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Symmetry-protected topological (SPT) phases are many-body quantum states that are topologically
nontrivial as long as the relevant symmetries are unbroken. In this work we show that SPT phases are also
well defined for average symmetries, where quenched disorders locally break the symmetries, but restore
the symmetries upon disorder averaging. An example would be crystalline SPT phases with imperfect
lattices. Specifically, we define the notion of average SPT phase for disordered ensembles of quantum
states. We then classify and characterize a large class of average SPT phases using a decorated domain wall
approach, in which domain walls (and more general defects) of the average symmetries are decorated with
lower-dimensional topological states. We then show that if the decorated domain walls have dimension
higher than ð0þ 1ÞD, then the boundary states of such average SPT phases will almost certainly be long-
range entangled, with probability approaching 1 as the system size approaches infinity. This generalizes the
notion of t’Hooft anomaly to average symmetries, which we dub “average anomaly.” The average anomaly
can also manifest as constraints on lattice systems similar to the Lieb-Schultz-Mattis theorems, but with
only average lattice symmetries. We also generalize our problem to “quantum disorders” that can admit
short-range entanglement on their own, and develop a theory of such generalized average SPT phases
purely based on density matrices and quantum channels. Our results indicate that topological quantum
phenomena associated with average symmetries can be at least as rich as those with ordinary exact
symmetries.
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I. INTRODUCTION

Symmetry classifies matter [1,2]. In the realm of
symmetry-protected topological (SPT) quantum phases
[3–6], symmetries are required in order to sharply distin-
guish different states of matter. For example, in topological
insulators (TIs) [7,8] the U(1) charge conservation and
time-reversal symmetries must be preserved to distinguish
topological and trivial insulators. In more general terms, a
nontrivial SPT state is short-range entangled (SRE) in the
sense that it can be adiabatically connected to a trivial
unentangled product state, but such adiabatic paths are
forbidden if the “protecting symmetry” is preserved.
A natural question is, how exact does the protecting

symmetry have to be? Specifically, if we have some
quenched disorders that locally break the protecting
symmetry, but on average still respect the symmetry (such

as magnetic impurities in TIs), could the state still be in
some topologically nontrivial phase? In other words, could
average symmetry protect nontrivial topological phases?
Previous studies have shown that some features of SPT

phases in clean systems survive “statistically symmetric”
disorder present on the boundary, which lead to the concept
of “statistical topological insulator” [9,10]. One example is
the three-dimensional (3D) weak TI, made by stacking
layers of a 2D TI. The surface state of the 3D weak TI is
protected against Anderson localization even with strong
disorder, if the translation symmetry along the stacking
direction is restored by disorder averaging [11,12]. A
similar delocalization appears on the surface of a 3D strong
TI subject to a random magnetic field with zero mean [13],
and even richer phenomena were discussed in the presence
of interactions [14–18].
Key questions, however, remain unanswered. Previous

studies focused on the effects of disorders on the boundary.
It is then natural to ask, are the bulk topological phases
sharply defined with average symmetries? If so, what are
their signatures in the bulk, and how could we classify such
phases? This question is particularly relevant for SPT
phases protected by crystalline symmetries [19–21], since
impurities and lattice defects are ubiquitous in crystalline
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solids and the symmetry of an ideal lattice in reality is
respected at best only on average. Of course when the
material sample is of high quality, one can treat the ideal
lattice as a good approximation. However, if the disorders
become non-negligible, does the entire notion of crystalline
SPT phase lose its meaning?
Even for the boundary physics, the problems were

tackled on a case-by-case basis in existing literature.
Given a symmetry group G that contains an average
symmetry G, how do we systematically decide whether
the boundary has to be nontrivial in some way? For free-
fermion states this issue was discussed in Ref. [9], but for
interacting systems the question is largely open. In the
standard theory of clean SPT phases, the nontriviality of the
boundary is ultimately guaranteed by the quantum anomaly
(more precisely, t’Hooft anomaly), which is decided by the
bulk topological invariant. Familiar examples include
the ð3þ 1ÞD TI surface protected by parity anomaly,
and the integer quantum Hall edge protected by chiral
anomaly. So the question about boundary properties can be
rephrases as, does the notion of quantum anomaly exist for
average symmetry? If anomaly can indeed be defined, how
does such “average anomaly” constrain the infrared (IR)
dynamics of the boundary theory?
Systems with t’Hooft quantum anomaly do not only

appear on the boundary. An important class of such
examples includes lattice systems with Lieb-Schultz-
Mattis (LSM) constraints [22–24]. The most familiar
example is a translation invariant lattice spin system with
SO(3) spin rotation symmetry and a spin-1=2 moment per
unit cell. It is known that this system has a mixed t’Hooft
anomaly between the discrete lattice translation and spin
rotation symmetries [25]. As a consequence, the low energy
dynamics cannot be trivial: either the symmetry will be
spontaneously broken or the system will form some long-
range-entangled ground state that is either topologically
ordered or gapless. Similar t’Hooft anomalies also arise for
other internal symmetries as long as they admit projective
representations, and for other lattice symmetries such as
rotation and reflection [26]. Recently, it was shown in
Ref. [27] that, at least for ð1þ 1ÞD spin chains with SO(3)
symmetry, the LSM constraint holds even if the translation
symmetry becomes only an average symmetry. Even
though the argument in Ref. [27] does not make explicit
connection to anomaly, it does suggest that the LSM
anomaly should exist for arbitrary dimensions and for
more general symmetries (such as time reversal). Making
this connection more explicit, precise, and general is an
open direction of great importance.
In this work we address all of the above issues. The key

is to realize the following.
(1) SPT phases, whether in the bulk or on the boundary,

are characterized by the properties of symmetry
defects. The symmetry defects, e.g., twisted boundary
conditions and gauge fluxes, may carry quantized

invariants that can be used to define different phases.
Awell-known example is that in the bulk of a 3DTI, a
unit magnetic monopole carries half-integral electric
charge [28–30].

(2) For an average symmetryG in a disordered ensemble,
even though the ground state in each disorder reali-
zation is not aG eigenstate, we can still define defects
associated with G for the entire ensemble—all we
need is to modify the disorder potential accordingly.

Therefore, by characterizing the defects, or equivalently
domain walls of the average symmetries, we obtain an
understanding of average SPT phases. Essentially, lower-
dimensional states can be decorated onto the domain walls,
similar to the case of clean SPT phases. This “decorated
domain wall” [31] picture turns out to be powerful both in
the bulk and on the boundary.

A. Summary of results

We highlight the main results of this work below. This
part also serves as a map for the rest of this paper.
(1) In Sec. II, we carefully define various basic notions.

(i) We consider a disordered ensemble of local
Hamiltonians HI , where I labels different dis-
order realizations. We consider quenched dis-
orders that are spatially uncorrelated, up to
some exponentially decaying tales.

(ii) We consider two types of symmetries: an exact
symmetry is a symmetry for any disorder
realization, namely HI is invariant under an
exact symmetry for any I; an average sym-
metry, in contrast, does not keep each individual
HI invariant, but transforms HI to a different
disorder configuration HI0 with the same reali-
zation probability. We consider cases where the
ensemble of bulk ground states fjΨIig does not
spontaneously break any symmetry (exact or
average).

(iii) Similar to the study of SPT phases in clean
systems, we demand each HI to have a gapped
unique ground state jΨIi. Furthermore, we
demand different realizations to be adiabati-
cally connected to each other while preserving
the exact symmetries: jΨIi ¼ UT jΨI0 i, where
UT represents a finite-time local Hamiltonian
evolution, or equivalently a finite-depth local
unitary circuit. Ground state ensembles that
satisfy these conditions are dubbed short-
range-entangled ensembles.

(iv) We define two short-range-entangled ensem-
bles to belong to the same average SPT phase if
their Hamiltonians can be continuously tuned to
each other while keeping the ground states
symmetric and short-range-entangled.

(2) In Sec. III, we argue that a powerful way to think
about average SPT phases is to study topological
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defects, such as domain walls and vortices, asso-
ciated with the average symmetry. For an ensemble
that preserves the average symmetry, these topo-
logical defects should proliferate at arbitrarily large
length scale. To construct nontrivial average SPT
states, we decorate the average-symmetry defects
with nontrivial topological phases protected by the
exact symmetry. For example, if we introduce
magnetic disorders in a three-dimensional strong
topological insulator [32], we have two-dimensional
domain walls of time-reversal breaking (introduced
by the magnetic impurities) percolating throughout
the bulk, and each domain wall is decorated with an
integer quantum Hall state.
The decorated domain wall approach allows us to

systematically classify average SPT phases. The
simplest case is bosonic systems with total symmetry
G ¼ K ×G, whereK is exact andG is average: within
the group-cohomology formalism, such average SPT
phases are classified by (Theorem 1):

Xdþ1

p¼1

Hdþ1−pðG;Hp(K;Uð1Þ)Þ: ð1Þ

In particular, group-cohomology states protected
solely by G [classified by Hdþ1(G;Uð1Þ)] becomes
trivial asG becomes an average symmetry. This result
also applies when G is the average lattice symmetry,
appropriate for realistic crystalline systems, and K is
the exact internal symmetry. The result can also be
extended to states beyond group cohomology. In
Table I we list the classification of bosonic SPT
phases for several simple symmetry classes, in space
dimensions 1, 2, 3, including those beyond group
cohomology.

(3) In Sec. IV, we show using a modified flux-insertion
argument that, when nontrivial states are decorated on
domain walls with dimensions higher than ð0þ 1ÞD
[e.g., p > 1 in Eq. (1)], the boundary state is almost
certainly long-range entangled (or long-range corre-
lated). More precisely, the probability for a sample

(a single state in the ensemble) to have boundary
correlation length ξ exceeding any finite value ξ0
approaches 1: Pðξ > ξ0Þ → 1, as the system size
L → ∞ (Theorem 2). We anticipate that these non-
trivial boundary states will result in measurable
signals such as low-temperature thermal conductance.
In contrast, if states are decorated on ð0þ 1ÞD
domain walls [e.g., p ¼ 1 in Eq. (1)], then the
boundary state for all disorder realizations can be
short-range entangled—the only nontrivial feature in
this case is that different disorder realizations may not
be adiabatically connected in the presence of such
mildly anomalous boundary. In Table I we list, in
parenthesis, those states that do (almost certainly)
have long-range-entangled boundary states.

(4) The above result on average anomaly is used in
Sec. IV C to show a Lieb-Schultz-Mattis constraint
for systems with average translation symmetry,
where each lattice unit cell contains a projective
representation of the exact on-site symmetry [such
as spin-1=2 moment for SO(3) or Kramers doublet
for time reversal]. We argue that in such systems the
ground state will almost certainly be long-range
entangled (or long-range correlated), with probabil-
ity approaching 1 as the system size L → ∞.

(5) In Sec. V, we consider fermion systems. First, in
Sec. VA we discuss some free-fermion examples:
weak and strong topological insulators, in two and
three dimensions. As a demonstration of the power
of our approach, we reproduce, in a simple manner,
several nontrivial results from previous literature.
We then systematically consider ð3þ 1ÞD fermion
systems in two symmetry classes: AII class
[Uð1Þ⋊T with Kramers doublet fermions] and AIII
class [Uð1Þ × T ]. In both cases we consider average
time-reversal symmetries. The AII class is relevant
for electronic solids with spin-orbit interactions,
with magnetic impurities that locally break time
reversal; the AIII class is relevant for quantum Hall
plateau transitions with average particle-hole sym-
metry. We show that for the AII case, the classi-
fication is reduced from Z3

2 in the clean case to Z2
2;

for the AIII case, the classification is reduced from
Z8 × Z2 to Z4 × Z2. All these nontrivial states have
long-range-entangled surface states with probability
one, except for the n ¼ 2 state in the Z4 factor of
AIII, in which the surface state can be short-range
correlated for each individual disorder realization.
The anomaly structure for the AIII case is consistent
with numerical simulations on multicomponent
quantum Hall plateau transitions.

(6) In Sec. VI, we further generalize our problem to
quantum disorders, where disorders are described by
quantum mechanical degrees of freedom that can
form nontrivial (but still invertible) many-body
entanglement within themselves. This converts our

TABLE I. Classification of bosonic average SPT phases in
some symmetry classes, in space dimension d ¼ 1, 2, 3. The
classification in parentheses are those with long-range-entangled
boundary states.

Symmetry ð1þ 1ÞD ð2þ 1ÞD ð3þ 1ÞD
ZðavÞ

2
0 0 0

ðZT
2 ÞðavÞ 0 0 Z2 (Z2)

Z2 × ZðavÞ
2

Z2 (0) Z2
2 (Z2) Z2

2 (Z2)

Z2 × ðZT
2 ÞðavÞ Z2 (0) Z2

2 (Z2) Z3
2 (Z2

2)

ZT
2 × ZðavÞ

2
Z2 (Z2) Z2 (Z2) Z3

2 (Z3
2)
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problem to the study of SPT phases in mixed states
—a problem that has been recently studied [33] in
the context of open quantum systems. We find the
following.
(i) States protected solely by the average sym-

metry, including invertible states that do not
need any symmetry, become trivial.

(ii) Time-reversal symmetry always behaves as an
average symmetry.

(iii) Bosonic SPT phases described by elements in
Eq. (1) are still nontrivial. For this statement,
we give a careful justification in ð1þ 1ÞD in
terms of the string order parameters, and give a
plausibility argument in the more general cases.

We end with a discussion on open questions in Sec. VII.

II. GENERALITIES

Let us begin by introducing some useful concepts and
physically defining our questions more precisely. To start,
we consider a fixed lattice Hilbert space with a local tensor
product structureH ¼⊗i Hi (i labeling lattice sites) and an
ensemble of local Hamiltonians fHIg and their ground
states fjΨIig, with probability fPIg. For concreteness the
Hamiltonian takes the form

HI ¼ H0 þ
X
i

ðvIiOi þ H:c:Þ; ð2Þ

where vIi is a quenched disorder potential (I labeling a
particular realization and i labeling a lattice site), O is a
local operator, and H0 is the disorder-free part of the
Hamiltonian. We require the disorder to be at most short-
range correlated; namely, v�i vj should decay exponentially
with ji − jj.
We now consider two types of global symmetries. The

exact symmetry K commutes with both the disorder-free
part and the disordered part of the Hamiltonian, for any
individual realization of the disorder. The average sym-
metry (or statistical symmetry) [9,13,18,27] G only com-
mutes with H0 and is broken by each realization of the
disorder potential, so effectively the disorder potential v
transforms nontrivially under G (g ∈ G∶v → g · v). We
then require the probability distribution P½vI�≡ PI to be
invariant under a G transform (P½g · v� ¼ P½v�), so the
entire statistical ensemble stays invariant; hence the name
average (or statistical) symmetry. For example, a random
magnetic field hðxÞ is odd under time reversal T ∶h → −h,
and time reversal would be an average symmetry if
PðhÞ ¼ Pð−hÞ. In real materials, the most common exam-
ples of average symmetry are crystalline symmetries such
as lattice translation: in each sample the symmetries are
broken by impurities and lattice defects. It is typically the
case that the impurities and defects appear randomly at
different positions with equal probability, which makes the
lattice symmetries valid on average. However, to keep the

disorder potentials short-range correlated, we do need to
keep the impurities and defects dilute so they do not inter-
act with each other (the strength of impurity scattering
potential is unrestricted, on the other hand). For internal
symmetries such as time reversal, a natural way to
effectively obtain average-symmetric disorder is to start
with an exact symmetry, then break it spontaneously but
with the order parameter varying randomly in space—the
most famous example of this kind is a spin glass order (for a
concrete example, see Ref. [15]).
For simplicity we often focus on cases where the full

symmetry of the ensemble G is given by K ×G. But we
note that, in general, G is given by the group extension,

1 → K → G → G → 1; ð3Þ

where K ⊂ G is a normal subgroup. G may or may not
contain an antiunitary (time-reversal) element. We also
assume that both K and G act locally (namely their actions
within each lattice unit cell are unentangled), so they do not
suffer from any t’Hooft anomaly—we come back to this
issue later when discussing boundary properties.
We now proceed to define the analog of symmetric short-

range-entangled states, but for the entire statistical ensemble
fHI; jΨIi; PIg. It is natural to consider cases in which each
individual jΨIi is SRE (and symmetric under K); namely,
each HI is gapped with a unique symmetric ground state.
However, for our purpose this is not enough:wewould like to
forbid the ensemble from containing states in different SRE
phases (possibly protected by K) separated by topological
phase transitions [34]. We therefore have the following.
Definition 1.—A K-symmetric SRE ensemble is one that

only contains K-symmetric SRE ground states fHI; jΨIig,
with any pair of states being adiabatically connected to
each other while preserving K.
Note that we impose the symmetric SRE condition on all

states in the ensemble, including those rare states with
vanishing probability in thermodynamic limit. This is to
avoid potential subtleties from Griffiths-like singularities.
We expect this no-rare-region restriction to be physically
reasonable far away from quantum phase transitions. The
interplay between rare-region effects and topological phase
transitions is a fascinating subject that we leave to future
studies.
To study symmetric SRE states, we further demand that

the ensemble of states fjΨIig does not break the sym-
metries spontaneously. For exact symmetries this simply
means that each individual state jΨIi does not break the
symmetries (i.e., is not a cat state), which is guaranteed by
the symmetric SRE condition. The question is slightly
subtler for average symmetries. One could, for example,
detect spontaneous breaking of an average symmetry G by
measuring the average magnitude of the integrated order
parameter,
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M≡
����X

i

hϕii
����; ð4Þ

where ϕi is some local order parameter (defined near site i)
that transforms nontrivially under G, h� � �i denotes the
expectation value with respect to a particular quantum state,
and the overline denotes the disorder (ensemble) averaging
(we use this notation throughout this paper). If the
ensemble spontaneously breaks G, we expect M to be
proportional to the volume Ld. For symmetric ensembles
we expect a smaller scaling—for example, a trivial para-
magnetic state will have M ∼OðLd=2Þ.
The above way of detecting spontaneous breaking of

average symmetries, however, is not very convenient for
our purpose. In this work, instead, we guarantee the
absence of spontaneous G breaking primarily through
proliferation of domain walls (or other defects such as
vortices). Essentially, we demand that at sufficiently large
length scale (larger than the correlation length), domain
walls (or other appropriate defects) will always appear to
restore the statistical G symmetry. At low enough dimen-
sions (2D for discrete symmetries), such domain wall
proliferation is always guaranteed by the Imry-Ma
theorem [35].
Next we define the notion of continuous symmetric

deformation—the analog of symmetric adiabatic evolution
—for our SRE ensembles. This task is relatively straight-
forward: we continuously deform both the Hamiltonians
[H0 and Oi in Eq. (2)] and the probability distribution of
the disorder P½v�, such that (1) both the Hamiltonians and
the disorder correlations remain short ranged and (2) the
ensemble of states remains symmetric and SRE throughout.
We are now ready to define the notion of average SPT

phases.
Definition 2.—Two SRE ensembles, with exact sym-

metry K and average symmetry G, belong to the same
average SPT phase if and only if there is a path of
continuous symmetric deformation connecting the two.
As in most other topology problems, it is impractical to

check all continuous paths between two states. Instead it is
much more useful to construct topological invariants to
distinguish different phases. This is the task of the next
section.

III. DECORATED DOMAIN WALL APPROACH

In this section, we generalize the decorated domain wall
approach [31], a powerful construction for standard SPT
phases, to the study of average SPT phases. Let us first
review the idea of constructing standard SPT phases by the
decorated domain wall (more generally, symmetry defect)
construction in clean systems [31], where all symmetries
are exact. Starting from a phase in (dþ 1)-dimensional
space-time, in which G is broken spontaneously, a sym-
metric state can be obtained from condensation of

G-domain walls. Nontrivial SPT phases are produced by
decorating codimension p (with respect to the space-time)
topological defects of G with ðd − pþ 1Þ-dimensional
SPT phases protected by the unbroken symmetry K before
the domain wall proliferation. In order for the condensation
of G-domain walls to be gapped with a unique ground state
in the bulk, there is a set of consistency conditions for the
defect decoration [36], such that G defect of each codi-
mension is free of K anomaly. In this scheme the protected
surface states appear naturally: topological defects that end
at the surface carry the nontrivial boundary modes of
the lower-dimensional SPT phases protected by the sym-
metry K.
For simplicity let us tentatively assume G to be discrete

and unitary—the more general cases are similar in con-
clusions but more subtle in details. The decorated domain
wall approach can be equivalently formulated as follows:
consider the SPT state jΨi, and act on it with the symmetry
element g ∈ G, but only in a (large enough) subregion A
(say, with a disk geometry): UA

g ≡Q
i∈A U

i
g (Ui

g is the local
g generator). The symmetric SRE nature of jΨi implies that
acting with UA

g has nontrivial effect only near the boundary
of A [37–39]; namely, UA

g jΨi ¼ V∂A
g jΨi, where V∂A

g is a
unitary operator that is nontrivial (nonidentity) only near
the boundary ∂A. In this case a decorated domain wall
simply means that V∂A

g creates a nontrivial phase in one
dimension lower. Similar considerations can be carried out
for defects with higher codimensions [36] and for anti-
unitary symmetries [40].
Now we add quenched disorder that breaks the G

symmetry to the system. One can imagine that now the
system consists of patches with different symmetry-
breaking patterns, which are pinned by the symmetry-
violating disorder. In two adjacent patches, the states are
related by an action of the broken symmetry. As a result,
the interface between two adjacent patches naturally
realizes a G-domain wall. The idea is that, similar to
the case in clean systems, we can decorate the domain
walls with nontrivial lower-dimensional invertible phases,
such as SPT phases protected by the exact symmetry.
When the disorder has a random distribution so that the
G symmetry is restored on average, one again gets a
G-defect network, extending over the entire system.
The above picture is very similar to the standard (exact

symmetry) SPT phase, but with one important difference:
for standard SPT phases the domain walls proliferate as
coherent quantum superpositions, with well-defined phase
factor associated with each domain wall configuration—for
example, the bosonic Z2 Levin-Gu state [41] has a (−1)
factor for each Ising domain wall; for average SPT phases,
however, the domain walls proliferate through classical
probability, with no analog of quantum phase factors.
Therefore, SPT states that are nontrivial due to such phase
factors in the domain wall superpositions have no analog in
average SPT phases.
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Let us try to make the decorated domain wall picture for
average SPT phases more precise. Consider a particular
realization, say, fvig in Eq. (2), with the ground state jΨi.
Now consider a different realization, with ṽi ¼ vi for i
outside of a region A, and ṽi ¼ gvig−1 inside the region A
(for example, for Ising symmetry ṽi ¼ −vi for i ∈ A), and
denote the corresponding ground state as jΨ̃i. These two
disorder realizations have essentially identical probability.
The absence of spontaneous G breaking, together with the
SRE nature of the ensemble, implies that for large enough
A, the two should look identical deep inside Ā, and should
differ only by a g action deep inside A—the only potential
nontrivial difference can only happen near the boundary ∂A.
Formally,

UA
g jΨi ¼ V∂A

g jΨ̃i; ð5Þ

with V∂A
g defined nontrivially only on ∂A. If we choose a

different disorder realization, say, v0i with ground state jΨ0i,
we can similarly define ṽ0i and jΨ̃0i. By assumption
(Definition 1), all these states are connected through some
K-symmetric adiabatic evolutions (or K-symmetric finite-
depth unitary circuit). Moreover, the evolution connecting
jΨi to jΨ0i (call itW) and that connecting jΨ̃i to jΨ̃0i (call it
W0) must be identical deep inside Ā and differ only by
conjugating g deep inside A. These facts are enough to
show that

UA
g jΨ0i ¼ ðV∂A

g Þ0jΨ̃0i; ð6Þ

where ðV∂A
g Þ0 and V∂A

g only differ by an adiabatic evolution
on ∂A. In other words, the topological nature of V∂A

g does
not depend on the choice of disorder realization, even
though nonuniversal properties of V∂A

g certainly do depend
on details of the disorder potential. Similarly, one can show
that the topological nature of V∂A

g also does not depend on
the choice of the region A, as long as A is large enough—
essentially, Definition 1 requires different domain wall
configurations to be adiabatically connected to each other,
which in turn requires the decorating phases on the domain
walls to remain the same no matter where the domain walls
move to. The only way to change the topological property
of V∂A

g is to go through a phase transition—at least for some
of the states in the ensemble.
The above arguments establish the (topological part of)

V∂A
g , the “decoration” on the domain walls, as a robust

property describing the corresponding average SPT phases.

A. Topological response from replica field theory

Similar to the standard SPT theory, the decorated domain
wall construction can be rephrased as a topological
response theory for background gauge fields. For this
purpose, we work with the path integral and use the replica

trick: we replicate the Lagrangian Nr times to obtain the
action

S ¼
Z

dtddx
XNr

α¼1

L½ϕαðx; tÞ; vðxÞ� þ
Z

ddxV½vðxÞ�; ð7Þ

where ϕ represent all the dynamical degrees of freedom, α
is the replica index, and v is the disorder potential. The first
term represents the dynamics of ϕ’s and their interactions
with v, and the second term generates the classical
probability of the disorder potential. Note that while the
dynamical fields ϕðx; tÞ depend on both space and time, the
disorder potential vðxÞ only varies in space and is constant
in time.
The replicated action Eq. (7) is, by definition, invariant

under the full symmetry group G. The disorder potential v is
invariant under the exact symmetry K, but transforms
nontrivially under the average symmetry G. There is no
obstruction in coupling the theory in Eq. (7) to a back-
ground gauge field in G, call it AG. The only subtlety is that
since v is constant in time, any gauge transformation
associated with G must be constant in time. This then
requires the G gauge field, denoted as AG, to be trivial
along the time direction. Since the time component of a
gauge field couples to the symmetry charge, the constraint
on G gauge field is simply a reflection of the fact that G
charge is not conserved for our system, and one cannot use
G charges to distinguish different phases of matter. The
spacial components of AG, on the other hand, are not
constrained. In fact, the average-symmetry defects, dis-
cussed in the decorated domain wall construction, can be
precisely described using the spacial components of AG
following standard procedures. For example, a nontrivial
holonomy of AG along a spacial cycle represents a twisted
boundary condition for both the dynamical fields and the
disorder potential.
We can now formally integrate out the dynamical fields

ϕ, and obtain the partition function that depends on the
background gauge field AG and the space-time (dþ 1)-
manifold X. For an invertible phase (such as SPT phase) in
a clean setup, the global properties are included in a
topological quantum field theory (TQFT) as the imaginary
phase of the Euclidean partition function [42],

lnðZ½X; A�Þ ∼ iStop½X; A� þ � � � ; ð8Þ

in which the terms omitted are irrelevant below the bulk
energy gap. In the presence of quenched randomness, the
disorder-averaged effective action can be obtained from the
replica limit [43],

S½X; AG� ¼ lnZ½X; AG�

¼ lim
Nr→0

1

Nr
ðZ½X; AG�Nr − 1Þ; ð9Þ
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where the overbar denotes the disorder average. Analogous
to clean systems, the topological term that survives the
replica limit Nr → 0 in Eq. (9) encodes the topological
properties of the disorder system.
Here we make a side remark. The maximal symmetry

group (let us denote it by G̃) of the actions in Eq. (7) is not
the “full symmetry group” G that acts diagonally on all
replicas. For example, if G ¼ K ×G, then G̃ ¼ KNr ×G,
since each replica can transform under K independently
while leaving the Lagrangian invariant. More generally, G̃
is defined by the following morphism of short exact
sequences:

ð10Þ

Here, F is the diagonal map, and we ignore the (in general
discrete) rotation symmetry among the replicas. Coupling
the overall G̃ symmetry to backgrounds enables us to
calculate quantities such as

lim
Nr→0

hOα
1O

β
2i−hOα

1ihOβ
2i; ð11Þ

where α ≠ β and O1, O2 are arbitrary operators. Physically
these quantities encode nontrivial sample-to-sample fluc-
tuations in the disordered ensemble. Since we assume
(Definition 1) that different disorder realizations are adia-
batically connected, we do not expect such sample-to-
sample fluctuations to play an important role in our
discussions. One can, however, ask whether by relaxing
our assumptions we can discover nontrivial topological
properties associated with sample-to-sample fluctuations
(such as a topological analog of the universal conductance
fluctuation [44]), as may be captured by coupling to G̃
gauge field. We leave this intriguing possibility for future
study.
We are now ready to classify and characterize a large

class of average symmetry-protected topological (ASPT)
phases. For SRE phases for which the ground state is
unique and gapped on any closed spatial manifold, this
problem is equivalent to the classification of associated
invertible TQFTs [see Eqs. (8) and (9)], studied by the
cobordism theory [42,45–47]. The static disorder modifies
the classification by constraining the space-time configu-
rations of the background fields of average symmetries; i.e.,
it quenches the holonomy of AG along the time cycle. For
example, a clean topological phase remains nontrivial if
and only if the corresponding TQFT remains nontrivial
given this constraint. Next, with some simple examples, we
illustrate how the topological response theory naturally
leads to the decorated domain wall construction.

B. Simple examples: Group cohomology
states with G=K × G

Let us consider a bosonic SPT phase described by group
cohomology [5]. For simplicity we also assume G ¼ K × G;
namely, the group extension Eq. (3) is trivial. In this case the
group cohomology classification in (dþ 1)-dimensional
space-time can be rewritten by the Künneth formula,

Hdþ1(G;Uð1Þ) ¼
Xdþ1

p¼0

Hdþ1−pðG;Hp(K;Uð1Þ)Þ; ð12Þ

in which the corresponding coefficient group is twisted if G
or K contains time reversal [46]. This mathematical formula
can be understood from the perspective of topological
effective actions. For a bosonic system, the topological
action in Eq. (8) can be expressed as an integral of a local
Lagrangian L over space-time,

Stop ¼ 2π

Z
X
L; ð13Þ

where L is a (dþ 1)-dimensional cocycle, built out of flat
background gauge fields [and w1ðTXÞ, the first Stiefel-
Whitney class of the space-time, which can be viewed as
the time-reversal gauge field]. In particular,Lmay bewritten
as a cup product L ¼ L1 ∪ L2, where L1 and L2 are two
cocycles constructed from the background gauge fields in the
theory, whose degrees sum to (dþ 1). As the effective action
of a SRE phase, we require L to be gauge invariant on any
closed space-time. For a compact X, the Poincaré duality
HpðXÞ ≅ Hdþ1−pðXÞ (with the coefficient in any ring)
enables us to rewrite the action as

Stop ¼ 2π

Z
L̂2

L1; ð14Þ

where L̂2 is the Poincaré dual (with respect to X) of the
cocycle L2.
To make connections between current discussion and the

decorated domain wall picture, note that if the cocycle L2 is
taken to be the background gauge field AG of a symmetry
G, the Poincaré dual surface L̂2 is simply a G-domain wall.
The action in Eq. (14) hence describes an effective
ðd − 1þ 1Þ-spacetime-dimensional topological phase, liv-
ing on the wall. This precisely corresponds to the SPT
phase decorated on the codimension-1 G-domain wall.
Gauge invariance of L ensures the consistency between the
decoration and the fusion rules of the domain walls. The
same argument also holds for defects of higher codimen-
sions, where L2 are cocycles of higher degrees built out of
AG. Therefore a physical interpretation of an element of
Hdþ1−pðG;Hp(K;Uð1Þ)Þ in Eq. (12) is a consistent
decoration of a p-dimensional G defect by a K-SPT phase
in p-dimensional space-time.
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When static randomness turns G into an average sym-
metry, AG can have nontrivial holonomies only around
spatial cycles. Equivalently, this means the symmetry
defect L̂2 extends along time, while its spatial position
is pinned. A straightforward observation is that the topo-
logical action of the p ¼ 0 element [i.e., the group
cohomology Hdþ1½G;Uð1Þ�, with twisted coefficient if G
contains time reversal] in Eq. (12) becomes trivial if the
holonomy of AG around time cycle is quenched, i.e.,R
τ A

G ¼ 0. For example, the Levin-Gu state [41] has
partition function S ¼ π

R
a ∪ a ∪ a [a ∈ H1ðX;Z2Þ being

the background Z2 gauge field], and is trivial if a along the
time direction is set to zero. This confirms our physical
expectation based on the domain wall proliferation picture
at the beginning of Sec. III.
In contrast, the effective actions of elements in Eq. (12)

with p > 0 remain nontrivial. The physical picture is
precisely the decorated domain walls discussed at the
beginning of Sec. III. We therefore conclude with the
following theorem.
Theorem 1.—Bosonic SPT phases with symmetry G ¼

K ×G (K being exact and G being average) described
within group cohomology are classified by

Xdþ1

p¼1

Hdþ1−pðG;Hp(K;Uð1Þ)Þ: ð15Þ

Namely, only mixed topological response betweenG and
K (or pure response for K alone) remains nontrivial as G
becomes average symmetry.
Going beyond group-cohomology classification, at least

for bosonic systems with G ¼ K ×G, is not too compli-
cated. The only new ingredient is that on the domain walls
we can also decorate nontrivial invertible topological
phases, resulting in mixed “gauge-gravity” topological
response [48]—essentially, the cocycles in Eq. (14) can
also involve characteristic classes of the space-time itself.
Such response will remain nontrivial asG becomes average
symmetry. For example, decorating the chiral E8 state [49]
on the average time-reversal domain walls results in the so-
called efmf state [50–52] in ð3þ 1ÞD protected by the
average time-reversal symmetry. So we conclude that as G
becomes average symmetry, a nontrivial K ×G boson SPT
phase in the clean limit becomes trivial if and only if the
SPT phase is characterized by a pure G-gauge response (no
K-gauge field or gravity involved).
In Table I we list the classification of bosonic SPT phases

for some simple symmetry classes, in space dimensions 1,
2, 3, including states beyond group cohomology.
So far we have analyzed clean SPT phases and showed

many of those remain nontrivial as G becomes average
symmetry. From a different perspective, however, in our
analysis we exhaust all the possible ways to decorate the
domain walls. Therefore, what we obtain is also a complete

classification of average SPT phases, at least within the
decorated domain wall picture. We note that, once we go
beyond the simple case of G ¼ K ×G, the completeness
of this classification is no longer guaranteed, and we
shall explore this extremely intriguing possibility in future
study.

C. Application: Crystalline SPT phases

For the purpose of classifying SPT phases, crystalline
symmetries can be treated with internal symmetries on the
same footing. This fact, known as the “crystalline equiv-
alence principle” [21], allows us to apply results in this
section to crystalline SPT phases in realistic crystals, where
the lattice symmetries are only preserved on average.
Many physically relevant examples can be described as

G ¼ K ×G, where K is an exact internal symmetry [e.g.,
time reversal, spin SO(3), etc.] and G represents the lattice
symmetries such as translation, rotation, and reflection. For
boson (or spin) systems, Eq. (15) then gives the group-
cohomology classifications. States beyond group cohomol-
ogy are classified similarly, with nontrivial invertible states
decorated on domain walls.
We can also give a simple example of crystalline SPT

phase that is nontrivial in the clean limit, but becomes trivial
once the crystal symmetry becomes average symmetry:
consider a ð2þ 1ÞD SPT state with C2-rotation (inversion)
symmetry. The only nontrivial state, which is the crystalline
counterpart of the Levin-Gu state [41], can be constructed by
putting a nontrivialC2 charge at theC2-rotation center.When
the C2 symmetry becomes average, the notion of “nontrivial
C2 charge” no longer makes sense; therefore, the state
becomes trivial.
It is illuminating to compare the decorated defect

pictures in three different types of SPT phases.
(i) In the standard internal symmetry SPT phases, the

defects condense intoquantumsuperpositions. In other
words, the defects proliferate quantum mechanically.

(ii) In crystalline SPT phases, the crystalline defects,
such as crystalline unit cells, rotation axes, and
reflection planes, are static [20,53–56].

(iii) In average SPT phases, the average-symmetry de-
fects are static in each disorder realization, but they
proliferate probabilistically in the ensemble of states.

In this sense, the average SPT phases are somewhat in
between internal and crystalline SPT phases. As we have
discussed in this section, although subtle distinctions
between average and standard SPT phases do exist, the
overall pictures are quite similar in terms of decorated and
proliferated defects (domain walls).

1. Example: Mirror-symmetric
topological crystalline insulator

As an example, we present a detailed discussion of
an average mirror-symmetric topological crystalline
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insulator [57]. Generalizations to other average crystalline
SPT phases will be straightforward.
We consider a three-dimensional free-fermion insulator

with charge U(1) and mirror reflection Mz∶ z → −z. The
simplest nontrivial state has one Dirac cone on the surface.
Within band theory, the bulk state is characterized by a
“mirror Chern number” [57] nM ¼ 1. Furthermore, it has
been demonstrated [58] that this state remains nontrivial
even with interactions as long as the gap remains open
during the adiabatic turning on of the interactions. In real
space, this state can be adiabatically deformed to a
particularly simple limit [20]: on the mirror reflection
plane z ¼ 0, we decorate an integer quantum Hall
(IQHE) state with σxy ¼ 1, and on the other reflection-
invariant plane at z ¼ L=2 ∼ −L=2 (where L is the system
size, and periodic boundary conditions are assumed), we
decorate an opposite IQHE state with σxy ¼ −1. In the
absence of mirror symmetry, the state can be adiabatically
trivialized through a generalization of the Thouless pump
[59], which pumps the IQHE state at z ¼ 0 to z ¼ L=2
through one side of the bulk (say, the right side).
Specifically, the pump is an adiabatic deformation on the
right-hand side of the system Hz>0ðτÞ from time τ ¼ 0 to
τ ¼ T (T does not scale with L), such that away from z ¼ 0
and z ¼ L=2 we have HðTÞ ¼ Hð0Þ, and at z ¼ 0 and z ¼
L=2 the IQHE layers are eliminated at τ ¼ T. The left-hand
side of the system cannot undergo the same pump because
it would add another pair of IQHE layers to the reflection-
invariant planes. As such, adiabatic pumping is not allowed
with exact mirror symmetry.
When mirror symmetry is preserved only on average, it

requires the probability distribution of theHamiltonians to be
mirror symmetric: P½Hz>0� ¼ P½Hz<0�. We now argue that,
even with average mirror symmetry, the above adiabatic
pumping is still not possible without violating the basic
assumptions in Sec. II. For the disordered ensemble, the
adiabatic deformation from τ ¼ 0 to τ ¼ T is specified for
each disorder realization I: HIðτÞ ¼ P

i H
I
iðτÞ, whereHI

i is
the local Hamiltonian density around site i for realization I,
and by assumption the probability distributions of Hi at
different i are uncorrelated up to exponential tales (Sec. II).
Supposewe have one realization I0 in whichH

I0
z>0ðτÞ pumps

away the IQHE layers at z ¼ 0 and z ¼ L=2, and HI0
z<0ðτÞ

does not pump anything nontrivial. The average mirror
symmetry, together with the short-range-correlated nature
of the disorders, tell us that for any z0 > 0 there must be
another disorder realization I1, in whichH

I1
z<0 andH

I1
z0<z<L=2

do not pump anything, whileHI1
0<z<z0

pumps a pair of IQHE
layers to z ¼ 0 and z ¼ z0. This means that, at the final time
τ ¼ T,HI1

z≈z0 has a nontrivial IQHEground state,whileHI0
z≈z0

has a trivial ground state (a similar conclusion also holds for
any z0 < 0). Therefore, the total Hall conductivity σxy ¼P

z σxyðzÞ ∈ Z must fluctuate from sample to sample and
cannot be zero for all realizations fIg. Since states with

different total σxy cannot be deformed to each other without
closing the gap, we conclude that the above deformation
process must close the energy gap for some disorder
realization. This establishes the nontriviality of the mirror
SPT state.

D. Brief comments on general cases

If the exact and average symmetries form nontrivial
group extensions Eq. (3), then we do not have the Künneth
formula and the decorated domain wall construction will in
general become more complicated.
Let us first review the idea of decorated domain walls in

clean systems in the general cases (with possibly nontrivial
group extensions). In D-spatial dimensions, the construc-
tion starts with a phase in which the G symmetry is broken
spontaneously. Such a phase admits domainwall excitations,
such that a domain wall labeled by an element g ∈ G
interpolates between two symmetry-breaking patterns
related by a g action. A G-symmetric state can be obtained
by quantum disordering the symmetry-breaking phase, i.e.,
condensingG-domainwalls. It is known that thedomainwall
condensation may give rise to a nontrivial G-SPT phase, if
one decorates a G defect in the symmetry-breaking phase,
i.e., a domain wall or a (multi)domain wall junction, of
codimension p with a (D − p)-dimensional SPT phase
protected by the unbroken K symmetry [31]. Crucially, in
order for the condensation of G defects to be SRE, the
following consistency conditions must be satisfied.
(1) G defects of each codimension should be free of K

anomaly. Namely, the defects can be gapped without
breaking K.

(2) K is preserved during a continuous deformation of
the G-defect network.

(3) There is no Berry phase accumulated after a closed
path of continuous deformation.

Physically, the third condition is required since the many-
bodywave function is single valued; theG-domainwalls can
be condensed without breaking K once the second consis-
tency condition is respected; and the first condition guaran-
tees the resulting state to be gapped with a unique ground
state. The wave function of the gapped G-SPT phase
produced is a superposition of all domain wall patterns.
These consistency conditionsmay be formulatedmathemati-
cally by the Atiyah-Hirzebruch spectral sequence (AHSS).
See Refs. [36,60] for details. In the decorated domain wall
scheme the protected surface states appear naturally: topo-
logical defects that end at the surface carry the nontrivial
boundary modes of the lower-dimensional SPT phases
protected by the symmetry K.
Now we make G an average symmetry and decorate

nontrivial invertible states onG domain walls. The first two
conditions above should still be satisfied, since we are
interested in SRE ensembles (Definition 1). The third
condition, however, does not seem to be necessary, since
the domain walls no longer form coherent superpositions.
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This leaves the possibility of intrinsically disordered
average SPT phases that have no counter parts in clean
systems. This intriguing possibility is beyond the scope of
this work, and will be reported in a subsequent study.

IV. AVERAGE ANOMALIES AND
BOUNDARY PROPERTIES

For ordinary SPT phases, it is well known that a nontrivial
bulk leads to nontrivial boundaries. Specifically, the boun-
dary theory will have t’Hooft anomaly that matches the bulk
topological response. The t’Hooft anomaly imposes power-
ful constraints on the IR boundary dynamics. For example,
the anomalous boundary cannot be symmetrically gapped
with a unique ground state. A natural question is, how does a
nontrivial bulk average SPT phase constrain its boundary
dynamics? Or equivalently, what are the consequences of an
average anomaly?
As we see below, the answer to the above question

depends on the dimensions of the decorated states on the
proliferated domain walls. There are two different catego-
ries that we discuss separately.

A. Trivial case: ð0 + 1ÞD decoration

Let us illustrate the physics with a simple example. We
start from the ð1þ 1ÞD cluster model [61,62]:

Hcluster ¼ −
X
n

Zn−1XnZnþ1; ð16Þ

in which X and Z are Pauli matrices. The cluster chain is in
a SPT phase protected by a Z2 × Z2 symmetry, which is
generated by

K ¼
Y
n

X2nþ1; G ¼
Y
n

X2n: ð17Þ

We then add to the Hamiltonian in Eq. (16) disorder that
violates one of the Z2 symmetries, say G, but restores it on
average. For example, we add the following term,

Hdis ¼ −
X
n

h2nZ2n; ð18Þ

where h2n’s are on-site potentials distributed uniformly in
½−δ; δ�. The disorder Hamiltonian is symmetric under K,
while it respects G only on average.
The cluster chain Eq. (16) can be interpreted as deco-

rating a nontrivial K charge at each G-domain wall, and
then condensing the domain walls to get a Z2 × Z2

symmetric topological phase. Once the random field is
turned on, the G-domain walls no longer condense as the G
symmetry is explicitly broken for each disorder realization.
However, for each realization, there will in general be many
G-domain walls, and each domain wall still traps a

nontrivial K charge. The resulting state is therefore a

nontrivial Z2 × ZðavÞ
2 SPT phase.

We can in fact push our model to strong disorder regime,
and obtain a much simpler effective model:

H ¼ −
X
n

ðZ2nX2nþ1Z2nþ2 þ h2nZ2nÞ; ð19Þ

where h2n ∈ f�1g are independent binary random varia-
bles defined on each even-integer site. The ground state of
each individual Hamiltonian is simply an unentangled
product state, with each even site in jZ2n ¼ h2ni and
odd site in jX2nþ1 ¼ h2nh2nþ2i. This ensemble has the
same domain wall decoration pattern as the previous model
[as can be checked explicitly using Eq. (5)], and is therefore
an equally valide (but much simpler) representation of the

Z2 × ZðavÞ
2 SPT phase.

The fact that each disorder realization simply gives an
unentangled product state is true even when the system has
boundaries. This immediately means that our “average
cluster chain” does not have nontrivial boundary state—
unlike the clean cluster model which has a robust ground
state degeneracy once put on an open chain. This can also be
understood directly from the edge state: each end of the clean
cluster chain forms a two-dimensional projective represen-
tation ofZ2 × Z2, in which the generators ofG and K act as
anticommuting Pauli matrices σx and σz, respectively. Now
adding, even only on the boundary, a random G-breaking
field hσz will lift the edge degeneracy completely.
We demonstrate that the Z2 × ZðavÞ

2 cluster chain does
not have nontrivial boundary dynamics. The boundary,
however, does have a notable feature: the K charge is fixed
by sgnðhÞ which fluctuates from sample to sample. This
means that different samples will not be symmetrically and
adiabatically connected to each other, violating one of the
key assumptions of our SRE ensemble (Definition 1). So
our SPT state is similar to the standard SPT states, in the
sense that when the system has boundaries the state cannot
stay SRE—although in the above example it violates the
SRE condition in a rather trivial way.
It is straightforward to generalize the above observations

to all the average SPT states, in any dimensions, in which
only ð0þ 1ÞD states are decorated on average-symmetry
domain walls. Such states can be continuously deformed to
a limit where each disorder realization simply gives a
product state, without any interesting boundary dynamics.
This aspect is in fact familiar in crystalline SPT phases
[53,63]: if we decorate ð0þ 1ÞD states [for example, some
integer U(1) charges] on crystalline defects (such as in each
unit cell of translation symmetries), we obtain crystalline
SPT phases without nontrivial boundary dynamics—
instead, we obtain a variety of atomiclike insulators that
are not symmetrically and adiabatically connected to
each other.
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B. Nontrivial cases: Higher-dimensional decoration

We now move on to the much more interesting cases
with higher-dimensional domain wall decorations. We
employ a modified version of flux-insertion argument
commonly used in the study of topological phases. Let
us again illustrate with a simple example.
Consider a ð2þ 1ÞD boson SPT phase, with the exact

symmetry K ¼ SOð3Þ, average symmetry G ¼ Z2, and full
symmetry G ¼ SOð3Þ × Z2. The only nontrivial element in
H1½G;H2ðK;Uð1ÞÞ� has a topological action,

Stop ¼ π

Z
X
a ∪ wSOð3Þ

2 ; ð20Þ

where a is the backgroundZ2 field and w
SOð3Þ
2 is the second

Stiefel-Whitney class of the SO(3) probe field. This state
has a simple physical picture in terms of decorated domain
walls: on each Z2 domain wall there is a Haldane chain
protected by the SO(3) symmetry.
Let us now put the system on a space manifold with

boundary, and ask how likely it is for the ground state jΨi,
for one realization of the disorder potential v, to be short-
range entangled. We argue below that such “uninteresting”
ground state must be very rare as the system size becomes
large. The trick is to use the partial symmetry transform to
create domain walls, similar to the argument used in
Sec. III, but now with a spacial boundary.
Let us start by assuming that jΨi (under a particular Z2-

breaking disorder realization v) is short-range entangled,
with exponentially decaying connected correlation func-
tions and a nonzero energy gap. Now take a large enough
subregion A that includes a segment on the physical edge
(Fig. 1), and flip all the random Z2-breaking fields v inside
A, so that we are now considering a different disorder
realization with

ṽðx ∈ AÞ ¼ −vðx ∈ AÞ; ṽðx ∈ ĀÞ ¼ vðx ∈ ĀÞ: ð21Þ

We denote the ground state under ṽ as jΨ̃i. Similar to the
bulk argument [Eq. (5)], we expect that

UA
a jΨi ¼ V∂A

a jΨ̃i; ð22Þ

with V∂A
a creating an SO(3)-protected Haldane chain on

domain wall ∂A (not including the segment on the physical
edge). But contrary to the bulk argument in Sec. III, the
domain wall ∂A itself has boundaries—it terminates on the
physical edge at two points. If jΨ̃i is also short-range
entangled (with correlation length much shorter than the
edge segment), then V∂A

a will create a pair of half-integer
spins at the two ends of ∂A. Since we assume SO(3) to be
exactly preserved, the two spins should be locked into a
singlet, which leads to a nontrivial correlation at large
distance—the state effectively becomes long-range
entangled. But this should not happen, as the left-hand
side of Eq. (22) is clearly short-range entangled: it is just a
depth-1 unitary UA

a acting on a short-range-entangled state
jΨi. Therefore, the assumption that jΨ̃i is short-range
entangled must be wrong. To make Eq. (22) valid, jΨ̃imust
already have a singlet pair distributed at the two ends of ∂A,
so that acting on it with the Haldane chain creation operator
V∂A
a removes the singlet pair and recovers a short-range-

correlated state.
Once we understand the long-range-correlated (or

entangled) nature of jΨ̃i, it is obvious that such states
can be created in many other ways: we can change the
region A so that ∂A end at a different point on the physical
edge; we can also have multiple such regions that lead to
many long-range singlets on the edge. Crucially, all such
states appear with same probability as jΨi, since, by
definition of the average Z2 symmetry, flipping the sign
of the random potential v in a region larger than correlation
length should not change its realization probability.
Therefore, as the system size goes to infinity, there are
infinitely many ways to create long-range entanglement out
of a short-range-entangled state, with essentially equal
probability. This in turn means that a short-range-entangled
state jΨi can appear at most with a vanishing probability.
The above argument generalizes to other average SPT

phases, as long as the nontrivial invertible states being
decorated on the domain walls (defects) are higher
than ð0þ 1ÞD.
Theorem 2.—An average SPT phase with decoration

dimension p > ð0þ 1Þ will have long-range-entangled
boundary state with probability approaching 1 in the
thermodynamic limit.
We emphasize that the above statement does not require

ensemble averaging: even for a single sample of disorder
realization (which is what we have in real experiments), the
boundary theory will be long-range entangled in the
thermodynamic limit. Our result also indicates that even
with a single sample, in the thermodynamic limit the
boundary will have gapless, delocalized excitations. The
delocalized gapless excitations will contribute to various
measurable quantities such as thermal conductance.
Although a detailed account of the dynamical features of

FIG. 1. The decorated domain wall picture in the presence of a
physical edge.
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the boundary theory may be complicated and require a case-
by-case study, we expect the boundary thermal conductance
to scale as a power law in temperature T even in the strong
disorder regime. Furthermore, the nontrivial thermal con-
ductance will disappear once a symmetry-breaking field is
turned on, which in principle makes the signal distinguish-
able from phonon contributions. Such phenomenon could
serve as a practical way to experimentally detect nontrivial
boundary states with average anomaly.
The nontrivial boundary state, even within a single

disorder realization, suggests that the bulk SPT phase
should also be well defined and nontrivial for a single
disorder realization. However, at this point we do not have a
theoretically controlled way to define or describe such
ASPT phases with single disorder realization. This is an
interesting question for future investigation.
In Table I we list, in parentheses, those states that do have

long-range-entangled boundary states (with probability
approaching unity).

C. Application: Lieb-Schultz-Mattis constraints
with average lattice symmetries

Readers familiar with random spin chains will recognize
the long-range-entangled state constructed in Sec. IV B as
essentially the random singlet state [64–66]. Indeed, with-
out any change in the argument, we can replace the average
Z2 symmetry in the example of Sec. IV B with a Z
symmetry. By the spirit of crystalline equivalence principle
[21] we can interpret this Z as lattice translation. The
corresponding bulk system is a stack of SO(3) Haldane
chains with an average translation symmetry perpendicular
to the chains. On the boundary we obtain a disordered spin-
1=2 chain with average translation symmetry. The result of
Sec. IV B then becomes a disordered version [27] of the
Lieb-Schultz-Mattis theorem [22], which states that a
disordered spin-1=2 chain with average translation sym-
metry must stay long-range entangled with probability one.
The random singlet state with arbitrarily long-ranged
singlet pairs is a classic example of such states.
Using the crystalline equivalence principle [21], we can

conclude that all the generalized LSM anomalies for other
lattice symmetries [26,67] (rotation, reflection, etc.) still
imply long-range entanglement (with probability 1) when
the lattice symmetry becomes average.
Let us provide a more direct and detailed argument for the

simple case of ð1þ 1ÞD systems with average lattice trans-
lation symmetry. Consider a spin chain with exact on-site
symmetry K, with the Hilbert space for each lattice unit cell
forming a projective representationωuc ∈ H2(K;Uð1Þ). For
concreteness we can think of K ¼ SOð3Þ and the system
being a spin-1=2 chain, although this will not be necessary.
Now assume that for some disorder realization (with a

local Hamiltonian H ¼ P
i Hi), the ground state jΨi is

short-range entangled with a finite correlation length ξ. Let

us then consider a different Hamiltonian H̃ ¼ P
i H̃i,

defined with a large subregion (a long segment) A, such that
(1) for i far outside A, H̃i ¼ Hi,
(2) for i deep inside A, H̃i ¼ Hi−1,
(3) for i near the boundary ∂A, H̃i can take any value in

the ensemble.
Essentially we have translated the Hamiltonian inside
region A by one unit cell, which is the translation analog
of the partial symmetry operation in Sec. IV B. This
disorder realization will have a different probability with
H, but crucially the two probabilities only differ by a
constant factor, depending on details at ∂A but independent
of either the size or location of region A (as long as A is
large enough).
Since we assume the original state jΨi to be short-range

correlated with a clear energy gap, the change in a local
Hamiltonian term (say, at i) should only affect properties
near i. So the new ground state jΨ̃i should be identical to
jΨi far out of A, and be identical to the translated version
TxjΨi deep inside A. However, these two conditions imply
that at each boundary ∂A there is an extra half-integer spin
(or projective representation in general). In order to form a
symmetric state, these two half-integer spins have no
choice but to form a singlet with each other (since regions
deep inside and far outside of A are determined already).
This creates a long-range correlation across the large
region A.
Let us make the above argument more explicit in terms

of reduced density matrices. We denote a subsegment deep
inside A as A−, the region far outside A as Aþ, and the
remaining two regions (the left-hand and right-hand boun-
daries) as ∂AL and ∂AR. We further denote fA− as A−

translated to the right by one unit cell, f∂AL as ∂AL plus one
unit cell right to it, and f∂AR as ∂AR minus its leftmost unit
cell. We now consider reduced density matrices from the
state jΨi (denoted as ρ) and from the state jΨ̃i (denoted as
ρ̃). For a SRE state, at each of the four entanglement cuts
(let us denote them as a, b, c, d from left to right) we can
extract an element of ω ∈ H2(K;Uð1Þ) from the entangle-
ment spectrum [37] [for K ¼ SOð3Þ this Z2 number is just
measuring the parity of singlet bonds across each cut].
Since we have a nontrivial ωuc ∈ H2(K;SOð3Þ) per unit
cell, we have the relations ωa − ωb ¼ ωuc × j∂ALj and
ωc − ωd ¼ ωuc × j∂ARj. Now the SRE nature of jΨi and
the relation between H̃ and H imply that ρðAþÞ ¼ ρ̃ðAþÞ
and ρðA−Þ ¼ ρ̃ðfA−Þ. Therefore, at each of the four entan-
glement cuts we should have ω ¼ ω̃ (now b̃ and c̃ are
translated from b and c by one unit cell). However, this
means that for the two boundary regions, ω̃a − ω̃b ¼ ωuc ×
ðjf∂ALj − 1Þ and ω̃c − ω̃d ¼ ωuc × ðjf∂ARj þ 1Þ. Therefore,
the two regions f∂AL ∪ f∂AR cannot be short-range entangled
—the only way to have a symmetric state is for the two
regions, separated by fA−, to entangle with each other.
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We can now make the above argument for any large
region A, even multiple of them. Since the probability to
create such long-range correlation does not depend on the
size and location of A, we again conclude that for such
systems, short-range-entangled ground state must be
extremely rare, with at most vanishing probability as
system size L → ∞.
We note that for K ¼ SOð3Þ, a similar average LSM

theorem has been shown in Ref. [27]. Our argument here is
more general, although the conclusion is not as strong—for
example, we make no direct statement about averaged
correlation functions or energy gaps.

V. FERMIONIC EXAMPLES

The insight we obtained in Sec. III works equally well
for systems with fermions and/or beyond the group-
cohomology classification. In this section, we first discuss
some known examples of nontrivial free-fermion ASPT
states from previous literature. As a demonstration of the
power of our approach, we reproduce several nontrivial
results in a straightforward manner. We will then system-
atically discuss two particularly interesting symmetry
classes of fermionic ASPT phases, namely ð3þ 1ÞD
fermionic TIs in symmetry class AII and AIII. We study
the former using a systematic decorated domain wall
construction similar to that in Ref. [20], and the latter by
examining the reduction of the clean classification.

A. Known examples

3D TI.—The ð3þ 1ÞD Fu-Kane-Mele topological insu-
lator [32], protected by charge U(1) and Kramers time-
reversal symmetry, can be viewed as decorating ð2þ 1ÞD
time-reversal domain walls in the bulk with integer quan-
tum Hall states with Hall conductance σxy ¼ 1 (mod2).
Since the decoration dimension is p ¼ 2þ 1 > 0þ 1, the
state will remain nontrivial, with nontrivial surfact states, as
we break time reversal to an average symmetry [the total
symmetry being Uð1Þ⋊ðZT

2 Þav]. This is in agreement with
Ref. [13], where it was found that the TI surface remains
delocalized even in the presence of magnetic impurities.
3D weak TI.—The ð3þ 1ÞD weak topological insulator

[32], protected jointly by chargeU(1), Kramers time-reversal
and translation symmetry, can be viewed as a stack of
ð2þ 1ÞD Kane-Mele topological insulator [68] [protected
by Uð1Þ⋊ZT

2 ] in one spacial direciton (call it ẑ). The layers
being stacked can be viewed as ð2þ 1ÞD defect of the
translation symmetry. So the decoration dimension here is
p ¼ 2þ 1 > 0þ 1. This means that if we break translation
symmetry down to an average symmetry while keeping
Uð1Þ⋊ZT

2 exact (a very natural condition for realistic
crystals), the state will remain nontrivial with nontrivial
surface states [the total symmetry being ½Uð1Þ⋊ZT

2 Þ × Zav� ].
This agrees with Refs. [11,12], where it was found that the

surface theory remains delocalized even with average trans-
lation symmetry.
2D TI.—The ð2þ 1ÞD Kane-Mele topological insulator

[68], protected by charge U(1) and Kramers time-reversal
symmetry, can be constructed [69] via decorating ð0þ 1ÞD
time-reversal defects (intersections of domain walls) with
odd-integer U(1) charge. Since the decoration dimension is
p ¼ 0þ 1, as we break time reversal down to an average
symmetry, even though the bulk is still considered non-
trivial in our definition, the edge state can be trivialized [the
total symmetry being Uð1Þ⋊ðZT

2 Þav]. This agrees with
Refs. [14,15], where it was found that the helical edge
state of the Kane-Mele TI can become localized when time-
reversal symmetry is broken (spontaneously or explicitly)
to an average symmetry.

B. Class AII

Let us systematically consider 3D TIs protected by
Uð1Þ⋊T symmetry (class AII), in which U(1) is the electron
charge conservation and T is time reversal, with T 2 ¼ −1
when acting on fermionic operators. Importantly, T pre-
serves the U(1) charge. We consider the case where T
becomes an average symmetry, while charge conservation
remains exact. As illustrated in Sec. III, the ASPT phases in
our symmetry setting can be constructed by decorating a
ð3 − pÞD fermionic U(1) SPT phase on each codimension-p
(with respect to the 3D space) T -symmetry defect. The first
two consistency conditions listed in Sec. III D need to be
satisfied. In the disorder setting, the first condition ensures
each state in themixed ensemble isU(1) symmetric and SRE,
while the second guarantees any pair of states can be
adiabatically connected without breaking U(1)—this is
precisely our definition for a U(1) symmetric SRE ensemble.
Specifically, the construction follows the guideline below.

(i) One starts from the top codimension p ¼ 0, and
decorates T defects of increasing p successively.

(ii) The quantum anomalies must cancel out on codi-
mension-p defects, given all previous decorations
with codimensions p0 < p.

(iii) After the p ¼ 3 decoration, the second consistency
condition in Sec. III, i.e., the constraints on con-
tinuous deformations of domain walls, must be
satisfied.

In this section, we present the decorated defect construction
in a physical way. A rigorous AHSS calculation is found in
the Appendix.
Let us start with codimension-0 defects, namely, the 3D

patches in which T is broken by the disorder. It is known
that fermionic SPT phases protected by U(1) symmetry are
classified by the spinc cobordism group of a point,
Ω•

spincðptÞ [45,47,70,71]. In particular, there is no 3D
nontrivial phase protected by U(1) alone. Therefore, all
3D patches are in the trivial U(1) symmetric SRE phase.
We then move on to codimension-1 T -domain walls

between the patches. Since two adjacent patches are both in
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the same (trivial) phase, the wall in between traps no
anomalous surface mode and can thus be gapped without
breaking the U(1) symmetry. One now decorates the
T -domain wall with 2D U(1) SPT phases. There are two
nontrivial choices: the integer quantum Hall (IQH) state and
the KitaevE8 state [72], each of which has aZ classification.
We label the two integers by nI and nE for the IQH state
and the E8 state, respectively. The elementary E8 state with
nE ¼ 1 has 8 chiral bosons at the edge, which can be thought
of as protected by a gravitational anomaly, whose “probe
field” is the background space-time geometry.
Naively, one may expect decorating 2D layers labeled by

different integers leads to different 3D SPT phases.
However, this is not the case. The easiest way to see this
is to consider decorating an IQH state with nI ¼ 2 on the
T -domain wall. When a domain wall is cut open at the
surface of the system, a helical edge state with chiral central
charge c ¼ 2 appears. We can deposit nI ¼ �1 IQH states
on the surfaces of the domains, such that at the surface
T -domain wall boundary there arises chiral modes with
c ¼ −2. The two counterpropagating modes can be trivi-
alized by turning on a coupling, resulting in a unique
gapped ground state both in the bulk and on the surface
[73]. The same argument also applies to the E8 decoration,
which implies that the indices nI and nE are only defined
modulo 2. This argument resembles the operation of
adjoining layers in Ref. [20]. In summary, for p ¼ 1 we
have two possible decorations, each of which is labeled by
Z2 [74]. One more comment is that hereafter we require
any two defects that can be smoothly deformed into each
other to be decorated by the same lower-dimensional phase.
This is due to the assumption that states in different
disorder realizations should be adiabatically connected
(Definition 1).
Next we proceed to codimension-2 T defects, i.e., the

1D intersections of T -domain walls. We should first
examine whether the possible decorations in lower codi-
mensions lead to any quantum anomaly. A 1D domain wall
intersection is shown in Fig. 2(a), with an IQH or E8

decorated on each domain wall. (Remember that the edge
chirality is defined only mod2.) The intersection has no net
chirality and can thus be gapped without U(1) symmetry
breaking [75]. We then consider decorating a domain wall
intersection with 1D fermionic SPT phases protected by the
exact U(1) symmetry. However, there is no nontrivial 1D
SPT phase protected by U(1) alone. Therefore, we do not
have any new decoration at codimension 2.
One can repeat the same procedure for codimension-3 T

defects, namely, 0D points, each of which is an intersection
of three domain walls. It is straightforward to see that a 0D
defect can always be gapped without breaking the exact
U(1) symmetry, given all the previous decorations. The
reason is simply that there is no nontrivial U(1) SPT phase
in 1D, whose anomaly inflow can protect a zero mode in
0D as a boundary state. As a result, for each quenched
realization of disorder pattern, T -symmetry defects in all
codimensions can be trivially gapped out.
By assumption in Definition 1, we demand that the U(1)

charge must be conserved when the T -domain walls are
deformed continuously. The decorations by the IQH and
the E8 state are consistent with this constraint, as shown by
an explicit spectral sequence calculation in the Appendix.
On the other hand, one may decorate each 0D T -defect
point using 0D U(1) SPT states. These U(1) SPT states
have a Z classification, whose physical meaning is the U(1)
charge quantum number carried by the 0D ground state. For
symmetry class AII, a T transformation preserves the U(1)
charge. The only decoration consistent with the fusion rule
of 0D T defects is the trivial one [note that 0D pointlike T
defects can annihilate in pairs; thus, decorating charges on
them is forbidden since it breaks the U(1) charge con-
servation during the deformation of T defects], which is
described by the cohomology H3ðZ2;ZÞ ¼ 0 [76]. As a
result, there is no new possible decoration at 0D (codi-
mension 3).
At this point, we have exhausted all possible decorations

on T defects of all codimensions, and have also ensured the
consistency, i.e., the domain wall condensation has a
unique gapped ground state with the decorations described.
We thus reach our final result: when T is restored on
average, 3D TIs in symmetry class AII are classified by Z2

2,
generated by placing an IQH state or an E8 state on the T
domain wall, respectively. Moreover, since both decora-
tions are extended in space (2D), from Theorem 2 we
conclude that all the nontrivial ASPT phases in this
symmetry class have long-range entanglement on the
surface with probability one in the thermodynamic limit.
The classification of clean 3D TIs in class AII is Z3

2

[47,77,78]. In comparison, our Z2
2 classification for the

ASPT phase in this symmetry class misses one nontrivial
state. The missing state, known as eTmT state, can be
obtained from the domain wall condensation approach with
some nontrivial phase factors in the domain wall conden-
sate. As we explain in Sec. III, such a state is no longer

FIG. 2. (a) An intersection of two T -domain walls, which is
decorated by an IQH or E8 state, viewed from the top. Solid lines
represent an IQH or E8 state on each half plane, with chiralities of
edge modes indicated by the arrows. (b) To see there is no gapless
chiral mode at the intersection, note that it can be smoothly
deformed into two disjoint walls.
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nontrivial when the symmetry becomes average, as coher-
ent superpositions are replaced by classical probabilities,
and the notion of superposition phase factors is no longer
well defined. From the topological response point of view,
the topological effective action of the eTmT state reads [46]

Stop ¼ π

Z
X
w4
1; ð23Þ

where w1 is the first Stiefel-Whitney class (“time-reversal
gauge field”) of the world volume of the ð3þ 1ÞD bulk.
The average nature of time reversal gives the constraintZ

τ
w1 ¼ 0; ð24Þ

under which the TQFT in Eq. (23) vanishes identically.

C. Class AIII

We now study the disorder classification of 3D TIs with
symmetry group Uð1Þ × T (class AIII), with T , sometimes
also called “particle-hole symmetry” as in quantum Hall
context, being an average symmetry. Unlike the electric
charge, now the U(1) charge is odd under time reversal.
For simplicity, here we explicitly focus on the clean SPT

phases, classified by Z8 × Z2 [78], and ask which of these
phases remain nontrivial as T becomes an average sym-
metry. The Z2 factor corresponds to the efmf state, which
as we show in Sec. V B remains nontrivial in the presence
of disorder. Similarly, the n ¼ 1 state in Z8 can be under-
stood as decorating an IQHE state on the T -domain walls,
which remains nontrivial as argued also in Sec. V B. The
n ¼ 4 state in the Z8 factor is known to be equivalent to the
bosonic eTmT state, so from our argument in Sec. V B it
should become trivial once T becomes average. The only
nontrivial question now is what happens to the n ¼ 2 state.
In the clean setup, this state can be constructed by

decorating a unit U(1) charge at each 0D intersection of
three T -domain walls [79]. This is a nontrivial decoration
pattern, as the U(1) charge decorated at each 0D T defect
cannot be removed as long as U(1) remains exact.
Mathematically, 3D TIs in class AIII are classified by
the cobordism group Ω4

pincðptÞ ¼ Z8 × Z2, which is an
iterated extension of

H1ðZT
2 ;Z

T ⊕ ZT Þ ¼ Z2 × Z2; ð25Þ

by H3ðZT
2 ;Z

T Þ ¼ Z2; ð26Þ

by H5ðZT
2 ;Z

T Þ ¼ Z2: ð27Þ

The physical meaning is that n ¼ 2 mod4 elements in the
Z8 factor have a U(1) charge decorated on each codimen-
sion 3 (0D) time-reversal defect. So we conclude that the
bulk state should remain nontrivial as T becomes average

symmetry. However, since the U(1) SPT phase decorated
on the T defect is in 0D (a charge), there is no protected
surface state for the n ¼ 2 state based on the discussion in
Sec. IVA.
To summarize, the final classification for 3D TIs in class

AIII with average time-reversal symmetry is Z4 × Z2, in
which the n ¼ 2 state in the Z4 factor has no symmetry-
protected long-range entanglement on the surface.
We make a comment in connection to the (disordered)

integer quantum Hall plateau transition. The average
particle-hole symmetry, relating filled and empty Landau
levels, emerges naturally at the plateau transition. The
resulting Uð1Þ × T ðavÞ has the same anomaly as the n ¼ 1
state in the Z8 factor (in clean limit). Our result shows that
the plateau transition in two-layer systems (n ¼ 2 in Z8),
even though being technically “anomalous,” is not pro-
tected to be long-range entangled. This is consistent, in a
nontrivial manner, with the numerical fact that such
transition can indeed be Anderson localized.

VI. GENERALIZED QUANTUM DISORDER:
A QUANTUM CHANNEL APPROACH

So far we have treated disorder as purely classical
degrees of freedom. However, real disorders, such as
impurities in solids, are quantum mechanical, and in
principle can develop interesting quantum entanglement
within themselves (even though these may not be ener-
getically favorable in typical conditions). In this section, we
generalize our considerations to disorders that can develop
invertible quantum many-body entanglements. This is a
minimal quantum mechanical generalization of disorder, as
the disorder potential still remain short-range correlated.
We dub such disorders invertible quantum disorders. The
observables of our interest, however, will still only live in the
“dynamical”Hilbert space that does not involve the disorder
degrees of freedom. In other words, the disorders are traced
out, leaving behind a mixed state. This motivates us, in this
section, to develop a SPT theory for such amixed state based
purely on the density matrix ρ ¼ P

I PIjΨIihΨIj (I labeling
each “disorder realization” in the generalized sense), without
referring to any parentHamiltonian. For this purpose,we first
need to modify some notions in Sec. II, including SRE
ensembles, exact and average symmetries, so that these
notions are defined purely in terms of the density matrix ρ.

A. Symmetries and short-range entanglement

As mentioned in the Introduction, in clean systems a SPT
phase has a symmetric SRE ground state, which cannot be
deformed to a trivial product state using a finite-depth
quantum circuit if certain symmetries are imposed. To be
clear on what states one should consider in the presence of
invertible disorder, we need a mixed state generalization of
a SRE state and the symmetry conditions to which it is
subject.
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Let us consider a discrete lattice Λ in d-dimensional
space. The total Hilbert spaceH is a tensor product of local
Hilbert spaces placed at each lattice site,H ¼⊗i∈Λ Hi. One
can define the notion of SRE mixed state, purely based on
the density matrix, following Hastings [80].
Definition 3.—Let ρ be the density operator of a mixed

state, acting on the Hilbert spaceH. ρ is SRE if it has a SRE
purification. Specifically, there exist the following.

(i) An enlarged Hilbert space H0 ¼ H ⊗ D, con-
structed by tensoring in additional degrees of free-
dom on each site.

(ii) A SRE pure state jψi defined in the Hilbert space
H0, such that

jjρ − trDðjψihψ jÞjj1 < ϵ; ð28Þ

with vanishing ϵ in the thermodynamic limit (the
system size L → ∞). Here the jj � � � jj1 denotes the
trace norm, which for a Hermitian operator is the sum
of the absolute values of its eigenvalues.

Physically, a SRE mixed state is one that can be obtained
from a SRE pure state by tracing out ancillas defined
locally on each site. In disorder systems, it is instructive to
think of the ancillary spaceD as describing the disorder and
the partial trace ofD as encoding how the system of interest
(in the Hilbert space H) is affected by the interaction with
disorder. For this section, we focus on disorder ensembles
that are SRE in the sense of Definition 3. We should
emphasize that such purification is in general not unique,
and we will not focus on properties that are sensitive to
details of the SRE purification—its mere existence is
enough for our purpose.
Analogous to the clean case, the density operator ρ and

quantum circuits implemented on ρ are subject to some
symmetry conditions. For a moment, let us focus on on-site
unitary symmetries. As before, we consider two distinct
types of symmetries in this work. The first is the exact
symmetry, intuitively, the symmetry respected by all
possible realizations of disorder. We denote the exact
symmetry group by K. For each element k ∈ K, there is
a corresponding unitary operator UðkÞ acting on H, which
forms a linear representation of K:

UðkÞ ¼ ⊗i∈Λ uiðkÞ; ð29Þ

where uiðkÞ is the (linear) representation of K on a single
site i ∈ Λ. We generalize the concept of symmetric
quantum state to mixed ensembles as follows.
Definition 4.—A SRE mixed state ρ has an exact unitary

symmetry K, if there exist
(i) an enlarged Hilbert space H0 with symmetry action,

S̃ðkÞ ¼ UðkÞ ⊗ 1D; ð30Þ

(ii) a SRE purification jψi of ρ, defined in the enlarged
space H0, such that jψi is an eigenstate of SðkÞ for
each k ∈ K.

Note that the ancillary Hilbert space D is in a trivial
representation of K. It is not difficult to show that, if a SRE
ρ has an exact symmetry K, it can be decomposed into an
incoherent sum of pure states, which are all eigenstates of
UðkÞ with the same eigenvalue.
We now define average symmetry G for our mixed state.

The hallmark of an average symmetry is that disorders
also transform nontrivially. This motivates the following
definition.
Definition 5.—A SRE mixed state described by a density

operator ρ has an average unitary symmetry G if
(i) there exists a SRE purification jψi of ρ, defined in an

enlarged space H0 with symmetry action

S̃ðgÞ ¼ UðgÞ ⊗ UðgÞD; ð31Þ

such that jψi is an eigenstate of SðgÞ for each
element g in group G.

We emphasize that the ancillary spaceD is in a nontrivial
representation of G. With this definition, a density matrix ρ
with average symmetry G commutes with the operator
UðgÞ (both viewed as operators acting on the Hilbert space
of interest H):

UðgÞρ ¼ trD½(UðgÞD)†UðgÞ ⊗ UðgÞDjψihψ j�
¼ trD½(UðgÞD)†jψihψ jUðgÞ ⊗ UðgÞD� ¼ ρUðgÞ;

ð32Þ

which is consistent with our expectation for a “statistical
symmetry” that is respected on average. A key difference
from an exact symmetry is that, when we simultaneously
diagonalize the density operator ρ and UðgÞ, ρ is written as
an incoherent sum of pure states, with in general different
charges under G.
We are now ready to discuss relations between SRE

ensembles. In the standard theory of SPT states, quantum
states are divided into equivalence classes, where two states
are in the same phase if and only if they can be connected
by a symmetric finite-depth local unitary. Naturally, for
mixed ensembles, the state equivalence relation can be
defined using “symmetric finite-depth” quantum channels
[33]. In general, a quantum channel, which is a completely
positive trace-preserving map between density operators,
can be realized by a unitary acting on an extended system
[81]. We therefore define symmetric finite-depth local
quantum channels as follows.
Definition 6.—A quantum channel E on a system with

Hilbert space H is a symmetric finite-depth local quantum
channel if it has a purification to a unitary W on a space
H00 ¼ H ⊗ A, such that for some ancilla state jai ∈ A,
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EðρÞ ¼ trA½Wðρ ⊗ jaihajÞW†�: ð33Þ

Specifically, we have the following.
(i) The ancillary space A, which is a tensor product of

local degrees of freedom at each site, should not be
confused with the space D that is used to purify the
density operator ρ. However, A carries the same
symmetry representation as the disorder (and the
space D).

(ii) W is a finite-depth local unitary on H00.
(iii) W is composed of gates that commute with SðkÞ ¼

UðkÞ ⊗ 1A and SðgÞ ¼ UðgÞ ⊗ UðgÞA, but do not
commute with UðgÞ that acts on H alone.

(iv) The ancilla state jai is a product state symmetric
under UðgÞA.

One can easily check that a symmetric quantum channel
preserves exact and average unitary symmetries of an
ensemble. Physically, this means that when we apply the
quantum channel, the mixed ensemble does not exchange
K charge with the ancillas inA. On the other hand, the total
G charge of H and A is conserved, though there can be
charge exchange between them.
We now comment on time-reversal symmetry T . As time

reversal is antiunitary, there is no way for the ancillary
Hilbert space D to transform trivially like Eq. (30).
Meanwhile, one cannot tell whether a mixed state is an
exact or average eigenstate by the T “charges” when
written as an incoherent sum, since time-reversal eigen-
value is a basis-dependent quantity. At best we can define a
mixed state ρ to be time-reversal invariant when

T ρT −1 ¼ ρ: ð34Þ

An equivalent statement is that ρ has a purification jψi
defined in an enlarged Hilbert spaceH0, such that jψi is an
eigenstate of time-reversal symmetry T . We therefore
conclude that, with quantum disorders, time-reversal sym-
metry always behaves as an average symmetry.
After introducing the mixed state generalization of SRE

states and the definition of symmetric quantum channels,
we are now ready to define the concept of average SPT
phases in terms of the density operator ρ.

B. Average symmetry-protected topological phases

We now propose the following channel definition of
average symmetry-protected topological phases in the
presence of invertible quantum disorders.
Definition 7.—Consider two SRE ensembles ρ1 and ρ2,

with exact symmetry K and average symmetry G.
(i) ρ1 and ρ2 are in the same ASPT phase if there exist

two symmetric finite-depth local quantum channels
E and E0, such that both jjEðρ1Þ − ρ2jj1 and
jjE0ðρ2Þ − ρ1jj1 vanish in the thermodynamic limit.

(ii) In particular, a symmetric SRE ρ is a trivial ASPT
phase if it is two-way connectable to a product state.

Namely, there exist two symmetric finite-depth local
quantum channels E and E0, such that

lim
L→∞

jjρ − EðρclÞjj1 → 0;

lim
L→∞

jjρcl − E0ðρÞjj1 → 0: ð35Þ

Here the density operator ρcl represents a pure
symmetric product state in the Hilbert space H
and L is the linear size of the system.

Several comments follow. (1) A SPT phase in a clean
setting is an eigenstate of the protecting symmetry. As an
analog, an ASPT phase is a mixed ensemble symmetric
under the pertinent exact (average) symmetries. This
property is preserved by symmetry finite-depth local
quantum channels. (2) Quantum channels are generically
not invertible, and form a semigroup under composition.
Consequently, the above definition for an ASPT phase is an
equivalence relation, according to which states are divided
into equivalence classes (phases). The physical idea is that
two SRE mixed states are in the same ASPT phase if we
can prepare each one from the other, using a symmetric
finite-depth local channel (potentially with ancillas). In
particular, a SRE ensemble is trivial when it can be
prepared in this way starting from a trivial product state.
(3) When constructing the symmetric finite-depth local
channel, the maximal width of the gates is bounded by
some constant. The depth of a channel is allowed to be
polylog(L) to simulate an adiabatic evolution more accu-
rately [82–84]. However, crucially, we require it to be
sublinear in the system size L.
We also note that states nontrivial under our mixed state

definition are also nontrivial under the definition used in
Sec. II, since classical disorders form a subset of invertible
quantum disorders. However, states that are nontrivial in
the sense of Sec. II may not be nontrivial in our current
context.
One consequence of Definition 7 is that a SPT phase in

clean system ρ ¼ jΨihΨj, which is nontrivial under any
symmetric finite-depth circuit, may become trivial under a
symmetric finite-depth channel. As defined in Definition 6,
bothH and the ancillary spaceA transform faithfully under
the average symmetry. For an arbitrary SPT state jψgi
protected solely by the average symmetry G, one can find a
G-SPT state jψ−1

g iA defined inA, such that the state jψgi ⊗
jψ−1

g iA can be prepared from a trivial product state by a
finite-depth local unitary with gates that commute with
SðgÞ ¼ UðgÞ ⊗ UðgÞA. This statement is known as the
invertibility of SPT states [85,86]. On the other hand,
starting from a G-SPT state jψgi, one can always construct
a symmetric finite-depth local unitary, which brings
jψgihψgj ⊗ jaihaj to ρcl ⊗ jψgiAhψgjA. After tracing out
A, this implies jψgi becomes trivial in the mixed state
setting, according to the definition Eq. (35). This logic also
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applies to any nontrivial invertible phase [such as the chiral
E8 state in ð2þ 1ÞD], as we can also bring the ancillary
degrees of freedom into the appropriate inverse state. In this
sense, “gravitational response” becomes a trivial concept in
the mixed state setting.

C. Simple example

We now discuss an example of nontrivial average SPT
phases under the definitions used in this section. The simplest
example is in fact the one discussed in Sec. IVA, where one
of the Z2 symmetries in the Z2 × Z2 cluster chain becomes
an average symmetry due to a random field perturbation.
One way to characterize the clean cluster model

is the nonlocal string order parameter in the ground state
[37,87]:

lim
jn−mj→∞

�
Z2m−1

Yn
k¼m

X2kZ2nþ1

�
≠ 0: ð36Þ

The string order is made out of the symmetry operator G
in the middle (but acting in a finite region), multiplied
by two local end point operators [88]. One can con-
struct a similar string order for the symmetry K, i.e.,
Z2m

Q
n−1
k¼m X2kþ1Z2n, which also has long-range order in

the ground state. For later convenience, we denote a string
order associated with a symmetry K by SK, which is
constructed by the symmetry operator sK (acting in a finite
region) in the middle, multiplied by some local end point
operators: SK ¼ Ol

Ks
KOr

K.
The topological nature of the cluster SPT phase is

encoded in the symmetry charge of the end point operators:
in order for the string order associated with symmetry K
(G) to have long-ranged order, its end point operators must
be odd under symmetry G (K). In contrast, in a trivial SPT
phase, e.g., a paramagnetic chainHtriv ¼ −

P
n Xn, the end

point operators of a string order with a nonzero ground state
expectation cannot carry any nontrivial charges. These
distinct quantized charges indicate the two models must be
separated by a phase transition.
We now add the random field,

Hdis ¼ −
X
n

h2nZ2n; ð37Þ

where h2n’s are on-site potentials distributed uniformly in
½−δ; δ�. The ensemble of ground states now has exact
symmetry K generated by Ising spins on the odd sites,
while the Ising symmetry on the even sites G is only an
average symmetry.
One can study the behaviors of the string orders in the

presence of this disorder. Since the symmetry G is broken
locally by randomness in each realization of disorder, one
expects the ensemble average of the string order associated
with G to decay exponentially as a function of the length of
the string. On the other hand, if the disorder does not close

the bulk energy gap [which can be checked given the
specific Hamiltonians in Eqs. (16) and (18), as long as the
disorder strength δ is small compared with the bulk gap], by
continuity, we expect that the string order of the unbroken
K with nontrivial end point operators remains long-range
ordered. These expectations are confirmed numerically; see
Fig. 3. One can also add the disorder in Eq. (18) to a trivial
SPT phase, e.g., a trivial paramagnet. In contrast, we find
numerically that both string orders of K and G, with end
point operators odd under the other symmetry, have no
nonzero ensemble average.
Analogous to the clean case, one may wonder if such a

nonzero string order parameter can serve as a characteristic
fingerprint of a “nontrivial phase.” The answer is yes, as we
show below. Specifically, we show that if the ensemble
average of the nontrivial string order parameter Sk (asso-
ciated with an element k ∈ K) remains long-range ordered,
the mixed state ρ cannot be a trivial ASPT phase.
Theorem 3.—Let ρ be a symmetric SRE ensemble in

which the nontrivial string order Sk has long-range order.
The trace norm in Eq. (35) remains nonzero for any choice
of symmetric finite-depth local channel.
Proof.—Consider a symmetric local channel E, con-

structed as that in Eq. (33). The depth of the circuit W
multiplied by the maximum range of each unitary in the
circuit is bounded by some range R, which is sublinear in L.
Suppose we have a string order parameter of the exact
symmetry Sk, with two end point operators Ol

kðxÞ and
Or

kðyÞ acting in the Hilbert space H with nontrivial charge
under UðgÞ. The length of the string jx − yj is taken to be
much larger than R. Under the action of the unitary circuit,
Sk is mapped to another string operator W†SkW. In the
region well separated from the end points (with a distance

FIG. 3. The string order parameters associated with K and G,
respectively, in the presence of disorder with δ ¼ 0.4. The
overline denotes the ensemble average over 50 samples. The
underlying clean model is in the cluster phase, perturbed away
from the exactly solvable point. The numerical study is per-
formed using the density matrix renormalization group technique
[89,90].
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larger than R), the string Sk remains unchanged, as the
circuit W commutes with the exact symmetry SðkÞ ¼
UðkÞ ⊗ 1A. The end point Ol

kðxÞ is mapped by the circuit
to a “local” operator Õl

kðxÞ ¼ W†Ol
kðxÞW, supported on a

region within distance R of x. (The discussion for the right
end point Or

k is the same, hence omitted hereafter.)
Therefore, W†SkW is again a string order parameter
associated with the group element k. ▪
An important observation is that the new end point

operator Õl
k has the same charge under the average

symmetry G as Ol
k, since the circuit W is symmetric:

SðgÞ†Õl
kSðgÞ¼W†

�
UðgÞ⊗UðgÞA

�†
Ol

k

�
UðgÞ⊗UðgÞA

�
W

¼W†UðgÞ†Ol
kUðgÞW: ð38Þ

Remember that Ol
k acts only on H; thus it commutes with

UðgÞA. Therefore, when we compute the expectation value
of Sk in a trivial ensemble, we have

trH½SktrAðWρ̃clW†Þ� ∼ hÕl
kðxÞihÕr

kðyÞi ¼ 0; ð39Þ

where ρ̃cl is a symmetric product state in the enlarged
Hilbert space H00, i.e., ρ̃cl ¼ ρcl ⊗ jaihaj, and where h� � �i
denotes the expectation value with respect to this state. To
get Eq. (39), note that Sk ¼ Ol

ks
kOr

k and the string sk

between the end points acts trivially on ρ̃cl. We also use the
cluster decomposition theorem for two well-separated end
points. The nontrivial SðgÞ charge of Õl=r

k then forces the
above expectation value to be zero. As a result, if the
nontrivial string Sk is long-range ordered in ρ, we have

jjρ − EðρclÞjj1
≥ jtrHSk½ρ − trAðWρ̃clW†Þ�j=jjSkjj ∼Oð1Þ: ð40Þ

This completes the proof of Theorem 3.
Theorem 3 indicates that a SPT phase whose protection

involves the exact symmetry cannot beprepared froma trivial
product state. This observation is made precise below.

D. Domain walls in an ASPT phase

We now show that for quantum disorders, the decorated
domain wall picture again emerges naturally within the
density matrix description. For simplicity, we use the
cluster chain studied above as an example. In this section,
hereafter, we take g ¼ k ¼ Z2.
For symmetric SRE states, applying the symmetry in a

finite but large region (much larger than the correlation
length) is equivalent to applying a unitary operator just near
the boundary of that region. In ð1þ 1ÞD, the open string sk
effectively only acts near the ends,

skρðskÞ† ¼ trDUl
kU

r
kjψihψ jðUl

kÞ†ðUr
kÞ†; ð41Þ

where sk is fractionalized on the symmetric SRE state jψi,
andUl

k (U
r
k) acts nontrivially only near the left (right) edge.

Note that though the string sk acts as an identity on the
ancillary space D, the operator Ul=r

k might act nontrivially
on D. The long-range order of Sk ¼ Ol

ks
kOr

k implies the
expectation value,

hψ jOl
kU

l
kO

l
kU

r
kjψi ≠ 0; ð42Þ

for large separations of the two ends. By cluster decom-
position theorem, one has

hψ jOl
kU

l
kjψi ≠ 0; ð43Þ

and similarly for the right end point. As jψi is symmetric,
when Ol

k is charged under S̃ðgÞ (like in the case of the
cluster chain), the nonvanishing expectation value requires
the operator Ul

k also carries a nontrivial S̃ðgÞ charge.
Next, instead of the string of the exact symmetry (sk), let

us conjugate the density operator ρ by sg (acts on the
Hilbert spaceH only), a finite but long string of an average
symmetry. Again due to the SRE nature of the purifying
state, we have

sgρðsgÞ† ¼ trDsgjψihψ jðsgÞ†
¼ trDsg ⊗ sgDjψihψ jðsgÞ† ⊗ ðsgDÞ†
¼ trDUl

gUr
gjψihψ jðUl

gÞ†ðUr
gÞ†; ð44Þ

in which we have to include a corresponding string ðsgÞD
acting on D, due to the nontrivial G transformation of
the ancillary space [see Eq. (31)]. A nontrivial result of the
cohomology group H2(Z2 × Z2;Uð1Þ) [91] states that the
k charge of the operator Ul=r

g should be identical to the g
charge of Ul=r

k , and is therefore nontrivial. Since the string
sg creates a g domain wall at each end point, we thus see
that a domain wall of the average symmetry is decorated by
a nontrivial charge (i.e., a 0D SPT phase) of the exact
symmetry. This conclusion is a property of the symmetric
SRE mixed ensemble ρ, which is independent of the
specific choice of the purification jψi.
The above discussion can be generalized to higher

dimensions. For example, in ð2þ 1ÞD, instead of string
operators, we can consider membrane operators. The
details, however, are more involved and we do not attempt
to provide a full exploration. Instead, we make the plausible
conjecture that, similar to the ð1þ 1ÞD examples, the
group-cohomology result Eq. (15) for decorated average
domain walls captures the classification of bosonic mixed
state SPT phases (with invertible quantum disorders).
We close this section by pointing out a connection

between our discussion and Ref. [33], which studied mixed
state SPT phases in the context of open quantum systems.
The definition of exact and average symmetries in this work
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mimics the definition of the strong and weak symmetry
conditions for quantum channels in Ref. [33]. The two
types of channels (or Lindbladians) there can thus be
understood as adiabatically turning on disorder that exactly
or averagely preserves the protecting symmetry of a SPT
phase. It was observed in Ref. [33] that a weakly symmetric
channel is insufficient to preserve SPT phases. This, in our
language, is the statement that a SPT phase protected by
average symmetry alone is trivialized by disorder, pre-
sented in Sec. VI B.

VII. DISCUSSION

We end with some open directions, several of which
were also mentioned in previous sections.
(1) We focus on disordered ensembles in which any two

states (with different disorder realizations) are adia-
batically connected to each other (Definition 1). This
assumption allows us to make controlled arguments,
even without assuming weak disorder strength.
However, it does leave open the possibility of
interesting topological phenomena in disordered
ensembles not satisfying this adiabatic assumption.
For example, in an Anderson localized insulator, the
U(1) charge at each position fluctuates depending on
the local chemical potential, so different disorder
realizations give different U(1) charges, and there-
fore cannot be symmetrically connected to each
other. In Sec. III Awe also discuss the possibility of
sample-to-sample fluctuations that are topological in
nature—such phenomena will certainly require us to
go beyond the adiabatic assumption. If such “topo-
logical sample fluctuation” can indeed happen, it
would represent a novel topological phenomenon
that intrinsically requires strong disorder.

(2) It may also be possible to have “intrinsically dis-
ordered average SPT phases” even if the adiabatic
assumption in Definition 1 is kept. As we discuss in
Sec. III D, among the set of consistency rules
required in the standard decorated domain wall
approach, there is one that is not required in the
context of average SPT phase: the domain walls do
not need to have consistent Berry phase when moved
around, simply because the domain walls are pinned
by local disorders and do not move. This leaves open
the possibility of average SPT phases not allowed in
the clean limit. We will develop the theory of such
phases in more detail in a forthcoming work.

(3) In Sec. IV we show that if the decoration dimension
is greater than ð0þ 1ÞD, then the boundary of
average SPT state should almost certainly be
long-range entangled, with probability approaching
1 in the thermodynamic limit. It will be desirable,
however, to obtain a more direct statement on
(averaged) measurable quantities such as correlation

functions or inverse energy gap. This is a natural
direction for the next step.

(4) t’Hooft anomaly has been an extremely powerful
nonperturbative tool in the study of strongly coupled
gapless states of matter, including various conformal
field theories that arise in exotic quantum criticality
and even compressible states (some recent examples
include Refs. [67,92]). It is natural to ask whether
the disordered version of these states can also be
fruitfully studied using the average anomalies.

(5) Since we have established the notion of average
symmetry-protected topological phase, an immedi-
ate question is whether the notion of average
symmetry-enriched topological phases can be simi-
larly defined. In particular, are various concepts [93]
in symmetry-enriched topological phases well de-
fined for average symmetry? If so, what are their
consequences?

(6) There are some other scenarios in which mixed
states necessarily appear. One is in open quantum
systems, where finite-depth quantum channels are
naturally realized by fast local Lindbladian evolu-
tions [33,83]. We therefore expect the results in this
work shed light on classification and characteriza-
tion of SPT phases in open systems. There are
several questions that remain unclear. For instance,
can mixed SPT states arise as steady states of
Lindbladian evolutions? Can we formulate a similar
field theory, when the Hamiltonian (Lindbladian) is
time dependent? These open questions are left to
future study.
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APPENDIX: ATIYAH-HIRZEBRUCH SPECTRAL
SEQUENCE FOR CLASS AII

In order to define a fermionic theory in symmetry class
AII, one should equip the space-time manifold with a pinc̃þ
structure. In (dþ 1) dimension, the structure group fits in
the short exact sequence:
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1 → Uð1Þ → pinc̃þ → Oðdþ 1Þ → 1; ðA1Þ

where the reflection element in Oðdþ 1Þ squares to 1 in
Euclidean signature and acts on U(1) by complex con-
jugation. For our purpose, we calculate the cobordism
Ω•

pinc̃þ
using an AHSS with E2 page given by

Ep;q
2 ¼ Hp(BZ2;Ω

q
spincðptÞ), with the coefficient group

twisted appropriately by Z2. For example, the IQH root
state and the E8 root state are both time-reversal odd, so Z2

acts on their corresponding elements in Ω•
spinc nontrivially.

On the other hand, Z2 acts on the U(1) charge trivially. The
E2 page in low degree is given by

ðA2Þ

in which Uð1ÞT indicates the coefficient twisted by time
reversal. t is the generator of the cohomology ring
H•ðBZ2;Z2Þ ¼ Z2½t� with t in degree one. In this spectral
sequence only the d3 differential can possibly be nontrivial.
Given [60,95]

d3 ¼ ð−1ÞðSq2þt·Sq1þt2Þ∘β; ðA3Þ

for T 2 ¼ −1 when acting on fermions, one can see that the
d3 differential vanishes for elements with total degrees up
to 4. Here, β is the Bockstein of the following sequence in
cohomology:

1 → Z2 ⟶
ð−1Þx

Uð1Þ⟶x
2

Uð1Þ → 1; ðA4Þ

such that β∶Hn(BZ2;Uð1Þ)→Hnþ1ðBZ2;Z2Þ. Physically,
the vanishing of differential means the decorations we
discuss in Sec. Vare consistent. The calculation also agrees
with the Z3

2 classification of class AII TIs in three spatial
dimensions [77].

[1] L. D. Landau and E.M. Lifshitz, Statistical Physics, Part 1,
Course ofTheoretical Physics,Vol. 5 (Butterworth-Heinemann,
Oxford, 1980).

[2] John McGreevy, Generalized Symmetries in Condensed
Matter, Annu. Rev. Condens. Matter Phys. 14, 57 (2023).

[3] Frank Pollmann and Ari M. Turner, Detection of Symmetry-
Protected Topological Phases in One Dimension, Phys.
Rev. B 86, 125441 (2012).

[4] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-
Gang Wen, Symmetry Protected Topological Orders in
Interacting Bosonic Systems, Science 338, 1604 (2012).

[5] Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, and Xiao-
GangWen, Symmetry Protected Topological Orders and the
Group Cohomology of Their Symmetry Group, Phys. Rev. B
87, 155114 (2013).

[6] T. Senthil, Symmetry-Protected Topological Phases of
Quantum Matter, Annu. Rev. Condens. Matter Phys. 6,
299 (2015).

[7] M. Z. Hasan and C. L. Kane, Colloquium: Topological
Insulators, Rev. Mod. Phys. 82, 3045 (2010).

[8] Xiao-Liang Qi and Shou-Cheng Zhang, Topological Insula-
tors and Superconductors, Rev. Mod. Phys. 83, 1057
(2011).

[9] I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov,
Statistical Topological Insulators, Phys. Rev. B 89, 155424
(2014).

[10] A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker, and
E. Cobanera, Statistical Translation Invariance Protects a
Topological Insulator from Interactions, Phys. Rev. B 92,
085139 (2015).

[11] Zohar Ringel, Yaacov E. Kraus, and Ady Stern, Strong side
of weak topological insulators, Phys. Rev. B 86, 045102
(2012).

[12] Roger S. K. Mong, Jens H. Bardarson, and Joel E. Moore,
Quantum Transport and Two-Parameter Scaling at the
Surface of a Weak Topological Insulator, Phys. Rev. Lett.
108, 076804 (2012).

[13] Liang Fu and C. L. Kane, Topology, Delocalization via
Average Symmetry and the Symplectic Anderson Transition,
Phys. Rev. Lett. 109, 246605 (2012).

[14] B. L.Altshuler, I. L.Aleiner, andV. I.Yudson,Localization at
the Edge of a 2D Topological Insulator by Kondo Impurities
with Random Anisotropies, Phys. Rev. Lett. 111, 086401
(2013).

[15] Yang-Zhi Chou, Rahul M. Nandkishore, and Leo
Radzihovsky, Gapless Insulating Edges of Dirty Interacting
Topological Insulators, Phys. Rev. B 98, 054205
(2018).

[16] Yang-Zhi Chou, Rahul M. Nandkishore, and Leo
Radzihovsky, Localized Surfaces of Three-Dimensional
Topological Insulators, Phys. Rev. B 99, 165108 (2019).

[17] Yang-Zhi Chou and Rahul M. Nandkishore, Marginally
Localized Edges of Time-Reversal Symmetric Topological
Superconductors, Phys. Rev. B 103, 075120 (2021).

[18] Itamar Kimchi, Yang-Zhi Chou, Rahul M. Nandkishore, and
Leo Radzihovsky, Anomalous Localization at the Boundary

AVERAGE SYMMETRY-PROTECTED TOPOLOGICAL PHASES PHYS. REV. X 13, 031016 (2023)

031016-21

https://doi.org/10.1146/annurev-conmatphys-040721-021029
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1103/PhysRevB.86.125441
https://doi.org/10.1126/science.1227224
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1146/annurev-conmatphys-031214-014740
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.86.045102
https://doi.org/10.1103/PhysRevB.86.045102
https://doi.org/10.1103/PhysRevLett.108.076804
https://doi.org/10.1103/PhysRevLett.108.076804
https://doi.org/10.1103/PhysRevLett.109.246605
https://doi.org/10.1103/PhysRevLett.111.086401
https://doi.org/10.1103/PhysRevLett.111.086401
https://doi.org/10.1103/PhysRevB.98.054205
https://doi.org/10.1103/PhysRevB.98.054205
https://doi.org/10.1103/PhysRevB.99.165108
https://doi.org/10.1103/PhysRevB.103.075120


of an Interacting Topological Insulator, Phys. Rev. B 101,
035131 (2020).

[19] Liang Fu, Topological Crystalline Insulators, Phys. Rev.
Lett. 106, 106802 (2011).

[20] Hao Song, Sheng-Jie Huang, Liang Fu, and Michael
Hermele, Topological Phases Protected by Point Group
Symmetry, Phys. Rev. X 7, 011020 (2017).

[21] Ryan Thorngren and Dominic V. Else, Gauging Spatial
Symmetries and the Classification of Topological Crystal-
line Phases, Phys. Rev. X 8, 011040 (2018).

[22] Elliott Lieb, Theodore Schultz, and Daniel Mattis, Two
Soluble Models of an Antiferromagnetic Chain, Ann. Phys.
(N.Y.) 16, 407 (1961).

[23] Masaki Oshikawa, Commensurability, Excitation Gap, and
Topology in Quantum Many-Particle Systems on a Periodic
Lattice, Phys. Rev. Lett. 84, 1535 (2000).

[24] M. B. Hastings, Lieb-Schultz-Mattis in Higher Dimensions,
Phys. Rev. B 69, 104431 (2004).

[25] Meng Cheng, Michael Zaletel, Maissam Barkeshli, Ashvin
Vishwanath, and Parsa Bonderson, Translational Symmetry
and Microscopic Constraints on Symmetry-Enriched Topo-
logical Phases: A View from the Surface, Phys. Rev. X 6,
041068 (2016).

[26] Hoi Chun Po, Haruki Watanabe, Chao-Ming Jian, and
Michael P. Zaletel, Lattice Homotopy Constraints on Phases
of Quantum Magnets, Phys. Rev. Lett. 119, 127202 (2017).

[27] Itamar Kimchi, Adam Nahum, and T. Senthil, Valence
Bonds in Random Quantum Magnets: Theory and Appli-
cation to YbMgGaO4, Phys. Rev. X 8, 031028 (2018).

[28] Xiao-Liang Qi, Taylor L. Hughes, and Shou-Cheng Zhang,
Topological Field Theory of Time-Reversal Invariant
Insulators, Phys. Rev. B 78, 195424 (2008).

[29] G. Rosenberg and M. Franz, Witten Effect in a Crystalline
Topological Insulator, Phys. Rev. B 82, 035105 (2010).

[30] Edward Witten, Fermion Path Integrals and Topological
Phases, Rev. Mod. Phys. 88, 035001 (2016).

[31] Xie Chen, Yuan-Ming Lu, and Ashvin Vishwanath,
Symmetry-Protected Topological Phases from Decorated
Domain Walls, Nat. Commun. 5, 3507 (2014).

[32] Liang Fu, C. L. Kane, and E. J. Mele, Topological Insula-
tors in Three Dimensions, Phys. Rev. Lett. 98, 106803
(2007).

[33] Caroline de Groot, Alex Turzillo, and Norbert Schuch,
Symmetry Protected Topological Order in Open Quantum
Systems, Quantum 6, 856 (2022).

[34] If the disorder potential v takes continuous values in a
connected space, this would be automatically forbidden by
imposing symmetric SRE on each individual state. How-
ever, in more general cases, the condition has to be imposed
separately.

[35] Yoseph Imry and Shang-keng Ma, Random-Field Instability
of the Ordered State of Continuous Symmetry, Phys. Rev.
Lett. 35, 1399 (1975).

[36] Qing-Rui Wang, Shang-Qiang Ning, and Meng Cheng,
Domain Wall Decorations, Anomalies and Spectral Se-
quences in Bosonic Topological Phases, arXiv:2104.13233.

[37] Frank Pollmann, Ari M. Turner, Erez Berg, and Masaki
Oshikawa, Entanglement Spectrum of a Topological Phase
in One Dimension, Phys. Rev. B 81, 064439 (2010).

[38] Ari M. Turner, Frank Pollmann, and Erez Berg, Topological
Phases of One-Dimensional Fermions: An Entanglement
Point of View, Phys. Rev. B 83, 075102 (2011).

[39] Lukasz Fidkowski and Alexei Kitaev, Topological Phases of
Fermions in One Dimension, Phys. Rev. B 83, 075103
(2011).

[40] Hassan Shapourian, Ken Shiozaki, and Shinsei Ryu, Many-
Body Topological Invariants for Fermionic Symmetry-
Protected Topological Phases, Phys. Rev. Lett. 118,
216402 (2017).

[41] Michael Levin and Zheng-Cheng Gu, Braiding Statistics
Approach to Symmetry-Protected Topological Phases,
Phys. Rev. B 86, 115109 (2012).

[42] Anton Kapustin, Symmetry Protected Topological Phases,
Anomalies, and Cobordisms: Beyond Group Cohomology,
arXiv:1403.1467.

[43] Alexander Altland and Ben D Simons, Condensed Matter
Field Theory (Cambridge University Press, Cambridge,
England, 2010).

[44] P. A. Lee and A. D. Stone, Universal Conductance Fluctu-
ations in Metals, Phys. Rev. Lett. 55, 1622 (1985).

[45] Anton Kapustin, Ryan Thorngren, Alex Turzillo, and Zitao
Wang, Fermionic Symmetry Protected Topological Phases
and Cobordisms, J. High Energy Phys. 12 (2015) 052.

[46] Anton Kapustin, Bosonic Topological Insulators and Para-
magnets: A View from Cobordisms, arXiv:1404.6659.

[47] Daniel S. Freed and Michael J. Hopkins, Reflection Posi-
tivity and Invertible Topological Phases, Geom. Topol. 25,
1165 (2021).

[48] Juven C. Wang, Zheng-Cheng Gu, and Xiao-Gang Wen,
Field-Theory Representation of Gauge-Gravity Symmetry-
Protected Topological Invariants, Group Cohomology, and
Beyond, Phys. Rev. Lett. 114, 031601 (2015).

[49] Alexei Kitaev, Anyons in an Exactly Solved Model and
Beyond, Ann. Phys. (Amsterdam) 321, 2 (2006).

[50] Ashvin Vishwanath and T. Senthil, Physics of Three-
Dimensional Bosonic Topological Insulators: Surface-
Deconfined Criticality and Quantized Magnetoelectric
Effect, Phys. Rev. X 3, 011016 (2013).

[51] Chong Wang and T. Senthil, Boson Topological Insulators:
A Window into Highly Entangled Quantum Phases, Phys.
Rev. B 87, 235122 (2013).

[52] F. J. Burnell, Xie Chen, Lukasz Fidkowski, and Ashvin
Vishwanath, Exactly Soluble Model of a Three-Dimensional
Symmetry-Protected Topological Phase of Bosons with
Surface Topological Order, Phys. Rev. B 90, 245122
(2014).

[53] Sheng-Jie Huang, Hao Song, Yi-Ping Huang, and Michael
Hermele, Building Crystalline Topological Phases from
Lower-Dimensional States, Phys. Rev. B 96, 205106
(2017).

[54] Zhida Song, Chen Fang, and Yang Qi, Real-Space Recipes
for General Topological Crystalline States, Nat. Commun.
11, 4197 (2020).

[55] Dominic V. Else and Ryan Thorngren, Crystalline Topo-
logical Phases as Defect Networks, Phys. Rev. B 99,
115116 (2019).

[56] Jian-Hao Zhang, Shuo Yang, Yang Qi, and Zheng-Cheng
Gu, Real-Space Construction of Crystalline Topological

RUOCHEN MA and CHONG WANG PHYS. REV. X 13, 031016 (2023)

031016-22

https://doi.org/10.1103/PhysRevB.101.035131
https://doi.org/10.1103/PhysRevB.101.035131
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevX.7.011020
https://doi.org/10.1103/PhysRevX.8.011040
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1103/PhysRevLett.84.1535
https://doi.org/10.1103/PhysRevB.69.104431
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevLett.119.127202
https://doi.org/10.1103/PhysRevX.8.031028
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.82.035105
https://doi.org/10.1103/RevModPhys.88.035001
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.22331/q-2022-11-10-856
https://doi.org/10.1103/PhysRevLett.35.1399
https://doi.org/10.1103/PhysRevLett.35.1399
https://arXiv.org/abs/2104.13233
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevLett.118.216402
https://doi.org/10.1103/PhysRevLett.118.216402
https://doi.org/10.1103/PhysRevB.86.115109
https://arXiv.org/abs/1403.1467
https://doi.org/10.1103/PhysRevLett.55.1622
https://doi.org/10.1007/JHEP12(2015)052
https://arXiv.org/abs/1404.6659
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.1103/PhysRevLett.114.031601
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevX.3.011016
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.90.245122
https://doi.org/10.1103/PhysRevB.90.245122
https://doi.org/10.1103/PhysRevB.96.205106
https://doi.org/10.1103/PhysRevB.96.205106
https://doi.org/10.1038/s41467-020-17685-5
https://doi.org/10.1038/s41467-020-17685-5
https://doi.org/10.1103/PhysRevB.99.115116
https://doi.org/10.1103/PhysRevB.99.115116


Superconductors and Insulators in 2D Interacting
Fermionic Systems, Phys. Rev. Res. 4, 033081 (2022).

[57] Jeffrey C. Y. Teo, Liang Fu, and C. L. Kane, Surface States
and Topological Invariants in Three-Dimensional Topo-
logical Insulators: Application to Bi1−xSbx, Phys. Rev. B
78, 045426 (2008).

[58] Hiroki Isobe and Liang Fu, Theory of Interacting Topo-
logical Crystalline Insulators, Phys. Rev. B 92, 081304(R)
(2015).

[59] D. J. Thouless, Quantization of Particle Transport, Phys.
Rev. B 27, 6083 (1983).

[60] Davide Gaiotto and Theo Johnson-Freyd, Symmetry Pro-
tected Topological Phases and Generalized Cohomology,
J. High Energy Phys. 05 (2019) 007.

[61] Masuo Suzuki, Relationship Among Exactly Soluble Models
of Critical Phenomena. I: 2D Ising Model, Dimer Problem
and the Generalized XY-Model, Prog. Theor. Phys. 46, 1337
(1971).

[62] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio, and V.
Vedral, Quantum Phase Transition between Cluster and
Antiferromagnetic States, Europhys. Lett. 95, 50001 (2011).

[63] Yohei Fuji, Frank Pollmann, and Masaki Oshikawa,Distinct
Trivial Phases Protected by a Point-Group Symmetry in
Quantum Spin Chains, Phys. Rev. Lett. 114, 177204 (2015).

[64] Shang-keng Ma, Chandan Dasgupta, and Chin-kun Hu,
Random Antiferromagnetic Chain, Phys. Rev. Lett. 43,
1434 (1979).

[65] Chandan Dasgupta and Shang-keng Ma, Low-Temperature
Properties of the Random Heisenberg Antiferromagnetic
Chain, Phys. Rev. B 22, 1305 (1980).

[66] Daniel S Fisher, Random Antiferromagnetic Quantum Spin
Chains, Phys. Rev. B 50, 3799 (1994).

[67] Weicheng Ye, Meng Guo, Yin-Chen He, Chong Wang, and
Liujun Zou, Topological Characterization of Lieb-Schultz-
Mattis Constraints and Applications to Symmetry-Enriched
Quantum Criticality, SciPost Phys. 13, 066 (2022).

[68] C. L. Kane and E. J. Mele, Z2 Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802
(2005).

[69] Tian Lan, Chenchang Zhu, and Xiao-Gang Wen, Fermion
Decoration Construction of Symmetry-Protected Trivial
Order for Fermion Systems with Any Symmetry and in
Any Dimension, Phys. Rev. B 100, 235141 (2019).

[70] Meng Guo, Pavel Putrov, and Juven Wang, Time Reversal,
SU(N) Yang-Mills and Cobordisms: Interacting Topologi-
cal Superconductors/Insulators and Quantum Spin Liquids
in 3þ 1D, Ann. Phys. (Amsterdam) 394, 244 (2018).

[71] Iñaki García-Etxebarria and Miguel Montero, Dai-Freed
Anomalies in Particle Physics, J. High Energy Phys. 08
(2019) 003.

[72] Alexei Kitaev, Toward Topological Classification of Phases
with Short-Range Entanglement, in Proceedings of the
Workshop on Topological Insulators and Superconductors,
2011, https://online.kitp.ucsb.edu/online/topomat11/kitaev/.

[73] As argued in Sec. IV, if the surface can be made SRE in the
presence of a bulk decoration with dimension p > ð0þ 1Þ,
this decoration is guaranteed to be trivial.

[74] Mathematically, each of the two decorations is described by
the cohomology H1ðZT

2 ;Z
T Þ ¼ Z2, where ZT denotes the

twisted coefficient, reflecting the fact that time reversal acts
nontrivially on the IQH and E8 states.

[75] An intersection of T -domain walls is trivial, in the sense that
it can be deformed locally to the configuration in Fig. 2(b).
The two configurations differ at most by a 1D SRE state.
This observation leads to the same result that the domain
wall intersection traps no 1D gapless mode.

[76] Here the coefficient is untwisted, as T preserves the U(1)
charge in class AII.

[77] Chong Wang, Andrew C. Potter, and T. Senthil, Classi-
fication of Interacting Electronic Topological Insulators in
Three Dimensions, Science 343, 629 (2014).

[78] Chong Wang and T. Senthil, Interacting Fermionic Topo-
logical Insulators/Superconductors in Three Dimensions,
Phys. Rev. B 89, 195124 (2014).

[79] This is only allowed by the defect fusion rule when T
reverses the U(1) charge, which is the case for class AIII.

[80] Matthew B. Hastings, Topological Order at Nonzero
Temperature, Phys. Rev. Lett. 107, 210501 (2011).

[81] John Preskill, Lecture Notes for Physics 229: Quantum
Information and Computation (California Institute of Tech-
nology, 1998), Vol. 16, p. 1, http://theory.caltech.edu/
~preskill/ph219/chap3_15.pdf.

[82] Tobias J. Osborne, Simulating Adiabatic Evolution of
Gapped Spin Systems, Phys. Rev. A 75, 032321 (2007).

[83] Andrea Coser and David Perez-Garcia, Classification of
Phases for Mixed States via Fast Dissipative Evolution,
Quantum 3, 174 (2019).

[84] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and
Guang Hao Low, Quantum Algorithm for Simulating Real
Time Evolution of Lattice Hamiltonians [Special Section
FOCS, 2018, SIAM J. Comput. (2018)] 10.1137/
18M1231511.

[85] Liang Kong and Xiao-Gang Wen, Braided Fusion Catego-
ries, Gravitational Anomalies, and the Mathematical
Framework for Topological Orders in Any Dimensions,
arXiv:1405.5858.

[86] Daniel S. Freed, Short-Range Entanglement and Invertible
Field Theories, arXiv:1406.7278.

[87] Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki
Oshikawa, Symmetry Protection of Topological Phases in
One-Dimensional Quantum Spin Systems, Phys. Rev. B 85,
075125 (2012).

[88] The easiest way of seeing Eq. (36) is by noting that it is
equal to

Q
n
k¼m Z2k−1X2kZ2kþ1, with Z2k−1X2kZ2kþ1 ¼ 1 in

the ground state. Away from the exactly solvable point, the
long-range order is no longer perfect, but the expectation
value of the string order remains nonzero—it is a general
feature of 1D SPT phases [3].

[89] Steven R. White, Density Matrix Formulation for Quantum
Renormalization Groups, Phys. Rev. Lett. 69, 2863
(1992).

[90] Ulrich Schollwöck, The Density-Matrix Renormalization
Group in the Age of Matrix Product States, Ann. Phys.
(Amsterdam) 326, 96 (2011).

[91] Ken Shiozaki and Shinsei Ryu, Matrix Product States and
Equivariant Topological Field Theories for Bosonic
Symmetry-Protected Topological Phases in (1þ 1)
Dimensions, J. High Energy Phys., 04 (2017) 100.

AVERAGE SYMMETRY-PROTECTED TOPOLOGICAL PHASES PHYS. REV. X 13, 031016 (2023)

031016-23

https://doi.org/10.1103/PhysRevResearch.4.033081
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.92.081304
https://doi.org/10.1103/PhysRevB.92.081304
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1007/JHEP05(2019)007
https://doi.org/10.1143/PTP.46.1337
https://doi.org/10.1143/PTP.46.1337
https://doi.org/10.1209/0295-5075/95/50001
https://doi.org/10.1103/PhysRevLett.114.177204
https://doi.org/10.1103/PhysRevLett.43.1434
https://doi.org/10.1103/PhysRevLett.43.1434
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1103/PhysRevB.50.3799
https://doi.org/10.21468/SciPostPhys.13.3.066
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevB.100.235141
https://doi.org/10.1016/j.aop.2018.04.025
https://doi.org/10.1007/JHEP08(2019)003
https://doi.org/10.1007/JHEP08(2019)003
https://online.kitp.ucsb.edu/online/topomat11/kitaev/
https://online.kitp.ucsb.edu/online/topomat11/kitaev/
https://online.kitp.ucsb.edu/online/topomat11/kitaev/
https://online.kitp.ucsb.edu/online/topomat11/kitaev/
https://doi.org/10.1126/science.1243326
https://doi.org/10.1103/PhysRevB.89.195124
https://doi.org/10.1103/PhysRevLett.107.210501
http://theory.caltech.edu/%7Epreskill/ph219/chap3_15.pdf
http://theory.caltech.edu/%7Epreskill/ph219/chap3_15.pdf
http://theory.caltech.edu/%7Epreskill/ph219/chap3_15.pdf
http://theory.caltech.edu/%7Epreskill/ph219/chap3_15.pdf
http://theory.caltech.edu/%7Epreskill/ph219/chap3_15.pdf
https://doi.org/10.1103/PhysRevA.75.032321
https://doi.org/10.22331/q-2019-08-12-174
https://doi.org/10.1137/18M1231511
https://doi.org/10.1137/18M1231511
https://arXiv.org/abs/1405.5858
https://arXiv.org/abs/1406.7278
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1007/JHEP04(2017)100


[92] Dominic V. Else, Ryan Thorngren, and T. Senthil,Non-Fermi
Liquids as Ersatz Fermi Liquids: General Constraints on
Compressible Metals, Phys. Rev. X 11, 021005 (2021).

[93] Maissam Barkeshli, Parsa Bonderson, Meng Cheng, and
Zhenghan Wang, Symmetry Fractionalization, Defects, and
Gauging of Topological Phases, Phys. Rev. B 100, 115147
(2019).

[94] JohannesHauschild andFrank Pollmann,EfficientNumerical
Simulations with Tensor Networks: Tensor Network Python
(TENPY), SciPost Phys. Lect. Notes 5 (2018), https://tenpy
.readthedocs.io/en/latest/.

[95] Matthew Yu, Symmetries and Anomalies of ð1þ 1ÞD
Theories: 2-Groups and Symmetry Fractionalization, J.
High Energy Phys. 08 (2021) 061.

RUOCHEN MA and CHONG WANG PHYS. REV. X 13, 031016 (2023)

031016-24

https://doi.org/10.1103/PhysRevX.11.021005
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1103/PhysRevB.100.115147
https://tenpy.readthedocs.io/en/latest/
https://tenpy.readthedocs.io/en/latest/
https://tenpy.readthedocs.io/en/latest/
https://doi.org/10.1007/JHEP08(2021)061
https://doi.org/10.1007/JHEP08(2021)061

