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1CeFEMA, Instituto Superior Técnico, Universidade de Lisboa,
Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

2Beijing Computational Science Research Center, Beijing 100193, China
3Department of Physics, Faculty of Mathematics and Physics,

University of Ljubljana, SI-1000 Ljubljana, Slovenia

(Received 14 December 2022; revised 16 May 2023; accepted 15 June 2023; published 16 August 2023)

We perform a systematic symmetry classification of many-body Lindblad superoperators describing
general (interacting) open quantum systems coupled to a Markovian environment. Our classification is
based on the behavior of the many-body Lindbladian under antiunitary symmetries and unitary involutions.
We find that Hermiticity preservation reduces the number of symmetry classes, while trace preservation
and complete positivity do not, and that the set of admissible classes depends on the presence of additional
unitary symmetries: in their absence or in symmetry sectors containing steady states, many-body
Lindbladians belong to one of ten non-Hermitian symmetry classes; if however, there are additional
symmetries and we consider non-steady-state sectors, they belong to a different set of 19 classes. In both
cases, it does not include classes with Kramers degeneracy. Remarkably, our classification admits a
straightforward generalization to the case of non-Markovian, and even non-trace-preserving, open quantum
dynamics. While the abstract classification is completely general, we then apply it to general (long-range,
interacting, spatially inhomogeneous) spin-1=2 chains. We explicitly build examples in all ten classes
of Lindbladians in steady-state sectors, describing standard physical processes such as dephasing, spin
injection and absorption, and incoherent hopping, thus illustrating the relevance of our classification for
practical physics applications. Finally, we show that the examples in each class display unique random-
matrix correlations. To fully resolve all symmetries, we employ the combined analysis of bulk complex
spacing ratios and the overlap of eigenvector pairs related by symmetry operations. We further find that
statistics of levels constrained onto the real and imaginary axes or close to the origin are not universal due to
spontaneous breaking of Lindbladian PT symmetry.
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I. INTRODUCTION

The interplay of symmetries, correlations, and dynamics
lies at the heart of our understanding of complex interacting
quantum many-body systems. It provides a compact and
powerful framework for obtaining universal information
not otherwise available for generic quantum systems.
Hamiltonians are classified by a reduced number of global
antiunitary symmetries and unitary involutions. The behav-
ior under time-reversal, particle-hole, and chiral symmetry

places them in one of the ten celebrated Altland-Zirnbauer
classes [1]. In turn, the Bohigas-Giannoni-Schmit conjec-
ture [2] states that, if the system is chaotic, the Hamiltonian
displays the statistical behavior of a random matrix from
the same symmetry class. Finally, the correlations of
random matrices are universal and solely determined by
its symmetry class: level repulsion is a direct measure of the
system’s behavior under time reversal, while the spectral
density close to the origin is determined by particle-hole
and chiral symmetry [3–5]. Quantities such as conductance
fluctuations in disordered electronic systems can thus be
inferred solely from the knowledge of invariance under
simple symmetry transformations [1].
Recent years have seen a revival of interest in non-

Hermitian physics [6], which is of relevance, for instance, in
PT-symmetric, dissipative, and monitored quantum dynam-
ics, and also in classical and optical setups. However, the
study of symmetries and correlations of non-Hermitian
quantum matter is much less developed than its Hermitian
counterpart. Non-Hermiticity bifurcates time-reversal and
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particle-hole symmetries into two distinct types each,
while pseudo- and anti-pseudo-Hermiticity are additional
transformations of the Hamiltonian. The symmetry clas-
sification of non-Hermitian Hamiltonians was only
recently settled [7,8], when it was found that there are
38 non-Hermitian symmetry classes, the so-called
Bernard-LeClair classes [9], for point-gap spectra (i.e.,
spectra that can be freely rotated in the complex plane)
and 54 classes [6,10] for line-gap spectra (which cannot).
Similarly to the Hermitian case, there are three classes of
universal bulk level repulsion [11], determined by the
behavior under transposition. Long-range correlations
can be understood in terms of the dissipative spectral
form factor [12–14] and its local deformations [15]. The
statistics on, or near, the real axis for real asymmetric
matrices are also well understood [16–18]. In general,
analytical results are only available for the three standard
and the three chiral Ginibre classes [19–25], although
there is an increasing body of numerical results for the
many other classes [26–31].
Perhaps more importantly, non-Hermitian Hamiltonians

provide an effective description of open quantum dynamics
only when quantum jumps can be neglected, for instance,
for short times or postselecting jump-free quantum trajec-
tories. A complete description of an open quantum system
coupled to a Markovian (i.e., memoryless) environment
must go beyond the non-Hermitian Hamiltonian descrip-
tion, and one should consider systems evolving under
the action of Liouvillian superoperators of Lindblad
form [32–34] (Lindbladians for short). It is a question of
fundamental interest to find out how many symmetry
classes can be realized by many-body Lindbladians,
which are far more constrained than arbitrary non-
Hermitian Hamiltonians, specifically by the conservation
of trace, Hermiticity, and (complete) positivity. In other
words, we ask to which subset of the 54-fold classification
do physical open quantum systems belong. Lieu et al. [35]
used causality arguments to argue that there are also ten
classes of single-particle spectra of noninteracting (quad-
ratic) Lindbladians. However, they did not consider
shifting the spectral origin, which avoids the causality
restrictions, as pointed out by Kawasaki et al. [36]. Once
this possibility is accounted for, all 54 classes of non-
Hermitian Hamiltonians can be implemented at the level of
single-particle spectra. The importance of the shift of the
spectral origin, and the associated spectral dihedral sym-
metry, was already noted for many-body Lindbladians by
one of us in Refs. [37,38], but a symmetry classification
was not put forward.
In this paper, we take this fundamental step and show

that many-body Lindbladians possess a rich symmetry
classification: in the absence of unitary symmetries or in
symmetry sectors containing the steady state(s), they
belong to one of ten non-Hermitian symmetry classes;
if however, there are additional unitary symmetries and we

consider non-steady-state sectors, they belong to a differ-
ent set of 19 classes. Remarkably, our classification
does not include any classes with Kramers degeneracy.
It is remarkable to observe that the number of distinct
symmetry classes of Lindbladian dynamics in symmetry
sectors that contain the steady state(s) is exactly the same
(ten) as the number of distinct Altland-Zirnbauer sym-
metry classes of Hermitian steady-state density operators,
although the precise correspondence remains to be
understood.
Our work is qualitatively different from the previous

attempt at a symmetry classification of fermionic open
quantum matter by Altland et al. [39], on the level of both
generality and abstraction. Specifically, Ref. [39] consid-
ers the invariance of the dynamics under linear or anti-
linear and canonical or anticanonical transformations of
fermionic creation and annihilation operators, while our
transformations apply to any kind of Hilbert space
(including second-quantized Lindbladians in Fock space)
and are defined by general transformation properties of
the matrix representation of the Lindbladian. As such, our
classification scheme accurately captures many-body
spectral and eigenvector properties, as relevant, e.g., for
quantum chaos.
The goal of this paper is threefold. First, we establish

the symmetry classification of many-body Lindbladians
and determine conditions that the Hamiltonian and jump
operators must satisfy in a given class (Sec. II). Second,
we propose several experimentally realizable examples of
physical Lindbladians belonging to the full Lindbladian
tenfold way (Sec. III), illustrating the practical relevance
of our abstract classification. Third, we advance the under-
standing of non-Ginibre random-matrix ensembles, by
proposing the eigenvector overlap matrix [40] as a detector
of antiunitary symmetries and studying its statistical
properties (Sec. IV). Specifically, we demonstrate that
the overlap matrix element between symmetry-related
eigenstates together with the complex spacing ratio [41]
provides a unique indicator for the classification.

II. LINDBLADIAN SYMMETRY CLASSIFICATION

A. Matrix representation of the Lindbladian

We consider the quantum master equation for the
system’s density matrix, ∂tρ ¼ Lρ, where the Liouvillian
superoperator is of the Lindblad form,

Lρ ¼ −i½H; ρ� þ
XM
m¼1

ð2LmρL
†
m − fL†

mLm; ρgÞ; ð1Þ

with Hamiltonian H and M traceless jump operators
Lm, m ¼ 1;…;M acting over a Hilbert space H. The
Lindbladian admits a matrix representation (vectorization)
over a doubled Hilbert space H ⊗ H (the so-called
Liouville space), L ¼ LH þ LD þ LJ, where the
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Hamiltonian, dissipative, and jump contributions are,
respectively, given by

LH ¼ −iðH ⊗ 1 − 1 ⊗ H�Þ; ð2Þ

LD ¼ −

 XM
m¼1

L†
mLm ⊗ 1þ 1 ⊗

XM
m¼1

ðL†
mLmÞ�

!
; ð3Þ

LJ ¼ 2
XM
m¼1

Lm ⊗ L�
m: ð4Þ

ðÞ� denotes complex conjugation in a matrix representation
with respect to a fixed basis of H (or H ⊗ H). We see
below that the three contributions have different trans-
formation properties. We further define the traceless shifted
Lindbladian [37],

L0 ¼ L − αI ; α ¼ TrL
TrI

¼ −2
P

mTrL
†
mLm

Tr1
; ð5Þ

where I ¼ 1 ⊗ 1 is the identity operator over the Liouville
space. As we show below, the symmetry classification of
Lindbladians is necessarily formulated in terms of L0.

B. Superoperator symmetries

Just as for the Hamiltonian case, the symmetry classi-
fication of the Lindbladian follows from the behavior of its
irreducible blocks under involutive antiunitary (superoper-
ator) symmetries. More precisely, if there is a unitary
superoperator U that commutes with the Lindbladian L,

ULU−1 ¼ L; ð6Þ

we can block diagonalize (reduce) L into sectors of fixed
eigenvalues of U. For the moment, let us assume no such
unitary symmetries exist and the Lindbladian is irreducible;
we consider unitary symmetries in Sec. II D. We look for
the existence of antiunitary superoperators T �, such that
L satisfies

T þLT −1þ ¼ þL; T 2þ ¼ �1; ð7Þ

T −LT −1
− ¼ −L; T 2

− ¼ �1: ð8Þ

Since L is non-Hermitian, it can also be related to its
adjoint through antiunitary superoperators. To this end, we
look for the existence of antiunitaries C� implementing:

CþL†C−1þ ¼ þL; C2þ ¼ �1; ð9Þ

C−L†C−1− ¼ −L; C2− ¼ �1: ð10Þ

We need not consider the existence of more than one
antiunitary of a given kind, since their product is unitary

and commutes with L while we assume L to be irreducible.
On the other hand, the combined action of antiunitaries of
different types gives rise to new unitary involutions. In the
absence of antiunitary symmetries, these unitary involu-
tions can still act on their own and we look for unitary
superoperators P and Q�, such that L transforms as

PLP−1 ¼ −L; P2 ¼ 1; ð11Þ

QþL†Q−1þ ¼ þL; Q2þ ¼ 1; ð12Þ

Q−L†Q−1
− ¼ −L; Q2

− ¼ 1: ð13Þ

Furthermore, the unitary involutions can either commute
or anticommute with each other and with the antiunitary
symmetries; that is,

PT ¼ ϵPT T P; PC ¼ ϵPCCP; ð14Þ

QT ¼ ϵQT T Q; QC ¼ ϵQCCQ; ð15Þ

QP ¼ ϵPQPQ; ð16Þ

where all ϵ ¼ �1 and T , C, andQ can be one of T �, C�, or
Q�, respectively. Only three of the ϵ are independent, say,
ϵPT , ϵQT , and ϵPQ. The remaining two are determined by
ϵPC ¼ ϵPQϵPT and ϵQC ¼ ϵQT .
The symmetries of Eqs. (7)–(13) describe two indepen-

dent flavors of time-reversal (T þ and Cþ) and particle-hole
(T − and C−) symmetries, chiral or sublattice symmetry (P)
and pseudo- and anti-pseudo-Hermiticity (Qþ and Q−).
In the Bernard-LeClair classification scheme [9], T � are
referred to as K symmetries, C� as C symmetries, P as P
symmetry, and Q� as Q symmetries. Carefully accounting
for all inequivalent combinations of independent sym-
metries, the values of the square of the antiunitary sym-
metries, and the commutation or anticommutation relations
of the unitary involutions gives 38 non-Hermitian sym-
metry classes [7–9,42] for point-gap spectra and 54 classes
for line-gap spectra [6,10]. In the Hermitian case, the
classification simplifies to the symmetries of Eqs. (7), (10),
and (11), and leads to the tenfold classification of Altland
and Zirnbauer [1].

C. Lindbladians without unitary symmetries

The spectrum of the Lindbladian cannot be freely rotated
since there is a preferred axis of symmetry (the negative
real axis), and hence Lindbladians belong to one of the 54
line-gap spectra classes. However, not all these symmetry
classes can be realized in Lindbladian dynamics because of
the special structure of the Lindblad superoperator.
First, we notice that because L preserves the Hermiticity

of the density matrix, ðLρÞ† ¼ Lρ†, the eigenvalues of L
come in complex-conjugate pairs and we always have a T þ
symmetry squaring toþ1, given by Eq. (7) with T þ ¼ KS,
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where K is the complex-conjugation superoperator defined
by Kρ ¼ ρ� and KLK−1 ¼ L�, and the SWAP operator S
exchanges the two copies of the doubled Hilbert space,
SðA ⊗ BÞS ¼ B ⊗ A for any operators A, B, and satisfies
S2 ¼ þ1. Obviously, the same conclusion holds for the
shifted Lindbladian L0. There are 15 symmetry classes out
of the 54 that satisfy T 2þ ¼ þ1 (dubbed AI, AIþ, AI−,
BDI†, DIII†, BDI, CI, BDIþþ, BDIþ−, BDI−þ, BDI−−,
CIþ−, CIþþ, CI−−, and CI−þ). Second, a transposition
symmetry Cþ is also allowed and determines the bulk level
repulsion [11].
By considering the bare Lindbladian L, it would seem

we have exhausted the possible symmetries. Indeed,
because L is trace preserving and completely positive,
its spectrum always has a zero eigenvalue (corresponding
to the steady state) and the remaining eigenvalues have
nonpositive real parts, which forbids any possible sym-
metries that reflect the spectrum across either the origin or
the imaginary axis [43], i.e., T − and C−. On the other hand,
the spectrum of the shifted Lindbladian L0 is centered at the
origin and there are eigenvalues with both positive and
negative real parts. Hence, both T − and C− are allowed
symmetries of L0. This is an immediate consequence of the
well-known fact that while the involutive symmetries are
usually stated as in Eqs. (7)–(13), they need only hold up to
addition of multiples of the identity. For instance, we can
modify Eq. (8) to

T −LT −1
− ¼ −Lþ 2αI ; ð17Þ

for some real constant α. If we take α to be as defined in
Eq. (5), the previous equation can be rewritten as a standard
symmetry condition for L0:

T −L0T −1
− ¼ −L0: ð18Þ

The C−, P, and Q− symmetry transformations in
Eqs. (10), (11), and (13) have to be redefined in the same
way. On the other hand, no redefinition of T þ, Cþ, andQþ
symmetries is necessary, as we can trivially add −αI to
both sides of Eqs. (7), (9), and (12) to rewrite them in terms
of L0. The possibility of shifting the spectrum is usually
ignored because shifts in energy are irrelevant; i.e., we can
always choose Hamiltonians to be traceless. However, the
trace of the Lindbladian is not arbitrary and generalized
transformations in terms of L0 have to be considered.
Before proceeding, we note that instead of organizing the

15 classes in terms of the antiunitary symmetries present
besides the T þ symmetry, it will also prove convenient to
alternatively label a class by its unitary involutions P and
Q�. This also offers a check on our counting of the classes:
there is one class with no unitary involutions; if there is one
additional unitary involution, it can be either P,Qþ, orQ−,
and in each case it can either commute or anticommute
with T þ, i.e., 3 × 2 ¼ 6 classes; if two additional unitary

involutions are present we can, without loss of generality,
consider them to be P andQþ (the other two combinations
are obtained by taking one of P orQþ and their product as
the two independent involutions, since the product PQþ is
a Q− symmetry), which either commute or anticommute
with each other and with T þ, i.e., 2 × 2 × 2 ¼ 8 classes;
there is no class with the three involutions since the product
PQþQ− is a unitary symmetry commuting with the
Lindbladian, which we assume not to exist; in total, we
thus have 1þ 6þ 8þ 0 ¼ 15 classes. The P and Q�
symmetries of the Lindbladian then induce antiunitary
symmetries through the relations

T − ¼ PT þ; C− ¼Q−T þ; and Cþ ¼QþT þ: ð19Þ

Furthermore, the square of the antiunitary symmetries and
the commutation relations of the unitary involutions are
related by

T 2
− ¼ ϵPT þT

2þ; ð20Þ

C2� ¼ ϵQ�T þT
2þ ¼ ϵPT þϵQ∓T þϵPQ∓T

2þ: ð21Þ

These two ways of labeling symmetry classes are equiv-
alent and are used interchangeably in what follows. In the
remainder of this section and in Sec. III, we use the
unitary involutions, while the discussion of random
matrix universality in Sec. IV is based on antiunitary
symmetries.
One might be tempted to conclude that no further

restrictions on the symmetries of L0 exist and, thus,
that there are 15 symmetry classes of many-body
Lindbladians. However, the Lindbladian is not an arbi-
trary superoperator with T 2þ ¼ 1 symmetry, and has an
additional structure in terms of the Hamiltonian and jump
operators. In Sec. II E, we derive the conditions these
operators must satisfy in order to implement a super-
operator symmetry of the Lindbladian. Based on these
conditions, in Sec. II F we argue that, remarkably, a
C2− ¼ −1 symmetry is not allowed. Since there are five
classes out of the 15 (DIII†, BDIþ−, BDI−−, CIþþ, and
CI−þ) with C2− ¼ −1, a Liouvillian without unitary sym-
metries belongs to one of ten non-Hermitian symmetry
classes, which are listed in Table I together with their
defining relations and matrix realizations.

D. Lindbladians with unitary symmetries

Let us now consider the consequences of a unitary
symmetry U commuting with the Lindbladian. These
symmetries come in two types [44] (strong and weak).
If the Hamiltonian and jump operators jointly satisfy the
symmetry relations,

½u;H� ¼ ½u; Lm� ¼ 0; m ¼ 1;…;M; ð22Þ
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then both unitary superoperators,

UL ¼ u ⊗ 1 and UR ¼ 1 ⊗ u�; ð23Þ

commute with the Lindbladian and we refer to them as a
Liouvillian strong symmetry [44]. There are n quantum
numbers in each copy in the doubled Liouville space
H ⊗ H (where n denotes the number of distinct eigenvalues
of u), which are conserved independently. The Liouville
space thus splits into n2 invariant subspaces (symmetry
sectors) and there are generically n distinct steady states, one
in each diagonal sector with equal quantum numbers in the
two copies.
If the relations of Eq. (22) are not all satisfied simulta-

neously, but

U ¼ ULUR ¼ u ⊗ u� ð24Þ

still commutes with L0, we call it a weak Liouvillian
symmetry [44]. There are between n and nðn − 1Þ invariant
subspaces (depending on the precise form of the symmetry u)
and generically a single steady state (in the symmetry sector
with eigenvalue 1). For additional details, see Ref. [44].
We block diagonalize L0, such that each block has a well-

defined eigenvalue of U (weak symmetry) or UL, UR (strong
symmetry). For a given block to belong to a certain symmetry
class, the antiunitary symmetries T � and C� and the unitary
involutions P andQ� defining that class must act within the
block; i.e., they must commute with the projector onto that
block. If they mix different blocks (because they connect
eigenstates in different symmetry sectors), the superoperator
symmetry is broken in those blocks, although the full
Lindbladian possesses the symmetry.
Following the previous considerations, we immediately

conclude that the presence of commuting unitary sym-
metries enriches the symmetry classification of the

TABLE I. Non-Hermitian symmetry classes with T 2þ ¼ þ1 and C2þ ≠ −1, which can realized by Lindbladians with unbroken T þ
symmetry. For each class, we list its Bernard-LeClaire (BL) symmetries, the nomenclature following Ref. [7], the squares of its
antiunitary symmetries, its unitary involutions and their commutation relations [as defined in Eqs. (14)–(16)], and an explicit matrix
realization. In the second column, we have adopted a shorthand notation, where the commutation relations of P symmetry are indicated
with a subscript in the class name (class AIþ, say, is denoted AIþ Sþ in Ref. [7]). Moreover, these class names are not unique (for
instance, class AI is also known as D†, and class BDI−þ as CI†þ−, DIII−þ, or BDI†þ− [7]). In the matrix realizations of the last column, A,
B, C, and D are arbitrary non-Hermitian matrices unless specified otherwise and empty entries correspond to zeros.

BL symmetry Class T 2þ C2− C2þ T 2
− ϵPT þ ϵQþT þ ϵQ−T þ ϵPQþ ϵPQ−

Matrix realization

1, K AI þ1 � � � � � � � � � � � � � � � � � � � � � � � � A ¼ A�

2, PK AIþ þ1 � � � � � � þ1 þ1 � � � � � � � � � � � � � B
A

�
;
A ¼ A�

B ¼ B�

3, PK AI− þ1 � � � � � � −1 −1 � � � � � � � � � � � � � A�

A

�
4, QC BDI† þ1 � � � þ1 � � � � � � þ1 � � � � � � � � � � A B

B⊤ C

�
;
A ¼ A† ¼ A� ¼ A⊤
B ¼ −B�

C ¼ C† ¼ C� ¼ C⊤

5, QC BDI þ1 þ1 � � � � � � � � � � � � þ1 � � � � � � � A B
−B⊤ C

�
;
A ¼ −A† ¼ −A⊤ ¼ A�

B ¼ −B�

C ¼ −C† ¼ −C⊤ ¼ C�

6, QC CI þ1 −1 � � � � � � � � � � � � −1 � � � � � � � A B
−B� −A�

�
;
A ¼ A†

B ¼ B⊤

7, PQC BDIþþ þ1 þ1 þ1 þ1 þ1 þ1 � � � þ1 � � � 0
B@

A B
C D

A⊤ C⊤
B⊤ D⊤

1
CA;

A ¼ A�

B ¼ −B�

C ¼ −C�

D ¼ D�

8, PQC BDI−þ þ1 þ1 þ1 −1 −1 þ1 � � � −1 � � � � A
A⊤

�
; A ¼ A†

9, PQC CIþ− þ1 −1 þ1 þ1 þ1 þ1 � � � −1 � � � � A
B

�
;
A ¼ A† ¼ A⊤ ¼ A�

B ¼ B† ¼ B⊤ ¼ B�

10, PQC CI−− þ1 −1 þ1 −1 −1 þ1 � � � þ1 � � � 0
B@

A B
B⊤ C

A� −B�

−B† C�

1
CA;

A ¼ A⊤
C ¼ C⊤
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Lindbladian and allows us to go beyond the tenfold
classification: if the T þ ¼ KS symmetry is broken by U
and no other independent T þ symmetry is realized, the
irreducible block of the Lindbladian belongs to one of 19
symmetry classes with no T þ and C2þ ≠ −1. Note that the
same arguments put forward in Sec. II F that prohibit a
C2þ ¼ −1 symmetry also preclude a T 2þ ¼ −1 symmetry.
Moreover, in these classes, because of the absence of T þ
symmetry, the existence of a P or Q� symmetry is
independent of the existence of a T − or C� symmetry,
respectively, and, therefore, a careful counting leads to 19
independent symmetry classes. Remarkably, the projection
of the Lindbladian into a symmetry sector that contains a
steady state (eigenvalue zero) always preserves the T þ
symmetry, as we discuss in detail below for the two cases of
strong and weak symmetries. T 2þ ¼ þ1 symmetry is only
broken in the blocks without the steady states (i.e., without
the eigenvalue zero), which correspond to short-lived
transient dynamics. We thus reach the conclusion that
many-body Lindbladians admit a (10þ 19)-fold symmetry
classification: in the absence of unitary symmetries or in
the presence of unitary symmetries in all symmetry sectors
containing the steady state(s), the Lindbladian belongs
to one of ten non-Hermitian symmetry classes with
T 2þ ¼ þ1; if, however, there are additional unitary sym-
metries and we consider non-steady-state sectors, the
Lindbladian may belong to a different set of 19 classes
with broken T þ symmetry.
The simplest way to break T þ symmetry occurs when U

and T þK do not commute, and hence do not share a
common eigenbasis. As an example, we mention the case
of a Liouvillian strong symmetry: since the transformation
acts as a symmetry of each copy of Hilbert space indi-
vidually, by definition it does not commute with the SWAP

operator implementing the T þ symmetry. Then, the T þ is
unbroken in the blocks with the same quantum number in
both copies (the blocks containing the n steady states) and
is broken in the remaining.
However, even if T þK and U commute, the T þ

symmetry can be broken if T þ does not commute with
the projector onto a specific subspace. Since U has complex
unimodular eigenvalues and the T þ symmetry involves
complex conjugation, states in the sector with quantum
number eiθ are transformed into states in the sector with
quantum number e−iθ under the action of T þ. The T þ
symmetry is preserved in the sectors with quantum
number �1 and broken in all others. The sector with
quantum numberþ1 always exists (and contains the steady
state) [44], while the additional T þ-unbroken sector with
eigenvalue −1 might or might not exist (it does for a Z2

symmetry, which will be relevant below).
Before concluding this section, let us briefly comment on

the impossibility of implementing a Lindbladian class with
C2þ ¼ −1. Indeed, as we show in Sec. II F, the existence of a
C2þ ¼ −1 symmetry always requires the presence of a

strong symmetry. Moreover, we also show that, under
quite general conditions, the C2þ ¼ −1 symmetry, when it
exists, always breaks the strong symmetry it induces.
Therefore, even when a C2þ ¼ −1 symmetry exists (with
physical consequences such as Liouvillian or open system
version of Kramers degeneracy [45]), it does not define a
symmetry class with C2þ ¼ −1 (which has consequences,
for instance, for level statistics). The same argument also
implies that a T 2þ ¼ −1 symmetry cannot exist. Hence, if a
unitary symmetry breaks the T þ ¼ KS symmetry, an
alternative T 2þ ¼ −1 symmetry cannot be implemented,
supporting our counting of 19 classes above.
In summary, many-body Lindbladians have a tenfold

classification in the absence of unitary symmetries. The
presence of the latter allows for 19 additional classes
beyond the tenfold way. Since the Lindbladian is specified
in terms of its Hamiltonian and jump operators, it is
natural to ask what conditions these operators must satisfy
for the Lindbladian superoperator to belong to one of the
classes discussed above. We address this question in the
next section.

E. Conditions on the Hamiltonian
and jump operators

In this section, we derive sufficient operator conditions for
inducing superoperator symmetries of the Lindbladian. We
see that these conditions are different for the three contri-
butions to the Lindbladian, LH, LD, and LJ. We state the
conditions in terms of the unitary involutions P and Q�. As
mentioned above, they could be alternatively expressed in
terms of the antiunitary symmetries T − and C�.

1. Jump term

To impose superoperator P and Q� symmetries on LJ,
we impose operator P and Q� symmetries on the jump
operators. Since we always work with traceless jump
operators, we do not need to consider the symmetries of
the shifted jump operators. Furthermore, we do not require
that each Lm transforms to itself under the symmetries, only
that the complete set of jump operators is closed under it.
More precisely, we consider Lm that satisfy

paLmp−1
a ¼ ϵLpa

XM
n¼1

PmnLn; p2
a ¼ þ1; ð25Þ

qaL
†
mq−1a ¼ ϵLqa

XM
n¼1

QmnLn; q2a ¼ þ1; ð26Þ

where a ¼ 1, 2, ϵLpa; ϵLqa ¼ �1, pa and qa are unitary and
Hermitian, and P and Q are M ×M unitary Hermitian and
unitary symmetric matrices, respectively. Note that the
index a allows for more than one symmetry of each type,
but that it is also possible that only one exists, in which
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case p1 ¼ p2 or q1 ¼ q2. Next, we define the unitary
superoperators:

Pab ¼ pa ⊗ p�
b; P2

ab ¼ þ1; ð27Þ

Qab ¼ qa ⊗ q�b; Q2
ab ¼ þ1: ð28Þ

It is straightforward to check that Pab acts as either a
commuting, unitary, or an anticommuting, chiral, sym-
metry of LJ [defined in Eq. (4)]:

PabLJP−1
ab ¼ 2

X
m

ðpa ⊗ p�
bÞðLm ⊗ L�

mÞðpa ⊗ p�
bÞ

¼ 2ϵLpaϵ
L
pb

X
mnp

PmnP�
mpLn ⊗ L�

p

¼ ϵLpaϵ
L
pbLJ; ð29Þ

where we use Eq. (25) and the unitarity of P. If ϵLpa ¼ ϵLpb,
Pab acts as a commuting unitary symmetry of LJ; if
ϵLpa ¼ −ϵLpb, it acts as a chiral symmetry.
Similarly, we can show that Qab acts as a Q� symmetry

of LJ, depending on the signs ϵLqa, ϵLqb: if ϵ
L
qa ¼ ϵLqb, Qab

acts as a Qþ symmetry; if ϵLqa ¼ −ϵLqb, as a Q− symmetry.

2. Dissipative term

The conditions of Eq. (25) and (26) are not enough to
generate symmetries of LD. For instance, a chiral symmetry
pa, Eq. (25), does not modify the term

P
m L†

mLm:

pa

�X
m

L†
mLm

�
p−1
a ¼

X
m

paL
†
mp−1

a paLmp−1
a

¼ þ
X
m

L†
mLm; ð30Þ

and, hence,

PabLDP−1
ab ¼ þLD; ð31Þ

i.e., the condition of Eq. (25) only leads to a commuting
unitary symmetry of LD, not to a chiral symmetry. To
generate a P symmetry, we have to require that the jump
operators additionally satisfy

X
m

L†
mLm ¼ −

α

2
1; ð32Þ

where α is defined in Eq. (5). In that case, Eq. (31) reads as

PabLDP−1
ab ¼ −LD þ 2αI ⇔ PabL0

DP
−1
ab ¼ −L0

D; ð33Þ

in accordance with Eq. (17). Note that, for this particular
symmetry only, we actually have L0

D ¼ 0. We thus see
that it is the dissipative contribution that forces us to

consider the symmetries of the shifted Lindbladian. One
particular way of satisfying Eq. (32), which we encounter
in the examples below, is to have each jump operator
individually satisfy

L†
mLm ¼ −

αm
2
1; ð34Þ

for some αm ∈ R.
Similarly, we can see that a pseudo-Hermiticity trans-

formation, Eq. (26), transforms the term
P

m L†
mLm as

qa
�X

m
L†
mLm

�†
q−1a ¼

X
m

LmL
†
m; ð35Þ

and hence we must impose a condition on the commutator
or anticommutator of Lm. If we impose thatX

m

fL†
m; Lmg ¼ −α1; ð36Þ

then Qab acts as a Q− symmetry:

QabLD
†Q−1

ab ¼ −LD þ 2αI ⇔ QabL
0†
DQ

−1
ab ¼ −L0

D: ð37Þ

Again, it will often prove convenient for each jump
operator to satisfy this condition individually; i.e.,

fL†
m; Lmg ¼ −α0m1; ð38Þ

for some α0m ∈ R. If we instead impose thatX
m

½L†
m; Lm� ¼ 0 ð39Þ

(or ½Lm; L
†
m� ¼ 0 for each jump operator), then Qab acts as

a Qþ symmetry, QabL
0†
DQ

−1
ab ¼ L0

D.

3. Hamiltonian term

Finally, we address the conditions one has to impose
on the Hamiltonian such that LH possesses P and Q�
symmetries. We start from the symmetries of the
Hamiltonian:

paHp−1
a ¼ ϵHpaH; ð40Þ

qaHq−1a ¼ ϵHqaH: ð41Þ

Note that for the full Lindbladian to satisfy a superoperator
symmetry, the matrices pa and qa have to be the same
as those in Eqs. (25) and (26). Under the action of the
superoperator Pab, LH transforms as

PabLHP−1
ab ¼ −i½paHp−1

a ⊗ 1 − 1 ⊗ ðpbHp−1
b Þ��

¼ −iðϵHpaH ⊗ 1 − ϵHpb1 ⊗ H�Þ: ð42Þ
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For Pab to be a symmetry of LH, we must have ϵHpa ¼ ϵHpb.
Then, if ϵHpa ¼ ϵHpb ¼ −1, we have

PabLHP−1
ab ¼ iðH ⊗ 1 − 1 ⊗ H�Þ ¼ −LH; ð43Þ

i.e., Pab acts as a P symmetry, while if ϵHpa ¼ ϵHpb ¼ þ1, it
acts as a commuting unitary symmetry.
Proceeding analogously for the pseudo-Hermiticity

transformations, we find ϵHqa ¼ ϵHqb. If ϵHqa ¼ ϵHqb ¼ −1,
then Qab acts as Qþ symmetry, and if ϵHqa ¼ ϵHqb ¼ þ1,
it acts as a Q− symmetry.
Finally, we note that in the case of real Hamiltonian

and jump operators, we can define a modified super-
operator Q̃ab ¼ QabS whose action on LH is reversed:
if ϵHqa ¼ ϵHqb ¼ þ1, Q̃ab is aQþ symmetry, while it is aQ−

symmetry if ϵHqa ¼ ϵHqb ¼ −1. Similarly, if the Hamiltonian
is real and the jump operators are symmetric, we can define
P̃ab ¼ PabS, such that if ϵHpa ¼ ϵHpb ¼ þ1, P̃ab is a P
symmetry of LH, while it is a commuting unitary symmetry
when ϵHpa ¼ ϵHpb ¼ −1. In either case, the action on LJ and
LD is not modified.

F. Absence of C2
+ = − 1 symmetry

and Kramers degeneracy

We now show that, under fairly general conditions,
classes with C2þ ¼ −1 do not exist in the Lindbladian
classification. The proof proceeds in two steps. First, we
show that, because of the two-copy tensor-product structure
of the Lindbladian, a C2þ ¼ −1 symmetry always implies
the existence of a Liouvillian strong symmetry. Then, we
show that, by construction, the C2þ ¼ −1 is always broken
by the strong symmetry it induces. As a consequence, if
degenerate Kramers pairs exist, they do not occur in the
same symmetry sector, and none of the blocks of the
Lindbladian displays, by itself, Kramers degeneracy.
Importantly, the absence of Kramers pairs inside individual
symmetry sectors is a rather universal result of systems
with a two-copy structure and symmetric intercopy cou-
pling, as it is also observed for fermionic Lindbladians
[46] and for a Hermitian two-site fermionic Sachdev-Ye-
Kitaev Hamiltonian [47], where an identical argument
holds. The same mechanism also prevents the existence
of a T 2þ ¼ −1 symmetry, which does not affect the ten
classes with unbroken T þ swap symmetry, but it is
fundamental in the counting of the 19 classes with broken
T þ symmetry (as it precludes any additional classes
with T 2þ ¼ −1).
The first part of the proof is completely general. Let us

assume that a superoperator symmetry Qþ ¼ qa ⊗ q�b
of the Lindbladian exists. From Eq. (21), we have that
C2þ ¼ ϵQþT þ . The commutation relation of Qþ with T þ is
given by

QþT þ ¼ ðqa ⊗ q�bÞKS

¼ KSðqb ⊗ q�aÞ
¼ T þQþ½q−1a qb ⊗ ðq−1b qaÞ��; ð44Þ

We want to impose that C2þ ¼ −1 ⇔ QþT þ ¼ −T þQþ.
Clearly, that is not possible if qa ¼ qb, i.e., if the
Hamiltonian and jump operators have a singleQþ operator
symmetry. Consequently, we must consider a Qþ sym-
metry of the form

Qþ ¼ q1 ⊗ q�2; ð45Þ

with q1 ≠ q2. Furthermore, to implement the unitary
involution Qþ, the Hamiltonian and jump operators must
satisfy ϵHq1 ¼ ϵHq2 ¼ −1 and ϵLq1 ¼ ϵLq2, according to the
previous section. The former condition further precludes
that one of the q1;2 is the identity operator. It then
immediately follows that the product q1q2 commutes with
the Hamiltonian and all jump operators and thus imple-
ments a Liouvillian strong symmetry.
To conclude the proof, we must show that if the C2þ ¼ −1

symmetry exists, it is always broken by the strong
symmetry it induces. Let us define matrices ε12, η1, and
η2 through the relations

q1q2 ¼ ε12q2q1 and q1;2 ¼ η1;2q�1;2: ð46Þ

Because q1;2 are unitary, it immediately follows that ε12 and
η1;2 must also be unitary. To proceed, we make the mild
assumption that ε12 and η1;2 are unimodular complex
numbers (i.e., proportional to the identity). This assumption
holds for any q1 and q2 that can be expressed as a string of
Pauli operators (which is true for the spin-chain examples
of Sec. III and for fermionic models not discussed in this
paper [28,46,47]). While the proof we present in the
following strictly holds only in this case, we believe the
argument extends to general qa written as sums of such
Pauli strings (for which ε12 and η1;2 are more general
unitary matrices) and, consequently, that sectors with
C2þ ¼ −1 do not exist in general.
Proceeding under the assumption that ε12 is a complex

unimodular number, we take the strong symmetry to be
implemented by the unitary

u ¼ q1q2; ð47Þ

which satisfies u2 ¼ ε12 and u� ¼ η1η2u. Since u defines a
strong symmetry, both

UL ¼ u ⊗ 1 and UR ¼ 1 ⊗ u� ¼ η1η2ð1 ⊗ uÞ ð48Þ
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are independently conserved, with eigenvalues pL;R ¼ ε1=212 .
The projectors onto the conserved sectors are

P�
L;R ¼ 1

2
ðI � UL;R=pL;RÞ ¼

1

2
ðI � ε−1=212 UL;RÞ: ð49Þ

We can now start imposing conditions on the choice of
operators. The C2þ symmetry squares to

C2þ ¼ ðQþT þÞ2 ¼ ðq1 ⊗ q�2Þðq2 ⊗ q�1Þ
¼ ε12ðq1q2 ⊗ q�1q

�
2Þ

¼ ε12ULUR: ð50Þ

Since we want C2þ ¼ −1, we must be in a sector of UL;R

with quantum numbers pLpRε12 ¼ −1. On the other hand,
for Cþ to act inside a given symmetry sector of u, it must
commute with the projector. The commutation relation is
given by

CþP�
L;R ¼ QþT þP�

L;R

¼ ðq1 ⊗ q�2ÞP�ε12
R;L T þ

¼ 1

2
ðI � ε1=212 UL;RÞQþT þ

¼ P�pLpRε12
L;R Cþ: ð51Þ

From this, it follows that pLpRε12 ¼ þ1, in contradiction
with the condition we found above. We conclude that either
Cþ acts inside a sector but squares toþ1, or it squares to −1
but connects different sectors. In either case, a definite
symmetry sector does not belong to a class with C2þ ¼ −1.
As noted in the previous section, one might define an

alternative symmetry operator Qþ ¼ ðq1 ⊗ q�2ÞS. The
calculation proceeds in the same way as above, and we
find again two contradicting conditions: to have C2þ ¼ −1,
we require η1η2 ¼ −1, while for Cþ to act inside a single
symmetry sector, we must have η1η2 ¼ þ1.
To conclude this section, note that the existence of

T 2
− ¼ −1 or C2− ¼ −1 symmetries does not imply a

strong symmetry because the jump operators must satisfy
ϵLq1 ≠ ϵLq2 and, consequently, the product q1q2 anticommutes
with the jump operators and can lead, at most, to a weak
symmetry. On the other hand, if the T þ ¼ KS symmetry is
broken, the same argument prevents the implementation of
an alternative T 2þ ¼ −1 symmetry. Hence, Lindbladian
symmetry classes have either T 2þ ¼ þ1 or no T þ.

G. Generalization to non-Markovian and
non-trace-preserving open quantum dynamics

After the developments of the previous sections, we are
now in the position to make the remarkable observation that
the classification we have developed is not restricted to
Lindbladian dynamics, but to all Hermiticity-preserving

dynamics, including non-Markovian and even non-trace-
preserving dynamics.
To see this, we start from the fact that the Liouvillian

generator Λ of any Hermiticity-preserving quantum master
equation, ∂tρ ¼ Λρ, can be written in the form [48]

Λρ ¼ −i½H; ρ� þ fΓ; ρg þ 2
XM
m¼1

γmLmρL
†
m; ð52Þ

where, in addition to the Hamiltonian and jump operators,
we have a second independent “Hamiltonian” Γ ¼ Γ†, and
the real rates γm can be negative in general. Furthermore,
we could also assume all of H, Lm, γm, and Γ to be time
dependent. In themost general case, themaster equation (52),
while Hermiticity preserving, is not necessarily positivity
preserving [48]. Trace preservation, ∂tTrρ ¼ Tr∂tρ ¼ 0, is
enforced by the restriction

Γ ¼
XM
m¼1

γmL
†
mLm: ð53Þ

Additionally, Markovianity is implemented by considering
only positive rates γm > 0. Then (and only then) they can be
absorbed into the jump operators, Lm →

ffiffiffiffiffi
γm

p
Lm, and we

recover the Liouvillian of Lindblad form Eq. (1), Λ ¼ L.
As before, the Liouvillian Λ can be vectorized as

Λ ¼ ΛH þ ΛD þ ΛJ, where the Hamiltonian ΛH and jump
ΛJ contributions are still given by Eqs. (2) and (4),
respectively (apart from the real scalar rates γm that do
not change the classification), while the dissipative con-
tribution ΛD is now given by

ΛD ¼ Γ ⊗ 1þ 1 ⊗ Γ�: ð54Þ
It is now immediately clear that the classification (or, more

precisely, the set of admissible classes) is not changed in this
more general case. There is always a T 2þ ¼ 1 symmetry
implemented by the SWAP operator (which can be broken by
a Liouvillian strong symmetry), while the impossibility of
C2þ ¼ −1 and T 2þ ¼ −1 symmetries is imposed by the jump
contribution and is, hence, unchanged. We thus have ten
classes with unbroken T þ symmetry and 19 additional ones
with broken T þ symmetry.
What does change is the class to which a particular

physical example is assigned. On the one hand, the jump
operators no longer need to satisfy the strict conditions of
Sec. II E 2 [Eqs. (32), (36), and (39)], which facilitates
finding examples in the classes with more symmetries.
On the other hand, we have to impose constraints on the
matrix Γ. More specifically, we consider that it admits the
following symmetries:

paΓp−1
a ¼ ϵΓpaΓ; ð55Þ

qaΓq−1a ¼ ϵΓqaΓ; ð56Þ
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where the unitary operators pa and qa are the same as those
in Secs. II E 1 and II E 3, but the signs ϵΓpa and ϵΓqa are
independent from the ones in the Hamiltonian and the jump
contribution. Now, following exactly the same steps as in
Sec. II E 3 but noting that there is a factor-of-i difference
between how H and Γ appear in the Liouvillian, we
conclude that (i) Pab [defined in Eq. (27)] acts as a P
symmetry if ϵΓpa ¼ ϵΓpb ¼ −1 and as a commuting unitary
symmetry if ϵΓpa ¼ ϵΓpb ¼ þ1; (ii)Qab [defined in Eq. (28)]
acts as a Qþ symmetry if ϵΓqa ¼ ϵΓqb ¼ þ1 and as a Q−

symmetry if ϵΓqa ¼ ϵΓqb ¼ −1; (iii) if Γ is real symmetric,
then we can define the alternative symmetry superoperators
P̃ab ¼ PabS and Q̃ab ¼ PabS, as discussed in Sec. II E 3,
with the conditions on ϵΓqa; ϵΓqb unchanged.
Since Hermiticity preservation is a physical constraint

that one can hardly imagine to be relaxed, we conclude
that our framework provides the most general symmetry
classification of the dynamical generators of open quan-
tum matter.

H. Physical consequences for correlation functions

Before proceeding with specific examples of the clas-
sification developed so far, we derive general statements
about the dynamics of open quantum systems described
by any Lindbladian (or more general Liouvillian) with
involutive global symmetries. Most importantly, we show
that when the involutive symmetry involves a minus sign
(P or Q−) we can derive a time-reversal-like invariance
property for an observable in a time-dependent state, or a
related correlation function.
We start with the case of a P (or T −) symmetry. For any

fixed observableO and state ρ that are invariant under theP
operation, i.e., that satisfy the properties PO ¼ O and
Pρ ¼ ρ, we define the nonequilibrium correlation function,

FðtÞ ¼ Tr½OρðtÞ�; ð57Þ

where ρðtÞ ¼ expfLtgρ is the state evolved under the
Lindbladian L for time t. If L satisfies Eq. (11), it
follows that

FðtÞ ¼ e−2αtTr½OPe−LtPρ� ¼ e−2αtTr½Oρð−tÞ�; ð58Þ

or, equivalently,

Fð−tÞ ¼ e2αtFðtÞ: ð59Þ

For general open quantum systems, the quantity Fð−tÞ is
not well defined: −L does not generate a completely
positive semigroup and, given a state at time t, we can
only propagate it forward in time, not backward. The
remarkable relation Eq. (59) tells us, however, that in
systems with a P symmetry, Fð−tÞ is written in terms of
two well-defined quantities [FðtÞ and expf2αtg] and is thus

itself well defined. This opens the possibility of knowing
the past of a dissipative system solely from the knowledge
of its future. In particular, this feature could improve error-
canceling schemes on noisy intermediate-scale quantum
devices in combination with the recent proposal
of Ref. [49].
Next we consider Q� (equivalently, C�) symmetries.

Because these symmetries relate L to its adjoint L†, we
must consider correlation functions of two observables,
or fidelitylike correlation functions of two states, ρ and σ.
Focusing on the latter case, we define

GρσðtÞ ¼ Tr½σρðtÞ�; ð60Þ

and consider states that are themselves invariant under the
symmetry transformation, Q�ρ ¼ ρ and Q�σ ¼ σ. If L
has a Q− symmetry, Eq. (13), we find, proceeding as
before, that

Gρσð−tÞ ¼ e2αtGσρðtÞ; ð61Þ

which, besides reversing time also swaps the two states.
If, instead, the Lindbladian has a Qþ symmetry, Eq. (12),
no time reversal takes place and

GρσðtÞ ¼ GσρðtÞ; ð62Þ

i.e., G is symmetric under the exchange of the two states
σ and ρ.

III. PHYSICAL EXAMPLES: TENFOLD WAY
IN DISSIPATIVE SPIN CHAINS

In the following sections, we realize the tenfold way of
many-body Lindbladians with unbroken T þ symmetry in
spatially inhomogeneous spin chains. In Sec. III C, we
also present an example with a strong symmetry and,
hence, sectors with broken T þ symmetry. Throughout,
we consider chains of L spins 1=2, represented by local

Pauli operators σαj ¼ 1⊗ðj−1Þ
2×2 ⊗ σα ⊗ 1⊗ðL−jÞ

2×2 , α ¼ x, y, z,
j ¼ 1; 2;…; L, with periodic boundary conditions
σαLþ1 ≡ σα1 . We realize all ten symmetry classes by con-
sidering simple jump operators routinely used in the
literature (dephasing, incoherent hopping, and spin injection
or removal) and choosing an appropriate Hamiltonian. We
thus conclude that the symmetry classes we discuss in this
work are not an exotic theoretical artifact, but are ubiquitous
and implementable in current experimental setups.

A. Dephasing. Classes BDI+ + , CI+ − , BDI− + ,
CI− − , BDI†, and AI

As a first example, we consider local dephasing jump
operators,

Lj ¼ ffiffiffiffi
γj

p
σzj; ð63Þ
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where γj are arbitrary positive dephasing rates. The trace
of the Lindbladian is α ¼ −2

P
j γj and the shifted

Lindbladian reads as

L0 ¼ −iH ⊗ 1þ 1 ⊗ iH þ 2
XL
j¼1

γjσ
z
j ⊗ σzj: ð64Þ

Introducing the global spin operators,

Σα ¼
YL
j¼1

σαj ¼ ðσαÞ⊗L; ðΣαÞ2 ¼ þ1; ð65Þ

for α ¼ x, y, z, we can immediately check that the jump
operators satisfy

fLj;Σxg ¼ fLj;Σyg ¼ ½Lj;Σz� ¼ 0: ð66Þ

The dephasing Lindbladian is extremely rich, as the jump
operators are real, Hermitian, and unitary. They thus satisfy
all the conditions for symmetries of LD, Eqs. (32), (36),
and (39), allowing for the implementation of all three types
of symmetries P and Q� and realizing many different
symmetry classes, depending on the choice of Hamiltonian.
First, we consider a transverse-field Hamiltonian with a

time-reversal-breaking interaction (not restricted to nearest
neighbors):

H ¼
XL
j¼1

gxjσ
x
j þ

X
j<k

Kjkσ
y
jσ

z
k; ð67Þ

with gxj and Kjk arbitrary real coupling constants. The
Hamiltonian satisfies

½H;Σx� ¼ fH;Σyg ¼ fH;Σzg ¼ 0: ð68Þ

From Eqs. (66) and (68), it follows that the Lindbladian
admits the commuting unitary symmetry (weak Liouvillian
symmetry):

Ux ¼ Σx ⊗ Σx; ð69Þ

with eigenvalues �1. Accordingly, the Liouville space
ðC2Þ⊗L ⊗ ðC2Þ⊗L splits into two sectors of positive or
negative transverse parity (Ux ¼ �I). Moreover, Eqs. (66)
and (68) imply that

P ¼ Σz ⊗ Σy and Qþ ¼ Σz ⊗ Σz ð70Þ

act as chiral symmetry and pseudo-Hermiticity of both
the jump and Hamiltonian contributions. Both these sym-
metries and T þ ¼ KS commute with Ux and, hence, act
within the irreducible blocks of the Lindbladian. To
identify the symmetry class of the (shifted) Lindbladian,

we check the commutation relations of the P and Qþ
operators:

PT þ ¼ ð−1ÞLUxT þP; ð71Þ

QþT þ ¼ T þQþ; ð72Þ

QþP ¼ ð−1ÞLPQþ: ð73Þ

Depending on the chain length and the parity sector, the
Lindbladian belongs to different classes: for even L and
even parity (Ux ¼ þI), it belongs to class BDIþþ (recall
Table I); for even L and odd parity (Ux ¼ −I), to class
CI−−; for odd L and even parity, to class BDI−þ; and for
odd L and odd parity, to class CIþ−. We note that the same
symmetry classification holds if we add a second set of
“dephasing” operators L̃j ¼

ffiffiffiffi
γ̃j

p
σyj .

As a second example, we choose a generic, time-reversal
invariant XYZ Hamiltonian in a transverse field,

H ¼ HXYZ þ
XL
j¼1

gxjσ
x
j ; ð74Þ

with

HXYZ ¼
X
j<k

Jxjkσ
x
jσ

x
k þ Jyjkσ

y
jσ

y
k þ Jzjkσ

z
jσ

z
k; ð75Þ

and Jαjk arbitrary real coupling constants. The Hamiltonian
again commutes with Σx, but the anticommutation relations
with Σy and Σz are broken. As before, the Lindbladian
admits Ux [Eq. (69)] as a weak Liouvillian symmetry.
Because the Hamiltonian is real and the jump operators are
real and symmetric,

P ¼ ffiffiffiffiffi
px

p ðΣx ⊗ 1ÞS and Qþ ¼ S ð76Þ

act as chiral symmetry and pseudo-Hermiticity of the jump
and Hamiltonian contributions. Here, px denotes the trans-
verse parity, i.e., the eigenvalue of Ux, and is introduced
in the definition of P to ensure that P2 ¼ þ1 in both
symmetry sectors. Both these symmetries and T þ com-
mute with Ux and satisfy

PT þ ¼ T þP; ð77Þ

QþT þ ¼ T þQþ; ð78Þ

QþP ¼ UxPQþ: ð79Þ

The different parity sectors of the Lindbladian belong to
different symmetry classes, this time irrespective of the
chain length: in the sector of even parity (Ux ¼ þI),
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the Lindbladian belongs to class BDIþþ, whereas in the
sector of odd parity (Ux ¼ −I), it belongs to class CIþ−.
If we assume a more general Hamiltonian, we reduce the

set of symmetries of the Lindbladian. If we add a second
transverse component of the magnetic field, say,

H ¼ HXYZ þ
XL
j¼1

ðgxjσxj þ hjσ
z
jÞ; ð80Þ

we break the transverse parity conservation and all the
commutation relations of the Hamiltonian. Consequently,
the Lindbladian is irreducible and chiral symmetry P is
broken. Qþ ¼ S still implements a pseudo-Hermiticity
transformation commuting with T þ and, hence, the
Lindbladian belongs to class BDI†.
Adding a third component to the magnetic field, i.e.,

setting

H ¼ HXYZ þ
XL
j¼1

ðgxjσxj þ gyjσ
y
j þ hjσ

z
jÞ; ð81Þ

implies there is no longer a nontrivial basis in which the
Hamiltonian is real and prevents the choice of the SWAP

operator S as a pseudo-Hermiticity operator. Since there are
no symmetries of the Lindbladian besides T þ, this case
belongs to class AI.

B. Spin injection or removal. Classes BDI and CI

We now consider a set of jump operators describing spin
injection into the chain (which can occur in the bulk or at
the boundaries),

Lj ¼ ajσ
þ
j ; ð82Þ

where aj are arbitrary real coefficients. The same consid-
erations apply to the jump operators describing spin
removal, Lj ¼ bjσ−j . In addition, we take the XYZ
Hamiltonian of Eq. (75), which commutes with all three
Σx;y;z. Since the jump operators satisfy

ΣxL†
jΣx ¼Lj; ΣyL†

jΣy ¼−Lj; and fLj;Σzg¼ 0; ð83Þ

we see that the longitudinal parity,

Uz ¼ Σz ⊗ Σz; ð84Þ

is conserved as a Liouvillian weak symmetry, but the
transverse parity Ux is not. Furthermore, the jump operators
satisfy fL†

j ; Ljg ¼ a2j1j, but are neither normal, ½L†
j ; Lj� ¼

−a2jσ
z
j, nor unitary, L†

jLj ¼ a2jð1j − σzjÞ=2. L0
D can,

therefore, only satisfy a Q− symmetry [according to
Eqs. (32), (36), and (39)]. We take

Q− ¼ Σx ⊗ Σy ð85Þ

as the pseudo-Hermiticity superoperator, which satisfies the
commutation relation:

Q−T þ ¼ ð−1ÞLUzT þQ−: ð86Þ

For even L, the spin-injection Lindbladian belongs to
class BDI in the even parity sector Uz ¼ I and to class
CI in the odd parity sector (Uz ¼ −I). For odd L, the result
is reversed.

C. Incoherent hopping. Class BDI†

and beyond the tenfold way

Next, we consider jump operators describing a two-site
XY interaction,

Ljk ¼ Mx
jkσ

x
jσ

x
k þMy

jkσ
y
jσ

y
k; ð87Þ

with arbitrary complex couplings Mα
jk. In the case

Mx
jk ¼ My

jk, they describe incoherent hopping. The jump
operators satisfy

½Ljk;Σx� ¼ ½Ljk;Σy� ¼ ½Ljk;Σz� ¼ 0: ð88Þ

Choosing the XYZ Hamiltonian in a longitudinal field,

H ¼ HXYZ þ
XL
j¼1

hzjσ
z
j; ð89Þ

that satisfies

½H;Σz� ¼ 0; ð90Þ

the longitudinal parity Σz is a Liouvillian strong symmetry;
i.e., the Lindbladian conserves independently left and right
longitudinal parity, Uz

LLU
z
L ¼ L and Uz

RLU
z
R ¼ L, with

Uz
L ¼ Σz ⊗ 1 and Uz

R ¼ 1 ⊗ Σz: ð91Þ

As discussed in Sec. II D, a Lindbladian with a strong
symmetry preserves the T þ symmetry in steady-state
sectors and breaks it in all others. In this case, there is
thus a T 2þ ¼ þ1 symmetry in the sectors with even total
longitudinal parity, Uz ¼ Uz

LU
z
R ¼ þI , while it is broken

for odd total parity, Uz ¼ −I .
Because the jump operators are normal but not unitary

[i.e., satisfy Eq. (39), but not Eq. (32) or (36)], LD
only admits a Qþ symmetry. Because, additionally, the
Hamiltonian and jump operators are symmetric, the
pseudo-Hermiticity superoperator is given by Qþ ¼ S
and it commutes with the T þ operator as stated in
Eq. (77). Then, it follows that for even parity, Uz ¼ þI ,
the Lindbladian belongs to class BDI†, while for odd parity,
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Uz ¼ −I , it belongs to class AI†, which is outside the
tenfold classification of Table I.

D. Simultaneous dephasing and incoherent hopping.
Classes AI + and AI−

We now consider dephasing and incoherent hopping to
occur simultaneously and choose jump operators,

Ljkl ¼ ffiffiffiffiffiffiffiffi
γjkl

p ðσzj þ ηjklσ
x
kσ

y
lÞ; ð92Þ

with real γjkl and complex ηjkl, which satisfy

fLjkl;Σxg ¼ fLjkl;Σyg ¼ ½Ljkl;Σz� ¼ 0: ð93Þ

We take the same Hamiltonian as in Eq. (67), which
satisfies the commutation relations of Eq. (68). This
Lindbladian again conserves transverse parity Ux as a
weak Liouvillian symmetry and has two symmetry sectors.
When either j equals one of k, l, or Reηjkl ¼ 0, the jump

operators are, up to a numerical prefactor, unitary (and,
by consequence, normal), and hence, according to
Eqs. (32), (36), and (39), LD admits all of P and Q�
symmetries. However, since the Hamiltonian is not time-
reversal symmetric (i.e., is not real in any basis that is
trivially related to the representation basis), aQ− symmetry
of LH requires that both operators qa and qb in Qab ¼
qa ⊗ qb (recall Sec. II E 3) commute with H, which would
imply qa ¼ qb ¼ Σx. This is, however incompatible with a
Q− symmetry of LJ, since it would require that one of qa,
qb commutes with the jump operators and the other one
anticommutes (recall Sec. II E 1). Noting that the jump
operators are non-Hermitian, we can also exclude a Qþ
symmetry. We thus conclude that the Lindbladian only
possesses P symmetry, which is implemented by the
unitary operator:

P ¼ Σz ⊗ Σy: ð94Þ

Because of the commutation relation with the T þ symmetry,

PT þ ¼ ð−1ÞLUxT þP; ð95Þ

we find that the Liouvillian belongs to class AIþ if L and the
parity Ux are both even or both odd, and to class AI− if one
of L or Ux is even and the other odd.

IV. RANDOM-MATRIX CORRELATIONS
AND UNIVERSALITY

Having established the tenfold classification of irreduc-
ible Lindbladians and presented physical examples of
all classes, we now look for signatures of random matrix
universality in each of those classes. As we have seen
above, a Lindbladian class can be labeled by its antiunitary
symmetries T − and C� or, equivalently, the closely related

unitary involutions P and Q�, see Eq. (19). In this section,
we will use T − and C�.

A. Spectral consequences of antiunitary symmetries

We start by reviewing the constraints the antiunitary
symmetries T � and C� impose on the eigenvalues and
eigenvectors of the Lindbladians [11], which are schemati-
cally summarized in Fig. 1.
We argued in Sec. II that C− and T − symmetries reflect

the spectrum of L across the origin or imaginary axis. Let
us make this statement more precise. We denote the
eigenvalues of the vectorized shifted Lindbladian by λα
and the, in general distinct, right and left eigenvectors by
jϕαi and jϕ̃αi, respectively, i.e.,

L0jϕαi ¼ λαjϕαi; ð96Þ

L0†jϕ̃αi ¼ λ�αjϕ̃αi: ð97Þ

Let us first consider the presence of a T þ symmetry.
Applying T þ to Eq. (96) and using Eq. (7), we obtain

L0ðT þjϕαiÞ ¼ λ�αðT þjϕαiÞ; ð98Þ

that is, T þjϕαi is also a right eigenvector of L0 with
complex-conjugated eigenvalue. When T þ is unbroken,
the spectrum of L0 is symmetric about the real axis. This
is illustrated in Fig. 2, where we show the spectrum of L0 in
the complex plane for the incoherent hopping example of
Sec. III. Recall that this example has four strong-symmetry
sectors, labeled by the pair of longitudinal parities ðUz

L;U
z
RÞ.

As is clearly visible, and in agreement with our predictions,
the full spectrum, see Fig. 2(a), and the spectra of the two

FIG. 1. Schematic action of the antiunitary symmetries T � and
C� on the eigenvalues and eigenvectors of L0. The eigenvalue
problem is defined in Eqs. (96) and (97) and we depict a
representative eigenvalue λα in the complex plane, together with
its image λᾱ under the symmetries T � and C�. T þ, T −, and C−
reflect the spectrum across the real axis, imaginary axis, and
origin, respectively, while Cþ maps an eigenvalue to itself. T �
map right eigenvectors to right eigenvectors (and left eigenvectors
to left eigenvectors), while C� map left eigenvectors to right
eigenvectors (and vice versa).
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sectors with total parity Uz ¼ Uz
LU

z
R ¼ þI, see Fig. 2(b),

are symmetric about the real axis since T þ is unbroken,
while T þ connects the two sectors with Uz ¼ −I and does
not act inside of each (i.e., is broken), leading to each pair of
complex-conjugated eigenvalues to be split between the two
sectors; see Fig. 2(c).
Proceeding similarly, we find that if there is a T −

symmetry, T −jϕαi is a right eigenvector with eigenvalue
−λ�α; i.e., the spectrum is symmetric about the imaginary
axis. We conclude that the presence of T − leads to a
dihedral symmetry of the Lindbladian spectrum, a phe-
nomenon first pointed out in Ref. [37].
If there is an antiunitary symmetry C�, then the operator

implementing it connects left and right eigenvectors.
Indeed, for Cþ we have

L0†ðCþjϕαiÞ ¼ λ�αðCþjϕαiÞ; ð99Þ

that is, Cþjϕαi is a left eigenvector of L0 with the same
eigenvalue as jϕαi. Accordingly, this symmetry does not
affect the global shape of the spectrum. Furthermore, if
C2þ ¼ −1, then each eigenvalue is doubly degenerate, a
phenomenon dubbed non-Hermitian Kramers degeneracy.
Finally, if there is a C− symmetry, C−jϕαi is a left

eigenvector of L0 with eigenvalue −λα; i.e., C− reflects the
spectrum across the origin. Therefore, the presence of
this symmetry also implies the dihedral symmetry of the
spectrum.
From the data in Table I and the preceding discussion, we

conclude there are eight classes with dihedral symmetry
and two without (AI and BDI†). We illustrate this in Fig. 3,
where we show the spectrum of L0 in the complex plane
for two examples of Sec. III: the dephasing spin chain
belonging to class BDIþþ, which presents dihedral sym-
metry, and the incoherent hopping chain in class BDI†,
which does not.

B. Complex spacing ratios

We now move to the random matrix signatures of the
different antiunitary symmetries. First, we consider (bulk)
local level statistics, which are sensitive to the value of C2þ
(we denote the absence of the symmetry as C2þ ¼ 0). Local
level statistics are most conveniently captured by the
distribution of complex spacing ratios (CSRs) [41]. (The
alternatives, the bare complex spacing distribution [50] and
the dissipative spectral form factor [13], require a cum-
bersome unfolding procedure [15].) CSRs have become a
popular measure of dissipative quantum chaos, ranging
from studies of random Lindbladians [51–54] to nonunitary
quantum circuits [55], non-Hermitian Anderson transitions
[56,57], and two-color QCD [27], among others. We define
the CSR as [41]

zα ¼
λNNα − λα
λNNNα − λα

; ð100Þ

where λNNα and λNNNα are the nearest and next-to-nearest
neighbors of λα in the complex plane. By definition, zα is

FIG. 2. Spectrum of L0 in the complex plane for the incoherent hopping chain of length L ¼ 3 discussed in Sec. III C. The remaining
parameters are given in the Appendix. The Lindbladian has four strong-symmetry sectors labeled by the pair ðUz

L;U
z
RÞ and represented

in different colors. For visual clarity, we present the full spectrum in (a), the two sectors with even parity—for which T þ is unbroken,
contain a steady-state each, and eigenvalues come in complex-conjugated pairs in each—in (b), and the two sectors with odd parity—for
which T þ is broken—in (c).

FIG. 3. Spectrum of L0 in the complex plane for (a) the
dephasing spin chain with Hamiltonian HXYZ þHX (Sec. III A)
and (b) the incoherent hopping chain (Sec. III C). In both cases,
we consider L ¼ 4 and the remaining parameters are given in the
Appendix. The dephasing spin chain belongs to class BDIþþ and
the spectrum of the shifted Lindbladian has dihedral symmetry,
while the incoherent hopping chain belongs to class BDI† and its
spectrum does not display dihedral symmetry.
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constrained to the unit disk. Since they are defined in
terms of the two nearest eigenvalues, CSRs only measure
correlations up to a few level spacings. As a consequence,
they can only be sensitive to the symmetry Cþ. Indeed, the
other three antiunitary symmetries correlate eigenvalues
that are, in a many-body system, exponentially many level
spacings apart (reflected across the real or imaginary axis,
or the origin).
For random matrices, the CSR distribution acquires a

characteristic donutlike shape, with the details of the
distribution only dependent on the value of C2þ; see
Figs. 4(a)–4(c). The three types of level repulsion are
usually denoted as A (C2þ ¼ 0), AI† (C2þ ¼ þ1), and AII†

(C2þ ¼ −1) [11]. Level repulsion in class AII† does not
occur in Lindbladian symmetry classes.
To identify random matrix universality in the examples

of Sec. III, we randomly sample disordered spin chains
and compute the CSR distribution. Details on the numeri-
cal simulations, including the values of the parameters
for each example, are given in the Appendix. To make a
more quantitative comparison with the random-matrix
theory (RMT) results, it is convenient to consider the
marginal radial ρðrÞ and angular ρðθÞ distributions of the
CSR expressed as zα ¼ rα expfiθαg. They are shown in
Figs. 4(d) and 4(e) for the three bulk RMT ensembles. In
Fig. 5, we compare them with the marginal distributions
for all the physical spin-chain examples discussed in

Sec. III, finding excellent agreement with RMT predictions
when the length L of the chain becomes large. Our results
illustrate RMT universality in the full tenfold classification
of Lindbladians with unbroken T þ symmetry.
Through the use of bulk CSR, we can only resolve the

value of C2þ (which is manifest in some panels of Fig. 5,
where we group together results for different symmetry
classes that share the same level repulsion). We now discuss
numerical signatures that can also distinguish the values
of C2− and T 2

−.

C. Statistics of real and imaginary eigenvalues
and eigenvalues close to the origin

In Hermitian systems, particle-hole and chiral sym-
metries manifest themselves in the eigenvalues near the
origin, because these symmetries reflect the spectrum
across it. Not only are universal local correlations in this
region distinct from the bulk, even the spectral density is
universal in a certain microscopic limit and determined
only by the symmetry [3–5]. The same reasoning leads to
the speculation that in order to obtain local information on
C− and T � symmetries, we need to restrict our attention
to the vicinity of the axis of symmetry of the spectrum. The
effects of these symmetries on the correlations near the
origin have been addressed in the Ginibre [22,23] and non-
Ginibre classes [28], while universal statistics of real
eigenvalues were studied for the real Ginibre [16–18]
and non-Ginibre classes [29].
First, we point out that the statistics of the eigenvalues

closest to the origin, employed in Ref. [28] as a signature of
different symmetry classes, are affected by the existence of
exact zero modes of L0 in some of our families of spin-1=2
chains. The existence of these zero modes for all realiza-
tions of disorder induces additional level repulsion from
the origin, altering the distribution of nonzero eigenvalues
closest to it. As an example of this phenomenon, we
mention the chain with spin injection, belonging to class
BDI, which supports two exact zero modes. In principle, if
the number of zero modes does not scale with system size,
one could study the distribution of the eigenvalues closest
to the origin for each number of zero modes.
More critically, we also find that for our examples in

disordered spin chains, the statistics of eigenvalues on or
near the axes of symmetry are nonuniversal because of the
spontaneous breaking of PT symmetry [37]. In Ref. [29] it
was found that, in the ergodic regime (in which RMT
behavior is expected), the number of real eigenvalues in the
spectra of some physical non-Hermitian Hamiltonians is
universal and equal to the random matrix value ∝

ffiffiffiffi
D

p
,

with D the Hilbert space dimension. In contrast, for
Lindbladians with dihedral symmetry, the fraction of real
and imaginary eigenvalues and its statistics depend on the
relative strength g of the non-Hamiltonian part of the
Lindbladian (g can be, for instance, the dephasing strength
γ or the spin-injection rate a). For g < gPT, with finite

FIG. 4. Complex spacing ratio distribution of random matrices
in the three bulk classes A, AI†, and AII†. The distribution of z in
the complex plane (a)–(c) has a characteristic donutlike shape.
The hole at the origin and the low probability at small angles
θ ¼ 0 are a sign of level repulsion and increase from class AI† to
A to AII†. We obtain these distributions numerically from exact
diagonalization of an ensemble of 215 × 215 random matrices
with 28 realizations. We note that good analytical approximations
exist for class A [25,58], but not for classes AI† and AII†. A more
quantitative comparison can be done by studying the marginal
(d) radial and (e) angular distributions. These distributions are
compared against the physical spin-chain results in Fig. 5.
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size-dependent critical gPT , all eigenvalues of the shifted
Lindbladian L0 reside on the cross formed by the real and
imaginary axes (PT-unbroken phase) [37]. At g ¼ gPT
(the first exceptional point), a pair of eigenvalues on the
cross collides and shoots off into the complex plane,
spontaneously breaking PT symmetry, and, consequently,
reducing the number of real or imaginary eigenvalues. As
g increases further, more collisions of eigenvalues occur.
The change in the number of real eigenvalues for the
dephasing spin chain in class BDIþþ as a function of γ is
illustrated in Fig. 6. Concomitantly with the nonuniver-
sality of the number of eigenvalues on the axes of
symmetry, we also find their statistics to be nonuniversal
and depend sensitively on the coupling g. As a conse-
quence, we are not able to employ the statistics of,
say, purely imaginary eigenvalues as a diagnostic of the
symmetries and RMT universality in Lindbladian classes.

We expect that for g ≫ gPT, i.e., deep in the PT-broken
phase, the number of real and imaginary eigenvalues
becomes universal and their statistics obey RMT. In
particular, in the thermodynamic limit, we expect gPT → 0
[37], and, hence RMT statistics for all nonzero dissipa-
tion. However, since we have only access to relatively
small system sizes and the disorder changes the precise
value of gPT from realization to realization, we do not
pursue this question further in this work, and instead turn
to an alternative signature of the different symmetries that
works at any coupling g.

D. Eigenvector overlaps

Having ruled out the prospect of inferring antiunitary
symmetries of Lindbladians through local spectral infor-
mation near the symmetry axis, we turn to the possibility of

FIG. 5. Complex spacing ratio distribution of all the spin-chain examples discussed in Sec. III. In each panel, we show the marginal
radial distribution for different chain lengths (colored lines) and compare it with the random matrix prediction of Fig. 4 (black line). In
the insets, we show the marginal angular distribution. In all cases, we observe excellent agreement with the universal RMT result as L
increases, while there are also very strong finite-size effects, which complicates a comparison for L ¼ 5 and 6.
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using nonlocal bulk information. To that end, we consider
the Chalker-Mehlig eigenvector overlap matrix [40,59]:

Oαβ ¼ hϕ̃αjϕ̃βihϕβjϕαi: ð101Þ

Note that this definition applies only in the case of classes
without non-Hermitian Kramers degeneracy. If each eigen-
value is doubly degenerate and the eigenspace dimension
is two, each element Oαβ becomes itself a 4 × 4 matrix,
and additional care has to be exerted. Since classes with
Kramers degeneracy do not occur in the Lindbladian
classification, we defer such considerations to future work
and do not consider this case further in this paper.
The overlap matrix, in particular the distribution of its

entries and the first moments, have been intensely inves-
tigated for the Ginibre ensembles [40,59–63]. The diagonal
overlapsOαα are sensitive to C2þ, a claim we have confirmed
numerically. However, since local eigenvalue statistics—
measured, for instance, by CSR—are already sensitive to
this symmetry, we do not employ it in this paper.
Instead, we propose that the off-diagonal overlaps Oαᾱ,

where fjϕαi; jϕ̃αig and fjϕᾱi; jϕ̃ᾱig are connected by an
antiunitary symmetry T � or C−, are sensitive to the value of
the square of that symmetry. More concretely, we begin by
making the following empirical observations for random
matrices.
(1) If jϕ̃ᾱi ∝ C−jϕαi, the overlaps Oαᾱ (denoted OðC−Þ

αᾱ

for clarity) are all non-negative if C2− ¼ þ1, and all
nonpositive if C2− ¼ −1. If C2− ¼ 0 (i.e., if the
symmetry is absent and the eigenvectors are inde-
pendent), the overlaps are still real for spectra with
dihedral symmetry, and the fraction of positive and
negative matrix elements is 1=2 each. For classes
with no C− symmetry and no dihedral symmetry, the
overlaps are complex.

(2) If jϕᾱi ∝ T −jϕαi and T 2
− ¼ −1, the overlaps Oαᾱ

(denoted OðT −Þ
αᾱ ) all vanish identically. If T 2

− ¼ þ1
or 0, they assume arbitrary complex values.

In turn, these two statements can be proven in general by
a variation of the proof of Kramers degeneracy. Let us
denote byA one of the four antiunitary operators T � or C�.
Then, for any two vectors ψ and ϕ, we have

hψ jAϕi ¼ hAψ jA2ϕi� ¼ A2hAψ jϕi� ¼ A2hϕjAψi;
ð102Þ

where we use the antiunitariry of A and the fact that A2

is either �1. In order to prove assertion 1, following
Sec. IVA, we note that

jϕ̃ᾱi ¼ C−jϕαi; jϕᾱi ¼ C−jϕ̃αi; ð103Þ
where, without loss of generality, we set a possible
proportionality constant to one. Then, using Eq. (102),
the overlap matrix reads

OðC−Þ
αᾱ ¼ hϕ̃αjC−jϕαihϕ̃αjC†−jϕαi

¼ C2−hϕαjC−jϕ̃αihϕ̃αjC†−jϕαi
¼ C2−jhϕαjC−jϕ̃αij2; ð104Þ

and we conclude that the overlap matrix element OðC−Þ
αᾱ has

the same sign as C2−, proving assertion 1. In order to prove
assertion 2, we note instead the relation between the two
right eigenvectors:

jϕᾱi ¼ T −jϕαi: ð105Þ
Using Eq. (102), it immediately follows that

hϕαjT −jϕαi ¼ T 2
−hϕαjT −jϕαi: ð106Þ

If T 2
− ¼ −1, this matrix element and, consequently, the

overlap

OðT −Þ
αᾱ ¼ hϕ̃αjT −jϕ̃αihϕαjT †

−jϕαi ð107Þ
vanish identically, proving assertion 2.

FIG. 6. Spectrum of L0 in the complex plane for the dephasing spin chain with Hamiltonian HXYZ þHX (Sec. III A) for L ¼ 4 and
different dephasing strengths γ. The remaining parameters are given in the Appendix. For small γ (a), PT symmetry is unbroken and the
whole spectrum lives on the real and imaginary axes. For large enough γ (b), a series of exceptional points occurs, with a pair of
eigenvalues on one of the symmetry axes colliding and shooting off into the complex plane, spontaneously breaking PT symmetry. For
very large γ (c), most of the spectrum lives in the complex plane. This phenomenon of spontaneous PT symmetry breaking renders the
number of real and purely imaginary eigenvalues, and their statistics, nonuniversal, and we do not use them to characterize the
symmetries and correlations of Lindbladians.
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Very importantly, explicit knowledge of the operator C�
or T � is not required to compute the respective eigen-
vector overlaps. To construct the overlap matrix, the
eigenvalues are ordered by increasing real part and, for
each pair of complex conjugated eigenvalues, by increas-

ing imaginary part. With this ordering, the overlaps OðCþÞ
αᾱ

lie on the main diagonal Oαα of the matrix Oαβ; the

overlaps OðC−Þ
αᾱ are the antidiagonal elements Oα;D−αþ1,

where D is the sector dimension; the overlaps OðT þÞ
αᾱ are

the elements O2α−1;2α; and, finally, the overlaps O
ðT −Þ
αᾱ are

the elements O2α−1;D−2αþ1 and O2α;D−2αþ2.

The overlaps OðC−Þ
αᾱ and OðT −Þ

αᾱ , together with the CSR
distribution, are enough to distinguish the ten Lindbladian
classes with unbroken T þ symmetry, as illustrated in

Fig. 7. We compute OðAÞ
αᾱ , A ¼ C−; T −, in the bulk for

the randomly sampled disordered spin chains of each

FIG. 7. Decision tree illustrating the possibility of distinguishing the full Lindbladian tenfold classification by jointly employing the
dihedral symmetry of the spectrum, the complex spacing ratio distribution (denoted as 0 for bulk level repulsion of class A and þ1 for

class AI†), the sign of the off-diagonal eigenvector overlap OðC−Þ
αᾱ , and whether or not the overlaps OðT −Þ

αᾱ are identically zero.

TABLE II. Signatures of C− and T − symmetries in eigenvector overlaps for all the spin-chain examples discussed in Sec. III. Each set
of examples (dephasing, spin injection or removal, incoherent hopping, and simultaneous incoherent hopping and dephasing) realizes
different classes depending on the choice of Hamiltonian, conserved parity sectors, and the parity of the chain length L. The examples
are listed in the same order as discussed in Sec. III. For each, we give the corresponding symmetry class, the values of the square of the

two antiunitary symmetries C− and T −, whether the sign of the off-diagonal overlap OðC−Þ
αᾱ is mostly non-negative or nonpositive,

together with the fraction of times this happens, and whether the off-diagonal overlapOðT −Þ
αᾱ is mostly zero or nonzero, together with the

fraction of times this happens. We see that the criteria we put forward for the values of C2− and T 2
− are always satisfied at least 99.9% of

the time and all the predictions of Sec. III are verified.

Example Class C2− T 2
− ReOðC−Þ

αᾱ OðT −Þ
αᾱ

Deph., HX, Ux ¼ þI , L even BDIþþ þ1 þ1 ≥ 0, 100% ≠ 0, 99.98%
Deph., HX, Ux ¼ þI , L odd BDI−þ þ1 −1 ≥ 0, 100% ¼ 0, 99.98%
Deph., HX, Ux ¼ −I , L even CI−− −1 −1 ≤ 0, 100% ¼ 0, 99.92%
Deph., HX, Ux ¼ −I , L odd CIþ− −1 þ1 ≤ 0, 100% ≠ 0, 99.99%
Deph., HXYZ þHX , Ux ¼ þI BDIþþ þ1 þ1 ≥ 0, 100% ≠ 0, 100%
Deph., HXYZ þHX , Ux ¼ −I CIþ− −1 þ1 ≤ 0, 100% ≠ 0, 100%
Deph., HXYZ þHX þHY BDI† 0 0 ≤ 0, 50.12% ≠ 0, 100%
Deph., HXYZ þHX þHY þHZ AI 0 0 ≤ 0, 50.07% ≠ 0, 99.999%
Spin inj., Uz ¼ þI , L even BDI þ1 0 ≥ 0, 100% ≠ 0, 100%
Spin inj., Uz ¼ þI , L odd CI −1 0 ≤ 0, 100% ≠ 0, 100%
Spin inj., Uz ¼ −I , L even CI −1 0 ≤ 0, 100% ≠ 0, 100%
Spin inj., Uz ¼ −I , L odd BDI þ1 0 ≥ 0, 100% ≠ 0, 100%
Inc. hopping, Uz

L ¼ Uz
R ¼ þI BDI† 0 0 ≤ 0, 51.01% ≠ 0, 100%

Inc. hopping þ deph., Ux ¼ þI , L even AIþ 0 þ1 ≥ 0, 50.50% ≠ 0, 100%
Inc. hopping þ deph., Ux ¼ þI , L odd AI− 0 −1 ≥ 0, 50.44% ¼ 0, 99.98%
Inc. hopping þ deph., Ux ¼ −I , L even AI− 0 −1 ≥ 0, 50.06% ¼ 0, 99.94%
Inc. hopping þ deph., Ux ¼ −I , L odd AIþ 0 þ1 ≥ 0, 51.20% ≠ 0, 100%
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example. The fraction of positive, negative, and zero OðC−Þ
αᾱ

and of zero and nonzero OðT −Þ
αᾱ in each class are listed in

Table II. We conclude that in all of them, the criteria for C2−
and T 2

− are satisfied for at least 99.9% of realizations
and our examples conform spectacularly to random-matrix
universality, confirming the tenfold classification of many-
body Lindbladians with unbroken T þ symmetry put
forward in previous sections.

V. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this work, we put forward a symmetry classification
of many-body Lindbladian superoperators and confirm it
through a study of random-matrix correlators in experi-
mentally implementable dissipative spin chains. We find
that Lindbladians without unitary symmetries and
Lindbladians with symmetries in steady-state symmetry
sectors belong to one of ten non-Hermitian symmetry
classes. These classes are characterized by the existence
of a T 2þ ¼ þ1 symmetry implemented by the SWAP

operator. Going beyond sectors with steady states breaks
the T þ swap symmetry between the two copies (bra and
ket) of the system and, consequently, enriches the sym-
metry classification.
Interestingly, we find compelling evidence that C2þ ¼ −1

and T 2þ ¼ −1 symmetries cannot be implemented inside
individual symmetry sectors, reducing the allowed number
of classes of many-body Lindbladian from 54 to 29. This
conclusion does not exclude the possibility of a C2þ ¼ −1
connecting different sectors. Indeed, such a symmetry can
be implemented between two sectors of odd fermionic
parity [45]. As a consequence, all eigenvalues are doubly
degenerate, but the two eigenvalues of a given pair belong
to different sectors, thus not defining a symmetry class with
Kramers degeneracy.
The Cþ symmetry of a given class can be detected

through the use of bulk complex spacing ratios, while C−
and T − symmetries require the study of correlations on or
near the axes of symmetry of the spectrum. Because of the
spontaneous breaking of PT symmetry, we find eigenvalue
correlations on these axes not to be useful in practice.
Instead, we propose the eigenvector overlaps between
states connected by the antiunitary symmetry of interest
as a useful new signature of non-Hermitian antiunitary
symmetries. Importantly, they can be computed even when
the explicit form of the symmetry transformation is not
known. The role of these off-diagonal eigenvector overlaps
as a measure of dissipative quantum chaos deserves further
study. We use the sign of different overlaps as a proxy for
the existence or absence of a given non-Hermitian anti-
unitary symmetry, but do not study in any detail their
distributions. While a numerical study is the natural first
step, an analytical investigation following Chalker and
Mehlig [40] might be possible.

Our work complements ongoing effort to characterize
PT-symmetric Lindbladian dynamics [37,38,64–68]. Note
that PT symmetry is nothing but pseudo-Hermiticity of the
dynamical generator. The definition of PT symmetry put
forward in Ref. [66], which we would propose to call a
strong PT symmetry (or strong pseudo-Hermiticity), clearly
implies the existence of a pseudo-Hermiticity transformation
Q� of the Lindbladian but, by allowing for shifts of the
Lindbladian spectrum, our classification goes beyond that
definition and includes Lindbladians with weak pseudo-
Hermiticity (weak PT symmetry). Remarkably, pseudo-
Hermiticity has observable consequences in the transient
quantum dynamics. More concretely, the dihedral symmetry
of the spectrum implies the existence of a time-reversal-like
property of certain correlation functions, despite the dynam-
ics being dissipative. Furthermore, if the pseudo-Hermiticity
is not spontaneously broken, then there is collective decay of
the eigenmodes, as all eigenvalues of the shifted Lindbladian
are either purely real or purely imaginary.
Finally, our work also does not address the relation

between the non-Hermitian classification of dynamical
generators and the Hermitian classification of steady states.
The two classifications are decoupled for quadratic open
quantum systems [35], but it is unclear, at this point, if there
exists any correspondence between the Altland-Zirnbauer
class [1] of the steady state and the corresponding dynami-
cal Bernard-LeClair class of the generator in the many-
body case. A simple one-to-one correspondence cannot
exist because Lindbladians in any of the five classes with
C2þ ¼ þ1 lead to a featureless steady state proportional to
the identity [as follows from Eq. (39)], but there could still
exist a more limited correspondence between the remaining
five classes and a subset of the Altland-Zirnbauer classes.
We leave a matching of symmetries on both sides (if any
exists) for future work.
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APPENDIX: DETAILS ON THE NUMERICAL
SIMULATIONS

In this appendix, we provide additional details on the
numerical sampling of spin chains and the analysis of
random-matrix correlators.
As mentioned in Sec. III, we always consider spin

chains of L sites with periodic boundary conditions and
consider nearest-neighbor and next-to-nearest-neighbor
interactions. More specifically, we restrict the couplings
Jx;y;zjk in Eqs. (75) and (87) to Jx;y;zj;jþ1, the couplings Kjk in
Eq. (67) to Kj;jþ1 and Kj;jþ2, and the couplings γjkl and
ηjkl in Eq. (92) to γj;jþ1;jþ2 and ηj;jþ1;jþ2, respectively.
To perform the statistical analysis of random-matrix

correlations, we consider random (i.e., quenched disor-
dered) spin chains. For a given coupling g, we either choose
a fixed value g ¼ g0 or sample it from a box distribution
in ½g0 − dg; g0 þ dg�, in which case we denote it as
g ¼ g0 � dg. The values of the couplings in the different
examples (in the order discussed in Sec. III) are as follows
(we suppress the site indices, which were already dis-
cussed above).
(1) Dephasing, HX: γ ¼ 1.1� 0.9, K ¼ 1.0, and

gx ¼ 0� 2.1.
(2) Dephasing, HXYZ þHX: γ ¼ 1.1� 0.9, Jx ¼ 1.0,

Jy ¼ 0.8, Jz ¼ 0.55, and gx ¼ 0� 0.7.
(3) Dephasing, HXYZ þHX þHY : γ ¼ 1.1� 0.9,

Jx ¼ 1.0, Jy ¼ 0.8, Jz ¼ 0.55, gx ¼ 0� 0.7, and
gy ¼ −0.1� 0.9.

(4) Dephasing,HXYZ þHX þHY þHZ: γ ¼ 1.1� 0.9,
Jx ¼ 1.0, Jy ¼ 0.8, Jz ¼ 0.55, gx ¼ 0� 0.7,
gy ¼ −0.1� 0.9, and h ¼ 0.2� 0.3.

(5) Spin injection and removal: a ¼ 0.8� 0.4,
b ¼ 0.7� 0.5, Jx ¼ 1.0, Jy ¼ 0.8, and Jz ¼ 0.55.

(6) Incoherent hopping: Mx ¼ ð0.3þ 0.2iÞ � ð0.2þ
0.5iÞ, My ¼ ð0.5 − 0.4iÞ � ð0.4þ 0.1iÞ, Jx ¼ 1.0,
Jy ¼ 0.8, Jz ¼ 0.55, and h ¼ 3� 2.

(7) Incoherent hopping plus dephasing: γ ¼ 1.1� 0.9,
η ¼ 0.4, K ¼ 0.8, h ¼ 0� 0.7.

For the examples with a Liouvillian weak symmetry, we
consider chains of length L ¼ 5, 6, 7, and 8, corresponding
to symmetry sectors of size 22L−1 ¼ 512, 2048, 8192, and
32 768, respectively. For the example with a Liouvillian
strong symmetry, we also consider L ¼ 5, 6, 7, and 8,
which, in this case, correspond to sector dimensions of
22L−2 ¼ 256, 1024, 4096 and 16 384, respectively. For the
examples without unitary symmetries, we study chains
of length L ¼ 5, 6, and 7, corresponding to irreducible
Liouvillians of dimension L ¼ 22L ¼ 1024, 4096, and
16 384, respectively.
The eigenvalues and eigenvectors are obtained by

numerical exact diagonalization. At least 106 eigenvalues
were considered when computing the complex spacing
ratio distribution and at least 2 × 106 eigenvectors for
the overlap matrix, for which we restrict ourselves to sizes

L ¼ 5 and L ¼ 6. Since we are interested in the bulk
correlators, we selected only the eigenvalues with both real
and imaginary parts larger than 10−6 (in absolute value) and
their corresponding eigenvectors.
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