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We provide a theoretical description of dynamical heterogeneities in glass-forming liquids, based on the
premise that relaxation occurs via local rearrangements coupled by elasticity. In our framework, the growth
of the dynamical correlation length ξ and of the correlation volume χ4 are controlled by a zero-temperature
fixed point. We connect this critical behavior to the properties of the distribution of local energy barriers at
zero temperature. Our description makes a direct connection between dynamical heterogeneities and
avalanche-type relaxation associated to dynamic facilitation, allowing us to relate the size distribution of
heterogeneities to their time evolution. Within an avalanche, a local region relaxes multiple times; the more,
the larger the avalanche. This property, related to the nature of the zero-temperature fixed point, directly
leads to decoupling of particle diffusion and relaxation time (the so-called Stokes-Einstein violation). Our
most salient predictions are tested and confirmed by numerical simulations of scalar and tensorial thermal
elastoplastic models. Our most salient predictions are tested and confirmed by numerical simulations of
scalar and tensorial thermal elasto-plastic models, and in agreement with molecular dynamic simulations.
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I. INTRODUCTION

As a liquid is cooled, the relaxation time τα below which
it acts as a solid—before displaying flow—grows from
picoseconds at high temperatures up to minutes at the glass
transition temperature Tg [1–4]. In this regime, the effective
activation energy associated to τα grows for many liquids,
leading to a super-Arrhenius behavior. Approaching Tg,
dynamics also becomes heterogeneous on a growing
correlation length scale ξ [5–9]. The underlying causes
for these observations are still debated. In some views,
activation is cooperative: The slowing down of the dynam-
ics is governed by complex motion taking place on an
increasingly large static length scale. In particular, coop-
erativity is central in the random first-order theory [10–12]
and due to the growth of amorphous order. Another
approach focuses on dynamical facilitation, the

phenomenon by which a region’s relaxation is made much
more likely by a relaxation nearby. In kinetically con-
strained models, such as the East model, kinetic rules
induce dynamic facilitation and growth of dynamical
correlations [13,14]. This lead to a theory [15–17] in which
thermodynamics plays almost no role, but dynamics is
heterogeneous (due to kinetic constraints) and the super-
Arrhenius behavior is due to nonlocal rearrangements
taking place over ξ. Free volume [18] or elastic [19–21]
models assume that the activation energy is not controlled
by a static growing length scale: It is governed by the
energy barrier of elementary rearrangements or excitations.
Recently, measurements indicated that the distribution of
local energy barriers shifts to higher energy under cooling,
opening up a gap at low energies where excitations are
nearly absent [22]. This shift accounts quantitatively for the
dynamical slowing down of the liquid, supporting that local
energy barriers may indeed control the dynamics. Yet, in
these views, what causes the existence of a growing length
scale is unclear. An intuitive resolution of this paradox
stems from the fact that, on relatively short timescales, a
supercooled liquid acts as a solid [19,23]: A rearrangement
corresponds to a local (plastic) strain, that affects stress
away from it. Lemaitre [24] was the first in stressing the
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possible relevance of long-range stress correlations in the
dynamics of supercooled liquids, in line with various
theoretical and numerical studies [25–31]. Recently, it
was shown that indeed elastic interactions play an impor-
tant role in dynamical facilitation [32]. Moreover, Ref. [33]
showed that heterogeneous relaxations take place in the
form of plastic rearrangements that are called shear trans-
formations [34]. Following these molecular simulation
studies, Ref. [35] demonstrated with elastoplastic models
(traditionally used to study the plasticity of amorphous
solids under loading [36–40]) that, while being controlled
by local energy barriers, the dynamics can at the same time
display growing dynamical correlations similar to obser-
vations in experiments and molecular simulations [14,41].
Furthermore, such models also capture the emergence of a
gap in the distribution of local barriers under cooling,
which controls the dynamics [35,42]. We expect that the
elastoplastic description discussed above becomes more
and more relevant with decreasing temperature. This paper
focuses on such a lower-temperature regime.
In this work, we propose a scaling description of

dynamical heterogeneities in glass-forming liquids, mod-
eled as undergoing local irreversible rearrangements
coupled by elasticity. We show that the dynamical
correlations observed in elastoplastic models of equilib-
rium glassy dynamics [35] are due to “thermal ava-
lanches,” where rare nucleated events are followed by a
pulse of faster (or facilitated) events. These avalanches are
very reminiscent of the ones found in molecular simu-
lations of supercooled liquids [43–45]. Our analysis
builds a link with systems that crackle such as disordered
magnets, granular materials, and earthquakes [46,47] even
at finite temperatures [42,48–50], revealing that dynami-
cal heterogeneities are controlled by a critical point at zero
temperature, with a diverging length scale ξ ∼ T−ν and
correlation volume χ�4 ∼ T−γ . We provide a scaling argu-
ment expressing ν and γ in terms of the distribution of
energy barriers at T ¼ 0. Our analysis makes predictions
on the power-law distribution of the size of dynamical
heterogeneities, which could be tested in numerical
simulations of supercooled liquids thanks to the
recent advances in the characterization of dynamical
correlations [51,52]. Based on the properties of the
zero-temperature fixed point governing thermal ava-
lanches, we also show that the decoupling Dτα between
particle diffusion D and relaxation time τα (the so-called
Stoke-Einstein violation [53–57]) diverges as Dτα ∼ T−h,
where h can be expressed in terms of avalanche properties
at vanishing temperature. The key physical mechanism
behind the Stoke-Einstein violation is the intensive accu-
mulation of rearrangements in the mobile region that
quantifies a larger diffusion constant D, relative to the
structural relaxation time τα [58–62]. We perform numeri-
cal simulations and analyze the results by finite-size
scaling in order to test our salient predictions. Our

findings agree well with the scaling theory for both scalar
and tensorial thermal elastoplastic models.

II. THERMAL ELASTOPLASTIC MODELS

To study dynamical heterogeneities in low-temperature
glass-forming liquids, we employ a generalization of elasto-
plastic models [36,37] which are a class of mesoscopic
models designed to capture the essential features of localized
plastic events (shear transformations) with stress relaxation
accompanied by long-range elastic interactions. An elasto-
plastic model contains N ¼ Ld mesoscopic sites that are
arranged on a regular grid whose linear size is L, and d is the
spatial dimension. Each site exhibits a plastic event when
the magnitude of the local shear stress becomes sufficiently
large, which leads to local stress relaxation and stress
redistribution in the rest of the system via the form of
Eshelby fields. Elastoplastic models were originally intro-
duced to study the flow of amorphous solids under external
loading [36,37,39,40] (some exceptions, e.g., Ref. [63]), and
they were generalized to take into account thermal fluctua-
tions [64] and then to study glass-forming liquids [35]. Here,
we study their low-temperature relaxation dynamics in the
absence of loading. Following the idea that supercooled
liquids can be viewed as solids that flow [19,24], we develop
a physical scenario based on the assumption that local
rearrangements are elastically coupled, and we model this
physical mechanism by elastoplastic models.
In this paper, we use a tensorial elastoplastic model

that accounts for the shear stress tensor [65] and a scalar
elastoplastic model in which the shear stress is represented
by a scalar variable [35] (see Appendix A for details). In
both models, thermal fluctuations are implemented through
a probability rate τ−10 e−E=T to trigger a plastic (mobile)
event in an otherwise stable elastic (immobile) site,
where E is the local activation energy barrier and τ0 is a
microscopic relaxation timescale [42,64,66,67]. The
energy barrier E can be related to the minimal amount
of additional shear stress xi required to destabilize a site i.
In particular, we consider EðxÞ ¼ cxα, which is suggested
by recent elastoplastic models and molecular simulations
[33,42,66–68]. In this study, we set τ0 ¼ 1, c ¼ 1, and the
value α ¼ 3=2 corresponds to a smooth microscopic
potential [69]. As stress is relaxed locally at the site of
the plastic event, stress in the system changes according
to the Eshelby kernel [36]. Specifically, in the scalar model,
the kernel is randomly oriented at each relaxation event.
This random orientation of the Eshelby kernel is crucial to
describe for isotropic supercooled liquids in a quiescent
state, in contrast to amorphous solids under shear, where
Eshelby fields align along the shear direction [70]. Note
that, in the tensorial model, after each relaxation the
yielding surface is reoriented uniformly at random, and
one uses the full Eshelby propagator; hence, no additional
symmetrization is required [71]. Besides, our elastoplastic
models have zero total (macroscopic) stress, as anticipated
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in quiescent supercooled liquids. Detailed descriptions of
the tensorial and scalar models are found in Appendix A.
We perform numerical simulations in a two-dimensional
periodic lattice (d ¼ 2), whereas we develop scaling argu-
ments in general d dimensions. Since we find that both
scalar and tensor models show qualitatively and quantita-
tively similar results (e.g., critical exponents), we focus on
the tensorial model in the main text and present the scalar
one in Appendixes B and C.

III. DYNAMICAL HETEROGENEITIES
AT FINITE TEMPERATURES

We first perform finite-temperature simulations and
characterize dynamical properties. To this end, we consider
the persistence two-point time correlation function
hπðtÞitime, which is used widely in the context of kinetically
constrained models [13]. The observable πðtÞ is defined by
πðtÞ ¼ P

i piðtÞ=N, where piðtÞ ¼ 1 if the site i does not
exhibit a plastic event until time t and remains immobile
and piðtÞ ¼ 0 for mobile sites that relax at least once.
The notation h� � �itime denotes the time average at the
stationary state at temperature T reached after a long
enough equilibration time. We verify that the model does
show dynamical slowing down by measuring hπðtÞitime at
different temperatures, as shown in Fig. 1(a). In Fig. 1(b),
we find that the associated relaxation time τα defined
by hπðταÞitime ¼ 1=2 increases in an Arrhenius way.
Figure 2(a) represents a snapshot of local persistence
for τ=τα ≃ 0.53, demonstrating spatially heterogeneous
dynamics. To quantify the magnitude of dynamical
heterogeneity, we compute the four-point correlations
function [72] χ4ðtÞ, defined by

χ4ðtÞ ¼ Nðhπ2ðtÞitime − hπðtÞi2timeÞ: ð1Þ

χ4ðtÞ is proportional to the size of the dynamically
correlated region (see Appendix B for details), which is
the central observable characterizing dynamical hetero-
geneity approaching the glass transition [14], as it has been

estimated in real experiments [7,41,73,74] as well as
molecular simulations [72,75,76].
Figure 2(b) shows the time and temperature evolution of

χ4ðtÞ. It takes a peak near the relaxation timescale τα, and
the peak grows with decreasing temperature, which is the
hallmark of dynamical heterogeneity in glassy dynamics.
We then plot the peak value of χ4ðtÞ, denoted χ�4, versus
temperature T for several system sizes in Fig. 3(a). The
system size dependence, akin to molecular simulations
[75,77], allows us to perform finite-size scaling. We find
that, for increasing the system size L, χ�4 follows a scaling
form χ�4 ∼ T−γ with a critical point at T ¼ 0 and the
associated exponent γ. We obtain a scaling collapse for
χ�4ðL; TÞ in Fig. 3(b) (see also molecular simulation studies
[75,77]), indicating that the dynamics is governed by a
diverging correlation length toward T ¼ 0, i.e., ξ ∼ T−ν

with an exponent ν. The corresponding data for the scalar
model are presented in Appendix B. Besides, we obtain a
consistent result in terms of ν by directly measuring the
dynamical correlation length scale based on the four-point
structure factor [78]. The observed critical exponents and
predictions (see below) are summarized in Table I. The
main goal of this paper is to provide a scaling theory for
these critical behaviors, connecting the dynamics at finite
temperature to a zero-temperature critical point.

IV. CRITICAL POINT AND EXTREMAL
DYNAMICS AT T = 0+

We now consider dynamics at vanishing temperature
T ¼ 0þ and show that it is related to a critical point.
At T ¼ 0þ, the site with the smallest energy barrier
Emin ¼ x3=2min, the weakest site, always yields first [79],
where xmin is the corresponding stress required to desta-
bilize the site. Therefore, one can simulate dynamics at
T ¼ 0þ by relaxing always the weakest site instead of
relaxing a random site weighted by the relaxation rate

(b)(a)

FIG. 1. Dynamics of the tensorial model in finite-temperature
simulations. (a) Mean persistence correlation function hπðtÞitime
for L ¼ 128 and T ¼ 0.050, 0.040, 0.030, 0.025, 0.020, 0.018,
and 0.015 (from left to right). (b) The relaxation time τα
versus 1=T. The red dashed line corresponds to τα ∼ eEc=T with
Ec ¼ x3=2c ¼ 0.42 measured independently in Sec. IV.

(a) (b)

FIG. 2. Dynamical heterogeneity of the tensorial model in
finite-temperature simulations. (a) Snapshot characterized by
local persistence piðτÞ when τ=τα ≈ 0.53 at T ¼ 0.015. Red
and purple sites correspond to mobile [piðτÞ ¼ 0] and immobile
[piðτÞ ¼ 1] sites, respectively. The system size is L ¼ 128.
(b) Four-point correlation function χ4ðtÞ for L ¼ 128 and
T ¼ 0.050, 0.040, 0.030, 0.025, 0.020, 0.018, and 0.015 (from
left to right).
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e−EðxÞ=T . This algorithm allows us to access dynamical
information even at vanishing temperature (see details
in Appendix C). It is an example of extremal dynamics,
which is well studied in the context of self-organized
criticality [80] and some disordered materials under quasi-
static driving [48,81], including annealed glasses [82].
In the thermodynamic limit L → ∞, the extremal

dynamics leads to an absorbing condition for E ≤ Ec,
where Ec is a critical energy barrier as found (for
T → 0) in Ref. [35]. As a result, the distribution of local

(activation) energy barriers PðEÞ vanishes for E ≤ Ec [see
the sketch in Fig. 8(a)]. This implies that limL→∞ PðxÞ ¼ 0

for x ≤ xc ¼ E2=3
c , where PðxÞ is the distribution of x.

Thus, only a subextensive number of sites are found for
x ≤ xc at a finite L. In this paper, we use PðEÞ and PðxÞ
interchangeably, since they carry essentially the same
information.
The extremal dynamics consists of a succession of

avalanches. In fact, relaxation at a site can change local
energy barriers E at different sites by elastic interactions.
As long as those are below Ec, the corresponding sites
belong to the same avalanche [80]. This is a vivid
realization of the phenomenon of dynamic facilitation.
To characterize the avalanches, we follow the method
introduced in the study of extremal dynamics [48,80].
For a finite L, we fix a chosen threshold stability value
x0ð≤ xcÞ and define x0 avalanches as the sequences of
events for which xmin < x0 (see Fig. 16 in Appendix C).
Two useful characterizations of avalanche size are the total
number of relaxation events S in a given sequence (event-
based avalanche size) and the total number of sites S̃ that
relaxed at least once during an avalanche (site-based
avalanche size). By construction, S̃ ≤ S and S̃ ≤ Ld. We
show a snapshot having S and the corresponding S̃ in
Fig. 4. The two characterizations can be (and, as we show,
are) different, as a site can relax multiple times within the
same avalanche. Thus, the event-based avalanche size S
allows us to quantify the accumulation of relaxation events
in the mobile region (as emphasized in a recent molecular

(a)

(b)

FIG. 3. (a) The peak of four-point correlation function χ�4 versus
T for several L for the tensorial model. The red dashed line
follows χ�4 ∼ T−γ . (b) The corresponding scaling collapse.

TABLE I. Critical exponents (γ and ν) obtained from finite T
simulations in the scalar and tensorial elastoplastic models in
two dimensions, compared with their predicted values proposed
in Sec. V.

Scalar model Tensorial model
Prediction
d ¼ 2

Prediction
mean-field

γ 1.8� 0.1 1.7� 0.1 1.60� 0.05 1.5
ν 0.85� 0.05 0.80� 0.05 0.80� 0.03 0.75

100

10

1

0

FIG. 4. A snapshot of an avalanche formation for the extremal
dynamics of the tensorial model with L ¼ 256. Event-based
avalanche size is S ≃ 2.7 × 105, while the site-based avalanche
size is S̃ ≃ 3 × 104. Purple shows immobile sites (zero event),
and the color bar shows the number of relaxation events in
mobile sites.
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simulation study [52]), whereas the site-based avalanche
size S̃ is associated to the spatial extent of dynamically
correlated regions [as it contains the essentially same
information as the persistence map in Fig. 2(a) and,
hence, χ4]. Sizes of avalanches, S and S̃, depend on
the threshold x0. They grow with increasing x0 and
diverge at xc.
By systematically exploring different values of x0, one

can determine the critical point xc. In fact, one expects that
the avalanche distribution PðSÞ during the extremal dynam-
ics follows a power law with a scaling form [48,80,83]:

PðSÞ ∼ S−τgðS=ScÞ; ð2Þ

where gðzÞ is a scaling function and Sc is a cutoff size
which takes the form

Sc ∼ ðxc − x0Þ−1=σf
�

Ldf

ðxc − x0Þ−1=σ
�
; ð3Þ

where 1=σ and df are critical exponents, fðzÞ ¼ 1 for
z ≫ 1, and fðzÞ ¼ z for z → 0. Thus, Sc ∼ Ldf when
x0 → xc, whereas Sc ∼ ðxc − x0Þ−1=σ when L → ∞. The
same expressions are expected to hold for the site-based
avalanche size S̃, defining exponents τ̃, 1=σ̃, and d̃f. To
estimate Sc, we use the fact that for 1 < τ < 3 the ratio
hS3i=hS2i is proportional to the cutoff value Sc, where
h� � �i ¼ R∞

0 dSPðSÞð� � �Þ. As we are interested in scaling
of Sc with system size, the numerical constant is irrelevant
and we define Sc ≡ hS3i=hS2i. The same expression is
used mutatis mutandis for the site-based avalanche size S̃.
More details about avalanche statistics can be found
in Appendix C.
We determine xc and the exponents 1=σ, 1=σ̃, df, and d̃f

by measuring Sc and S̃c for different values of threshold x0
and system size L and collapsing them using the scaling
form in Eq. (3) for both Sc and eSc, as shown in Figs. 5(a)
and 5(b). We obtain xc ¼ 0.560� 0.001. The values of the
critical exponents are presented in Table II. Figures 5(c)
and 5(d) display Sc and S̃c as a function of xc − x0, for
various system sizes L. They indeed show that Sc and S̃c
grow with x0 and saturate due to finite-size effects.
Once xc is determined, we can study the statistics

of the system-spanning avalanches relevant to the thermo-
dynamic limit. Thus, we fix x0 ¼ xc and measure the
distribution PðSÞ and PðS̃Þ of the avalanche sizes; see
Figs. 6(a) and 6(b). We find that avalanche sizes are power-
law distributed with an eventual cutoff, consistent with the
general assumption in Eq. (2). The scaling form in Eq. (2)
collapses the data using Sc ∼ Ldf and the previously
obtained values of df and d̃f; see Figs. 6(c) and 6(d).
From the data collapse, we determine values of avalanche
exponents τ and τ̃ (see Table II). The successful collapse of

the data confirms the validity of the scaling ansatz as well
as the value of critical exponents.
The above analysis reveals that the extremal dynamics of

our model of glass forming-liquid displays, scale-free,
avalanche-type dynamics akin to the ones of other disor-
dered systems under external loading [46,47].
Coming back to the distribution of energy barriers PðEÞ

and the corresponding distribution PðxÞ, one would expect
that it continuously vanishes at xc as PðxÞ ∼ ðx − xcÞθ,
defining an exponent θ [42]. This behavior also occurs near
the yielding transition of amorphous solids under shearing
(with xc ¼ 0) [84], where it affects the scaling of flow
properties [39] and plasticity [85], and, more generally,
in glassy systems with long-range interactions [86].

(a) (b)

(c) (d)

FIG. 5. Statistical properties of avalanches during the extremal
dynamics at T ¼ 0þ for the tensorial model. (a),(b) Scaling
collapse for the cutoff size Sc ¼ hS3i=hS2i based on Eq. (3), for
various L for the event-based (a) and site-based (b) avalanche
sizes, which determines the critical threshold xc and critical
exponents 1=σ, 1=σ̃, df, and d̃f. (c),(d) Sc versus xc − x0. The
red dashed line corresponds to Sc ∼ ðxc − x0Þ−1=σ in (c) and
S̃c ∼ ðxc − x0Þ−1=σ̃ in (d).

TABLE II. Critical exponents obtained from extremal dynam-
ics simulations at T ¼ 0þ for the scalar and tensorial elastoplastic
models in two dimensions. The reported error for the measured
exponents corresponds to the range of parameters over which the
power-law behavior successfully collapses the data.

Scalar model Tensorial model

δ ¼ 0.64� 0.01 δ ¼ 0.62� 0.01
τ ¼ 1.25� 0.05 τ ¼ 1.30� 0.05
df ¼ 2.3� 0.1 df ¼ 2.3� 0.1
1=σ ¼ 2.2� 0.1 1=σ ¼ 1.95� 0.03
τ̃ ¼ 1.25� 0.05 τ̃ ¼ 1.35� 0.03
d̃f ¼ 2.00� 0.02 d̃f ¼ 1.95� 0.05
1=σ̃ ¼ 1.9� 0.1 1=σ̃ ¼ 1.75� 0.03
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The underlying reason is that, at each step of the extremal
dynamics, each site receives a stress kick, such that xi of a
site i follows a random process, with an effective absorbing
condition at xc. If this random process were a Brownian
motion, then one would obtain θ ¼ 1. Yet the kicks are
much more broadly distributed, and, in higher dimensions,
this random process is akin to a Levy flight [87], which can
be shown to imply θMF ¼ 1=2 [88]. In Fig. 7(a), we plot
PðxÞ for the extremal dynamics, measured from configu-
rations just before (or after) each avalanche defined as
xmin > x0 ¼ xc, together with PðxÞ obtained from finite-
temperature simulations studied in Sec. III. At higher T,
PðxÞ shows a broader distribution with a smooth decay. As
T is decreased, PðxÞ converges to the one obtained by the
extremal dynamics at T ¼ 0þ, whose shape is consistent
with PðxÞ ∼ ðx − xcÞθ.

The following two features of PðxÞ connect the extremal
and finite-temperature dynamics. First, the point xc or the
corresponding energy scale Ec ¼ x3=2c controls the effective
energy barrier associated to τα. Indeed, at small temper-
ature, the dynamics proceeds by relaxing the sites with
smallest barriers, i.e., sites having barriers close to Ec
[35,42]. This is in agreement with the relaxation time τα
observed in Fig. 1(b), which scales as τα ∼ eEc=T .
Second, more importantly for what follows, in a finite

system of size N ¼ Ld, the typical scale of xmin and
the second-lowest x, denoted as xsecond, is expected to
follow a power law, hxsecond − xmini ∼ N−δ. As we show,
this plays a key role in the characterization of thermal
avalanches. Since the energy difference between the
lowest and second-lowest activation energies is given by
Esecond − Emin ∼ xsecond − xmin, we conclude

hEsecond − Emini ∼ N−δ: ð4Þ

Thus, the exponent δ characterizes an important feature of
the energy barrier relevant for low-temperature dynamics.
We numerically confirm this scaling in Fig. 7(b), and the
obtained value of δ is reported in Table II. Extreme value
statistics argument suggest δ ¼ 1=ð1þ θÞ [39] (although
near the yielding point deviations from this relation
have been reported in finite dimension [89] and explained
in Ref. [90]). Within the mean-field theory [88], one finds
δMF ¼ 1=ð1þ θMFÞ ¼ 2=3, a value close to what we
observe in Fig. 7(b).
The results presented in this section show that the

extremal dynamics of the tensorial elastoplastic model
of supercooled liquids is governed by system-spanning
avalanches. We fully characterize the associated zero-
temperature critical point by obtaining all relevant expo-
nents, summarized in Table II. We also obtain qualitatively
and quantitatively (e.g., critical exponents) similar results
in the scalar model, which are presented in Appendix C.
Remarkably, we find that the scalar and tensorial models
display very close values of the critical exponents and
likely correspond to the same universality class.

V. SCALING THEORETICAL ARGUMENTS

In the following, we develop a scaling theory that
connects dynamical heterogeneities observed in finite-
temperature simulations (Sec. III) and the zero-temperature
critical point, and associated avalanches, of the extremal
dynamics (Sec. IV). We also discuss other important
physical consequences, such as the time evolution of
avalanche sizes and the Stokes-Einstein violation.

A. Length scale of dynamical heterogeneity

We consider the effect of finite temperature T on the
extremal dynamics. As we discuss below, the breakdown of
the condition for the extremal dynamics naturally leads to

(a) (b)

(c) (d)

FIG. 6. (a),(b) Distribution of avalanche size PðSÞ (a) and PðS̃Þ
(b) for a stability threshold x0 ¼ xc for the tensorial model, with
varying the system size L. The dashed lines follow PðSÞ ∼ S−τ (a)
and PðS̃Þ ∼ S̃−τ̃ (b). (c),(d) The corresponding scaling collapse
following Eq. (2) with Sc ∼ Ldf (c). The same expressions are
used for PðS̃Þ in (d).

(b)(a)

FIG. 7. (a) PðxÞ from finite T simulations and extremal
dynamics at T ¼ 0þ for the tensorial model with L ¼ 256.
The red arrow indicates xc. (b) Average of Esecond − Emin obtained
from the extremal dynamics for various N ¼ Ld. The red dashed
line corresponds to hEsecond − Emini ∼ N−δ.
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the length scale ξ of dynamical heterogeneity at finite T.
The proposed picture is schematically depicted in Fig. 8.
At finite but low T, the dynamics is expected to be

extremal on large but finite length scales. To understand the
underlying mechanism, let us consider a finite-size system.
For a fixed system size, if T is small enough, the site with
the lowest activation energy Emin typically relaxes first
like for T ¼ 0þ (the probability to relax the site with the
second-lowest energy is negligible). This relaxation corre-
sponds to a slow “nucleation” event when Emin ≈ Ec that
occurs on a timescale τα ∼ eEc=T , as schematically shown in
Fig. 8(a). The nucleation event lowers energy barriers of
some other sites of the system, which we call “facilitated”
sites, due to elastic interactions, and causing a sequence of
faster events when Emin < Ec, as shown in Fig. 8(b). This
cascade process forms an avalanche, which eventually

stops. A new avalanche starts again once another nucleation
event occurs. The dynamics is, thus, intermittent with the
power-law avalanches discussed in Sec. IV. Clearly, there is
a typical size NT above which this picture breaks down.
Indeed, the above description holds when the thermal
energy T is much smaller than the typical energy difference
between the lowest and second-lowest activation energies,
hEsecond − Emini; otherwise, sites with higher energy bar-
riers (such as Esecond) might relax and dynamics cease to be
extremal. According to Eq. (4), hEsecond − Emini depends on
the system size N. Thus, the condition for the extremal
dynamics which interplays T and N is given by
T ≪ hEsecond − Emini ∼ N−δ, i.e., N ≪ NT ∼ T−1=δ.
In consequence, when the system size N is too large at

fixed T, the above description cannot hold. In this case,
in particular in the thermodynamic limit, multiple nucle-
ation events followed by avalanches take place (inde-
pendently) in parallel in the system, as sketched in
Fig. 8(c). The cutoff length scale ξ encompassing a
single avalanche is not limited by system size but by
other avalanches in the system, which can be estimated
assuming that the locations of these avalanches are
independent. Such an approximation will be accurate
if structural spatial correlations are not preponderant in
this system, as discussed below. Assuming finite-size
scaling, ξd must then correspond to the largest system
size NT for which extremal dynamics at finite T holds,
i.e., ξd ∼ NT . This provides the link between finite-size
zero-temperature avalanches and thermal ones.
Moreover, it also directly predicts that the size of
dynamically correlated regions characterized by χ�4,
which is given by the crossover size above which the
condition for the extremal dynamics breaks down:
χ�4 ∼ ξd̃f leading to χ�4 ∼ T−d̃f=dδ. In conclusion, we derive
two scaling relations for thermal avalanches:

γ ¼ d̃f
dδ

; ð5Þ

ν ¼ 1

dδ
: ð6Þ

These scaling relations connect dynamical heterogeneities
at finite T (characterized by γ and ν) and the distribution
of local energy barriers at T ¼ 0þ (characterized by δ)
together with the morphology of avalanches during the
extremal dynamics (by d̃f). We thus predict γ and ν by
using δ and d̃f measured in the extremal dynamics in
Sec. IV. These predictions are in good agreement with
finite-temperature simulations in Sec. III, as summarized in
Table I. We also find that the mean-field predictions using
δMF ¼ 2=3 and d̃f ¼ d ¼ 2 lead to similar values.
This argument is expected to break down if large spatial

correlations characterize the structure of the system, caus-
ing the locations where avalanches start to be correlated.

FIG. 8. Proposed picture for dynamical heterogeneities in
glass-forming liquids. (a) At low temperatures, the distribution
of activation energy barriers PðEÞ presents a gap below some
energy Ec. On a timescale τα ∼ eEc=T , a site with a barrier near Ec
relaxes (red arrow), which we call a “nucleation event.” As a
result, due to elastic interactions, other sites may display lower
barriers E < Ec (blue arrows), which we call “facilitated sites.”
They relax on a timescale much faster than τα, leading to a rapid
sequence of events, forming a thermal avalanche. The corre-
sponding real space picture is shown in (b) and (c). (b) A
nucleation event (red circle) triggers facilitated sites (blue circles)
by elastic interactions (wavy arrows). These induced events again
induce other sites, forming an avalanche growth. (c) Avalanche
growth is cut off due to other avalanches originating from
different nucleation events taking place simultaneously in the
system. The cutoff length ξ corresponds to the maximum size for
which extremal dynamics applies, which defines the length of
dynamical heterogeneity at finite temperature.
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Indeed, as is always the case in disordered materials at zero
temperature, any critical threshold such as xc or Ec must
display finite-size fluctuations Δxc ∼ ΔEc. These fluctua-
tions are described by some exponent ν0, such that, in a
system of finite size L, one has ΔEc ∼ L−1=ν0 . The value of
ν0 is affected by spatial correlations. In general, one must
have ν0 ≥ ν, since the fluctuations ofΔxc orΔEc must be at
least as large as the typical distance between most unstable
sites in a quiescent system Esecond − Emin ∼ L−1=ν: Indeed,
Ec cannot be more precisely defined than this difference.
We expect our argument above to hold when ν ¼ ν0,
corresponding to ΔEc ∼ Esecond − Emin. ν0 can be related
to previously introduced exponents 1=σ̃ and d̃f as follows.
If a finite system displays a system-spanning avalanche
S̃ ∼ S̃c ∼ Ld̃f and entirely rearranges, then the change of xc,
or equivalently that of Ec, must be of the order of Δxc.
According to Eq. (3), an avalanche of size S̃ ∼ S̃c ∼ Ld̃f is
associated with a characteristic change of the critical
threshold Δxc ¼ xc − x0 ∼ L−σ̃d̃f [when z ≈ 1 in fðzÞ],
implying that ξ ∼ Δx−1=ðσ̃d̃fÞc . Since Δxc ∼ ΔEc and
ΔEc ∼ ξ−1=ν

0
, we obtain ν0 ¼ 1=ðσ̃d̃fÞ. Using numerical

values for σ̃ and d̃f, this expression leads to ν0 ≈ 0.95 and
ν0 ≈ 0.9, respectively, for the scalar and tensorial models.
We, thus, have in the present system ν ≈ ν0, supporting
our assumption of independent avalanches. Note, however,
that such an equality does not need to hold, in general,
especially in large d.

B. Time evolution of thermal avalanches

We now focus on the time evolution of the size of
thermal avalanches, based on the scaling results for the
extremal dynamics. In Sec. IV, we introduce x0 avalanches
to more generally probe the critical behavior at x0 ¼ xc.
This turns out to be useful also to work out the relationship
between time and length scales for thermal avalanches. In
fact, x0 is associated to a typical energy scale Eðx0Þ ¼ x3=20 .
Hence, it carries information both about the typical
timescale τðx0Þ ∼ eEðx0Þ=T and the avalanche (cutoff)
size S̃cðx0Þ.
According to the scaling argument discussed before,

even at a finite temperature T, the extremal dynamics
can be applied to a finite system, in particular, smaller
than NT . The cutoff size of x0 avalanches, S̃c, follows
S̃c ∼ ðxc − x0Þ−1=σ̃; see Eq. (3) and Fig. 5(b). During an
extremal dynamics, the duration of an avalanche is domi-
nated by the relaxation of the most stable site it involves, of
characteristic timescale τðx0Þ ∼ eEðx0Þ=T . We, thus, obtain
a relation connecting the duration of avalanches, τðx0Þ
(measured in the unit of the relaxation time τα ∼ eEc=T),
with the cutoff size S̃c as S̃−σ̃c ∼ ðxc − x0Þ ∼ Ec − Eðx0Þ∼
T ln½τα=τðx0Þ�. Therefore, avalanches in such a finite
system and over a finite time interval t (smaller than the

relaxation timescale τα) are intermittent. Namely, the
system is quiescent most of the time, yet when it is not,
its avalanche size S̃ðtÞ is power-law distributed with a
cutoff size S̃cðtÞ, which is given by

S̃cðtÞ ∼ ½T lnðτα=tÞ�−1=σ̃: ð7Þ

Thus, we find that the size of avalanches grows very
slowly—only logarithmically—with time.
The above prediction can be tested experimentally or in

molecular dynamics simulations [43,52]. In Ref. [52], the
time evolution of a chord length hli characterizing the
linear size of mobile domains has been measured. Since we
expect S̃c ∼ hlid̃f , our prediction for hli is given by

hliPred ¼ AðTÞ½T lnðτα=tÞ�−1=ðσ̃d̃fÞ; ð8Þ

where AðTÞ is a function with a finite limiting value as
T → 0. In Fig. 9, we compare the molecular simulation data
for a two-dimensional polydisperse mixture [52] and our
prediction. The prediction is very good, in particular, at
lower temperatures where the elastoplastic description is
supposed to work well.
In Appendix B, we also connect S̃cðtÞ and χ4ðtÞ

explicitly. This allows us to predict the time evolution of
χ4ðtÞ for times 1 ≪ t ≪ τα—a prediction that agrees with
the numerics.

C. Decoupling between diffusion and relaxation

We now show that the scaling theory developed
above directly implies decoupling between diffusion and

10 10 10 10 10 100
100

101
T=0.15
T=0.125
T=0.11
T=0.095
T=0.0853
T=0.0775

FIG. 9. Comparison between the molecular simulation data
(empty points) in Ref. [52] and our theoretical prediction (solid
curves) in Eq. (8) for the time evolution of a linear avalanche
size hli. We set 1=σ̃ ¼ 1.8 and d̃f ¼ 2, based on Table II. We use
A ¼ 0.6, 0.7, 0.9, 1.1, 1.2, and 1.3 for T ¼ 0.15, 0.125, 0.11,
0.095, 0.0853, and 0.0775, respectively.
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relaxation as found in supercooled liquids, the so-called
Stokes-Einstein violation [53–57].
One of the remarkable aspects found in the numerical

simulations in Sec. IV is that sites relax multiple times
within the same avalanche. In terms of a dynamical
trajectory, a site waits a long time (remains immobile)
before relaxing, but once it relaxes, it redoes multiple times
within a short period of time. This is characterized by a
difference between the so-called persistence time and
exchange time [58–60] (or the caging time in molecular
simulations [62,91]), which has been argued to be the key
ingredient of decoupling between diffusion and relaxation
in supercooled liquids [58–62].
In our case, this effect originates from the difference

between the event-based and site-based avalanche
sizes characterized by df > d̃f. To connect it to the
zero-temperature critical point, let us focus on the for-
mation of a thermal avalanche whose timescale is the
order of τα and linear size is ξ. During the formation, a
single site relaxes of the order of ξdf=ξd̃f times. Assuming
that each relaxation gives a random displacement to
particles in the neighborhood of this site, their diffusion
constant D must be proportional to the rate for the

relaxation event, ξðdf−edfÞ=τα, leading to a Stoke-Einstein

breakdown Dτα of the order of Dτα ∼ ξðdf−edfÞ ∼ T−h that
diverges at vanishing temperature with h ¼ νðdf − edfÞ.
Conventionally, the Stokes-Einstein violation is considered
a consequence of spatially heterogeneous dynamics [54].
We directly connect the former and the length scale of
dynamical heterogeneity ξ. On top of that, our scaling
theory emphasizes accumulations of multiple events inside
a mobile region as the microscopic mechanism leading to
the Stokes-Einstein violation.
Note that our scaling argument does not predict a

fractional Stokes-Einstein violation in which D ∼ τ−ζα , or
Dτα ∼ τ1−ζα , but instead Dτα ∼ ðlog ταÞ1−ζ0 where 1 − ζ0 ¼
νðdf − d̃fÞ. The former is the fit that is usually conjectured
from experimental data [92,93] with ζ ≈ 0.8. However,
given the small value of 1 − ζ, the latter fit is also a viable
option [94].
We numerically test our prediction for the Stokes-

Einstein violation in Fig. 10, showing the product Dτα
in the tensorial model. In this plot, D is estimated numeri-
cally using tracer particles that jump randomly by one
lattice spacing each time relaxation occurs in their current
site, similarly to what was originally done for kinetic
constrained models [58,59] (see Appendix B for details).
Dτα increases with decreasing T, following the scaling
prediction Dτα ∼ T−h with h ¼ νðdf − d̃fÞ measured inde-
pendently in Secs. III and IV. The observed amount of the
violation we find is not large and, hence, more represen-
tative of strong glass-forming liquids than fragile ones,
since it has been reported that the magnitude of the

violation and fragility are correlated [54,97]. We come
back to this point in Sec. VI.

VI. CONCLUSION AND DISCUSSION

We provided a theoretical description of dynamical
heterogeneities in supercooled liquids based on the
assumption that local rearrangements are elastically
coupled. The elastoplastic models we studied offer a
quantitative solution for how dynamical correlations can
emerge even in cases in which local barriers control the
dynamics [19,22,33,98,99]. Our main result is the theo-
retical explanation of dynamical correlations in terms of a
zero-temperature critical point with the associated scaling
relations. This leads to quantitative predictions on the
power-law statistics of thermal avalanches testable in more
realistic systems. Our study suggests that dynamical
heterogeneities in supercooled liquids should be investi-
gated in terms of the temperature T to seek power-law
relations rather than in terms of the relaxation timescale.
One important aspect of the models we studied is that

they encode in a very simple and natural way the coupling
of local relaxation and elastic interaction. Their simplicity,
combined with the richness of the dynamical behavior—in
particular, the emergence of facilitation and dynamical
correlations—is a remarkable aspect, as it shows which
salient facts one can obtain with minimal physical ingre-
dients (see also previous mesoscopic modelings leading to
dynamical facilitation [100–102]). Kinetically constrained
models have instead abstract kinetic rules and show a large
variety of behaviors depending on the kinetic constraints
[13]. Although local excitations identified in the dynamic
facilitation scenario [44,103] would have connections with
local activations in our framework, the physical interpre-
tation of kinetic rules in kinetic constrained models is still
an open and crucial challenge. Along this line of thought,
it would be interesting to devise a kinetic constraint rule
effectively incorporating elastoplasticity. Nevertheless,

(b)(a)

FIG. 10. The Stoke-Einstein decoupling Dτα, where D is the
diffusion coefficient of tracers, for the tensorial elastoplastic
model with L ¼ 128. (a)Dτα versus τα could suggest an effective
power-law behavior (the fractional Stokes-Einstein violation),
with two apparent exponents in the range τα < 104 and τα > 104.
(b) Our prediction suggests instead a power-law behavior in terms
of T. The red dashed line represents Dτα ∼ T−νðdf−d̃fÞ.
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various concepts and theoretical tools developed in the
study of kinetically constrained models provide important
guidelines and, in fact, played an essential role for our
analysis of thermal elastoplastic models. It has been
demonstrated in the dynamic facilitation theory that a
critical point in an extended nonequilibrium phase diagram
influences glassy dynamics [104,105]. It would also be
interesting to study whether such a critical point exists in
elastoplastic models.
Quantitatively, the magnitude of dynamical hetero-

geneities we simulated is comparable to most supercooled
liquids (as the estimated χ�4 increases by about two decades
as the glass transition is reached [7,74]), whereas the
magnitude of the Stoke-Einstein breakdown is comparable
to that of rather strong glass-forming liquids [54].
According to our scaling argument, such a breakdown will
increase if the system shows more intensive accumulations
of multiple relaxations characterized by larger νðdf − d̃fÞ.
This effect could be achieved by imposing that some of the
model parameters (such as the local values of the yield
stress, or how sites are coupled to the elastic field) are
randomly distributed [106] instead of being single valued
as assumed here for simplicity. These effects are expected
in glass-forming liquids due to the presence of structural
heterogeneity of local orders [107–110]. Such generaliza-
tion would allow us to study the structure-dynamics
relationship [111–113] in elastoplastic models. Further
improvements may be achieved by adding fluctuations
and nonlinearities to the propagator, which are present at
short range [114,115]. An interesting line of research to
develop quantitative models is a mapping from a molecular
simulation to an elastoplastic model [116–118] or the one
pursued in Refs. [119,120], which uses machine learning
methods and the so-called softness field to obtain quanti-
tative effective models.
Our results also underline important themes to study in

the future, including the nature of local rearrangements
in glass-forming liquids and their connection to fragility
[2]. Concerning the latter, the current elastoplastic mod-
els correspond to strong glass formers with Arrhenius
behavior, with activation energy given by the magnitude
of the gap Ec entering the distribution of local barriers
[35,42]. This point results from the simplifying
assumption that the energy scale of local rearrangements
does not vary with temperature. In an improved (still
simplified) model where all elastic energies follow the
high-frequency elastic modulus G∞ðTÞ of the material,
the activation energy Ec will be proportional to G∞ðTÞ, a
correlation known to exist in some glass-forming liquids
[19,121]. More recent works relate this energy scale of
local rearrangements to local (or nonlocal) elasticity [21],
plasticity [33], or alternatively the varying geometry of
elementary rearrangements under cooling [122]. Local
energy barriers could also be affected by locally favored
structures [108,123]. More progress along those lines will

be instrumental to understand what controls fragility in
glass-forming liquids.
Note that, although we mainly focused our attention on

the theoretical scenario based on local barriers driving the
dynamics [21,22,33] together with facilitation and ava-
lanches, the physical phenomena discussed in this work are
more general. For example, they can also apply to cases in
which cooperative rearrangements take place. In these
perspectives, in particular, within random first-order tran-
sition theory, the local relaxation event would correspond
to a cooperative rearrangement [52,124]. Obviously, our
current elastoplastic models do not take into account
growing cooperativity as a static correlation, and they have
a singularity only at T ¼ 0 in contrast to random first order
transition theory with a finite-temperature singularity at
TK > 0. One could incorporate a growing static correlation
in the models by increasing the number of sites involving a
thermal activation process. It would be interesting to work
out precise predictions in this case.
Finally, we expect our scaling theory which connects

spatial correlations at finite temperature to extremal dynam-
ics at zero temperature, to be relevant for a broader class of
problems beyond the context of the glass transition studied
here. Phenomena in which the implications of these argu-
ments could be studied include the creep flow of disordered
materials [125–131] or that of pinned elastic interfaces
[48,132,133] below the threshold force where they sponta-
neously flow.
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APPENDIX A: THERMAL ELASTOPLASTIC
MODELS

1. Scalar model

We study a scalar elastoplastic model [35] in a two-
dimensional lattice whose linear box length is L using the
lattice constant as the unit of length. For each site, we
assign local shear stress σi (scalar variable) at a position ri.
The dynamical rule for the simulation model is akin to

Monte Carlo dynamics [134]. We pick a site, say, i, up
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randomly among L2 sites. If σi is greater (or lower) than
or equal to a threshold σY > 0 (or −σY < 0), namely,
jσij ≥ σY , this site shows a plastic event: σi → σi − δσi,
where δσi is the local stress drop. We use an uniform
threshold, σY ¼ 1. Instead, if jσij < σY , with probability
e−EðσiÞ=T , where EðσiÞ is a local energy barrier and T is the
temperature, this site shows a plastic event: σi → σi − δσi.
This corresponds to a plastic rearrangement induced by a
local thermal activation. We employ EðσiÞ ¼ ðσY − jσijÞα
with α ¼ 3=2 [135]. By introducing the local stress dis-
tance to threshold, xi ¼ σY − jσij, we can rewrite
EðxÞ ¼ x3=2. This specific form of the local energy barrier
is suggested by molecular simulation studies [33,68]
and previous elastoplastic models under shear [42,66].
The stress drop δσi associated with a plastic event is a
stochastic variable. In this paper, we use δσi ¼
ðzþ jσij − σYÞsgnðσiÞ, where sgnðxÞ is the sign function
and z > 0 is a random number drawn by an exponential
distribution, pðzÞ ¼ ð1=z0Þe−z=z0 . z0 is the mean value, and
we set z0 ¼ 1. This exponential distribution would be
realistic according to molecular simulations in Ref. [136].
A local plastic event at site i influences all other sites

(∀ j ≠ i) as

σj → σj þ Gψ i
rjiδσi; ðA1Þ

where rji ¼ rj − ri and ψ i ∈ ½0; π=2Þ is a random orienta-
tion of the Eshelby kernel Gψ

r . Numerical implementation
of Gψ

r is described in Ref. [35].
Similar to the Monte Carlo dynamics, we repeat the

above attempt L2 times, which corresponds to unit time.
For the initial condition, we draw the local stress σi

(∀ i) randomly while keeping the force balance; i.e., the
sum of stresses along each row and column of lattice sites is
strictly zero [137,138]. To study dynamical properties at the
steady state, we monitor the waiting time dependence of
observables, and we report them only at the steady state,
discarding the initial transient part.

2. Tensorial model

We implement a two-dimensional elastoplastic model in
which we account for the tensorial nature of the shear stress
tensor. In this tensorial version of the elastoplastic model,
the state of each site i is described by its local shear stress
tensor σ̃i. Note that symbols σ and σ̃ are also used as critical
exponents in the main text, not to be confused with local
shear stress defined here. The shear stress tensor is traceless
and symmetric, and, hence, in two dimensions it is defined
by two independent components: σ̃xx;i and σ̃xy;i.
The local yield stress is defined by a surface in the shear

stress space, with the region inside and outside the surface
corresponding to mechanically stable (elastic, immobile)
and unstable (plastic, mobile) states, respectively. The
minimum amount of shear stress required to make a site

unstable is the distance to the yield surface, and we denote
its magnitude by x, as schematically shown in Fig. 11. We
choose the local yield surface to consist of two parallel lines
at an angle θY with respect to the σ̃xx axis in shear stress
space, centered at zero shear stress and separated by 2σY
(see Fig. 11). The local yield surface is assigned for each
site i. We initiate θY;i with a uniformly distributed random
number in ½0; 2πÞ.
When a site i becomes unstable, it undergoes a

plastic event over a timescale τ0: σ̃xx;i → σ̃xx;i − δσ̃xx;i
and σ̃xy;i → σ̃xy;i − δσ̃xy;i, where the amount of stress drops
δσ̃xx;i and δσ̃xy;i are given by

δσ̃xx;i ¼ −ðz − xÞ sinðθY;iÞ sgnðσ̃xx;iÞ; ðA2Þ

δσ̃xy;i ¼ −ðz − xÞ cosðθY;iÞ sgnðσ̃xy;iÞ; ðA3Þ

respectively. sgnðxÞ is the sign function, and z is a random
number drawn from an exponential distribution pðzÞ ¼
e−z=z0=z0 with z0 ¼ 1. The duration of a plastic event τ0 is
accounted for by triggering the relaxation with a probability
per unit time 1=τ0 whenever the site is unstable. In an
athermal system, sites can relax only by first becoming
unstable. At finite temperature T, stable sites undergo
relaxation at the rate e−EðxÞ=T=τ0, where EðxÞ ¼ x3=2 is
the local energy barrier [42]. After each plastic event, we
redraw the angle of the yield surface θY;i from a uniform
random distribution.
Note that to simulate such a dynamics at low temper-

atures we implement a Gillespie type of algorithm [42],
which operates as follows. Consider an event occurring
at some time t. Following it, a relaxation time τi for each
site i is chosen with an exponential distribution of mean
e−EðxiÞ=T=τ0. The next event corresponds to the smallest τi,
leading to a plastic event on the corresponding site, which
occurs at a time tþ τi. At that point, stresses are computed

FIG. 11. A schematic plot of the yield surface for the tensorial
model. The blue dot shows the state of a site in the shear stress
space. The yield surface is described by two parallel lines
separated by 2σY, and each line makes an angle of θY with
the σ̃xx axis. The distance from the yield surface is shown by x.
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once again, and the variables τi are sampled from their new
distributions. This algorithm is then repeated iteratively.
To maintain the force balance, a plastic event at site i

redistributes the shear stress field in the other sites
following the force dipole propagator. In Fourier space,
the elements of elastic kernel are given by

Ĝxx;xxðqÞ ¼ −
ðq2x − q2yÞ2
ðq2x þ q2yÞ2

; ðA4Þ

Ĝxy;xyðqÞ ¼ −
4q2xq2y

ðq2x þ q2yÞ2
; ðA5Þ

Ĝxx;xyðqÞ ¼ Ĝxy;xxðqÞ ¼ −
2qxqyðq2x − q2yÞ
ðq2x þ q2yÞ2

; ðA6Þ

where q ¼ ðqx; qyÞ is the Fourier vector. For a discrete
system with periodic boundary conditions, we introduce
a correction term to the Fourier modes, given by
q2x ¼ 2 − 2 cos ð2πnx=LÞ, q2y ¼ 2 − 2 cos ð2πny=LÞ, and
qxqy ¼ 2 sinð2πnx=LÞ sin ð2πny=Þ, where nα ¼ −L=2þ
f1;…; Lg with α ¼ x, y.

APPENDIX B: CHARACTERIZATIONS OF
DYNAMICAL HETEROGENEITIES FOR
FINITE-TEMPERATURE SIMULATIONS

1. Four-point correlation function

We explain how to analyze correlation functions for finite-
temperature simulations. We first consider the persistence
two-point time correlation function hπðtÞitime, which is
defined by πðtÞ¼ð1=LdÞPi piðtÞ, where piðtÞ¼1 (immo-
bile) if the site i does not show a plastic event until time t
from t ¼ 0 and piðtÞ ¼ 0 (mobile) otherwise. h� � �itime
denotes the time average at the stationary state. hπðtÞitime
for the scalar and tensorial models are presented in Fig. 1 in
Ref. [35] and Fig. 1(a) in the main text, respectively. We then
measure a four-point correlation function χ4ðtÞ, defined by

χ4ðtÞ ¼ Ldðhπ2ðtÞitime − hπðtÞi2timeÞ: ðB1Þ

χ4ðtÞ for the scalar and tensorial models are presented in
Fig. 3 in Ref. [35] and Fig. 2(b) in the main text, respectively.
χ4ðtÞ quantifies the size of the dynamically correlated region,
because one can rewrite it as

χ4ðtÞ ¼
1

Ld

X
i;j

ðhpiðtÞpjðtÞitime − hπðtÞi2timeÞ ðB2Þ

¼ 1

Ld

X
i

X
k

hϕiðtÞϕiþkðtÞitime; ðB3Þ

where ϕiðtÞ ¼ piðtÞ − hπðtÞitime. For example, ϕiðταÞ ¼
�1=2. Therefore, χ4ðtÞ is proportional to the average

number of sites correlated dynamically. Therefore, its peak
value χ�4 contains essentially the same information as S̃; in
particular, χ�4 ∼ S̃c at T ¼ 0þ.
Figure 12(a) shows χ�4 versus T for several system sizes

L for the scalar model. One can see a scaling regime
χ�4 ∼ T−γ at lower T and larger L. A scaling collapse is
obtained in Fig. 12(b), which determines another critical
exponent ν associated with a length scale of dynamical
heterogeneity. The obtained values for the critical expo-
nents are reported in Table II.

2. Dynamical correlation length scale

We consider extracting a correlation length directly
instead of performing finite-size scaling. To this end, we
measure the spatial dependence of the four-point structure
factor S4ðq; tÞ [78], defined by

S4ðq; tÞ ¼
1

Ld

X
ij

ðhpiðtÞpjðtÞitime − hπðtÞi2timeÞeiq·ðri−rjÞ;

ðB4Þ

where q ¼ jqj. In Fig. 13(a), we show S4ðq; tÞ for the
scalar model at t ¼ τ� when χ4ðtÞ takes the peak value
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FIG. 12. The four-point correlation function χ4 for the scalar
model. (a) The peak value χ�4 versus T for several L in a log-log
plot. The dashed line follows χ�4 ∼ T−γ . (b) Scaling collapse of
χ�4ðL; TÞ, which determines ν.

TAHAEI, BIROLI, OZAWA, POPOVIĆ, and WYART PHYS. REV. X 13, 031034 (2023)

031034-12



χ�4 ¼ χ4ðτ�Þ. We find that τ� is close to τα, and, thus,
S4ðq; τ�Þ encodes heterogeneity associated with structural
relaxation. We note that, at the long wavelength limit,
S4ðq;tÞ converges to χ4ðtÞ, namely, limq→0S4ðq;tÞ¼ χ4ðtÞ.
We then assume the Ornstein-Zernike form at lower q:

S4ðq; τ�Þ ¼
χ�4

1þ ðqξ4Þa
; ðB5Þ

where ξ4 is the dynamical correlation length extracted and a
is an exponent. As shown in Fig. 13(b), we find this scaling
with a ¼ 2.2. From this plot, we extract ξ4 and present its
temperature dependence in Fig. 13(c). This analysis can be
done only for larger systems, L ¼ 32, 64, and 128, since the
scaling regime cannot be reached in smaller systems within
our simulations. We find ξ4 ∼ T−ν with ν ¼ 0.9, which is
consistent with the one estimated from the finite-size scaling
in Fig. 12. Moreover, the χ�4 versus ξ4 plot [139,140] in
Fig. 13(d) provides us with the fractal dimensions, d̃f ¼ 2,
which is also consistent with the one measured in the
extremal dynamics in Fig. 18.

3. Prediction for the four-point correlation function

We connect the cutoff size for the site-based avalanche
size, S̃cðtÞ, in a given time interval t and the time evolution
of the four-point correlation function χ4ðtÞ.
We first compute the site-based avalanche size by

S̃ðtÞ ¼ P
N
i¼1 niðtÞ, where niðtÞ ¼ 0 if the site i does not

exhibit a plastic event until time t and niðtÞ ¼ 1 for mobile
sites that relax at least once. Thus, niðtÞ can be written by

niðtÞ ¼ 1 − piðtÞ. The first and second moments of S̃ðtÞ
measured by the time average are given by

hS̃ðtÞitime ¼ N½1 − hπðtÞitime�;
hS̃2ðtÞitime ¼

X
i;j

n
hpiðtÞpjðtÞitime − ½2hπðtÞitime − 1�

o
;

respectively. Consider a correlation volume of linear
extension ξ. On this length scale, χ4ðtÞ crosses over toward
its value for an infinite system. It is also the largest length
for which extremal dynamics applies, implying that S̃ðtÞ is
distributed in a power-law fashion. Thus, S̃cðtÞ can be
estimated by hS̃2ðtÞitime=hS̃ðtÞitime, as given by

S̃cðtÞ ¼
P

i;jfhpiðtÞpjðtÞitime − ½2hπðtÞitime − 1�g
N½1 − hπðtÞitime�

: ðB6Þ

In general, one can expect that hπðtÞitime follows the
(stretched) exponential decay, hπðtÞitime ≃ e−ðt=ταÞβ , where
β is an exponent. Typically, 0 < β ≤ 1 for equilibrium
supercooled liquids. Our elastoplastic models show nearly
exponential relaxation with β ≃ 1. We now consider the
early time stage, where hπðtÞitime can be approximated by
hπðtÞitime ≃ 1 − ðt=ταÞβ. Under such a circumstance,
Eq. (B6) and χ4ðtÞ defined in Eq. (B2) suggest that
S̃cðtÞ ≃ ðt=ταÞ−βχ4ðtÞ. Together with Eq. (7) in the main
text, we predict the time evolution of χ4ðtÞ as

χ4ðtÞ ≃ Aðt=ταÞβ½T lnðτα=tÞ�−1=σ̃; ðB7Þ

where A is a constant which does not depend on t and T.
Figure 14(a) shows a log-log plot for χ4ðtÞ measured at

finite-temperature simulations for the scalar model. The
initial growth can be fitted effectively by a power law,
χ4ðtÞ ∼ tb [141,142], with b ≃ 1.4. Instead, our argument in
Eq. (B7) predicts a linear growth with a logarithmic
correction. In Fig. 14(b), we show a parametric plot
to numerically test Eq. (B7) with β ¼ 1, A ¼ 0.5, and
1=σ̃ ¼ 1.9 (see Table II). We find that the simulated χ4ðtÞ
for different temperatures follows our prediction at early
times. Deviations from the prediction can be observed on
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FIG. 13. The four-point structure factor S4ðq; tÞ and the
associated correlation length ξ4 for the scalar model.
(a) S4ðq; τ�Þ for several temperatures for L ¼ 128. (b) The
corresponding plot for the Ornstein-Zernike form in Eq. (B5).
The dashed line defines a slope corresponding to the exponent a.
(c) The extracted ξ4 versus T. The dashed line follows ξ4 ∼ T−ν.

(d) χ�4 versus ξ4. The dashed line follows χ�4 ∼ ξ
d̃f
4 .
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FIG. 14. (a) Log-log plot for χ4ðtÞ for the scalar model with
L ¼ 128 for T ¼ 0.050, 0.040, 0.030, 0.025, 0.020, 0.015, and
0.013 (from left to right). (b) Parametric plot to test the prediction
in Eq. (B7). The dashed line defines the linear relation.
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very short timescales. This is presumably due to the fact
that, on such timescales, the corresponding energy scale is
too small compared with Ec, which violates the assumption
underlying the asymptotic argument in Sec. V.

4. Tracer particles

We monitor the diffusion of tracer particles [58,59]
due to the local relaxations. We consider one tracer
particle in each site of the elastoplastic model; each tracer
particle moves randomly to one of the four nearest
neighbors (in d ¼ 2) after a plastic event in that site.
The trajectory of the kth tracer particle is specified by
½xkðtÞ; ykðtÞ�. Typical trajectories of the tracer particles
are shown in Fig. 15(a) as a function of time. In a
timescale comparable to τα, the tracer travels over
multiple sites in a very short time and spends most of
the time without any activity. We then define the mean-
squared displacement Δ2ðtÞ of the tracers by

Δ2ðtÞ ¼ 1

Nt

XNt

k¼1

hΔr2kðtÞitime; ðB8Þ

where Δr2kðtÞ ¼ ½xkðtÞ − xkð0Þ�2 þ ½ykðtÞ − ykð0Þ�2 and Nt

is the number of tracer particles. In Fig. 15(b), we show
Δ2ðtÞ for different temperatures. We find a diffusive
behavior at a larger time, Δ2ðtÞ ¼ Dt, from which we
extract the diffusion coefficient D for each temperature.

APPENDIX C: AVALANCHES AT T = 0+

1. Extremal dynamics

We explain the extremal dynamics at T ¼ 0þ. In the
finite-temperature simulations described in Appendix A,
we take into account local thermal activation for a plastic
event based on the probability e−EðxÞ=T, where EðxÞ ¼ x3=2

at 0 ≤ x ≤ 1. At vanishing temperature T ¼ 0þ, this
probability is extremely small. Therefore, the site with
the smallest x, denoted as xmin, associated with the lowest

energy barrier Emin ¼ x3=2min, shows the next plastic event.
Thus, in practice, one can choose the weakest site having
xmin sequentially instead of asking e−EðxÞ=T each time and
waiting until it shows an event. This algorithm enormously
accelerates dynamics and allows us to access information
about plastic activities even at T ¼ 0þ. This is the so-called
extremal dynamics [48,80,81].
Finding one xmin corresponds to one simulation step.

This is not directly related to physical time (that is why one
can simulate it even at T ¼ 0þ), yet one can associate the
simulation step with the size of an avalanche (see below).
Simulations start with the same initial condition used in the
finite-temperature simulations. The system enters the sta-
tionary state after passing the initial transient regime. We
carefully check the stationarity by monitoring the waiting
time dependence of PðxÞ. We report data taken only from
the stationary state.
In Fig. 16, we show a representative trajectory of xmin

during an extremal dynamics simulation at the stationary
state, which is an analog of Fig. 5 in Ref. [80] for a model
for self-organized criticality. Typically, the weakest
site with xminðsÞ at a simulation step s induces the next
weakest site at step sþ 1 with xminðsþ 1Þ at a neighbor
region because of elastic interactions. In particular,
xminðsÞ > xminðsþ 1Þ, when the previous weakest site at
step s destabilizes the next weakest site at step sþ 1.
Therefore, a sequence of the weakest sites is dynamically
correlated, forming an avalanche until the last weakest site
is found at an uncorrelated place with a higher value of xmin.
The determination of uncorrelation and, hence, the termi-
nation of an avalanche has some ambiguity. Thus, follow-
ing previous works, we introduce the threshold x0 below
which a sequence of xmin is correlated. In particular, we
define the size of event-based avalanche, S, by the number

(a) (b)

FIG. 15. Diffusion of tracer particles for the tensorial model
with L ¼ 128. (a) The y component of typical trajectory of a
tracer particle with T ¼ 0.015 (τα ¼ 4.14 × 1012). (b) Mean-
squared displacement Δ2ðtÞ of tracer particles are shown with
points. The solid lines follow Δ2ðtÞ ¼ Dt, from which we extract
the diffusion coefficient D.
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0.0
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0.2
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Simulation step,

FIG. 16. An example of the evolution of xmin during the
extremal dynamics at a steady state for the scalar model. The
system size is L ¼ 256. A series of event-based avalanche sizes,
S1; S2;…, are presented based on the threshold value x0 ¼ 0.2.
xc ¼ 0.281 is indicated by the horizontal dashed line.
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of chosen xmin forming a sequence with xmin < x0 (in other
words, the duration of simulation steps with xmin < x0). As
shown in Fig. 16, one can extract a series of event-based
avalanche sizes, S1; S2;…, from the trajectory of the
extremal dynamics simulation. A given site may be chosen
as the weakest site several times during one avalanche
formation, which all contribute to S. Instead, one can define
the size of site-based avalanche, S̃, by the number of sites
participating in a single avalanche. By construction, S̃ ≤ S.
The distinction between S and S̃ provides us with important
physical information about the accumulation of multiple
relaxation activities, which leads to an argument about the
Stokes-Einstein violation, as discussed in Sec. V.
By construction, S and S̃ depend on the threshold

value x0. As x0 is increased, the size of avalanches, S
and S̃, increases. As we discuss further below, avalanches
become system spanning when x0 → xc, where xc is the
critical value associated with the critical energy gap
Ec ¼ x3=2c . We vary x0 systematically to probe the critical
behavior associated with xc (see below).

2. Avalanche statistics

We describe how to analyze the avalanche data obtained
during T ¼ 0þ extremal dynamics simulations. During
simulations, we record the series of the event- and site-
based avalanche sizes, given by fS1; S2;…; SMg and
fS̃1; S̃2;…; S̃Mg, respectively, where M is the number of
data points. In this paper, we analyze S and S̃ in parallel.
Below, we explain how to analyze the data using S, but the
same procedures are applied for S̃. We first define the mth
moments of avalanche distribution (m ¼ 1; 2;…) by

hSmi ¼
Z

∞

0

dSPðSÞSm ¼ 1

M

XM
k¼1

Smk ; ðC1Þ

where PðSÞ is the distribution of avalanches. One expects
that PðSÞ follows a power-law distribution:

PðSÞ ∼ S−τgðS=ScÞ; ðC2Þ

where τ is a critical exponent, Sc is a cutoff size, and gðzÞ
is a scaling function. Figure 17 shows PðSÞ and PðS̃Þ for
several x0 for the scalar model. These plots demonstrate
that the size of avalanches (both S and S̃) grows with
increasing x0, as expected. In particular, a scale-free,
power-law behavior (with the eventual cutoff) is being
developed by approaching the critical point xc, which
proves that x0 is the relevant parameter that dictates the
critical behavior of the system.
Assuming Eq. (C2) and 1 < τ < 2, one obtains

hSmi ∼
Z

∞

0

dSSm−τgðS=ScÞ ∼ Smþ1−τ
c ; ðC3Þ

which implies Sc ∼ hSmþ1i=hSmi. Thus, in practice, we
define Sc by Sc ¼ hS3i=hS2i. Following Ref. [83], we
assume

Sc ∼ ðxc − x0Þ−1=σf
�

Ldf

ðxc − x0Þ−1=σ
�
; ðC4Þ

where fðzÞ ¼ 1 for z ≫ 1 and fðzÞ ¼ z for z → 0. Thus,
Sc ∼ Ldf when x0 → xc and Sc ∼ ðxc − x0Þ−1=σ when
L → ∞. Figures 18(a) and 18(b) show Sc and S̃c approach-
ing x0 → xc for the scalar model. Both Sc and S̃c increase
with increasing x0 with an eventual saturation due to a
finite-size effect. One can see the expected behavior,
Sc ∼ ðxc − x0Þ−1=σ at larger L (S̃c as well). We then perform
the scaling collapse in Figs. 18(c) and 18(d) following the
scaling form in Eq. (C4). These scaling plots determine the
critical point xc ¼ 0.281 and the critical exponents 1=σ,
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FIG. 17. Avalanche distributions PðSÞ (a) and PðS̃Þ (b) for
several x0 approaching the critical point xc ¼ x0 ¼ 0.281 for the
scalar model with L ¼ 256. The dashed lines in (a) and (b) follow
PðSÞ ∼ S−τ and PðS̃Þ ∼ S−τ̃, respectively.
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FIG. 18. Cutoff in avalanche distributions for the scalar model.
(a),(b) Sc ¼ hS3i=hS2i (a) and S̃c ¼ hS̃3i=hS̃2i (b) versus xc − x0
for various system sizes. The dashed lines in (a) and (b) follow
Sc ∼ ðxc − x0Þ−1=σ and S̃c ∼ ðxc − x0Þ−1=σ̃ , respectively. (c),(d)
Scaling collapse assuming Eq. (C4). The critical point xc and
exponents σ, σ̃, df, and d̃f are determined by these scaling plots.
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1=σ̃, df, and d̃f for the scalar model. The obtained values
are reported in Table II.
Once the critical threshold xc is determined, we measure

avalanche distributions PðSÞ and PðS̃Þ at x0 ¼ xc, as shown
in Figs. 19(a) and 19(b) for the scalar model. They show
characteristic power-law behavior with cutoff Sc and S̃c
due to a finite-size effect, which scales as Sc ∼ Ldf and
S̃c ∼ Ld̃f , respectively. The power-law behavior determines
τ and τ̃, whose values are reported in Table II. We then
perform scaling collapses in Figs. 19(c) and 19(d), follow-
ing Eq. (C2), which validates the scaling ansatz and
measured critical exponents.
Finally, we compute the distribution PðxÞ from the

configuration right before (or after) each avalanche defined
by x0 ¼ xc starts (or ends). Thus, we exclude configura-
tions during each avalanche and focus only on stable

configurations expected to hold at strictly T ¼ 0, where
dynamics is not allowed. In Fig. 20(a), we show the
measured PðxÞ for the scalar model together with PðxÞ
obtained from the finite-temperature simulations. As T is
lowered, PðxÞ for finite T converges to PðxÞ obtained from
the extremal dynamics, whose functional form is consistent
with PðxÞ ∼ ðx − xcÞθ, expected from other disordered
systems. We then measure hEsecond − Emini ∼ N−δ in
Fig. 20(b), which encodes an important feature of the
distribution of activation energy barriers at T ¼ 0 (see
Sec. IV for detail discussions). The obtained exponent δ is
reported in Table II.
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[118] David F. Castellanos, Stéphane Roux, and Sylvain Patinet,
History Dependent Plasticity of Glass: A Mapping be-
tween Atomistic and Elasto-plastic Models, Acta Mater.
241, 118405 (2022).

[119] Indrajit Tah, Sean A. Ridout, and Andrea J. Liu, Fragility
in Glassy Liquids: A Structural Approach Based on
Machine Learning, J. Chem. Phys. 157, 124501 (2022).

[120] Hongyi Xiao, Ge Zhang, Entao Yang, Robert J. S. Ivancic,
Sean A. Ridout, Robert Riggleman, Douglas J. Durian, and
Andrea J. Liu, Machine Learning-Informed Structuro-
elastoplasticity Predicts Ductility of Disordered Solids,
arXiv:2303.12486.

[121] Tina Hecksher and Jeppe C. Dyre, A Review of Experi-
ments Testing the Shoving Model, J. Non-Cryst. Solids
407, 14 (2015).

[122] Wencheng Ji, Tom W. J. de Geus, Elisabeth Agoritsas, and
Matthieu Wyart, Mean-Field Description for the Archi-
tecture of Low-Energy Excitations in Glasses, Phys. Rev. E
105, 044601 (2022).

[123] Daniele Coslovich and Giorgio Pastore, Understanding
Fragility in Supercooled Lennard-Jones Mixtures. I. Lo-
cally Preferred Structures, J. Chem. Phys. 127, 124504
(2007).

[124] Giulio Biroli and Jean-Philippe Bouchaud, The RFOT
Theory of Glasses: Recent Progress and Open Issues,
arXiv:2208.05866.

[125] David Fernandez Castellanos and Michael Zaiser, Ava-
lanche Behavior in Creep Failure of Disordered Materi-
als, Phys. Rev. Lett. 121, 125501 (2018).

[126] T. Bauer, J. Oberdisse, and L. Ramos, Collective Rear-
rangement at the Onset of Flow of a Polycrystalline

Hexagonal Columnar Phase, Phys. Rev. Lett. 97,
258303 (2006).

[127] F. Caton and C. Baravian, Plastic Behavior of Some Yield
Stress Fluids: From Creep to Long-Time Yield, Rheol.
Acta 47, 601 (2008).

[128] T. Divoux, C. Barentin, and S. Manneville, From Stress-
Induced Fluidization Processes to Herschel-Bulkley
Behaviour in Simple Yield Stress Fluids, Soft Matter 7,
8409 (2011).

[129] M. Siebenbürger, M. Ballauff, and T. Voigtmann, Creep in
Colloidal Glasses, Phys. Rev. Lett. 108, 255701 (2012).

[130] V. Grenard, T. Divoux, N. Taberlet, and S. Manneville,
Timescales in Creep and Yielding of Attractive Gels, Soft
Matter 10, 1555 (2014).

[131] M. Leocmach, C. Perge, T. Divoux, and S. Manneville,
Creep and Fracture of a Protein Gel under Stress, Phys.
Rev. Lett. 113, 038303 (2014).

[132] Sebastian Bustingorry, A. B. Kolton, and Thierry
Giamarchi, Thermal Rounding of the Depinning Transi-
tion, Europhys. Lett. 81, 26005 (2007).

[133] Alejandro B. Kolton, Alberto Rosso, and Thierry
Giamarchi, Creep Motion of an Elastic String in a Random
Potential, Phys. Rev. Lett. 94, 047002 (2005).

[134] Ludovic Berthier and Walter Kob, The Monte Carlo
Dynamics of a Binary Lennard-Jones Glass-Forming
Mixture, J. Phys. Condens. Matter 19, 205130 (2007).

[135] Craig E. Maloney and Daniel J. Lacks, Energy Barrier
Scalings in Driven Systems, Phys. Rev. E 73, 061106
(2006).

[136] Armand Barbot, Matthias Lerbinger, Anier Hernandez-
Garcia, Reinaldo García-García, Michael L. Falk, Damien
Vandembroucq, and Sylvain Patinet, Local Yield Stress
Statistics in Model Amorphous Solids, Phys. Rev. E 97,
033001 (2018).

[137] Marko Popović, Tom W. J. de Geus, and Matthieu Wyart,
Elastoplastic Description of Sudden Failure in Athermal
Amorphous Materials during Quasistatic Loading, Phys.
Rev. E 98, 040901(R) (2018).

[138] Joseph Pollard and Suzanne M. Fielding, Yielding, Shear
Banding, and Brittle Failure of Amorphous Materials,
Phys. Rev. Res. 4, 043037 (2022).

[139] Elijah Flenner, Hannah Staley, and Grzegorz Szamel,
Universal Features of Dynamic Heterogeneity in Super-
cooled Liquids, Phys. Rev. Lett. 112, 097801 (2014).

[140] Kang Kim and Shinji Saito, Multiple Length and Time
Scales of Dynamic Heterogeneities in Model Glass-
Forming Liquids: A Systematic Analysis of Multi-point
and Multi-time Correlations, J. Chem. Phys. 138, 12A506
(2013).

[141] Giulio Biroli, Kunimasa Miyazaki, and David R.
Reichman, Dynamical Heterogeneity in Glass-Forming
Liquids, arXiv:2209.02825.

[142] Elijah Flenner and Grzegorz Szamel, Dynamic Hetero-
geneity in Two-Dimensional Supercooled Liquids: Com-
parison of Bond-Breaking and Bond-Orientational
Correlations, J. Stat. Mech. (2016) 074008.

TAHAEI, BIROLI, OZAWA, POPOVIĆ, and WYART PHYS. REV. X 13, 031034 (2023)

031034-20

https://doi.org/10.1038/nphys1025
https://doi.org/10.1038/nphys1025
https://doi.org/10.1103/PhysRevLett.113.157801
https://doi.org/10.1103/PhysRevE.104.024904
https://doi.org/10.1039/c4sm00311j
https://doi.org/10.1039/c4sm00311j
https://doi.org/10.1103/PhysRevLett.126.138005
https://doi.org/10.1103/PhysRevLett.126.138005
https://doi.org/10.5802/crphys.48
https://doi.org/10.1016/j.actamat.2022.118405
https://doi.org/10.1016/j.actamat.2022.118405
https://doi.org/10.1063/5.0099071
https://arXiv.org/abs/2303.12486
https://doi.org/10.1016/j.jnoncrysol.2014.08.056
https://doi.org/10.1016/j.jnoncrysol.2014.08.056
https://doi.org/10.1103/PhysRevE.105.044601
https://doi.org/10.1103/PhysRevE.105.044601
https://doi.org/10.1063/1.2773716
https://doi.org/10.1063/1.2773716
https://arXiv.org/abs/2208.05866
https://doi.org/10.1103/PhysRevLett.121.125501
https://doi.org/10.1103/PhysRevLett.97.258303
https://doi.org/10.1103/PhysRevLett.97.258303
https://doi.org/10.1007/s00397-008-0267-2
https://doi.org/10.1007/s00397-008-0267-2
https://doi.org/10.1039/c1sm05607g
https://doi.org/10.1039/c1sm05607g
https://doi.org/10.1103/PhysRevLett.108.255701
https://doi.org/10.1039/c3sm52548a
https://doi.org/10.1039/c3sm52548a
https://doi.org/10.1103/PhysRevLett.113.038303
https://doi.org/10.1103/PhysRevLett.113.038303
https://doi.org/10.1209/0295-5075/81/26005
https://doi.org/10.1103/PhysRevLett.94.047002
https://doi.org/10.1088/0953-8984/19/20/205130
https://doi.org/10.1103/PhysRevE.73.061106
https://doi.org/10.1103/PhysRevE.73.061106
https://doi.org/10.1103/PhysRevE.97.033001
https://doi.org/10.1103/PhysRevE.97.033001
https://doi.org/10.1103/PhysRevE.98.040901
https://doi.org/10.1103/PhysRevE.98.040901
https://doi.org/10.1103/PhysRevResearch.4.043037
https://doi.org/10.1103/PhysRevLett.112.097801
https://doi.org/10.1063/1.4769256
https://doi.org/10.1063/1.4769256
https://arXiv.org/abs/2209.02825
https://doi.org/10.1088/1742-5468/2016/07/074008

