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Couplings between topological edge channels open electronic phases possessing nontrivial eigenmodes
far beyond the noninteracting-edge picture. However, inelastic scatterings mask the eigenmodes’ inherent
features, often preventing us from identifying the phases, as is the case for the quintessential Landau-level
filling factor ν ¼ 2=3 edge composed of the counterpropagating ν ¼ 1=3 and 1 (1=3–1) channels. Here, we
study the coherent-incoherent crossover of the 1=3–1 channels by tuning the channel length in situ using a
new device architecture comprising a junction of ν ¼ 1=3 and 1 systems, the particle-hole conjugate of the
2=3 edge. We successfully observed the concurrence of the fluctuating electrical conductance and
the quantized thermal conductance in the crossover regime, the definitive hallmark of the eigenmodes in the
disorder-dominated edge phase left experimentally unverified.
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I. INTRODUCTION

Manipulating edge excitations is the key to exploiting
exotic quasiparticles in topological matter for future infor-
mation technologies. Coulomb interaction plays a critical
role not only in determining the bulk ground state but also
in shaping the edge excitations. Its role becomes pivotal
when more than one edge channel is involved. The
interchannel interaction can drive the edge to a nontrivial
electronic phase, transforming the elementary edge exci-
tations (eigenmodes) stemming from the bulk topological
order into entirely different modes. Among various cases
[1–23], downstream charge and upstream charge-neutral
(neutral) modes in the fractional quantum Hall state at
Landau-level filling factor ν ¼ 2=3, the hole-conjugate of
the ν ¼ 1=3 state, embody the essence of the interacting
edge phases in its entirety [1–3].
The interplay of electron correlation and confinement

potential determines the electron-density profile neðxÞ of a

two-dimensional (2D) electron system (2DES) near the
sample edge [24]. At ν ¼ 2=3 (¼1 − 1=3), a ν ¼ 1 strip
forms along the edge, accompanied by counterpropagating
channels (hereafter “1=3–1 channels”) reflecting the filling-
factor discontinuities δν ¼ −1=3 and 1 on either side
[25–32]. Edge dynamics at ν ¼ 2=3 exhibit an intriguing
phase diagram [Fig. 1(a)] governed by Coulomb interaction
and tunneling through random impurities (“disorder,” in
other words) between the 1=3–1 channels. At zero temper-
ature, the renormalization of interaction by disorder drives
the system to follow different fates depending on the bare
interaction strength represented by a dimensionless param-
eter Δ (≥1) [1–3]. When the interaction is weak [weak-
coupling phase, blue region in Fig. 1(a)], the system holds
upstream and downstream eigenmodes, both charged, that
reflect the renormalized interaction strength (Δr > 3=2) [33].
In contrast, when the bare interaction is strong [strong-
coupling phase, or “disorder-dominated phase” [1,2], red
region in Fig. 1(a)], the system is driven toward the strong-
interaction limit (Δr ¼ 1), referred to as the strong-disorder
fixed point, and thus the eigenmodes inherent to the limit, the
charge and neutral modes, emerge irrelevantly to the bare
interaction strength.
In a real system of a finite length and at a finite

temperature, the eigenmodes differ slightly from those
exactly at the fixed point; yet, at sufficiently low temper-
atures, the system stays in the basin of attraction of the
fixed point (Δr ≅ 1) almost independent of the bareΔ value
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in the strong-coupling regime, and the charge and neutral
modes well explain the transport phenomena. However,
despite the essential difference with the weak-coupling
phase, unambiguously identifying the strong-coupling phase
is an experimental challenge. Inmost of the transport regimes
distinguished by the channel length L, the strongly interact-
ing 1=3–1 channels show similar electrical and thermal
conductance to those in theweak-interaction case [Fig. 1(b)]
[3]. The “coherent” and “incoherent” regimes exhibit quan-
tized electrical conductance 4Ge=3 (Ge ¼ e2=h with e
elementary charge and h Planck’s constant) and 2Ge=3,
respectively, in both strong- and weak-coupling phases.
Interestingly, theory predicts a characteristic crossover
between the coherent and incoherent regimes (“mesoscopic”
regime) only in the strong-coupling phase, which would
present the unique hallmark of the charge and neutral modes
near the fixed point, that is, the concurrence of fluctuating
electrical conductance [3,34,35] and quantized thermal
conductance GQ ¼ π2k2BTe=3h (with kB Boltzmann’s con-
stant and Te electron temperature) [3]. So far, most previous
experiments investigated the neutral mode only in the
incoherent regime with electrical conductance 2Ge=3 [8–
10,12–14,17–22]. The mesoscopic regime remains unex-
plored due to the difficulty in fabricating short channels

below the inelastic scattering length in a natural ν ¼ 2=3
system [36,37]. To overcome this problem, we employ a
device comprising a junction of ν ¼ 1=3 and 1 systems
(1=3–1 junction), the particle-hole conjugate of the2=3 edge,
which enables us to fine-tune the 1=3–1 channel length
below the inelastic scattering length.

II. RESULTS

A. 2=3 edge versus 1=3�1 junction

To gain insight into themicroscopic structure of the 1=3–1
junction and thereby examine its particle-hole symmetry
with the 2=3 edge, we performed density-matrix-renormal-
ization-group (DMRG) calculations for its electron-density
profile neðxÞ [38]. Figures 1(c) and 1(d) are the obtained
profiles transverse to a 2=3 edge (2=3 − 0 junction) and a
1=3–1 junction, respectively, with the vertical axis
ν�ðxÞ ¼ neðxÞ=nφ, with nφ the density of flux quanta. For
both calculations, we included an electrostatic potential
gently varyingwith x to impose a density difference between
the left- and right-hand sides (see Appendix A). In Fig. 1(d),
ν�ðxÞ approaches ν�ðxÞ ≅ 1=3 and 1 on the left- and
right-hand side, respectively, indicating that incompressible
quantum Hall (QH) states develop in the bulk regions.
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FIG. 1. (a) Phase diagram of the 2=3 edge at zero temperature [1]. Red (blue) region is the strong-coupling (weak-coupling) regime.

(b) Summary of electrical (Gð2Þ
E ) and thermal (Gð2Þ

T ) conductance of conventional ν ¼ 2=3 device in units of Ge and GQ, respectively [3].
Downstream (DS) and upstream (US). (c) DMRG calculation results of neðxÞ profiles across the 2=3–0 and (d) 1=3–1 junctions, plotted
in units of filling factor ν�. Both profiles show the counterpropagating 1=3–1 channels, demonstrating the particle-hole symmetry
between the junctions. The profile in (d) enables us to estimate the compressible ν ¼ 1=3 (W1=3) and ν ¼ 1 (W1) strip widths and their
separation (W0). We calculated channel capacitances using the 2D finite-element method and obtained Δ ≅ 1.2, which indicates that our
1=3–1 channels are in the strong-coupling phase (see Appendix B). (e) Schematic of conventional ν ¼ 2=3 device with two edges and
(f) our 1=3–1 junction with a single QH interface mimicking the 2=3 edge. Interacting 1=3–1 channels (length L) are connected to
Ohmic contacts via noninteracting leads (length L0).
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Notably, a narrow ν�ðxÞ ¼ 0 region emerges at the boundary,
with ν�ðxÞ oscillating on the ν ¼ 1=3 side in the sameway as
in an isolated ν ¼ 1=3 system [38]. Comparing neðxÞ in
Figs. 1(d) and 1(c), we see that a particle-hole symmetry,
ν�ðxÞ ↔ 1 − ν�ðxÞ, holds between the 1=3–1 junction and
the 2=3 edge. We confirmed that the microscopic neðxÞ
structure in Fig. 1(d) [Fig. 1(c)] is robust against small
changes in the potential due to the adjustability of the
position of the ν� ¼ 0 ν� ¼ 1 strip.
TheDMRGcalculations also enable us to estimateΔ. From

the widths (W1=3 and W1) and separation (W0) of the
compressible strips [Fig. 1(d)], we calculated the relevant
capacitances using a 2D finite-element method [16,33,39,40].
The obtained capacitance values giveΔ ≅ 1.2, which ensures
that our 1=3–1 channels reside in the strong-interaction
regime, where disorder drives the system toward the strong-
disorder fixed point (see Appendix B).
As we explain below, compared to the 2=3 edge, our

1=3–1 junction is advantageous for accessing the meso-
scopic regime. Figures 1(e) and 1(f) compare the edge-
channel configurations in a conventional ν ¼ 2=3 device
and our 1=3–1-junction device. The mesoscopic regime
takes place when the condition,

l ≪ minðL0; LTÞ ≪ L ≪ Lin; ð1Þ

is satisfied [3]. Here, L is the length of the interacting
1=3–1 channels, L0 is that of the noninteracting channels
serving as leads connecting the interacting region with the
Ohmic contacts, l is the characteristic length of disorder,
LT ∼ hvσ=kBTe (with vσ neutral mode velocity) is the
thermal length, and Lin is the characteristic length of
inelastic intermode scattering. Condition (1) means that,
to investigate the mesoscopic regime, L must be long
enough to cause disorder-induced intermode scattering
while short enough to suppress inelastic processes causing
energy dissipation. In the conventional device [Fig. 1(e)],
transition regions unavoidably exist near the Ohmic con-
tacts, where the 1=3 and 1 channels no longer interact,
playing the role of leads (of unknown length L0). As these
regions are short, the condition l ≪ minðL0; LTÞ is not
generally met. Most importantly, the channel length L is
fixed by design, with no chance to examine the L
dependence. In contrast, our 1=3–1 junction [Fig. 1(f)] is
electrostatically defined, where L is tunable in situ by a
split gate. The 1=3 and 1 channels are noninteracting
outside the junction region, serving as leads of well-defined
length L0. This guarantees L0 > LT even at low temper-
atures, which makes it possible to examine the L depend-
ence under the condition l < LT < L < Lin. We also note
that the full spin polarization of ν ¼ 1=3 and 1 removes
unnecessary complications due to the spin degree of
freedom that might come into play at ν ¼ 2=3 [41].
The electrical conductance G across the junction mea-

sured in our setup relates to the two-terminal electrical

conductance Gð2Þ
E of a conventional ν ¼ 2=3 device quoted

in Fig. 1(b) through the following relation,

Gð2Þ
E ¼ ðGe −GÞ þ ðGe=3 −GÞ ¼ ð4Ge=3Þ − 2G; ð2Þ

which is obtained via the conductance matrix of counter-
propagating 1=3–1 channels representing a single ν ¼ 2=3
edge [3],

Ĝ ¼
�
Ge −G G

G Ge=3 −G

�
; ð3Þ

considering that the conventional device involves two
edges with reversed directions.

B. Electrical-conductance and
current-noise measurements

Figure 2(a) shows a schematic of our sample and
experimental setup. The 1=3–1 junction was fabricated
in an 80-μm-wide Hall bar with the 2DES confined to a
30-nm-wide GaAs quantum well (QW) in a GaAs=AlGaAs
heterostructure. The center of the QW is located 190 nm
below the surface. Measurements were performed in a
dilution refrigerator at a mixing chamber temperature of
8 mK. The electron temperature Te estimated from thermal
noise measurement is about 30 mK (see Appendix C). The
filling factors in the left (red) and right (blue) gated regions
[Fig. 2(b)] are set to ν ¼ 1=3 and 1, respectively, at the
perpendicular magnetic field B ¼ 10 T. Applying a large
negative voltage VS to the split-gate electrode (yellow,
aperture size Lg) located between the left and right gates
depletes the 2DES underneath and forms a narrow junction,
along which ν ¼ 1=3 and 1 channels counterpropagate.
When the 1=3–1 channels are in the strong-coupling phase,
the charge and neutral modes would propagate from the
down side to the up side and from the up side to the down
side, respectively. We measure the differential conductance
g ¼ dI1=dV1=3 of the junction, with bias V1=3 applied on
the ν ¼ 1=3 side and current I1 measured on the ν ¼ 1 side
(for detailed results, see Appendix C). Current noise S1=3 is
also measured to evaluate the upstream heat transport along
the 1=3–1 channels. Note that the same results are obtained
from measurements in different configurations, e.g., with a
bias applied on the ν ¼ 1 side (see Appendix D). We
measured several junctions with different Lg ranging from
0.3 to 40 μm. Here we mainly present the results for a
0.6-μm junction.
Figures 2(c) and 2(d), respectively, present the VS

dependence of g and bias-induced excess noise
ΔS1=3ðV1=3Þ≡ S1=3ðV1=3Þ − S1=3ð0Þ, measured at several
V1=3 values. The vertical dashed lines mark VS ≅ −0.55 V,
at which a narrow junction is formed. When VS is decreased
slightly below −0.55 V, g stays nearly unchanged at Ge=3,
indicating that the impinging current is almost entirely
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transmitted across the junction. Note that g ¼ Ge=3 corre-
sponds to GE

ð2Þ ¼ 2Ge=3 [see inset in Fig. 2(c) and Eqs. (2)
and (3)]. The formation of the narrow junction is signaled in
ΔS1=3 as a jump from zero to a finite value. This signal
indicates the existence of an upstream heat flow as there is no
net charge flow through the backreflected channel.
While the above behavior immediately below VS ≅

−0.55 V is nontrivial per se, it can be understood within
the incoherent-transport picture. The signatures of the
coherent-incoherent crossover emerge when VS further
decreases to narrow the junction. At −2.4 < VS <
−0.7 V, zero-bias conductance oscillateswith peaks exceed-
ing g ¼ Ge=3, demonstrating the Andreev-like reflection of
fractional quasiparticles [42–46]. The oscillations are the
indication of the disorder-specific electrical conductance. In
contrast, ΔS1=3 is almost independent of VS, indicating that
the noise temperature of the junction is insensitive to L, the
disorder configuration, and the electrical-conductance fluc-
tuations. As detailed in the next section, ΔS1=3 measured at
V1=3 ¼ 45 μV, where the conductance oscillations are small
but still visible, is close to the value expected for the
quantized thermal conductance GQ=2 of the single 1=3–1
channels [half of a conventional ν ¼ 2=3 devicewith top and
bottom edges [3]; see Figs. 1(e) and 1(f)]. All these
observations correspond to the predicted crossover behaviors
in the mesoscopic regime.

When VS is decreased below VS ≅ −2.4 V (highlighted
by black arrows in Figs. 2(c) and 2(d)), zero-bias conduct-
ance rapidly decreases, indicating the breakdown of con-
dition (1) by L < LT [3]. At finite bias, ΔS1=3 oscillates
synchronizedwith g down toVS ≅ −3.4 V,which is close to
the pinch-off voltage (−3.6 V) of the junction atB ¼ 0 T. In
this regime, bias-induced Poissonian tunneling events
through discrete levels dominate the transport, generating
ΔS1=3 [42,47] (see also Appendix E). Below VS ≅ −3.4 V,
g ¼ 0 and ΔS1=3 ¼ 0 over the entire bias range, which is a
result of the full decoupling the 1=3–1 channels caused as
the disorder is no longer in action (L < l).

C. Dissipationless transport in the mesoscopic regime

The weak VS dependence of ΔS1=3 [Fig. 2(d)] indicates
that ΔS1=3 is independent of g in the mesoscopic regime,
excluding the noise-generation scenario via the Poissonian
tunneling events.We show that the measuredΔS1=3 is linked
with the quantized thermal conductance GQ=2 predicted for
the mesoscopic regime. To this end, we extend the theory of
the incoherent transport regime that relates the thermal
conductance of the 1=3–1 channels with the low-frequency
current noise [47,48] to the mesoscopic regime.
The mixing of the incoming channels with different

chemical potentials leads to local equilibrium between
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FIG. 2. (a) Schematic of experimental setup. The interacting 1=3–1 channels appear at the narrow junction, forming downstream
charge (denoted by “C”) and upstream neutral (“N”) modes. We measured differential conductance g ¼ dI1=dV1=3 and current noise
S1=3. (b) False-color scanning electron micrograph of Lg ¼ 0.6 μm sample. The left (red) and right (blue) regions are set at ν ¼ 1=3 and
ν ¼ 1, respectively, while the split gate (yellow) is energized to form a narrow 1=3–1 junction. (c) VS dependence of g and (d) ΔS1=3 at
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them and causes heating at the end point of the downstream
charge mode flow [“hot spot” in the inset of Fig. 2(d)]. This
induces heat flow toward the other end, the end point of the
upstream neutral mode flow (“noise-generating spot”). The
excess noise ΔS1=3 (and its counterpart ΔS1 on the ν ¼ 1
side) is generated at the noise-generating spot by dividing
thermally excited electron-hole pairs into the outgoing ν ¼
1=3 channel and the ν ¼ 1 channel that turns back to the
hot spot and then exits from there [47]. This noise-
generation mechanism naturally explains ΔS1=3 ¼ ΔS1
required by current conservation (see Appendix D). In
the L > Lin incoherent regime, the heat flow is diffusive
due to inelastic processes, resulting in a gradual decrease of
the effective temperature of the 1=3–1 channels from the
hot spot (temperature Th) toward the noise-generating spot
(Tng). Theory predicts Tng ∝ 1=

ffiffiffiffi
L

p
and, hence, ΔS1=3 ¼

ΔS1 ∝ 1=
ffiffiffiffi
L

p
[47,48]. In the long-channel limit, ΔS1=3

disappears, signaling full thermal equilibration. Unlike the
current noise that only reflects Tng, the flows of heat
outgoing from the hot and noise-generating spots reflect Th
and Tng, respectively, and differ. The total outgoing power
is determined by their sum and the energy dissipation
during diffusive heat transport.
We use the same argument for the LT < L < Lin meso-

scopic regime. Now, the 1=3–1 channels are short enough
to warrant dissipationless charge and neutral mode trans-
port, which leads to a uniform effective temperature Tmeso
(¼Th ¼ Tng) established along the channels. Consequently,
the heat generated at the hot spot splits equally between the

two outgoing channels, meaning that the 1=3–1 junction
serves as a 50∶50 splitter, equipartitioning the injected heat
into the two outgoing channels. As each of the incoming
and outgoing channels has thermal conductance GQ, it
follows that the 1=3–1 junction has the quantized thermal
conductance GQ=2 in this case [3]. In the following, we
calculate Tmeso by considering the balance between the
injected Joule power and the output heat flow [49] and
compare it with the measured noise temperature TN defined
as [47]

ΔS1=3 ≡ 2kBðTN − TeÞG: ð4Þ

If TN ¼ Tmeso, the charge and neutral mode transport is
dissipationless and therefore the 1=3–1 channels hold the
thermal conductance GQ=2 predicted for the mesoscopic
regime.
The dc power supplied to the junction is given by

Pdc
in ¼ V1=3Iin=2 ¼ GeV2

1=3=6, where Iin ¼ GeV1=3=3 is

the impinging current. Similarly, the output dc power Pdc
out

is calculated as Pdc
out¼ðVout

1=3I
out
1=3þVout

1 Iout1 Þ=2¼GeV2
1=3=6−

Gð1−2G=GeÞV2
1=3, where Vout

1=3ð1Þ and Iout
1=3ð1Þ are, respec-

tively, the voltage and current of the outgoing ν ¼ 1=3
(1) channel and G ¼ I1=V1=3 is the junction conductance.
Thus, the injected Joule power is given by

ΔP≡ Pdc
in − Pdc

out ¼ Gð1 − 2G=GeÞV2
1=3: ð5Þ
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and compensate for minor self-gating effects (see Appendix D). (c) Noise temperature TN estimated from ΔS1=3 as a function of the
injected Joule power ΔP. Solid blue line is the Tmeso curve obtained from Eq. (10). The light blue region indicates the possible TN range
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The heat flows outgoing from the junction through the ν ¼ 1
and 1=3 channels, respectively, are described as

JhQ ¼ π2k2B
6h

ðT2
h − T2

eÞ; ð6Þ

JngQ ¼ π2k2B
6h

ðT2
ng − T2

eÞ: ð7Þ

The input-output relationship [see the inset in Fig. 3(d)] for
the heat flow in the 1=3–1 channel requires

ΔP ¼ JhQ þ JngQ þ JdissQ ; ð8Þ

where JdissQ is the dissipation during diffusive transport. In the
mesoscopic regime, JdissQ ¼ 0 and Th ¼ Tng ¼ Tmeso, so that

ΔP ¼ JhQ þ JngQ ¼ π2k2BðT2
meso − T2

eÞ=3h: ð9Þ

Thus, we obtain

Tmeso ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3h
π2k2B

ΔPþ T2
e

s
: ð10Þ

Figure 3 shows the V1=3 dependence of g [Fig. 3(a)] and
ΔS1=3 [Fig. 3(b)] at several VS values. While g depends on
VS, all ΔS1=3 data exhibit a monotonic increase with jV1=3j.
The ΔS1=3 data for each VS are converted into TN and
plotted in Fig. 3(c) against ΔP and compared with Tmeso
obtained from Eq. (10) (solid blue curve), where ΔP is
calculated using Eq. (5). The TN data fall in the region
given by Te ≅ 30 mK ≤ TN ≤ Tmeso (light blue region).
Remarkably, below ΔP ≅ 5 fW, TN asymptotically
approaches the Tmeso curve independently of the VS values,
indicating that the situation where JdissQ ¼ 0 and Th ¼
Tng ¼ Tmeso is about to be realized. The departure of TN

from Tmeso at higher ΔP, in turn, signals the onset of bias-
induced inelastic processes [50]. As one would expect, the
onset voltage jV1=3j ≅ 50 μV (inset) of the departure is
close to the bias above which the electrical-conductance
fluctuations disappear. We add that the ΔP dependence of
TN at high bias suggests heat transport through the 2D
bulk as the dominant contributor to dissipation (see
Appendix G).
If we relate the thermal conductance GT of the 1=3–1

channels to the transmission of the heat flow as

GT ¼ JngQ
ΔP

GQ; ð11Þ

using the Landauer-Büttiker formalism [48], we can evaluate
GT by assuming TN ¼ Tng, as shown in Fig. 3(d) for the data

at VS ¼ −1.2 V. One observes that GT increases as ΔP
decreases, approaching GQ=2 at the lowest bias.

D. Inelastic scattering length

We performed similar measurements on several 1=3–1
junctions with different Lg. Figure 4 plots the results as a
function of L estimated from VS using a 3D finite-element
method for each Lg (see Appendix H). Above L ∼ 1 μm,
the electrical-conductance fluctuations are suppressed, and
ΔS1=3 decreases monotonically with increasing L, sug-
gesting Lin ∼ 1 μm in our devices (at Te ¼ 30 mK).
The onset lengths for the suppression of electrical-

conductance fluctuations and the decline of thermal con-
ductance can differ when the bare interaction is very strong
(Δ ≅ 1) [17–22]. Conversely, when the bare interaction is
not too strong as in the present case (Δ ≅ 1.2), these
characteristic lengths become close to each other. Indeed,
our results show that this is the case and that both lengths
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FIG. 4. (a) Zero-bias conductance and (b) ΔS1=3 at V1=3 ¼
90 μV as a function of the 1=3–1 channel length L for several
samples with different Lg. The g and ΔS1=3 data for the 0.6-μm
sample are the same as those in Fig. 2. Narrow junctions
(L < 1 μm) show the signatures of coherent-incoherent cross-
over, namely the mesoscopic electrical-conductance fluctuations
and almost constant ΔS1=3. The blue dashed line in (b) is a visual
guide for constant ΔS1=3. Wide junctions (L < 1 μm) show the
suppression of electrical-conductance fluctuations and the de-
crease in ΔS1=3 with increasing L, indicating the inelastic
processes in the junction. The blue solid line is a visual guide
ΔS1=3 ∝ 1=

ffiffiffiffi
L

p
for the length dependence of ΔS1=3 in the

incoherent regime [47]. The crossover between the narrow and
wide junction regions suggests Lin ∼ 1 μm inelastic scattering
length.
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can be represented by a single inelastic scattering length
Lin ∼ 1 μm, as assumed in Ref. [3].
Once Lin is known, one can estimate the neutral mode

velocity vσ ∼ kBTeLT=h, a measure of the renormalized
interaction strength Δr. Theory predicts that a rough
relationship between Lin and other characteristic lengths,
including LT,

Lin ∼
1

Δ − 1

L2
T

l
; ð12Þ

holds at LT > l [3]. With Lin ∼ 1 μm, Δ ≅ 1.2, and
l ∼ 30 nm (see Appendix I), Eq. (12) gives the thermal
length LT ∼ 80 nm and vσ ∼ 50 m=s at Te ¼ 30 mK. This
vσ value is significantly smaller than the mode velocities,
24 and 155 km=s, expected for the bare interaction strength
Δ ≅ 1.2 (see Appendix B). The significant reduction of vσ
implies Δr ≅ 1, namely the renormalization of the inter-
channel interaction to the vicinity of the strong-disorder
fixed point (for further discussions, see Appendix I).

III. SUMMARY

We have demonstrated the coherent-incoherent crossover
of the charge and neutral mode transport in interacting
1=3–1 channels that replicate the ν ¼ 2=3 edge channel.
This was made possible by virtue of the in situ tuning of L
even below the Lin ∼ 1 μm characteristic of our 1=3–1
junction. We observed fluctuating electrical conductance
and current noise that corresponds to the quantized thermal
conductance, the signatures of the coherent-incoherent
crossover. This study demonstrates a junction of topologi-
cally distinct systems as an exquisite platform for probing
electron dynamics in interacting edge channels and, in a
broader sense, for examining fundamental concepts in
condensed matter physics, such as particle-hole symmetry
and elementary excitations in correlated systems.
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APPENDIX A: DMRG CALCULATION

We calculated the ground state wave function of 2DESs
and the ne profiles at the 2=3 edge and 1=3–1 junction using
the DMRG calculation method for a torus geometry
[38,51–54]. We assumed that electron spin is fully polar-
ized. The system size is defined by the lengths Lx and Ly of
the unit cell and relates to the number of magnetic flux
quantaM ¼ 210 as LxLy ¼ 2πl2BM. We set the aspect ratio
of the system at Ly=Lx ¼ 0.5. The electrostatic potential is
induced by modulating the background-positive-charge
density npðxÞ in the doped layer, located above the
2DES with vertical distance d [Figs. 5(a) and 5(b)]. For
the 1=3–1 junction (2=3 edge), the npðxÞ profile has two
regions with the ratio np=nφ ¼ 1=3 (2=3) and np=nφ ¼ 1

(0), and the two regions are connected with the abrupt
change in np=nφ at their boundary. Because of the finite
distance d, the electrostatic potential induced in the 2DES
layer gently varies with x. We adjusted the total electron
number in the system to form the two well-developed QH
states in the bulk regions. The DMRG calculation result for
the full-range neðxÞ profile of the 1=3–1 junction, obtained
with d=Lx ¼ 0.002, is shown in Fig. 5(c). The data shown
in Figs. 1(c) and 1(d) were also obtained with the same
d=Lx value. We used the d value, much smaller than the
actual 2DES depth, to compensate for the size effect caused
by our choice of small Lx to suppress the computational
volume. This makes the resultant electrostatic potential
shape close to that of the 1=3–1 junction obtained by the
finite element method (see Appendix H). Even when the
total electron number, the npðxÞ profile, or d=Lx slightly
varies, we found similar ne profiles with the signatures of
the counterpropagating 1=3–1 channels, as long as d=Lx is
small enough to form well-developed bulk QH regions.
Further technical details are available in Ref. [38].

APPENDIX B: DISTRIBUTED
CAPACITANCE MODEL

We numerically estimate Δ using the distributed capaci-
tance model of Coulomb interaction, which has been used
to investigate charge dynamics along QH edge channels
[16,33,39,40,55–57]. The neðxÞ profile in Fig. 1(d) enables
us to estimate widthsW1=3 andW1 of compressible strips of
the ν ¼ 1=3 and ν ¼ 1 channels, respectively, and that of
the ν� ¼ 0 depletion region W0. Here, we extracted W1 ≅
1.3lB ≅ 10.5 nm (the magnetic length lB ¼ 8.1 nm at
B ¼ 10 T) as the width of the region where 0.05 ≤ ν� ≤
0.995 and W0 ≅ 1.6lB ≅ 13 nm as that where ν� ≤ 0.05.
On the other hand, oscillations of ν� in the ν ¼ 1=3 region
make the estimation of W1=3 difficult. Therefore, we
performed the following calculations for several values
of W1=3 in 20 ≤ W1=3 ≤ 220 nm. Figure 5(d) shows a
schematic cross section of the 1=3–1 junction with the
geometric coupling capacitances cα (α ¼ 1=3 or 1) and cX,
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wherecα is between the compressible ν ¼ α strip and thegate
metals and cX is between the compressible strips. Figure 5(e)
plots these capacitances computed using a 2D finite-element
method with commercial software COMSOL. We assumed
the incompressible bulk QH regions as insulators in this
calculation. Because the compressible strips locate close to
each other, cX is larger than c1=3 and c1 over the entire range
of W1=3 we assumed.
The interaction strength Δ is related to the velocity

parameters v1, v1=3, and vX as Δ≡ ð2 − ffiffiffi
3

p
pÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

p
,

where p≡ ð2vX=
ffiffiffi
3

p Þ=ðv1 þ v1=3Þ. Here, v1 and v1=3
respectively, reflect the interactions within ν ¼ 1 and ν ¼
1=3 channels, and vX reflects the repulsive interchannel
interaction [1,2]. When we ignore minor contributions of
the electrochemical capacitance of the edge channels, these
velocity parameters are expressed using the geometric
coupling capacitances as [33]

v1 ¼
e2

h

c1=3 þ cX
c1c1=3 þ ðc1 þ c1=3ÞcX

; ðB1Þ

v1=3 ¼
e2

3h
c1 þ cX

c1c1=3 þ ðc1 þ c1=3ÞcX
; ðB2Þ

vX ¼ e2

h
cX

c1c1=3 þ ðc1 þ c1=3ÞcX
: ðB3Þ

By substituting the capacitance values estimated above, we
find Δ ≅ 1.2 over the entire range ofW1=3 [Fig. 5(f)], which
ensures that the 1=3–1 channels are in the strong-
coupling phase.
The distributed capacitance model enables us to obtain

the speeds of the counterpropagating eigenmodes expected
for the bare interaction strength (Δ ≅ 1.2), 24 and
155 km=s, by solving the wave equation:

∂

∂t

�
ρ1

ρ1=3

�
¼

�
v1 vX
−vX −v1=3

�
∂

∂x

�
ρ1

ρ1=3

�
; ðB4Þ

where ρ1 and ρ1=3 are the charge in the ν ¼ 1 and 1=3
channels at position x and time t [16].

APPENDIX C: EXPERIMENTAL SETUP

1. Sample preparation

The GaAs=AlGaAs heterostructure fabricating the
1=3–1 junction has a 65-nm-thick Al0.33Ga0.67As spacer
layer between the QW and the doped layer. The nþ-GaAs
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FIG. 5. (a) Schematic of the positive-charge configurations used for DMRG calculations of 2=3–0 and (b) 1=3–1 junctions. Positive
background charges (density np) locate at a vertical distance d from the 2DES. Abrupt changes in np induce the electrostatic potentials in
the 2DESs to form the QH junctions, gently varying near the junctions. (c) Full-range ν� profile of the 1=3–1 junction obtained by the
DMRG calculation. (d) Schematic cross section of the 1=3–1 junction with capacitive couplings. Red and blue regions, respectively,
depict the compressible strips of the ν ¼ 1=3 and ν ¼ 1 channels, while pink and cyan regions are the incompressible bulk regions.
Yellow regions denoted as GL and GR are left and right surface-gate electrodes, respectively. (e) Distributed channel capacitances
estimated by a 2D finite-element method. While the DMRG calculation result shows W1 ≅ 10.5 nm and W0 ≅ 13 nm, the oscillations
of ν� in the ν ¼ 1=3 region make it difficult to estimateW1=3. Therefore, we calculated the capacitances for severalW1=3 values. (f) Bare
interchannel interaction parameter Δ estimated using the capacitance values in (e). The Δ values stay at Δ ≅ 1.2 over the entire range of
W1=3 used for the calculation, indicating that the 1=3–1 channels are in the strong-coupling phase.
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substrate serves as a back gate, and metal surface electrodes
of 30-nm-thick gold on 10-nm-thick titanium work as
surface gates. We patterned the sample using e-beam
lithography for fine surface-gate structures and photoli-
thography for in-plane semiconductor structures, Au-Ge-Ni
alloyed Ohmic contacts, and coarse metallized structures.

2. Measurement setup

Figure 6(a) shows the complete schematic of the exper-
imental setup. The samples were placed in a dilution
refrigerator of base temperature Tbase ¼ 8 mK. We applied
a magnetic field of B ¼ 10 T perpendicular to the 2DES to
form the 1=3–1 junction. The electron density of the 2DES in
the ν ¼ 1 region (blue region) is set at 2.4 × 1011 cm−2 by
applying a back-gate voltage of 1.6 V, while that in the ν ¼
1=3 region (red region) is at 0.8 × 1011 cm−2 by applying
VL ≅ −0.45 V[seeFigs. 6(b)–6(d)]. For themain results,we
measured dc transport properties using the standard lock-in

technique with the 10-μV ac modulation of V1=3 at 79 Hz.
The current-noise characteristics were measured with induc-
tor-capacitor resonance circuits and homemade HEMT-
based voltage amplifiers (the details of the measurement
setup are available in Refs. [58,59]).

3. Electron temperature

We estimated the electron temperature Te by measuring
the thermal noise of the 1=3–1 junction device with the
setup illustrated in Fig. 6(a). Figure 7 shows the result, in
which the horizontal axis is the mixing chamber temper-
ature TMC controlled by a heater and measured by a RuO2

thermometer, and the vertical axis is the measured noise
amplitude. The thermal noise amplitude monotonically
decreases in proportion to TMC over the wide range at
and above TMC ≅ 50 mK, while it slightly deviates from
the linear fit at lower temperatures. From the noise data at
the base temperature, we obtained Te ≅ 30 mK.
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FIG. 6. (a) Schematic of the whole device and measurement setup. Dotted lines indicate the geometries of surface-gate electrodes. The
2DESs below the right surface gate (VR ¼ 0 V) and outside the gated area are in the ν ¼ 1 state (blue regions) at B ¼ 10 T. The ν ¼ 1=3
state (red region) is formed by decreasing the electron density below the left surface gate with VL ≅ −0.45 V [see data in (b)]. The long
1=3–1 channels across the 80-μm-wide Hall bar, located immediately to the left of the ν ¼ 1=3 region, are fully equilibrated to produce a
unidirectional channel of electrical conductance 2e2=3h. In the standard Landauer-Büttiker edge transport picture, the setup can be
expressed simply as that in Fig. 2(a) [42]. (b) VL dependence of zero-bias conductance g at VR ¼ VS ¼ 0 V. (c) Color plot of g as a
function of VS and VL at VR ¼ 0 V. (d) Same g data as (c) plotted with different ranges of g and VL: upper panel: e2=2h < g < e2=h and
−0.3 V < VL < 0 V; lower panel: 0 < g < e2=2h and −0.6 < VL < −0.3 V. The conductance oscillations signaling the mesoscopic
electrical-conductance fluctuations are observed for the 1=3–1 junction at VL ≅ −0.45 V and not for the 2=3 − 1 junction at
VL ≅ −0.2 V. The kink structure of the g ≅ e2=3h region at VS ≅ −0.55 V, highlighted by the white arrow in the lower panel, indicates
the formation of the narrow 1=3–1 junction.
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APPENDIX D: RESULTS IN DIFFERENT SETUPS

While we mainly described the measurement results for
I1 and S1=3 with V1=3 applied, we also performed other
measurements in different experimental configurations [see
Fig. 6(a)]. Different choices of the measurement quantities
(I1 or I1=3 and S1 or S1=3) or the applied bias (V1 or V1=3) do
not change our conclusion, and they demonstrate the
reproducibility of the experimental results, as explained
below for a few examples.
Figures 8(a) and 8(b), respectively, display the (non-

symmetrized) raw data of the differential conductance
g1=3 ¼ dI1=dV1=3 and ΔS1=3 of the 0.6-μm junction at
VS ¼ −0.75 V measured with V1=3 applied. Figures 8(c)

and 8(d) show their counterparts, g1 ¼ dI1=3=dV1 and ΔS1,
respectively, measured with V1 applied. Both the junction
conductance and current noise show similar bias depend-
ence independently of the choice of the Ohmic contact to
bias, V1=3 or V1, reflecting the Onsager-Casimir reciprocal
relations for the two-terminal transport measurements. The
weak asymmetric behaviors in these plots reflect the self-
gating effect in the ν ¼ 1=3 region by the finite source-
drain bias. Because the self-gating effect is out of the scope
of this study, we symmetrized the g1=3 or ΔS1=3 data by
averaging the values in opposite bias directions to com-
pensate for the asymmetric behaviors and improve the
signal-to-noise ratio [see Figs. 3(a) and 3(b)].
Figures 8(e) and 8(f), respectively, show the sym-

metrized differential conductance dI1=dV1 and ΔS1=3 at
VS ¼ −0.75 V measured with V1 applied. The measured
dI1=dV1 is close to 2e2=3h, directly demonstrating that the
1=3–1 channels have electrical conductance 2e2=3h from
the down side to the up side of the junction. The current
noise ΔS1=3 in Fig. 8(f) is close to that observed by varying
V1=3 [Fig. 3(b)]. Note that the ΔS1=3 values in Fig. 8(f) is
similar to ΔS1 in Fig. 8(d), indicating current conservation
ΔS1=3 ¼ ΔS1 in the present device.

APPENDIX E: TRANSMISSION PROBABILITY
DEPENDENCE OF ΔS1=3

Figure 9 shows the same ΔS1=3 data as those in Fig. 2(d)
plotted as a function of the transmission probability
T ¼ I1=Iin. The experimental data near T ¼ 0 fit well with
the shot-noise curve in the strong-backscattering limit calcu-
lated assuming ΔS1=3 ¼ 2eI1 (blue solid line). This agree-
ment indicates that g andΔS1=3 at−3.4 < VS < −2.4 V are
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FIG. 7. The TMC dependence of raw noise amplitude of the
1=3–1 junction measured at zero bias. The blue curve is a linear
fit to the data at and above TMC ≅ 50 mK. The noise amplitude at
the base temperature indicates Te ≅ 30 mK.
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(f) Symmetrized ΔS1=3 data measured simultaneously with the data in (e).

MASAYUKI HASHISAKA et al. PHYS. REV. X 13, 031024 (2023)

031024-10



well understood in terms of shot-noise generation due to the
Poissonian tunneling events between the ν ¼ 1=3 and 1
channels through discrete levels [42,47].

APPENDIX F: RESULTS FOR WIDE JUNCTIONS

Figure 10 summarizes the measurement results for wider
1=3–1 junctions. Below VS ¼ −0.55 V (indicated by
dashed black lines), the 4.8-μm sample shows zero-bias
electrical-conductance oscillations and finite ΔS1=3 almost
independent of VS, similarly to the 0.6-μm sample [see
Figs. 2(c) and 2(d)]. However, the conductance oscillation
amplitude and the ΔS1=3 value are smaller than those of the
0.6-μm sample, reflecting the 4.8-μm 1=3–1 channels being
in the incoherent transport regime. The 40-μm sample
shows no conductance fluctuations and ΔS1=3 ≅ 0, indicat-
ing that neutral mode is fully attenuated due to more
influential inelastic processes in the longer channels.
Figure 10(c) plots TN for the 4.8-μm sample estimated
from the zero-bias conductance in Fig. 10(a) and the ΔS1=3
data in Fig. 10(b). The data are well below the Tmeso curve
over the entire range of ΔP, showing no approach to the

curve at low bias. The data in Fig. 10(c) and the inset
indicate the energy dissipation from the 4.8-μm 1=3–1
channels even at low bias.

APPENDIX G: ENERGY DISSIPATION
AT HIGH BIAS

Intermode scattering causes the dissipation from the
1=3–1 channels in the incoherent regime. The heat trans-
port through the 2D bulk of QH systems, which scales
proportionally to the cube of temperature, may mediate the
heat outflow from the 1=3–1 junction [3,11,12,60].
In the main text, we calculated Tmeso of the 1=3–1

channels by considering only the heat transfer through the
outgoing ν ¼ 1=3 and 1 channels and compared it with TN
[Fig. 3(c)]. Whereas TN is close to Tmeso at low bias, TN
becomes smaller than Tmeso at high bias, indicating energy
dissipation due to inelastic intermode scattering. To exam-
ine the possible contribution for the dissipation by heat
transport through the bulk, we calculate the effective
temperature Tb by taking the bulk-contribution term into
account using the following equation:

ΔP ¼ π2k2B
3h

ðT2
b − T2

eÞ þ αbðT3
b − T3

eÞ; ðG1Þ

where αb is a fit parameter. Figure 11 compares the
measured ΔP dependence of TN, the same data as those
in Fig. 3(c), with Tb simulated using Eq. (G1) with αb ¼
15 pW=K3 (blue dashed line). The experimental data fit the
Tb curve, suggesting that the heat transport through the 2D
bulk dominantly contributes to the dissipation at high bias.
Note that, in contrast to previous experiments, where the
electron-phonon coupling in a small diffusive metal pro-
motes the phonon contribution [49], heat flow toward the
cold phonon bath can be small in our device with no such
diffusive metal.
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APPENDIX H: ESTIMATION OF THE 1=3�1
CHANNEL LENGTH

We estimated the 1=3–1 channel length L for each Lg
sample from a zero-magnetic-field 2D electron-density
profile near the junction, which we calculated using the
following procedure. (1) We regarded the 2DES in the QW
as a 30-nm-thick metallic plate and designed a plausible in-
plane 2DES shape. (2) We calculated the electron-density
profile induced on the plate by the surface-gate voltages
using a three-dimensional finite-element method. If the
obtained electron-density profile at the 2DES edge is nearly
zero, we consider the designed 2DES shape reasonable for
the given surface-gate voltages. Figure 12(a) shows an
example of the 2DES shape obtained by this method.
(3) We again calculated the electron-density profile using
the 2DES shapewith fine-tuning of VS to find the correct VS
value that gives exactly zero electron density at the 2DES
edge near the constriction [see Fig. 12(b)]. By regarding the

width of the constriction as L, we obtained a set of VS and L
corresponding to each other. We repeated the above pro-
cedure for different L values and obtained several sets of
ðL; VSÞ. Figure 12(c) shows the results for the 0.6-μm
sample, as an example. To attain the VS dependence of L
over the entire range of VS, we fitted the data points of
ðL; VSÞ using the phenomenological functions,

L ¼ þ β

ðVS − V1Þ2 þ γ
; ðH1Þ

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VS − V2

p
; ðH2Þ

where α, β, γ, χ, V1, and V2 are fit parameters. The function
Eq. (H1) is used to fit the data atL ≥ 0.3 μm,while Eq. (H2)
is used at L ≤ 0.3 μm. With these functions, we converted
VS to L and plotted the data as functions of L in Fig. 4.

APPENDIX I: CHARACTERISTIC LENGTHS

Figure 13(a) shows the magnified view of the zero-bias
electrical-conductance fluctuations in Fig. 4(a). We esti-
mated l ≅ 30 nm from the oscillation period of the fluctua-
tions that is presented as the peak in Fig. 13(b). The obtained
l ≅ 30 nm roughly corresponds to the thickness of the
Al0.33Ga0.67As spacer layer (65 nm) of the heterostructure.
One may consider that it is possible to estimate LT from

the zero-bias pinch-off traces of the 1=3–1 junctions
because the ν ¼ 1=3 and 1 channels are decoupled at
L < LT for the direct current [3]. Figures 13(c) and 13(d)
show the L dependence of the zero-bias conductance and
ΔS1=3 at V1=3 ¼ 90 μV, respectively, of Lg ¼ 0.3-, 0.6-,
and 0.9-μm junctions, plotted on a linear scale of L.
Interestingly, these devices show pinch-offs at different
lengths (0.15, 0.3, and 0.5 μm for the Lg ¼ 0.3-, 0.6-, and
0.9-μm junctions, respectively). The junctions show cur-
rent-noise generation due to bias-induced electron
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FIG. 11. ΔP dependence of TN measured for 0.6-μm junction at
several VS values [the same data as in Fig. 3(c)] plotted with the
Tb curve obtained from Eq. (G1) with α ¼ 15 pW=K3 (blue
dashed line).

Split-gate voltage VS (V)

L  
(μ

)

Lg

VS (V)

C
ur

re
nt

 (n
A)

(c)(b)(a)

0
1

1 2 3 4

2
3
4

Position x (μm)

Po
si

tio
n 

y  (μ
m

)

11/3

1
Position x (μm)

Position y (μm)

y = 0

x = 0

0.40.2

El
ec

tro
n 

de
ns

ity
 n

e  (
10

11
cm

-2
)

2

3

2

v = 1/3

v = 1
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(c) Channel length L plotted as a function of VS. Red circles are data points obtained from the finite-element method calculation. Green
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partitioning below these pinch-off lengths, as shown in
Fig. 13(d), corresponding to the conductance behaviors.
These observations suggest that the LT values are different
from each other for these junctions. We consider that the
difference is caused by the variations of the influence from
the negative VS. The larger Lg device shows a pinch-off at
lower VS, and the lower VS promotes the decoupling of the
ν ¼ 1=3 and 1 channels. In the main text, we estimated LT
using Eq. (12), instead of the pinch-off length, to exclude
the complication that may come into play due to the
influence of VS. We note that, however, our conclusion
does not change even if we estimate LT from the pinch-off
traces presented here.
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