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XY* transitions represent one of the simplest examples of unconventional quantum criticality, in which
fractionally charged excitations condense into a superfluid and display novel features that combine
quantum criticality and fractionalization. Nevertheless, their experimental realization is challenging.
Here we propose to study the XY* transition in quantum Hall bilayers at filling ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ where the

exciton condensate (EC) phase plays the role of the superfluid. Supported by exact diagonalization
calculation, we argue that there is a continuous transition between an EC phase at small bilayer separation
to a pair of decoupled fractional quantum Hall states at large separation. The transition is driven by
condensation of a fractional exciton, a bound state of a Laughlin quasiparticle and quasihole, and is in
the XY* universality class. The fractionalization is manifested by unusual properties including a large
anomalous exponent and fractional universal conductivity, which can be conveniently measured through
interlayer tunneling and counterflow transport, respectively. We also show that the edge is likely to realize
the newly predicted extraordinary log boundary criticality. Our work highlights the promise of quantum
Hall bilayers as an ideal platform for exploring exotic bulk and boundary critical behaviors that are
amenable to immediate experimental exploration in dual-gated bilayer systems. The XY* critical theory
can be generalized to a bilayer system with an arbitrary Abelian state in one layer and its particle-hole
partner in the other layer. Therefore, we anticipate many distinct XY* transitions corresponding to the
different Laughlin states and Jain sequences in the single-layer case.
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I. INTRODUCTION

The study of quantum phase transitions and universal
critical behaviors is one of the major focuses in condensed
matter physics [1,2]. Although many quantum critical
points (QCPs) are described by the well-established
Landau-Ginzburg theory, exceptions arise due to fraction-
alization beyond the conventional symmetry-breaking
order. One category is the deconfined quantum critical
points (DQCPs) between two different symmetry-breaking
phases [3]. Another category is phase transitions between

one phase with fractionalization or topological order and
another conventional phase. One simple example is the
XY* transition, initially discussed between a Z2 topologi-
cally ordered insulator (or quantum spin liquid) and a
superfluid (or XY ferromagnetism) phase [4–7]. The
critical theory of such a transition is well understood [4,7],
and its existence in lattice models has been numerically
verified [5,8]. However, experimental observation of the
XY* transition is still elusive. Given that even the unam-
biguous experimental realization of a Z2 spin liquid phase
is a great challenge, and that recent progress in synthetic
quantum systems targets topological order in the absence of
global U(1) symmetry [9–11], the experimental study of an
XY* QCP adjacent to a quantum spin liquid phase remains
challenging for the near future.
Here we turn to quantum Hall systems, where fraction-

alization itself has been well established at fractional
fillings [12]. It is natural to imagine that experimental
realization of a QCP with fractionalization in quantum Hall
systems is easier, though such a possibility has not been

*yzhan566@jhu.edu
†zhuzheng@ucas.ac.cn
‡avishwanath@g.harvard.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 031023 (2023)

2160-3308=23=13(3)=031023(15) 031023-1 Published by the American Physical Society

https://orcid.org/0000-0001-9493-1743
https://orcid.org/0000-0001-7510-9949
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.13.031023&domain=pdf&date_stamp=2023-09-05
https://doi.org/10.1103/PhysRevX.13.031023
https://doi.org/10.1103/PhysRevX.13.031023
https://doi.org/10.1103/PhysRevX.13.031023
https://doi.org/10.1103/PhysRevX.13.031023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


well explored except on plateau transitions [2]. Here we
consider the quantum Hall bilayer system with the electron
gases in two layers separated by an insulating barrier,
giving rise to two separate Landau levels coupled together
through the Coulomb repulsion [13–16]. The fillings in the
two layers ν1, ν2 can be controlled separately. In addition,
one can tune d=lB experimentally to study the possible
phase transitions. Here, d is the distance between the two
layers and lB is the magnetic length. At small d=lB, it is
known that the ground state is an exciton condensation
phase [15–20] for the whole line of ν1 þ ν2 ¼ 1. There
have been many theoretical discussions on other possible
phases at larger d=lB at ðν1; ν2Þ ¼ ð1

2
; 1
2
Þ [21–38].

Recently, the evolution under tuning d=lB was ex-
perimentally investigated for this filling ðν1; ν2Þ ¼ ð1

2
; 1
2
Þ

[39]. There, one finds only a crossover between
the Bose-Einstein-condensation (BEC) regime to the
Bardeen-Cooper-Schrieffer (BCS) regime all within a
single-exciton-condensation (EC) phase. There has been
theoretical discussion of superfluid-to-insulator transition
at ð1=2; 1=2Þ filling [40], but we are not aware of any
experimental observation so far. In contrast, for filling ð1

3
; 2
3
Þ

[or relatedly, ðν1; ν2Þ ¼ ð1
3
;− 1

3
Þ, where by ν < 0 we mean

the system is hole doped relative to the charge neutrality],
a phase transition is bound to happen. At small d=lB, the
ground state is still an exciton condensation phase. In the
large-d=lB limit, the two layers decouple, and the top layer
is in the ν ¼ 1

3
Laughlin state [41], while the bottom layer is

in the ν ¼ − 1
3
(or ν ¼ 2

3
) Laughlin state. This large-d=lB

phase can be viewed as a fractional quantum spin Hall
insulator (FQSH) with a K matrixK ¼ ð3

0
0
−3Þ if we view the

layer as a pseudospin. Given the recent experimental
progress in tuning d=lB at ðν1; ν2Þ ¼ ð1

2
; 1
2
Þ, experimental

measurements at filling ðν1; ν2Þ ¼ ð1
3
;− 1

3
Þ or ðν1; ν2Þ ¼

ð1
3
; 2
3
Þ should be straightforward. Note, while conceptually

one can think of changing the separation d, in experiment
one can tune the ratio d=lB more conveniently by simulta-
neously changing the magnetic field and density to keep the
filling constant. Thus, the transition is well within exper-
imental reach [42]. Actually, there already exists some
experimental evidence of a direct transition between the
exciton superfluid and FQSH phase at filling ðν1; ν2Þ ¼
ð1
3
; 2
3
Þ [43] in a GaAs quantum-well system. However, the

nature of the phase transition is not clear from the existing
experimental data. A previous theoretical work already
studied similar transition in a model with a hard-core
interaction and suggested the transition is in the XY
universality class [44]. Here we provide numerical evidence
for a continuous transition in a realistic model with
Coulomb interactions. More importantly, through a more
careful treatment of the global U(1) symmetry, we point out
that this critical point is actually an XY* transition with the
critical boson carrying a fractional physical charge and thus

not gauge invariant. The physical exciton operator is a
composite operator in the critical theory, an important point
that is overlooked in Ref. [44]. The fractionalized nature of
the transition leads to many experimentally verifiable
physical consequences including a large anomalous scaling
dimension and fractional counterflow conductivity com-
pared to the familiar superfluid-to-Mott transition in the
usual XY class.
We perform exact diagonalization (ED) [45] for the

Coulomb coupled quantum Hall bilayer at filling ðν1; ν2Þ ¼
ð1
3
; 2
3
Þ and find a direct transition between the EC phase

at small d=lB and the FQSH phase at large d=lB. The
transition appears continuous in the finite-size calculation,
suggesting the possibility of a continuous QCP. Motivated
by the numerical calculation, we propose a critical theory
between the EC and FQSH phases in the universality class
of XY* transition. Starting from the FQSH phase, the
Laughlin electron and Laughlin hole in the two layers bind
to form a fractional exciton, with bosonic statistics whose
condensation then confines all the anyons and leads to the
EC phase at small d=lB. The critical theory is described by
the superfluid-to-insulator transition of the fractional exci-
ton, which carries an exciton charge 1=3 compared to the
ordinary exciton. We also discuss the realization of an
extraordinary boundary criticality [46] in the edge at this
QCP. The XY* transition here can be easily generalized to
the case with an arbitrary Abelian FQHE phase in one layer
and its particle-hole partner in the other layer. Thus, we
anticipate many different XY* transitions in the ðD; d=lBÞ
parameter space, where D is the displacement field to tune
the exciton density.

II. MODEL AND SYMMETRY

We consider the quantum Hall bilayer at filling ðν1; ν2Þ ¼
ðx;−xÞ illustrated in Fig. 1. Here, νa ¼ ðNe=NΦÞ, whereNΦ
is the number of the magnetic flux in the system. ν2 ¼ −x

FIG. 1. (a) Illustration of quantum Hall bilayer, with an
insulating layer (blue) in between the two 2DEGs. (b) Schematic
phase diagram in terms of ðD; dÞ while fixing ν1 þ ν2 ¼ 0. The
displacement field D is the chemical potential for excitons. The
distance d tunes interlayer Coulomb interaction strength. We are
interested in the quantum phase transition (indicated by the blue
arrow) tuned by d at fixed exciton density ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ. SF

denotes the exciton condensation phase with hc†1c2i ≠ 0, and
FQSH denotes the fractional quantum spin Hall insulator formed
by two decoupled Laughlin states with opposite chiralities.
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means that the system is hole doped with hole density at x
per flux.We are mainly focused on x ¼ 1

3
, but similar physics

can happen for other rational x with an incompressible
Abelian FQHE state in the decoupling limit. x here is the
exciton density and can be tuned through the displacement
fieldD, while the total filling ν1 þ ν2 is fixed to be 0. Up to a
stacking of an integer quantum Hall state at layer 2, it is
also equivalent to consider the filling ðν1; ν2Þ ¼ ðx; 1 − xÞ
with ν1 þ ν2 ¼ 1. Thus, we also consider the filling
ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ.

We have the Hamiltonian

H ¼ 1

2

X
a;b¼1;2

VabðqÞ∶ ρaðqÞρbð−qÞ∶; ð1Þ

where ρaðqÞ ¼
R
d2qρaðrÞe−iq·r, and ρaðrÞ is the charge

density at layer a projected to the lowest Landau level. We
have the Coulomb interaction V11ðqÞ ¼ V22ðqÞ ¼ ðe2=εqÞ
and V12ðqÞ ¼ V21ðqÞ ¼ ðe2=εqÞe−qd. d represents the
distance between two layers in the unit of magnetic length
lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

.
The Hamiltonian considered above has an antiunitary

symmetry MCT for the quantum Hall bilayer at filling
ðν1; ν2Þ ¼ ðx;−xÞ. The symmetry is a combination of layer
exchange symmetry M, charge conjugation C, and time
reversal T . We define electron operators in layers 1 and 2
as c1ðrÞ and c2ðrÞ. The symmetry MCT acts as c1ðrÞ →
c†2ðrÞ; c2ðrÞ → c†1ðrÞ combined with complex conjugate K.
Under MCT , we have ρ1ðrÞ → −ρ2ðrÞ and ρ1ðqÞ →
−ρ2ð−qÞ. One can check that the Hamiltonian satisfies
this symmetry. TheMCT can be weakly broken due to the
asymmetry of the two layers such as different interaction
strengths. We discuss the effect of weak MCT symmetry
breaking later.

III. PHASE DIAGRAM

We fix the filling to be ðν1; ν2Þ ¼ ð1
3
; 2
3
Þ and study the

phase diagram of tuning d=lB through ED. At small d=lB,
the system is in an exciton condensation phase with an
order parameter hc†1c2i ≠ 0. Here, c1, c2 are annihilation
operators of electrons in layers 1 and 2, respectively. At
large d=lB, the two layers decouple, and we have a FQSH
phase (up to stacking an integer quantum Hall state at
layer 2) if viewing layers 1 and 2 as spin up and spin down.
The question is whether there is a direct phase transition or
an intermediate phase in between.
Figure 2(a) shows the flow of low-lying energies with

layer distance d=lB. For simplicity, we set lB ¼ 1 in the
following discussion. We use a torus geometry and the
Landau gauge. The evolution of energy spectra indicates
a direct transition at dc ≈ 1.7. When d > dc, we can
identify a ninefold near degeneracy expected for decoupled
ν ¼ �1=3 Laughlin states in the two layers. When
approaching dc from large d, the topological order indi-
cated by the ground-state degeneracy disappears at dc.
The phase at d < dc is an exciton superfluid with order

parameter hSyðrÞi≠0, where SyðrÞ¼ i(c†1ðrÞc2ðrÞ−H:c:).
In the lowest Landau level, we have operators c1;m and c2;m
where m is the Landau index and labels the position
along the x direction in our gauge. So we can define
Sym ¼ iðc†1;mc2;m − H:c:Þ, wherem ¼ 1; 2;…; NΦ. Then we
calculate the correlation function hSyi Syjiwhich is a function
of ji − jj. In the inset of Fig. 2(b), we show that hSyi Syji is
almost a constant with ji − jj at small d, but decays fast at
large d. In particular, we can use hSyi SyiþNΦ=2

i to character-
ize the exciton condensation. In Fig. 2(b), it is clear that
hSyi SyiþNΦ=2

i is nonzero at d < dc and almost vanishes
at d > dc. When approaching dc from small d, the
exciton condensation order parameter disappears smoothly
across dc.
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FIG. 2. (a) The low-lying energy spectra as a function of the layer distance d=lB for the filling ðν1; ν2Þ ¼ ð1
3
;− 1

3
Þ. Here we

show only the inequivalent momentum sectors. There are ninefold degenerate states at larger d=lB. (b) The correlator hSyi SyiþNϕ=2
i

versus layer distances d=lB. The inset shows hSyi Syji as a function of the orbital distance ji − jj. Here, i; j ¼ 1;…; Nϕ are orbital
indices and the corresponding distance is ji − jjL=Nϕ. From top to bottom, d=lB ranges from 0 to 2.4 with interval 0.4. (c) The
fidelity Fðd;ΔdÞ as a function of the layer distances d=lB taking different intervals of parameters Δd=lB. Note that with decreased
Δd the dip is weakened.
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To further probe the nature of the transition at dc, we
compute the ground-state fidelity, which is defined by the
wave-function overlap between the ground state at d − Δd
and d, i.e., Fðd;ΔdÞ ¼ jhΨðd − ΔdÞjΨðdÞij. The fidelity
has been shown to be a good indicator to distinguish the
continuous transition from the first-order transition for
both symmetry-breaking and topological phase transitions
[47,48]. As shown in Fig. 2(c), the ground-state fidelity
displays a single weak dip at the critical distance dc instead
of showing a sudden jump. Meanwhile, the dip is further
weakened with the decrease of Δd. Thus, the numerical
evidence indicates the transition might be continuous,
though one cannot rule out a weak first-order transition
in a finite-size calculation. In the following, we propose a
critical theory for this QCP in the universality class of XY*.
The XY* transition is well established to be continuous
in other contexts, which further supports the continuous
transition scenario of the QCP at dc from the theoreti-
cal side.

IV. FIELD THEORY OF AN XY* TRANSITION

We turn to the filling ðν1; ν2Þ ¼ ð1
3
;− 1

3
Þ for simplicity.

The FQSH phase at the large-d limit is described by the
following effective field theory:

L¼ −
3

4π
a1da1 þ

3

4π
a2da2 þ

1

2π
A1da1 −

1

2π
A2da2; ð2Þ

where adb is an abbreviation of ϵμνσaμ∂νbσ . Here, a1;μ and
a2;μ are emergent dynamical gauge fields, while A1;μ

and A2;μ are probe fields of the two layers. For example,

E⃗a ¼ −∇!Aa;0 − ð∂A⃗a=∂tÞ is the electric field applied to

layer a. Note in the experiment, one can apply E⃗1 and E⃗2

separately and measure currents in a layer-resolved fashion.
We then define physical charge ðQ1; Q2Þ under ðA1; A2Þ.
We can also label anyon excitations in terms of their
charges l ¼ ðl1; l2Þ under ða1; a2Þ. The physical charge
of the anyon l is ðQ1; Q2Þ ¼ ð1

3
l1;

1
3
l2Þ. Its statistics is

θ ¼ ðl21 − l22=3Þπ. We also make a basis change to
define Ac;μ ¼ ðA1;μ þ A2;μ=2Þ and As;μ ¼ A1;μ − A2;μ. The
corresponding charge is Qc ¼ Q1 þQ2, and Qs ¼
ðQ1 −Q2=2Þ. Qs is the layer pseudospin viewed as a
spin 1=2, Sz.
The elementary anyon is l ¼ ð�1; 0Þ and l ¼ ð0;�1Þ

with charge �1=3 at each layer. When we decrease d, the
interlayer Coulomb interaction increases. Then an anyon
with charge 1=3 at layer 1 tends to bind with an anyon with
charge −1=3 at layer 2 into an exciton. When d is further
decreased, the binding energy increases, and this exciton of
anyon can condense and lead to the exciton condensation
phase at small d. This fractional exciton is labeled by
l ¼ ð1;−1Þ with physical charge ðQ1; Q2Þ ¼ ð1

3
;− 1

3
Þ or

Qc ¼ 0; Qs ¼ 1
3
. We label the creation operator of this

fractional exciton as φ†. The condensation of φ is captured
by the following critical theory (see the Appendix for
derivation):

Lc ¼
����
�
∂μ − i

1

3
As;μ

�
φ

����
2

− sjφj2 − gjφj4 þ 1

6π
AcdAs: ð3Þ

When s < 0, this is a superfluid phase of As. When
s > 0, we have the correct response of ð1=6πÞAcdAs for the
FQSH phase. In principle, φ is also coupled to a gauge
field, which, however, does not affect the critical properties
we discuss here due to a Chern-Simons term (see the
Appendix). Note further that tuning the transition at fixed
layer density eliminates the single-time-derivative chemical
potential term φ�i∂tφ. Note that this is unrelated to the
MCT symmetry which maps φ to −φ. We need to fine-
tune to the tip of the parabola in Fig. 1 to get a critical
theory with dynamical exponent z ¼ 1, a feature shared
with the familiar Bose-Hubbard model. Fortunately, we see
that control over gate voltages makes this tuning feasible.
φ may feel a background flux dAsðrÞ ¼ B1ðrÞ − B2ðrÞ,
where BaðrÞ is the magnetic field in the layer a ¼ 1, 2
along the z direction. In real experiments, we expect
B1ðrÞ ¼ B2ðrÞ given the small interlayer distance d.
Therefore, we conclude that φ does not feel any
background magnetic flux. It is then clear that the critical
theory is the usual “relativistic” XY transition driven by the
condensation of a boson which carries charge 1=3 under As.
A counterintuitive feature that is shared with other XY*
transitions is that despite the condensation of a fractionally
charged boson, the superfluid itself is conventional. One
can readily check that the only gauge-invariant order
parameter is the usual one for integer charge, and all
anyons are confined. Alternatively, one can show the vortex
quantization is the conventional one despite the fractional
charge, as a result of attaching an anyon to the fundamental
vortex [49].
One can also describe the transition using a vortex

field through the familiar particle-vortex duality. In the
Appendix, we derive the dual theory to be

L ¼ jð∂μ − i3aμÞφ̃j2 − rjφ̃j2 − g̃jφ̃j4

þ 1

e2
fμνfμν þ

1

2π
Asdaþ 1

6π
AsdAc; ð4Þ

where φ̃ is the vortex field of the superfluid phase and aμ
is an internal U(1) gauge field with fμν ¼ ∂μaν − ∂νaμ as
its flux. One important distinction from the theory
derived in Ref. [44] is that the critical vortex field φ̃
carries charge 3 under the U(1) gauge field a in our
theory, while the charge is 1 in Ref. [44]. Note this factor
of 3 cannot be removed by a naive redefinition aμ → 1

3
aμ,

which will lead to a fractional mutual Chern-Simons term
ð1=6πÞAsda. Here we always fix the coefficient of the
mutual Chern-Simons term so that the monopole operator

ZHANG, ZHU, and VISHWANATH PHYS. REV. X 13, 031023 (2023)

031023-4



of aμ carries charge 1 under As and can be identified as the
elementary physical exciton operator. As a result, φ̃ sees
the physical exciton (monopole of a) as a 6π flux and
needs to be identified as a triple vortex instead of an
elementary vortex in the superfluid phase. In contrast to
Ref. [44], our treatment includes the probe field As which
allows us to carefully treat charge quantization and note
this important point. In the dual viewpoint, starting from
the superfluid phase, the triple vortex becomes gapless
and condenses, leading to a fractional insulator. However,
the elementary vortex of the superfluid phase remains
gapped across the QCP and becomes the anyon in the
FQSH phase.

V. EXPERIMENTAL SIGNATURES

We then move to the possible experimental signatures of
this unusual QCP. In terms of φ, Eq. (3) is the standard
critical theory for the XY transition describing interaction
tuned superfluid to Mott insulator transition. The critical
exponents for thermodynamic quantities are the same as the
XY transition. However, the critical boson φ here is a
nonlocal field and does not correspond to the microscopic
order parameter. Hence, the transition is usually called XY*
to highlight its difference from the conventional XY
transition, which will be manifested in exciton correlation
functions and conductivity.

A. Exciton correlation function

First, at the QCP, the critical boson has a power-law
correlation function: hφ†ðxÞφðyÞi ∼ ð1=jx − yj1þηÞ with
η ≈ 0.038. However, the fractional exciton order φ is not
measurable. The physical order parameter is the conven-
tional exciton operatorΦ†¼c†1c2. It is a composite operator
in the critical theory: Φ ¼ φ3 and its correlation function
has a large decaying exponent hΦ†ðxÞΦðyÞi ∼ ð1=jx −
yj1þη� Þ with η� ≈ 3.2 estimated from the scaling dimension
of the φ3 mode of the 3D XY universality class [50]. The
same exponent appears in the correlation function along
the time direction, which leads to hΦ†ðr;ωÞΦðr;−ωÞi ∼
ωη� at position r.
Interestingly, this exponent can be measured through a

local interlayer tunneling experiment at position r.
Considering a local tunneling term H0 ¼Γ

R
d2rδðrÞ×

c†1ðrÞc2ðrÞþH:c:, linear response theory derives I ¼
2eΓ2ImχRðω ¼ eV; rÞ with I and V as the current and
voltage in the z direction. χRðω; rÞ is the Fourier trans-
formation of χRðt; rÞ ¼ −iθðtÞh½Φ†ðr; tÞ;Φðr; 0Þ�i in the
time direction [51]. So we expect that ðdI=dVÞ ∼ Vη�−1 ≈
V2.2 and is nonlinear to V at zero temperature at d ¼ dc. On
the other hand, when d < dc, we expect dI=dV to have a
zero bias peak [52], and when d > dc, it should have a
threshold gap. A nonlinear I-V curve is expected at the
edge of the FQHE phase with fractional charge [51]. Here

we offer an example of the bulk tunneling at the QCP,
and the large exponent η� is a manifestation of the fractional
charge carried by the critical boson. Sometimes it is
more convenient to measure a global tunneling [53] from
the term H0 ¼ Γ

R
d2rc†1ðrÞc2ðrÞ þ H:c: In this case, we

expect I ¼ 2eΓ2ImχRðω ¼ eV;q ¼ 0Þ [54,55]. We have
ðdI=dVÞ ∼ Vη�−3 ≈ V0.2 at the critical point.

B. Universal conductivity

The XY criticality is known to exhibit a universal
conductivity. For our system, we define a 4 × 4 conduc-
tivity tensor in the direct-current limit as σ ¼ ð σxx

−σxy
σxy
σxx
Þ,

where σxx and σxy are both a symmetric 2 × 2 matrix in
layer space. σxx;ab ¼ ðJx;a=Ex;bÞ, where a, b ¼ 1, 2 labels
the two layers and σxy;ab is defined similarly.
From Eq. (3), we get the longitudinal conductivity tensor

at the QCP to be

σxx ¼
σb
9

e2

h

�
1 −1
−1 1

�
; ð5Þ

where σb is the universal conductivity for the ordinary XY
transition, a number of order one in units of e2=h. The
factor of 1

9
is because the critical boson carries only 1=3 of

the ordinary exciton. Thus, the conductivity at this XY*
transition is of order approximately 0.1ðe2=hÞ. Further,
σxy is purely from the background Chern-Simons term in
Eq. (3). For the filling ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ, we have σxy¼

ð13
0
0
−1
3
Þðe2=hÞ. For ðν1;ν2Þ¼ð1

3
;2
3
Þ, we have σxy¼ð13

0
0
2
3
Þðe2=hÞ.

The inverse of σ gives the resistivity tensor ρ ¼ ðρxxρyx

−ρyx
ρxx

Þ.
For ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ, we have ρxx ¼ ðh=e2Þσbð11 11Þ and

ρyx ¼ ðh=e2Þð3
0

0
−3Þ. For ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ, we have ρxx ¼

ðh=e2Þð1=4þ σ2bÞð 4σb
−2σb

−2σb
σb

Þ and ρyx ¼ ðh=e2Þð1=4þ σ2bÞ×
ð12þσ2b

σ2b

σ2b
6þσ2b

Þ.
The above discussion is exactly at the QCP and zero

temperature. In practice, the experiments are always
at finite temperature, and one expects critical scaling
ρðT; δÞ ¼ FðT=δνzÞ, where F is a universal function and
δ ¼ d − dc is the deviation from the critical point.
We have z ¼ 1 and ν ≈ 0.67 as the known critical
exponents for the XY transition. From collapsing the
data of ðT; d − dcÞ, one can extrapolate the exponent νz
and the universal conductivity. Such a scaling has
been performed for the superconductor-to-insulator
transitions [8,56–60].

VI. EXTRAORDINARY LOG BOUNDARY
CRITICALITY

For the FQSH phase at d > dc, there are helical edge
modes. At d < dc, the helical edge modes will be gapped
out by the long-range exciton order. Here let us decide the
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fate of these edge modes at the critical point. The edge
theory of the FQSH phase is

S0 ¼
Z

dtdx
1

2πυ̃Fλ
½ð∂tθ̃Þ2 − υ̃2Fð∂xθ̃Þ2�; ð6Þ

where θ̃ represents the helical edge modes of the FQSH
phase. Here, eiθ̃ creates a fractional exciton with charge 1=3
under As at the edge. λ ¼ 4

3
in the decoupling limit and

becomes smaller when including interlayer repulsing at
finite d, so we have λ < 4

3
. At the QCP, it is further coupled

to the bulk critical boson through

Sboundary ¼ S0 − s
Z

dxdtðeiθ̃φ� þ e−iθ̃φÞ: ð7Þ

We assume the antiunitary layer exchange symmetry
MCT to guarantee that eiθ̃ carries zero momentum.
Without the MCT symmetry, the above term is absent
due to momentum mismatch and disorder needs to be
involved, which we leave to future analysis.
The scaling dimension of the coupling s is ½s� ¼

2 − Δφ − 1
4
λ ≈ 0.78 − 1

4
λ > 0, where we use Δϕ ¼ 1.22

as the boundary scaling dimension of the order parameter,
so the coupling is relevant and flows to infinity (see the
Appendix). It is thus very likely that it flows to the
extraordinary-log-boundary critical point [46] recently
proposed for the 3D XY transition. At this fixed point,
the exciton order is almost long-range ordered at the edge:
hΦ†ðxÞΦðyÞi ∼ ½1= logðjx − yjÞq̃�. This is in contrast to the
large power-law decaying exponent for the correlation
function in the bulk, manifested in the interlayer tunneling
I-V curves as illustrated in Fig. 3(a). Besides, the exciton
transport at the edge is still superfluidlike with an infinite
conductance G ¼ ð1=9λÞ [61], which should be infinite at

zero temperature, dramatically different from the metallic
bulk transport. As a result, transport measurements in Hall
bar geometry with edge and in the Corbino geometry
without edge are very different at the QCP. The flow of 1=λ
to zero is only logarithmic, so at finite temperature we
expect G ∼ logð1=TÞ, which may be tested in experiment.
So far, we have focused on the filling ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ.

For the filling ðν1; ν2Þ ¼ ð1
3
; 2
3
Þ, the bulk behavior is

exactly the same. But there is an additional edge mode
from the integer quantum Hall effect. At the clean sample
or weak disorder regime, this integer quantum Hall
edge model cannot be hybridized with the FQSH edge
modes and can be ignored. Thus, we expect the same
extraordinary critical behavior. For example, at filling
ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ, we show that ρyx11 and ρyx21 in the bulk are

at certain fractional values depending on the universal
conductivity σb. However, because of the extraordinary
boundary behavior, we expect ρyx11 ¼ ρyx21 ¼ 1 in the Hall
bar measurement, as illustrated in Fig. 3(b). The dis-
tinction between edge and bulk transport can be a direct
verification of the proposed extraordinary boundary
criticality. If there is strong disorder, then the two edge
modes in layer 2 may be coupled together and flow to the
Kane-Fisher-Polchinski fixed point [62] for the filling
ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ. If this happens, we expect the coupling

of the bulk exciton order parameter to the edge to be
irrelevant, and we have an ordinary boundary critical
behavior [46]. It is interesting to study the transition
between extraordinary boundary criticality and the ordi-
nary boundary criticality tuned by the disorder strength,
which we leave to future work.

VII. XY* TRANSITION FOR GENERAL
ABELIAN STATES

In the previous sections we focus on the filling
ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ. Here we point out that the XY* tran-

sition exists for any rational filling ðν1; ν2Þ ¼ ðx;−xÞ as
long as there is an Abelian FQHE phase at the filling x.
Let us consider a bilayer with an arbitrary Abelian FQHE

state in one layer and its particle-hole partner in the other
layer.We still have theMCT symmetry. AnyAbelian FQHE
phase can be captured by a K matrix with dimension N.
The low-energy theory in the decoupled limit is

L ¼ −
1

4π
aT1Kda1 þ

1

4π
aT2Kda2

þ 1

2π
A1qTda1 −

1

2π
A2qTda2; ð8Þ

whereK is anN × N matrix. q is anN × 1 vector. Similarly,
a1; a2 are emergent U(1) gauge fields with N components in
the two layers. As before, A1, A2 are probe fields in the two
layers with only one component. An Abelian FQHE phase is

FIG. 3. (a) Illustration of the different behaviors of interlayer
tunneling I-V curves between the bulk and edge at the critical
point. (b) Hall resistivity Rxy

11 and Rxy
21 (in units of h=e2) in the

Hall bar geometry as tuning the distance d for the filling
ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ. At dc, because of the extraordinary boundary

criticality, the exciton still behaves like a superfluid at the edge,
which guarantees that Ryx

11 ¼ Ryx
12 ¼ 1. This is very different from

the bulk values Ryx
11 ¼ ð12þ σ2b=4þ σ2bÞ and Ryx

12 ¼ ðσ2b=4þ σ2bÞ
at the QCP, which are at intermediate values between the d < dc
and d > dc phases.
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specified by K and q. The analysis below applies to any
Abelian FQHE phase.
The MCT transforms in the following way: ½a01ðt; rÞ;

a⃗1ðt; rÞ� → ½−a02ð−t; rÞ; a⃗2ð−t; rÞ�, ½A0
1ðt; rÞ; A⃗1ðt; rÞ� →

½−A0
2ð−t; rÞ; A⃗2ð−t; rÞ�.

Then we redefine Ac ¼ 1
2
ðA1 þ A2Þ; As ¼ A1 − A2,

ac ¼ a1 þ a2, as ¼ a1 − a2, the action for the decoupled
phase is

L ¼ −
1

4π
aT1Kda1 þ

1

4π
aT2Kda2

þ 1

2π
AcqTdas þ

1

4π
AsqTdac: ð9Þ

Suppose the lowest charged excitation at each layer is
generated by the vector l0. Then, l ¼ ðl0;−l0ÞT generates a
boson with Qc ¼ 0 and Qs ¼ qTK−1l0. Let us label this
boson as φ, then the critical theory is

L ¼ jð∂μ − ilT0 (a1;μ − a2;μÞ)φj2 − sjφj2 − gjφj4

−
1

4π
aT1Kda1 þ

1

4π
aT2Kda2

þ 1

2π
AcqTdas þ

1

4π
AsqTdac; ð10Þ

which can be rewritten as

L ¼ j½∂μ − ilT0as;μÞ�φj2 − sjφj2 − gjφj4

−
1

4π
aTcKdas þ

1

2π
AcqTdas þ

1

4π
AsqTdac: ð11Þ

With the assumption that det K ≠ 0, we can integrate ac,
which locks as ¼ K−1qAs. Then the final critical theory is

L¼j½∂μ− iQsAs;μÞ�φj2−sjφj2−gjφj4þσcsxy
2π

AcdAs; ð12Þ

where Qs ¼ qTK−1l0. σcsxy ¼ qTK−1q.
The above action clearly describes an XY* transition with

a condensation of a fractional exciton of exciton charge
Qs ¼ qTK−1l0. Similar to our discussion for ðν1; ν2Þ ¼
ð1
3
;− 1

3
Þ, there is a fractional counterflow conductivity:

σxx ¼ Q2
sσb

e2

h

�
1 1

1 1

�
; ð13Þ

where σb is again the universal conductivity of the usual
XY transition.
One simple example is ðν1; ν2Þ ¼ ð1

5
;− 1

5
Þ. Then the K

matrix is one dimensional with K ¼ 5, l ¼ 1, q ¼ 1. We
simply reach that Qs ¼ 1

5
, indicating a fractional exciton

with 1=5 exciton charge at the XY* transition. A more
nontrivial example is to consider ðν1; ν2Þ ¼ ð2

5
;− 2

5
Þ, or

equivalently, ð2
5
; 3
5
Þ. Now in the decoupled phase, we should

use K ¼ ð3
1
1
2
Þ and q ¼ ð1; 0ÞT . The smallest charged anyon

is generated by l0 ¼ ð1; 1ÞT, with charge 1=5 and statistics
3
5
π. In the bilayer setup, l ¼ ðl0;−l0ÞT generates a bosonic

fractional exciton with charge Qs ¼ 1
5
. Again, we expect an

XY* transition with Qs ¼ 1
5
. In both of these cases, the

universal counterflow conductivity is 1
25
σbe2=h. The physi-

cal exciton order parameter is Φ ¼ φ5 and should have an
even larger anomalous scaling dimension than the ðν1; ν2Þ ¼
ð1
3
; 2
3
Þ case. For this case, a finite interlayer tunneling destroys

the superfluid phase, but the XY* QCP is stable because
−φ5 − H:c: is known to be irrelevant for the XY transition.
In contrast, for the filling ðν1; ν2Þ ¼ ð1

3
; 2
3
Þ, an interlayer

tunneling term acts as −φ3 − H:c: at low energy and drives
the QCP to be a first-order transition.
One piece of direct evidence of the fractional exciton in

the XY* transition is a fractional universal conductivity.
However, this requires the value of σb, the universal
conductivity of the ordinary XY transition. Unfortunately,
there is no measurement or well-established prediction of the
universal conductivity σb so far despite some theoretical and
numerical calculations [63,64]. However, in a quantum
Hall bilayer we can find XY* transitions at different fillings
ðx;−xÞ to independently measure both σb and Qs. For
example, there is an XY* transition at filling ðν1; ν2Þ ¼
ð1
3
;− 1

3
Þ with Qs ¼ 1

3
, and another XY* transition at filling

ðν1; ν2Þ ¼ ð2
5
;− 2

5
ÞwithQs ¼ 1

5
. A clear prediction is that the

ratio of the universal counterflow conductivity at the QCP
of these two fillings should be 25

9
. There should be many

different XY* transitions corresponding to different rational
fillings x ¼ ðm=2pm� 1Þwith the charge of the elementary
anyon known from well-established theory; thus, one can
even do scaling between the counterflow conductivity at the
QCP and the expected value ofQs to test the picture that the
critical exciton boson is formed by a pair of anyons.

VIII. DISCUSSION

Here we discuss the implications of asymmetry in the
layer space, disorder, and interlayer tunneling which are
neglected in our analysis of the ideal model.
First, the MCT symmetry can be weakly broken by

asymmetry in the two layers. For example, different gate
differences can lead to different intralayer interaction
strengths. However, the stability of the XY* transition
does not really need theMCT symmetry, which maps φ to
−φ in our critical theory. The relativistic nature of our
theory relies on an emergent particle-hole symmetry
φ → φ†, which is due to the absence of the iφ�

∂tφ term.
This is purely from fine-tuning to the tip of the parabola
phase boundary in Fig. 1 and does not rely on the MCT
symmetry. The only worry we have is the asymmetry of the
magnetic fields in the two layers which can lead to an
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effective background flux for φ. However, we expect
that the difference of the magnetic field between the
two layers is negligible in experiments given a small
interlayer distance d. Actually, if we assume the magnetic
field is always along the z direction in the experimental

setup, then the familiar Gauss law ∇⃗ ·BðrÞ ¼ 0 leads to
B1ðrÞ − B2ðrÞ ¼ 0. Hence, we do not need to worry about
the effective flux of the critical boson φ. We conclude that
the XY* transition is stable to other MCT asymmetries
unless there is a gradient of magnetic field between the two
layers. However, it is important to tune the transition at
fixed exciton density. Away from this fine-tuning point, the
chemical-potential-induced transition is nonrelativistic as
in the familiar boson Hubbard model. Fortunately, it is easy
to tune both the interlayer distance d=lB and exciton
chemical potential D (see Fig. 1) in the experiment, so
there is no obstacle to tune to the XY* transition.
As for disorder, it is known that the XY transition is

unstable to disorder and must flow to a new fixed point with
different exponents with possibly a Bose glass phase in
between [65,66]. It is natural to conjecture that with
disorder our XY* critical point flows to a disordered
version of an XY* fixed point. Theoretical analysis of
such a fixed point is challenging and left to future work.
Then we turn to interlayer tunneling. Obviously, it will

destroy the superfluid phase because now the U(1) sym-
metry corresponding to the layer pseudospin Sz rotation is
explicitly broken. However, the XY* critical point can be
stable depending on the filling. For ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ, the

interlayer tunneling introduces a term λφ3 þ H:c:, which is
known to be relevant and will drive the transition to be first
order. In contrast, for filling ðν1; ν2Þ ¼ ð1

5
;− 1

5
Þ, the pres-

ence of weak interlayer tunneling is expected to introduce a
ðλφ5 þ H:c:Þ anisotropy which is expected to be danger-
ously irrelevant [67]. Hence, the XY* critical point remains
stable, though now it is between a FQSH phase and a trivial
insulator without any symmetry breaking.

IX. SUMMARY

In conclusion, we propose a route to accessing the XY*
QCP by tuning magnetic field (and hence, the d=lB ratio)
while keeping the filling fixed at ðν1; ν2Þ ¼ ð1

3
;− 1

3
Þ or

ðν1; ν2Þ ¼ ð1
3
; 2
3
Þ in a quantum Hall bilayer. At such a QCP,

two anyons from the FQSH phase in the d > dc side form a
fractional exciton and condense, leading to the exciton
condensation phase in the d < dc side. The fractional
charge of the exciton is manifested in the large anomalous
exponent of the exciton correlation function and a 1=9
factor in the universal conductivity. We also argue that the
edge at this XY* transition shows extraordinary boundary
criticality behavior. At criticality, the exciton behaves like a
superfluid at the edge despite it showing metallic transport
in the bulk. The relation between anyons in the topological
phase and vorticity on the ordered side has led to the

proposal of interesting “memory” effects in other
contexts [68] which can also be explored here. These
directions will be worth exploring in the future. In
summary, our work suggests a new approach to studying
exotic quantum phase transitions with fractionalization and
unusual boundary critical behaviors in the highly tunable
quantum Hall bilayer systems.
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APPENDIX A: NUMERICAL DETAILS

We consider νT ¼ 1=3þ 2=3 quantum Hall bilayers
subject to a perpendicular magnetic field on a torus,
which is spanned by length vectors Lx and Ly , and thus,
the orbital number (or flux number) in each layer Nϕ is
determined by the area of the torus, i.e.,

jLx ×Lyj ¼ 2πNϕ: ðA1Þ

Here, the magnetic length lB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p ≡ 1 (the unit of
length). We choose the Landau gauge A ¼ ðBy; 0; 0Þ
and consider the torus with aspect ratio to be 1. The
single-particle wave functions in the lowest Landau level as
basis reads

ψkðx; yÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
Lx

ffiffiffi
π

pp Xþ∞

n¼−∞
e½iðkþnLyÞx−ðyþnLyþkÞ2=2�; ðA2Þ

where k≡ 2πj=Lx with j ¼ 0; 1;…; Nϕ − 1 due to the
periodical boundary condition along the x direction. The
single-particle states ψk are centered at y ¼ −k with a
distance 2π=Lx apart along the y direction, while they are
extended in the x direction. Then, the Nϕ states can be
mapped into a one-dimensional (1D) lattice with each site
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representing a single-particle orbital ψk. One can then
perform numerical simulation on such a 1D lattice in
momentum space with the number of sites equal to the
number of orbitals. The relationship between the area of the
torus and the size of 1D lattice is determined by Eq. (A1).
In order to realize the numerical diagonalization on a larger
system size, one needs to reduce the dimension of the
Hamiltonian block by taking advantage of magnetic trans-
lational symmetries along the x and/or y directions. The
symmetry analysis was first provided by Haldane [45] with
introducing two translation operators Tα (α ¼ 1, 2) with
eigenvalues e2πiKλ=Nϕ (λ ¼ x, y and Kλ ¼ 0;…; Nϕ − 1).
T1 corresponds to the magnetic translation in the x

direction, where Kx ¼
PNϕ−1

k¼0 knk (mod Nϕ) is the total
momentum (in the unit of 2π=Lx) of electrons taken
modulo Nϕ. T2 translates the entire lattice configuration
one step Ly=Nϕ ¼ 2π=Lx to the right along the y direction.
Taking advantage of one or both symmetries, one can
numerically diagonalize the Hamiltonian efficiently.
Different from the sphere geometry, there is no orbital
number shift on the torus, and the states are uniquely
determined by their filling factor.
In the present work, we consider the physical systems

with two identical 2D layers (with zero width) in the
absence of electron interlayer tunneling while spins of

electrons are fully polarized due to strong magnetic fields.
Such a system can be described by the projected
Coulomb interaction,

V ¼ 1

Nϕ

X
i<j;α;β

X
q;q≠0

VαβðqÞe−
q2

2 L2
n

�
q2

2

�
eiq·ðRα;i−Rβ;jÞ: ðA3Þ

Here, αðβÞ ¼ 1, 2 denote two layers or, equivalently, two

components of a pseudospin-1=2. q ¼ jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
,

V11ðqÞ ¼ V22ðqÞ ¼ e2=ðεqÞ, and V12ðqÞ ¼ V21ðqÞ ¼
e2=ðεqÞe−qd are the Fourier transformations of the intra-
layer and interlayer Coulomb interactions, respectively. d
represents the distance between two layers in the unit of
magnetic length lB. LnðxÞ is the Laguerre polynomial with
Landau-level index n, and Rα;i is the guiding center
coordinate of the ith electron in layer α. Here we consider
rectangular unit cells with Lx ¼ Ly ¼ L and set magnetic

length lB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=eB

p
as the unit of length and e2=εlB as the

unit of energy. Numerically, one needs to use the second-
quantization form

V ¼
X

j1j2j3j4

Vαβ
j1j2j3j4

c†j1c
†
j2
cj3cj4 ; ðA4Þ

with

Vαβ
j1j2j3j4

¼ δ0j1þj2;j3þj4

1

4πNϕ

X
q;q≠0

δ0j1−j4;qyLy=2πVαβðqÞ exp ½−q2=2 − iðj1 − j3ÞqxLx=Nϕ�L2
n¼0½−q2=2�: ðA5Þ

Here, the Kronecker delta with the prime means that the
equation is defined moduloNϕ. We also consider a uniform
and positive background charge so that the Coulomb
interaction at q ¼ 0 is canceled out.

APPENDIX B: SYMMETRY OF THE MODEL

In this appendix, we point out a symmetryMCT for the
quantum Hall bilayer at filling ðν1; ν2Þ ¼ ðx;−xÞ. Here,

νa ¼ ðNe=NΦÞ, where NΦ is the number of the magnetic
flux in the system. ν2 < 0 means that the system is hole
doped with hole density at x per flux. We are mainly
interested in the x ¼ 1=3 point.
We define the electron operators in layers 1 and 2 as

c1ðrÞ and c2ðrÞ. Because layer 2 is hole doped, it is
convenient to use the hole operator h2ðrÞ ¼ c†2ðrÞ. The
Hamiltonian is

H ¼
Z

d2rc†1ðrÞ
ð−i∇⃗ − eA⃗1Þ2

2m
c1ðrÞ þ

Z
d2rh†2ðrÞ

ð−i∇⃗þ eA⃗2Þ2
2m

h2ðrÞ −D
Z

d2r(c†1ðrÞc1ðrÞ þ h†2ðrÞh2ðrÞ)þHint;

ðB1Þ

where e is the electron charge, which is negative. A⃗1ðrÞ and
A⃗2ðrÞ are vector fields in the two layers. For the quantum
Hall bilayer system, we have the magnetic field
A⃗aðrÞ ¼ 1

2
Bẑ × rþ δA⃗aðrÞ. Here, δA⃗aðrÞ is the probing

field in each layer applied to measure the response of the
system. D is the displacement field and can be viewed as
the chemical potential to tune the exciton density x.

The interaction term is

Hint ¼
1

2

Z
d2r

Z
d2r0Vabðjr − r0jÞ∶ ρaðrÞρbðr0Þ∶; ðB2Þ

where
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ρ1ðrÞ ¼ ec†1ðrÞc1ðrÞ ðB3Þ

and

ρ2ðrÞ ¼ −eh†2ðrÞh2ðrÞ: ðB4Þ

The Coulomb interaction is in the form VabðrÞ ¼
½1=ð2πÞ2� R d2qVabðqÞeiq·r with V11ðqÞ ¼ V22ðqÞ ¼
ðe2=εqÞ and V12ðqÞ ¼ V21ðqÞ ¼ ðe2=εqÞe−qd. d represents
the distance between two layers in the unit of magnetic
length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

.

Let us ignore the probing field δA⃗aðrÞ for now. Then,
the Hamiltonian has the following MCT antiunitary
symmetry:

MCT ∶ c1ðrÞ ↔ h2ðrÞ: ðB5Þ

Note that this is an antiunitary, and we need to include a
complex conjugate K. Under MCT , ρ1ðrÞ → −ρ2ðrÞ and
ρ1ðqÞ → −ρ2ð−qÞ. Under MCT , an electron in layer 1 is
transformed to a hole in layer 2. We can also include the
vector potential δA⃗aðrÞ and also the electric potential term
δH ¼ −ρ1ðrÞA0

1ðrÞ − ρ2ðrÞA0
2ðrÞ. Thus, under MCT , we

have A0
1ðrÞ → −A0

2ðrÞ and δA⃗1ðrÞ → δA⃗2ðrÞ. In the follow-
ing, we use A⃗aðrÞ to denote δA⃗aðrÞ. The spacetime
coordinates transform as ðt; rÞ → ð−t; rÞ under MCT .
One can diagonalize the kinetic part and project the

interaction in the lowest Landau levels. Within the lowest
Landau level, the Hamiltonian is

H ¼ 1

2

X
a;b¼1;2

VabðqÞ∶ ρaðqÞρað−qÞ∶: ðB6Þ

Here,

ρaðqÞ ¼
Z

d2qρaðrÞe−iq·r ðB7Þ

with ρaðrÞ as the charge-density operator projected to the
lowest Landau level:

ρ1ðrÞ ¼ e
X
m;n

c†1;mc1;nφ
�þ;mðrÞφþ;nðrÞ ðB8Þ

and

ρ2ðrÞ ¼ −e
X
m;n

h†2;mh2;nφ
�
−;mðrÞφ−;nðrÞ: ðB9Þ

In the above, φþ;mðrÞ and φ−;m are the wave functions
of the state labeled by the Landau index m for the electron
and hole, respectively. We have φ−;mðrÞ ¼ φþ;mðrÞ�.

Under the symmetry MCT , c1;m → h2;m and ρ1ðrÞ →
−ρ2ðrÞ still hold in the Hamiltonian projected to the lowest
Landau level.

APPENDIX C: RELATION TO THE FQSH
TO PAIRED-SUPERFLUID TRANSITION

AND AN ESTIMATE FOR dc

Thus far, we have phrased the discussion in terms
of exciton condensation on the ðν1; ν2Þ ¼ ð1=3; 2=3Þ
insulator. Now, we consider performing a particle-hole
conjugation on layer 2, as described above, i.e., h2ðrÞ ¼
c†2ðrÞ. This leads to the two layers now having the same
density but experiencing opposite magnetic fields as in
Eq. (B1). This is nothing but the fractional version of the
FQSH [70]. Furthermore, as a result of the particle-hole
transformation in the bottom layer, the repulsive interlayer
interaction now becomes an attractive interaction and
leads to the formation of bound states between the layers
of Laughlin quasiparticles, i.e., Laughlin-Cooper pairs of
charge 2e=3. The condensation of these fractional Cooper
pairs leads to a paired superconductor [71] (which is
smoothly connected to the paired condensate of elec-
trons). Note, the Laughlin-Cooper pair is a boson and
has mutual statistics with all the other anyons in the
problem; hence, its condensation leads to a conventional
superconductor.
The following simple energetic argument gives an

estimate for the critical distance dc. Consider creating a
Laughlin quasielectronþ quasihole in one layer and a
corresponding pair in the other layer. The energy for
each pair is just the gap: Δ1=3 ≈ 0.1e2=ϵlB [72]. Now
consider the strength of the attractive interaction between
the quasiparticle and quasihole in the two layers ΔE ¼
e�2=ϵd, where e� ¼ e=3. A simple estimate for the critical
point is when the binding energy overcomes the cost of
creating the quasiparticles and hence, e�2=ϵd ¼ Δ1=3 or
ðd�c=lBÞ ¼ 1.1. In practice, the excitons will have a
dispersion that further lowers their energy, and we would
expect that the true transition occurs earlier, i.e., dc > d�c.
Our numerical calculations give dc ≈ 1.7. Similarly, one
can estimate the critical distance for the ðν1; ν2Þ ¼
ð1=5; 4=5Þ using Δ5 ¼ 0.024e2=lB [73] and e� ¼ e=5.

APPENDIX D: CRITICAL THEORY

We consider the filling ðν1; ν2Þ ¼ ð1
3
;− 1

3
Þ. In the FQSH

phase at large d=lB, the effective low-energy theory is
captured by a Chern-Simons theory with K matrix K ¼
ð3
0

0
−3Þ. There are two emergent gauge fields a1;μ; a2;μ whose

charges are labeled as l ¼ ðl1; l2Þ. We consider a fractional
exciton labeled by l ¼ ð1; 1Þ. It carries physical charge
Qc ¼ 0 and physical spin Qs ¼ 1

3
. The transition between

the FQSH phase and the exciton condensation phase is
described by the condensation of this fractional exciton
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whose creation operator is labeled as φ†. Then, the critical
theory is

L ¼ j½∂μ − iða1;μ − a2;μÞ�φj2 − sjφj2 − gjφj4

−
3

4π
a1da1 þ

3

4π
a2da2 þ

1

2π
Acdða1 − a2Þ

þ 1

4π
Asdða1 þ a2Þ; ðD1Þ

where s is the tuning parameter. Ac;μ and As;μ are probing
fields coupled to the total charge and the spin. The MCT
symmetry requires that A⃗s ¼ 0. Physically, the magnetic
fields of the two layers are the same, and the exciton does
not feel any net magnetic field. From symmetry analysis,
one can, in principle, include a term φ�ði∂t − As;0Þφ. This
term is fine-tuned to be zero because we are considering an
interaction-driven transition through d=lB at fixed exciton
density. On the other hand, one can also tune a FQSH-to-SF
transition through tuning the displacement field, which
corresponds to a chemical-potential-tuned transition. The
dynamical exponent for such a transition will be z ¼ 2 and
is not our interest.
We then make a redefinition: ac¼a1þa2;as¼a1−a2.

The above actions change to

L ¼ jð∂μ − ias;μÞφj2 − sjφj2 − gjφj4 − 3

4π
acdas

þ 1

2π
Acdas þ

1

4π
Asdac: ðD2Þ

The redefinition of the gauge field changes the charge
quantization rules. The charge under ac is labeled as qc and
the charge of as is qs. We have the charge transformation
qc ¼ ðq1 þ q2=2Þ and qs ¼ ðq1 − q2=2Þ, where q1, q2 are
charges under a1, a2. The elementary charge configuration
is ðq1; q2Þ ¼ ð�1; 0Þ; ð0;�1Þ. Thus, in terms of ðqc; qsÞ,
the elementary charge is ðqc; qsÞ ¼ ð� 1

2
;� 1

2
Þ. In the

FQSH phase with φ gapped, one can check that for the
excitation ðqc;qsÞ¼ð�1

2
;�1

2
Þ, it has statistics θ ¼ �ðπ=3Þ,

physical charge Qc ¼ � 1
3
, and physical spin Qs ¼ � 1

6
.

This is exactly the elementary anyon on layer 1 or layer 2 in
the FQSH phase. When φ is condensed, as is Higgsed, and
we are left with the superfluid action LSF ¼ ð1=4πÞAsdac.
We can see that the vortex charge qv of the superfluid is
qv ¼ 2qc. Then, the elementary anyon with ðqc; qsÞ ¼
�ð1

2
; 1
2
Þ in the FQSH phase now becomes the elementary

vortex with qv ¼ �1 in the superfluid phase. Of course,
now it costs infinite energy due to the coupling to the
gapless gauge field ac which represents the Goldstone
mode of the superfluid. From this analysis, one can see that
the elementary anyon in the FQSH phase becomes the
vortex of the superfluid in the EC phase. Its energy cost is
infinite in the EC phase and finite in the FQSH phase, but it
remains gapped across the phase transition. It is known that

the elementary vortex become gapless and then condensed
in the usual superfluid-to-insulator transition. Later in the
dual theory, we see that at the XY* critical point, what
becomes gapless is a triple vortex, while the vortexes with
jqvj ¼ 1, 2 remain gapped.
At the critical point, the topological property of the

anyon does not matter, so we can integrate ac, which
simply locks as ¼ 1

3
As. Then we reach the final critical

theory:

Lc ¼
����
�
∂μ − i

1

3
As;μ

�
φ

����
2

− sjφj2 − gjφj4 þ 1

6π
AcdAs:

ðD3Þ

When s < 0, this is a superfluid phase of As. When
s > 0, we have the correct response of ð1=6πÞAcdAs for the
FQSH phase, though we have lost the information about
the anyons by integrating ac.

1. Dual theory

It is known that the XY critical theory such as in Eq. (D3)
has a dual theory. Here we derive the dual critical theory.
We start from Eq. (D2) and apply the standard particle-
vortex duality for φ, and then we obtain a dual critical
theory as

L ¼ jð∂μ − ibμÞφ̃j2 − rjφ̃j2 − g̃jφ̃j4 þ 1

e2c
fc;μνfc;μν

þ 1

e2s
fs;μνfs;μν −

3

4π
asdac þ

1

2π
bdas

þ 1

2π
Acdas þ

1

4π
Asdac; ðD4Þ

where fc;μν ¼ ∂μac;ν − ∂νac;μ is the field strength for ac,
and similarly, fs;μν is the field of as.
Integrating as, we lock b ¼ 3

2
ac − Ac. With a redefini-

tion a ¼ 1
2
ac − 1

3
Ac, we get

L ¼ jð∂μ − i3aμÞφ̃j2 − rjφ̃j2 − g̃jφ̃j4 þ 1

e2
fμνfμν

þ 1

2π
Asdaþ 1

6π
AsdAc; ðD5Þ

which is exactly the dual theory of Eq. (D3). Here,
fμν ¼ ∂μaν − ∂νaμ. e2 ¼ e2c=4. We choose the normaliza-
tion of the gauge field a so we have the usual coupling
ð1=2πÞAsda. Hence, the monopole operator of a carries
charge 1 under As and can be identified as the creation
operator of the physical exciton c†1c2. When φ̃ is gapped in
the r > 0 side, this describes a superfluid phase of As. Here,
φ̃ here carries vortex charge qv ¼ 3 of the superfluid phase.
Therefore, at the QCP the triple vortex instead of the
elementary vortex of the superfluid becomes gapless.
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Condensation of this triple vortex kills the superfluid phase
and leads to an insulator. The elementary vortex remains
gapped across the QCP and will become the anyon in the
FQHE insulator after the superfluid is gone.

APPENDIX E: EXTRAORDINARY BOUNDARY
CRITICALITY

We start from the edge theory for the FQSH phase at
d > dc. For now, let us consider the filling ðν1; ν2Þ ¼
ð1
3
;− 1

3
Þ. From the K matrix K ¼ ð3

0
0
−3Þ, we can write down

the effective action for the helical edge modes:

S ¼
Z

dtdx
3

4π
∂tφ1∂xφ1 −

3

4π
∂tφ2∂xφ2 −

3

4π
υFð∂xφ1Þ2

−
3

4π
υFð∂xφ2Þ2 − g

3

2π
υFð∂xφ1Þð∂xφ2Þ; ðE1Þ

where φ1 and φ2 represent the edge mode in layers 1 and 2,
respectively. The g < 0 term is from interlayer repulsion.
Note in our current convention the density operators are
ρ1 ¼ eð1=2πÞ∂xφ1 and ρ2 ¼ −eð1=2πÞ∂xφ2.
We have the commutation relations

½φ1ðxÞ; ∂yφ1ðyÞ� ¼ i
2π

3
δðx − yÞ ðE2Þ

and

½φ2ðxÞ; ∂yφ2ðyÞ� ¼ −i
2π

3
δðx − yÞ: ðE3Þ

Next, we do a linear combination and define

φ1ðxÞ ¼
1ffiffiffi
3

p ½ϕðxÞ þ θðxÞ�;

φ2ðxÞ ¼
1ffiffiffi
3

p ½ϕðxÞ − θðxÞ�; ðE4Þ

so

½θðxÞ; ∂yφðyÞ� ¼ iπδðx − yÞ: ðE5Þ

This leads to the action

S ¼
Z

dtdx
1

π
∂tϕ∂xθ −

υ̃F
2π

�
Kð∂xθÞ2 þ

1

K
ð∂xϕÞ2

�
; ðE6Þ

where υ̃F ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − g2

p
υF and K ¼ ð1 − g=1þ gÞ. So we

have K > 1.
We can also integrate ϕ to reach

S ¼
Z

dtdx
K

2πυ̃F
½ð∂tθÞ2 − υ̃2Fð∂xθÞ2�: ðE7Þ

This is the standard action for the Luttinger liquid,
but the operator mapping is different. In particular, the
fractional exciton l ¼ ð1;−1Þ now corresponds to ψ† ∼
eiφRe−iφL ¼ ei

2ffiffi
3

p θðxÞ. Its scaling dimension is ½ψ � ¼ 1
3K < 1

3
.

We can make a redefinition θ̃ ¼ 2ffiffi
3

p θ, so the action is

S0 ¼
Z

dtdx
1

2πυ̃Fλ
½ð∂tθ̃Þ2 − υ̃2Fð∂xθ̃Þ2� ðE8Þ

with λ ¼ ð4=3KÞ. In this convention, eiθ̃ creates a fractional
exciton with charge 1=3 under As.
At the QCP, the boundary is described by the following

action:

Sboundary ¼
Z

dtdx
1

2πυ̃Fλ
½ð∂tθ̃Þ2 − υ̃2Fð∂xθ̃Þ2�

− s
Z

dxdtðeiθ̃φ� þ e−iθ̃φÞ: ðE9Þ

Following Ref. [46], we obtain the renormalization flow
equation

ds
dl

¼
�
2 − Δφ −

1

4
λ

�
s;

dλ
dl

¼ −π2s2λ2: ðE10Þ

Given thatΔφ ≈ 1.219 and initially λ < 4
3
, we have s flow

to infinity and λ flows to zero when the renormalization-
group flow l approaches infinity.
The ordinary exciton order creation operator is ei3θ̃.

In the FQSH phase, its correlation function is

hei3θ̃ðxÞe−i3θ̃ðyÞi ∼ 1

jx − yj9λ : ðE11Þ

Therefore, at the QCP, because λ flows to zero, the
exponent of the above correlation function also flows
to zero. In practice, it should have a log singularity [46]
at the QCP:

hei3θ̃ðxÞe−i3θ̃ð0Þi ∼ 1

ðlog xÞq ; x → ∞: ðE12Þ

This is the so-called extraordinary-log-boundary critical
behavior. One can see that the exciton order has an almost
long-range order at the edge, despite its correlation function
having a large decaying exponent in the bulk.
The exciton current As couples in the following way:

∂μθ̃ → ð∂μ − i 1
3
As;μÞθ̃. In the FQSH phase, it is known that

the conductance under As isG ¼ 1
9
ð1=λÞðe2=hÞ [61]. At the
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QCP, the conductance G then flows to infinity. This is
expected because the exciton has almost long-range order,
so its transport should still be superfluidlike.
We also want to comment on the local density of states

of one layer probed by the scanning tunneling micro-
scope (STM). Consider layer 1, the single-electron
creation operator is c†1ðxÞ ∼ ei3φ1ðxÞ ¼ ei

ffiffi
3

p ½ϕðxÞþθðxÞ�. Then
we expect that the STM of layer 1 has ðdI=dVÞ ∼ Vα with
α ¼ 3

2
½K þ ð1=KÞ� − 1. In the decoupled phase at large

d=lb, we have α ≈ 2 as K ≈ 1. However, at the QCP, α goes
to infinity in the extraordinary criticality.
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