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Explaining quantum many-body dynamics is a long-held goal of physics. A rigorous operator
algebraic theory of dynamics in locally interacting systems in any dimension is provided here in terms
of time-dependent equilibrium (Gibbs) ensembles. The theory explains dynamics in closed, open, and
time-dependent systems, provided that relevant pseudolocal quantities can be identified, and time-
dependent Gibbs ensembles unify wide classes of quantum nonergodic and ergodic systems. The
theory is applied to quantum many-body scars, continuous, discrete, and dissipative time crystals,
Hilbert space fragmentation, lattice gauge theories, and disorder-free localization, among other cases.
Novel pseudolocal classes of operators are introduced in the process: projected-local, which are local
only for some states, cryptolocal, whose locality is not manifest in terms of any finite number of local
densities, and transient ones, that dictate finite-time relaxation dynamics. An immediate corollary is
proving saturation of the Mazur bound for the Drude weight. This proven theory is intuitively the
rigorous algebraic counterpart of the weak eigenstate thermalization hypothesis and has deep
implications for thermodynamics: Quantum many-body systems “out of equilibrium” are actually
always in a time-dependent equilibrium state for any natural initial state. The work opens the
possibility of designing novel out-of-equilibrium phases, with the newly identified scarring and
fragmentation phase transitions being examples.

DOI: 10.1103/PhysRevX.13.031013 Subject Areas: Condensed Matter Physics,
Quantum Physics, Statistical Physics

I. INTRODUCTION

In recent decades, the eigenstate thermalization
hypothesis (ETH) [1] has become the cornerstone of
our understanding of nonequilibrium quantum many-
body dynamics. It deals with how an isolated quantum
many-body system when prepared in a far-from-
equilibrium initial state can relax to a state that is
effectively in equilibrium for the purpose of determining
expectation values of local observables. The weak ETH
in canonical form concerns the time-averaged dynamics
of observables, and states [1],
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where the sum in the first line goes over an appropriate
microcanonical window of the joint eigenstates jji of the
system’s Hamiltonian H and a set of conservation laws
Qα ½Qα; H� ¼ 0 and Z and N are normalization constants.
The expression is usually written as a sum over the
eigenstates and should be replaced with an integral in the
thermodynamic limit provided that the eigenstates are
well defined there. Physically, the hypothesis states that
the long-time expectation values of all observables is set
only by the initial expectation values of H and Qα in
terms of a (generalized) Gibbs ensemble via the Lagrange
multiplies β and μα. In this form, the ETH also accounts
for quantum integrable models that have an infinite set
of conservation laws [2]. These principles of local
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equilibration have also been fundamental in the recent
successful approach of generalized hydrodynamics [3–5].
The strong version of the ETH [1] is postulated as
holding also without the time averaging in Eq. (1).
However, since its formulation, there has been an

unmet desire to prove the ETH. Only in recent years have
systems been identified, beyond quantum integrable ones,
that seemingly violate the ETH. These include quantum
many-body scars [6–14], Hilbert space fragmented
models [15–17], time crystals [18–20], and others [21–23].
Naturally, they draw lots of attention due to their non-
ergodic and nonmixing dynamics seemingly defying
the ETH.
Indeed, even though the ETH may possibly be provable

for certain quantum systems, there is no reason to expect
that it will hold in full generality. The reason for this is that,
since the ETH is a statement about thermodynamically
large systems, eigenstates may be singular, or they may not
exist [24,25]. Moreover, even eigenvalues and the spectra
of H and Qα may display singularities. Such nonanalytic-
ities are important and cannot be ignored; e.g., they are the
reason behind phase transitions [26,27].
In order to therefore “prove” the ETH, an equivalent

formulation in terms of a rigorous theory is needed. The
standard choice is to describe local observables by C�
algebras [24,26]. In other words, one needs to move from
eigenstates to eigenoperators. Here, I focus on locally
interacting lattice models on hypercubic graphs in arbitrary
dimension. I prove that, for a sufficiently low-entangled
initial state, i.e., clustering (including physically realistic
equilibrium states), the general long-time dynamics of all
local observables in all such systems is described by a time-
dependent generalized Gibbs ensemble determined by
pseudolocal quantities [even without time averaging in
Eq. (1)]. In particular, two immediate corollaries are the
operator equivalent of Eq. (1) for the time average and
saturation of the Mazur bound for the Drude weight.
Moreover, it is shown that a time-dependent Gibbs ensem-
ble describes dynamics for all times (not just in the long-
time limit). Hence, remarkably, a quantum many-body
system is always in a state similar to an equilibrium state
that contains exponentially decaying nonconserved quan-
tities. In other words, the time-dependent generalized Gibbs
ensemble is the effective state describing the dynamics of
all local observables (the full state of the system, if defined,
may be pure provided that it was initially pure). The reason
for this is the bijection (one-to-one correspondence)
between pseudolocal quantities and local observables
[28]. It turns out that knowing the dynamics of pseudolocal
quantities gives all the information about the dynamics of
local quantities, but the dynamics of pseudolocal quantities
is much easier to find analytically. For instance, the
Hamiltonian itself H is a pseudolocal quantity and has
trivial dynamics for an isolated system ðd=dtÞH ¼
i½H;H� ¼ 0. Indeed, a priori, to find dynamics of local

observables, one needs to find all the eigenstates of H.
Here, I rather show how to find solutions for the dynamics
of all local observables provided one knows amuch smaller
(usually finite) set of special pseudolocal quantities.
Later on, the theory is explicitly used for recent topical

nonergodic and nonmixing cases, including quantum
many-body scars, time crystals, projected Hamiltonians,
Hilbert space fragmented models, disorder-free localized
models, lattice gauge theories, and others. In the process,
I introduce several kinds of pseudolocal quantities, includ-
ing projected-local (local only for some states) and cryp-
tolocal whose locality is not manifest in terms of sums of
local quantities. This eigenoperator thermalization theory
holds for open (dissipative), time-dependent, and indepen-
dent quantum systems and does not rely on integrability,
holds in any dimension, and relies only on locality of
interactions and clustering of the initial state. Note that the
theory for open systems is nontrivial. One might assume
that if we have a D-dimensional system, we may treat any
environment as a “fictive” enlargement of the system to
Dþ k and then study only observables in the original
system, i.e., perform a Stinespring dilation [29], but such
dilations are, in general, nonlocal, and, hence, our theory
would not apply without explicit generalizations.

A. Outline of the article.

In Sec. II, I discuss the relation between this article and
the previous work done on pseudolocality and thermal-
ization, provide the main definitions needed, and demon-
strate the importance of pseudolocality with a specific
example often overlooked in the literature. The overview of
the main results and discussion of the proof of the weak
ETH, together with the descriptions of the long-time
dynamics of several nonergodic models, is given in
Sec. III. Section IV contains the main theorems, which
are proved in Appendix A. These are used to study various
physical examples, including scars and fragmentation in
Sec. V. Finally, the conclusion (Sec. VII) contains a list
of possible immediate research directions stemming from
the present work.

II. PRELIMINARIES AND PREVIOUS WORK

In order to rigorously study dynamics of quantum many-
body systems in the thermodynamic limit, we need to move
to the framework of C� algebras. This is to be contrasted
with the standard ETH, where one focuses on the eigen-
states of the system’s HamiltonianH. However, eigenstates
may not even exist in the thermodynamic limit, and, more
broadly, an inner product on the corresponding Hilbert
space H is not well defined [24]. This is more than just a
mathematical curiosity, because related discontinuities are
responsible for phase transitions [24,26]. Indeed, operator
algebraic approaches to dynamics and thermalization of
quantum many-body systems have a long history—from
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the work of von Neumann on the ergodic theorem [30]
and Robinson, Emch, Hume, Narnhofer, and others, e.g.,
Refs. [31–34].
The physical systems studied here are locally interacting

D-dimensional lattice models on infinite hypercubic latti-
ces, with a set of sites Γ ¼ ZD, with each site x having a
finite-dimensional space of matrices and finite subsets of
balls Λ of the full lattice of size V ≔ jΛj. Correspondingly,
local operators O;P;Q… form a C� algebra Uloc ≔
⊗x∈Λ MdðCÞ, where d is the dimension of the local matrix
of operators on site x. The algebra Uloc is equipped with a
norm that may be Cauchy completed to the full quasilocal
algebra U [26,27]. More specifically, defining a standard
state ω as a positive linear functional on the algebra Uloc
[with ωð1Þ ¼ 1], with the finite case having the familiar
density matrix representation ρ, ωðOÞ ¼ trðρOÞ. The stan-
dard Gelfand-Naimark-Segal (GNS) construction allows
for Cauchy completion with respect to the norm induced by
the (symmetrized) connected correlator inner product [28]:

hO;Qicω ≔
X
x∈Γ

1

2
ωðfO†

x; QgÞ − ωðO†
xÞωðQÞ; ð2Þ

where Ox is the displacement of O by x, † denotes the
conjugate, and fx; yg ≔ xyþ yx.
A crucial notion is that of pseudolocal quantities,

introduced in Refs. [35–37], defined rigorously by
Doyon, and this is the framework I use in the article.
Under Doyon’s framework, Eq. (2) exists provided that
the state ω is p-clustering, i.e., essentially jωðOQÞ−
ωðOÞωðQÞj ≤ CdistðO;QÞ−p, where C is a constant that
does not depend on distance and the operators O and Q.
This defines a Hilbert space of local observables Hω.
Pseudolocal quantities [38] are linear functionals defined as
limits of sequences of local operators AV ∈ Uloc satisfying
the following conditions: (A) ωðA†

VAVÞ ≤ γV, for some γ

and ∀ V, and (B) the limit AωðOÞ ≔ limV→∞ ωðA†
VOÞ

exists for all O ∈ Uloc. Without loss of generality, we take
ωðAVÞ ¼ 0. One may also define two-sided pseudolocal
quantities ÂωðOÞ ≔ limV→∞

1
2
ωðfAV;OgÞ and right pseu-

dolocal quantities A†
ωðOÞ ≔ limV→∞ ωðOAVÞ. The results

generalize directly for all these three types of quantities,
and we consider them interchangeably. Doyon demands
that the whole construction is translationally invariant.
We relax this requirement partially and later fully (to be
defined precisely later). It is important to note that
pseudolocality is state dependent; a quantity may be
pseudolocal for one state and not another. This is to be
contrasted with the more standard and restrictive notion
of (quasi)locality for which one is used to thinking of
pseudolocal quantities as sums of local terms. The present
work, apart from pseudolocal conserved charges that were
studied extensively before (e.g., Ref. [37]), also relies on
recently introduced pseudolocal dynamical symmetries

(e.g., Refs. [39,40]). We see here that pseudolocal
dynamical symmetries are enough to characterize essen-
tially all nonergodic and ergodic dynamics.
One of Doyon’s crucial results is that there is a bijection

D between the Hilbert space of local operators Hω and
the set ofAω (denoted asAω). More specifically, ∀ Aω; O
there exists a Q ∈ Hω such that

AωðOÞ ¼ hQ†; Oicω; ð3Þ

and similarly for the two-sided and right pseudolocal
quantities. Physically, Q is the local density of the quantity
Aω. Indeed, one may physically think of the limit A ¼
limV→∞

P
x Qx;V as the pseudolocal quantity, as well as

mathematically provided that Qx;V is a Cauchy sequence,
which means intuitively that as V → ∞ the “support” of
Qx;V grows with V in a well-defined way.
Another important notion is that of a pseudolocal state

ω ≔ ω1, defined via a set of fAs�g and its corresponding
flow over p-clustering states:

ωsþðOÞ − ωs−ðOÞ ¼
Z

sþ

s−

dsAsðOÞ; ð4Þ

∀ 0 ≤ s− < sþ ≤ 1 and ∀ O. In the very useful case
when ωsðOÞ is analytic, we have simply

d
ds

ωsðOÞ ¼ AsðOÞ: ð5Þ

The corresponding solution then may be thought of as a
path-ordered exponential of As provided that it exists.
The rest of Doyon’s framework concerns the long-time

limit of closed many-body systems (with time propagator τt)
and deals with cases when the limit limt→∞ω(τtðOÞ) exists
for all local O, showing that the system relaxes to a linear
functional counterpart of a generalized Gibbs ensemble [2].
Here, we drop this requirement, allowing for the study of
the general dynamics ∀ t. This allows us to give analytical
solutions to general nonergodic dynamics, provided that
relevant pseudolocal quantities can be identified for a
given model.
In Refs. [41,42], the weak ETH in the sense of typical

eigenstates of the Hamiltonian being equal to the canonical
ensemble is proven. However, this does not immediately
imply the weak ETH in the canonical dynamical sense of
Eq. (1), because atypical eigenstates may play an important
role in the dynamics (as discussed in Ref. [42]), leading to
violations of Eq. (1). Furthermore, in the thermodynamic
limit, eigenstates and eigenvalues do not provide full
information about the physics of a system, because eigen-
states may not even exist and the spectrum of an operator
need not equal its eigenvalues.
A rigorous theory for open quantum systems (quantum

Markovian semigroups) and their long-time properties has
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been established [43–46] even for unbounded generators of
the time evolution [47]. Much work has been devoted to
showing that w − limt→∞ τtðOÞ ¼ eiHtOe−iHt, where H is
the closed system Hamiltonian. This by itself does not
imply anything for local observables or thermalization,
because for thermodynamically large H local observables
may thermalize independently of any external bath, like in
closed systems.

A. Lack of relation between (restricted) spectrum-
generating algebras and weak ergodicity breaking

Before moving on to the main results of the article, I wish
to discuss relations between (restricted) spectrum-generating
algebras (projectors to eigenstates of a Hamiltonian H)
and dynamical symmetries (conservation laws).
A spectrum-generating algebra (SGA) [48] is defined as

the existence of an operator R satisfying

½H;R� ¼ λR: ð6Þ

It is clear that for any Hamiltonian we have such operators
HjEαi ¼ EαjEαi, i.e., R ¼ jEαihEβj with λ ¼ Eα − Eβ.
These R are not pseudolocal in the sense from the previous
subsection and play no direct role in the dynamics of
physically relevant observables. In the literature [49],
sometimes one extends the requirement demanding that
RkjE0i ≠ 0; ∀ k < V (or specializes to commutant
algebras [50,51]). This is then equivalent to the restricted
SGA [49] and is linked with a phenomenon in quantum
many-body scarred models, called weak ergodicity break-
ing [6], wherein local observables show persistent oscil-
lations from special (but nonequilibrium and clustering)
initial states. More precisely, this is a form of nonstationary
dynamics, because weak ergodicity breaking can also occur
for large random fluctuations around a thermal expectation
value. However, the restricted SGA requirement is neither
sufficient nor necessary for R to have implications for
dynamics of observables. This is easiest to observe in the
V → ∞ limit. A generic many-body H has a dense and
extensive spectrum. Thus, we may always find such an R
for any λ. More specifically,

R ¼ lim
V→∞

Z
jEα−Eβ−λj<εðVÞ

dμαdμβjEαihEβj; ð7Þ

with limV→∞ εðVÞ → 0 being a suitable function used in
taking the thermodynamic limit to avoid issues with the
existence of eigenstates corresponding to the continuous
spectrum and where the integral is taken over some suitable
spectral measure dμ. Then RkjE0i ≠ 0 will be fulfilled for
some jE0i and ∀ k.
The fact that this requirement is not strictly necessary can

be observed by considering a D ¼ 1 quadratic fermionic
lattice model with periodic boundary conditions:

H ¼
Xn
j¼0

Jc†jcjþ1 þ μc†jcj þ H:c:; ð8Þ

in the J → 0 limit. Clearly, we have a SGA limJ→0½H; c†k� ¼
μc†k with ck ¼

P
j e

ikjcj, with ðc†kÞ2jψi ¼ 0. However,
trivially, in the J → 0 limit all local observables (in the
fermion picture) that are off-diagonal in the number basis
½O; c†jcj� ≠ 0 persistently oscillate for arbitrarily long times
for all (clustering) initial states that are not eigenstates of
the total particle number operator.
The restricted SGA, i.e., with RkjE0i ≠ 0, does not

imply weak ergodicity breaking, nor the converse;
rather, we see that what is needed is a SGA with a
pseudolocal R at select frequencies λ, i.e., a pseudolocal
dynamical symmetry [40,52].
This should not be so surprising. Indeed, setting λ ¼ 0 in

Eq. [48] implies that R commutes with H. Formally, every
thermodynamically large Hamiltonian has a infinite num-
ber of such R (projectors to its eigenstates), but this does
not mean that H is integrable or even that R is a physically
relevant conservation law. What is actually needed to have
physically relevant conservation laws is locality.

III. OVERVIEW AND MAIN RESULTS

The assumptions of the article are listed here.
Assumption 1.—The system under question is either an
open (Markovian) or closed, time-independent, or
time-dependent system with local (finite-range) inter-
actions on some D-dimensional hypercubic lattice.

Assumption 2.—The whole construction is space-
translation invariant in some generalized sense; i.e.,
there exists an automorphism on the lattice ZD denoted
as ιx for which we have ιx∘ιy ¼ ιxþy. Note that this does
not necessarily mean that the system is directly trans-
lationally invariant and includes cases with (Bloch)
translation invariance at finite momentum. This allows
us to treat, e.g., modulated pseudolocal quantities [53].
In any case, later on, we fully drop this requirement and
allow that no such automorphism exists; i.e., we allow
for arbitrary disorder. In this setup, the set of pseudo-
local quantities must be reduced to the set of pseudo-
localized quantities that have subextensive growth.

Assumption 3.—The expectation values hOit ¼
ω(τtðOÞ), ∀ O ∈ Uloc, is bounded ∀ t and in the
t → ∞ limit. This is a physically reasonable
assumption for most lattice models, except for perhaps
bosonic ones (with infinite-dimensional local Hilbert
spaces) at infinite density, but such systems can be
treated with standard semiclassical approaches [54].

Assumption 4.—The system is initially prepared in a
pseudolocal state, which essentially means that it does
not have correlations that are too long ranged (thermal
states in D > 1 at high temperatures, ground states of
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gapped chains, etc., satisfy even stronger exponential
clustering).

The main technical contribution of this article compared
to the framework in Ref. [28] is dropping the requirement
of the existence of the long-time limit and closed quantum
many-body dynamics. In fact, we discuss dynamics for
general times. Dropping this seemingly innocuous require-
ment allows us to give analytical solutions for the long-
time limit of many nonergodic and chaotic systems
(provided that all the pseudolocal quantities can be iden-
tified). This includes, but is not limited to, quantum many-
body scars, Hilbert space fragmented models, time crystals,
and lattice gauge theories. I emphasize that, even though
quantum integrable systems are covered under the pre-
sented theory, the theory in no way relies on integrability.
First, let us overview the results for closed time-

independent systems with Hamiltonian H.

A. Far-from-equilibrium states are always
in equilibrium for local observables

Assume that the system is initially t ¼ 0 in a pseudolocal
state given by the pseudolocal flowωs ≔ ωs;t¼0. These kinds
of states can be written as exponentials of local extensive
operators, for instance, ωs;t¼0ðOÞ ¼ tr½expð−sHt¼0ÞO� for
some initial Hamiltonian Ht¼0 that we quench from. As we
see later, this implies that, essentially barring issues with
path ordering and existence, the system is always (from
t ¼ 0 to any other t) in a time-dependent Gibbs ensemble
given by

ρðtÞ ¼ expð−βH þ R
1
0 duμue

λðuÞtAuÞ
tr½expð−βH þ R

1
0 duμue

λðuÞtAuÞ�
; ð9Þ

where Re½λðuÞ� ≤ 0 and we explicitly write the thermal part
of the state. Note that the only time dependence is in the
eλðuÞt term inside the exponential [λðuÞ does not depend on
time]. Although this result is rather formal, it gives us
physical insight into the nature of equilibration as illustrated
in Fig. 1.
A quantum many-body system relaxes by starting and

remaining in a Gibbs state, given by time-dependent,
possibly exponentially decaying, chemical potentials
μueλðuÞt with corresponding pseudolocal quantities
Au ¼

P
x QxðuÞ. The values of μu are set by the initial

state with flow ωs. Thus, even a “far-from-equilibrium”
state is a time-dependent equilibriumlike state as far as
local observables are concerned.
I also conjecture and provide evidence later that the

transient pseudolocal quantities with Re½λðuÞ� < 0 are
responsible for local diffusive relaxation. Note that these
quantities are not the only relaxation part of Eq. (9). In
particular, the system may also relax algebraically in t by
dephasing of the purely imaginary Re½λðuÞ� ¼ 0 as happens
for quadratic models [55].

B. Long-time dynamics

Assuming that clustering holds for long enough times
and defining the Fourier transform of the expectation value
hOis;t in the time evolved state ωs;t,

hOis;λ ¼ lim
T→∞

1

T

Z
T

0

dteiλthOis;t; ð10Þ

the system is in a time-dependent generalized Gibbs
ensemble, which is a pseudolocal state, defined via pseu-
dolocal quantities Âs;λ that oscillate at frequencies λ, i.e.,
satisfying

Âs;λð½H;O�Þ¼ λÂs;λðOÞ; ∀ O∈Uloc; λ∈R; ð11Þ

where we define Âs;λðOÞ ≔ limT→∞ð1=TÞ
R
T
0 eiλtÂs;tðOÞ

and recall that Âs;tðOÞ ¼ P
x hA†

xOis;t where we can
subtract a constant from Ax always such that hA†

xis;t ¼ 0.
Recall also that the subscript x denotes translation across

FIG. 1. An illustration of generic nonequilibrium quantum
many-body dynamics. The system starts off in a clustering state
(with finite power-law correlations at most) and then proceeds
through an Gibbs-like state with transient pseudolocal quantities
and corresponding temperatures (or chemical potentials) before
thermalizing to a Gibbs ensemble.
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the lattice. In particular, this implies the existence of
corresponding (nonunique) pseudolocal sequences

½HV; AV � ¼ λVAV; λ ¼ lim
V→∞

λV; ð12Þ

where we drop the explicit dependence on s and λ. I call
these sequences dynamical symmetries in analogy with
previous work on such operators [40,52].
Let us assume that the following representation of the

state is well defined in the Λ → ∞ limit:

ρΛðtÞ ¼ exp½−βðHΛ þP
ke

iλktμkAΛ
k Þ�

trΛfexp½−βðHΛ þP
ke

iλktμkAΛ
k Þ�g

; ð13Þ

and the set (12) is countable. We discuss when this is true
later, but, essentially, the state is well defined in the
thermodynamic limit provided that jβj is large enough in
D > 1 and always in D ¼ 1. Then the following weak
eigenoperator thermalization result holds:

lim
T→∞

1

T

Z
T

0

dthOit ¼ lim
Λ→∞

trΛðρΛλ¼0OÞ; ð14Þ

where ρΛλ¼0 is the zero-frequency component, defined as
before, i.e., as in Eq. (1). This proves the weak ETH in the
canonical form (1).
Likewise, it is shown that the Mazur bound [56] for the

Drude weight is saturated at all frequencies.

1. No translation invariance

If we drop translation invariance even in the generalized
sense, we may apply the theory provided that, instead of
pseudolocal quantities, we focus on pseudolocalized ones.
We replace Doyon’s sesquilinear form with displaced
operators with the more typical inner product [27]

hO;Qilocω ≔ hO†Qiω; ð15Þ

with quasilocal O;Q ∈ U. The algebra may be extended to
a Hilbert space Hloc

ω and its dual ðHloc
ω Þ†. Pseudolocalized

quantities Aloc
ω ðOÞ are now formed as limΛ→∞ limits

of A† ∈ ðHloc
ω Þ†, which always exist according to

Assumption 3. The space of all Aloc
ω ∈ Aloc

ω is trivially in
bijection with Hloc

ω , and the entire construction proceeds
as before.
This allows us to treat Hilbert space fragmented systems

that may not be translationally invariant in any sense
(e.g., Ref. [57]).

2. Open and time-dependent systems

Curiously, the preceding discussions work with very little
modification for open quantum systems described by con-
tinuous quantum Markovian semigroups, i.e., the Lindblad
master equation. Analogously to the Hamiltonian case,

we look at local quantum Liouvillians on D-dimensional
hypercube lattices described by a generator of time evolution:

LO ¼ i½H;O�

þ
X
x

Z
dη½2L†

xðηÞOLxðηÞ − fLxðηÞL†
xðηÞ; Og�;

ð16Þ

where LxðηÞ; O ∈ Uloc and the operator L∶U†
loc ⊗ Uloc →

U†
loc ⊗ Uloc. The corresponding time evolution is given

by a power series defined by the exponential map
τtðOÞ ≔ expðLtÞðOÞ. Physically, the Lindblad jump oper-
ators model the action of some external (memoryless)
environment on the system and are applicable to a wide
range of physical systems that have bath degrees of freedom
that are much faster than the systems ones, e.g., quantum
optics, cold atoms, etc.
As we see, the results in Secs. III A and III B extend

directly to the quantum Markovian semigroup case if we
replace adH with L. More remarkably, we see that, under
very mild assumptions, the long-time dynamics is
described by open time-dependent (generalized) Gibbs
ensembles (tGGEs) generated by a flow given by pseudo-
local quantities satisfying

Âs;λð½H;O�Þ ¼ λÂs;λðOÞ; λ ∈ R;

Âs;λð½LxðηÞ; O�Þ ¼ Âs;λð½L†
xðηÞ; O�Þ ¼ 0; ∀ O ∈ Uloc:

ð17Þ

In other words, the long-time dynamics of open quantum
systems is determined exclusively by the Hamiltonian even
for baths that drive the system inherently out of equilib-
rium. The role of the Lindblad operators is mainly to select
a smaller subset of pseudolocal dynamical symmetries that
do so [i.e., those that commute with them in the sense
of Eq. (17)].
For time-dependent systems, we likewise have an

equivalent extension with H → Hλ, where Hλ is defined
in the standard extended space framework [58,59].

C. Physics: Scars, fragmentation, etc

It turns out that, to the best of my knowledge, for all
known cases of quantum nonergodic dynamics, excluding
integrability, it is sufficient to consider a finite set of
dynamical symmetries (12) AΛ

μ that close a finite algebra
with HΛ under commutation. This also includes the
widely topical cases of quantum many-body scarred
models [6–9,60–63], Hilbert space fragmented models
[15,17,64–66], disorder-free localization models [23], lat-
tice gauge theories [22,67–74], and all types of time
crystals [39,75–80]. This allows us to use the representation
(11) to describe the long-time dynamics of these models
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provided jβj is small enough. Moreover, Eq. (11) defines
the unique ωs;λ. Specifically, the β and μk are the only
unknown parameters, and these are set by the initial state.
Thus, Eq. (11) provides an exact solution to all such
(chaotic) dynamics.
In order to find the tGGE for such models, we need to,

however, introduce two new classes of pseudolocal
quantities.
Quantum many-body scars and the scarring phase

transition.—It is shown that quantum many-body scarred
models are defined by a novel class of pseudolocal
dynamical symmetries that I call projected-local. More
specifically, in Eq. (13), AΛ

k ¼ PΛð
P

x∈Λ QxÞ, where Qx is
a translation of a local operator and PΛ is a map
PΛ∶ UΛ → UΛ. In all the cases studied, this is simply a
projector PΛx ¼ PxP, P2 ¼ 1. These dynamical sym-
metries, as sequences, satisfy the requirements of pseudo-
locality; i.e., they are pseudolocal only for certain initial
states ω0 and, therefore, lead to persistent oscillations and
nonstationary dynamics only when the system is prepared
in these initial states. This provides likewise an unambigu-
ous definition of quantum many-body scars in line with the
single-body definition [54]. Crucially, the representation
(13) does not have clustering of correlations (and is not a
pseudolocal state) for certain values of jμkj. In fact, there
exists a critical value when this happens. This indicates
the presence of a novel type of scarring phase transition,
distinct from standard thermodynamic phase transitions:
In standard thermodynamic phase transitions, the Gibbs
ensemble no longer admits a unique representation above
some value of jβj, indicating symmetry breaking. By
contrast, the scarring phase transitions happens because
a pseudolocal quantity stops being pseudolocal. These
quantities are also responsible for nonergodicity in
embedded Hamiltonians.
Hilbert space fragmentation, induced localization,

and fragmentation phase transitions.—Models with true
Hilbert space fragmentation turn out to be described by
pseudolocalized quantities, like the ones we define for
models without assuming translation invariance Aloc

ω

(Sec. III B 1). These lead to memory of the initial con-
ditions locally, i.e., a form of localization. They may
be derived from the statistically localized integrals of
motions [81] or nonlocal commutant algebras of the
models [17] but are distinct from them. Curiously, they
cannot be written in a manifestly local manner as sums of
translated local operators. Hence, we call them cryptolocal.
Similar pseudolocalized charges are responsible for non-
ergodic behavior in disorder-free localization and lattice
gauge theories. It can happen, in contrast to both thermo-
dynamic phase transitions and the scarring phase transition
above, that, for certain continuous changes of the chemical
potentials corresponding to cryptolocal quantities, the
tGGE state abruptly stops being clustered. The cryptolocal
quantities remain pseudolocal, however, unlike in the

scarring phase transition. This still signals a change of
phase and emergence of long-range order. This should be
contrasted with phase transitions between thermalization
(weak fragmentation) and nonergodicity (strong fragmen-
tation) [82,83], because in the present work the phase
transition is between two distinct nonergodic phases. We
study an explicit example later.

IV. DYNAMICS OF QUANTUM MANY-BODY
SYSTEMS

We now turn to stating the main theorems and lemmas
beginning with the ones we need to prove the main results
from the previous section. The proofs are in Appendix A.
Assume that the dynamics is provided by a time-dependent
Markovian closed and dense generator:

LΛ;t ¼
X
x∈Λ

Lx;t; ð18Þ

where Lx;t is the time-dependent local Hamiltonian density
(local Lindblad jump operator) translated by x as in
Eq. (16). The dynamics for O ∈ Uloc is given as
(Lt ≔ limΛ→∞ LΛ;t)

τtðOÞ ≔ T
Z

t

0

dp expðdpLpÞðOÞ; ð19Þ

where T is the time ordering operator. We implicitly define
a doubled C� algebra L∶U†

loc ⊗ Uloc → U†
loc ⊗ Uloc. This

defines the equation of motion

dωt

dt
ðOÞ ¼ ωt(LtðOÞ); ð20Þ

where the time evolved state is ωt ≔ ω0∘τt. Note that the
map is generally contractive and we have jjτtðOÞjj ≤ jjOjj
and dissipative jjτtðO†QÞ − τtðO†ÞτtðQÞjj ≥ 0 [44,84]. For
closed systems, however, the equality in the relations holds;
i.e., the map is an isometry and preserves the algebra.
The convergence properties of the series in Eq. (19) has

been extensively studied [43], but for our purposes what is
relevant is that limΛ→∞ τΛt ðOÞ exists in the Hilbert space of
local observables Hω defined previously in Sec. II.
Locality of time evolution for time-dependent quantum

Liouvillians has been established [85–87] using Lieb-
Robinson bounds [88] generalized for such dynamics
[89,90]. Define ðÞΛ to be the projection to some sublattice
(ball) Λ. There exist some φ > 0; v > 0 such that, for
Δ > 2D − 1,

jjτtðOÞ − ½τtðOÞ�Λjj ≤ φjjOΛjjΔD−1 expð−Δþ vjtjÞ; ð21Þ

where Δ ¼ dist½suppðOÞ;ZDnΛ�, dist is the metric (dis-
tance) on the lattice ZD, and supp is the support of the
operator O. The value v is called the Lieb-Robinson
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velocity. Note that, in contrast to the result for the isolated
system [91], there is an extra polynomial dependence on
distance ΔD−1.
Despite this extra dependence, it is possible to generalize

a theorem by Doyon to driven-dissipative dynamics.
Theorem 1.—Let τt be the time evolution and ω be a

pseudolocal state with flow ωs; then ∀ O;Q ∈ Uloc and
t ∈ R,

(i) the limit limΛ→∞½τtðOÞ�Λ exists in Hω and
limΛ→∞ jj½τtðOÞ�ΛjjHω

exists and is uniformly
bounded with an induced form hO;Qicω∘τt and

(ii) the state ωt ¼ ω∘τt is pseudolocal.
If the Lindblad jump operator terms are not zero, then it

is important to note the following.
Remark 1.—In general, we have for the form

hO;Qicω∘τt ≠ hτtðOÞ; τtðQÞicω.

A. Eternal equilibrium

In this section, we describe the finite time nonequili-
brium dynamics. Although the construction is involved, it
provides physical insight. For the sake of presentation, for
the moment we specialize to time-independent cases and
discuss generalizations in later sections.
Theorem 2.—If we initialize the system in a pseudolocal

(nonequilibrium state) ω with flow ωs, then the state of
the system ∀ t ∈ Rþ is given by the pseudolocal state ωt
with flow:

ωs;tðOÞ ¼ ω0;tðOÞ þ
Z

s

0

duAu;tðOÞ; ð22Þ

with Au;t ≔ Aωu∘τt . The pseudolocal quantities solve for
almost all u the following well-defined Cauchy problem:

d
dt

Au;t ¼ LðAu;tÞ ¼ Au;t∘L: ð23Þ

There exists aM ≥ 0 such that L∶H†
u;t → H†

u;t generates an
strongly continuous contracting semigroup Tt ≔ eðLÞt
solving Eq. (23):

Au;t ¼ eMtTtAu;0 ð24Þ

admitting a resolvent and solving Eq. (23):

Tt ¼
Z
Γ
dλeλtðλ − LÞ−1; ð25Þ

where ReðλÞ ≤ 0 and Γ is an appropriate path.
Note that L is not self-adjoint, in general, even in

the purely Hamiltonian case LxðηÞ ¼ 0. This shows that
the dynamics of local operators in even an isolated many-
body system has a natural arrow of time induced by the
semigroup Tt, i.e., t ≥ 0. Intuitively, the generator L
“intertwines” infinitesimally between Hu;t and Hu;tþdt.

Remark 2.—The requirement about M ≥ 0 in the gen-
erator of the semigroup is purely technical and may be
dropped (i.e., set M ¼ 0) provided the infinite time limit
limt→∞ jjτtOjjHω

exists ∀ O ∈ Uloc. This should be the
case in all physically reasonable examples. Otherwise,
we could have unbounded values of local observables.
Alternatively, we may setM ¼ 0 provided we are interested
only in dynamics for all finite t ∈ R.
The result as given looks complicated even for the purely

Hamiltonian case. However, if we assume that ωs;t is
analytic,

d
ds

ωs;tðOÞ ¼ As;tðOÞ ð26Þ

∀ s ∈ ½0; 1� and that it admits a well-defined matrix
representation, it directly follows from the linearity of
the functional Au;t that the thermodynamic state of the
system is the limit of a time-dependent Cauchy sequence
in Λ, which closely resembles a Gibbs ensemble; i.e., the
state is of the form

ρΛðtÞ ¼ P
exp½−βðHΛ þ R

1
0 due

λðuÞtμuAΛ
u Þ�

trΛfP exp½−βðHΛ þ R
1
0 due

λðuÞtμuAΛ
u Þ�g

; ð27Þ

where P is a suitable path ordering along the flow of the
pseudolocal state.
Physically, the system proceeds from a state ω0 which is

an eigenstate or thermal state of a local Hamiltonian that is
distinct from the Hamiltonian driving the time evolution of
the system. This state admits a decomposition in terms of
pseudolocal quantities Au for the given generator L that
may be divided into two main classes:
(1) those for which Re½λðuÞ� < 0, i.e., exponentially

decaying transient ones that disappear from ρðtÞ
exponentially quickly and correspond to exponential
decay of expectation values of local observables, and

(2) those for which ReðλðuÞÞ ¼ 0, which may be further
subdivided:
(a) Those for which the spectrum is continuous

around λðuÞ.—These may correspond to poly-
nomial decay of expectation values of local
observables, which may be seen by, e.g., invok-
ing the stationary phase approximation.

(b) Those λðuÞ around which the spectrum of L is
isolated.—These are either λðuÞ ¼ 0, i.e., these
are the pseudolocal conservation laws and must
include the HamiltonianH itself, or Im½λðuÞ�≠ 0
and these are pseudolocal dynamical symmetries
that are studied in the next section. The latter
correspond to persistent oscillations at funda-
mental frequencies Im½λðuÞ�.

Further intuition about Theorem 2 can be gained for the
closed infinitely large system Λ ¼ ∞ case, by observing
that the main statement of the theorem in Eq. (23) can be
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formally and unrigorously written as ½H∞; A∞
u � ¼ λðuÞA∞

u ,
where λu need not be real. This is because H∞ need not be
self-adjoint on the entire Hilbert space. By contrast, HΛ for
finite system Λ always has real and countable eigenstates
HΛjEΛ

n i ¼ EΛ
n jEΛ

n i. However, most of the corresponding
AΛ
n;m ¼ jEΛ

n ihEΛ
mj and ½HΛ;AΛ

n;m�¼ ðEΛ
n −EΛ

mÞAΛ
n;m become

thermodynamically irrelevant for all local observables O,
i.e., limΛ→∞ hAΛ

n;mOit ¼ 0; ∀ O (similarly to a well-
known assumption of the ETH [1]). The pseudolocal AΛ

u

are precisely the linear combinations of such AΛ
n;m (and the

only linear combinations) that have finite overlap with (at
least some) local observables in the thermodynamic limit.
Moreover, they are such that they grow most extensively
with system size for the given state and, hence, are well
defined in the thermodynamic limit. In other words, a naive
solution of the dynamics of local observables requires
knowing all the eigenstates and energies of H, but most
of these are not thermodynamically relevant. The same
information can be gained about dynamics of local observ-
ables if one knows a much smaller subset in terms of AΛ

u .
The physical relevance, if any, of the residual spectrum

ofL is not immediately clear. Cases 2(a) and 2(b) have been
studied previously and are discussed in the next section. To
the best of my knowledge, there are no known construc-
tions of the transient pseudolocal quantities in case 1.
However, here, I give a physically motivated conjecture

that they are responsible for diffusive relaxation that may
be studied by quantum hydrodynamics [92].
To see this, consider a 1D lattice with a (unrigorous)

local conservation law ½H;Z0� ¼ 0 at finite momentum
Zk ¼

P
x e

ikxzðxÞ, where zðxÞ is the translated local den-
sity. The diffusion equation for this charge is

∂

∂t
zðx; tÞ ¼ κ

∂
2

∂x2
zðx; tÞ; ð28Þ

where zðx; tÞ ≔ τt½zðxÞ�. The finite-momentum solution
is Zðk; tÞ ¼ Zðk; 0Þe−k2κt. Studying Zðk; tÞ ¼ trρðtÞZk
and comparing with Eq. (27) indicates that the exponential
decay of Zk at finite momentum proceeds because the
overlap between the transient pseudolocal quantities
trðAuZkÞ ≠ 0 for k ≠ 0. Hence, it is reasonable to assume
that the transient pseudolocal quantities are responsible
for diffusion.
The relation between the pseudolocal quantities and

transport is more complicated for other types of relaxation.
Consider the 1D convection equation, solving for, e.g.,
ballistic transport in integrable models [3,4] for the simplest
linear case:

∂

∂t
zðx; tÞ ¼ v

∂

∂x
zðx; tÞ: ð29Þ

For an initial condition zðx; 0Þ ¼ z0ðxÞ, the equation is
solved by any zðx; tÞ ¼ z0ðxþ vtÞ. So, depending on the

initial condition, it could correspond to a local faster-than-
exponential relaxation [e.g., for a Gaussian wave packet
z0ðxÞ ¼ C expð−ax2Þ] to persistent oscillations for an
initial condition with finite momentum k.

B. Asymptotic dynamics

In this section, we develop a general theory in terms of
pseudolocal quantities for the long-time dynamics.
Theorem 3 (general eigenoperator thermalization).—

Assume that the system is in (nonequilibrium) pseudolocal
state ω0 with flow ωs. In the long-time limit, the state of the
system is a pseudolocal (open) tGGE ωt with flow ωs;t.
(1) The tGGE satisfies

ωs;λ(LtðOÞ) ¼ −iλωs;λðOÞ ∀ O ∈ Uloc; ð30Þ

where ωs;λ is the component of the state at frequency
λ, i.e., ωs;λ≔ limT→∞ð1=TÞ

R
T
0 dteiλtωs;t with λ ∈ R.

(2) Provided that the dual map τ†t has a faithful sta-
tionary state and a time-independent generator, then
we also have

ωs;λð½H;O�Þ ¼ −λωs;λðOÞ; ð31Þ

ωs;λð½LxðηÞ;O�Þ¼ωs;λð½L†
xðηÞ;O�Þ¼0; ∀O∈Uloc:

ð32Þ

In both cases 1 and 2, the corresponding quantities
Âs;λðOÞ ≔ limT→∞ð1=TÞ

R
T
0 eiλtÂs;tðOÞ satisfy the same

relations as the state [with ωs;λ → Âs;λ in Eq. (30), respec-
tively, (31) and (32)] for almost all s; i.e., in case 2, they
satisfy Eq. (17). The quantities Âs;tðOÞ are called pseu-
dolocal dynamical symmetries.
Naturally, for the Hamiltonian case, the requirement of

the faithful stationary state is trivial (e.g., the tracial state is
always a faithful stationary state) and LxðηÞ ¼ 0 so only the
Hamiltonian condition is relevant.
Note that the functional ωλ is a pseudolocal functional

[in the sense of Eq. (4)] with the flow ωs;t from above, but it
is not necessarily positive for λ ≠ 0. But we abuse termi-
nology and still refer to it as a “state.” The flow ωs;t is two
dimensional, and we may reduce it to a single parameter
flow ωλ;s with flow along the time direction being infinite
and deformed by eiλt. The pseudolocal quantities Âs;λðOÞ
are defined across a family of pseudolocal states para-
metrized by t. Equations (31) and (32) need not be finite.
Indeed, if there is no frequency λ in the dynamics, they
give 0 ¼ 0 identically.
These results may appear to be daunting to apply to any

given Hamiltonian, but as we see, they have necessary and
sufficient interpretations in terms of standard theoretical
physics concepts—eigenoperators and equilibrium states.
Physical intuition about Theorem 3 may be gained by
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observing that the criteria of the theorem essentially state
that for finite system Λ there exist AΛ

λ such that
½HΛ; AΛ

λ � ¼ λAΛ
λ , where AΛ

λ are pseudolocal, in the sense
discussed previously, for the finite-frequency state ωs;λ, i.e.,
such that limΛ→∞hAΛ

λ Oi exists and is nonzero for at least
some local O. Moreover, the Lindblad part states that these
AΛ
λ are invisible to the dissipation (unaffected by it) when

the dynamics of local observables at frequency λ is
described by the same ωs;λ state.
Indeed, any operator sequence AΛ that remains pseudo-

local during the time evolution, i.e., there exists γ > 0

such that it satisfies ωtðA†
ΛAΛÞ ≤ γjΛj (i.e., extensive) and

limΛ→∞ ωtðA†
ΛOÞ exists ∀ O ∈ Uloc, then AΛ − ωtðAΛÞ

defines a pseudolocal dynamical symmetry. A very con-
venient and general case is the following.
Corollary 1.—Assume that there exist a pseudolocal

sequence AΛ and a clustering initial state ω in the sense
defined previously and assume that they satisfy under time
evolution (where ωt ¼ ω∘τt)

½τtðAΛÞ�Λ ¼ e−iλtAΛ þ ZΛðtÞ; λ ∈ R; ð33Þ

∃ γ > 0; jωtðA†
ΛAΛÞj ≤ γjΛj; ∀ t;Λ; ð34Þ

lim
Λ→∞

ωtðA†
ΛOÞ ∈ C; ∀ t; O ∈ Uloc: ð35Þ

This defines a (left) pseudolocal dynamical symmetry if
ω(e−iλtAΛ þ ZΛðtÞ) ¼ 0; if not, then we may use the zero-
average sequence e−iλtAΛ þ ZΛðtÞ − ω(e−iλtAΛ þ ZΛðtÞ)
to define a (left) pseudolocal dynamical symmetry.
This follows directly from Theorem 3 and the definition

of pseudolocal quantities. We may analogously construct
right and two-sided pseudolocal dynamical symmetries.
This type of pseudolocal dynamical symmetry is actually

more general than needed to study all topical examples of
quantum many-body nonergodicity from the literature,
so we further specialize.
Definition 1 (simple pseudolocality).—If a pseudolocal

sequence in Corollary 1 has ZΛðtÞ ¼ 0, then we call such a
sequence simple.
Several well-known and newly introduced (in later

sections) examples are given in Fig. 2.
We are now able to fully characterize the long-time

dynamics in terms of the finite frequencies of the tGGE.
Let us look at local dynamical symmetries, i.e., those whose
operator sequences may be written as AΛ ¼ P

x∈Λ ax, where
ax is the translation by x of the local density a ∈ Uloc.
Theorem 4 (local tGGE).—Let the initial state be

pseudolocal as before. Assume that there is a countable
finite set of local dynamical symmetries parametrized by
k ¼ 1; 2;…;M with sequences fðAkÞΛg with correspond-
ing frequencies λl ∈ R [i.e., ZkðtÞ ¼ 0] and assume that
this set forms a basis for an algebra closed under commu-
tation (i.e., any element of the algebra may written as a

linear combination in this basis). Assume that the dynamics
τt has no pseudolocal dynamical symmetries except those
generated by this set. Then the long-time dynamics is given
by a normal state ωtGGE

t with matrix representation

ωtGGE
t ðOÞ ¼ lim

Λ→∞
trΛ½ðρtGGEt ÞΛO�; ∀ O ∈ UΛ;

ðρtGGEt ÞΛ ¼ exp ½Pkμke
iλktðAkÞΛ�

trΛfexp ½
P

kμke
iλktðAkÞΛ�g

; ð36Þ

FIG. 2. An illustration of nonlocality vs different kinds of
pseudolocality. The shown subsystem is of arbitrary size Λ. First
case (nonlocal): A has support on the entire subsystem for all
sizes of the subsystem (e.g., a projector to vacuum state). It is not
pseudolocal for the infinite-temperature state. Second case
(local): A is a simple sum of operators that act only on one site
(translated to site x). It is pseudolocal for any state with
clustering. Third case (projected-local): A local operator (second
case) is sandwiched between a projector P (that acts on the entire
subsystem), and the clustering state is entirely inside the subspace
P projects to. It is pseudolocal for such a state because the state
does not “see” the projector. Fourth case (cryptolocal): A contains
terms (denoted R) that act on the entire subsystem for all size of
the subsystem, but they cancel and they are not visible in the size
of A for, e.g., the infinite-temperature state.
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which exists, is a tGGE in the sense above with exponential
clustering, and is analytic in μk; t for jμkj < μ� and ∀ t.
In 1D, μ� ¼ ∞.
The same holds for open quantum systems if

½LxðηÞ; Ak� ¼ ½L†
xðηÞ; Ak� ¼ 0. Note that we view conser-

vation laws as special cases of dynamical symmetries with
λk ¼ 0. In particular, for any system, we always have
A0 ¼ H, λ0 ¼ 0, and μ0 ¼ β.
Taking λ ¼ 0, which is must be finite for at least someO,

we arrive at the operator form of the (dynamical) weak ETH
immediately for both open and closed systems. This also
proves the ETH for open systems [93–95].
Corollary 2 (weak eigenoperator thermalization).—Let

the system satisfy Assumptions 1–4. Letω be a pseudolocal
initial state, and let the set fðAkÞΛ; μk; λkg be as in
Theorem 4. Pick a subset with λk ¼ 0. Let
κ ≔ fkjλk ¼ 0g. We then have

lim
T→∞

1

T

Z
T

0

dtω(τtðOÞ)

¼ lim
Λ→∞

trΛ

�
exp ½Pk∈κμkðAkÞΛ�

trΛfexp ½Pk∈κμkðAkÞΛ�g
O

�
; ∀ O ∈Uloc;

ð37Þ

where μ0 ≔ β and ðA0ÞΛ ¼ HΛ.
Intuitively, the canonical weak ETH is equivalent to the

zero-frequency case of Theorem 3, and, hence, the corre-
sponding pseudolocal dynamical symmetries are only
pseudolocal conservation laws and the corresponding state
is a standard (generalized) Gibbs state.
Remark 3.—If an additional physically reasonable

assumption that ∃ limt→∞ jjτtðOÞjjHω
holds, then the

limt→∞ ω∘τt ¼ ωtGGE
t ; i.e., ωtGGE

t is the asymptotic state
in the strong sense in Theorems 3 and 4, not just at given
frequencies.
In order to avoid confusion, let me now remark that in

Ref. [96] it is shown that local quantum Liouvillians may
be used to engineer unique stationary dark states with long-
range order (i.e., not pseudolocal states). I emphasize that
there is no contradiction with the work presented here,
because it deals with time-averaged dynamics rather than
the stationary state dynamics. As the unique stationary dark
state is not clustered, using Lieb-Robinson bounds, it
follows that the relaxation time of such models cannot
be independent of system size [89]. In cases where the
relaxation time diverges, the long-time average need not
equal the exact stationary state average; cf. Refs. [97,98].
Moreover, Ref. [96] shows uniqueness only for the exact 0
eigenvalue, and it would be interesting to check what
happens for purely imaginary eigenvalues, as they also
contribute to the long-time dynamics.
Let us now step away from far-from-equilibrium dynam-

ics for the moment and see what we can say about dynamics
near equilibrium. Let us assume that the system is in a

clustering equilibrium state in the sense that ω∘τt ¼ ω. A
very useful concept in that case is the Mazur bound [56,99]
for the Drude weight [100], which provides a lower bound
for the susceptibilities and ballistic transport. It is given
in terms of quasilocal charges, and its finite-frequency
version [101], which is sufficient for our purposes, reads

lim
T→∞

1

NT

Z
T

0

dte−iλtω½O†OðtÞ� ≥
X
j

jωðO†AjÞj2
NωðA†

jAjÞ
; ð38Þ

where Aj ¼
P

x a
ðjÞ
x , O ¼ P

x ox, ½H;Aj� ¼ λAj, and we
assume that Aj are orthogonal in the sense ωðA†

jAkÞ ¼ 0 if
k ≠ j. It has long been conjectured that the Mazur
bound saturates if all the Aj are known [37,102]. A partial
result for finite systems called the Suzuki equality exists
[103,104], but this conjecture remains unproven in the
thermodynamic limit where it would have deep implica-
tions for, e.g., superconducting transport in the linear
response regime [105].
In the setup discussed here, the Mazur bound becomes a

straightforward equality.
Corollary 3 (Mazur equality).—Let ω ¼ ω∘τt be a

pseudolocal equilibrium state. We have the following
identity:

lim
T→∞

1

T

Z
T

0

dte−iλtω(O†τtðoÞ) ¼ Â1;λðoÞ; ð39Þ

where Â1;λ is pseudolocal dynamical symmetries, i.e.,
satisfying Â1;λð½H; q�Þ ¼ λÂ1;λðqÞ, ∀ q∈Uloc, which has
maximal overlap with o in the sense that

Â1;λðqÞ ≔ lim
T→∞

�
D

�
1

T

Z
T

0

dteiλtτtðoÞ
�
; q

�
c

ω

; ð40Þ

where D∶Hω → Uω is the bijection between the Hilbert
space of local observables and the pseudolocal quantities.
This follows directly from the definition of the inner

product on Hω, pseudolocal dynamical symmetries,
Theorem 1, and the existence of the bijection. By con-
struction, if we know all the pseudolocal dynamical
symmetries, we also know the ones having maximal
overlap with o. In this setup, normalization is not needed,
as it is present by construction.
This is likewise consistent with similar results obtained

for fully extensive operators of closed Hamiltonians at
zero frequency and finite momentum [106] and finite
frequency [107].
Before we turn to studying examples, let us state the

following simple result in anticipation of its use for
pseudolocal quantities later on.
Corollary 4.—Assuming that a sequence AΛ ∈ Uloc is a

simple pseudolocal sequence defining left pseudolocal
quantities AsðOÞ with respect to some state ω with
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flow ωs, additionally satisfying τtðA†
ΛAΛÞ ¼ τtðA†

ΛÞτtðAΛÞ,
i.e., a sequence satisfying
(1) ωsðA†

ΛAΛÞ ≤ γjΛjD, for some γ and ∀ Λ, and
(2) the limit AsðOÞ ≔ limΛ→∞ ωðA†

ΛOÞ exists for all
O ∈ Uloc,

then it remains a simple pseudolocal sequence with respect
to ω∘ττ, ∀ τ. The similar holds for two-sided and right
pseudolocal sequences.
This immediately follows from Theorem 1 and

Definition 1. Note that the extra requirement τtðA†
ΛAΛÞ ¼

τtðA†
ΛÞτtðAΛÞ is trivially satisfied for closed systems.

C. Generalizations to time-dependent systems
and systems without translational invariance

In the previous section, I specialize to time-independent
systems at certain points for the sake of clarity of presen-
tation. Likewise, I also specialize to systems that have
translational invariance in some sense (e.g., at finite momen-
tum). Let us now discuss how to generalize the main results.
Time-dependent systems.—The first part of Theorem 3

applies to time-dependent systems. The second part holds
for periodic dynamics provided we work in the extended
space representation [58]. To sketch the idea, let HðtÞ ¼
Hðtþ PÞ, we extend the equations of motion

∂

∂t
ψðθ; tÞ ¼

�
∂

∂θ
− iHðθÞ

�
ψðθ; tÞ; ð41Þ

and then ϕðtÞ ¼ ψðt; tÞ solves the original time-dependent
equations of motion. Provided that ψðθ; tÞ is sufficiently
well defined (see Refs. [58,59] for details and examples),
we may then perform a Fourier transformation and obtain

∂

∂t
ψðk; tÞ ¼

X
k0

�
H̃ðk − k0Þ − 2πk

P

�
ψðk0; tÞ: ð42Þ

The total generator ðHωÞkk0 ≔ H̃ðk − k0Þ − kð2πk=PÞ then
may be used in the rest of the theorem.
No translation invariance.—Disordered systems are

examples of systems that have no translation invariance
or any generalized automorphism that may replace it. In
order to treat such systems, we must reformulate the
framework of Ref. [28] from the beginning. We begin
by introducing an alternative definition of the inner
product. We begin with the sesquilinear form

hO;Qilocω ≔ ωðO†QÞ − ωðO†ÞωðQÞ; O;Q ∈ Uloc:

ð43Þ

Note that we do not sum over the sites in the first term. The
form is degenerate, i.e., define N loc

ω ≔ fhO;Oilocω ¼ 0g.
An example isO¼1. We define the quotientHω¼U=N loc

ω

that we then Cauchy complete to a Hilbert spaceHloc
ω . This

is the standard GNS construction [26].
Define pseudolocalized operator sequences that satisfy

hAΛ; AΛilocω ≤ γ for some γ > 0. As AΛ ∈ Uloc and Uloc is
dense in Hloc

ω , we may always find a pseudolocalized
Cauchy sequence (with respect to jjjjHloc

ω
) j ↦ Aj ∈ U that

converges to Âloc
ω ðOÞ ¼ limj→∞hAjOilocω . The space of

such pseudolocalized quantities Uloc
ω is in a trivial bijection

with Hloc
ω being its dual. We then may repeat the entire

construction of Ref. [28], as well as the present work.
The only major differences are (i) that the localized

tGGE (Theorem 4) with pseudolocalized quantities is
defined for any μk in all dimensions; (ii) the Mazur equality
is finite for strictly local operators without integrating over
space; and (iii) pseudolocalized states (i.e., pseudolocal
states defined via pseudolocalized quantities) are exponen-
tially clustering, and this property is preserved under the
time evolution.
Note that we can apply the above pseudolocalized

construction to translationally invariant systems, but the
construction is not, in general, useful, and the one used in
the previous sections is more powerful for such systems.
This is because most systems do not have pseudolocalized
dynamical symmetries. Two notable exceptions are, as we
see, lattice gauge theories and systems with disorder-free
localization.
Note that the local integrals of motion [108] (or l-bits

[109]) of many-body localized models fall into the category
of pseudolocalized dynamical symmetries.

V. APPLICATIONS

The idea for exact solutions is the following. One needs
to identify the pseudolocal quantities the model poses;
then one may straightforwardly construct the tGGE giving
the exact solution for the long-time dynamics. A practical
outline of this procedure, given by the theory here in the
previous section, for time-independent closed systems is
the following.
(1) First, identify all potentially pseudolocal operators

AV
u (with respect to a desired initial state ρ0) that

satisfy ½HV; AV
u � ¼ λuAV

u for a finite size Hamilto-
nian HV of size V.

(2) Propose the solution as ρtGGEðtÞ ¼ ð1=ZÞ exp ×
ðPu μue

iλutAuÞ, where Z ¼ tr½expðPu μue
iλutAuÞ�

is the normalization (or time-dependent partition
function) and where we drop the size V superscript.
If subsets fAug have the same frequency λu (i.e., in
case of degeneracy), it may be necessary to ortho-
normalize them. The tGGE is the correct solution to
the long-time dynamics of local observables, as
proven in the previous section, provided that one
knows all the relevant Au, (i) that Au are pseudolocal
with respect to the initial state ρ0, and (ii) that the
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state ρðtÞ has clustering. This needs to be separately
checked as discussed below in steps 4 and 5.

(3) One needs to compute the chemical potentials μu
that are fixed by the initial state. This is done by
solving for μu the set of equations tr½ρð0ÞAu� ¼
tr½ρtGGEð0ÞAu�. This is, in principle, a highly com-
plicated set of nonlinear equations requiring numeri-
cal solutions, but analytical solutions can be found
for wide classes of initial state ρ0. For instance, those
that are symmetric or antisymmetric with respect
to some discrete symmetry S whereas an Au is the
opposite (antisymmetric or symmetric), e.g.,
Sρð0ÞS† ¼ �ρð0Þ and SAuS† ¼∓ Au, then μu ¼ 0.
Similarly, if ½ρð0Þ; Au� ¼ κuAu, the solution may be
found with some transfer matrix approach. We
utilize these approaches later in the examples. Like-
wise, one may perform high and low μu expansions
and then solve a reduced nonlinear set.

(4) Define the sequences for increasing V, ÃV
u ¼

AV
u − hAV

u it, where hOit ¼ tr½ρtGGEðtÞO� for the state
at time t. We compute how the size of the operators
grows with system size tr½ρtGGEðtÞðÃV

u Þ†ÃV
u �. Be-

cause of Corollary 1, it is sufficient to check only for
one value of t or in the initial state ρð0Þ, which may
be a simpler calculation analytically. One approach
is if the set fAV

u g in ρtGGEðtÞ is in involution and is
simple enough for Z to admit, e.g., a transfer matrix
form, then we can compute the relevant expectation
values in a way that is standardly done for equilib-
rium partition functions ð1=ZÞð∂2=∂μu∂μ�uÞZ ¼
hðAV

u Þ†AV
u it, etc. In the case tr½ρtGGEðtÞðÃV

u Þ†ÃV
u � >

CV (C does not depend on V), then rescale the
sequence ÃV

u → ÃV
u =fðVÞ by some appropriate func-

tion fðVÞ so that tr½ρtGGEðtÞðÃV
u Þ†ÃV

u � ≤ CV. In both
cases, one needs to check that limV→∞hAV

uOi exists
for all local observables O (this likely is the case)
and is nonzero for at least some local observables.
Because of the rescaling, overlap with all local
observables can be zero, and in that case the
sequence AV

u does not correspond to any pseudolocal
sequence and must be discarded from the Ansatz
ρtGGEðtÞ. It is sufficient to check this using the
densities of AV

u as the local observables, by, e.g.,
using the time-dependent partition function.

(5) Clustering of ρtGGEðtÞ needs to be also checked;
i.e., for two local observables on sites xðy), we must
have limjjx−yjj→∞ limV→∞ hOxOyit ¼ hOxithOyit.
This is again sufficient to do for the local densities
of Au and may be done like in step 4 by computing
Z. In case ρtGGEðtÞ is not clustered, then it cannot
be used as the correct Ansatz. This signals for-
mation of long-range order. In that case, symmetry
breaking of the Au must be considered as in
equilibrium [24,26].

(6) Finally, expectation values of local observables
can be computed from the time-dependent partition
function similarly to equilibrium, by, e.g., adding a
small field α corresponding to desired observable O,
Z → ZðαOÞ and then hOit ¼ ½dZðαOÞ=dα�jα¼0.
This may be done fully analytically provided that
O in some sense closes an algebra with the Au or can
be again done in the low or high chemical potential
expansion perturbatively, in general.

Fortunately, in certain cases, structures known from the
previous literature can be used to construct the pseudolocal
quantities, and in others they may be straightforwardly
identified from the requirements in Corollary 1.

A. Projected-local quantities: Quantum many-body
scars and embedded Hamiltonians

Quantum many-body scars [6,110,111] and embedded
Hamiltonians [112,113] are two different manifestations of
the same underlying pseudolocal algebra, as we now see.
First, we need a definition.
Definition 2 (projected-local quantity).—A projected-

local quantity is one satisfying the dynamical symmetry
volume growth condition (34) from Corollary 1 for some
clustering initial states ω, but not all of them. In particular,
it does not satisfy it for the tracial state ωðOÞ ¼ TrðOÞ,
i.e., the infinite-temperature state.
Specifically, let A0

Λ¼
P

x∈Λax be a pseudolocal sequence
and let

PΛ ¼
X
k;j

jψ jihψkj ð44Þ

be a generalized projector to the eigenspaces of HΛ, i.e.,

½HΛ; PΛ� ¼ νPΛ: ð45Þ

Assume that A ¼ P†
ΛA

0PΛ satisfies the condition for a
pseudolocal dynamical symmetry from Corollary 1, with
a corresponding pseudolocal initial state with flow ωs for
which

ωsðPΛOPΛÞ ¼ ωsðOÞ; ð46Þ

ωs½ZðtÞO�¼ωs½OZðtÞ�¼0; ∀ s∈ ½0;1�; O∈Uloc: ð47Þ

The long-time dynamics is then given by a tGGE according
to Theorem 3. Moreover, the local form of the tGGE from
Theorem 4 is the unique normal representation provided that

PΛρ
tGGE
t PΛ ¼ ρtGGEt : ð48Þ

Scarring phase transition.—For the sake of simplicity,
assume that HΛ, AΛ, A

†
Λ, and ½AΛ; A

†
Λ� generate the SUð2Þ

algebra when acted on by ωs, i.e., ωsð½HΛ; AΛ� − λAΛÞ ¼ 0,
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etc. The local tGGE has ðA0ÞΛ ¼ HΛ (λ0 ¼ 0), ðA1ÞΛ ¼ A0
Λ

(λ1 ¼ λ), ðA2ÞΛ ¼ ðA†
1ÞΛ (λ2 ¼ −λ), and ðA3ÞΛ ¼ ½ðA1ÞΛ;

ðA2ÞΛ� (λ3 ¼ 0). Equation (48) is true only for certain
values of μk. For other values, we cannot use the matrix
representation, because the state does not have clustering
and, hence, is not the valid pseudolocal state.
This is intimately related to the initial state property (47).

Indeed, if we modify the flow ωsðvÞ continuously such that
for some critical v� value of ωsðv�Þ the property (47) does
not hold, then projected-local quantities are no longer
pseudolocal with respect to the initial state and are not
to be included in the long-time tGGE. For instance, we may
vary the inverse temperature of a thermal initial state of
another Hamiltonian H0 ωβðsÞ such that for some value of
βðsÞ Eq. (47) no longer holds. As this variation of initial
temperature can be done continuously and the property (47)
is discontinuous—i.e., it either does or does not hold—this
demonstrates a novel kind of phase transition between
ergodic behavior and scarred dynamics. This phase tran-
sition is to be contrasted with the standard thermodynamic
phase transitions, which occur because the thermal state is
no longer the valid representation above some inverse
temperature jβj > β� so that it no longer has a certain
symmetry. Here, the eigenoperators themselves stop being
local. This is consistent with the very recent numerical
observation of the dynamical phase diagram of the PXP
model [114]. Because of the property (48), the scarring
phase is stable to local perturbations, as all the terms in the
exponent of ρtGGE are local operators for all values of t, and,
hence, the same arguments as for thermodynamic phases
can be applied [24,26].
In the rest of this subsection, for the sake of notation,

we drop the subscript Λ and implicitly deal with the finite
system case and its thermodynamic limit.
Embedded Hamiltonians.—Let Px be a set of strictly

local projectors, i.e., projectors with finite support Λx ⊂ Λ.
Let also ½H0; Px� ¼ 0; ∀ x. Embedded Hamiltonians are
defined as [112]

H ¼
X
x

Pxh0xPx þH0; ð49Þ

where h0x is some local Hamiltonian density translated by x.
Clearly, any operator for which ½H0; A0� ¼ λA0 may be used
to construct a simple projected-local quantity of the form
A ¼ P

xð1 − PxÞaxð1 − PxÞ, ZðtÞ ¼ 0.
Restricted spectrum-generating algebras.—Restricted

spectrum-generating algebras are formulation of quantum
many-body scarred models (Supplement in Ref. [52] and
Refs. [49,61]) for which

Hjψ0i ¼ E0jψ0i;
½H;Qþ�jψki ¼ λQþjψki; ∀ n; ðQþÞkjψ0i ≠ 0: ð50Þ

There are several equivalent formulations [62,115,116] to
this one. As discussed in Sec. II A, the existence of such a
structure a priori does not imply anything for quantum
many-body dynamics in the thermodynamic limit.
However, if Qþ is itself pseudolocal, then it clearly defines
a restricted local quantity with P ¼ P

k jkihkj and
ZðtÞ ¼ 0. Numerous models studied in the literature satisfy
this requirement; e.g., see Ref. [49] for a review.
The PXP model.—Consider the original model of

quantum many-body scarring [6,117], the one-dimensional
PXP model:

HPXP ¼
X
x

1

4
ð1 − σzx−1Þσxi ð1 − σzxþ1Þ; ð51Þ

where σαx is the α ¼ x, y, z Pauli matrix on site x. Curiously,
this model does not have projected-local dynamical sym-
metries for all times, but it has them for finite times. To see
what this means, recall [110] (see also Ref. [118]) that

½HPXP; Sþπ � ¼ Sþπ þOZZZ;

Sþπ ¼ 1

2

X
x

ð−1Þx
h
σzx −

i
2
ð1 − σzx−1Þσyxð1 − σzxþ1Þ

i
;

OZZZ ¼
X
x

ð−1Þxσzx−1σzxσzxþ1: ð52Þ

Clearly, τtðSþπ Þ ¼ eitSþπ þ ZðtÞ, but, comparing with the
volume growth (34) from Corollary 1, we get for t > 0

jωfZ†ðtÞ½eitSþπ þ ZðtÞ�gj ≤ ϕejvjtjΛj; ð53Þ

which we get from the proof of Theorem 1 (more
specifically, the special case in Ref. [28]). In other words,
the γ in Eq. (34) is time dependent. This does not allow us
to define eitSþπ þ ZðtÞ as a pseudolocal dynamical sym-
metry for all t, but fixing some maximal time the conditions
are still satisfied. Physically, this reflects the decay of
oscillations of local observables [6]. Moreover, for special
initial states, such as the Neel state, the growth in Eq. (53) is
smaller than for other initial states. This confirms numerical
results on weak ergodicity breaking [6].
Hence, the PXP and the other quantum many-body

scarred models come from different classes of models,
but they both have the projected-local quantities as a
common feature explaining physically relevant dynamics
of local observables. The existence of such quantities
should, therefore, be taken as defining quantum many-
body scars.

B. Cryptolocal quantities: Statistically localized
integrals of motion and Hilbert space fragmentation

In Refs. [15–17,119,120], fragmented models that do not
possess (explicitly) quasilocal conservation laws but do
possess finite autocorrelation functions are introduced.
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This behavior is explained through statistically localized
integrals of motion (SLIOM) in Ref. [81] and, alternatively,
commutant algebras in Ref. [50]. Using such algebraic
structures, it is possible to provide Mazur bounds on
autocorrelation functions of local observables. However,
it remains unclear whether these Mazur bounds saturate,
and the far-from-equilibrium dynamics of fragmented
models remain inaccessible to analytical study. Using the
theory developed in the previous section, it is possible to
give far-from-equilibrium dynamics in terms of the tGGEs
and show that the Mazur bound is saturated. In order to do
so, we must introduce new types of pseudolocal (pseudo-
localized) quantities.
Definition 3 (cryptolocality).—Cryptolocal quantities

are those that satisfy the pseudolocality conditions from
Corollary 1 but cannot be written as manifestly translation-
invariant sums of local densities (not even with diverging
quasilocal support). Likewise, cryptolocalized quantities
are those that meet the pseudolocalized conditions from
Sec. IV C but cannot be written as manifestly localized
objects.
We study the prototypical one-dimensional t − Jz

model [50,81]:

Ht−Jz ¼
X

x;σ∈f↑;↓g
− tx;xþ1ðdx;σd†xþ1;σ þ H:c:Þ

þ
X

x;σ∈f↑;↓g
Jzx;xþ1S

z
xS

z
xþ1 þ

X
x

hxSzx þ gxðSzxÞ2;

ð54Þ

where tx;xþ1, J
z
x;xþ1, hx, and gx are arbitrary and

Szx ¼ d†x;↑dx;↑ − d†x;↓dx;↓; ð55Þ

dx;σ ¼ cx;σð1 − c†x;−σcx;−σÞ; ð56Þ

where −σ∶↑ð↓Þ → ↓ð↑Þ means taking opposite spin of σ
and c†x;σ and cx;σ are fermionic creation and annihilation
operators on site x with spin σ.
Consider the “left” and “right” SLIOMs [81]

Qðl;rÞ
k ¼

XL
x¼1

Pðl;rÞ
k;x ðN↑

x − N↓
x Þ; ð57Þ

where Pðl;rÞ
k;x is the projector onto configurations where

the kth charge from the left (right) is on site x and
Nσ

x ¼ d†x;σdx;σ (see Ref. [81] for details).
Using these, we may construct cryptolocalized and

cryptolocal quantities:

Aα⃗ ¼ Lν
X
k;j¼l;r

αjk
ðPk0;j0¼l;rα

j0
k0 Þ

QðjÞ
k

ωðQðjÞ
k QðjÞ

k Þ
; ð58Þ

where ν ¼ 0; 1=4; 1=2. The ν ¼ 0 case corresponds to
cryptolocalized cases and the other two to cryptolocal.
The reader may be surprised that the quantity growing as
ωðAα⃗Aα⃗Þ ∝ L1=2 is pseudolocal, but it is according to the
general definition in Corollary 1. Note also that we are free
to “tune” the sequence (58) between a pseudolocal one
(extensive) and pseudolocalized by changing ν. If in doing
so we promote a sequence that is pseudolocal to a
pseudolocalized one, the corresponding pseudolocalized
quantity simply gives vanishing functionals Aloc

ω ðOÞ ¼ 0
for all O ∈ Uloc. Fragmented models are special, because
they have cryptolocalized quantities with respect to the
infinite-temperature state, which is directly implied by the
present work and by the finite values of the corresponding
Mazur bounds identified previously [e.g., Eq. (11) in
Ref. [81]]. Naturally, the reader may be concerned about

the presence of infinitely long (nonlocal) stringsPðl;rÞ
k;x in the

cryptolocal quantities and how their presence affects the
clustering of the corresponding ρtGGE. It turns out, as
discussed in the example below, that most of these strings
cancel and the remaining ones are subextensive in number
(thermodynamically irrelevant) for most initial states.
Interestingly, they can be thermodynamically relevant for
some initial states with clustering. The corresponding long-
time limit is not, therefore, a ρtGGEðtÞ state containing
cryptolocal charges.
Furthermore, these operator sequences may provide

Mazur bounds (or equalities according to Corollary 3)
and tGGEs, thus completing the picture of nonequilibrium
dynamics for fragmented models. Other fragmented models
(e.g., Ref. [121]) may be treated analogously.

C. Strictly localized quantities:
Disorder-free localization and lattice gauge theories

Nowwe deal with strictly localized quantities that should
be contrasted from cryptolocalized cases associated with
fragmentation.
A prototypical model with disorder-free localization is

one with spin-fermion coupling [23]:

Hsf ¼ −J
X
x

σzx;xþ1c
†
xcx − h

X
x

σxx−1;xσ
x
x;xþ1; ð59Þ

where the cx (c
†
x) are spinless fermion lowering (raising)

operators acting on sites x and σαx;xþ1 are spin-1=2 Pauli
matrices, as before, acting on the bonds between
the sites.
Very much related to disorder-free localization models

are lattice gauge theories [22,68,69], such as the simple Z2

lattice gauge theory [67]:

HZ2
¼

X
x

Jða†xσzx;xþ1axþ1 þ H:c:Þ − hσxx;xþ1; ð60Þ
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where ax (a
†
x) are hard-core bosonic annihilation (creation)

operators with nx ¼ a†xax representing matter occupation
on site x.
Both types of models are characterized by full sets of

strictly local (or pseudolocalized) symmetries Gx, where
Gx ∈ Λx ⊂ Λ, i.e., Gx has finite support.
For instance, the generator of the Z2 symmetry is

GZ2
x ¼ ð−1Þnjσxx−1;xσxx;xþ1: ð61Þ

Understanding nonequilibrium dynamics of these mod-
els has attracted lots of interest recently. Using the theory
developed here, exact solutions can be given in terms of
tGGEs given with pseudolocalized (or strictly localized)
quantities generated by the corresponding symmetries of
the models. More specifically, the full set consists of
projectors to the eigenspaces of these generators. Similar
holds for non-Abelian lattice gauge theories [122], in which
case we need to be mindful that the generators close some
algebra and then we may use the tGGE solution.
Analogous results hold for theories that have

fragmentation due to strictly local quantities rather than
cryptolocalized ones [65–67,69,123–126], as well as pseu-
dolocalized ones [127–130].

D. Other cases

Let us briefly discuss other cases for which Ansätze
similar to the tGGE have been previously conjectured. The
added benefit of the theory from the previous sections is
giving the correct forms of the tGGE and proving that these
are the exact solutions.
Discrete time crystals in closed systems.—Many-body

localized models have been employed for several years for
study of discrete time crystals [19,131,132], i.e., many-
body systems that display parametric down-conversion in
the sense of breaking the period of an external drive
T → nT. They are conjectured to go into cryptoequilibrium
states [133] that maximize entropy. The present work
proves this in the form of the tGGE state. Moreover, the
correct pseudolocalized dynamical symmetries are the
l-bits identified in Refs. [134,135].
Discrete and continuous dissipative time crystals.—Time

crystals in locally interacting systems induced or stabilized
by dissipation have been studied, both the discrete version
(described above) [136–142] and the continuous version for
which the time-translation symmetry breaking occurs with-
out any external time-dependent drive, in terms of dynamical
symmetries [20,39,52,143–147]. The present work shows
that the correct form of the long-time limit is the tGGE
containing the dynamical symmetries.
Continuous time crystals in isolated systems.—In

Ref. [40], the tGGE Ansatz has been previously conjectured
for the XXZ spin chain containing quasilocal dynamical
symmetries. The present work shows that this is the exact
solution to the long-time dynamics.

Semilocal charges.—Very recently, the notion of
pseudolocality has been extended to include semilocal
operators, i.e., operators whose densities commute with
distant operators on one side only [148,149] (see also
Refs. [150–153]). These operators are sums of densities of
the form oslx ¼ limN→∞

Q
x
k¼−N σzkox, where ox ∈ Λx ⊂ Λ is

local. Note that the operator contains a string of, e.g., Pauli
z operators. In Ref. [148], the algebra of quasilocal
observables is extended to include semilocal operators.
Although this is perfectly correct, the work above shows
that semilocal operators are indeed pseudolocal with
respect to specific states. That is they fall into the
projected-local class (an initial state that does not see
the Pauli string).

VI. EXAMPLES

We now study explicit examples from the previous
section applying the procedure outlined there and go
beyond existing techniques by studying general far-from-
equilibrium quenches in cases where solutions are available
only either from very special initial states for certain
observables or near infinite temperature in the linear
response regime. We compute the (finite-frequency)
time-averaged expectation values of local observables:

hOiλ¼κ ¼ lim
T→∞

1

T

Z
T

0

dte−iκthOit; ð62Þ

and if not otherwise written hOi implies the λ ¼ 0 zero-
frequency case.

A. Spin-1 model with quantum many-body scars

Here, we look into the scarred spin-1 model on a
D-dimensional hypercubic lattice studied in Ref. [111]:

H ¼
X
hxyi

ðSxxSxy þ SyxS
y
yÞ þ h

X
x

Szx þ d
X
x

ðSzx − 2Þ2; ð63Þ

where hxyi means sum over nearest neighbors and Sαx
(α ¼ x, y, z) are spin-1 operators on site x. The lattice
number is V ¼ Nd. As shown in Ref. [111], the model has
quantum many-body scarred eigenstates

jni ¼ N ðJþÞnj − 1i; ð64Þ

where n ¼ 0;…; V, j − 1i is the fully polarized down state,
the normalization is N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðV − nÞ!=n!V!p

, and

J� ¼ 1

2

X
x

e�ix⃗·π⃗ðS�x Þ2; ð65Þ

where x⃗ is the lattice site position vector and π⃗ is a vector
of the same dimensions whose all components are π.
The model also has a Uð1Þ symmetry Jz ¼ P

x S
z
x.
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Define the projector to the scarred subspace P ¼P
n jnihnj. It is not difficult to see that ½P; Jα� ¼ 0 and

that A�1 ¼ fðVÞPJ� fulfill the conditions for simple
dynamical symmetries with H from Definition 1, i.e.,
½H;A�1� ¼ �2hA�1 and where we anticipate that fðVÞ
is a system-size-dependent normalization that is required.
Thus, λ�1 ¼ �2h and λ ¼ 2h. We consider a simple initial
state as an example:

ρð0Þ ¼ 1

Z0

expðμ0JxÞ; ð66Þ

where Z0 is the normalization. As shown in Ref. [111],
exact solutions are possible in the case when μ0 → �∞ for
certain observables. Here, we compute the general case.
We begin with an Ansatz for the tGGE:

ρtGGE ¼ 1

Z
expð−βH þ μzJz þ μeiλtA1 þ H:c:Þ; ð67Þ

where ZðtÞ ¼ expð−βH þ μzJz þ μeiλtA1 þ H:c:Þ is the
time-dependent partition function. For the choice of initial
state (66), we have μz ¼ 0. Using the fact that ρð0Þ is spin-
flip symmetric and Hðd ¼ 0Þ is spin-flip antisymmetric,
we immediately get

hHi0 ¼ tr½ρð0ÞH� ¼ dV

�
1

3
−

1

2 coshð2jμ0jÞ þ 1

�
: ð68Þ

We need to find for what μ0 the A�1 are pseudolocal,
however, according to the procedure outlined in the
beginning of Sec. V. In order to do so, without loss of
generality, but for the purposes of easing orthonormaliza-
tion, we set d ¼ 0. Because ½P; Jα� ¼ 0 and P2 ¼ 1, we get
that μ0 ¼ μ. The partition function for the initial state can
be immediately computed:

Z0 ¼ ½2 coshðμ0Þ þ 1�V: ð69Þ

Likewise, as discussed in Appendix A, the partition
function of the tGGE can also be computed:

Z ¼ csch½μ cosð2htÞ� sinh½μðV þ 1Þ cosð2htÞ� − V

þ sinh½V logð3Þ� þ cosh½V logð3Þ� − 1: ð70Þ

As shown in Appendix A, it is straightforward to compute
that in the initial state (note again that due to Corollary 1 it
is sufficient to check pseudolocality for the initial state)

hA1A−1i0
¼ −

fðVÞ2
4Z

csch3ðμ0Þ[2ðV2 þ 2V − 1Þ sinhðμ0½V þ 1�Þ
− ðV þ 1ÞfV sinhðμ0½V þ 3�Þ
þ ðV þ 2Þ sinhðμ0½V − 1�Þg]; ð71Þ

hA1i0 ¼
fðVÞ
Z

csch2ðμ0ÞfV sinh½μ0ðV þ 2Þ�
− ðV þ 2Þ sinhðμ0VÞg; ð72Þ

hJþx i0 ¼
2 sinhðμ0Þ

2 coshðμ0Þ þ 1
: ð73Þ

Our method is to fix fðVÞ by demanding that
limV→∞ hÃ1Oxi0 is not zero for at least some local Ox.
The most convenient choice is the density of J�, i.e., J�x ¼
e�x⃗·π⃗ðS�x Þ2 (because the Ã�1 have overlap with it). We find
that

hA1J−x i0 ¼
1

V
hA1A−1i0 − hA1i0hJ−x i0; ð74Þ

where we use the fact that the tGGE and J� are Bloch
translationally invariant with momentum π. Now we fix
fðVÞ by demanding that hA1J−x i0 ¼ 1 (the actual value
of the constant does not matter, only that it is finite)
and compute hÃ1Ã−1i0. For A�1 to be pseudolocal,
hÃ1Ã−1i0 ≤ CV, where C does not depend on V. We find,
by expanding in 1=V, that for finite μ and large V,
hÃ1Ã−1i0 ≈ e4jμjþVflog½coshðjμjÞþ1�−jμjg. For μ → �∞ we find,
on the other hand, that the A�1 are pseudolocal as
hÃ1Ã−1i0 ¼ V for diverging μ. Therefore, there is no
scarring phase transition for the initial state chosen here
for finite μ in the thermodynamic limit. However, as we see,
there is similar behavior to a phase transition for finite
system size. Persistent oscillations (i.e., nonstationarity)
in local observables are present only for diverging μ.
However, even though the theory given in this paper is
strictly speaking for thermodynamically large systems, we
may still gain insight into finite size behavior of the models.
First note that the growth of hÃ1Ã−1i0=V can be almost
negligible for a given μ up to some system size after which
it grows quickly. To illustrate this, we plot hÃ1Ã−1i0=V
in Fig. 3.
It is known that translationally invariant systems with

translationally invariant initial states can be expected to
reach their asymptotic dynamics in times that trelax ¼ Oð1Þ
[1]. This dynamics persists at least until finite size effects
for local observables in the bulk start at times that are
t� ¼ OðVÞ. This is due to finite Lieb-Robinson velocity
(i.e., it takes at least time V for quantum information to
reach the end of the system and come back to the bulk
before an observable there can see that the system is finite).
Hence, even a finite size system can be expected to be
described by a tGGE for trelax ≪ t ≪ t�. The growth of
hÃ1Ã−1i0=V essentially represents that chemical potentials
in the tGGEs must be rescaled in order for the expectation
values of A�1 to be equal in the initial state ρð0Þ and the
ρtGGEð0Þ, i.e., μ ¼ ðV=e4jμ0jþVflog½coshðjμ0jÞþ1�−jμ0jgÞμ0. For a
given chemical potential μ0, this stays almost constant, and
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then after reaching an almost critical system size V decays
abruptly, and, hence, so does the contribution of A�1 to the
expectation values of local observables at finite frequency
λ. Interestingly, this decay is not at all visible for either
numerical or experimental simulations up to some large
system size V� and corresponding long time (cf. the PXP
discussions in the previous section). We show this later
explicitly for local observables.
We may now calculate zero- and finite-frequency expect-

ation values of local observables that have overlap with H
(e.g., Szx), straightforwardly and, using the same techniques
as before, those that commute with Jx ≔ 1

2
ðJþJ−Þ

(e.g., Jxx):

JxxðtÞ ¼
1

Z

XbV2c
k¼0

2ðV − kÞ sinh½ðV − kÞ cosðλtÞμ�: ð75Þ

In Fig. 4, we illustrate finite-frequency expectation values
and show that we can reproduce the known exact solution
for μ → �∞ in Ref. [111]. The decay of the finite-
frequency amplitudes is doubly exponential with system
size for finite μ (cf. the growth of the pseudolocal
dynamical symmetries in Fig. 3). Essentially, the system
behaves as if it were in the scarred phase (with finite-
frequency amplitude close to 1) and then abruptly decays at
some almost critical value of system size. Physically, this
happens because for a given finite μ some of the initial state
is not contained in the ground state of Jx (which is inside
the scarred subspace) and the proportion of the state that is
not in the scarred subspace grows with V which at some
value is large enough to lead to exponential growth with
system size of the (previously) pseudolocal dynamical
symmetry.
To compute the zero-frequency values, we need the

inverse temperature β for H. This can be accomplished for
small μ0 (β) by means of high-temperature expansion
(truncating to the second order); we obtain in the thermo-
dynamic limit

β ¼ 2d sinh2ðjμ0jÞ
½d2 þ 3ðh2 þ 4Þ�½2 cosh ð2jμ0jÞ þ 1� : ð76Þ

We may now easily compute expectation values of observ-
ables that have overlap with H. This is done in Fig. 5(a)
[Fig. 5(b)] for Szx (SyxS

y
xþ1) as an example. The initial

chemical potential is μ0 ¼ 0.1. Note that the expectation
values have a nonlinear dependence on h and d, which
implies that there is preference toward antiferromagnetic
ordering even close to infinite temperature in the system;
i.e., the induced magnetic field in the system is not
maximized by maximizing the external fields.

B. t− Jz model with fragmentation

Previous approaches [17,81] could only analytically
treat the t − Jz model in linear response and at infinite
temperature. We now compute a far-from-equilibrium
quench case.
As discussed in the previous Sec. V, the t − Jz chain has

cryptolocalized quantities that may be constructed from the
SLIOMs. We assume that those and the Hamiltonian are
the only relevant pseudolocal quantities of the model.
Remembering that the tGGE is only the effective state
governing the dynamics of local observables, we, for the
sake of simplicity, focus only on the left half of the chain
and, hence, can consider only the left SLIOMs that we now

call Ak ≔ QðlÞ
k , for k ¼ 1;…. Therefore, the conjectured

tGGE Ansatz giving the long-time (equivalently, zero-
frequency) dynamics contains A0 ¼ Ht−Jz , the total spin
A−1 ¼ Sz ¼ P

x S
z
x, and the SLIOMs for k ¼ 1;….

FIG. 4. Finite-frequency averages of Jxx. For finite μ, the results
are valid at times 1 ≪ t ≪ V. The magenta line at infinite μ0
agrees with the exact solution (dashed black line) from previous
literature [111]. We see that the oscillation amplitudes display an
almost discontinuous dependence on system size V—they are
constant up to some “critical” system size, after which they decay
abruptly to 0. In other words, for a fixed system size, the system is
effectively in the scarred phase up to some value of the initial
chemical potential, after which the oscillations abruptly decay.

FIG. 3. The growth of hÃ1Ã−1i=V with 1=μ and V which can be
quite slow, indicating that oscillations can persist beyond the
scarring phase for very large systems and times even for finite μ.
After some system size that depends on μ, hÃ1Ã−1i=V grows
exponentially with V, and the oscillations are no longer present
after that system size. Note that results are the same for μ → −μ.
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Naturally, μk ¼ 0 for λk ≠ 0, as there are no finite-
frequency pseudolocal dynamical symmetries. Let us write
the basis for one site as j↑↓;↑;↓; vaci, where the arrows
denote the spin of the fermions on that site. As an example,
let us take the following far-from-equilibrium initial prod-
uct state:

ρð0Þ¼N
Yn
⊗x¼1

jαx;βx;γx;0ihαx;βx;βx;0j⊗1N−n−1; ð77Þ

where we demand that γx ¼ βx if x is an even site andN is
the normalization. The state is, thus, a general pure product
state with singlets and doublons on sites 1…n and an
infinite-temperature state (identity) on the rest of the sites.
For the sake of convenience, let us set hx ¼ gx ¼ 0 in
Eq. (54) (the external on-site field does not influence
the physics significantly). The initial state ρð0Þ is parity
antisymmetric with respect to spin flip, whileHt−Jz is parity

symmetric. Hence, hHt−Jzi0 ¼ β ¼ λ0 ¼ 0, and the tGGE
does not contain the Hamiltonian. Moreover, for any finite
n, the expectation value of the extensive operator Sz is
finite, but the expectation value of Sz is extensive in the
tGGE for any finite μ−1; hence, μ−1 ¼ 0. Thus, the tGGE
contains only the cryptolocalized quantities coming from
the SLIOMs. The SLIOMs mutually commute and are
diagonal in the particle number basis. As discussed in
Appendix A, it is thus a matter of straightforward combi-
natorics to calculate the partition function:

Z ¼ 2N
�
1þ

XN
k¼1

�
N
k

�Yk
j¼1

coshðμjÞ
�
: ð78Þ

We may now show that the SLIOMs are pseudolocal by
computing their norm with respect to the tGGE. It is
sufficient to check for large system size N:

hÃj Ãji ¼
1

Z
d2

dμ2j
Z −

�
1

Z
d
dμj

Z

�
2

; ð79Þ

which for sufficiently large N is hÃj Ãji ¼ Cj þOð1=NÞ,
where 0 < Cj ≤ 1 are constants independent of system
size.
By introducing small fields in the tGGE, we may

calculate expectation values of local observables Ox in
the tGGE:

Zðα1; α2Þ ¼ tr

�X
j

μjAj þ α1Ox þ α2Oy

�
; ð80Þ

and, hence,

hOxi ¼
d
dα1

Zðα1; α2Þjα1;2¼0; ð81Þ

hOxOyi ¼
∂
2

∂α1∂α2
ZðαÞjα1;2¼0: ð82Þ

For example, for the diagonal and commuting observables
Zx ≔ N↑

x − N↓
x and Nx ¼ N↑

x þ N↓
x − 2, we have

hZ1i¼
2N

Z
sinhðμ1Þ

�
1þ

XN
k¼2

�
N−1

k−1

�Yk
j¼2

coshðμjÞ
�
; ð83Þ

hNxi¼
2N

Z

�
1þ

XN
k¼1

�
N−1

k

�Yk
j¼1

coshðμjÞ
�
; ð84Þ

hNxNyi ¼ 2hNxi: ð85Þ

In order to finish proof that the SLIOMs are pseudolo-
calized, we must compute their overlap with local
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FIG. 5. The time-averaged value of Szx (SyxS
y
xþ1) are given in

(a) [(b)] as a function of the external fields h, d. We are close to
infinite temperature because the chemical potential in the initial
state is μ0 ¼ 0. Hence, the values are small, but there is still a
manifest nonlinear dependence.
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observables and show that it is nonvanishing for at least
some. It is sufficient to consider hZ1Ãji for large enoughN.
It is not difficult to verify that this is finite hZ1Ãji for
finite j. Hence, the SLIOMs define cryptolocalized quan-
tities and can potentially go into the tGGE. However,
the SLIOMs have strings of operators of the typeQ

x
y¼1ðNy þ 2ÞZx. But, as is discussed in Appendix A,

these strings can contribute subextensively to the connected
correlator and, hence, are thermodynamically irrelevant.
Finally, we need to show clustering of the tGGE state

itself. We find that the state is not clustered for all μk, even
though the SLIOM quantities are pseudolocalized for all μk.
This signals a fragmentation phase transition for which the
pseudolocal quantities are always the same, but the state
acquires long-range order and cannot be represented as a
matrix exponential. This is similar to thermodynamic phase
transitions [26] and should be contrasted to the scarring
phase transition above for which the pseudolocal quantities
themselves stop being pseudolocal for certain values of the
chemical potentials. As the nonlocal strings have overlap
only with Nx, it is sufficient to check the long-range
connected correlator for jhNxNyi − hNxihNyij. We illus-
trate this with an example by parametrizing the chemical
potentials as

Q
k
j¼1 coshðμjÞ → xak þ 1, where, for the

purposes of keeping the result valid for the simpler case
of μ−1 ¼ 0, the chemical potentials μj should have a cutoff
such that μj ¼ 0 for some very large j > κ, but with κ still
being much smaller than N when taking the thermody-
namic limit. We then find that (as may be verified by means
of, e.g., computer algebra)

lim
N→∞

jhNxNyi − hNxihNyij

¼
( ðxa−1Þð3xaþ1Þ

4ðxaþ1Þ2 ; if log ðxa þ 1Þ > logð2Þ;
0; otherwise:

ð86Þ

Note that, curiously, unlike thermodynamic phase tran-
sition, the order is either completely nonlocal (the same for
all x, y) or completely absent. This proves the fragmenta-
tion phase transition in the model, and the phase diagram is
given in Fig. 6(a).
Finally, of course, we must relate the chemical potentials

to the initial state. This may be done for arbitrary choices of
the initial state parameters for large system sizes numeri-
cally, but, in order to give closed form expressions, we
consider the case when jβxj2 − jγxj2 is small. In particular,
for, e.g., αx ¼ βx ¼ γx ¼ 0 for x > 3, we have that

μ1 ¼
jα1j2ðjβ2j2 − jγ2j2Þ

ðjα1j2 þ 2jβ1j2Þðjα2j2 þ jβ2j2 þ jγ2j2Þ
;

μ2 ¼
2jβ1j2
jα1j2

μ1; ð87Þ

and μj ¼ 0 for j > 2. Thus, the time averages of local
observables are quite complicated functions of the initial
state parameters even for this simple product state. We
illustrate some of them in Fig. 6(b).

VII. CONCLUSION

The main goal of nonequilibrium quantum many-body
theoretical physics is computing the dynamics of systems
out of equilibrium. Locality is what crucially unifies
dynamical properties of quantum many-body systems
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FIG. 6. (a) The fragmentation phase diagram showing the
phases where the strings are thermodynamically irrelevant
(short-range order) and where they are not. (b) Time average
of certain local observables for various values of the initial state
parameter [see Eq. (87) for the initial state parameters].
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providing a framework applicable to isolated, driven, and
dissipative quantum many-body systems. The theory pre-
sented here allows for exact solutions of quantum many-
body dynamics for all locally interacting systems with
finite local degrees of freedom on hypercubic lattices of
arbitrary dimensions. This constitutes a very wide class of
quantum many-body systems and includes paradigmatic
models such as spin models and fermionic lattice models.
The theory provides the solution in terms of a tGGE and
does not rely on integrability.
The basic “recipe” is the following. If one finds evidence

of nonergodicity in a quantum many-body system (at either
finite or zero frequency), the present work shows that it must
be due to pseudolocal dynamical symmetries. Provided one
can then identify these pseudolocal dynamical symmetries,
one may find the solution to the dynamics of local
observables immediately as a tGGE. The chemical potentials
in the tGGE are set by the initial states. Conversely, proving
the absence of any such symmetry [apart from, e.g., the
Hamiltonian or some Uð1Þ charge] immediately proves
ergodicity at zero frequency. The theory, thus, proves both
the weak eigenstate thermalization hypothesis in dynamical
form and saturation of the Mazur bound.
More generally, the theory is an important step toward

solving the main goal of computing nonequilibrium quan-
tum many-body dynamics, because it does so for wide
classes of locally interacting systems. In the future, it can be
applied to all such wide classes of systems and has the
potential to provide analytical solutions where there were
previously none.

A. Open problems

The work presented here opens numerous possible
research directions. I list only a few below.

(i) New forms of nonergodicity.—The complete theory
presented here allows not only for study of known
forms of nonergodicity, it can help in classifying and
generating models with novel types of nonergodic-
ity. For instance, Hilbert space fragmentation is
identified with the existence of cryptolocal conser-
vation laws in such models and quantum many-body
scars with projected-local dynamical symmetries.
Can one have a model with quantities that are of both
types, i.e., a projected cryptolocal dynamical sym-
metry? This would imply a fragmented scar, i.e.,
dynamics that has local oscillating memory for
certain initial states.

(ii) Constructing transient dynamical symmetries.—
Transient dynamical symmetries, identified here,
may play an important role in the type of transport
a system has, e.g., diffusive, superdiffusive, etc. To
the best of my knowledge, transient dynamical
symmetries dictating the finite time dynamics have
not been identified. However, superficially similar

structures are known. For instance, in few-body
bosonic models, one may have quasinormal
modes (e.g., Ref. [154]), i.e., metastable decaying
eigenmodes of the Hamiltonian with complex en-
ergy (that is not self-adjoint due to being un-
bounded) [25]. One may attempt to find transient
dynamical symmetries by adapting the procedure of
Refs. [128,155,156] to imaginary frequency. Like-
wise, in Refs. [157,158], prethermalization is stud-
ied by having a prethermal Hamiltonian as a
transient conservation law. This could be a starting
point for a theory of prethermalization based on
transient dynamical symmetries.

(iii) Scarring phase transitions.—The existence of a
novel phase transition between weak ergodicity
breaking (nonstationary dynamics) and ergodicity
has been proven here. It is distinct from thermody-
namic phase transitions, because it happens because
projected-local operators stop being pseudolocal
when one smoothly varies the chemical potential
rather than being a discontinuity in the equilibrium
state itself. What is the nature of this phase transition
in terms of, e.g., universality classes?

(iv) Long-range order in the fragmentation phase
transitions.—The fragmentation phase transition
introduced here and shown for the t − Jz chain
has been studied only in the short-range correlated
phase. Studying the long-range correlated phase will
require going beyond the matrix representation of
the tGGE and will entail generalizing techniques that
are used for symmetry breaking in equilibrium [26],
as it remains unclear how to treat the cryptolocalized
quantities responsible for the fragmentation phase
transition due to their nonlocal strings.

(v) Generalized hydrodynamics for scars and
fragmentation.—Identifying scars and fragmenta-
tion in terms of pseudolocal quantities opens the
possibility of constructing a generalized hydrody-
namics theory for the integrable forms of these
models. For instance, recent work in Refs. [107,159]
using dynamical symmetries for hydrodynamics
could be combined here with the integrable limit
of a constrained scarred Hubbard model [61].

(vi) Implications for quantum information processing.—
Many quantum algorithms can understood as local
many-body dynamics acting on a system (i.e., a
collection of qubits). For instance, the quantum
Fourier transform is a local algorithm with the
end result of the computation being stored locally.
The present work fully classifies the long-time
limit of such systems. Can it be used to identify
possible quantum error correction algorithms?
It could also be conceivably used to strengthen
the quantum threshold theorem [160]. Indeed,
locality in the form of the Lieb-Robinson bound
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(crucial for the theory here) has been recently
employed to study error correction and entangle-
ment generation [161,162].

(vii) tGGEs for deep thermalization.—As the theory here
applies to dissipative systems and the long-time limit
is given in terms of tGGEs, they could offer an
alternative way to study recently introduced deep
thermalization, i.e., thermalization induced by pro-
jective measurements [163–166]. What is the con-
nection between tGGEs in that case and the recently
introduced deep GGE?

(viii) Including unbounded densities.—The theory pre-
sented here works when the local degrees of freedom
are bounded. What happens for, e.g., bosons on a
lattice, for which the densities can be infinite? Lieb-
Robinson bounds hold for these systems, too [167],
and, hence, one may conceivably upgrade the theory
from this paper to account for them.

(ix) Long-range interactions.—The theory here crucially
relies on Lieb-Robinson bounds for local dynamics.
These bounds have been extended for long-range
interacting systems [168]. Could these bounds be
used to define dynamically relevant long-range
quantities instead of pseudolocal ones? Alterna-
tively, the above discussed connections with lattice
gauge theories offers another possible way to treat
long-range interactions (e.g., Ref. [169]) based on
the theory in this paper—one may introduce un-
physical gauge degrees of freedom in a local model
and then, assuming that they are very fast, adiabati-
cally eliminate them [29], reducing the local prob-
lem (which is treatable) to a long-range model
(which one wants to study). This would allow for
treatment of nonergodic dynamics in long-range
models (e.g., Refs. [77,170–179]).

(x) Pseudolocalized quantities for proving many-body
localization.—Many-body localization (MBL) in
disordered systems has been proven under certain
assumption on the spectrum of these systems [180].
It is curious, as shown in this paper, that if one drops
any notion of translational invariance (i.e., including
disorder), then the many-body dynamics must be
based on pseudolocalized quantities. Of course,
these quantities contain precisely the l-bits of
MBL [181]. Can this approach be formalized and
used to prove MBL without any assumptions?

(xi) Toward a nonequilibrium Landau theory.—The
tGGE introduced here is a time-dependent version
of the Gibbs ensemble. Can this similarity be
exploited to formulate a nonequilibrium Landau
theory, and the corresponding free energies, for
strongly interacting systems out of equilibrium?

(xii) Entropy oscillations.—The present work deals
purely with the dynamics of local observables.
Can the same framework be upgraded to study

entanglement entropy dynamics and other
quantities [65,182–186]?

(xiii) Quantum hydrodynamics.—The transient pseudolo-
cal quantities could be a starting point for a rigorous
framework of quantum hydrodynamics beyond inte-
grable models. Once these quantities are identified
the kinds of transport they imply should follow
immediately.

ACKNOWLEDGMENTS

I thank W. De Roeck for in-depth discussions and
useful remarks and V. Jukić Buča for assistance with
Figs. 1 and 2. I am grateful to T. Iadecola, H. Katsura,
and H. Moriya for useful feedback on the manuscript.
This work was supported by a research grant (42085)
from VILLUM FONDEN, by the Engineering and Physical
Sciences Research Consul (EPSRC) program Grant
No. EP/P009565/1, and the EPSRC National Quantum
Technology Hub in Networked Quantum Information
Technology (EP/M013243/1).

APPENDIX A: PROOFS

Here, I give proofs of the statements in the main text.
Proof of Theorem 1.—We begin by noting that the Lieb-

Robinson locality relation (21) can be weakened. Namely,
for some μ > 0 and ϕ > 0,

jjτtðOÞ − ½τtðOÞ�Λjj ≤ ϕjOjjjOjj expð−μΔþ vjtjÞ; ðA1Þ

which follows directly from faster exponential growth
than polynomial growth and jOj is the size of the support
of the operator O.
Moreover, we can use the contractivity jjτtðOÞjj ≤ jjOjj

to get that

jj½τtðOÞ�Λjj ≤ ½1þ ϕjOj expðvjtjÞ�jjAjj: ðA2Þ

By pseudolocality of ω, it is p clustering [28]; i.e., there
exist ν, a > 0 such that, for every l,

jðO;QÞωj ≔ jωðO;QÞ − ωðOÞωðQÞj ≤ νlajjOjjjjQjj
distðO;QÞp ;

ðA3Þ
for some p > D. Likewise, the same holds for the flow ωs
for the same parameters p, ν, l, and a. Using this and
Eqs. (A1) and (A2), we can proceed along the same lines as
the proof of Theorem 6.3 in Ref. [28] to conclude that there
exist some a1 and ν1 such that

j½τtðOÞΛ; Q�ωj ≤
ν1la1 jjOjjjjQjj
distðO;QÞq ; ðA4Þ
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and some a2 and ν2

j½τtðOÞΛ; τtðQÞΛ0 �ωj ≤
ν2la2 jjOjjjjQjj
distðO;QÞq ; ðA5Þ

∀ q < p. However, this by itself is not enough to show
that ωt is q clustering, because the map is, in general,
dissipative:

τtðO†QÞ ≠ τtðO†ÞτtðQÞ: ðA6Þ

However, we may use another result based on the Lieb-
Robinson bound obtained in Corollary 1 in Ref. [85]
again in weaker form. Namely, there exist some C0 > 0
and μ0 > 0 such that

jjτtðO†QÞ − τtðO†ÞτtðQÞjj ≤ C0jjOjjjjQjjevjtj−μ0distðO;QÞ:

ðA7Þ

We also have

ðO;QÞω∘τt ¼ ω½τtðOQÞ − τtðOÞτtðQÞ� − ½τtðOÞ; τtðQÞ�ω:
ðA8Þ

Therefore,

jðO;QÞω∘τt j ≤ jjτtðOQÞ − τtðOÞτtðQÞjj þ j½τtðOÞ; τtðQÞ�ωj:
ðA9Þ

Clearly, we can bound the decaying exponential in Eq. (A7)
by some (time-dependent constant C00) for any finite q > 0:

jjτtðOQÞ − τtðOÞτtðQÞjj ≤ C00la2 jjOjjjjQjj
distðO;QÞq : ðA10Þ

From this, the q clustering of jðO;QÞω∘τt j immediately
follows. This proves the first point of the theorem. The
second follows from the proof of Theorem 6.5 in Ref. [28]
if we observe that

jjOjj2Hω∘τt
¼ ðO†; OÞω∘τt ≥ j½τtðO†Þ; τtðOÞ�ωj − 2jjOjj2;

ðA11Þ

which we find from the dissipative property of the map
and Eq. (A8). ▪
Proof of Theorem 2.—From Theorem 1, the state is of the

form

ωs;tðOÞ ¼ ω0;tðOÞ þ
Z

s

0

duAu;tðOÞ ∀ t: ðA12Þ

Hence, we may write, using the equations of motion (20),

d
dt

ωs;tðOÞ ¼
Z

s

0

duAu;t(LðOÞ) ¼
Z

s

0

du
d
dt

Au;tðOÞ;

ðA13Þ

where we use ω0(LðOÞ) ¼ 0 for the tracial state ω0;t.
This implies

Z
I
du

�
Au;tðOÞ − d

dt
Au;t(LðOÞ)

�
¼ 0 ðA14Þ

for every open interval I ⊂ ½0; 1�. By similar arguments as
in the proof of Theorem 6.6 in Ref. [28], we conclude that

d
dt

Au;tðOÞ ¼ Au;t(LðOÞ) ðA15Þ

for almost all u.
Consider now the map proven in Theorem 1 τt∶ Uloc →

Hu to be bounded. Using a straightforward generalization
of the appendix of Doyon, we find that
limt→0þ jjτtO − 1OjjHu

¼ 0; hence, τt is strongly continu-
ous. Moreover, as the proof Theorem 1 works if we replace
t → eoiϕt and, using Theorem 4.6 [(a) and (b)] in
Ref. [187], τt it is also analytic. Define the dual map
τ⊕t ∶ H†

u → U†
loc. Hence, limt→0þ jjτ⊕t Au −AujjUloc

¼
limt→0þ jjτtO −OjjHu

by a well-known result for bounded
operators [25]. As Uloc generates a (dense) subset of Hu;t,
we may “dilate” τ⊕t to the operator T0

t ≔ ðτ⊕t Þu;t∶ H†
u →

H†
u;t, which is also bounded and strongly continuous. By

construction, T0
t is a strongly continuous semigroup that

solves the Cauchy problem (A15) in the dual form:

d
dt

Au;t ¼ L0ðAu;tÞ ¼ Au;t∘L: ðA16Þ

The corresponding generator L0 is densely defined and
closed by the Hille-Yosida theorem [187]. Moreover, by
Proposition 1.4 in Ref. [187], there exists and M Tt ¼
e−MtT0

t ≔ eLt is contracting, and the claim about the
spectral resolution also follows from the Hille-Yosida
theorem. Likewise, an application of the Hille-Yosida
theorem (in particular, Proposition 2.2 in Ref. [187]) shows
that Re½σðLÞ� ≤ 0. ▪
Proof of Theorem 3.—From the equations of motion (20),

by partial integration we immediately getZ
T

0

dteiλtωs;t(LðOÞ)¼ eiλtωs;tðOÞjT0 þ iλ
Z

T

0

dteiλtωs;tðOÞ;

ðA17Þ

and taking the T → ∞ limit, we immediately get the first
statement of the theorem as ωs;tðOÞ is bounded.
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To proceed, let us recall two useful definitions from the
literature. First, the integrated dissipation function [44,84]

DtðA;BÞ ≔ τtðA†BÞ − τtðA†ÞτtðBÞ; ðA18Þ

which is sesquilinear and DtðA; AÞ ≥ 0 [44]. Second, the
decoherence-free subalgebra N [43,47], which in our
C�-algebra case is

N ≔ fO ∈ UlocjDtðO;OÞ ¼ 0g: ðA19Þ

Our first step is to generalize a theorem by Frigerio [43]
for fixed points to long-time dynamics. Consider the
faithful stationary state ω of τt, i.e., ω∘τt ¼ ω. We have
(Theorem 3.1 in Ref. [43])

lim
s→∞

ω(DtðτsðOÞ; QÞ) ¼ 0; ∀ O;Q ∈ U; ðA20Þ

including Q ¼ τsðOÞ. By the Cauchy-Schwarz inequality
and using the fact that Dt is sesquilinear and ω faithful
[ωðO†OÞ ¼ 0 iff O ¼ 0], i.e., positive, we have

w� − lim
t→∞

τtðOÞ ∈ N : ðA21Þ

Theorem 3.2 by Dhahri, Fagnola, and Rebolledo [47]
that says

τtðOÞ ¼ eiHtOe−iHt; ∀ O ∈ N ; ðA22Þ

in applies in our case because we assumed that
LxðηÞ; ∀ x; η is bounded in the C�-algebra norm and τt
is strongly continuous [87].
Without loss of generality, assume λ ≠ 0 and take a

sequence C ¼ ð2πn=λÞ:

1

T

Z
T

0

dteiλt
d
dt
ωs(τtðOÞ)¼ 1

T

Z
C

0

dteiλt
d
dt
ωs(τtðOÞ)

þ 1

T

Z
T−C

0

dteiλt
d
dt
ωs(τtþCðOÞ):

As ω(LðOÞ) is bounded, the first term on the rhs goes
to 0 as T → ∞. The second term may be estimated by
Eqs. (A21) and (A22), and these say that, ∀ ε > 0, there
exists an n such that, for every t > 0,

				 ddtωs(τtþCðOÞ) − iωs;tð½H;O�Þ
				 < ε: ðA23Þ

Hence, as ωs;t are bounded, we get, using Lebesgue’s
dominated convergence theorem, that

lim
T→∞

1

T

Z
T

0

dteiλt
d
dt

ωs(τtðOÞ)

¼ i lim
T→∞

1

T

Z
T

0

dteiλtωs;tð½H;O�Þ:

Using this and Theorem 3.3 in Ref. [47] that says
½LxðηÞ; O� ¼ ½L†

xðηÞ; O� ¼ 0, ∀ O ∈ N we get the claim
in the second case.
We have as before Eq. (A15) for the pseudolocal

quantities for almost all u and

ωs;λ ¼ δλ;0ω0ðAÞ þ
Z

s

0

duAu;λðOÞ;

where we define Fourier transform Au;λðOÞ ≔
limT→∞ð1=TÞ

R
T
0 eiλtAu;tðOÞ and where we interchange

the order of integration, which we can do according to
Fubini’s theorem because of continuity of the time evolu-
tion, i.e., ðd=dtÞωs;tðOÞ ¼ ωs;t(LðOÞ), boundedness of the
linear functionalAu;tðOÞ, and the fact that the functions are
Lebesgue integrable (Definition 5.4 in Ref. [28]). Thus, we
arrive to the final statement. ▪
Proof of Theorem4.—Define βðHÞΛ≔

P
kμke

iλktðAkÞΛþ
H:c: A theorem by Araki says that ∀ β in 1D the state is
well defined in the Λ → ∞ limit and is analytic [188].
A similar result holds for some critical value of jβj > β�
(and by extension for jμkj > μ� and ∀ t) in higher
dimensions [189].
Let us show that ðAkÞΛ ≔

P
x∈Λ ax are pseudolocal

dynamical symmetries with frequencies λk, i.e., that the
correspondingAs;λðOÞ satisfy the conditions in Theorem 3.
Without loss of generality, assume that ωtðAkÞ ¼ 0. Then
we can explicitly check that

Z
T

0

dt



eiλkttrΛ

�
ρΛðtÞe−iλkt

X
x∈Λ

ðax;kÞ½HΛ; O�
��

¼
Z

T

0

dt


trΛ

��
½HΛ; ρΛðtÞ�

X
x∈Λ

ðax;kÞ

þ ρΛðtÞ
�
HΛ;

X
x∈Λ

ðax;kÞ
��

O

��
:

Because ρðtÞ is analytic, we may express it as a
unique uniformly converging Fourier series ρΛðtÞ ¼P

n∈Z eitnðθ=TÞρn. Moreover, by the dual equations of
motion,

d
dt

½ρΛðtÞ�Λ ¼ −if½HΛ; ρΛðtÞ�gΛ: ðA24Þ

Hence,

Z
T

0

dt



trΛ

��
½HΛ; ρΛðtÞ�

X
x∈Λ

ðax;kÞ
�
O

��
¼ 0;
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using orthogonality of the Fourier coefficients. Now note
that by assumption ðd=dtÞτt½ðAkÞ�Λ ¼ LðAkÞΛ ¼ iλðAkÞΛ,
which immediately implies the desired result upon taking
the thermodynamic limit and taking into account the proof
of Theorem 1.
Parametrize the flow with a single parameter s, i.e.,

μkðsÞ ¼ μks. By analyticity, the equations for the flow of
the tGGE satisfy

d
dt

ωs;tðOÞ ¼ μkeiλktAs;t¼0ðOÞ; ðA25Þ

which, in general, is solved by a path-ordered exponential.
However, as we assume that the pseudolocal dynamical
symmetries form a closed finite algebra under commuta-
tion, we may rewrite this solution in the form given in the
theorem without path ordering by using the Baker-
Campbell-Hausdorff formula. The rest of the claims follow
directly from Theorems 6.1 and 6.2 and Corollary 6.7 in
Ref. [28] with βHΛ → βðHÞΛ. ▪

APPENDIX B: DETAILS OF THE EXAMPLES

Here, we discuss some details of the calculations done
in Sec. VI.

1. Spin-1 model with scars

As shown in Ref. [111], J� and Jz generate an suð2Þ
algebra, and the scarred states in Eq. (64) form a repre-
sentation for this algebra with J� being the roots (i.e.,
raising and lowering operators). The initial state (66) is an
element of this algebra. The eigenvalues of Jz in the
scarring representation are 2n − V, where n ¼ 0;…; V.
By rotating the algebra with exp iðπ=2ÞJy to the x basis,
the initial state is diagonal. This allows us to easily find the
trace Z0 as given in the main text. For the tGGE using the
scar representation we may directly find that

Z ¼ e−VμðtÞðeμðtÞVþμðtÞ½2ðVþ1Þ−V� − 1Þ
e2μðtÞ − 1

þ 3V − V − 1 ðB1Þ

by counting the dimension of the kernel P for the second
part in the sum, and we abbreviate μðtÞ ¼ cosð2htÞμ.
Likewise, we find for the other results from the main text
using the representation in the scarred subspace and
rotating x to z

hA1A−1i0 ¼ 4
fðVÞ2
Z0

XV=2
m¼−V=2

e2μ0V
�
m2

2
þ V

4

�
V
2
þ 1

��
;

ðB2Þ

hA1i0 ¼
2fðVÞ
Z0

XV=2
m¼−V=2

e2μ0Vm: ðB3Þ

All of these can be simplified into the forms given in
the main text. The initial average energy hHi0 is

straightforwardly found using the spin-flip symmetry dis-
cussed in the main text. Similarly, to find the β at small μ0,
we simply expand expð−βHÞ ≈ 1þ βH with the equation

hHi0 ¼ hHi ¼ trð−βH2Þ; ðB4Þ

which is easily solved to be

β ¼ 2dND sinh2ðjμ0jÞ
½2 cosh ð2jμ0jÞ þ 1�½ðd2 þ 3h2ÞND þ 12ðN − 1ÞD� :

ðB5Þ

Taking the thermodynamic limit gives the result in the
main text.

2. t− Jz model

As shown in Ref. [17], the SLIOMs can be conveniently
written as

Ak ¼
X

j1<���<jk

S1;j1−1

�Yk−1
m¼1

PjmSjmþ1;jmþ1−1

�
Zjk ; ðB6Þ

where Px¼N↑
x þN↓

x , Sx;y¼
Qy

j¼xð1−PjÞ, and the sum is
defined as

P
j1<���<jkðxÞ≔

P
N
j1¼1

P
N
j2¼j1þ1 ���

P
N
jk¼jk−1þ1ðxÞ.

Useful relations are also Z2
x ¼ Px; PxZx ¼ Zx, and it is

useful to see that all the operators in the SLIOMs commute
and that Px, (1 − Px), and Sx;y are projectors. The Ak are
diagonal in the Zx basis. Hence, in order to compute the
partition function of the tGGE (78), we note that Px
(1 − Px) have eigenvalues f1; 0g (respectively, f0; 1g)
on opposite subspaces and Zx has eigenvalues f1;−1; 0g
(1;−1 correspond to thePx eigenvalue 1 subspace). Hence,
it becomes a matter of simple combinatorics and splitting
of the expressions expðμkAkÞ to evaluate

Z ¼
X4N
j¼1

exp

�YN
m¼1

λj;m

�
; ðB7Þ

where λj;m is the jth diagonal value of the mth operator
from the left. Similarly, we can find Zðα1;α2Þ for the
examples given in the main text.
The SLIOMs contain nonlocal strings Sj;m. However,

since PxSj;m ¼ 0 for j ≤ x ≤ m and recalling that Z2
x ¼

Px; PxZx ¼ Zx and that Px, (1 − Px), and Sx;y are projec-
tors, it is easy to see that these strings can identically cancel
in the expressions expðμkAkÞ when expanded, apart from
the leading order in μk the contribution of which in the
thermodynamic limit is identically small. However, prod-
ucts of the different Ak in the full ρtGGE can, for different μk,
render the contribution for the strings thermodynamically
finite, and this is the origin of the fragmentation phase
transition discussed in the main text.
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[169] G. Passarelli, P. Lucignano, R. Fazio, and A. Russomanno,
Dissipative Time Crystals with Long-Range Lindbladians,
Phys. Rev. B 106, 224308 (2022).

[170] N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner,
and T. Esslinger, Dissipation-Induced Structural Instabil-
ity and Chiral Dynamics in a Quantum Gas, Science 366,
1496 (2019).

[171] P. Zupancic, D. Dreon, X. Li, A. Baumgärtner, A. Morales,
W. Zheng, N. R. Cooper, T. Esslinger, and T. Donner,
p-Band Induced Self-Organization and Dynamics with
Repulsively Driven Ultracold Atoms in an Optical Cavity,
Phys. Rev. Lett. 123, 233601 (2019).

[172] F. Iemini, A. Russomanno, J. Keeling, M. Schirò, M.
Dalmonte, and R. Fazio, Boundary Time Crystals, Phys.
Rev. Lett. 121, 035301 (2018).

[173] Y. Nakanishi and T. Sasamoto, Dissipative Time Crystals
Originating from Parity-Time Symmetry, Phys. Rev. A
107, L010201 (2023).

[174] F. Carollo and I. Lesanovsky, Exact Solution of a Boundary
Time-Crystal Phase Transition: Time-Translation Sym-
metry Breaking and Non-Markovian Dynamics of Corre-
lations, Phys. Rev. A 105, L040202 (2022).

[175] A. Cabot, L. S. Muhle, F. Carollo, and I. Lesanovsky,
Quantum Trajectories of Dissipative Time-Crystals, arXiv:
2212.06460.

[176] D. Dreon, A. Baumgärtner, X. Li, S. Hertlein, T. Esslinger,
and T. Donner, Self-Oscillating Pump in a Topological
Dissipative Atom-Cavity System, Nature (London) 608,
494 (2022).

[177] M. Moroder, M. Grundner, F. Damanet, U. Schollwöck, S.
Mardazad, S. Flannigan, T. Köhler, and S. Paeckel,
Metallicity in the Dissipative Hubbard-Holstein Model:
Markovian and Non-Markovian Tensor-Network Methods
for Open Quantum Many-Body Systems, Phys. Rev. B 107,
214310 (2023).

[178] V. Link, K. Müller, R. G. Lena, K. Luoma, F. Damanet,
W. T. Strunz, and A. J. Daley, Non-Markovian Quantum
Dynamics in Strongly Coupled Multimode Cavities Con-
ditioned on Continuous Measurement, PRX Quantum 3,
020348 (2022).

[179] S. Flannigan, F. Damanet, and A. J. Daley, Many-Body
Quantum State Diffusion for Non-Markovian Dynamics in
Strongly Interacting Systems, Phys. Rev. Lett. 128, 063601
(2022).

[180] J. Z. Imbrie, On Many-Body Localization for Quantum
Spin Chains, J. Stat. Phys. 163, 998 (2016).

[181] M. Serbyn, Z. Papić, and D. A. Abanin, Quantum
Quenches in the Many-Body Localized Phase, Phys.
Rev. B 90, 174302 (2014).

[182] A. Yoshinaga, H. Hakoshima, T. Imoto, Y. Matsuzaki, and
R. Hamazaki, Emergence of Hilbert Space Fragmentation
in Ising Models with a Weak Transverse Field, Phys. Rev.
Lett. 129, 090602 (2022).

[183] O. A. Castro-Alvaredo, M. Lencsés, I. M. Szécsényi, and J.
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