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Most animal brains present two mirror-symmetric sides, but closer inspection reveals a range of
asymmetries (in shape and function) that seem more salient in more cognitively complex species.
Sustaining symmetric, redundant neural circuitry has associated metabolic costs, but it might aid in
implementing computations within noisy environments or with faulty pieces. It has been suggested that the
complexity of a computational task might play a role in breaking bilaterally symmetric circuits into fully
lateralized ones; however, a rigorous, mathematically grounded theory of how this mechanism might work
is missing. Here, we provide such a mathematical framework, starting with the simplest assumptions but
extending our results to a comprehensive range of biologically relevant scenarios. We show mathematically
that only fully lateralized or bilateral solutions are relevant within our framework (dismissing configu-
rations in which circuits are only partially engaged). We provide maps that show when each configuration is
preferred depending on costs, fitness contributed, circuit reliability, and task complexity. We discuss
evolutionary paths leading from bilateral to lateralized configurations and other possible outcomes. The
implications of these results for evolution, development, and rehabilitation of damaged or aging brains is
discussed. Our work constitutes a limit case that should constrain and underlie similar mappings when
other aspects (besides task complexity and circuit reliability) are considered.

DOI: 10.1103/PhysRevX.13.031028 Subject Areas: Biological Physics, Complex Systems,
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I. INTRODUCTION

In Bilateria (an ample clade of animals that includes
humans), the body displays an overall mirror-symmetric
disposition. Mirror (or bilateral) symmetry mathematically
captures our day-to-day experience that reflected objects
look the same but are inverted sidewise (an object’s left side
appears as the reflection’s right side). A mirror symmetry
exists in bilaterian bodies with respect to our sagittal central
plane (which separates our left and right sides). For
example, both of our hands look like the mirror reflection
of each other with respect to that plane.
This symmetry is present in most parts of bilaterian

central nervous systems—including the human brain,
where it also appears broken at a range of levels [1–7].
From a structural perspective, some brain areas grow bigger
than their symmetric counterpart—for example, several
regions of the frontal and temporal left hemispheres are

usually thicker than their contralateral opposites [5,6].
Some of these structural differences underlie an asymmetry
in function as well—human language is a preferred example
as it depends on the development, in the dominant side only,
of a series of areas (Broca’s, Wernicke’s, etc.) [8–15].
Functional asymmetry may appear without such salient
morphological differences—e.g., the right hemisphere usu-
ally dominates high-level visual processing, taking care of
discerning fine details, while the left hemisphere processes
coarser visual aspects [16,17]. Whether linked to structure
and function or not, behavior can break the mirror symmetry
as well—for example, hand dominance in humans, which is
also present at different levels (and varying in choice of
dominant side) in other vertebrates [18–21].
The discovery of Broca’s area proved that brain function

is localized (which was unclear at the time) and that its
bilateral symmetry is broken in humans. An assumption
lingered that the symmetry breaking was due to complex
human cognitive abilities; thus, it was assumed that
increased complexity would generally favor lateralization.
Indeed, brain asymmetry was deemed a human trait that
other species lacked [22–24]. As this was proved wrong
(and brain asymmetry was found to be widespread through-
out animals [18–21,25,26]), neuroscientists worried less
about the role of sheer complexity in symmetry breaking.
They focused on more tangible mechanisms, such as the
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input of light during hatching in birds [20] or faster
processing within a single hemisphere [27]. The hypothesis
of complexity as a driving force of brain symmetry
breaking survived with nuances [2,28], often linked to
mechanistic explanations (e.g., that each hemisphere could
have specific abilities and more complex tasks could recruit
subunits in each hemisphere differently [26], or that
asymmetric brains would allow a more optimal packing,
supporting more functions [28]). However, the following
questions remain: Can cognitive complexity per se be a
driving force behind the breaking of mirror symmetry in
neural systems? If so, is it possible to infer thresholds of
complexity beyond which bilaterality is doomed? Are there
parsimonious ways through which the lost symmetry of a
neural circuit could reemerge? A rigorous mathematical
formalism to answer these questions is lacking.
We tackle these issues from a computational framework,

within which notions of complexity can be well defined and
quantified. We assume that neural circuits carry out some
computational job—whether relaying signals, taking in
inputs, or transforming them in some way. All these actions
have metabolic costs (incurred by engaged neurons) but
also more abstract thermodynamic costs that relate to the
complexity of the computation itself or the reliability of
neural circuits [29–31].
Reliability is important since real neural systems work

within noisy environments. How to perform computations
with unreliable units is a problem that has worried
researchers since the inception of computer science [32–
34]. Redundancy (introducing units that perform the same
operations in parallel or that can substitute a damaged
component) is often a preferred strategy. However, too
much redundancy incurs in unnecessary costs (e.g., as
responses from parallel circuits need to be integrated) and
multiplies the energetic metabolic expenses. When is
redundancy preferred, depending on circuitry reliability
and task complexity?
Throughout evolution, bilateral symmetry has been a

source of redundancy that provided us with neural circuits
in duplicated pairs. While our discussion is centered on
lateralizationversus bilaterality, our results aregeneral for any
pair of redundant circuits. Optimality in wiring and regimes
of efficient activity can appear linked in neural systems [35].
As Darwinism proceeds, we expect that optimality con-
straints will guide, allow, or prevent certain evolutionary
paths. These are the possibilities that we intend to illuminate
in this paper. Matters of optimality, reliable computation, and
selection are also relevant during development—as learning
engages in a Darwinian process of its own [36]. Finally, the
optimality of lateralized or bilateral neural configurations
might be challenged again as we age [37] or as our nervous
system becomes damaged. A landscape of optimal configu-
rations for neural circuits helps us navigate these cases and
even suggests treatments for damaged or aging brains.
In this paper, we lay out a minimal mathematical model

to map optimal configurations (bilateral versus fully

lateralized—allowing any intermediate designs) of com-
puting neural units as a function of their running costs,
fitness gain, reliability, and complexity of the task at hand.
All results are analytical. Mathematical details are devel-
oped in the appendixes. In Sec. II, we discuss our most
important insights. In Sec. II A, we study the least-com-
plicated case, in which a simple task is implemented by a
module. This module consists of either a faulty, irreducible
neural circuit, or a faulty circuit and its mirror-symmetric
counterpart [Figs. 1(a)–1(c)]. Graded engagement of both
sides is allowed [Fig. 1(c)], but we show that only fully
lateralized [Fig. 1(a)] or fully bilateral [Fig. 1(b)] solutions
matter. In Sec. II B, we study complex computations that
need the cooperation of several modules, each taking care
of a different subtask [Figs. 1(d)–1(f)]. We call these
emergent or complex phenotypes. We assess what opti-
mality constraints towards lateralized [Fig. 1(d)] or bilateral
[Fig. 1(e)] configurations operate now—finding, again,
only all-or-nothing engagement. In Sec. II C, we juxtapose

(b) (c)

Simple task

(a)

(e) (f)

Emergent phenotype

(d)

FIG. 1. Simple model for brain bilaterality versus lateralization.
In panel (a), we show that a simple task can be carried out by a
lateralized circuit (black square). A similar unit in the right
hemisphere (white square) and circuitry to integrate both sym-
metric homologues (white triangle) are left unused. In panel (b),
we show that if both mirror-symmetric units are engaged to solve
that simple task (black squares), the integration mechanism
(black triangle) is needed. This is a bilaterally symmetric
configuration. In panel (c), we show that it might be possible
to implement the task by a graded engagement (shades of gray) of
both units and the integration mechanism. (d)–(f) Modeling an
emerging phenotype that recruits M (in this case, M ¼ 3)
different modules, each implementing a simpler subtask. Later-
alized (d) and fully (e) or partial (f) bilateral solutions are possible
again. We determine which configurations are optimal in
each case.
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both sets of optimality pressures (those operating on simple
tasks and those on complex phenotypes) to illuminate how
biases towards laterality or mirror symmetry might have
changed as complex cognition evolved. We use the simplest
possible model to guide our discussion, but we prove in the
appendixes a broad generality of our results. An ample
range of biologically and computationally meaningful
choices should share the most salient constraints—notably,
that only fully lateralized or completely bilateral configu-
rations matter. Deviations from this should inform us about
important scenarios not captured by our model.

II. RESULTS

A. Charting bilaterality and lateralization
for simple tasks

Assume that some neural circuit has to solve a relatively
simple task.Assume that this circuit is faulty, such that it fails
with a probability ε at each attempt. Assume also that, thanks
to our bilaterian body,wepossess two such circuits: one at the
left,L, and one at the right,R [squares in Figs. 1(a)–1(c)].We
refer to them as left and right units or circuits, andwe say that
they constitute a mirror-symmetric or bilateral module. We
also say that this module can remain bilaterally symmetric or
that it can become lateralized to some degree. By now, these
modules are mathematical contraptions. In Appendix F, we
briefly discuss the relationship of the mathematics in our
model and feasible neural biology.
Does it pay off to keep both mirror-symmetric circuits?

Two units together might perform a task more reliably.
However, keeping each circuit running has a metabolic
cost—as active neurons consume energy. In addition, if
both units function simultaneously, they might interfere
with each other—one side providing a wrong answer might
spoil the other’s correct outcome. Some additional structure
or mechanism is needed to transport and cross-check
parallel activity [triangles in Figs. 1(a)–(c)]. Let us attempt
to capture, with the simplest equation possible, all the costs
and benefits of keeping just one unit of the module running
[Fig. 1(a)] versus retaining both sides [Fig. 1(b)] versus
keeping some intermediate engagement [Fig. 1(c)].
Whenever computing this task is required, unit L is

switched on with a probability l ∈ ½0; 1�, and unit R is
activated with a probability r ∈ ½0; 1�. These probabilities
do not need to be independent. For a computation that
needs to be carried out uninterrupted throughout the day,
we can think of l and r as fractions of time that each unit
stays active. We introduce a cost c paid for each occasion in
which either unit is switched on, such that

C ¼ cðlþ rÞ ð1Þ

are the total expenses of running both units independently.
Throughout this paper, when naming costs and fitness
gains, lowercase letters denote benefits earned or costs

incurred as a task is attempted once. Uppercase symbols
denote averages over repeated attempts with circuits
engaged for fractions of time, l and r.
Here, C represents the metabolic cost of use. The

structural existence of each unit should have a great cost
as well—but it is paid independently of use and only once
as the brain develops. Adding such additional costs does
not alter our results qualitatively. Our costs could also
depend, e.g., on the desired accuracy, such that lower error
rates are more costly. One such case was partially explored
in Ref. [7]. In Appendix E, we show that our results
generalize to these and other broad scenarios.
The coordinating mechanism has an additional cost k,

and we assume that it is paid whenever both bilateral units
function simultaneously. Hence,

K ¼ klr ð2Þ

are the total coordination expenses. This captures the
metabolic expenses of the coordinating structure but also
losses due to interference between both units that result in a
faultier functioning. We can think of this last possibility as
an average loss due to insufficient coordination. This would
happen only when both units are active—and thus can be
absorbed within k.
As for the benefits, we assume that some fitness, gS, is

gained if and only if the task is successfully implemented.
Our results are more general—e.g., they hold if an
imperfect implementation still contributes some fitness
(see Appendix E 2). Focusing on the simplest Ansatz,
we obtain

GS ¼ gS½ð1 − εÞlð1 − rÞ þ ð1 − εÞð1 − lÞrþ ð1 − ε2Þlr�:
ð3Þ

Note the convention of lowercase and uppercase letters
again, as well as the superscript in gS andGS (that stands for
simple task), which we did not use for costs. Simple tasks
and emergent phenotypes will report different fitness gains.
Operating costs might also differ (as we discuss below), but
this is not as relevant for our results.
The first term within square brackets in Eq. (3) is the

probability that L is active, l, and works properly, 1 − ε,
and that R is switched off, 1 − r. The second term is the
probability that R is active and working properly and L is
switched off. The third term is the probability that both
units are active and at least one of them produces the correct
answer. In this simplest Ansatz, we assume that the correct
answer cannot be reached if neither unit reaches it on its
own. Alternatively, two faulty but nearly correct answers
could improve each other (especially thanks to the coor-
dinating mechanism). To capture this possibility, the third
term would display an alternative function of ε instead of
1 − ε2 (see Appendix E 2). Returning to our simplest
equation, the third term assumes that the coordinating
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mechanism can obtain the correct outcome if it has been
produced by at least one unit. This still allows for important
synergy—e.g., units failing 50% of the time still work
together with about 75% fidelity [Fig. 10(e)].
Subtracting costs from fitness gains renders a utility

function:

ρSðl; rÞ≡GS − C − K

¼ gSð1 − εÞ½lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr�
− cðlþ rÞ − klr: ð4Þ

Given some values of our model parameters—gS, c, k > 0,
and ε ∈ ½0; 1Þ—the maximum utility as a function of ðl; rÞ
tells us the optimal configuration of our module—i.e.,
which activity each mirror-symmetric side should keep.
We draw optimal configurations in a map (or morpho-

space) that charts how optimality changes as parameters
vary. Figure 2(a) shows such a map for Eq. (4) with fixed
gS ¼ 1 and c ¼ 0.01 and varying ε ∈ ½0; 1Þ and k ∈ ½0; 1�
(see Appendix A for the mathematical derivation). For
ε > 1 − c=gS (thin white stripe at the right of the map), both
units are so faulty that the fitness gain does not pay off
enough to keep the module. Such tasks are not viable. In the
large gray area, coordination is costly enough that it pays
off to lateralize, indistinctly keeping L or R and shutting
down the opposite side. In the black region, it is always
convenient to keep both sides. At the boundary separating
both regions (green curve), the optimal solution has one
unit that is always active and the other one is active any
arbitrary fraction of time. This is the only graded configu-
ration (in which both units are not either completely off or
completely on)—otherwise, Eq. (4) only has all-or-nothing
solutions.

The boundary between bilateral and lateralized solutions
is a parabola with a maximum of k ¼ gS=4 − c located at
ε ¼ 1=2. Note that if c > gS=4, the bilateral configuration
disappears [Fig. 6(c)], so the lateralized solution is pre-
ferred for any ðε; kÞ. If c ¼ 0, the maximum of the parabola
is at gS=4. This imposes a very stringent limit: Coordination
costs can never be larger than a fourth of the fitness
contributed.

B. Charting bilaterality and lateralization
for emergent phenotypes

Conceive now a complex phenotype that, in order to be
implemented, needs to recruit a series of brain regions (akin
to our modules), each one carrying out a different subtask. A
good example is human language (see Appendix F), which
requires the successful functioning of Broca’s, Wernicke’s,
and other regions [8–15] [Fig. 11(a)]. Full-fledged language
only emerges if all regions perform correctly. Failure at any
critical subtask results in specific pathology related to the
malfunctioning area. Let us call such cognitive ability an
emergent phenotype. Note our use of the word “emergent”
here:Wewill not study how such phenotypes came together.
Rather, by “emergent” we mean that the phenotype is
compounded of simpler parts. Assuming that each subtask
can be implemented as before (i.e., by either unit within a
mirror-symmetric module), then we ask again, when is it
favorable to lateralize andkeep just one side active [Fig. 1(d)],
keep all bilateral circuits functioning [Fig. 1(e)], or have them
running at some intermediate level [Fig. 1(f)]?
Let us assume an emergent phenotype that involves M

modules—i.e., it requires the correct implementation of M
subtasks. We take M as a proxy for the phenotype’s
cognitive complexity. Let us assume that each module
incurs similar costs as before:

(a) (b) (c)

FIG. 2. Optimal lateral vs bilateral configurations. For ðε; kÞwithin the white areas, the sought phenotype is so costly that it never pays
off. Within the gray regions, it is optimal to lateralize. Within the black areas, bilaterality is preferred. (a) Model for simple cognitive
tasks with gS ¼ 1, c ¼ 0.01. This is the only scenario in which we find graded solutions but only in a negligible part of phase space
(green boundary between regions). Utility functions at the red dots are plotted in Fig. 5. (b) Model for emergent phenotypes with gE ¼ 1,
c ¼ 0.01,M ¼ 10. Utility functions at the red dots are plotted in Fig. 7. (c) Trajectories on a morphospace (e.g., increased coordination
costs, k, due to pathology or larger brains, vertical arrows; or increased fallibility due to aging, rightward arrows), which might prompt
changes in optimal configurations.
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C ¼ cðlþ rÞ ·M;

K ¼ klr ·M: ð5Þ

Specific values c and kmight change with respect to simple
phenotypes (see section above), but the functional depend-
ency is the same, as a cost c is incurred by running circuits
individually and another k by coordination within each
module. As before, we can interpret l and r as the average
time that L or R units are active. Alternatively, we can say
that a fraction l of the M left units is always switched on
(and similarly for the right side). We assume that all
subtasks are equally costly. In Appendix E 1, we explore
different costs, error rates, and engagements for each
module. This gives rise to a richer phenomenology, with
lateralization for each module depending on other modules’
parameters and configurations, but all the main results that
follow for the homogeneous case are retained.
Regarding the fitness gain, now it is only cashed in if all

independent subtasks are successful; thus,

GE ¼ gE ·M½ð1− εÞlð1− rÞþð1− εÞð1− lÞrþð1−ε2Þlr�M:
ð6Þ

The superscript in gE and GE stands for an emergent
phenotype. Here, we see the same probability of imple-
menting each subtask as before, now raised to the Mth
power—giving us the likelihood that no subtask is lacking.
We assume a fitness gain gE ·M (we could absorb the M
within gE, but it is not convenient).
We can now define the following utility function:

ρEðl; rÞ≡GE=M − C=M − K=M

¼ gEð1 − εÞM½lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr�M
− cðlþ rÞ − klr: ð7Þ

Figure 2(b) charts its optimal solutions with gE ¼ 1,
c ¼ 0.01, M ¼ 10, and varying ε ∈ ½0; 1Þ and k ∈ ½0; 1�
(see Appendix B for the mathematical derivation).
The area in which the phenotype fails to emerge [now,

ε > 1 −
ffiffiffiffiffiffiffiffiffiffi
c=gEM

p
; white region in Fig. 2(b)] is much wider

than before, while the lateralization region (gray) has
shrunk. We take relatively low running costs (c ¼ 0.01).
If these costs become smaller (c → 0), the “no-phenotype”
region would become negligible as ε > 1 −

ffiffiffiffiffiffiffiffiffiffi
c=gEM

p
→ 1.

This is noteworthy, even though we expect realistic
scenarios to have non-negligible costs (c > 0). Even if
we do not approach the c → 0 limit, complex phenotypes
contribute a greater fitness than simpler tasks (i.e.,
gE ≫ gS). Since we set gE ¼ 1 to generate our maps, we
should rescale running costs accordingly, resulting in
smaller c.
The region where bilaterality is optimal has shifted to

lower ε and deformed with respect to the parabola. Unlike

before, graded engagement is not optimal along the
boundary. Instead, both the lateralized and fully bilateral
configurations are simultaneously optimal at the boundary
of the black and gray regions.
In Appendix B, we prove that the curve describing this

boundary has only one maximum, so all morphospaces
have a similar shape as M changes. As the emergent
phenotype’s complexity increases (i.e., as more modules
need to be recruited, thus M grows), the no-phenotype
region grows (as per ε > 1 −

ffiffiffiffiffiffiffiffiffiffi
c=gEM

p
). The bilaterality

region shifts further left while its peak reaches higher in the
k axis. For simple tasks, there is a harsh limit (k < gS=4) for
bilaterality. For complex phenotypes, a much higher
coordination cost can be tolerated.

C. Optimality pressures as new phenotypes emerge

How do optimality constraints change as complex
phenotypes evolve? The morphospaces derived above give
us static pictures at two endpoints of an evolutionary
process. Consider the set of neural modules in early
hominins that constituted the precursors of language
areas (Broca’s, Wernicke’s, etc.). Let us assume that,
before languages appeared, these modules worked
independently—each tending to its own, relatively simpler
task. Each module’s optimality constraints would be
captured by simple task morphospaces [Fig. 2(a)]. Now,
take full-fledged human language. Some evolutionary
process forced those precursor modules to work together
to produce the emergent phenotype. This advanced cog-
nitive ability depends upon the correct implementation of
all subtasks; thus, optimality pressures now resemble the
complex phenotype morphospace [Fig. 2(b)].
In this section, we juxtapose these two static pictures to

visualize how optimality constraints might change the
preferred configuration as complex cognition evolves.
This addresses our main question: Are there evolutionary
pressures towards brain lateralization associated with
increased cognitive complexity? Some issues will linger
regarding the evolutionary process: In what order were the
modules forced to cooperate? In the example above,
precursor modules likely started working together well
before language appeared. Some complex phenotypes
might have evolved more gradually than others—perhaps
forcing modules into a hierarchy. Then, successive mor-
phospaces would be relevant at different stages (e.g., first
M ¼ 3, then M ¼ 5 modules, etc.). Evolutionary paths
would need to adapt to changing optimality constraints. In
addition, as modules are brought together, the circuitry
within might become fine-tuned to their subtasks—chang-
ing their reliability ε and operating costs c and k. This
would amount to trajectories across morphospaces, which
might prompt additional changes in optimal configurations.
Exploring these scenarios is beyond the scope of this paper,
but our model is a guide to navigating such evolution-
ary paths.
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Finally, morphospaces for emerging phenotypes revealed
broad regions at which complex cognition is not viable
according to the cost-benefit calculation [white areas inFig. 2
(b)]. This is alleviated by assuming that, after the appearance
of a complex phenotype, simpler tasks still contribute some
fitness on their own [Fig. 2(c) shows one such resulting
morphospace]. This is also more realistic. Think about how
some language regions can process symbol patterns unre-
lated to languagewithout activating all languagemodules. In
this section, we review cases in which simpler phenotypes
coexist alongside emergent ones. Our results are quite
general, as we explore in Appendix E. There we consider
the effect of heterogeneous costs, error rates, and engage-
ments across modules (Appendix E 1); increased synergy
across sides of the brain and arbitrary dependencies on error
rates (Appendix E 2); nonlinear dependencies on unit
engagement (Appendix E 3); and dependency across mod-
ules in implementing their simpler subtasks (Appendix E 4).

1. Complex phenotypes implemented
alongside simple ones

Complex phenotypes evolve upon a previously existing
computational substrate. In it, modules exist that already
implemented their own, individual, simpler task. In the
example above, we mentioned precursors of language

regions. An emerging phenotype is likely not engaged at
all times. When not engaged, the constituting modules are
freed up to perform their more ancient, simpler tasks, which
can still contribute some fitness. In our example, recognition
of nonlinguistic symbol patterns can be carried out by some
language areas without engaging, e.g., the semantic map.
Let us assume an emergent phenotype that is engaged a

fraction τ ∈ ½0; 1� of the time. Let us assume that ancient,
simpler tasks are engaged for the remaining time, 1 − τ.
Averaging the corresponding fitness gains accordingly, we
compute the resulting morphospaces (see Appendix C for
details). Figure 3 explores these optimality constraints taking
gS ¼ 1 · ð1 − τÞ and gE ¼ 2 · τ (i.e., the emerging phenotype
allows us to gain twice as much fitness per module). We
illustrate emerging phenotypes of distinct complexity [i.e.,
number of modules recruited, M; Figs. 3(a)–3(d)] and
emerging phenotypes that are engaged for different fractions
of time, τ [Figs. 3(e)–3(h)]. These constraints are juxtaposed
upon the map for simpler tasks, revealing how new opti-
mality biases operatewhen the emerging phenotype appears.
In Fig. 3, we find regions marked B→B (black) and

L→L (light gray) in which, respectively, the bilateral
and lateralized solutions are optimal, both for simple
and complex phenotypes. In such cases, the evolution of
complex cognition does not alter the optimal configuration
of the recruited neural modules.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Evolutionary paths to complex phenotypes that emerge upon substrates that retain their simpler functions, with gS ¼ 1,
gE ¼ 2, and c ¼ 0.01 in all cases. (a)–(d) We explore an emergent phenotype that occupies the neural substrate 90% of the time
(τ ¼ 0.9). As the complexity of the emergent phenotype increases [(a) M ¼ 2, (b) M ¼ 3, (c) M ¼ 10, and (d) M ¼ 100], it becomes
unavoidable that the mirror symmetry breaks apart. In panels (e)–(h), we explore a notably complex phenotype (M ¼ 100) that
gradually increases the fraction of time during which it makes use of the neural substrate [(e) τ ¼ 0.1, (f) τ ¼ 0.3, (g) τ ¼ 0.5, and
(h) τ ¼ 0.7, with (d) τ ¼ 0.9 completing the progression]. This resembles developmental situations in which higher brain functions are
assembled gradually and displace simpler computations in the same neural substrate. A circuit sitting where the red dot is would become
lateralized by such a process.
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We also find regions marked B→L (blue). In them,
bilateral symmetry is optimal for simpler tasks but it breaks
apart as more complex phenotypes emerge. These B→L
regions grow larger for more complex phenotypes (i.e.,
when more modules M are recruited), as the B→B region
vanishes [Figs. 3(a)–3(d)]. The same thing happens for
complex phenotypes that are engaged for larger fractions of
time, τ → 1 [Figs. 3(e)–3(h)]. In other words, the emer-
gence of more complex cognition entails increased evolu-
tionary pressure for brain lateralization, thus settling the
main question of this paper.
Additionally, Fig. 3 shows salient regions labeled L→B

(dark gray). In them, a lateralized solution is optimal for
simple tasks, but bilaterality is preferred for the emergent
phenotype. This is an evolutionary pressure towards
recovering lost bilaterality. Depending on an organism’s
history, the symmetric counterpart of a lateralized circuit
might have been lost (or diverged towards other tasks—see
below). Recovering bilaterality might not be possible. The
organism is then stuck with the suboptimal lateralized
solution—a frozen accident. Alternatively, the evolutionary
pressure could foster the appearance of a duplicate that is
not mirror symmetric—we focus on lateralization, but our
results are valid for duplicated circuits, in general. The
evolution of such duplicates has been observed in the

mammalian brain [38]. Our L→B regions suggest ample
pressures favoring this evolutionary route.
We assume that all modules have the same reliability ε,

that they incur exactly the same costs c and k, and that all
simpler tasks report the same fitness gS. This is unlikely in
real brains. Different modules will perform with different
accuracy, effort, and rewards. We show (Appendix E 1) that
our results are valid when modules are heterogeneous.
Figures 10(a)–10(d) show, indeed, that this heterogeneity
increases the pressure towards lateralization.

2. Segregating functions

When exposed to languages, babies show engagement in
both sides of the brain (e.g., Broca’s area and its contralateral
homologue). As they mature, this symmetry is broken, and
only one side (usually the left) is engaged during language
input or production [39]. Early loss of this hemisphere can
result in the development of language regions on the opposite
side [40], indicating that contralateral homologues retain (at
least temporarily) a potential for language. But language
recovery is usually not possible after hemispherectomy or
stroke when they happen later in life. One possibility is that
contralateral homologues become specialized in other
tasks—e.g., processing nonsyntactic musical patterns [41].

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 4. Optimality pressure towards function segregation. In all cases, gS ¼ 1, gE ¼ 2, and c ¼ 0.01. Gray dashed lines represent the
boundary between bilateral and lateralized solutions from Fig. 3. In panels (a)–(d), as before, we explore emerging phenotypes that
occupy the neural substrate 90% of the time (τ ¼ 0.9). Again, as the complexity of the emerging phenotype increases [(a) M ¼ 2,
(b) M ¼ 3, (c) M ¼ 10, and (d) M ¼ 100], it becomes unavoidable that bilateral circuits lose their mirror symmetry. This time, when
bilaterality is lost, each mirror symmetric counterpart becomes specialized in either the simple or complex tasks (B → hLjRi). We
explore a moderately complex phenotype (M ¼ 10) that gradually increases the fraction of time during which it makes use of the neural
substrate [(e) τ ¼ 0.1, (f) τ ¼ 0.3, (g) τ ¼ 0.5, (h) τ ¼ 0.7, with (c) τ ¼ 0.9 completing the progression]. Again, this allows us to model
developmental situations in which higher brain functions are assembled gradually and displace simpler computations in the same neural
substrate. A circuit sitting where the red dot is would become lateralized by such a process.
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This exemplifies (over development, rather than evolution) a
mirror symmetric module that becomes lateralized by devot-
ing each side to a different function. When does such a
configuration pay off?
Figure 4 shows optimality pressure towards this

lateralized-segregated solution (denoted hLjRi; see
Appendix D for mathematical details). This is amply
preferred both as the complexity M of the emergent
phenotype increases [Figs. 4(a)–4(d)] and as the fraction τ
of time devoted to the complex task grows [Figs. 4(e)–(h)].
The L → hLjRi pathway (light gray) starts with already-

lateralized modules for simple tasks. If the unused counter-
parts persist through evolution, they might be available for
hLjRi recruitment. However, those unused circuits might
have been lost over the course of evolution—hence, this
pathway would not be straightforwardly available. Again,
since our results are valid for sets of duplicated circuits (not
only mirror-symmetric modules), this segregated solution
is yet another evolutionary pressure towards the duplication
of existing structures within one hemisphere [7,38].
The B → hLjRi pathway (blue) is more amply preferred

the more complex the emergent phenotype is. This shows,
again, how increased cognitive complexity is a strong
evolutionary driver of lateralization—and (since our results
extend beyond bilaterality) of symmetry breaking in the
brain.
The literature discusses how function segregation can

be convenient—e.g., to have specialized hemispheres that
complex cognition can recruit from [26] or to allow more
efficient packing [28]. Even if allowing segregation,
bilaterality remains optimal in ample regions of parameter
space. Note that segregation would not happen in the
bilateral solution since it engages both mirror-symmetric
circuits for simple and complex phenotypes. The persist-
ence of bilateral designs enables the B→B (black in
Fig. 4) and L→B [dark gray, Figs. 4(c)–(h)] pathways. In
them, the fitness gained from combining faulty circuits
with robust modules overcomes the advantages of segre-
gating tasks into equally faulty circuits. The L→B path-
way is again a pressure towards duplication of existing
circuits or (if still available) reenacting lost mirror
symmetry. Variations of our model (Appendix E 2) show
that increased within-module synergy results in broader
B→B and L→B regions [Figs. 10(b)–10(d)].

III. DISCUSSION

Since very early in the history of computer science,
redundancy was acknowledged as an efficient strategy to
perform computations with faulty parts [32–34]. The
bilaterian body plan is a source of redundancy for many
organs, including the central nervous system. Brains are
equipped with mirror-symmetric duplicates of most cortical
regions, ganglia, etc. This can result in more robust neural
computations but can have an excessive metabolic cost.

We have developed a concise yet comprehensive math-
ematical framework to study the optimality of bilateral
versus lateralized solutions. We have built a series of
morphospaces that summarize optimal configurations as
a function of (i) costs of running lateralized neural circuits
independently, (ii) costs of coordinating efforts across sides
of the brain, (iii) how error prone these units are, (iv) the
fitness gained by successful neural computations, and
(v) the complexity of the tasks at hand.
A first, strong result is that only all-or-nothing configu-

rations are optimal in our framework: It is either better to
engage both mirror-symmetric sides, just one lateralized
circuit, or none at all. A graded engagement is never
exclusively optimal. We might think that this happens
because of our fairly stringent assumptions—e.g., the idea
that modules are strictly independent, irreducible units; or
the choice of implementation of synergies across the
hemispheres [as given by the ð1 − ε2Þlr term in Eq. (3)].
However, this result is very general. In Appendix E, we
show that it holds (i) if we allow heterogeneous modules
(i.e., modules that work together yet have different costs,
levels of engagement, and error rates; Appendix E 1); (ii) if
we allow different levels of synergies across hemispheres,
or if we consider more arbitrary dependencies of the costs
on the error rates (Appendix E 2); (iii) if we allow non-
linear, monotonically increasing dependencies between the
time that a module is engaged and its performance (e.g.,
because it learns, becoming more efficient; Appendix E 3);
and (iv) if we allow modules to aid each other in
implementing simpler tasks, even before emergence of a
new, complex phenotype (Appendix E 4). Each of these
variations is an effort to bring the model closer to the
diverse biological scenarios that exist in nature. However,
our assumptions remain stringent in many senses. The
robustness of our results upon variations suggests that our
approach (from the simplest towards more complex sce-
narios) is promising, and we propose that we can also use
our optimality maps to investigate very detailed models
(e.g., with realistic neurons, accounting for metabolism,
etc.). Returning to the all-or-nothing engagement, while no
assumption has changed this result in any model variations,
it seems reasonable that neural circuits might be gradually
engaged. A great follow-up question is: What change in our
equations would result in graded engagement, and what
would that mean for a real brain? A possible way forward is
that, while our maps reveal pressures towards optimality,
biology might ignore optimality, and historical contingen-
cies might prevent us from reaching it.
Early findings of localized language functions suggested

that lateralized brain activity was exclusive of complex
human cognition [22–24]. This idea was debunked after
finding lateralized activity in other animals, but the hypoth-
esis that cognitive complexitymight prompt brain-symmetry
breaking has survived, with nuances. A solid mathematical
understanding of such a mechanism has been missing.
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Our model provides the lacking framework. We show
mathematically how different optimality pressures towards
lateralization are fostered by increasing cognitive complexity.
This happens in scenarios in which complex phenotypes
emerge alongside simpler tasks in a hierarchical (Fig. 3) or
segregated (Fig. 4) fashion. With these well-grounded math-
ematical results, we conclude that the evolution of more
complex cognition can be a paramount driver of brain
lateralization.
However, we also provide strong evidence in the

opposite direction: For large combinations of model
parameters, there exists a pressure upon formerly lateral-
ized circuits to evolve a duplicate again. These scenarios
are different from those for which it is optimal to lose
bilaterality. Hence, emerging complex cognition can act as
a source of new symmetries or break older ones, depending
on properties of the neural substrate (e.g., its fallibility or
metabolic needs) and other conditions (e.g., complexity of
the emerging phenotype). While we focus our discussion
on mirror symmetry, our results apply to any sets of
duplicated neural structures. When pressure to develop
redundancy is present, it might be more parsimonious to
create duplicity within the same hemisphere. Evidence of
such duplicates in the mammalian brain has recently been
described [7,38]. The alternative (re-recruiting the actual
mirror symmetric circuitry) might be impossible if this
circuitry has diverged over evolutionary time.
We visualize optimal configurations as morphospaces

over model parameters. Morphospaces were introduced to
describe the shape of shells as a function of factors that
affected their formation [42,43]. They have been expanded
to map complex systems [44–50], including how optimality
guides the evolution and development of neural substrates
[37,51,52]. These morphospaces remind us of phase dia-
grams that map solid, liquid, etc. phases of matter subjected
to different physical conditions. Similarly, changes in
optimal configurations as we move around our morpho-
spaces or as we juxtapose different conditions remind us of
phase transitions. It seems natural to extend these tools and
concepts from statistical physics as we do here.
The ultimate goal of these morphospaces is to portray

real-world systems and explain actual phenomenology. Let
us try this with our mathematical framework:

(i) Neural damage or pathology could alter the operat-
ing parameters of our modules. A damaged circuit
can become faultier (increased ε) or more costly to
engage or coordinate (growing c and k). These
changes could push bilateral circuits outwards from
a bilaterality region [Fig. 2(c), red arrows]. Aging
could also lead to increased fallibility and costs. We
should expect more asymmetry with age or pathol-
ogy, as is the case [5,53,54]. Even if lateralization
becomes optimal due to fallibility or cost changes,
mature brains might retain mirror-symmetric con-
figurations as if stuck on a frozen accident. In such

cases, blocking one side of the brain might help
achieve the optimal configuration. Noninvasive
techniques such as transcranial magnetic stimulation
(TMS) might help us test this possibility.

(ii) Larger brains pay higher coordination costs due to
limits on callosal information transfer. In our model,
increased k moves mirror-symmetric circuits to-
wards lateralized configurations [Fig. 2(c), vertical
arrows]. We expect increased asymmetry in larger
brains, as is the case [5,55]. This agrees with more
asymmetric brains presenting less or thinner trans-
callosal fibers [56]. These brains might have re-
nounced some coordination efforts and embraced
lateralization. Tasks that demand short reaction
times should show similar effects—they would
penalize interhemispheric communication delays
(i.e., larger k). Our model subsumes this route to
lateralization, which has been explored before [27].

(iii) Hemisphere dominance is the process through
which, while both sides are engaged in some
function, one side takes a leading role—often acting
as a controller or coordinator of both sides. Handed-
ness is a paramount example. There is a strong bias
towards mirror symmetry due to our bilateral body
[Fig. 11(b), item 1]. However, a trend towards
lateralization exists in mammals, with handedness
increasing with behavioral complexity [18–21].
Studies of unilateral hemiplegia further show that
the dominant hemisphere is needed for complex
movement of the unaffected hand [22,57] (while the
dominated side is not indispensable). Dominance is
observed in other neural systems such as visual
processing [16,17] or the Theory of Mind network
[58]. This suggests graded engagement of the
dominant side, which should be rare after our
optimality constraints. However, our results apply
to circuits that carry out exactly the same compu-
tations. They do not preclude a circuit commanding
the other or even delegating specific, unshared tasks
on it. Indeed, some routes to lateralization (e.g.,
B → hLjRi) might promote such controller-con-
trolled configurations.

(iv) Human language is themost paradigmatic example of
higher-brain-function lateralization. Language usu-
ally involves left hemispheric regions [8–15]. Recent
fMRI evidence shows that language engagement
starts out as more symmetric in babies and becomes
fully lateralized as children grow [39]. Similar tra-
jectories can be seen in ourmodel: Take neural circuits
sitting at the red dots in Figs. 3(e)–3(h) and 4(e)–4(h),
for example. Within this framework, as language
would gradually recruit its neural substrate for longer
times (i.e., increasing τ), the initial bilateral configu-
ration would become suboptimal. This example
illustrates how our model naturally accommodates
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such developmental pathways—we cannot determine
if this is the actual process during languagematuration.

(v) Our morphospaces predict that nearing perfect
performance [ε → 0, Fig. 2(c), green arrow] always
results in lateralization. Duplicated circuits are
superfluous, yet costly, if ε ¼ 0. Musicians with
perfect pitch exemplify this scenario: They have
increased asymmetry in the planum temporale,
notably owed to the reduction of the nondominant
side for this task [2,59–61].

(vi) Our model can be extended to account for other
lateralization mechanisms, such as hemisphere spe-
cialization [26] or optimal packing [28]. Both these
proposals are qualitative. We have built a very
general quantitative framework that allows us to
mathematically understand how these mechanisms
might operate.

Empirical measures of brain asymmetry are costly and
scarce [5,6]. In the examples just provided, qualitative
observations match scenarios from our model. Efforts
should follow to bring quantitative empirical measurements
to our theoretical framework. Measuring model parameters
in real neural circuits seems difficult, but very realistic
compartment models [62] might help us simulate exact
real-world conditions.
Alternatively, we can induce transitions from bilaterality

to lateralized solutions in experimental setups, quantifying
the transition thresholds, and thus constraining model
parameters. This might be feasible with neuronal prepara-
tions in vitro, or even in behaving animals, including
humans. We could manipulate task complexity while
monitoring neural activity, or we could interfere with
cortical regions to raise error rates—e.g., using TMS. In
that sense, fMRI studies have recently been used to track
brain lateralization during language development [39] or to
map how complex cognitive tasks span a space of abstract
neural activity depending on task novelty or on learning
[52]. It seems a straightforward extension to combine both
approaches and measure mirror symmetry and lateraliza-
tion in the brain as a function of task complexity, thus
seeking an empirical test of our model. Such an approach
would rely on the brain behaving optimally, in the sense
that it would renounce mirror symmetry if it became
suboptimal. While this can be argued over evolutionary
time (because Darwinism likely penalizes suboptimal
designs), nothing guarantees that brain activity will behave
optimally in a short timescale. However, such experiments
might also allow us to measure performance and metabolic
stress across participants and check how they correlate with
optimal configurations (e.g., participants retaining subop-
timal mirror symmetry for more complex tasks might
perform the worst in a task).
We tried to make our mathematical framework as general

as possible, but, unavoidably, some costs and effects have
been left out. Future models should explore how our

morphospaces change as new aspects come into play.
Some of the omissions might actually make our results
more robust. For example, as complex phenotypes emerge,
we have not demanded that all subtasks be implemented on
the same side. However, we observe clear constraints
towards lateralization. Including a penalty for interhemi-
spheric communication should strengthen this trend. We
have not discussed structural and lasting costs either. For
us, building a neural circuit is free; we only pay to keep it
running. Such additional costs should exacerbate some
results—e.g., by making lateralization more definitive,
which is relevant for the L→B route. This could introduce
path dependency, which reminds us of hysteresis in
physical phase transitions. Other structural constraints
might favor mirror symmetry. We mentioned our bilateral
body. It should be feasible to modify our model accordingly
and see how the morphospaces are updated.
Finally, our model is not only agnostic regarding bilater-

ality versus other sources of redundancy. It is also indepen-
dent of the computational substrate. Our results should
matter for designing efficient computing devices. In such
cases (such as a chip that could choose to engage several
microprocessors depending on task complexity), it should be
helpful to extend our framework to arbitrary redundancies
(i.e., not just two symmetric circuits). A similar modeling
might be useful to study gene duplication [63,64], especially
as more computational and cognitive approaches to the
functioning of cells are explored. To achieve this, it might
be convenient to expand our mathematical framework. The
field of redundant coding offers interesting mathematical
tools grounded in information theory [65,66] that have been
used on empirical questions [67]. It should be possible to
ground our model within this framework and perhaps use its
concepts to expand our results and to understand, in terms of
information flows, how our optimality constraints operate.
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APPENDIX A: MAXIMA OF THE UTILITY
FUNCTION FOR SIMPLE PHENOTYPES

In the simplest scenario, the average fitness gain reads

GS ¼ gSð1 − εÞ½lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr�; ðA1Þ
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and the costs are

C ¼ cðlþ rÞ;
K ¼ klr; ðA2Þ

which yields the utility function

ρSðl; rÞ≡ gSð1 − εÞ½lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr�
− cðlþ rÞ − klr: ðA3Þ

Given fixed values for our model parameters [gS > 0,
c > 0, k > 0, and ε ∈ ½0; 1Þ], we try to find maxima of
Eq. (A3) as a function of our model variables l ∈ ½0; 1� and
r ∈ ½0; 1�. Note how we have restricted our parameters:
Without loss of generality, we could take gS ¼ 1 and
normalize all costs accordingly. It makes sense that
c; k < gS; otherwise, it is never favorable to implement
such a task (but stronger constraints will arise). Finally, the
error rate takes values within ε ∈ ½0; 1�, but we kept the
interval open, ε ∈ ½0; 1Þ, to avoid some algebraic problems.
However, this limit is not so interesting.
To start searching for maxima, we look at the derivatives

with respect to l and r:

ρSl ≡ ∂ρS

∂l
¼ ð1 − εÞgS − c − r½bð1 − εÞ2 þ k�;

ρSr ≡ ∂ρS

∂r
¼ ð1 − εÞgS − c − l½bð1 − εÞ2 þ k�: ðA4Þ

These equations are straight lines as a function of r or l,
respectively. Thus, given fixed model parameters, there is
only one point at which both ρSl and ρSr can become 0:

ðl; rÞ ¼
� ð1 − εÞgS − c
gSð1 − εÞ2 þ k

;
ð1 − εÞgS − c
gSð1 − εÞ2 þ k

�
: ðA5Þ

Taking second derivatives

ρSll ≡ ∂
2ρS

∂l2
¼ 0 ¼ ∂

2ρS

∂r2
≡ ρSrr ðA6Þ

and

ρSlr ≡ ∂
2ρS

∂l∂r
¼ −½gSð1 − εÞ2 þ k�; ðA7Þ

yields a discriminant

Δ ¼ ρSllρ
S
rr − ðρSlrÞ2 ¼ −½gSð1 − εÞ2 þ k�2: ðA8Þ

This number is always negative, meaning that the singular
point is a saddle. Since Eq. (A3) is a quadratic form, the
saddle spans the whole l–r plane—meaning that there are
no global or local extrema as a function of our variables.
This result further implies that, if we look at Eq. (A3)

within a bounded area of the l–r plane, its maxima will
always lie at the boundary (Fig. 5). Thus, we just need to
evaluate ρSðl; rÞ along the outer circuit of the square
½0; 1� × ½0; 1�. Because of the symmetry of the problem,
ρSðl¼ 0;rÞ¼ ρSðl;r¼ 0Þ and ρSðl; r ¼ 1Þ ¼ ρSðl ¼ 1; rÞ;
thus, we observe ρSðl; r ¼ 0Þ and ρSðl ¼ 1; rÞ.
For the first segment, we obtain

ρSðl; r ¼ 0Þ ¼ l½gSð1 − εÞ − c�: ðA9Þ

As a function of l, this is a straight line that passes through
the origin. If the slope is positive, the largest value of
ρSðl; r ¼ 0Þ will be found at l ¼ 1. If the slope is negative,
the largest value will be found at l ¼ 0. In such cases, both
neural units are permanently shut off, meaning that it pays

(a) (b) (c)
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FIG. 5. Utility function for the simplest case. This utility function is a quadratic form with a negative discriminant—i.e., a saddle with
no global extrema. Hence, maxima of the utility function within the region of interest are always at the enclosing circuit. With fixed
model parameters gS ¼ 1, c ¼ 0.05, and k ¼ 0.1, varying the error rate, we obtain different optimal solutions (marked by black circles):
(a) bilaterality (ε ¼ 0.5), (b) lateralization (ε ¼ 0.9), and (c) no function (ε ¼ 0.99).
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off not to implement this phenotype: It is more costly than
the reward it produces. We have a negative slope if

c > gSð1 − εÞ ⇒ ε > 1 −
c
gS

: ðA10Þ

This condition is marked as a white rectangle in the ε − k
maps in Figs. 2(a) and 6. Precisely at the point when the
slope becomes zero, any level of activity l ∈ ½0; 1� is
equally optimal.
Evaluating the utility function along the second segment

of interest we obtain

ρSðl ¼ 1; rÞ ¼ ð1 − εÞgS − cþ r½gSð1 − εÞε − c − k�;
ðA11Þ

which again is a straight line, now as a function of r. Take
its slope,

m ¼ gSð1 − εÞε − c − k: ðA12Þ

If it is positive, ρSðl ¼ 1; rÞ grows as a function of r, and its
maxima within r ∈ ½0; 1� is found at r ¼ 1, meaning that it
is optimal to keep both neural units active. If the slope is
negative, the maxima is found at r ¼ 0, meaning that it is
convenient to keep only one unit (the left one in this case)
switched on. Because of the symmetry of the problem, the
antisymmetric solution also exists (right unit on and left
unit off). If the slope is exactly zero, it is convenient to keep
one neural unit always on, and it is indistinct whether the
other one is on, off, or active at some intermediate level. For
example,

m ¼ 0 ⇔ k ¼ −gSε2 þ gSε − c; ðA13Þ

which is a parabola when represented in the ε − k plane.
This parabola delimits the regions of parameter space in

which it is convenient to switch one or both neural units on
[gray and black regions in Figs. 2(a) and 6].
The crossings of the parabola with the horizontal axis are

given by imposing k ¼ 0 on Eq. (A13):

ε ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4c=gS

p
2

: ðA14Þ

These crossings are real numbers only if c < gS=4. Thus, if
the individual cost c is larger, a boundary separating
bilateral from lateralized optima does not exist—only the
lateralized solution survives [Fig. 6(c)]. The maximum of
the parabola is gS=4 − c, and it is always located at
ε ¼ 1=2. This imposes a rather harsh limit on the bilateral
configuration: In the best-case scenario (c ¼ 0), for bilat-
erality to exist, coordinating efforts cannot be larger than a
fourth of the total fitness gain. The lateralized configuration
remains viable with much higher costs.

APPENDIX B: MAXIMA OF THE UTILITY
FUNCTION FOR STRICTLY EMERGENT

PHENOTYPES

Next, we model complex phenotypes that emerge out of
the interplay of M individual tasks, each of them solved in
an atomic manner by a lateralized or bilateral module.
Since now we need M such modules to implement the
emerging phenotype, assuming that all modules incur
similar costs, we have

C ¼ cðlþ rÞ ·M;

K ¼ klr ·M: ðB1Þ

The fractions l and r can now be interpreted either as the
time that modules of a side are active or as the fraction of
units of the corresponding side that are always active.

(a) (b) (c)

FIG. 6. Maps of optimal configurations for simple tasks. As a function of ε and k, a simple phenotype fails to emerge in the white areas
because it reports too little fitness given the implementation costs. The task might be worth implementing with a lateralized (light gray)
or bilateral (black) configuration. (a) Small costs of running independent units, c ¼ 0.05. (b) Intermediate values of running independent
units, c ¼ 0.15. (c) If running independent units is larger than gS=4 (here, c ¼ 0.25), the bilateral configuration is not viable.
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Regarding the gained benefit, this is only cashed in if the
emergent task is implemented in full, for which we need all
modules to work properly. The likelihood that this will
happen is the product of the likelihood that each of the M
units functions correctly:

GE ¼ gEM · ð1 − εÞM½lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr�M:
ðB2Þ

Note that here we are modeling a fitness gain brought
about strictly by the emergent phenotype—i.e., at this
point, we are not considering the benefits from each of the
individual tasks (we discuss this in more detail in the next
section). We stipulate that the net fitness gain is gEM,
without loss of generality. We could absorbM within gE—
but we keep them separated for convenience. Hence, gE

captures the fitness gain per module recruited for the
emergent phenotype.
It is also useful to introduce the polynomial

Pðl; rÞ≡ lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr
¼ rþ ½1 − rð1 − εÞ�l
¼ lþ ½1 − lð1 − εÞ�r: ðB3Þ

Wehave rewritten it three times, the last two just to show that,
if r (respectively l) are considered constant, the polynomial is
a straight line as a function of the other variable.
We can now write the following utility function:

ρEðl; rÞ≡GE=M − C=M − K=M

¼ gEð1 − εÞMPðl; rÞM − cðlþ rÞ − klr: ðB4Þ

Figure 7 shows this function within ðl; rÞ ∈ ½0; 1� × ½0; 1� in
three distinct cases. Again, we are interested in finding

maxima of ρEðl; rÞ within that region of the l–r plane.
Therefore, let us compute its derivatives with respect to
each of the variables:

ρEl ¼ gEð1− εÞMMPðl; rÞM−1½1− rð1− εÞ�− c− kr;

ρEr ¼ gEð1− εÞMMPðl; rÞM−1½1− lð1− εÞ�− c− kr: ðB5Þ

Because of the nonlinearity introduced byM, this case is
more complicated than the one in Appendix A. To simplify
it, let us look at a constant, fixed value of r, which defines a
straight line parametrized by l in the l–r plane (thick red
lines in Fig. 7). Next, let us find singular points along this
line:

ρEl ¼ 0⇔Pðl;rÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cþkr
gEð1− εÞMM½1−rð1−εÞ�

M−1

s
: ðB6Þ

The right-hand side of this equation is a constant for fixed r.
Meanwhile, Pðl; rÞ is a straight line as a function of l [as
shown by Eq. (B3)]. This straight line can only cross the
constant on the right-hand side once [Fig. 8(a)].
Let us call the term inside the root γ. Within the range of

parameters and variables that we are interested in, γ is
always positive, so its (M − 1)th root always exists. IfM is
even, M − 1 is odd, and there are M − 1 identical, positive
roots on the right-hand side of Eq. (B6) [forM ¼ 10, black
horizontal line in Fig. 8(a)]. Thus, the equation has M − 1
identical solutions. IfM is odd,M − 1 is even, and there are
ðM − 1Þ=2 identical and negative roots and ðM − 1Þ=2
identical and positive roots [for M ¼ 11, gray dashed
horizontal lines in Fig. 8(a)]. Hence, the equation has
two sets of ðM − 1Þ=2 identical solutions—one set based
on the negative root and another one based on the positive
root.
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FIG. 7. Utility function for the strictly emergent phenotype. We prove in the text that this function has no maxima within the squared
circuit (note, however, that global minima are present). Hence, maxima of the utility function within the region of interest are always at
the boundary. With fixed model parameters gE ¼ 1, c ¼ 0.05, and k ¼ 0.5, varying the error rate, we obtain different optimal solutions
(marked by black circles): (a) lateralization (ε ¼ 0.05), (b) bilaterality (ε ¼ 0.2), and (c) no function emerges (ε ¼ 0.6). The thick, red
line indicates slices of the utility function with constant r ¼ 0.2 plotted in Fig. 8(b).
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Introducing the actual dependency of Pðl; rÞ and solving
for l, we obtain

l ¼
ffiffiffiffiffiffiffiffiffiffi
γ − rM−1

p
1 − rð1 − εÞ : ðB7Þ

In the denominator of this equality, we have a positive
number (again, for our ranges of parameters and variables),
so this does not change the sign of the solution for l. In the
numerator, we subtract a positive number (r > 0 in our
range of interest) from

ffiffiffi
γM−1

p
. Thus, if we take the positive

(M − 1)th root, we might get a positive or negative
solution; if we take the negative root, then we obtain a
negative solution even further away from 0.
Summarizing, Eq. (B6) might have either one positive

and one negative, or two negative solutions for our range of
parameters. This means that the derivative of the utility
function changes sign at most once for l ≥ 0; thus, it has, at
most, one extremum for positive l.
For l → ∞, the utility function is dominated by

Pðl; rÞM ¼ ½1 − rð1 − εÞ�MlM; ðB8Þ

which is positive and growing as a function of l. Thus, if
there is one extremum for l > 0, it must be a minimum.
This means that the maximum of the utility function along a
line with fixed r and l ∈ ½0; 1�must be found either at l ¼ 0
or l ¼ 1 [Fig. 8(b)].
This reasoning is valid for any constant r within our

range of interest (r ∈ ½0; 1�) and also, symmetrically, for
any constant l ∈ ½0; 1� if we assume the utility function
depends on r alone. Thus, the maxima of our utility
function for ðl; rÞ ∈ ½0; 1� × ½0; 1� must be found around
the contour and, specifically, either at ðl; rÞ ¼ ð0; 0Þ,
ðl; rÞ ¼ ð1; 0Þ, ðl; rÞ ¼ ð0; 1Þ, or ðl; rÞ ¼ ð1; 1Þ. Because
of the symmetry, if there is a maximum at ðl; rÞ ¼ ð1; 0Þ,

there is another one at ðl; rÞ ¼ ð0; 1Þ. Thus, we only need to
compare three points to solve our problem:

ρEð0; 0Þ ¼ 0;

ρEð1; 0Þ ¼ gEð1 − εÞM − c;

ρEð1; 1Þ ¼ gEð1 − ε2ÞM − 2c − k: ðB9Þ

If the fully lateralized solution ever pays off,
ρEð1; 0Þ > 0, we would obtain

c < gEð1 − εÞM ⇒ ε < 1 −
ffiffiffiffiffi
c
gE

M

r
; ðB10Þ

which traces a straight vertical line in the ε − kmap [dotted
black line in Fig. 8(c)].
If the bilateral solution ever pays off [ρEð1; 1Þ > 0], we

obtain

k < gEð1 − ε2ÞM − 2c; ðB11Þ

which is a nonlinear, monotonically decreasing function of
ε [solid black curve in Fig. 8(c)].
Finally, we check when the bilateral solution is preferred

to the lateralized one [ρEð1; 1Þ > ρEð1; 0Þ]:

k < gEð1 − εÞM½ð1þ εÞM − 1� − c; ðB12Þ

which is another nonlinear curve on the ε − k plane, with a
unique maximum [dashed red line in Fig. 8(c)].
The interplay between these conditions yields a map that

tells us whether the phenotype is too costly to emerge [large
white area in Fig. 2(b)], or whether fully lateralized [gray
area in Fig. 2(b)] or bilateral [black area in Fig. 2(b)] neural
modules are preferred. We find that the conditions given by
Eqs. (B11) and (B12) cross precisely at ε ¼ 1 −

ffiffiffiffiffiffiffiffiffiffi
c=gEM

p
.

Thus, while Eq. (B12) describes the bilateral region for

(c)(a)

1 20-1

1

2

0

-1

-2

(b)

1 20 0.5 1.5

0

0.2

0.4

-0.4

-0.2

0
0 0.5 1

0.5

1

FIG. 8. Proof that strictly emergent phenotypes only have all-or-nothing solutions. (a) Polynomial Pðl; rÞ and constant
ffiffiffi
γM−1

p
, which

can only cross once, limiting the number of extrema of the utility function. (b) Utility function along lines of constant r from Fig. 7.
Their maxima within our range of interest, l ∈ ½0; 1�, can only be at l ¼ 0 or l ¼ 1. (c) Resulting conditions for optimality of either
configuration. The dashed vertical line marks when lateralized solutions pay off. The black solid curve indicates when bilateral
configurations pay off. The red dashed curve delimits when bilateral configurations are preferred over lateralized ones.
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ε < 1 −
ffiffiffiffiffiffiffiffiffiffi
c=gEM

p
, the rightmost part of the bilateral region is

given by Eq. (B11).

APPENDIX C: MAXIMA FOR EMERGING
PHENOTYPES ALONG PREVIOUSLY EXISTING,

SIMPLER ONES

In the previous appendix, we studied an emergent
phenotype that contributed some fitness only if all building
blocks (i.e., all individual tasks) were successfully imple-
mented. However, since such emergent tasks evolve upon a
previously existing substrate, it might be the case that each
individual neural module contributes some fitness of its
own irrespective of the emergent task—e.g., because they
still carry out their ancient task during a fraction of the time.
To model this, we add up the benefits reported both by the
ancient and the emergent phenotypes:

GE þ GS ¼ gEMð1 − εÞMPðl; rÞM þ gSMð1 − εÞPðl; rÞ;
ðC1Þ

where Pðl; rÞ is as before. We assume that the costs still
depend on the engagement of each neural unit, so they are
as in Eq. (B1). We can write the following utility function:

ρEþSðl; rÞ≡GE=M þMGS=M þ C=M þ K=M

¼ gEð1 − εÞMPðl; rÞM þ gSð1 − εÞPðl; rÞ
− cðlþ rÞ − klr: ðC2Þ

As usual, we need to find maxima of ρEþSðl; rÞ within
ðl; rÞ ∈ ½0; 1� × ½0; 1�. Let us look again at derivatives and
singular points along a straight line of constant, fixed r and
as a function of l:

ρEþS
l ¼ gEð1 − εÞMMPðl; rÞM−1½1 − rð1 − εÞ�

þ gSð1 − εÞ½1 − rð1 − εÞ� − c − kr: ðC3Þ

This becomes zero if

ρEþS
l ¼ 0 ⇔ Pðl; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ −

gS

gEM
M−1

s
: ðC4Þ

We can apply here the same argument as before
[illustrated in Figs. 8(a) and 8(b)]. The left-hand side of
this equation is a straight line as a function of l. On the
right-hand side, we have, depending on whether M − 1 is
odd or even, either one or two constant values as a function
of l. We are not interested in the negative root for even
M − 1. The positive root for even M − 1 or for odd M − 1
might result in the solution of Eq. (C4) for positive l within
l ∈ ½0; 1�. If this singular point is an extremum of the utility
function, it must be a minimum. The right-hand side of
Eq. (C4) is the same as the right-hand side of Eq. (B6) with

a small correction, gS=gEM. This correction might turn the
argument of the root negative; thus, there would not be any
root in the real numbers for even M − 1. This does not
affect our argument, as it just means that extrema do not
exist for l ∈ ½0; 1� in such a case.
All this reasoning implies that the utility function with

fixed r, taking values over l ∈ ½0; 1�, has its maximum either
at l ¼ 0 or l ¼ 1. Thus, again, within our region of interest,
Eq. (C2) can only have its maxima at ðl; rÞ ¼ ð0; 0Þ,
ðl; rÞ ¼ ð1; 0Þ, ðl; rÞ ¼ ð0; 1Þ, or ðl; rÞ ¼ ð1; 1Þ, and, again,
ðl; rÞ ¼ ð1; 0Þ and ðl; rÞ ¼ ð0; 1Þ will be maxima simulta-
neously. We need to evaluate three points:

ρEþSð0; 0Þ ¼ 0;

ρEþSð1; 0Þ ¼ gEð1 − εÞM þ gSð1 − εÞ − c;

ρEþSð1; 1Þ ¼ gEð1 − ε2ÞM þ gSð1 − ε2Þ − 2c − k: ðC5Þ

Imposing that the fully lateralized solution is larger than
0, we obtain

ρEþSð1; 0Þ > 0 ⇔ c < gEð1 − εÞM þ gSð1 − εÞ: ðC6Þ

The right-hand side is dominated by the second term when
M is large. In any case, we can ensure that this condition is
met if we dismiss the first term and attend to the constraint:

ε < 1 − c=gS: ðC7Þ

Imposing that the bilateral solution has positive utility,
we obtain

ρEþSð1; 1Þ > 0 ⇔ k < gEð1 − ε2ÞM þ gSð1 − ε2Þ − 2c:

ðC8Þ

This result is depicted as a solid black curve in Fig. 9.
Finally, we check when the bilateral solution is preferred to
the fully lateralized one, ρEþSð1; 1Þ > ρEþSð1; 0Þ:

k < gEð1 − εÞM½ð1þ εÞM − 1� þ gSεð1 − εÞ − c: ðC9Þ

This result is shown as the dashed red curve in Fig. 9. As
before, we can study when these two conditions cross.
Imposing that Eq. (C8) equals Eq. (C9), we obtain

gExM−1 þ gS ¼ c
x
; ðC10Þ

with the change of variable ε → 1 − x ⇒ x ¼ 1 − ε.
Equation (C10) is a monotonically increasing polynomial
that crosses a hyperbola only once, and this crossing
happens for smaller x when M is larger. Thus, as more
neural units are involved, both conditions cross for ε → 1;
thus, Eq. (C8) is the most relevant for us for large M.
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Again, the interplay between these conditions renders a
phase space where we can determine which configuration
of neural circuits (lateralized, bilateral, or none) is preferred
depending on the model parameters (Fig. 3). All the
conditions just derived are basically the same as in the
previous section, plus some correction contributed by
the nonemergent phenotypes.

APPENDIX D: SEGREGATING FUNCTIONS

The emergence of complex phenotypes upon a neural
circuitry that continues to implement more ancient tasks
opens up the possibility of segregating both computations,
lateralizing each cognitive task to a hemisphere. We check
when such a solution is favorable as compared to the fully
lateralized and mirror-symmetric configurations described
in the previous appendix.
If the emergent phenotype contributes some fitness ḡE

when it is implemented, which happens a fraction τ of the
time, it results in gE ¼ τḡE for Eq. (C1). Similarly, each
ancient, simple task contributes a fitness ḡS during the
remaining fraction 1 − τ of the time—resulting in gS ¼
ð1 − τÞḡS for Eq. (C1). From Eq. (C5), the resulting utility
functions for the fully lateralized and bilateral solutions
read

ρEþS
τ ð1; 0Þ ¼ τḡEð1 − εÞM þ ð1 − τÞḡSð1 − εÞ − c;

ρEþS
τ ð1; 1Þ ¼ τḡEð1 − ε2ÞM þ ð1 − τÞḡSð1 − ε2Þ − 2c − k:

ðD1Þ

In these configurations, including the fully lateralized
one, all functions are performed in the same circuit. Instead,
segregating functionality allows two sets of circuits: one for
the emergent phenotype and another one for the simpler
tasks. We assume, incidentally, that the complex phenotype
displaces simpler tasks in the unsegregated solution a
fraction τ of the time—hence their contribution (1 − τ).
Now that phenotypes are segregated, simpler tasks can
contribute fully again. With this in mind, we compute the
costs and benefits of function segregation. We lateralize
the complex phenotype to the left and the simpler tasks to
the right, and we denote this as hLj and jRi, respectively.
Then,

ρhLjRiτ ¼ τḡEð1 − εÞM þ ḡSð1 − εÞ − ð1þ τÞc: ðD2Þ

Here, we use Pð1; 0Þ ¼ 0 ¼ Pð0; 1Þ, and there are no
coordination costs across hemispheres if the function is
segregated.
First, we find that ρhLjRiτ > ρEþS

τ ð1;0Þ for any ε< 1−c=ḡS.
This includes any configuration in which lateralization is
preferred, meaning that whenever lateralization is optimal, it
is even more optimal to segregate the function and engage
each hemisphere with a different task. This also includes
configurations in which ρEþS

τ ð1; 0Þ < 0 (i.e., in which a
lateralized circuit fails to be cost-efficient enough as to be
implemented). In that region, we try to determine if the

segregated circuit is viable. We find that ρhLjRiτ > 0 for

ð1þ τÞc < τḡEð1 − εÞM þ ḡSð1 − εÞ: ðD3Þ

To roughly approximate this inequality, as above, we ignore
the first term on the right-hand side (which becomes small
for large M), finding ε < 1 − ð1þ τÞc=ḡS.
Finally, we compare ρhLjRiτ and ρEþS

τ ð1; 1Þ to find when
the bilateral configuration remains optimal:

k < τḡEð1 − εÞM½ð1þ εÞM − 1�
þ ḡSð1 − εÞ½ε − τ − τε� − cð1 − τÞ: ðD4Þ

The interplay between these curves renders maps of
optimality of bilateral versus lateralized and segregated
configurations. It is noteworthy that a region of parameters
exists [as given by Eq. (D4)] in which the bilateral
configuration pays off. This means that the advantage of
redundant computations can overcome the added fitness
gain from keeping both phenotypes segregated.

0

0.5

1

0 0.5 1

FIG. 9. Resulting conditions for optimal configurations in
phenotypes that emerge along earlier, simpler tasks. The vertical
dashed line indicates a lower bound for phenotype viability. For ε
to the left of this line, the emergent phenotype (along with
implementation of the earlier, simpler tasks) is viable. To the right
of this line, the phenotype might not be viable [but we cannot rule
it out since Eq. (C7) is an approximation]. The black solid curve
indicates when bilateral configurations pay off. The red dashed
curve delimits when bilateral configurations are preferred to
lateralized ones. For largeM, these curves do not cross, meaning
that the red dashed curve is a more stringent condition for
bilaterality. For smaller M, they might cross.
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APPENDIX E: GENERALITY OF RESULTS

1. Heterogeneous modules—mixing
error rates and costs

We have assumed that all modules recruited for an
emergent phenotype are similar (i.e., same fallibility ε, and
costs c and k) and that they gain the same fitness when
operating independently (same gS). This is unlikely in
nature. If we allow heterogeneity (say, each module
presents its own εi, ci, and ki for i ¼ 1;…;M), we must
also assume that modules might lateralize to different
degrees independently (i.e., different li and ri for each
module). The emergent phenotype utility function reads

ρHðl; rÞ ¼ gE
YM
i¼1

ð1 − εiÞ½lið1 − riÞ þ ð1 − liÞri

þð1þ εiÞliri� −
XM
i¼1

½ciðli þ riÞ − kiliri�: ðE1Þ

Let us assume that all the activation levels lj and rj for
j ≠ i are constant. This gives us the utility function of a
simple task [Eq. (4)] with the gain multiplied by some
constant number and some other constant term (the fixed
costs of all modules j ≠ i) subtracted. This is again a
quadratic form with a saddle node; thus, maxima of ρH over
ðli; riÞ must lie in the outer circuit. This is true for any

module; thus, to maximize Eq. (E1), we need to test all
ðli; riÞ ¼ ð0; 0Þ, ðli; riÞ ¼ ð1; 0Þ, and ðli; riÞ ¼ ð1; 1Þ com-
binations across modules (graded solutions can be dis-
missed), which amounts to 3M possible combinations. In
any case, allowing heterogeneity in the model again results
in all-or-nothing activation for each module.
Figures 10(a)–10(d) show the fraction of bilateral mod-

ules when some heterogeneity is added to the model.
Results are stochastic—the 3M possibilities were tested
with a greedy algorithm. However, convergence to each
configuration seems robust. ForM ¼ 10 andM ¼ 100, we
observe that the bilaterality region is not exhausted,
suggesting that heterogeneity adds yet another pressure
towards lateralization (likely following the least-efficient
module).

2. More general dependence on module errors

Another assumption is that fitness gains are all or
nothing. Either a computation is implemented perfectly
(with probability 1 − ε in each module) or it is not
implemented at all. However, we could reinterpret ε as a
distance to the target computation and assign some fitness
as a function of this distance. Do our results still hold?
Let us assume that each individual unit contributes a

fitness that is a generic, nonlinear function f0ðεÞ. Similarly,
if both units are engaged, they contribute another function
fsynðεÞ that should capture the idea that synergy can result
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FIG. 10. Optimality in more general cases. (a)–(d) Fraction of bilateral modules in a heterogeneous situation for increasing
complexity. For each ðε; kÞ, each module’s gS, ε, and k are drawn from a Gaussian centered on gS ¼ 1, ε, and k with standard deviation
0.05. Running costs are kept at c ¼ 0.01. (e) Illustration of different synergistic functions. Horizontal red lines mark fsynðεÞ ¼ 0.75 and
0.9. The vertical red line marks units with 0.5 fallibility, which achieve large synergy even with the least synergistic function
fsyn ¼ 1 − ε2. (f)–(h) Morphospaces for segregated functions with synergy function fsyn ¼ 1 − ε4.
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in higher accuracy. It makes sense that f0ðεÞ and fsynðεÞ are
monotonically decreasing with ε.
On the other hand, we can impose generic costs hcðεÞ

and hkðεÞ. We can demand that these costs grow with
accuracy—thus, hcðεÞ and hkðεÞ should also be positive,
monotonically decreasing with ε, and nonlinear, in general.
For simple tasks, the utility function reads

ρSðl; rÞ ¼ gS½f0ðεÞlð1 − rÞ þ f0ðεÞð1 − lÞrþ gsynðεÞlr�
− chcðεÞðlþ rÞ − khkðεÞlr; ðE2Þ

with derivatives

ρSl ¼ gS½f0ðεÞð1−2rÞþfsynðεÞr�−chcðεÞ−khkðεÞr;
ρSr ¼ gS½f0ðεÞð1−2lÞþfsynðεÞl�−chcðεÞ−khkðεÞl; ðE3Þ

and second derivatives

ρSll ¼ 0 ¼ ρSrr;

ρSlr ¼ gS½fsynðεÞ − 2f0ðεÞ� − khkðεÞ: ðE4Þ

However complicated f0ðεÞ, fsynðεÞ, or hkðεÞ might be, for
constant values of ε, the utility function is always a
quadratic form, and its discriminant is always negative.
This implies that ρðl; rÞ is always a saddle, and maxima
will lie along the enclosing circuit. We again dismiss
graded solutions, which only happen in a negligible region
of parameter space (green curves throughout all our
morphospaces), and, when they show up, they are indeed
as optimal as all-or-nothing configurations.
For emergent phenotypes, we have

ρEðl; rÞ ¼ gEPðl; rÞM þ gSPðl; rÞ − chcðεÞ − khkðεÞlr;
ðE5Þ

where

Pðl;rÞ¼ f0ðεÞlð1−rÞþf0ðεÞð1− lÞrþfsynðεÞlr: ðE6Þ

As before, this polynomial is a straight line of l (respec-
tively, r) if we take a fixed, constant r (respectively, l). Let
us look at the utility function along a line of fixed, constant
r and as a function of l; we take

ρEl ¼ gEMPM−1ðl; rÞ½ð1 − 2rÞf0ðεÞ þ rfsynðεÞ�
þ gS½ð1 − 2rÞf0ðεÞ þ rfsynðεÞ�
− chcðεÞ − khkðεÞr: ðE7Þ

Thus, we obtain

ρEl ¼ 0 ⇔ Pðl; rÞ ¼ ffiffiffi
γM−1

p
;

γ ≡ chcðεÞ þ khkðεÞr − gS½ð1 − 2rÞf0ðεÞ þ rfsynðεÞ�
gEM½ð1 − 2rÞf0ðεÞ þ rfsynðεÞ�

:

ðE8Þ

Again, we have solutions to this equation when a straight
line as a function of l crosses either one or two constant
values [as illustrated in Fig. 8(a)]. Introducing the actual
form of Pðl; rÞ, we obtain

l ¼
ffiffiffi
γM−1

p − rf0ðεÞ
ð1 − 2rÞf0ðεÞ þ rfsynðεÞ

: ðE9Þ

In the numerator, we have either the positive or negative
(M − 1)th root of γ minus rf0ðεÞ, a positive term. If M − 1
is odd, we obtain either one negative or one positive value
in the numerator. If M − 1 is even and rf0ðεÞ < k ffiffiffi

γM−1
p k,

we obtain one positive and one negative value. If M − 1 is
even and rf0ðεÞ > k ffiffiffi

γM−1
p k, we obtain two negative values

in the numerator. If this is ever the case, and the denom-
inator is negative, the two negative values in the numerator
could turn into two singular points within l ∈ ½0; 1�, and
one of them might be a maximum. In any other situation,
again, maxima of ρEðl; rÞ will lie either at ðl; rÞ ¼ ð0; 0Þ,
ðl; rÞ ¼ ð1; 0Þ, ðl; rÞ ¼ ð0; 1Þ, or ðl; rÞ ¼ ð1; 1Þ.
We obtain a negative number in the denominator when

ð1 − 2rÞf0ðεÞ þ rfsynðεÞ < 0 ⇔
fsynðεÞ
f0ðεÞ

> 2 −
1

r
: ðE10Þ

In the simple model studied above, we have chosen
f0ðεÞ ¼ 1 − ε and fsynðεÞ ¼ 1 − ε2. We obtain

fsynðεÞ
f0ðεÞ

¼ ð1 − εÞð1þ εÞ
1 − ε

¼ 1þ ε: ðE11Þ

This number is always larger than 1 and, within our range of
interest (r ∈ ½0; 1�), 2 − 1=r is always smaller or equal than
1. In other words, our chosen functions fulfill the condition
without graded activities of the circuits, as we already know.
Figure 10(e) compares f0ðεÞ ¼ 1 − ε (straight line)

to the computational efficiency of synergy functions
fsynðεÞ ¼ 1 − ε2 (also used above) and fsynðεÞ ¼ 1 − ε4.
Figures 10(f)–10(h) show optimality constraints for this
much more synergistic version of the model. Again, we
observe how increased complexity leads to optimality
pressures towards lateralization. This morphospace is for
segregated functions. Comparing Figures 10(f)–10(h) to
Fig. 4, we see that the interesting L→B pathway becomes
much more abundant again with larger within-module
synergy.
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3. Nonlinear dependencies on unit engagement

Alternatively, we could also conceive of modules whose
contribution to fitness grows nonlinearly with the time that
they are engaged. A circuit can become more effective the
longer it is working on a task—e.g., because it learns or
simply because more computational resources have a non-
linear effect on performance. Assume more general func-
tions: f0ðε; lÞ or f0ðε; rÞ (depending on whether L or R is
independently engaged) and fsynðε; l; rÞ. Assume that they
increase monotonically with l and r. A good Ansatz
could be f0 ¼ f0ðεÞσðlÞ or f0 ¼ f0ðεÞσðrÞ and fsyn ¼
fsynðεÞσðlÞσðrÞ, where σð·Þ are monotonically increasing
sigmoids, or perhaps σðlÞ ¼ lβ. This does not matter as long
as f0ðε; lÞ, f0ðε; rÞ, and fsynðε; l; rÞ increase monotonically
with l and r. Then, these functions are bound by maxima,
fþ0 ðεÞ ≥ f0ðε; 1Þ and fþsynðεÞ ≥ fsynðε; 1; 1Þ, which do not
depend on l and r. Solving for these bounds, we get the same
results as before: all-or-nothing engagement, morphospa-
ces, etc.
For ðl; rÞ ¼ ð0; 0Þ, (1, 0), or (1, 1), solving for f0ðε; lÞ or

f0ðε; rÞ and fsynðε; l; rÞ is the same as solving for fþ0 ðεÞ
and fþsynðεÞ. For any other values ðl; rÞ ∈ ð0; 1Þ × ð0; 1Þ,
the fitness gains are lower if we use f0ðε; lÞ or f0ðε; rÞ and
fsynðε; l; rÞ than if we use fþ0 ðεÞ and fþsynðεÞ, while costs
remain the same. Thus, the maxima for fþ0 ðεÞ and fþsynðεÞ
are maxima also for f0ðε; lÞ or f0ðε; rÞ and fsynðε; l; rÞ. In
other words, optimal solutions for these kinds of non-
linearities are the same as for the scenarios studied
throughout the paper, substituting the corresponding
bounds fþ0 ðεÞ and fþsynðεÞ.

4. Synergies across modules

We assume that all modules operate independently. A
compelling alternative is that one module might increase
the performance of another (e.g., because it provides a
substrate to delegate operations or because it preprocesses
inputs and clears noise), even if no new phenotype emerges.
Indeed, this could depict early stages in which preadapta-
tions start working together before true novelty arises.
To study how different modules enhance each other, we

would need to define a network providing their synergies.
A simple example shows how this situation does not alter
our results. Assume two modules m1 and m2, each devoted
to a simple task. Let the performance of m1 increase
whenever m2 operates successfully. The fitness gain by
module m1 now reads

GS
1 ¼ ½gS þ gEP2ðl; r; εÞ� · P1ðl; r; εÞ; ðE12Þ

where Pi ≡ ð1 − εÞ½lð1 − rÞ þ ð1 − lÞrþ ð1þ εÞlr� is the
likelihood that module mi performs correctly (note that we
could assume heterogeneous parameters or other, nonlinear
dependencies, as above). The parameter gE here measures

the contribution of modulem2 to enhancingm1. We use the
same superscript as for emergent phenotypes to denote the
similarity between all cases.
Equation (E12) is the same as Eq. (A1), with a correction

from the enhancement that m2 contributes to m1. Costs of
running m2 are accounted for by the corresponding term.
When plugging Eq. (E12) into a utility function, we obtain a
situation mathematically similar to that in Sec. II C 1 [see
Eq. (C1)]. This means that synergies across modules can be
seamlessly incorporated into our model—indeed, the
increase in diversity of modules (i.e., a larger number of
different computing parts available) can also result in
optimality pressures towards lateralization before true phe-
notypic novelty arises. We can add the effects of emergent
phenotypes by including additional terms. The difference lies
in the values of gE, which should be larger in truly new,
emergent phenotypes. Considering an interpretation in terms
of preadaptations coming together, we open up the model to
capturing parsimonious evolutionary pathways.

APPENDIX F: ABOUT THE CONNECTION
BETWEEN MATHEMATICS
AND ACTUAL BIOLOGY

Our modules, tasks, and phenotypes are mathematical
contraptions used to perform calculations, conferring the
great generality of our results. Our optimality constraints
must apply whenever real-life components fit our frame-
work—whether they are neural circuits, microchip compo-
nents, etc. Note that our modules contain two, exact copies
of the same circuit—whether they are two similar neurons
with the same input or output targets, or two overgrown
cortical columns conforming mirror-symmetric barrels in
the mice cortex. They might also consist of other modules
nested in a hierarchy. If so, fallibility ε and costs c and k
would become compounded, mapping recursively into our
model—as in a renormalization scheme. Thus, it is not
important to us at which point of a hierarchy we start.
Working renormalization-like flows in our model might be
an interesting follow-up, but here we assume that each
module is irreducible, performing a task much simpler than
that of the emerging phenotype. Do real brains resemble
our modules, tasks, and emerging phenotypes in any way?
If so, the derived optimality constraints must apply. The
answer is a resounding yes, with examples abounding
across scales. The set of regions involved in human
language offers a case in which we know some of the
subtasks precisely. Figure 11(a) illustrates this hierarchical,
modular, extended language network, which has recently
been worked out by Fedorenko and colleagues [10–13,15].
A final mathematical aspect worth discussing is how the

studied phenomenology results from the interplay between
symmetries in the brain versus those of a cognitive task
[Fig. 11(b)]. Brains might have evolved for motor control.
In Bilateria, this results in a perfect correspondence
between mirror symmetry in the brain and in the parts
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that need to be motor controlled [Fig. 11(b), item 1]. This
paper does not investigate that specific situation. Rather, we
study the possible fate of mirror symmetry when it is still
available in the brain, but a cognitive task does not demand
it [Fig. 11(b), lower row]. Producing symbolic sequences
does not require mirror symmetry, as the cases of human
language (item 7) and singing birds (item 8) show, but
parrots retain it (item 4). The same happens to space
representation (items 5 and 6), which engages mirror-
symmetric circuits in mice but not humans, and which
occupies a toroid topology in flies. Elsewhere, we have
studied the opposite situation in which a brain has lost its
mirror symmetry, but a task still demands it [40,68]. At the
moment, we do not know, empirically, how much each of

these scenarios might owe to the optimality pressures
explored in this work. Rather, examples in Fig. 11(b)
intend to illustrate a rich niche for mathematical neurosci-
ence in the study of how symmetries inherited from our
bodies’ biology and evolutionary history interact with other
abstract constraints (perhaps other symmetries as well)
imposed by cognitive tasks.
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