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We develop a theory of the nonlocal transport of two counterpropagating ν ¼ 1 quantum Hall edges
coupled via a narrow disordered superconductor. Contrary to the predictions developed for the clean case,
the edge states proximitized in this way do not turn into a topological superconductor. Instead, they are
naturally tuned to the critical point between trivial and topological phases. This occurs due to the
competition between tunneling processes with and without particle-hole conversion. The critical
conductance is a random, sample-specific quantity with a zero average and unusual bias dependence.
The negative values of conductance are relatively stable against variations of the carrier density, which may
make the critical state appear as a topological one. Our results offer an interpretation of recent experiments
[G.-H. Lee et al., Nat. Phys. 13, 693 (2017); O. Gül et al., Phys. Rev. X 12, 021057 (2022)].
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I. INTRODUCTION

Topological superconductivity provides a promising
route to fault-tolerant quantum computing [1]. A one-
dimensional topological superconductor hosts non-Abelian
excitations at its ends, such as Majorana zero modes [2] or
their fractional generalizations, i.e., parafermions [3,4].
The nonlocal character of these modes can be harnessed
to store quantum information in a way inherently protected
from decoherence. One can manipulate the protected
information by braiding the zero modes [5] thanks to their
non-Abelian exchange statistics.
There are many proposed implementations of a one-

dimensional topological superconductor (see, e.g.,
Refs. [6–9]). A versatile platform that may host Majorana
zero modes (or parafermions) is a hybrid quantum Hall-
superconductor structure [3,10,11]. The basic idea behind it
is to couple two counterpropagating quantum Hall edges via
a conventional superconductor. If the width of the super-
conductor d is comparable to the coherence length ξ, then
two electrons residing in different edges can transfer into
the superconductor as a Cooper pair. This process can be
viewed as a nonlocal counterpart of the Andreev reflection
and is thus called a crossedAndreev reflection (CAR). CARs
establish superconducting correlations between the edges.
At filling ν ¼ 1, which we focus on, the induced pairing
has the p-wave symmetry, as required for the topological

superconductivity supporting Majorana zero modes. In fact,
experiments on quantum transport in such setups [12,13]
(as well as in the related ones [14,15]) have already started.
This motivated many recent theoretical works [16–21].
A complication in reaching the topological phase arises

due to the elastic cotunneling (EC) processes which
compete with CAR [22,23]. In an EC event, a particle
tunnels across the superconductor without a conversion to a
hole (contrary to the CAR event). This amounts to an
electron-backscattering process. A strong backscattering is
detrimental for the topological phase [24].
The competition between the CAR and EC processes is

sensitive to disorder. We note that only a superconductor
with a high upper critical field Hc2 is compatible with the
quantum Hall effect. This dictates the use of “dirty”
superconductors with the electron mean free path lMFP ≪
ξ [12,13]. Because of the spin polarization of the ν ¼ 1
state, a particular relation between the CAR and EC
probabilities is determined by the strength of the spin-orbit
interaction in the system. At weak spin-orbit interaction,
CAR processes are largely inhibited and EC prevails. This
brings the proximitized edge states into a trivial phase. The
prevalence of EC over CAR cannot be overturned no matter
how strong the spin-orbit coupling is. It means that the
topological phase cannot be reached by coupling quantum
Hall edges via a disordered superconductor. At best, the
probability of CAR may approach the EC probability. As
we show, this brings the system to a critical point of the
transition between the trivial and topological phases. We
mention in passing that the EC processes were overlooked
in the theoretical analysis of Ref. [13], as well as in the
subsequent works [18,19].
The critical point belongs to the infinite-randomness

universality class [25]. Although many authors studied the
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thermal transport of a superconductor in a critical state
[26–28], the charge transport has attracted surprisingly
little attention (with a notable exception of Ref. [29]). The
conductance G ¼ dI=dV associated with the backscattered
current I (see Fig. 1) is random. Its dependence on bias V is
not well understood even at the smallest biases. Besides,
little is known about the variations of the conductance with
the device parameters such as the electron density. Such a
parametric dependence is of direct relevance to the experi-
ments, as the electron density is one of the simplest knobs
which tunes the properties of the quantum Hall state. In this
work, we address the bias and density dependence of the
proximitized edge-states conductance.
At the critical point, the dependence of conductance on

bias is a stochastic function alternating between positive
and negative values. The pattern of these fluctuations is
determined by a realization of the disorder in the super-
conductor. The criticality is reflected in the unusual
logarithmic scaling of the differential conductance corre-
lation function, which we quantify.
At any bias, the ensemble-averaged conductance is zero.

The ensemble averaging can be achieved in a given device
by varying its parameters, such as the electron density [30].
Interestingly, we find that the variation of the CAR
amplitude happens at a much larger density scale than that
of the EC amplitude. If—due to a statistical fluctuation—
the former amplitude is relatively large, then the conduct-
ance may stay negative in a broad range of densities. This
conclusion may help in interpreting recent experiments
[12,13], in which a negative conductance stable to the
variation of density was observed. Our theory shows that
the observation of a negative conductance may be a facet of
a critical state of proximitized edges and does not imply
topological superconductivity.

II. MODEL

We consider two counterpropagating ν ¼ 1 quantum
Hall edge states coupled through a narrow superconducting
electrode; see Fig. 1. At low temperatures and bias, trans-
port of the edge states can be described with the help of an
effective low-energy Hamiltonian: Heff ¼ HQH þHprox.
The first term is the Hamiltonian of electron modes
propagating along each of the edges:

HQH ¼
X
j¼R;L

Z
dx ψ†

jðxÞv½−iσj∂x − kμ�ψ jðxÞ; ð1Þ

where ψ jðxÞ is the field operator of a right- (j ¼ R) or left-
(j ¼ L) moving chiral electron σR=L ¼ �1, v is the edge-
states Fermi velocity, and kμ is their Fermi momentum.
The term Hprox describes the coupling between the

edge states through the superconductor. We find it in the
same way as in Ref. [17]: We start with the tunneling
Hamiltonian HT for the coupling of each of the edge states
with the superconductor and then “integrate out” the
superconductor’s degrees of freedom. For electron energies
E ≪ Δ measured with respect to the Fermi level, the
procedure results in

Hprox ¼
X

i;j¼R;L

t2

2

Z
dxdx0ψ̂†

i ðxÞ∂2yiyjGðx; yi; x0; yjÞψ̂ jðx0Þ:

ð2Þ

Here, ψ̂ iðxÞ ¼ (ψ iðxÞ;ψ†
i ðxÞ)T , yR ¼ 0, yL ¼ d, and d is

the electrode width. Properties of the superconductor—
such as its energy gap Δ and spin-orbit coupling in it—are
encoded into the superconductor Green’s function G, which
is a 2 × 2matrix in the Nambu space. The normal derivatives
are computed at the respective interfaces y ¼ 0; d [31,32]. t
is the tunneling amplitude between each of the edge states
and the superconductor.
We are interested in the differential conductanceGðVÞ of

the three-terminal setup depicted in Fig. 1. A chiral electron
incident on the superconducting electrode can be trans-
mitted across it either as a particle or—if a crossed Andreev
reflection happens—as a hole. By labeling the amplitudes
of these processes at energy E as ANðEÞ and AAðEÞ,
respectively, we can express GðVÞ at zero temperature as

GðV; T ¼ 0Þ ¼ GQðjANðEÞj2 − jAAðEÞj2ÞjE¼eV; ð3Þ

where GQ ¼ e2=2π is the conductance quantum (we
use units with ℏ ¼ 1). One can view the two needed
amplitudes as the entries of a scattering matrix SðEÞ
relating the incoming and outgoing electron and hole
waves: AN=AðEÞ≡ See=heðEÞ. Therefore, we need to find
SðEÞ to determine the conductance. A convenient way to do
that is to first divide the electrode into a sequence of short

FIG. 1. Schematic layout of the considered setup. A narrow
superconductor induces the proximity effect into two counter-
propagating chiral edge states. Electrons are incident onto the
superconductor from an upstream electrode biased by voltage V.
Nonlocal conductance GðVÞ is determined by the interference of
elastic cotunneling and crossed Andreev reflection processes.
These processes are random but are balanced statistically [see
Eqs. (5)–(7)], which sets the proximitized edge states at the
critical point between trivial and topological phases.
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elements (short enough to be treated perturbatively) and
then track how SðEÞ changes as we “build” the electrode by
stacking the elements together.

III. SCATTERING OFF A SHORT ELEMENT

A single element acts as a bridge between the two chiral
edges. As an electron traverses the bridge, it either turns
into a hole (a CAR process) or remains an electron (an EC
process). For a short element, we find the amplitudes
of the two processes treating Hprox of Eq. (2) in the Born
approximation. We obtain for CAR and EC amplitudes at
the Fermi level, respectively,

δAA ¼ t2

v

Z
dxdx0e−ikμðx0−xÞ∂2yy0G

↓↑
he ðx; 0; x0; dÞ; ð4aÞ

δAN ¼ t2

v

Z
dxdx0e−ikμðx0þxÞ

∂
2
yy0G

↑↑
ee ðx; 0; x0; dÞ: ð4bÞ

Here, Ghe and Gee are the anomalous and normal components
of the Green’s function of the superconductor [33]. The spin
of a hole in a ν ¼ 1 edge is opposite to that of an electron.
Thus, for aCARtohappen the quasiparticle has to flip its spin
upon traversing the element, as indicated by the ↑↓ super-
script in Eq. (4a). In our model, the spin-flip processes result
from the spin-orbit scattering in the superconductor.
The Green’s functions in Eqs. (4a) and (4b) describe the

propagation of an electron wave across the superconducting
element. Because of the diffraction of the wave on the
impurities in the superconductor, the result of the wave
propagation is stochastic. Therefore, Gee=he and δAA=N are
random quantities. We characterize their properties in an
experimentally relevant regime of the electron mean free
path lMFP ≪ d [12,13]. Under the latter condition, we
can estimate hGee=hei ∝ expð−d=2lMFPÞ ≪ 1, where h…i
denotes the average over the disorder configurations in the
superconductor. In what follows, we neglect these exponen-
tially small quantities and approximate hδAAi ¼ hδANi ¼ 0.
Next, we find the variances hjδAA=Nj2i of the CAR and

EC amplitudes. This requires averaging the product of the
two Green’s functions of the superconductor. Such an
averaging can be performed by relating hG × Gi to the
normal-state diffuson (see, e.g., [34]) via a standard
procedure [35]. Focusing on the “dirty” superconductor
and taking the spin-orbit scattering into account [36,37], we
find for an element of length δL ≫ ξ and width d ≫ ξ:

hjδAA=Nj2i ¼
δL
lA=N

: ð5Þ

The length scales lA and lN are given by [38]

1

lA=N
¼ 4πg2

GQσ

ffiffiffiffiffiffi
πξ

2d

r �
e−d=ξ ∓ e−d=ξ

⋆
ffiffiffiffiffiffiffiffiffiffi
ξ⋆=ξ

p �
: ð6Þ

Here, g ¼ 2π2GQpFνMνedget2 is the conductance per unit
length of the interface between the chiral edge and the
electrode in the normal state. The conductance depends on
the Fermi momentum of the metal pF and the density of
states νM in it, in addition to its dependence on the
tunneling amplitude t and the density of states νedge ¼
1=ð2πvÞ at the edge. The dependence of lA=N on the
normal-state conductivity of the metal σ reflects the
diffusive character of electron motion in the dirty super-
conductor. Finally, the information on the spin-orbit inter-
action is encoded in ξ⋆ ¼ ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4=ð3τSOΔÞ

p
. Here, τSO is

the spin-orbit scattering time. Since a spin flip is needed for
a CAR of a spin-polarized edge, δAA ¼ 0 in the absence of
spin-orbit scattering. This is why 1=lA ¼ 0 if ξ ¼ ξ⋆.
Equations (5) and (6) show that, generically, hjδAAj2i ≤

hjδANj2i [39]. The limit of strong spin-orbit coupling
τSOΔ ≪ 1 is the most favorable one for the topological
superconductivity. In this limit, the electron spin fully
randomizes in the course of tunneling, which results in
hjδAAj2i ¼ hjδANj2i. Equivalently,

lA ¼ lN ¼ 2l0 ð7Þ

(we introduce the factor of 2 for notational convenience).
We demonstrate below that, in fact, the latter condition is
insufficient to reach the topological phase; instead, it
corresponds to a critical point of the transition between
trivial and topological phases.
In addition to the nonlocal CAR and EC processes, an

electron can return to the same edge after its excursion in the
superconductor. This leads to accumulation of the forward-
scattering phase δΘj (j ¼ R, L). We find hδΘji ¼ 0 and
hδΘ2

ji ¼ δL=lF. The particular expression for lF is incon-
sequential for our conclusions, and we relegate it to the
Supplemental Material [38]. We note that the Pauli exclusion
principle forbids an Andreev reflection within a single ν ¼ 1
edge at the Fermi level. This is in contrast to the case of
ν ¼ 2 considered in Ref. [17].
Finally, only a type-II superconductor is compatible with

the magnetic field required for reaching the quantum Hall
state. The field may induce vortices, whose normal cores
give rise to the nonvanishing density of states at the Fermi
level in the superconductor [42]. As a result, a quasiparticle
incident on the superconducting element can tunnel into it
normally, irreversibly leaving the edges. We model such a
quasiparticle loss phenomenologically by assigning to each
element a loss probability δp ¼ 4ΓδL=v proportional to its
length. Parameter Γ has a meaning of the rate at which the
edge quasiparticles are lost.

IV. SCATTERING MATRIX
OF A LONG ELECTRODE

An electron incident on a long (L≳ l0) superconducting
electrode undergoes multiple CAR and EC processes.

CRITICALITY IN THE CROSSED ANDREEV REFLECTION OF … PHYS. REV. X 13, 031027 (2023)

031027-3



In this case, one cannot directly apply the perturbation
theory to find the scattering matrix. Instead, we break the
electrode in a series of short elements labeled by their x
coordinate and track how SðEÞ evolves as we join the
elements together. Equation (5) suggests to parametrize the
scattering amplitudes of individual elements as δAA=NðxÞ ¼
ηA=NðxÞ×

ffiffiffiffiffiffi
δL

p
=2; similarly, we represent δΘj ¼ ϑjðxÞ×ffiffiffiffiffiffi

δL
p

. Random variables ηmðxÞ (m∈ fA;Ng) and ϑjðxÞ
(j∈ fR;Lg) are Gaussian, mutually independent, and
uncorrelated for different x. Using Eq. (5) and the respec-
tive relation for the forward-scattering phase, we find for
their correlators:

hηmðxÞη⋆m0 ðx0Þi ¼ 4δmm0

lm
δðx − x0Þ ð8Þ

and hϑjðxÞϑj0 ðx0Þi ¼ δjj0δðx − x0Þ=lF [45].
By evaluating the change of the scattering matrix upon

an addition of a single short element to the electrode,
we obtain the following equation for the evolution of SðEÞ
with x [38]:

i
dS
dx

¼ −
2ðEþ iΓÞ

v
SþQþ SQ†Sþ SLþRS: ð9Þ

Here,

QðxÞ ¼ i
2
½ηNyðxÞτ0 − iηNxðxÞτz þ ηAxðxÞτy þ ηAyðxÞτx�;

ð10Þ

in which we introduce ηmx ≡ Re ηm and ηmy ≡ Im ηm; τx;y;z
are the Pauli matrices in the Nambu space, and τ0 is the
identity matrix. RðxÞ ¼ −τzϑRðxÞ and LðxÞ ¼ −τzϑLðxÞ.
The initial condition is SðE; x ¼ 0Þ ¼ τ0. A combination of
termsQ andSQ†S describes the interference between the two
paths in which an electron can tunnel from a right-moving
edge into a left-moving one. The interference leads to the
localization of wave functions of the edges. Note that the
quasiparticle loss Γ plays the role of the level broadening.

V. CRITICALITY

We now apply Eq. (9) at Γ ¼ 0 to reveal the critical
behavior of the proximitized edges. We demonstrate the
criticality by finding the low-energy density of states
(DOS) νðEÞ and conductance GðEÞ in the limit of infinite
length L [46]. To allow for small deviations from the
critical point, we modify Eq. (7) by taking lA ¼ 2l0ð1þ λÞ,
lN ¼ 2l0ð1 − λÞ with jλj ≪ 1.
A particularly convenient parametrization of the Smatrix

for analyzing Eq. (9) is

S ¼ 1

2

�
Fþðw1; w2Þeiα F−ðw1; w2Þeiϕ
F−ðw1; w2Þe−iϕ Fþðw1; w2Þe−iα

�
; ð11aÞ

F�ðw1; w2Þ ¼ − tanh w1 þ
i

cosh w1

� signðw1 − w2Þ
�
− tanh w2 þ

i
cosh w2

�
:

ð11bÞ
The variables w1;2 here are defined in the interval
ð−∞;þ∞Þ. Using this parametrization in Eq. (9), we
obtain a system of equations governing the evolution of
w1; w2; α, and ϕ:

dw1

dx
¼ 2E

v
cosh w1 þ ηNx sin α − ηNy cos α

þ ηAx sin ϕ − ηAy cos ϕ; ð12aÞ
dw2

dx
¼ 2E

v
coshw2 þ ðηNx sin α − ηNy cos α

− ηAx sinϕþ ηAy cosϕÞsignðw1 − w2Þ; ð12bÞ
dα
dx

¼ ϑR þ ϑL þ qðw1; w2ÞðηNx cos αþ ηNy sin αÞ; ð12cÞ

dϕ
dx

¼ ϑR − ϑL − qðw2; w1Þsignðw1 − w2Þ
× ðηAx cos ϕþ ηAy sin ϕÞ: ð12dÞ

Here we abbreviate qðw1; w2Þ ¼ tanhðw1 þ w2=2ÞΘ ×
ðw1 − w2Þ þ cothðw1 − w2=2ÞΘðw2 − w1Þ, with ΘðzÞ
being the Heaviside step function. The initial conditions
for Eqs. (12a)–(12d) are w1ðx ¼ 0Þ ¼ −∞, w2ð0Þ −
w1ð0Þ ¼ ε [offset ε > 0 is needed to remove the ambiguity
of signðw1 − w2Þ in Eq. (11b)], and αð0Þ ¼ ϕð0Þ ¼ 0.
We will see momentarily that out of four variables,

only w1 and w2 are important for finding νðEÞ and GðEÞ.
This makes it convenient to derive a simplified system of
equations that would focus exclusively on variables w1 and
w2. To do that, we first solve Eqs. (12c) and (12d) in a short
interval dx, and then substitute the solutions into Eqs. (12a)
and (12b). This leads to [38]

dwi

dx
¼ −

∂Uðw1; w2Þ
∂wi

þ η̃iðxÞ: ð13Þ

This equation is similar to the Langevin equation for a
Brownian particle moving in an external field. The noise
terms η̃iðxÞ stem from ηNðxÞ and ηAðxÞ of Eq. (12); their
correlators are hη̃iðxÞη̃jðx0Þi ¼ ð1=l0Þδijδðx − x0Þ. The first
term in Eq. (13) describes the drift of the w⃗ “particle” in an
external field. The potential of the field is given by

Uðw1; w2Þ ¼ −
2E
v

ðsinh w1 þ sinh w2Þ

−
1

l0
ln j sinh w1 − sinh w2j þ

λ

l0
ðw1 − w2Þ:

ð14Þ
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The potential is plotted in Fig. 2. In the low-energy
limit E ≪ v=l0, and for jλj ≪ 1, the dynamics of the w⃗
particle is confined to two elongated trenches of length
2 lnðv=El0Þ ≫ 1. Both trenches end with a “cliff”: The
potential rapidly and boundlessly drops down for w1;2 ≳
lnðv=El0Þ due to the first term in Eq. (14). The motion of
the w⃗ particle is cyclical. In one part of the cycle, w⃗ moves
along the vertical trench until it reaches the cliff. When it
falls off the cliff, it reemerges on the opposite side of the
ðw1; w2Þ plane; see Fig. 2. After that, a complementary part
of the cycle starts in which variablesw1 andw2 trade places.
The jump in one variable occurs at a fixed value of another
variable, as required by the continuity of the S matrix as a
function of x.
The conductance GðEÞ is determined by the end point

of the w⃗ particle’s evolution. Using Eqs. (3) and (11), we
can express GðEÞ in terms of the values of w1 and w2 at
x ¼ L as

GðEÞ ¼ GQsign½w1ðLÞ − w2ðLÞ� tanh w1ðLÞ tanh w2ðLÞ:
ð15Þ

In the low-energy limit, one can approximate tanh wiðLÞ by
signwiðLÞ. Indeed, the two functions differ from each other
only in a narrow interval of wi near wi ¼ 0. The width of
this interval is of the order of 1, which is much smaller than
the lengths of the trenches 2 lnðv=El0Þ ≫ 1 for the motion

of the w⃗ particle. This shows that the low-energy conduct-
ance is quantized, GðEÞ ¼ �GQ; the accuracy of quanti-
zation is controlled by a small parameter 1= lnðv=El0Þ ≪ 1.
The dependence of the quantized value of GðEÞ on w⃗ðLÞ is
illustrated in Fig. 2.
The integrated density of states NðEÞ ¼ R E0 dE0νðE0Þ can

also be related to the S matrix [47]:

NðEÞ ¼ 1

L
1

2πi
ln det SðE; LÞ: ð16Þ

Because of the unitarity of the scattering matrix,
det S ¼ eiβ. Equation (11) shows that the phase β winds
by 2π every time the particle completes a full cycle in the
ðw1; w2Þ plane. Consequently, to find NðEÞ we need to
determine the number of cycles made by the particle per
unit “time” x.
The potential U changes linearly along the trenches due

to the third term in Eq. (14). If λ > 0, then the particle
diffuses uphill along the vertical trench and downhill along
the horizontal one. As a result, it spends the majority of
time being trapped in the potential well near the point
½− lnðv=El0Þ;− lnðv=El0Þ� on the vertical trench. In the
limit E → 0, the potential well becomes infinitely deep and,
according to Eq. (15), the conductance distribution function
approaches PðGÞ ¼ δðG −GQÞ.
The configuration reverses for λ < 0 [48]. The trapping

of the particle happens on a horizontal trench instead of a
vertical one. This results in a perfect Andreev reflection at
E → 0, i.e., PðGÞ ¼ δðGþ GQÞ. The above distribution
functions identify λ > 0 and λ < 0 as trivial and topological
phases, respectively.
Because of the trapping, the particle completes a cycle in

the ðw1; w2Þ plane only by rare events of the overbarrier
“thermal” activation allowed by the noise term in Eq. (13).
The height of the barrier is ΔU ¼ 2jλj lnðv=El0Þ=l0, while
the effective temperature equals 1=l0 [49]. Then, using
Eq. (16), we can estimate NðEÞ ∝ expð−l0ΔUÞ ∝ E2jλj,
which yields

νðEÞ ∝ 1

E1−2jλj ð17Þ

for the DOS. The conclusions for GðEÞ and νðEÞ hold
as long as the activation barrier is large, ΔU ≳ 1=l0,
which translates to E≲ ðv=l0Þ expð−c=jλjÞ with c ∼ 1. At
higher energies, GðEÞ and νðEÞ behave in the same
way as at the critical point, λ ¼ 0. In fact, condition
λ ¼ 0 arises naturally in the limit of strong spin-orbit
coupling; see Eq. (7) and the preceding discussion. Under
this condition, the particle undergoes a free Brownian
motion along the equipotential trenches. It completes a
cycle in a “time” Δx ∼ lðEÞ with lðEÞ ¼ l0 ln2ðv=El0Þ.
The length scale lðEÞ plays the role of a correlation
radius at a critical point at energy E. As a result, we find

FIG. 2. Effective potential Uðw1; w2Þ for variables w1, w2

which parametrize the scattering matrix S [see Eq. (14)]. The
potential landscape is plotted for lnðv=El0Þ ¼ 12 at the critical
point λ ¼ 0. The motion of the w⃗ particle is cyclic (connected
black and gray lines). It is confined to two nearly equipotential
trenches: a vertical one at w2 ¼ − lnðv=El0Þ and a horizontal one
at w1 ¼ − lnðv=El0Þ. The low-energy conductance takes quan-
tized values �GQ depending on the position of w⃗ðLÞ in the
ðw1; w2Þ plane.
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NðEÞ ∼ 1=Δx ∼ ½l0 ln2ðv=El0Þ�−1. Thus, the DOS νðEÞ ¼
∂NðEÞ=∂E has a Dyson singularity [50] at the Fermi
level:

νðEÞ ∝ 1

E ln3ðv=El0Þ
: ð18Þ

This singularity is indicative of the topological phase
transition in one-dimensional superconductors [24,25].
The value of the conductance at the critical point is

random and sample specific. It is determined by the end
point of the particle’s random walk along the equipotential
trenches, as shown in Fig. 2. In the limit E → 0, the
conductance distribution function approaches PðGÞ ¼
½δðG −GQÞ þ δðGþGQÞ�=2. To understand this result,
we note that the critical state can be pictured as an
alternating sequence of trivial- and topological-phase
domains [25] of a typical size lðEÞ. Conductance measured
at bias eV ¼ E depends on the type of the domain adjacent
to the superconductor’s end. If this domain is topological,
then the scattering of an incident electron happens similarly
to that off a conventional Majorana wire, G ¼ −GQ (we
remind that G characterizes the backscattered current). In
the opposite case, it is similar to the scattering off an
insulator, G ¼ þGQ. The type of the end domain depends
on disorder realization, but the two possibilities are equally
probable reflecting the criticality.

VI. DIFFERENTIAL CONDUCTANCE
AT THE CRITICAL POINT

To quantify the behavior of GðEÞ at λ ¼ 0, we find
the conductance correlation function CEðE1; E2Þ ¼
hGðE1ÞGðE2Þi=hG2i at T ¼ 0. The conductance at energy
E is determined by a disorder realization in a segment of
the superconductor of size lðEÞ adjacent to its end; the
correlation radius lðEÞ is the only relevant length scale at
the critical point. In the spirit of the infinite-randomness
model [51], we expect that the energy dependence of the
conductance comes only from the respective dependence of
lðEÞ. Thus, the dimensionless function CEðE1; E2Þ must
have a one-parameter scaling form:

CEðE1; E2Þ ¼ f̃(lðE1Þ=lðE2Þ) ¼ f

 
ln 1

E1

ln 1
E2

!
ð19Þ

(hereinafter, we suppress v=l0 under the logarithms for
brevity). Without loss of generality, we assume below that
0 < E2 < E1, such that the argument of scaling function
fðxÞ satisfies 0 < x < 1.
The form of fðxÞ can be established analytically for

1 − x ≪ 1. To do that, we compare the results of the
evolution of the w⃗ particles at two close energies E1 and E2.
While the noise acting on w⃗E1

and w⃗E2
is the same [see

Eq. (12)], the potential landscapes in which they move are
different: The lengths of the respective trenches differ by a

relative amount 1 − lnð1=E1Þ= lnð1=E2Þ; see Eq. (14). The
conductances GðE1Þ and GðE2Þ are opposite to each
other if the two particles end up on different halves of
the respective trenches; see inset of Fig. 3(b). Such
configurations reduce the correlation function from unity.
Let us consider a single cycle of motion of the w⃗ particles.
w⃗E1

and w⃗E2
start their motion at the beginning of the

respective trenches and move synchronously. However,
they reach the middles of their trenches at different
“times,” as the trenches have different lengths. It takes a
typical time Δx ∼ lðEÞ for a particle to reach the middle
of the trench. At that time, the probability density to find
the particle at distance δw from the beginning of the
trench is given by the diffusion kernel Pðδw;ΔxÞ ¼
ðπΔx=l0Þ−1=2 exp½−ðδw2=4Δx=l0Þ�. We can estimate
1 − CEðE1; E2Þ as the probability for two particles to be
on different sides of the respective middle points:

FIG. 3. Critical behavior of conductance GðEÞ. (a) At low
energies, GðEÞ switches stochastically between the quantized
values �GQ. Note that the scale is double logarithmic in E. To
plot the curve, we numerically simulate the S-matrix evolution
for L ¼ 9 × 104l0 and use Eq. (15). (b) Correlation function
CEðE1; E2Þ of the conductances at different energies (solid lines).
CEðE1; E2Þ is evaluated numerically; to perform the averaging
over disorder realizations in the definition of CE, we compute
GðEÞ for 2500 samples [we use a version of Eq. (12) simplified in
the low-energy limit to find GðEÞ; see Eq. (S44) of Ref. [38] ].
The curves plotted for different lnðv=E2l0Þ coincide with each
other. This verifies scaling relation (19). Scaling function fðxÞ is
well approximated by fðxÞ ¼ x (dashed line). Inset: deviation of
CEðE1; E2Þ from unity stems from the configurations in which the
w⃗ particles at energies E1 and E2 end their evolution on the
opposite halves of the equipotential trenches.
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1 − CEðE1; E2Þ ∼
Z

2 ln1E

0

dðδwÞ
�
1 − sign

�
δw − ln

1

E1

�

× sign

�
δw − ln

1

E2

��
Pðδw;ΔxÞ: ð20Þ

By estimating the integral, we find

1 − CEðE1; E2Þ ∼ 1 −
ln 1

E1

ln 1
E2

; ð21Þ

i.e., 1 − fðxÞ ∼ 1 − x for 1 − x ≪ 1.
For an arbitrary relation between E1 and E2, we find the

correlation function numerically by simulating Eq. (12)
(see Ref. [38] for details). The result of the simulation is
presented in Fig. 3(b). Surprisingly, fðxÞ appears to be well
approximated by fðxÞ ¼ x in the whole interval x∈ ½0; 1�.
Finally, Fig. 3(a) demonstrates GðEÞ for a particular

realization of the disorder. At low energies, the values of the
conductance stochastically alternate between þGQ and
−GQ. These changes are uniform in variable ln lnð1=EÞ;
cf. Eq. (19). It means that the fluctuations of GðEÞ become
increasingly dense at E → 0. At the lower end, the rapid
fluctuations are cut off either by energy EL ∼ ðv=l0Þ ×
expð−c̃ ffiffiffiffiffiffiffiffiffi

L=l0
p Þ at which the correlation radius lðEÞ

becomes comparable to the system size L (with c̃ ∼ 1),
or by the level broadening Γ induced by vortices.
The ln ln E scale comes from the mechanism of the

conductance variations. Upon the decrease of energy, GðEÞ
jumps from GQ to −GQ every time a new energy level
appears on the length scale lðEÞ ∼ l0 ln2ð1=EÞ. The respec-
tive change of energy satisfies the conditionνðEÞlðEÞδE ∼ 1,
which can be cast in the form δ½ln lnð1=EÞ� ∼ 1with the help
of Eq. (18) for the DOS. The emergence of the double-
logarithmic scale was also noticed in Ref. [29].

VII. INFLUENCE OF VORTICES

So far, we have neglected the influence of vortices on
the conductance. An incident electron may sink into the
vortex core, thus dropping out of the backscattered current.
Thus, vortices suppress the magnitude of G. To illustrate
this effect, we find the distribution function PðGÞ in the
regime of strong absorption, Γ ≫ v=l0. In this regime,
an incident electron undergoes at most a single EC or
CAR process. This allows us to find the respective
amplitudes perturbatively in ηA=NðxÞ. Using Eq. (9), we
obtain at E ≪ Γ [52]:

AA=N ¼ −
i
2

Z
L

0

dxe−
2Γ
v ðL−xÞηA=NðxÞ: ð22Þ

The conductance distribution function can be expressed as
PðGÞ ¼ hδ(G −GQðjANj2 − jAAj2Þ)i, where h…i denotes
the average over the realizations of ηA=NðxÞ. Substituting

Eq. (22) into this expression and using Eq. (8), we obtain at
the critical point:

PðGÞ ¼ 1

GQ

4Γl0
v

exp

�
−
8Γl0
v

jGj
GQ

�
: ð23Þ

The absorption renders the typical magnitude of the
conductance small, jGj ∼GQðv=Γl0Þ ≪ GQ. This is in
contrast to the case of Γ ¼ 0, in which G ¼ �GQ.
Importantly, PðGÞ remains symmetric at all values of Γ
reflecting the criticality. The crossover between a single-
peak PðGÞ at Γ ≫ v=l0 and its two-peak counterpart in the
opposite limit is illustrated in Fig. 4. The regime of strong
quasiparticle absorption may be relevant for the recent
experiments [12,13], in which jGj ≪ GQ was measured.

VIII. PARAMETRIC CORRELATIONS

In the conventional mesoscopic transport, there is no
need to collect the data from an ensemble of devices to
measure the statistics of the conductance fluctuations. The
ensemble averaging can be achieved in a single sample
by varying its parameters, such as the electron density
[30,53,54]. This result is known as the ergodicity hypothesis.
The variation δn of the electron gas density changes

the Fermi momentum of edge-states electrons by δkμ ¼
δnð∂μ=∂nÞ=v, where ∂μ=∂n is the inverse compressibility
of the quantum Hall state. The change of kμ affects the
phases of the EC amplitudes, ηNðxÞ → ηNðxÞe−2iδkμx; see
Eq. (4b). However, the CAR amplitudes remain approx-
imately intact, ηAðxÞ → ηAðxÞ; see Eq. (4). Because of this,
the ergodicity may appear to break down for the prox-
imitized counterpropagating edges. The variation of ηAðxÞ

FIG. 4. Distribution function PðGÞ of the zero-bias conduct-
ance in the presence of the quasiparticle absorption induced by
the vortices. When the absorption is weak Γl0=v ≪ 1, the
conductance is close to one of the two quantized values �GQ.
Stronger absorption reduces the characteristic magnitude of G.
For Γl0=v≳ 1, the conductance is symmetrically distributed in a
narrow interval around G ¼ 0; see Eq. (23). An expression for
PðGÞ valid at arbitrary Γ is presented in the Supplemental
Material [38].
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with kμ happens due to subtle effects only, such as the
nonlocal character of the electron tunneling between the
edges. Indeed, the x coordinate of a tunneling electron may
change by an amount of the order of

ffiffiffiffiffi
ξd

p
, which sets a

scale of 1=
ffiffiffiffiffi
ξd

p
for the variation of ηAðxÞ with kμ.

To demonstrate the existence of two scales for the
density variation, we compute the correlation func-
tion CnðδnÞ ¼ hGðnþ δnÞGðnÞi=hG2i, focusing on the
regime of strong quasiparticle absorption, Γ ≫ v=l0. In
this regime, one can use the perturbative expressions of
Eq. (22) to find CnðδnÞ. Substituting them in Eq. (3) and
using Eq. (8) (together with its counterpart for the ampli-
tude correlations at different kμ [38]), we obtain

CnðδnÞ ¼
1

2
exp

�
−
�

δn
nc;A

�
2
�
þ 1

2

1

1þ ðδn=nc;NÞ2
: ð24Þ

Here, nc;N ¼ 2Γð∂n=∂μÞ and nc;A ¼ ðv= ffiffiffiffiffi
ξd

p Þð∂n=∂μÞ are
the two scales of the variation of G with n. We see that the
latter of the two scales diverges at

ffiffiffiffiffi
ξd

p
→ 0 leading to

the saturation of CnðδnÞ at δn ≫ nc;N and creating an
appearance that the ergodicity breaks down.
The saturation of CnðδnÞ persists at smaller values of Γ.

In the limit Γ → 0, the parameter Γ in the scale nc;N is
replaced by v=l0. To see the saturation at Γ ¼ 0, we find
CnðδnÞ by numerically simulating Eq. (12). The result of
the simulation is presented in Fig. 5 for different values
of E. We see that CnðδnÞ saturates at ≃0.31 independent
of E. This can be explained by analyzing the Fokker-
Planck equation for the joint distribution function of
the w⃗ variables at two values of density separated by

δn ≫ nc;N [38]. In this limit, the Fokker-Planck equation
acquires an elliptic form. The independence of CnðδnÞ of E
stems from its scaling properties.
In fact, CnðδnÞ plotted for different energies collapses on

the same curve not only at δn ≫ nc;N, but at all values of
δn. To substantiate this observation, we find CnðδnÞ
analytically at δn ≪ nc;N. The shift δkμ ∝ δn leads to the
imperfect correlation between the noises acting on the w⃗
particles at the two values of density. As a result, the
particles separate in the course of their motion,
jw⃗n − w⃗nþδnj ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δkμΔx

p
, where Δx is the “time” measured

from the start of the last cycle [38]. Because of the
separation, they may end up on opposite halves of the
respective trenches leading to the deviation of CnðδnÞ from
unity. The motion of an individual particle happens with the
diffusion coefficient 1=l0. It takes time Δx ∼ lðEÞ for
the particles to spread over the respective trenches [which
have lengths of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðEÞ=l0

p
]. The characteristic

particle separation at that time is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δkμlðEÞ

p
. Given the

characteristic particle density along a trench of
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðEÞ=l0

p
, the probability to find the two particles at

opposite sides of the respective trench middle points is of
the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δkμlðEÞ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðEÞ=l0

p ¼ ffiffiffiffiffiffiffiffiffiffi
δkμl0

p
. Thus, we

find 1 − CnðδnÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δn=nc;N

p
with nc;N ¼ ðv=l0Þð∂n=∂μÞ.

The square-root behavior of CnðδnÞ at δn ≪ nc;N and its
independence of E is in agreement with the numerical
calculation.

A. Interpretation of experimental observations

Our theory offers an interpretation of the observations of
Refs. [12,13]. In these experiments, a dirty superconductor
provided coupling between two ν ¼ 1 counterpropagating
edges. The basic assumptions of our model are consistent
with this setup. Therefore, we expect the devices to be at the
critical point between the topological and trivial phases,
and the conductance distribution function to be symmetric,
PðGÞ ¼ Pð−GÞ. In general, PðGÞ can be found by sam-
pling G in a given device by varying its electron density n.
However, Refs. [12,13] reported a negative conductance
weakly sensitive to the variations of n. We can explain
this observation by a large correlation scale nc;A of CAR
processes.
Since the measured conductance jGj ≪ GQ, we focus

on the regime of strong quasiparticle absorption by vorti-
ces, Γ ≫ v=l0. In this regime, the width of PðGÞ is of
the order of GQðv=Γl0Þ. The conductance can be related to
the probabilities pN and pA of the EC and CAR processes
as G ¼ GQðpN − pAÞ. In the considered perturbative
regime, pN and pA are independent of each other, and
have typical values of the order of v=Γl0. The former
probability varies with n on the scale nc;N, while the latter
one changes on a much larger scale nc;A. Suppose that the
accessible measurement range of density n is smaller than

FIG. 5. Correlation function CnðδnÞ of the conductances at
different electron densities for δn ≪ nc;A. We compute CnðδnÞ by
simulating the evolution of the S matrix for L ¼ 9 × 104l0 [see
Eq. (12) and its low-energy counterpart, Eq. (S44) of Ref. [38] ],
and averaging the result over 5000 samples. The saturation of
CnðδnÞ stems from the insensitivity of the CAR amplitudes to the
density variations δn ≪ nc;A. The curves plotted for different
lnðv=El0Þ coincide with each other.
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nc;A but exceeds nc;N. Then, pA stays approximately
constant within the range, while pN fluctuates with
variation of n. The statistics of conductance collected in
such a measurement would be P̃ðGÞ ¼ ΘðGþGQpAÞ×
ð8Γl0=vÞ exp½−ð8Γl0=vÞðGþ GQpA=GQÞ�. Accordingly,
the probability to measure a negative conductance is
1 − exp½−ð8Γl0=vÞpA�. It is close to 1 if pA is relatively
large, pA ≳ v=ð8Γl0Þ. With an assumption of an anoma-
lously large pA, this may explain the negative signal
reported in Ref. [13], and even without such an assumption
the data of Ref. [12]. A similar mechanism may be relevant
for the observations at other integer fillings ν.

IX. CONCLUSIONS

Transport of a quantum Hall edge across a narrow
superconductor is determined by the competition of
CAR and EC processes. For a disordered superconductor,
the amplitudes of these processes are random but are
balanced statistically; see Eqs. (5) and (6). The balance
automatically tunes the system to the critical point between
trivial and topological phases. The charge transport at the
critical point is random. At low bias V ¼ E=e (see Fig. 1
for the setup), conductance GðEÞ is equally distributed
between two quantized values, �GQ. Which value of G
is realized at a given E is determined by the disorder
configuration in a segment of superconductor of length
lðEÞ ∝ ln2ð1=EÞ. Upon changing E, GðEÞ switches sto-
chastically between�GQ; see Fig. 3(a). The switchings are
roughly equidistant in ln lnð1=EÞ scale; see Eq. (19) and
Fig. 3. Electron tunneling into the vortex cores breaks the
quantization of G. A strong quasiparticle loss shrinks the
conductance distribution PðGÞ to a narrow interval of
values around G ¼ 0; see Eq. (23) and Fig. 4. PðGÞ can
be determined experimentally by collecting the statistics of
the conductance fluctuations with electron density n. To
achieve the representative sampling of G, the variation of n
has to exceed the scale nc;A at which the CAR amplitudes
change. At smaller density variations, the conductance may
appear nonergodic; see Eq. (24) and Fig. 5. Such a
seemingly nonergodic behavior may be directly relevant
for the data of Refs. [12,13].
Our theory identifies a challenge in engineering a

topological superconductor by proximity coupling the
quantum Hall edges. It demonstrates that one cannot reach
a topological phase when using a dirty superconductor to
induce the proximity effect, even when the spin-orbit
interaction is strong. At the same time, it shows that the
proximity-coupled edges give unprecedented access to the
fundamentally interesting physics of the topological phase
transition criticality. There is no need for fine-tuning of the
magnetic field or the chemical potential: The strong
disorder naturally tunes the device to the critical point.
Looking forward, it would be interesting to extend our
theory to the case of the proximity-coupled fractional
quantum Hall edges.
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