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Over the recent years, coherent, time-periodic modulation has been established as a versatile tool for
realizing novel Hamiltonians. Using this approach, known as Floquet engineering, we experimentally
realize a long-ranged, anisotropic Heisenberg model with tunable interactions in a trapped ion quantum
simulator. We demonstrate that the spectrum of the model contains not only single-magnon excitations,
but also composite magnon bound states. For long-range interactions with the experimentally realized
power-law exponent, the group velocity of magnons is unbounded. Nonetheless, for sufficiently strong
interactions, we observe bound states of these unconventional magnons which possess a nondiverging
group velocity. By measuring the configurational mutual information between two disjoint intervals, we
demonstrate the implications of bound-state formation on the entanglement dynamics of the system. Our
observations provide key insights into the peculiar role of composite excitations in the nonequilibrium
dynamics of quantum many-body systems.
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I. INTRODUCTION

Recent conceptual and technical progress has enabled the
controlled study of quantum magnetism with quantum
simulators and quantum processors. For example, the
dynamics of magnons, which are itinerant flipped spin
excitations that propagate through the system by the super-
exchange mechanism [1–3], has been probed in quantum gas
microscopes [4]. Already in the early 1930s, it was realized
that, in addition to isolated magnons, bound states of
magnons exist as low-energy excitations of a ferromagnet
[1]. For short-range superexchange interactions, the remark-
able light-cone dynamics of magnon bound states has been
investigated [5], and their robustness has recently been
demonstrated as well [6]. Long-range spin interactions
significantly modify this picture. When considering

long-range spin flip-flop interactions, as realized by trapped
ions in a strong transverse field [7–9], magnons can acquire
an unbounded group velocity [10,11]. Hence, they are rather
exotic quasiparticles.
This raises the question of whether interactions between

magnons, which enable the bound-state formation in the
short-range model, can also stabilize bound states in a long-
range spin chain. Recent theoretical work suggested that
this is indeed the case [12]. It remains an open challenge to
experimentally realize and control models which allow for
the observation of such bound states. In particular, scaling
of quantum simulators to tens of trapped ions requires
considerable technological developments. It is not obvious
whether a model can be experimentally implemented with
sufficient fidelity for large systems and long times in the
presence of noise which is inevitably present in any
experiment. The anisotropic, long-range Heisenberg model
can be implemented with trapped ions via Floquet engi-
neering [13]. However, care has to be taken to design
Floquet sequences that protect the quantum state against
ambient noise and rotation errors.
In this work, we overcome these challenges and inves-

tigate bound-state dynamics in the long-range, anisotropic
Heisenberg model realized in a linear string of ions, where
two electronic states of the ion represent a spin 1=2.
Spin-spin interactions can be engineered by illuminating
the ions with a bichromatic laser beam. This coupling gives
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rise to an effective long-range Ising interaction HXX ¼P
i<j Jijσ

x
i σ

x
j [14] with spin-spin couplings that decay

approximately algebraically with distance, Jij ¼ J=ji − jjα.
A key challenge is to enrich the set of available spin-spin
interactions, starting from the long-range Ising interactions.
By applying a strong transverse field, obtained by intro-
ducing either a third laser frequency component or by
shifting the frequency of the bichromatic beam, spin-
changing processes are penalized. This effectively realizes
the long-range XY model describing flip-flop dynamics of
spins [7,8]. Enhancing the symmetry of the spin inter-
actions from a discrete Ising to a continuous XY symmetry
enables, for example, the spectroscopy of quasiparticle
excitations [11], the variational simulation of target
Hamiltonians with related symmetries [15], the study of
hydrodynamic spin transport [16], and the observation of
spontaneous breaking of a continuous symmetry [17].
However, in the long-range XY model, direct interactions
between magnons, which are necessary for bound-state
formation [12], are absent. In order to realize these
interactions between magnons, we resort to Floquet engi-
neering [13] and implement basis rotations such that the
averaged Hamiltonian in the high-frequency limit yields the
long-range, anisotropic Heisenberg model

Ĥ ¼ 1

3

X
i<j

Jijðσ̂xi σ̂xj þ σ̂yi σ̂
y
j þ Δσ̂zi σ̂

z
jÞ; ð1Þ

where σ̂x;y;z are the Pauli matrices and Δ determines the
Ising interactions between the magnons; see Fig. 1(a).

Several implementations of long-range Heisenberg models
have been proposed; see, for example, Refs. [18–20].

II. EXPERIMENTAL REALIZATION

In our experiments, long-range Heisenberg models are
realized in a linear string of 20 40Caþ ions confined in a
linear Paul trap with a low axial trapping frequency of
92 kHz and radial trapping frequencies of 2.926 and
2.894 MHz, respectively. The ion crystal is laser cooled
by Doppler and polarization gradient cooling, and its
transverse modes are prepared close to their ground states
by resolved sideband cooling. Qubits are encoded in the
Zeeman levels j↓i ¼ jS1=2; m ¼ þ1=2i and j↑i ¼ jD5=2;
m ¼ þ5=2i and manipulated with a narrow-linewidth laser
at 729 nm. Single-qubit rotations are achieved by a steer-
able, tightly focused laser beam inducing differential ac-
Stark shifts between the qubit states of a single ion. In
combination with a second laser beam resonantly cou-
pling to all qubits with nearly the same strength, arbitrary
single-qubit rotations can be achieved by sandwiching ac-
Stark pulses between a pair of resonant π=2 pulses.
Single-qubit addressing is used for preparing spatially
structured initial states and for the measurement of spin-
spin correlations [21].
The laser beam coupling to all ions is also used for

engineering effective Ising-type spin-spin interactions.
Entanglement between the qubits is generated by a
bichromatic light field that off-resonantly couples the
qubits to the collective motional modes from the direction

(a) (c) (d)

(b)

FIG. 1. Floquet engineering of the long-range, anisotropic Heisenberg model and measured dispersion relations. (a) The low-energy
excitations of the ferromagnetic state in the long-range, anisotropic Heisenberg model consist of isolated magnons (red) and bound states
thereof (blue). These excitations move and interact with each other by long-range spin exchange couplings. (b) The Hamiltonian is
experimentally realized from conventional long-range Ising interactions (illustrated by blocks of XX and YY) by Floquet engineering,
which induces rotational symmetry in the XY plane of the spin and tunable ZZ interactions. (c) Plane-wave spectroscopy of the single-
magnon excitation energy indicates a cusp singularity at low momentum consistent with the theoretical prediction (red dashed line).
Inset: The group velocity vðkÞ diverges in the long-wavelength limit. (d) Plane-wave spectroscopy of two-magnon states measured for
strong interactions Δ ¼ 3 shows a well-defined resonance at large momenta. Measurements agree well with theoretical computations
(red dashed line). Inset: The velocity of the magnon bound state stays finite even when approaching the region of instability at small
momenta, indicated by the gray area.
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perpendicular to the ion crystal. The wave vector of the
light encloses a 45(5)° angle with each of the two radial
principal axes of the harmonic trapping potential, leading
to a coupling with all radial collective modes of motion.
The frequencies of the radial modes cover a range of
137 kHz, the center-of-mass mode at 2.926 MHz having
the highest frequency. The two frequency components of
the laser beam are detuned by �40 kHz from the blue
and the red sidebands of the highest-frequency mode of
the ion crystal, giving rise to a long-range effective Ising
coupling HXX ¼ P

i<j Jijσ
x
i σ

x
j that decays approximately

as Jij ¼ J=ji − jjα with a maximum coupling strength of
J ¼ 369 rad=s and a power-law exponent of α ¼ 1.4; see
Appendix F for a discussion on the choice of α.
For the realization of the long-range, anisotropic

Heisenberg model, we use a Floquet decomposition of
the evolution operator [Fig. 1(b)]; see Appendix A and
also Ref. [22]. The anisotropy Δ is controlled by setting the
relative length of the Floquet substeps. To reduce the
impact of dephasing noise, we implement the basis rotation
between the Floquet substeps as dynamical decoupling
pulses. Furthermore, the inhomogeneous coupling of the
Gaussian laser beam, that induces collective spin rotations,
causes rotation errors. These errors are mitigated by
alternating the direction of the basis rotations. The laser
pulses of the individual Floquet steps are shaped to reduce
spectral overlap with the radial motional modes. Related
Floquet protocols which enhance the symmetries of the
model by driving have, for example, recently been devel-
oped for Rydberg atoms [23,24] and trapped ions [22,25].

III. SINGLE- AND TWO-MAGNON DISPERSION
RELATIONS

The dispersion of a single-magnon excitation does not
depend on the spin interaction Δ, except for an overall
constant offset. Using plane-wave spectroscopy introduced
in Ref. [11], we characterize the dispersion ε1ðkÞ of a single
magnon (see Appendix B for details) [Fig. 1(c)]. For all
momenta in the Brillouin zone, we measure a resonance,
indicating the existence of a well-defined quasiparticle
excitation. We find that the magnon velocity vðkÞ ¼
∂kε1ðkÞ diverges in the long-wavelength limit, which
becomes manifest by the cusp of the dispersion at zero
momentum. The single-magnon dispersion can be readily
computed analytically ε1ðkÞ ¼ ð4J=3ÞP∞

l¼1½cosðklÞ −
Δ�=lα and is in good agreement with the measured data.
This solution also shows that the maximal magnon velocity
is unbounded for 1 < α ≤ 2. The experimentally studied
case of α ¼ 1.4 is well within this range. As a consequence
of the diverging group velocity, a local magnon excitation
propagates arbitrarily fast.
Given the unconventional properties of the single-

magnon excitation, in particular, their unbounded velocity,
it is a priori unclear whether the model supports bound
states of two magnons. Here, we develop a technique for

measuring the spectrum of two-magnon excitations by
initializing the system approximately in a plane wave of
two magnons situated next to each other, which can be
achieved by perturbatively acting with long-range Ising
interactions for a short period and tomographically recon-
structing the two-site density matrix after an evolution
with the long-range, anisotropic Heisenberg model (see
Appendix C). We show in the appendix that the dominant
bound state consists of two magnons situated next to each
other, which motivates the preparation of the plane-wave
initial state with two neighboring flipped spins. For
extremely strong interactions Δ ≫ 1, the long-range poten-
tial can host even further bound states, which are predomi-
nantly found at larger distances (see Appendix G). In
general, there are two competing effects: Increasing the
interaction strength Δ favors the formation of bound states,
and lowering α, which, in turn, increases the range of
interactions, tends to destabilize them (see Appendix F).
The results of this measurement of the dominant bound
state are shown in Fig. 1(d) for strong magnon interaction
Δ ¼ 3. For low momenta k≲ π=4, the spectral weight is
distributed over a large energy window. By contrast, for
high momenta k≳ π=4, a sharp resonance emerges, which
is indicative of the formation of a bound state.
We compare the measurement signal with the dispersion

of the magnon bound state ε2ðkÞ, that we obtain from
solving the two-body problem numerically, and find good
agreement. The following features of the measurement
should be emphasized: On the one hand, the bound-state
dispersion law does not stretch across the whole Brillouin
zone but becomes unstable upon approaching the long-
wavelength limit. On the other hand, the group velocity of
the composite two-magnon excitation remains always
finite, in particular, also when approaching the unstable
regime at low momenta. As a consequence, the bound state
of two magnons should possess a well-defined light cone.
This is in stark contrast with the single-magnon case.

IV. DYNAMICS OF MAGNON BOUND STATES

In order to establish the well-defined light cone of the
magnon bound state, we prepare an initial state with two
flipped spins situated next to each other in the center of
the spin chain. Subsequently, we probe the nonequili-
brium dynamics of this initial state under the evolution
of Hamiltonian (1) for different values of the interaction
Δ. The snapshots measured at times t ¼ ð0; tmax=2; tmaxÞ
already exhibit striking signatures of the bound-state
formation [Fig. 2(a)]: At weak interactions Δ ¼ 1.0,
the two magnons propagate freely and are typically
measured at uncorrelated positions in space. By contrast,
when increasing the interactions to Δ ¼ 2.0 or even to
Δ ¼ 3.5, we find them with high probability next to
each other.
To quantitatively analyze the situation, we measure the

single-magnon P↑
j and two-magnon projectors P↑↑

j;jþ1 by
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averaging over a collection of typically 1500 snapshots.
The main contribution to the bound state results from two
magnons located nearby, which is why we evaluate the two-
magnon projector on adjacent sites in the spin chain (see
Appendix E). As a consequence of the diverging group
velocity, single-magnon excitations propagate faster than
linear in time in the thermodynamic limit. For the acces-
sible system size, this results in a broad distribution of the
one-magnon projector for small interactions (Δ ¼ 1.0). The
two-magnon projector, by contrast, quickly decays in time
and does not carry substantial weight in the wave function,
which indicates the absence of a magnon bound state
[Fig. 2 (left column)].
When increasing the interactions to Δ ¼ 2.0 or even to

Δ ¼ 3.5, a distinct behavior is observed [Fig. 2 (middle
and right column, respectively)]. First, the one-magnon

projector spreads slower than for Δ ¼ 1.0. This is incom-
patible with having a significant contribution of single
unbound magnons in the wave function, as their dynamics
are insensitive to the value of the interaction Δ. As a
consequence, the observed signal can be attributed to the
formation of a magnon bound state. This is further
confirmed by measuring the two-magnon projector, which
displays a well-defined light cone with a velocity that is
consistent with the one obtained from the single-magnon
projector. To further support that the effective time evolu-
tion of the Floquet protocol describes the long-range,
anisotropic Heisenberg model, we compare time slices
of the experimental data to numerical simulations and find
excellent agreement [Fig. 2(d)].
We now analyze the magnon bound-state formation for a

large range of interaction strengths Δ, by measuring total

(a)

(b)

(c)

(d)

FIG. 2. Dynamics of magnon bound states. We prepare two magnons in the center of the chain and study their evolution for
interactions and maximum time Δ ¼ 1.0, tmaxJ ¼ 5.5 (left), Δ ¼ 2.0, tmaxJ ¼ 4.1 (middle), and Δ ¼ 3.5, tmaxJ ¼ 3.0 (right),
respectively. (a) Selection of three experimental snapshots measured at time t ¼ ð0; tmax=2; tmaxÞ from bottom to top. For small
interactions (left), magnons typically spread independently, whereas for intermediate and strong interactions (middle and right,
respectively), two magnons are typically found nearby. (b) The one-magnon projector P↑

j spreads quickly for small interactions. It
significantly slows down for strong interactions, for which it mainly captures the bound-state dynamics, indicated by a sharp light cone.
(c) The two-magnon bound-state (BS) projector P↑↑

j;jþ1 decays rapidly for weak interaction (left) but spreads with a light cone for larger
interactions (middle and right), confirming the robust formation of a bound state of two nearby magnons. (d) The experimental
measurements (symbols) for the two-magnon projector are in good agreement with the theoretical predictions (solid lines). Data are
obtained from snapshots, which have been postselected for two excitations. After postprocessing, we retain approximately (22%, 20%,
25%) of typically 1500 measured snapshots. Error bars are obtained from a jackknife analysis of the postprocessed snapshots.
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two-magnon projector
P

j P
↑↑
j;jþ1. This quantity captures

not only the bound state, but also two unbound magnons
that accidentally occupy neighboring lattice sites. To
correct for this effect, we introduce bound-state participa-
tion, in which we normalize the two-magnon projector such
that it discards contributions arising from a random
placement of two magnons on neighboring sites. The
random placement occurs with probability 2=L, which is
sizable for the 20-ion chain considered here (see
Appendix D). This bound-state participation then reaches
a finite value at late times, provided a magnon bound state
exists, and decays to zero otherwise.
In agreement with the light-cone measurements, we find

a vanishing bound-state participation for Δ ¼ 1.0 at late
times and a saturation for larger values of the interaction Δ
[Fig. 3(a)]. The bound-state contribution increases contin-
uously with increasing interactions [Fig. 3(b)] and is in
agreement with our numerical computations. The crossover
in the bound-state participation becomes increasingly
sharp, as we increase the system size. In Appendix E,
we study the finite-size dependence and find a crossover in
the spectrum of the model: Bound states exist for Δ≳ 2.2.
This is consistent with recently reported theoretical
results [12]. We extract the light-cone velocity vBS of
the bound state from the propagation front of the two-
magnon projector, which we identify by the half maximum
of the signal [Fig. 3(c)].

V. DYNAMICS OF MUTUAL INFORMATION

In systems with well-defined quasiparticles, the growth
of entanglement following a quantum quench can be
understood as follows: The initial state creates entangled
quasiparticle excitations that propagate ballistically
through the system [26,27]. In the long-range, anisotropic
Heisenberg model, two competing effects arise. On the
one hand, single magnons spread arbitrarily fast, which
could lead to entanglement growth that is faster than linear
in time. On the other hand, composite bound states of
magnons form, which strongly modify the excitation
content of the state. In order to elucidate the consequences
of the bound-state formation on the entanglement growth,
we study the dynamics of two distinct initial states: one
with two magnons situated next to each other [Fig. 4(a)]
that have a large overlap with the bound state, provided the
interaction is large enough, and one with two magnons that
are separated by one lattice site [Fig. 4(b)]. We then study
the time evolution of this state under the long-range,
anisotropic Heisenberg model and quantify the entangle-
ment between two separated intervals A and B.
One way of quantifying the entanglement between

two separated subregions that are embedded in a larger
environment is achieved by the mutual information
I ¼ SA þ SB − SA∪B, where SA is the von Neumann entan-
glement entropy between the interval A and the rest of the

system Ā. The entanglement entropy can be measured
tomographically [7,28] and its Rényi variants by random-
ized measurements [29] and beam splitter operations [30].
However, proxies for the mutual information can already be
obtained from the snapshots in one computational basis.
Following Ref. [31], the basic idea is to observe that,
for systems which conserve the number of excitations N,
the total density matrix has a block diagonal form

ρ̂ ¼ P
N
n¼0 pðnÞρ̂ðnÞA ⊗ ρ̂ðN−nÞ

Ā
, where pðnÞ is the probabil-

ity of having n magnons in the subsystem A and ρ̂ðnÞA is the
(normalized) reduced density matrix of the subsystem A in
the n-magnon sector. Then, the total entanglement entropy

(a)

(b)

(c)

FIG. 3. Characterizing magnon bound states. (a) For small
interactions (Δ ¼ 1.0), the BS participation vanishes in time,
resembling a random distribution of magnons (see Appendix D).
By contrast, stable plateaus are reached at stronger interactions,
establishing the robust existence of the bound state. (b) The
bound-state participation at time tJ ¼ 2.0 [orange dashed line in
(a)] unveils a crossover from a weak-interaction regime without
bound states to a strong-interaction regime with magnon bound
state at an interaction strength of Δ ≈ 2.2. For comparison, we
show numerical data of the bound-state participation in larger
systems evaluated at late times (gray dashed line). (c) For large
interactions, we determine the velocity of the dominant bound
state from the light cone spreading. Data are obtained from
typically 1000 snapshots, which we postselect for two excita-
tions. We retain approximately 22% of the snapshots at the latest
times. Error bars are obtained from a jackknife analysis of the
postprocessed snapshots.
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SA can be split into a number entropy SN;A and a
configurational entropy SC;A:

SA ¼ SN;A þ SC;A; ð2Þ

where SN;A ¼ −
P

N
n¼0 pðnÞ log½pðnÞ� and SC;A ¼

−
P

N
n¼0 pðnÞTrðρ̂ðnÞA log ρ̂ðnÞA Þ [32,33]. Measuring the con-

figurational entropy exactly has an exponential cost.
Hence, we approximate it for short times and small
correlations between A and Ā by the mutual configurational
entropy [31,34]:

SC;A ≃
X
n

pðnÞ
X

fAng;fĀng
½pðAn ⊗ ĀnÞ − pðAnÞpðĀnÞ�; ð3Þ

where fAng ðfĀngÞ is the set of all the possible magnon
configurations in the local basis in the subsystem AðĀÞ.
Using this approximation yields the proxy Ic for the mutual
information, which we measure in the experiment.
For weak interactions, bound states cannot form. Hence,

the initial state with two magnons next to each other and
the one in which the magnons are separated by one site
should give rise to comparable entanglement dynamics, as
in both cases magnons propagate freely. We find that both
initial states give rise to comparable dynamics of the
configurational mutual information Ic [Fig. 4(c)], confirm-
ing the independent spreading of magnons. In the inset, we

compare the theoretically computed configurational mutual
information Ic with the mutual information I obtained from
the von Neumann entanglement entropy and find good
agreement between the two.
For strong interactions, the situation drastically

changes. In that case, a robust magnon bound state
forms, which reduces the growth of entanglement, as
the bound state behaves effectively as a single particle.
By contrast, when initializing the dynamics with two
magnons separated by one lattice site, the magnons
remain mainly unbound and move freely through the
system, which increases the dynamically accessible
number of configurations, hence leading to higher entan-
glement [Fig. 4(d)]. The insets in Figs. 4(c) and 4(d)
confirm that the observed behavior persists at late times:
The mutual information I saturates to a comparable value
for weak interactions but is distinct for strong inter-
actions, demonstrating the impact of magnon bound
states on the entanglement dynamics.

VI. OUTLOOK

By Floquet engineering, we have realized the long-
range, anisotropic Heisenberg model in a linear crystal of
20 ions. The periodic drive enhances the discrete Ising
interactions realized by sideband modulation to continuous
Heisenberg-type interactions. This enabled us to study
the interaction between magnons created on top of a

(a) (d)(c)

(b)

FIG. 4. Dynamics of mutual information. We realize two distinct initial configurations: (a) one with two magnons next to each other
and (b) one with two magnons separated in space. We characterize the spreading of configurational mutual information between
segments A and B, each consisting of three consecutive spins. (c) For weak interactions (Δ ¼ 0.5), the configurational mutual
information Ic yields similar results for both initial configurations. (d) For strong interactions (Δ ¼ 4.5), a significant difference in the
growth of the mutual information is observed for the two initial configurations. Insets: late-time dynamics and comparison of the
measured configurational mutual information Ic with the conventional mutual information I (see the text for details). Data are obtained
from typically 2200 snapshots, which we postselect for two excitations. We retain approximately 19% of the snapshots at the latest
times. Error bars are obtained from a jackknife analysis of the postprocessed snapshots.
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ferromagnetic state. We experimentally found robust bound
states for strong interactions.
The formation of bound states can have direct implica-

tions on the relaxation dynamics following a quantum
quench in which a finite density of excitations is created.
In our system, bound states will be stable against few-body
scattering processes for large interactions Δ due to energy
conservation. We expect that in this regime the relaxation
will proceed in multiple stages: First, the system relaxes to
an ensemble in which bound states act as well-defined
quasiparticles. Second, bound states can decay due to higher-
order processes giving rise to full thermalization. Other
ergodic systems featuring long-lived composite particles,
such as mesons in confined spin chains [35–37] or doublons
protected by strong interactions in Hubbard models [38–41],
are expected to undergo a similar prethermal relaxation
dynamics. This multistage dynamics should also manifest
itself in entanglement growth as indicated by our measure-
ments on mutual information spreading. In future work, it
will be interesting to investigate such multistage relaxation
dynamics in systems which support long-lived bound states.

Raw data, data analysis, and simulation codes are
available on Zenodo [42].
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APPENDIX A: FLOQUET HAMILTONIAN
REALIZED WITH DYNAMICAL DECOUPLING

The Floquet sequence uses dynamical decoupling to
reduce the impact of dephasing errors caused by variations

in the ambient magnetic field. Furthermore, global rotations
are applied in an alternating fashion to reduce the impact of
systematic over- and underrotations, respectively, caused
by inhomogeneous illumination by the global laser field.
A numerical simulation of the Floquet sequence shows the
robustness against constant detuning errors (Fig. 5). The
dynamically decoupled sequence U maintains a high
fidelity over a much larger detuning range than the simple
Floquet sequence Uð0Þ.
As a consequence of the dynamical decoupling

pulses, the basis of the quantum state is rotated with each
Floquet step. If the number n of Floquet steps is not
an integer multiple of eight (periodicity of Floquet
sequence), the basis has to be rotated accordingly. The
final rotation Rf is (operation on the right applied first)
Rf;n¼1 ¼ R−xðπ=2ÞRyðπ=2Þ, Rf;n¼2 ¼ R−yðπÞRxðπ=2Þ,
Rf;n¼3¼R−xðπ=2ÞR−yðπ=2Þ, Rf;n¼4¼R−xðπ=2Þ, Rf;n¼5 ¼
R−xðπ=2ÞR−yðπ=2Þ, Rf;n¼6 ¼ R−yðπÞRxðπ=2Þ, Rf;n¼7 ¼
R−xðπ=2ÞRyðπ=2Þ, and Rf;n¼8 ¼ R−xðπ=2Þ. Here, RαðθÞ
denotes a rotation around the axis α by an angle θ.
For the experimental implementation of the Floquet

sequence, an important source of error is the resonant
coupling of the entangling light field to the radial motional
modes of the ion crystal. As each Trotter substep is realized
by a finite-length light pulse, the light’s spectrum of the
Floquet sequence is Fourier broadened, with distinct peaks
spanning over several tens of kilohertz. To reduce overlap

(a)

(b)

(c)

FIG. 5. Floquet protocol under dephasing errors. (a) Floquet
Hamiltonian realized with dynamical decoupling. The series of
Floquet steps (dashed boxes) repeats after n ¼ 8 steps. The final
rotation Rf depends on the number of Trotter steps. Here, RαðθÞ
denotes a rotation around the axis α by an angle θ. (b) Floquet
Hamiltonian without dynamical decoupling. (c) We evaluate the
robustness of the Floquet protocol under a dephasing error

δ=2
P

i σ
ðiÞ
z , where δ denotes the detuning between laser and

qubit. The numerical simulation is carried out for a system size of
ten qubits, magnon interactionΔ ¼ 3.5, and a power-law spin-spin
coupling Ji;j ¼ J=ji − jjα with J ¼ 369 rad=s and α ¼ 1.4. The
maximum evolution time is tJ ≈ 3.3, divided into 32 Trotter steps.

OBSERVATION OF MAGNON BOUND STATES … PHYS. REV. X 13, 031017 (2023)

031017-7



with the radial motional modes, we use pulse shaping for
each Trotter substep (Blackman window, rise and fall time
18 μs, respectively).

APPENDIX B: ONE-MAGNON SPECTROSCOPY

In order to examine the dispersion law of single-magnon
excitations ε1ðkÞ, we use plane-wave spectroscopy. We
start by creating a plane-wave superposition state of single-
magnon excitations with given momentum on top of the
ferromagnetic configuration j0i ¼ j↓↓ � � �↓↓i. Plane-wave
initial states can be readily implemented using a sequence
of modulated single-qubit rotations mixing both locally
accessible states of the computational spin basis. For our
purpose, such a rotation can be generated by individual
single-ion rotations around the X axis:

jψ1i ¼ ei
P

j
γAðkÞ

j σ̂xj j0i ¼ j0i þ iγ
X
j

AðkÞ
j σ̂xj j0i þOðγ2Þ:

ðB1Þ

Our goal is to excite plane waves of the form
jki ¼ ð1= ffiffiffiffi

L
p ÞPj e

ikjσ̂xj j0i. For the open boundary con-
ditions realized in the experiment, the momentum is
quantized as k ¼ πn=ðLþ 1Þ for n ¼ 1;…; L. To this
end, we choose the rotation angle to create a superposition

of counterpropagating waves withAðkÞ
j ¼ ffiffiffiffiffiffiffiffiffiffiffiffið2=LÞp

sinðkjÞ.
In the measurements, we choose γ ¼ 0.7 and then post-
process for single-magnon excitations. This implementa-
tion scheme allows us to create arbitrary linear
combinations of single-magnon states. For example, a
superposition of two standing waves with different

momenta k and q can be realized by fixing AðkÞ
j ¼ffiffiffiffiffiffiffiffiffiffiffiffið2=LÞp ½sinðkjÞ þ sinðqjÞ�, from which relative frequen-

cies between the excitations at momentum k and q are
obtained. This has the major advantage that measurements
are performed within a single-magnon number sector, and,
hence, the experiment operates in the subspace that is free
of decoherence between different magnon number sectors.
Having implemented a suitable initial state, we continue

by evolving it under the long-range, anisotropic Heisenberg
Hamiltonian (1). Because the dispersion law of a single
magnon is expected to be independent of the chosen
interaction Δ, we consider the experimentally simplest
case of vanishing interaction Δ ¼ 0. Next, we perform
spectroscopic measurements of the magnon projector P↑

j ¼
1
2
ðσ̂zj þ 1Þ in the evolved state. The measured signal is

hψ1ðtÞjP↑
j jψ1ðtÞi ¼ γ22Re½e−it½ε1ðkÞ−ε1ðqÞ�

× ðhqjP↑
j jki þ h−qjP↑

j jkiÞ� þOðγ3Þ;
ðB2Þ

where nonoscillating contributions are dropped. We fur-
thermore take advantage of the symmetry of the dispersion
law under sign changes of the momentum. The energy
difference ε1ðkÞ − ε1ðqÞ is then obtained by a Fourier
transform. The results in Fig. 1(c) correspond to a choice
of the reference momentum q ¼ π=ðLþ 1Þ as the standing
wave of lowest frequency supported by the chain.

APPENDIX C: TWO-MAGNON SPECTROSCOPY

A straightforward generalization of the one-magnon
spectroscopy to two magnons requires the coherent manipu-
lation of pairs of spins, which is difficult in our experimental
setting. To solve this challenge, we proceed by creating a
coherent superposition of two-magnon states utilizing the
short-time evolution of an Ising Hamiltonian

P
j<j0 Jjj0σ

x
jσ

x
j0

over a period tJ ¼ 0.19. The coupling matrix decays as
Jjj0 ¼ J=jj0 − jjα. As a result, we predominantly obtain two-
magnon states with both magnons situated at neighboring
sites. Configurations with larger separation d of the magnons
are suppressed. To realize a plane-wave initial state of two
close-by magnons, we have to furthermore tune the relative
phase between the individual configurations. This can be
achieved by applying a sequence of single-qubit rotations
with angles fϕjg from the leftmost to the rightmost ion. As a
result, we realize a two-magnon initial state

jψ2i ¼ e−i
P

j
ðϕj=2Þσ̂zje−iγ

P
j<j0 Jjj0 σ̂

x
j σ̂

x
j0 j0i ≈ ei

P
j
ðϕj=2Þ

×
�
j0i − iγJ12

X
j

e−iðϕjþϕjþ1Þj� � �↑j↑jþ1 � � �i
�

þOðγ2Þ: ðC1Þ
By judiciously choosing the phase imprinting ϕj þ ϕjþ1 ¼
jk, we can target the desired plane wave. This state is then
evolved with the long-range, anisotropic Heisenberg
Hamiltonian (1). We obtain the energy of the two-magnon
plane-wave configuration by measuring σ̂−j σ̂

−
jþ1, where

σ̂−j ¼ ðσ̂xj − iσ̂yjÞ=2. This observable connects configurations
of two magnons located next to each other with the
ferromagnetic state j0i:
hψ2ðtÞjσ̂−j σ̂−jþ1jψ2ðtÞi ¼ −iγΓJ12e−ijke−i½ε2ðkÞ−ε0�t þOðγ2Þ:

ðC2Þ
The measurement signal, hence, oscillates with the desired
frequency of the two-magnon excitation. The contrast of the
oscillation frequency carries also information about the
probability amplitude Γ of the bound state in the total
many-body wave function. Performing a Fourier transfor-
mation in time and averaging over sites 8–13 in the center of
the chain to reduce contributions arising from the boundary,
we obtain the dispersion law of the two-magnon bound state
with respect to the ferromagnetic configuration ε0 − ε2ðkÞ,
illustrated in Fig. 1(d).
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APPENDIX D: BOUND-STATE PARTICIPATION

The two-magnon projector P↑↑
j;jþ1 is sensitive to bound

states, as they consist of correlated magnons at a short
relative distance. When two unbound magnons are ran-
domly placed on a chain of L sites, a nonvanishing
expectation value for the projector arises statistically:
hP↑↑

j;jþ1irandom ¼ 2=L. To account for this, we properly
renormalize the bound-state participation shown in
Fig. 3 as

BS participation ¼ 1

1 − 2=L

�XL−1
j¼1

hP↑↑
j;jþ1ðtÞi − 2=L

�
:

ðD1Þ

APPENDIX E: CHARACTERIZATION OF
TWO-MAGNON BOUND STATES

The results presented in the main text indicate a non-
trivial dependence of bound states on the interaction Δ and
momentum k. We now provide a theoretical analysis of the
eigenstates of the long-range, anisotropic Heisenberg
model in the two-magnon sector. A convenient strategy
to detect localized wave functions is to estimate their spatial
support using the inverse participation ratio (IPR). A finite
IPR in the thermodynamic limit indicates a bound state.

Let ψðk; dÞ be a normalized eigenstate in the two-magnon
sector with momentum k and relative distance between
the flipped spins d. Then, the IPR is defined as
IPR½ψðkÞ� ¼ P

L−1
d¼1 jψðk; dÞj4.

We obtain the wave functions numerically by exact
diagonalization of the studied spin Hamiltonian H. We
explicitly implement the magnon number conservation of
the model. This allows us to treat sectors of the Hilbert
space with different magnon numbers separately. The size
of the sector capturing m magnons is thereby given by the
combinatorial factor ðLmÞ, which scales as OðLÞ for one
magnon and as OðL2Þ for two magnons. This enables us to
perform numerically exact simulations for comparatively
large systems up to L ¼ 600 sites.
In Fig. 6(a), we show results of the IPR for the state with

highest energy, representing the probable candidate for a
bound state in the case of repulsive magnon interactions
(Δ > 0). For large systems (L ¼ 600), we find well-
separated regions with finite IPR for Δ≳ 2.2. When
increasing the interaction strength, the regime in which
the bound states exist starts to extend over a larger
momentum range, but it always vanishes at the peculiar
point k ¼ 0, i.e., at the point where the single-magnon
velocity diverges. Simulations carried out with the exper-
imentally realized system size of L ¼ 20 yield qualitatively
similar results, but a non-negligible contribution persists for
smaller interaction Δ; see Fig. 6(a) (inset).

(a) (b)

d

FIG. 6. Theoretically characterizing bound states. (a) We show the inverse participation ratio (IPR) of the two-magnon eigenstates as a
function of momentum k and interaction Δ for comparatively large systems of L ¼ 600. A finite IPR indicates the existence of bound
states, which arise in some part of the Brillouin zone for Δ≳ 2.2. The momentum range in which bound states exist increases with Δ.
Inset: IPR for the experimentally studied system size of L ¼ 20. (b) Examples of the eigenstates for large interaction Δ ¼ 3.0 (upper)
and intermediate interaction Δ ¼ 2.0 (lower). When bound states exist (upper), the dominant contributions to the wave functions results
from neighboring sites in the spin chain, as indicated by sharp peaks of jψðk; dÞj2=jψðk; 1Þj2.
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We study the decay of the bound-state wave function
with relative distance between the magnons in Fig. 6(b).
Within the region featuring stable bound states (Δ ¼ 3,
upper), we find that the bound state decays as a power law
with distance in space (inset). The bound state, therefore,
mainly occupies nearest-neighbor sites, which motivates
the choice of the two-site projector of magnons on
adjacent sites, which we use in the main text. For smaller
interactions (Δ ¼ 2, lower), strong tails emerge in the
wave function that do not decay to zero. Such wave
functions give rise to a vanishing IPR and represent an
extended state.

APPENDIX F: ROLE OF THE POWER-LAW
EXPONENT

Our experimental results presented in the main text are
obtained for the power-law exponent α ¼ 1.4. In the
following, we comment on why this value of α is favorable

for our studies. Our goal is to elucidate the long-range
character of our model. The single-magnon dispersion
diverges at long wavelengths for power-law exponents of
1 < α ≤ 2, which is archetypal for excitations in long-
ranged systems. The theoretically expected dispersion
relations of a single-magnon as well as the two-magnon
bound state for this parameter regime are shown in Fig. 7
for a couple of α. On the one hand, the long-ranged
characteristics of the interactions become more pronounced
when considering small values of α → 1.0; see Fig. 7(a).
This limit has, however, profound consequences for the
magnon bound state. When approaching α → 1.0, the
regime in the Brillouin zone in which the bound state
exists diminishes to a small momentum window around
k ¼ π [Fig. 7(b)]. This makes it much harder to detect and
characterize the bound state experimentally.
On the other hand, considering the opposite limit

α → 2.0, the bound state covers almost the whole
Brillouin zone [Fig. 7(b)]. This regime is, however,
challenging to access experimentally. This is because the
larger the exponent, the weaker the absolute coupling
strength J at a given available laser power. Given the
maximum coherence time of the experiment, this reduces
the maximal effective timescales measured in units of 1=J
that we can reach. The presented value of α ¼ 1.4 allows us
to probe systems of reasonable sizes up to comparable long
times. However, the same phenomenology applies for all
values of α in the range 1 < α ≤ 2.

APPENDIX G: MULTIPLE BOUND STATES
ARISING FROM LONG-RANGED

INTERACTIONS

So far, our results indicate that long-range interactions
between magnons allow one to stabilize a single bound
state, a result qualitatively similar to the model taking
into account only short-ranged interactions. In this
section, we show that the long-range interactions can
stabilize more than one bound state. Increasing the value
of interactions Δ, which stabilizes our bound states, we
identify two qualitative changes in the two-magnon
spectrum (Fig. 8). First, we find additional bound-state
bands splitting off the continuum, giving rise to a
hierarchy of bound states in the strong coupling limit;
see Fig. 8(a). Second, we observe that the probability
distribution functions PðdÞ ¼ P

k jψðk; dÞj2, depicted in
Fig. 8(b), are strongly peaked at certain distances. This
indicates that each bound state is located at a specific
distance. The tightest bound state, which is probed in the
experiment, in particular, is situated on nearest neigh-
bors. This further motivates the choice for the bound-
state projector P↑↑

j;jþ1 used to detect bound states in the
measurements, as the dominant weight for the exper-
imentally studied bound-state wave function arises from
neighboring magnons.

(a)

(b)

FIG. 7. Theoretical single-magnon and bound-state dispersions.
(a) Dispersion relations for a single magnon for values of
α ∈ f1.1; 1.4; 1.7; 2.0g. For α ≤ 2.0, dispersions feature a cusp
in the limit of long wavelengths k → 0, archetypal to long-ranged
models. Signatures for this characteristic are more pronounced
for small α → 1.0, as reflected in higher curvature of the
dispersion. (b) The bound-state dispersion for magnon interaction
Δ ¼ 3.5 shows that the region in the Brillouin zone in which a
stable bound state is formed is pushed toward higher momenta for
decreasing α. The spectroscopically accessible momentum range
for the realized system size is shown as a gray shaded area.
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