +at, ' o1, K (C9)
so that the d/0¢; term can be rewritten as
T 9
/ dt? (Qp .y + Qg+ Qpgr)
0 I
T 9
= [T @i -0, (c10)
0 Iy

Similarly, using (9/0tx )y ok = 0, wWe can rewrite the
0/ 0ty term as

T 0
/ dfa— (Qpy +Qp y+Qy gr)
0 Ik

T 0
— [ @ - (1)
K

0
Finally, using

0 0 0
TQI’UJ’UK’,J’ = ?Ql’uﬁuk’.k’ = TQK’.I’UJ’UK’ =0,
Iy Iy 1y

we can rewrite the d/0¢; term as

T 0
/ dt o (Qpy+Qp y+Qpg)
0 1y

T 9
- / dl‘ai (QK’,I’ - Ql’,K’) (CIZ)
0 1y
Putting together Egs. (C10)—(C12), we get
T 9
MUUOD = [ drg @i =)
0 i
L
+ / dta_ Qi = Qp k)
0 1y
T 9
+ / dt—(Qp y —Qp p). (C13)
o Ol

To simplify further, we note that we can truncate I’, J,
and K’ to I, J, and K using spatial additivity. For example,
by spatial additivity,

9 9 9 0
Q= Qb Q-0
T TR R T
9
—Q k., Cl4
o, ok, (C14)

where J, = J'\J and K, = K'\K. The latter three terms
all vanish using Corollary 2, since [ is far from the inter-
section of the boundaries of J,K,, and J,,K and J,, K,
respectively. Hence, we deduce that (9/0t;)Qy x =
(0/0t;)Q; . Applying the same truncation argument to

the other terms, we obtain the desired nonoverlapping
formula:

M{U()}) = / Tdtait[@m o))

T 0
+ / dta_ (Qxs—Qk)
0 y

T 0
+/ dli(Q[J—QJ’]). (CIS)
0

ot

APPENDIX D: M({U(f)}) FOR A STATIONARY
HAMILTONIAN

Consider a single-particle system whose time-indepen-
dent Hamiltonian H is a projector. For such a system, the
time evolution operator U(t) = e~ satisfies U(2x) = 1,
so it forms a unitary loop with 7" = 2z. For this system, we
evaluate M({U(¢)}) using Eq. (5.21) and show that it is
equal to the Chern number of the band that H projects onto.

Recall that, to use Eq. (5.21), we patrtition the plane into
three nonoverlapping regions I, J, and K that meet at a
point. Note that T} ,(¢) is given by

Tk (1) = iTe(U' (1) (PkHP, — PiHP)U(1)P;).  (D1)
Integrating J° {< ,(1) over a period, using
U(t)=1+ (e7" = 1)H, (D2)

gives

2n
/ dtT% (1) = AniTe(HP HP,HP, — HP,HPHP)).
0

(D3)

Then, from Eq. (5.21) and the fact that the trace is
invariant under cyclic permutations, we have

M({U(1)}) = 12ziTe(HPxHP,HP, — HP,HPHP)).
(D4)

The projector onto the ground state of H is Pgg = 1 — H.
Substituting 1 — P for H in Eq. (D4), we get precisely the
real space formula for the Chern number of the ground state
of H [33].

APPENDIX E: AN IDENTITY RELATING 5
FOR SETS AND THEIR COMPLEMENT

In this appendix, we derive an identity for » that we
need in Appendix F. Consider a unitary transformation U
defined on a lattice spin system. Let A and B be two subsets
of spins, and let A and B be their complements. Also, let A
and B be operator algebras consisting of all operators
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supported in A and B, and let A and B be the corresponding
operator algebras for A and B. The identity that we prove is
as follows:

Ns+Ng

n(UT AU, B) = d o n(UTAU, B).

(E1)

Here, N, and Ny denote the number of spins in regions A
and B, respectively, while N denotes the total number of
spins in the lattice.

To begin, we rewrite the definition of # (7.2) using
the unnormalized trace Tr (instead of the normalized
trace “tr’”):

n(UT AU, B)

dWNa+Ng)/2
= > T (UTOLU0y)P.
0,,0,

(E2)

Here, the O,, operators are normalized so that Tr(0}0,) =
8, Note that, in Eq. (7.2), the prefactor dNatNe)/2 /N g
hidden in the normalized trace tr.

To proceed further, it is useful to introduce a second copy
of our lattice spin system. We then use the fact that a
product of traces can be written as a trace over a tensor
product to rewrite # as expression involving two copies of
our lattice:

AdWNa+Ng)/2 N
n(UTAU, B) = — > TH(UT ® UT) (0L ® 0,)(U® U)(0, ® 0})]
0,,0,
dWNa+tNg)/2 ; .
— dN\/Tr{(UT Q UY) <020a ® 0a> (UQ U) <;0b ® 0,;)} (E3)
Next, we use the identity
> 0l ® 0, =SWAP,, > 0} ® 0, = SWAP;, (E4)

Oa

Oy

where SWAP, denotes the unitary operator that acts like a SWAP within region A and acts like the identity outside of A, and

similarly for SWAPp. With this identity, we can write

. AdWNa+Ng)/2
n(UTAU,B) = T\/Tr[(UT ® UT)(SWAP,)(U ® U)(SWAPg)]. (ES)
Next, we insert SWAP? = 1 in this equation, where SWAP exchanges the entire chains 1 and 2:
dWNa+Ng)/2 5
N(UTAU, B) = VTH(UT ® UT)(SWAP,)(SWAP?)(U ® U)(SWAP,)]. (E6)
Using the fact that [SWAP, U ® U] = 0, we can commute the SWAP through and rewrite this expression as
dWNa+Ng)/2
n(UTAU, B) = T\/Tr[(UT ® U")(SWAP, - SWAP)(U ® U)(SWAP - SWAPy)]. (E7)
Notice that
SWAP, - SWAP = SWAP;, SWAP - SWAP; = SWAP;. (ES8)
This allows us to simplify the above expression as follows:
dNatNg)/2 N Ns+Ng _ _
n(UT AU, B) = T\/Tr[(U ® UT)(SWAP;)(U ® U)(SWAP3)] = il n(U'AU, B), (E9)

where in the last line we use N = N4, + N3 = N + Njp. This concludes the proof of Eq. (El).
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APPENDIX F: OVERLAPPING FORMULA
FOR THE GNVW INDEX

In this appendix, we derive Eq. (7.6); i.e., we show that
our edge invariant F(U) is related to the GNVW index
ind(U) by

F(U) =log ind(U). (F1)

This amounts to proving the following identity. Let A and B
be two large overlapping intervals in some spin chain, and
let A and BB be operator algebras consisting of all operators
supported on A and B. Likewise, let A’ and B’ be two large
nonoverlapping adjacent intervals, and let A" and 5’ be the
corresponding operator algebras. The identity we need to
prove is

n(UTAU, B)
n(A, B)

_n(UAU,B)
- 77(/4/’ UTB/U) : (FZ)

Here, the left-hand side is the exponential of our edge
invariant exp[F(U)|, while the right-hand side is the
standard formula for the GNVW index ind(U).

To establish the identity (F2), we consider a 1D chain in
a periodic ring geometry. We consider two intervals C and
D that are adjacent (but nonoverlapping) at the bottom part
of the chain and that overlap at the top part of the chain (see
Fig. 11). We partition C and D into two pieces, C=C_UC_
and D = D_uU D, where C, and C_ are the parts of C in
the upper and lower half of the chain, and similarly for D,
and D_.

Let C, D, C, and D, be the corresponding operator
algebras and consider the quantity 5(C, U"DU). Because
operators that have support near the middle of C or D do not
contribute to 5, we can factor #(U'CU, D) into two terms:

n(UICU. D) = y(UTC,U. D )n(U'C_U.D.). (F3)

Next, let C and D be the complements of C and D and let C
and D be the corresponding algebras. By the identity (E1),

dNC+ND _ _
il n(U'CU, D). (F4)

n(U'CU,D) =

At the same time, if we compare the interval Cto D_, and
likewise we compare D to C_, we can see that

n(UTCU, D) = n(UD_U,C_), (F5)

since these two pairs of intervals are identical in the region
where they touch, i.e., the region that contributes to 5. Hence,
we have

dNC+ND

n(UTCU, D) = o n(U'D_U,C.). (Fo6)

FIG. 11. To derive the overlapping formula for the GNVW
index, we consider a circular spin chain and two intervals,
C=C,uUC_ and D =D, UD_, which are adjacent in the
lower half of the spin chain and overlapping in the upper half of
the spin chain.

To proceed further, we note that the prefactor
dVctNo /N can be rewritten as

Nc+N,
d ;N ? — dNCnD
= qNcenny
=n(C,.D,), (F7)

so Eq. (F6) can be written as
2(UTCU.D) = y(C,. D, n(UD_U.C.).  (F8)

Substituting this identity into Eq. (F3) gives

n(U'C,U.Dy) _ n(U'D_U.C.)
n(C+.Dy)  n(U'C.U.D.)
n(U'D_U,C.)
= F
n(D_,U'C_U) (F9)

Finally, identifying C, and D, with the overlapping
intervals A and B, and identifying D_ and C_ with the
nonoverlapping intervals A’ and B’ we recover the desired
identity (F2).
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