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Continuous monitoring of driven-dissipative quantum-optical systems is a crucial element in the
implementation of quantum metrology, providing essential strategies for achieving highly precise
measurements beyond the classical limit. In this context, the relevant figure of merit is the quantum
Fisher information of the radiation field emitted by the driven-dissipative sensor. Saturation of the
corresponding precision limit as defined by the quantum Cramér-Rao bound is typically not achieved
by conventional, temporally local continuous-measurement schemes such as counting or homodyning.
To address the outstanding open challenge of efficient retrieval of the quantum Fisher information of the
emission field, we design a novel continuous-measurement strategy featuring temporally quasilocal
measurement bases as captured by matrix-product states. Such a measurement can be implemented
effectively by injecting the emission field of the sensor into an auxiliary open system, a “quantum-decoder”
module, which “decodes” specific input matrix-product states into simple product states as its output field,
and performing conventional continuous measurement at the output. We devise a universal recipe for the
construction of the decoder by exploiting the time-reversal transformation of quantum-optical input-output
channels, thereby establishing a universal method to achieve the quantum Cramér-Rao precision limit
for generic sensor designs based on continuous measurement. As a by-product, we establish an effective
formula for the evaluation of the quantum Fisher information of the emission field of generic driven-
dissipative open sensors. We illustrate the power of our scheme with paramagnetic open sensor designs
including linear force sensors, fiber-interfaced nonlinear emitters, and driven-dissipative many-body
sensors, and demonstrate that it can be robustly implemented under realistic experimental imperfections.
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I. INTRODUCTION

An ongoing pursuit in the field of quantum sensing is
the development of methods that achieve the fundamental
sensitivity limit allowed by quantum mechanics. Given a
sensor design, such a limit is set by the quantum Crámer-
Rao bound (QCRB) [1] for the mean-squared error in
parameter estimation: Var½θest� ≥ 1=KIðθÞ, where K is the
number of sensing repetitions, and IðθÞ is the quantum
Fisher information (QFI). Achieving the QCRB requires
full retrieval of the QFI, which is possible only via an
optimal quantum measurement strategy—a strategy that
minimizes the influence of the intrinsic quantum noise
underlying the sensor design.
A large class of important sensor technology is based

on continuous measurement [2–7] which, as illustrated in
Fig. 1(a), consists of driving an open dissipative sensor with

lasers (microwaves) and detecting the emission field of
the sensor continuously, e.g., via time-resolved photon
counting or homodyning. Prominent examples include
gravitational-wave detectors [8,9] and optomechanical
force sensors [10–12], whose key element is a driven-
dissipative mechanical oscillator (e.g., a cavity mirror), and
atomic gas magnetometers [13,14], which consist of the
collective spins of a laser-driven atomic ensemble—these
are representatives of linear driven-dissipative sensors. In
contrast, rapid progress toward the realization of nonlinear,
potentially many-body and interacting driven-dissipative
sensors substantially broadens the class of sensor technol-
ogy based on continuous measurement. These advances are
highlighted by the recent experimental achievements in the
efficient interface between tailored photonic structures,
e.g., low-loss optical fibers (waveguides) [15–19] and
nanophotonic platforms [20–23], with driven-dissipative
quantum-optical systems ranging from single nonlinear
emitters [24–26] via molecules [27], to intracavity Bose-
Einstein condensates [28–30] with increasing complexity.
Along with the experimental advances, manifold theo-

retical investigations are devoted to understanding the
performance of generic sensor designs based on continuous
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measurement. Progress includes, e.g., the evaluation of the
QCRB [31–33], signal processing [34–37], the impact of
noise [38–40], and criticality enhanced sensitivity [41,42].
Despite the progress, a severe obstacle to the improvement
of the sensor performance has been revealed [31–42]:
Conventional time-local continuous measurement, e.g.,
counting or homodyning, typically retrieves only a small
portion of the QFI of the emission field, thus failing to
achieve the QCRB of almost all sensor designs, as
illustrated in Fig. 1(b). This inefficiency originates from
the fact that the parameter to be sensed is hidden in the
emission field of the sensor which, as a result of the sensor
evolution, can be nonclassical, complex, and strongly
correlated in time, forbidding its full retrieval via conven-
tional time-local measurement schemes.
Consequently, an outstanding challenge naturally

emerges: What is the optimal measurement strategy for
achieving the QCRB of a generic driven-dissipative quan-
tum sensor, and how to implement such a measurement
effectively? Despite its fundamental importance to the
development of sensing technology based on continuous
measurement, this question is largely open except for the
special case of linear sensors [8–14,43], where the linear
Heisenberg-Langevin equations of motion reveals back-
action evasion techniques [44–47], e.g., the “negative-
mass” oscillator scheme [13,48–51], for approaching the

QCRB; see our discussion below. For generic nonlinear and
complex open sensor designs, however, saturation of the
QCRB remains an outstanding open challenge.
In this manuscript, we overcome this challenge by

proposing and developing a novel continuous-measurement
scheme that establishes a universal strategy for achieving the
QCRB for generic continuous-measurement-based sensors,
which can be nonlinear and even nonstationary (e.g.,
subjected to time-dependent driving). Our solution is
inspired by the intimate relation between the emission field
of generic driven-dissipative emitters and the concept of
matrix-product states (MPSs) [52–55]. In stark contrast
to conventional time-local continuous measurement, our
scheme features projective measurement in a temporally
quasilocal, finitely correlated basis as captured by MPS
structures. Such a measurement scheme can be implemented
naturally by harnessing the features of quantum-optical
driven-dissipative dynamics: Dependent on the dynamics
of the open system, the environment can be mapped from a
product (e.g., vacuum) input state to a specific MPS output,
and vice versa. Given a generic driven-dissipative quantum
sensor, as described by the parameter-encoded (potentially
time-dependent) Hamiltonian HSðθ; tÞ and jump operator
JSðθ; tÞ [cf. Fig. 1(a)], we can couple its emission field to an
auxiliary driven-dissipative system, as illustrated in Fig. 1(c),
which we call a quantum-decoder module by drawing
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FIG. 1. Schematic of continuous-measurement-based sensing technology and our efficient information retrieval scheme. (a) Continuous-
measurement-based sensing consists of driving an open dissipative sensor with an input field (e.g., laser) and detecting the emission
field of the sensor continuously in time. A generic driven-dissipative sensor can be parametrized by a parameter-encoded Hamiltonian
HSðθ; tÞ and jump operator JSðθ; tÞ. Its emission field in the time window ½0; T� is described by a correlated multiphoton state ρEðθ; TÞ
with a matrix-product structure. Paradigmatic examples of this class of sensors include, e.g., (I) linear force sensors, (II) nonlinear
quantum emitters, and (III) driven-dissipative quantum many-body sensors. (b) Conventional sensing schemes detect the emission
field via time-local measurements, e.g., counting and homodyning. Nevertheless, the complex matrix-product structure of the
emission field typically renders these measurements ineffective to retrieve the full quantum Fisher information of the emission field
IEðθ0; TÞ with θ0 the prior knowledge of θ. This inefficiency severely limits the sensing precision, as quantified by the inverse
variance of the estimation VarðθestÞ−1. (c) We develop an efficient information retrieval strategy by injecting the emission field of the
sensor into a quantum-decoder module, whose driven-dissipative evolution maps the sensor emission field ρEðθ0; TÞ to a product state
(e.g., vacuum). Subsequent counting of the output field of the decoder, as we show, accomplishes measurement of the sensor emission
field in an optimal matrix-product basis capable of achieving the optimal precision of the sensor design. We provide a universal recipe
for the construction of the decoder parameters, Eq. (32), applicable to generic, potentially nonlinear and time-dependent sensor
design, and demonstrate it using the examples (I–III).
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analogies to unitary decoding in optimal Ramsey inter-
ferometry [56,57]. Dependent on its driven-dissipative
evolution, as governed by its Hamiltonian HD and jump
operator JD, the decoder “decodes” specific input MPSs
into a simple product (e.g., vacuum) state as its output.
Such possibilities were first explored in Ref. [58] to
construct coherent quantum absorbers of time-stationary
emitters for dissipative phase engineering [59,60]. Here,
we expand upon them to encompass also time-dependent
scenarios as pertinent to sensing by exploiting general
time-reversal transformation of quantum-optical input-
output channels. Remarkably, as we establish below, such
a transformation is described mathematically by changing
the canonical form of MPSs [52]. As a result of decoding,
photon counting at the decoder output accomplishes
projective measurement of its input, i.e., the emission
field of the sensor, in temporally finite-range correlated
MPS basis. We emphasize that such a correlation origi-
nates from the driven-dissipative quantum evolution of the
decoder, in stark contrast to the correlation built upon time-
local measurement with classical feed forward (feedback).
Saturation of the QCRB is achieved by designing the

decoder evolution in such a way that the MPSs prior to the
decoding correspond to the optimal measurement basis of
the emission field, thus fully retrieving its QFI [61]. For a
generic (nonlinear) open sensor, the QCRB can be achieved
only in the neighborhood of the prior knowledge θ0 of
the unknown parameter: The optimal measurement basis,
and correspondingly, the required decoder evolution, is
dependent on θ0, HD ¼ HDðθ0; tÞ, and JD ¼ JDðθ0; tÞ;
cf. Fig. 1(c). We develop a simple yet universal recipe
for the construction of HDðθ0; tÞ and JDðθ0; tÞ; cf. our
central formula Eq. (32) based on the aforementioned time-
reversal transformation. Remarkably, such a recipe requires
only the knowledge of the sensor parameters HSðθ0; tÞ and
JSðθ0; tÞ, and does not rely on the extensive knowledge
of the emission field of the sensor as provided, e.g., via
tomography of the field. With the decoder properly tuned,
counting its output field and data processing provide us
with a QCRB-limited estimation precision in the neighbor-
hood of θ0, as illustrated in Fig. 1(c).
Our information retrieval scheme can be viewed as a

universal quantum backaction evasion strategy for generic
(linear and nonlinear) driven-dissipative sensors. We illus-
trate its power using three paradigmatic continuous-
measurement-based sensor designs at increasing complexity.
(I) Linear open quantum sensors [8–14], for which we
show that our decoder module naturally reduces to a
displaced negative-mass oscillator. (II) Nonlinear emitters
driven by stationary or time-varying fields, which are
emergent platforms for the generation of large-scale
multiphoton entangled states [53,55,62–64] for sensing.
Remarkably, we demonstrate that by harnessing the highly
correlated emission field generated by time-dependent
driving fields, our retrieval scheme allows for achieving a

Heisenberg-limited QCRB. (III) Driven-dissipative lattice
spin models as realizable, e.g., in trapped-ion [65,66] or
neutral-atom platforms [67–69], as a representative of the
significant experimental progress toward the integration
of synthetic many-body systems as sensors [57,70,71].
Besides these paradigmatic examples, we demonstrate that
the temporally quasilocal, finitely correlated nature of our
measurement scheme offers it remarkable resilience against
experimental imperfections including, e.g., light transmis-
sion loss and inaccurate control of the decoder, such that it
can be robustly implemented in experiments. As such, our
scheme provides a general and practical strategy for improv-
ing open quantum sensors toward their ultimate precision
limit, with broad applications to diverse platforms across
experimental quantum optics.
Along with the efficient information retrieval scheme,

we establish an effective method to evaluate the QFI of the
emission field of generic driven-dissipative sensors thanks
to our MPS formulation. This QFI provides us with a
refined, tighter QCRB for sensors based on continuous
measurement, as compared to existing bounds [31–33] that
are expressed in terms of the global QFI of the sensor and
the emission field. The significance of our tighter QCRB is
particularly highlighted by nonergodic sensors, i.e., sensors
that possess multiple stationary states, for which we show
that the two QCRBs can exhibit disparate scaling behavior
with respect to the interrogation time. In contrast, for
ergodic sensors, i.e., sensors that possess a unique sta-
tionary state, we show that despite a finite difference, both
QCRBs follow the same linear scaling with respect to
the interrogation time. We demonstrate the connection and
difference between the two QCRBs using the aforemen-
tioned sensor models.
The rest of our manuscript is organized as follows. We

introduce a MPS representation of the emission field of
generic driven-dissipative sensors in Sec. II, as the basis to
formulate our sensing framework and our retrieval scheme.
We then present in Sec. III the framework of sensing via
continuous-measurement based on the MPS formulation,
highlighting an effective method for the evaluation of the
QFI of the emission field of generic driven-dissipative
sensors. We establish our new continuous-measurement
scheme for efficient information retrieval in Sec. IV, and
demonstrate its power using paradigmatic examples of
open quantum sensors in Sec. V. We discuss the exper-
imental feasibility of our scheme in Sec. VI, and conclude
in Sec. VII with a summary of our results and an outlook.

II. MATRIX-PRODUCT-STATE
REPRESENTATION OF THE EMISSION FIELD

Central to our sensing framework is the detection of the
emission field of open quantum-optical systems for
sensing. To lay its basis and fix our notation, let us start
our discussion with a self-contained introduction to an
effective description of the quantum state of the emission
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field in terms of MPSs, based on familiar quantum-optics
theory [3–7,72,73].

A. Quantum-optical model

We consider the sensor as a quantum-optical open
system coupled with a one-dimensional bosonic environ-
ment (e.g., an optical fiber or a waveguide) representing the
input and output channel of the system; cf. Fig. 1. The joint
evolution of the system and the environment in the
Schrödinger picture is governed by the Hamiltonian (we
set ℏ ¼ 1 hereafter)

HSE ¼ HS þHE þ VSE; ð1Þ

where HSðEÞ is the Hamiltonian of the system (environ-
ment), and VSE describes the coupling between them.
Here, we adopt the convention that HðHÞ represents a
Hamiltonian in the Schrödinger (interaction) picture, the
latter to be introduced below. Denoting the photonic
destruction (creation) operators of frequency ω as bðωÞ
½b†ðωÞ�, we can express the environment Hamiltonian as

HE ¼
Z

dωωb†ðωÞbðωÞ; ð2Þ

and the system-environment coupling Hamiltonian as

VSE ¼ i
1ffiffiffiffiffiffi
2π

p
Z

ω̄þB

ω̄−B
dω½JSb†ðωÞ − J†SbðωÞ�: ð3Þ

Here, JS is the system transition (jump) operator, and we
make the typical assumption in quantum optics [3–7,72,73];
i.e., the bandwidth 2B of the weak coupling VSE is much
smaller than the system transition frequencies centered on ω̄
(the latter lies in the optical-frequency range). This allows us
to assume that the coupling strength in VSE isω independent,
which is absorbed into JS for notational simplicity, and to
neglect counterrotating terms in VSE.
To arrive at an effective description of the dynamics,

let us transform away the optical frequencies in HSðEÞ
by moving to an interaction picture with respect to
ω̄J†SJS þHE. This results in time-dependent operators
for the system and the environment. In particular, this
allows us to define the (time-dependent) environmental
operator [3–7]

bðtÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

ω̄þB

ω̄−B
dωbðωÞe−iðω−ω̄Þt: ð4Þ

Correspondingly, we can express the joint Hamiltonian of
the system and the environment as

HSE ¼ HSðtÞ þ i½JSðtÞb†ðtÞ − J†SðtÞbðtÞ�; ð5Þ

where HSðtÞ and JSðtÞ are the transformed Hamiltonian
and jump operator of the system that capture its slow
dynamics in the interaction picture. They can be time
dependent (with a characteristic frequency much smaller
than B) for general quantum-optical settings, as relevant to
the various sensor designs discussed below.

B. Coarse-grained description

Following familiar quantum-optics theory [3–7,72,73],
we can describe the slow dynamics in the interaction
picture by considering a coarse-grained timescale much
longer than the inverse bandwidth B−1 while being
much shorter than the timescale of the slow dynamics.
This promotes the environmental modes bðtÞ to quan-
tum noise operators with the white-noise bosonic
commutation relations ½bðtÞ; b†ðt0Þ� ¼ δðt − t0Þ, allowing
us to integrate conveniently the time evolution governed
by Eq. (5).
We hereby define the elementary time increment

Δt ≫ B−1, and divide the time window ½0; TÞ in terms
of N elementary time bins ½n� ≔ ½tn−1; tnÞ, n ∈ ½1; N�, with
tn ¼ nΔt and T ¼ NΔt. We define for time bin [n] the
quantum noise increment

ΔB½n� ¼
Z

tn

tn−1

dτbðτÞ; ð6Þ

which satisfies the bosonic commutation relation
½ΔB½n�;ΔB

†
½n0�� ¼ δnn0Δt and therefore defines an individual

time-bin mode, for which the Fock basis can be constructed
as jσin ¼ ΔB†σ

½n�j0in=
ffiffiffiffiffiffiffiffiffiffiffiffi
σ!Δtσ

p
. We can express the time

evolution in the time bin [n] by the expansion of
expð−i R tn

tn−1 dτHSEÞ to OðΔtÞ in accord with the Born
approximation,

U½n�
SEðΔtÞ ¼ 1 − iHSðtn−1ÞΔtþ ðJSðtn−1ÞΔB†

½n� − H:c:Þ

−
1

2
JSðtn−1ÞJ†Sðtn−1ÞΔB†

½n�ΔB½n�

−
1

2
J†Sðtn−1ÞJSðtn−1ÞΔB½n�ΔB

†
½n�

þ 1

2
ðJ2Sðtn−1ÞΔB†2

½n� þ H:c:Þ: ð7Þ

Physically, Eq. (7) describes the exchange of excitations
between the system and the nth time-bin mode.
The overall time-evolution operator in the interaction

picture thus amounts to the sequential interaction between
the system and each time bin [n], with n ¼ 1; 2;…; N, and
can be expressed as

USEðTÞ ¼ T
YN
n¼1

U½n�
SEðΔtÞ ð8Þ
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with T denoting the time ordering. Such a sequential
interaction determines a natural MPS structure [53–55] of
the state of the emission field, as we discuss below.

C. Matrix-product-state representation

We assume that at the initial time t ¼ 0 the system and
the environment are decoupled and, as is typical in quantum
optics, that the environment is initially in the vacuum
state [74] jvaci≡ ⊗∞

n¼1 j0in, with j0in the Fock vacuum of
the time bin [n]. The initial global state can therefore be
expressed as jΨð0Þi ¼ jψSð0Þi ⊗ jvaci, with jψSð0Þi the
initial pure state of the system.
The time-evolved global state jΨðTÞi ¼ USEðTÞjΨð0Þi,

with USEðTÞ defined in Eq. (8), can be expanded in the
time-bin Fock basis jσin, σn ¼ 0, 1 as [53–55]

jΨðTÞi ¼
X
fσng

AσN
½N�…Aσ2

½2�A
σ1
½1�jψSð0Þi ⊗ jσN;…; σ2; σ1i:

ð9Þ

Here, Aσn
½n� are Kraus operators of the system. Assuming the

dimension of the system Hilbert space is D, Aσn
½n� are D ×D

matrices defined by expressing the elementary evolution

operator U½n�
SEðΔtÞ in the Fock basis of the time bin

Aσn
½n� ≡ hσnjU½n�

SEðΔtÞj0ni, σn ¼ 0, 1. Using Eq. (7), the result

can be expressed explicitly in terms of the system
Hamiltonian and jump operator as

A0
½n� ¼ 1 − iHSðtn−1ÞΔt −

1

2
J†Sðtn−1ÞJSðtn−1ÞΔt;

A1
½n� ¼

ffiffiffiffiffiffi
Δt

p
JSðtn−1Þ: ð10Þ

Equation (9) is a MPS featuring (finite-range) temporal
correlations between the individual time bins [n]. The
strength of the correlations depends on the bond dimension,
i.e., the dimension of the constituting matrices Aσn

½n�, which
is identical to the system Hilbert space dimension D. Such
correlations originate from the quantum evolution accord-
ing to Eq. (8), which correlates the system and the time bins
[n], n ¼ 1; 2;…; N sequentially via the dissipative inter-
action, therefore establishing correlations among the
time bins. The nature of such a sequential evolution is
inherited by the structure of the state Eq. (9), of which each
term in the summation

P
fσng is generated by the sequential

application of a series of Kraus operators AσN
½N�;…; Aσ2

½2�; A
σ1
½1�

to the system state jψSð0Þi conditioned on a specific
environment state jσN;…; σ2; σ1i.
We further define the reduced state of the environment

by tracing out the system ρEðTÞ ¼ trSðjΨðTÞihΨðTÞjÞ.
Based on Eq. (9), it can be represented as a matrix-product
density operator (MPDO)

ρEðTÞ ¼
X

fσn;σ0ng
tr
�
A

σN;σ0N
½N� …A

σ2;σ02
½2� A

σ1;σ01
½1� ρSð0Þ

�

× jσN;…; σ2; σ1ihσ0N;…; σ02; σ
0
1j; ð11Þ

where Aσn;σ0n
½n� are superoperators of the system defined via

Aσn;σ0n
½n� ð·Þ ≔ Aσn

½n�ð·ÞAσ0n†
½n� , and ρSð0Þ ¼ jψSð0ÞihψSð0Þj is the

initial system density operator. As such, ρEðTÞ inherits
the structure of correlations among the time bins from the
global state Eq. (9).
We comment that in Eqs. (9) and (11) we use the discrete

MPS representation as a reflection of the finite time-bin
width Δt of the microscopic model (cf. Sec. II B), rather
than adopting the continuous MPS [75] in the limitΔt → 0.
Nevertheless, for practical quantum-optical applications,
Δt can be regarded as infinitesimally small such that the
continuous limit can be safely and conveniently taken, as
we illustrate in later discussions.
Finally, let us define the reduced state of the system by

tracing out the environment ρSðTÞ ¼ trEðjΨðTÞihΨðTÞjÞ.
Using Eq. (9), it is straightforward to show that it obeys the
update law ρSðTþΔtÞ¼P

σNþ1
AσNþ1

½Nþ1�ρSðTÞAσNþ1†
½Nþ1�. Taking

the continuous limit Δt → 0, this recovers the familiar
Lindblad master equation (LME) for the reduced dynamics
of the open system,

_ρSðTÞ ¼ −i½HSðTÞ; ρS� þD½JSðTÞ�ρS; ð12Þ

where we define the Lindblad operator D½J�ρ≡
JρJ† − 1

2
fJ†J; ρg.

In summary, driven-dissipative quantum-optical systems
emit a correlated photonic field as captured by the MPSs.
The elementary building blocks of these states are the
individual tensors A½n�, which depend on the dynamic
parameters of the system via Eq. (10). As we discuss in
the following, this allows for the sensing of unknown
parameters via continuous detection of the emission field.

III. QUANTUM SENSING VIA CONTINUOUS
MEASUREMENT OF THE EMISSION FIELD

We now introduce quantum sensing via continuous
measurement based on the MPS framework introduced
above. Without loss of generality, we consider the sensing
of a single quantity θ, which we assume is encoded in the
system dynamics and thus the tensors A½n�ðθÞ. We focus on
the “neighborhood” sensing scenario (cf. Fig. 1), where our
task is to precisely determine the true value of the unknown
parameter θ ¼ θ0 þ δ around a rough estimator θ0 that is
already known from preliminary information, as in typical
sensing experiments [76,77]. Our primary interest in the
following is to construct an efficient measurement strategy
to reach the QCRB in the neighborhood of θ0. To this end,
we first introduce the achievable precision by continuous
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measurement, as quantified by the (classical) Fisher infor-
mation (FI). We then discuss the optimal precision that we
aim to achieve—the QFI of the emission field.

A. Fisher information of continuous measurement

Let us consider measurement of the emission field,
including counting and homodyning as familiar examples.
Theoretically, such a measurement can be represented by
a series of positive-operator-valued measures (POVMs)
ΠDð0;TÞ associated with the (continuous) measurement
records Dð0; TÞ spanning the time interval ½0; T�. The
probability distribution of the measurement records
Pθ½Dð0; TÞ� ≔ tr½ρEðθ; TÞΠDð0;TÞ� is dependent on θ,
allowing us to estimate θ by processing of the measurement
records. The associated precision can be quantified by
the FI

Fðθ; TÞ ¼
X
Dð0;TÞ

Pθ½Dð0; TÞ�f∂θ lnPθ½Dð0; TÞ�g2: ð13Þ

According to the Cramér-Rao inequality [78], Fðθ0; TÞ sets
a lower bound to the variance of any (unbiased) estimator
θest around θ0, i.e., VarðθestÞ ≥ 1=KFðθ0; TÞ, where K is
the number of sensing interrogations.
As a familiar example, photon counting corresponds to

projective measurement in the product of time-bin Fock
basis as introduced in Sec. II, with the counting records
signaling the presence or absence of photons in each time
bin Dð0; TÞ ¼ fσng≡ fσ1; σ2;…; σNg, σn ¼ 0, 1. The
POVMs for photon counting are therefore,

Πfσng ¼⊗N
n¼1 jσinhσj: ð14Þ

The probability distribution can be calculated from Eq. (11)
as Pθ½Dð0; TÞ ¼ fσng� ¼ tr½ρ̃S;cðTÞ�, where ρ̃S;cðTÞ ¼
T
Q

N
n¼1A

σn;σn
½n� ðθÞρSð0Þ is an (unnormalized) [79] condi-

tional density matrix of the sensor that can be propagated
efficiently via quantum trajectory simulation [3–7].
Statistical average over sufficient numbers of trajectories
allows for numerical evaluation of the FI Eq. (13).
Homodyne (heterodyne) measurement and the associated
FI can be formulated similarly.
A common feature of these familiar continuous mea-

surements is that they are temporally local; i.e., their
POVMs are separable in the time-bin basis. These mea-
surements, however, may not be capable of extracting the
full information of the parameter, as quantified by the QFI
of the emission field that we introduce below.

B. Quantum Fisher information of the emission field

According to the quantum Cramér-Rao inequality [1],
the QFI of the emission field sets an upper limit to the
estimation precision achieved by any measurement strategy
of the emission field Fðθ0; TÞ ≤ IEðθ0; TÞ. As a result,

the QCRB of our sensing scenario can be expressed
as 1=KIEðθ0; TÞ.
The QFI captures the sensitivity of the environmental

state Eq. (11) to a small variation of the unknown parameter
θ → θ þ δ,

IEðθ; TÞ ¼ −4∂2δFEðθ; θ þ δÞjδ¼0; ð15Þ

where FEðθ1; θ2Þ is the overlap between the environmental
state Eq. (11) at two values θ1;2 of the unknown parameter,
as quantified by the quantum fidelity

FEðθ1; θ2Þ ¼ tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρEðθ1; TÞ

p
ρEðθ2; TÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρEðθ1; TÞ

pq �
:

ð16Þ

Despite its fundamental importance, the evaluation of
IEðθ; TÞ for generic sensor designs remains an outstanding
open challenge due to the complex structure of the
environmental state; cf. Eq. (11). As a first significant
result, we overcome this challenge by deriving a simple
analytical formula for the evaluation of FEðθ1; θ2Þ and thus
IEðθ; TÞ, which requires only the knowledge of the sensor
evolution, i.e., the LME (12). To keep our presentation
concise, we summarize our main result here and defer a full
derivation to Appendix A 1. The quantum fidelity can be
determined via

FEðθ1; θ2Þ ¼ tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μθ1;θ2ðTÞμ†θ1;θ2ðTÞ
q i

; ð17Þ

where μθ1;θ2ðTÞ is a generalized density operator of the
open sensor, as first introduced in Ref. [32]

μθ1;θ2ðTÞ ¼ trEðjΨðθ1; TÞihΨðθ2; TÞjÞ: ð18Þ

Exploiting Eq. (9), it is straightforward to show that
μθ1;θ2ðTÞ satisfies the initial condition μθ1;θ2ð0Þ ¼ ρSð0Þ,
and the update law

μθ1;θ2ðT þ ΔtÞ ¼
X
σNþ1

AσNþ1

½Nþ1�ðθ1Þμθ1;θ2ðTÞAσNþ1†
½Nþ1�ðθ2Þ;

which can be expressed in the limit Δt → 0 as a differential
equation [32] [we denote μðtÞ≡ μθ1;θ2ðtÞ below for nota-
tional simplicity],

dμ
dt

¼ −i½HSðθ1; tÞμ − μH†
Sðθ2; tÞ� þ JSðθ1; tÞμJ†Sðθ2; tÞ

−
1

2
½J†Sðθ1; tÞJSðθ1; tÞμþ μJ†Sðθ2; tÞJSðθ2; tÞ�

≔ Lðθ1; θ2; tÞμ; ð19Þ

and can be propagated efficiently for sensor designs with a
modest Hilbert space dimension.
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Equation (19) describes, in general, a quantum map that
is not completely positive trace preserving (CPTP). It
reduces to the LME (12), thus recovering CPTP, by setting
θ1 ¼ θ2 ¼ θ. In the neighborhood of ðθ1; θ2Þ ¼ ðθ; θÞ, the
spectrum of Lðθ1; θ2; tÞ can be smoothly connected to the
spectrum of the LME (12). For many important sensor
designs, the associated LME (12) is time homogeneous
and ergodic (i.e., it supports a unique stationary state),
HSðθ;tÞ¼HSðθÞ;JSðθ;tÞ¼JSðθÞ, and ρSðθ;t→∞Þ¼ρstS ðθÞ.
Correspondingly, Lðθ1; θ2Þ is time independent, and has a
unique eigenvalue λðθ1; θ2Þ that is smoothly connected to
the vanishing eigenvalue of the LME (12), λðθ; θÞ ¼ 0,
whereas the rest of the eigenvalues have a finite negative
real part. The (right) eigenstate μλθ1;θ2 associated with
λðθ1; θ2Þ is smoothly connected to the sensor stationary
state μλθ;θ ¼ ρstS ðθÞ. We thus have, for long interrogation
time T,

μθ1;θ2ðTÞ ∼ μλθ1;θ2 exp½−λðθ1; θ2ÞT�; ð20Þ

and consequently, FEðθ1; θ2Þ ∼ exp½−Reλðθ1; θ2ÞT�, with
Re denoting the real part. This exponentially decaying
fidelity, via Eq. (15), dictates a linear scaling of the QFI of
the emission field with respect to the interrogation time,

IEðθ; TÞ ∼ 4T∂2δReλðθ; θ þ δÞjδ¼0: ð21Þ

In contrast, if the sensor evolution is not ergodic, the QFI
of the emission field does not necessarily obey a linear
scaling [32,41]. From the point of view of MPS, if a driven-
dissipative system is ergodic, its emission field is finitely
correlated and has an injective MPS representation [52]; if
nonergodic, the emission field may be temporally long-
range correlated, lacking an injective MPS representation.
In Sec. V, we study a few models of open sensors, including
both ergodic and nonergodic ones, for which the relevant
QFIs demonstrate drastically different behavior.
The effective method established in this section for the

calculation of the environmental QFI can be extended
straightforwardly to sensors coupled with multiple envi-
ronments, which we detail in Appendix A 1–A 3.

C. Global quantum Fisher information

We complete this section with a brief discussion of a
closely related precision bound, the global QFI IGðθ; TÞ as
introduced in Refs. [31–33], and its relation with IEðθ; TÞ
established above. The global QFI measures the sensitivity
of the global state Eq. (9) to a small variation of the
unknown parameter,

IGðθ; TÞ ¼ −4∂2δFGðθ; θ þ δÞjδ¼0; ð22Þ

where FGðθ1; θ2Þ ¼ jhΨðθ1; TÞjΨðθ2; TÞij is the quantum
fidelity of the global (pure) state. This fidelity can be

conveniently evaluated via the generalized density operator
Eq. (18) as [32]

FGðθ1; θ2Þ ¼ jtrS½μθ1;θ2ðTÞ�j: ð23Þ

As the global state involves both the sensor and the
emission field, in general, IGðθ; TÞ ≥ IEðθ; TÞ. Moreover,
the retrieval of IGðθ; TÞ may require (potentially exper-
imentally challenging) joint measurement of the sensor
and the emission field. If the sensor LME (12) is time
homogeneous and ergodic, then Eq. (20) dictates, for long
interrogation time T,

IGðθ; TÞ ∼ 4T∂2δReλðθ; θ þ δÞjδ¼0: ð24Þ

Thus, IGðθ; TÞ exceeds IEðθ; TÞ by an (asymptotically)
time-independent constant, and obeys the same long-time
scaling. In contrast, if the evolution of the open sensor is
nonergodic, the difference between the two precision
bounds may grow with time, and consequently, lead to
different asymptotic scaling in the long time limit. Such a
connection and difference is illustrated in Sec. V in terms of
paradigmatic models of open sensors.

IV. EFFICIENT RETRIEVAL OF THE
QUANTUM FISHER INFORMATION

Our aim below is to devise an effective measurement
scheme for the emission field of generic driven-dissipative
sensors to retrieve efficiently the emission-field QFI (up to
a time-independent constant) thus to saturate the CQRB
1=KIEðθ0; TÞ for long interrogations. While we focus
below on the continuous measurement of the emission
field alone, we note as a prospect that a final strong
measurement of the sensor subsequent to the continuous
monitoring may provide additional useful information and
may allow for the retrieval of the global QFI of the sensor
and the emission field [38,39].
As outlined in the Sec. I, our scheme features the

implementation of a temporally quasilocal continuous
measurement enabled by directing the emission field of
the sensor into a quantum-decoder module—an auxiliary
open system subjected to continuous measurement at its
output port; cf. Fig. 1. Our measurement scheme thus
implements continuous monitoring of cascaded quantum-
optical setups [80,81]. The dynamics associated with
the quantum decoder can be described by Eqs. (1)–(8)
with the simple replacement S → D of the subscripts. In
particular, the joint evolution operator of the environment
and the decoder UDEðTÞ can be transcribed from Eqs. (7)
and (8), and features the sequential interaction with
the time bins [n], n ¼ 1; 2;…; N. We emphasize that
the decoder interacts with the time bins subsequent to the
sensor, thus guaranteeing causality, as naturally incorpo-
rated in the theory of cascaded open systems [80,81].
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To be specific, we consider below continuous counting
of the output field of the quantum decoder, as captured
by the projectors Πfσng in Eq. (14). This effectively
implements a measurement

ΠDE
fσng ¼ U†

DEðTÞΠfσngUDEðTÞ ð25Þ

of the decoder-environment state ρDð0Þ ⊗ ρEðTÞ prior to
their interaction, with ρDð0Þ ¼ jψDð0ÞihψDð0Þj being the
initial state of the decoder, and ρEðTÞ being exactly the
emission-field state we wish to measure; cf. Eq. (11).
The effective measurement Eq. (25) is distinguished from
conventional continuous measurements by two unique
features. First, the sequential character of the evolution
operator UDEðTÞ renders ΠDE

fσng a natural matrix-product
structure representing temporally finitely correlated con-
tinuous measurement. Second, such a measurement can be
efficiently engineered by controlling the evolution operator
of the decoder UDEðTÞ.
In the following, we harness such a controllability to

implement an optimal effective measurement ΠDE
fσng for

efficiently retrieving the QFI of the emission field. To this
end, let us introduce the condition for an optimal meas-
urement and convert it to a requirement to the evolution
operator of the decoder UDEðTÞ.

A. Optimal measurement of the emission field

The optimal effective measurement of the emission field
can be revealed by analyzing the structure of the global
state jΨðθ; TÞi; cf. Eq. (9). As jΨðθ; TÞi is a pure state, the
optimal measurement of jΨðθ; TÞi capable of retrieving the
global QFI in the neighborhood of θ0 is conveniently
provided [1]. In particular, any projective measurement
fΠSE

k g [82] of jΨðθ; TÞi involving a specific projector

ΠSE
0 ¼ jΨðθ0; TÞihΨðθ0; TÞj ð26Þ

is optimal [83–85]. Physically, the optimal precision is
rooted in the fact that small variations of the parameter
θ ¼ θ0 þ δ introduce sizeable change to the probability
distribution PθðΠSE

k Þ associated with the projectors
ΠSE

k ; k ≠ 0 [83–85]. Note that such a projective measure-
ment is generally ineffective in identifying the sign of the
small variation δ, as Pθ0�δðΠSE

k Þ is symmetric with respect
to θ0 for small enough δ [86]. Such unidentifiability can
nevertheless be circumvented in practice by deliberately
choosing θ0 such that it is outside (but sufficiently close
to) the confidence interval of a reasonably good prior
estimator [86], see Appendix B 5 for a brief discussion.
We emphasize that Eq. (26) represents a correlated joint

measurement of the sensor and the emission field (envi-
ronment), and thus may be challenging to implement in
practice. Nevertheless, it naturally possesses a matrix-
product structure regarding the environmental degrees of

freedom (d.o.f.), i.e., the time bins, as inherited from the
global state jΨðθ0; TÞi. Remarkably, such a matrix-product
structure also appears naturally in our effective measure-
ment fΠDE

fσngg enabled by the quantum decoder; cf. Eq. (25).
To optimize the effective measurement Eq. (25), we thus

require the projectors ΠDE
fσng to have the same structure as

ΠSE
k concerning the environmental d.o.f. As ΠSE

k≠0 are
essentially arbitrary, this narrows down to requiring, for
a specific counting signal fσ�ng, that ΠDE

fσ�ng has the same

structure as ΠSE
0 concerning the environment. Such a

condition can be satisfied by enforcing

UDEðθ0; TÞ½ΠSE
0 ⊗ ρDð0Þ�U†

DEðθ0; TÞ
¼ Πfσ�ng ⊗ ρSDðθ0; TÞ; ð27Þ

i.e., the quantum evolution involving the decoder
UDEðθ0; TÞ decodes the environmental matrix-product
structure in ΠSE

0 into a product structure, as captured by
the (standard photon-counting) projector Πfσ�ng correspond-
ing to the signal fσ�ng; cf. Eq. (14). Such an evolution
leaves the remaining d.o.f., i.e., the sensor and the decoder,
in a general state ρSDðθ0; TÞ which is not measured. Note
that we denote explicitly the dependence of UDE and ρSD in
Eq. (27) on the prior information θ0, as inherited from
Eq. (26).
The choice of the counting signal fσ�ng in Eq. (27)

is arbitrary. For concreteness, we adopt the choice
fσ�ng ¼ f0; 0;…; 0g, i.e., the detection of null photons,
and correspondingly,

Πfσ�ng ¼⊗N
n¼1 j0inh0j; ð28Þ

a projector to the vacuum state of time bins n ∈ ½1; N�.
To summarize, we express the optimal measurement of

the emission field in terms of an a priori condition to the
evolution of the decoder, as captured by Eqs. (27) and (28).
While we construct such a condition on the basis of
physical argument, we rigorously prove its long-time
optimum in Appendix B 3 by showing that for any sensor
whose evolution is ergodic, the measurement satisfying
Eqs. (27) and (28) allows for the retrieval of the QFI of the
emission field up to a finite, time-independent constant. In
the next section, we show that requirement (27) and (28)
can indeed be satisfied via an appropriate implementation
of the decoder, i.e., via a proper choice of its initial state
jψDð0Þi and evolution UDEðθ0; TÞ, and that we can imple-
ment them efficiently.

B. Implementation of the optimal measurement
via the quantum decoder

Let us now construct an explicit recipe for achieving the
optimal measurement Eq. (27), via engineering the evolu-
tion operator UDEðθ0; TÞ, or equivalently, the Hamiltonian
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HDðθ0; tÞ and jump operator JDðθ0; tÞ of the decoder. Such
a construction is enabled by the following theorem.
Theorem 1. Equation (27) can be fulfilled by choosing

the decoder to be a driven-dissipative quantum system that
has the same Hilbert space as the sensor, with an initial state
jψDð0Þi ¼ W†

0jψSð0Þi, where W0 is an arbitrary D ×D
unitary rotation, and the Hamiltonian HDðθ0; tÞ and the
jump operator JDðθ0; tÞ of the decoder fulfill

B̄0
½n�ðθ0Þ ¼ 1 − iHDðθ0; tn−1ÞΔt

−
1

2
J†Dðθ0; tn−1ÞJDðθ0; tn−1ÞΔt;

B̄1
½n�ðθ0Þ ¼ −

ffiffiffiffiffiffi
Δt

p
J†Dðθ0; tn−1Þ: ð29Þ

Here, B̄½n�ðθ0Þ denotes the complex conjugate of the tensor
B½n�ðθ0Þ, which is provided via right normalization of the
MPS jΨðθ0; TÞi. This can be done by sequential applica-
tion of singular value decompositions (SVDs). We start by
writing A½1�ðθ0ÞðjψSð0ÞihψDð0Þj ⊗ I2Þ ¼ R½1�ðθ0ÞB½1�ðθ0Þ,
where I2 is the 2 × 2 identity matrix, B½1�ðθ0Þ is the right
unitary in the SVD, and R½1�ðθ0Þ is the remaining part.
Continuation of this procedure via the recipe

A½n�ðθ0Þ½R½n−1�ðθ0Þ ⊗ I2� ¼ R½n�ðθ0ÞB½n�ðθ0Þ ð30Þ

for the time bins n ¼ 2; 3;…; N, with B½n�ðθ0Þ the right
unitary in the SVD and R½n�ðθ0Þ the remaining part,
completes the right normalization.

To keep our presentation concise, here we provide only a
physical interpretation of the essence of the theorem and
defer its rigorous proof to Appendix B 1. The interpretation,
as illustrated in Fig. 2, is based on generalizing the time-
reversal argument underlying cascaded quantum-state trans-
fer [87] to our present scenario, i.e., generalizing a single
photon traversing the waveguide to (arbitrarily correlated)
multiple photons: The optimal measurement condition,
Eqs. (27) and (28), implies that UDEðTÞ maps the input
environmental state (that is, the sensor emission field) to the
vacuum state for θ ¼ θ0. Time reversal of such an evolution,
therefore, maps the vacuum state back to the input state.
Such a time-reversed evolution features sequential interac-
tion between the decoder and the time bins [n] in an anti-
time-ordered manner n ¼ N;N − 1;…; 1 (cf. Fig. 2) cor-
responding to changing the canonical form of the MPS.
The above SVD procedure can be recast as a differential

equation in the limit Δt → 0, allowing us to find the desired
decoder evolution conveniently. To this end, let us define
ρðtn ≡ nΔtÞ ≔ R½n�ðθ0ÞR†

½n�ðθ0Þ, which satisfies the initial

condition ρð0Þ ¼ jψSð0ÞihψSð0Þj. According to Eq. (30),
ρðtÞ obeys the update law ρðtÞ ¼ P

σn
Aσn
½n�ðθ0Þρðt −

ΔtÞAσn†
½n� ðθ0Þ which, in the limit Δt → 0, is identical to the

LME (12) (with the unknown parameter set as θ0). Therefore,
ρðtÞ is exactly the sensor density matrix, ρðtÞ≡ ρSðθ0; tÞ.
Given ρSðθ0; tÞ, it is easy to show that the choice

Rðθ0; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρSðθ0; tÞ

p
WðtÞ ð31Þ

field

field

Vacuum

Time bins Time-reversal
transformation

Right

Left

canonical form

FIG. 2. Illustration of the decoder design in terms of time-reversal transformation in quantum-optical input-output channels. (a) The
sensor interacts with the time bins ½n�; n ¼ 1; 2;…; N sequentially, resulting in the sensor-environment global state jΨðθ; TÞi
[cf. Eq. (9)] whose tensor diagram is shown in (b) under the simplifying assumption that the sensor and environment disentangle at time
t ¼ T. The decoder interacts with the time bins subsequent to the sensor. (b) The tensors A½n�ðθÞ [cf. Eq. (10)] satisfy the left

normalization condition
P

σn
Aσn†
½n� ðθÞAσn

½n�ðθÞ ¼ ID. (c) The optimal measurement condition Eq. (27) requires, for θ ¼ θ0, that the joint

unitary evolution of the decoder and the waveguide maps the sensor emission field to vacuum. Consequently, time reversal of such an
evolution maps the environmental vacuum back to the sensor emission field. The time-reversed evolution features sequential interaction
between the decoder and the time bins [n] in an anti-time-ordered manner n ¼ N;N − 1;…; 1. (d) The state generated by the anti-time-
ordered interaction, for which the tensors B½n� satisfy the right normalization condition

P
σn
Bσn
½n�B

σn†
½n� ¼ ID. By requiring that this state

matches the sensor emission field at θ ¼ θ0, B½n� are related to A½n�ðθ0Þ via the SVD procedure described in Sec. IV B. While in this
figure the sensor and the environment are assumed to disentangle at time t ¼ T to simplify the illustration, our general recipe for the
decoder construction discussed in Sec. IV B does not rely on this assumption and applies to general continuous-measurement settings.
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exhausts all legitimate solutions of the SVD Eq. (30),
where WðtÞ is an arbitrary time-dependent unitary matrix
reflecting the gauge redundancy of the SVD,with the initial
conditionWð0Þ ¼ W0. Substituting Eqs. (10) and (29) into
Eq. (30) provides us with explicit expressions of the
Hamiltonian and the jump operator of the decoder,

HDðθ0; tÞ¼−
1

2
fRTðθ0; tÞHT

S;NHðθ0; tÞ½RTðθ0; tÞ�−1þH:c:g;
JDðθ0; tÞ¼−RTðθ0; tÞJTSðθ0; tÞ½RTðθ0; tÞ�−1; ð32Þ

in which HS;NH ≔ HS − iJ†SJS=2 is a non-Hermitian
Hamiltonian of the sensor, and the superscript T denotes
matrix transpose. Equation (32) serves as the central
formula of this section, as it provides us with an explicit
construction of the quantum decoder for the efficient
retrieval of the QFI of the emission field applicable to
generic (including nonlinear and time-dependent) open
sensor designs. Remarkably, such a construction relies only
on the knowledge of the LME (12) and its solution ρSðtÞ.
As an example, let us apply Eq. (32) to the special case of

a time-homogeneous LME supporting a unique stationary
state, i.e., HSðθ0; tÞ ¼ HSðθ0Þ; JSðθ0; tÞ ¼ JSðθ0Þ, and
ρSðθ0; t → ∞Þ ¼ ρstS ðθ0Þ. Using the spectrum decomposi-
tion ρstS ðθ0Þ ¼

P
D
k¼1 p

st
k ðθ0Þjkstðθ0Þihkstðθ0Þj and choosing

WðtÞ ¼ W0 an arbitrary time-independent unitary, we can
reduce Eq. (32) to the time-stationary solution

HDðθ0Þ ¼ −
1

2

X
k;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pst
k0 ðθ0Þ

pst
k ðθ0Þ

s
½hkstðθ0ÞjHS;NHðθ0Þjk0stðθ0Þi

× jk̃0stðθ0Þihk̃stðθ0Þj þ H:c:�;

JDðθ0Þ ¼ −
X
k;k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pst
k0 ðθ0Þ

pst
k ðθ0Þ

s
hkstðθ0ÞjJSðθ0Þjk0stðθ0Þi

× jk̃0stðθ0Þihk̃stðθ0Þj ð33Þ

in the t → ∞ limit, where we define the rotated basis
jk̃stðθ0Þi ¼

P
k0 ðW0Þk;k0 jk0stðθ0Þi. Equation (33) was first

established in Ref. [58] as a construction of coherent
quantum absorbers for engineering the stationary-state
entanglement in cascaded quantum networks. Here, it
naturally emerges as a solution of our general decoder
implementation Eq. (32) for the case of time-stationary
open quantum dynamics. Remarkably, our construction
goes significantly beyond the time-stationary scenario by
exploiting the general time-reversal transformation of
quantum-optical input-output channels. It therefore allows
for the construction of the optimal decoder for generic
(including time-dependent) open sensors, as we illustrate
in Sec. V.
The decoder-assisted information retrieval scheme

constructed above can be readily adapted to (closed)

many-body lattice models that are described by discrete
MPSs, as we detail in Appendix B 4.

C. The retrieved Fisher information

Let us now analyze the achievable Fisher information of
our decoder-assisted measurement scheme. The scheme
implements continuous monitoring of cascaded quantum-
optical setups, with the decoder evolving nontrivially
according to Eq. (32). The dynamics of the sensor and
the decoder subjected to photon counting of the decoder
output field can be described as a (unnormalized) stochastic
cascaded ME [80,81]

dϱ̃c ¼ −i½HSðθ; tÞ þHDðθ0; tÞ þHcascðtÞ; ϱ̃c�dt

−
1

2
fJ†ðtÞJðtÞ; ϱ̃cgdtþ ½dtJðtÞϱ̃cJ†ðtÞ − ϱ̃c�dN ðtÞ:

ð34Þ

In Eq. (34), JðtÞ ¼ JSðθ; tÞ þ JDðθ0; tÞ and HcascðtÞ ¼
ði=2Þ½JDðθ0; tÞJ†Sðθ; tÞ − JSðθ; tÞJ†Dðθ0; tÞ�. The stochastic
Poisson increment dN ðtÞ can take two values: dN ðtÞ ¼ 1

with probability p1 ¼ trðϱ̃cJ†JÞdt=trðϱ̃cÞ and dN ðtÞ ¼ 0
with probability p0 ¼ 1 − p1.
Corresponding to the conditional evolution Eq. (34), the

photon-counting signal up to time T ¼ Ndt for a specific
trajectory is Dð0;TÞ¼fdN ð0Þ;dN ðdtÞ;…;dN ðTÞg. The
probability of this trajectory is

Pθ½Dð0; TÞ� ¼ pdN ð0Þ � � �pdN ðTÞ ¼ tr½ϱ̃cðTÞ�: ð35Þ

By sampling enough numbers of quantum trajectories, we
can extract the FI retrieved by our scheme via Eq. (13).
Equation (34) can be extended straightforwardly to

account for decoherence and imperfections in realistic
experimental implementation, thus allowing us to examine
the noise resilience of our information retrieval scheme, as
we detail in Sec. VI.

D. The sensor-decoder entanglement

It has long been recognized that quantum-enhanced
measurements are closely associated with the generation
of entanglement. For example, in the negative-mass oscil-
lator scheme, conditional Einstein-Poldosky-Rosen entan-
glement is established between the sensor oscillator and the
ancillary (negative-mass) oscillator [48,50]. In our infor-
mation retrieval scheme, the evolution of the decoder is
dependent nontrivially on the evolution of the sensor,
leading to entanglement between them. Indeed, condition
Eq. (27) can be interpreted as entanglement swapping:
It transforms the sensor-environment entanglement to the
sensor-decoder entanglement by disentangling the envi-
ronment with the rest for θ ¼ θ0. As a result, the sensor-
decoder state ρSDðθ0; TÞ [cf. Eq. (27)] is a pure entangled
state in the absence of experimental imperfection and
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decoherence. As we show in detail in Appendix B 2, it can
be written as ρSDðθ0; TÞ ¼ jψSDðθ0; TÞihψSDðθ0; TÞj, with
jψSDðθ0; TÞi a natural purification of the sensor density
matrix ρSðθ0; TÞ. Specifically, suppose the sensor density
matrix at time t ¼ T can be spectrally decomposed as
ρSðθ0; TÞ ¼

P
D
k¼1 pkðθ0; TÞjkðθ0; TÞihkðθ0; TÞj, then

jψSDðθ0; TÞi ¼
XD
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkðθ0; TÞ

p
jkðθ0; TÞiS

⊗ (W†ðTÞjkðθ0; TÞiD); ð36Þ
where WðTÞ is the time-dependent unitary (gauge) redun-
dant matrix introduced in Sec. IV B. For θ ≠ θ0, the
entanglement swapping is not perfect: ρSDðθ; TÞ is in a
mixed entangled state due to residual entanglement with the
environment.
In the case where the sensor reaches its stationary state

ρSðθ0; TÞ ¼ ρstS ðθ0Þ, Eq. (36) is time independent and
reduces to the purification of the stationary state of the
sensor. Such a stationary entangled state is dark, i.e.,
decoupled from the environment, allowing for engineering
exotic quantum many-body phases exploiting dissipation;
see Refs. [58–60].

V. PROTOCOLS OF EFFICIENT INFORMATION
RETRIEVAL

Let us proceed to illustrate our information retrieval
scheme at the hand of paradigmatic models of open
quantum sensors. We start with a concise illustration with
linear quantum sensors. We then apply our scheme to
nonlinear sensor designs as represented by driven-
dissipative emitters. Finally, we demonstrate our scheme
with a driven-dissipative many-body sensor consisting of a
transverse-field Ising spin chain.

A. Linear quantum sensors

The linear sensor model captures the core ingredient of
sensor technologies such as gravitational-wave detectors,
optomechanical force sensors, and atomic gas magne-
tometers. In such a scenario, as we show, the proposed
quantum decoder reduces to a displaced negative-mass
oscillator [13,48–51].
A linear quantum sensor is a continuous variable system

with a pair of conjugated quadratures XS and PS obeying
the canonical commutation relation ½XS; PS� ¼ i. These
can, e.g., be the position and momentum operators of a
mechanical oscillator, or be the collective internal spins
along two orthogonal directions of an atomic gas. The
unknown parameter (e.g., a weak force) f couples with XS,
resulting in the sensor Hamiltonian

HS ¼ 1

2
ωðX2

S þ P2
SÞ − fXS; ð37Þ

with ω being the oscillation frequency.

The sensor further couples to the probe light (e.g., the
waveguide mode) via its quadrature XS, as described by a
jump operator JS ¼ ffiffiffi

Γ
p

XS with Γ the coupling strength. For
an optomechanical force sensor, as illustrated in Fig. 3, such
a coupling is mediated by a driven damped cavity mode
ðc; c†Þ, which interacts with the oscillator via the linearized
optomechanical coupling V ¼ gðc† þ cÞXS. Assuming the
cavity damping rate κ ≫ g, adiabatic elimination of the
cavity mode results in the aforementioned quadrature
coupling JS with Γ ¼ g2=κ. For an atomic gas magnetom-
eter, such a coupling is enabled by the Faraday rotation [13].
Given HS and JS, the decoder parameters can be deter-

minedviaEq. (32)by solving for the sensor stateρSðtÞ. This is
particularly simple in the present linear oscillator case, as the
sensor state is a Gaussian state. Straightforward calculation
(see Appendix C for details) provides

HD ¼ −
1

2
ωðX2

D þ P2
DÞ − fXD ð38Þ

and JD ¼ ffiffiffi
Γ

p
XD. Equation (38) describes a negative-

frequency (or equivalently, negative-mass) oscillator dis-
placed by the prior information f0. Experimentally, such
an oscillator can be implemented effectively, e.g., with an
ancillary atomic ensemble with properly adjusted detuning
[13]. By displacing the ancillary oscillator by the prior
information of the unknown force f0, counting the oscil-
lator output reveals slight difference between the unknown
force f and its prior value f0 [cf. Fig. 3(c)], allowing to
achieve the QCRB in the neighborhood of f0.

FIG. 3. Efficient information retrieval for a linear optomechanical
force sensor. (a) The unknown force f couples with the motional
quadrature XS of a mechanical oscillator, which is coupled with a
laser via a damped cavity mode. Efficient information retrieval is
achieved by injecting the sensor output (green wave packet) into a
negative-mass oscillator. As a result, the output field of the negative-
mass oscillator (blue wave packet) contains only the signal and the
shot noise, with the backaction noise canceled. (b) The signal
manifests as a shift∝ f of themeanquadrature hPEðtÞi of the output
field, which can be read out via homodyning [13,49–51]. Here,
XEðtÞ ¼ ½bðtÞ þ b†ðtÞ�= ffiffiffi

2
p

and PEðtÞ ¼ i½b†ðtÞ − bðtÞ�= ffiffiffi
2

p
, and

the blurred disk denotes the laser shot noise. (c)Our generalmethod,
when applied to linear sensors, consists of a negative-massoscillator
displaced by the prior information f0, which results in an output
field slightly shifted from vacuum. Counting the output field
achieves the same precision as (b).
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For linear sensors, information of the unknown force f
is contained only by the output signal, i.e., by the mean
quadrature of the emission field, not by its quantum
noise. This allows for achieving the QCRB with a simpler
design, corresponding to setting f ¼ 0 in Eq. (38) for the
ancillary oscillator, and homodyne detection of its output
[cf. Fig. 3(b)] as in standard quantum noise-cancellation
schemes [13,48–51]. For generic nonlinear sensors, how-
ever, the full output field, including the signal as well as
the quantum noise, contains useful information—the
QCRB can be achieved only by exploiting the full
counting statistics of the decoder output, as we illustrate
below.

B. Nonlinear quantum sensors

Intrinsically nonlinear quantum-optical devices, such as
natural or synthetic few-level emitters interfaced with light
[24–26,88], are emergent platforms for the generation of
large-scale multiphoton entangled states [53,62–64], prom-
ising for sensing. We illustrate our retrieval scheme using
two representative sensor designs in this context. First, a
stationary nonlinear two-level emitter that emits temporally
homogeneous field, of which the retrieved FI grows linearly
with time. Second, a nonlinear three-level emitter subject to
time-varying driving and features highly correlated emission
field, of which the retrieved FI grows quadratically with time
(i.e., obeying the Heisenberg scaling). These basic examples
can be extended to more complex sensor designs, e.g.,
clusters of emitters.

1. Stationary nonlinear emitters

Consider a driven two-level emitter coupled with a
waveguide; cf. Fig. 4(a). Denoting the excited (ground)

state as jeðgÞi, we write the Hamiltonian of the emitter in
the rotating frame as

HS ¼ −Δσee þ
1

2
ðΩσeg þ H:c:Þ; ð39Þ

where Δ and Ω are, respectively, the detuning and the Rabi
frequency (assumed real) of the classical drive (e.g., laser),
and we use the notation σij ¼ jiihjj. The emitter couples to
the waveguide at a rate Γ via the channel jei → jgi, as
captured by the jump operator JS ¼ ffiffiffi

Γ
p

σge.
The LME (12) of the open sensor reduces to the

familiar optical Bloch equation. Initialized in an arbitrary
state jψSð0Þi, the emitter quickly relaxes, for t≳ Γ−1,
to its (unique) stationary state ρstS ¼½sσeeþðsþ2Þσggþffiffiffiffiffi
2s

p ðeiθσegþe−iθσgeÞ�=2ð1þsÞ, where we define the sat-
uration parameter s ¼ 2Ω2=ð4Δ2 þ Γ2Þ and the angle
θ ¼ arctanðΓ=2ΔÞ. The state of the emission field is
determined by HS and JS via Eqs. (10) and (11), featuring
a matrix-product structure of bond dimension D ¼ 2. For
t≳ Γ−1, the boundary effect associated with jψSð0Þi
diminishes, and the emission field is well approximated
by a time-translational-invariant MPDO.
For such a sensor model, the performance of conven-

tional continuous-measurement schemes are studied in
Refs. [32,36,37] and are shown to be generally suboptimal.
A notable exception is the sensing of the Rabi frequency Ω
of a resonantly driven (Δ ¼ 0) two-level sensor, for which
direct homodyne measurement is able to retrieve the QFI of
the emission field [37].
To efficiently retrieve the QFI for the sensing of any

quantity in all parameter regimes, we rely on the decoder
constructed according to our time-stationary recipe

FIG. 4. Efficient information retrieval for a nonlinear two-level sensor driven to the stationary state, of which the emission field is time
homogeneous and finitely correlated. As a demonstration, we consider the sensing of the emitter detuningΔ. (a) Efficient retrieval is enabled
by choosing the decoder detuning opposite to the prior information of the sensor detuning Δ0, and other parameters identical. (b),(c) The
short-time (b) and long-time (c) behavior of the FI retrieved via the decoder, in comparison with the FI of direct photon counting, the FI of
homodyne measurement (optimized over the homodyne angle), the global QFI IGðΔ0; TÞ, and the QFI of the emission field IEðΔ0; TÞ.
Parameters: Ω ¼ 3Γ;Δ0 ¼ 0. For these parameters, the optimal homodyne angle is approximately π. The sensor is initialized in jgi.
(d) Simulationof a single interrogation of our decoder-assisted sensing scheme.Weconsider that the sensor detuning slightly deviates from its
prior value Δ ¼ Δ0 þ δ with δ ¼ 0.2Γ. Processing the continuous-measurement record Dð0; TÞ (upper panel) provides the likelihood
function LΔ½Dð0; TÞ� shown for T ∈ ft1; t2; t3g ¼ f300; 600; 850g × Γ−1, respectively. A maximum-likelihood strategy provides us with
an estimator ΔestðTÞ shown for T ¼ t3. The normalized inverse variance via averaging the estimators of K ¼ 5 × 103 independent
interrogations is shown as squares in (c).

YANG, HUELGA, and PLENIO PHYS. REV. X 13, 031012 (2023)

031012-12



Eq. (33). Direct diagonalization of the stationary state
provides us with ρstS ¼ P

k¼� pkjkihkj, with p� ¼ 1=2�ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

p
=2ð1þ sÞ and j�i ¼ ½ ffiffiffi

s
p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2s
p ∓ 1Þ−1=2jgi�

eiθð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2s

p ∓ 1Þ1=2= ffiffiffi
2

p jei�=ð1þ 2sÞ1=4. Equation (33)
thus reduces to HD ¼ −W0HSW

†
0 and JD ¼ −W0JSW

†
0,

with W0 an arbitrary unitary. This provides us with an
infinite number of possible choices of the decoder param-
eters ðHD; JDÞ, as connected via the global gauge freedom
W0, all eligible to optimally retrieve the QFI of the emission
field. In an actual experimental implementation, one can
take advantage of such a freedom to construct the easiest
possible implementation of the decoder. For definiteness,
we make the choice W0 ¼ σee − σgg and as a result

HD ¼ Δσee þ
1

2
ðΩσeg þ H:c:Þ; ð40Þ

and JD ¼ JS ¼
ffiffiffi
Γ

p
σge, which requires an implementation

of the decoder identical to the sensor, except for a detuning
of opposite sign. The cascaded sensor-decoder configura-
tion described by Eqs. (39) and (40) has been shown to
establish exotic dark pure entangled states (cf. Sec. IV D)—
the dissipative quantum spin dimers [58–60]—in the
context of dissipative phase engineering. Here we focus
on its use for optimal information retrieval from the
emission field.
We consider the sensing of the detuning of the emitter for

illustration, θ ¼ Δ. For efficient information retrieval, the
decoder is detuned by the opposite of the prior information
−Δ0, as illustrated in Fig. 4(a). In Figs. 4(b) and 4(c), which
correspond, respectively, to the short-time (T ≃ a few Γ−1)
and the long-time (T ≫ Γ−1) regime of the sensor evolu-
tion, we plot and compare the relevant precision bounds,
including the global QFI IGðΔ0; TÞ, the QFI of the emission
field IEðΔ0; TÞ, the FI retrieved by direct counting and
homodyning (optimized over all possible homodyne
angles), and finally, the FI retrieved via the decoder. The
calculation of the FI for homodyne measurement is based
on the numerical methods introduced in Refs. [37,39].
As can be seen, after an initial transient oscillation, the
precision bounds grow linearly with the interrogation
time T—a typical behavior of time-stationary open sensors
[31–33]. Moreover, IGðΔ0; TÞ and IEðΔ0; TÞ differ by a
small, time-independent constant that is hardly discernible
for a long interrogation time, confirming the prediction of
Sec. III. For the chosen simulation parameters, homodyne
measurement is capable of retrieving a part of the QFI,
whereas photon counting is completely ineffective [89]. In
the short time limit, the FI retrieved by the decoder may not
necessarily surpass the FI of conventional measurements,
e.g., homodyne measurement; cf. Fig. 4(b). This, however,
does not contradict the long-time optimum of our retrieval
scheme. The long-time optimum is evident from Fig. 4(c),
where the FI retrieved by the decoder saturates IEðΔ0; TÞ
up to a small constant that is hardly discernible.

As a demonstration of an actual sensing experiment,
we consider that the sensor detuning slightly deviates
from its prior value Δ ¼ Δ0 þ δ and show in Fig. 4(d) the
quantum trajectory simulation of a single repetition of
the sensing of Δ using our decoder-assisted scheme. A
simulated continuous signal Dð0; TÞ, as provided exper-
imentally by counting the output field of the decoder, is
shown in the upper panel. Processing it via Eq. (34) allows
us to construct the likelihood function LΔ½Dð0; TÞ� ≔
ΓPΔ½Dð0; TÞ�= R dΔPΔ½Dð0; TÞ�, as shown in the lower
panel for three different interrogation periods T¼ t1;t2;t3.
A maximum-likelihood strategy then provides us with an
estimator ΔestðTÞ for the unknown detuning Δ, which
we show for T ¼ t3 as an example. Averaging the
estimation of repeated interrogation reduces the sensing
imprecision, as quantified by the variance Var½ΔestðTÞ� ¼
h½ΔestðTÞ − Δ�2ist, with h·ist denoting (classical) statistical
average. We simulate K ¼ 5 × 103 independent interrog-
ations, for which the normalized inverse variance
Var−1½ΔestðTÞ�=K is shown in Fig. 4(c) for three different
interrogation periods T ¼ t1; t2; t3. As can be seen, these
match remarkably well with FðΔ0; TÞ, the theoretically
asymptotic value in the K → ∞ limit.

2. Time-dependently driven nonlinear emitters

As an example of nonstationary and nonergodic sensor
designs, let us consider a driven-dissipative three-level
emitter shown in Fig. 5(a), of which the two lower states
jgi; jri are driven to the excited state jei by time-dependent
fields ΩS;1ð2ÞðtÞ. We assume that the driving field for
jgi → jei is detuned from the transition frequency by Δ,
and jri → jei is driven on resonance. The sensor
Hamiltonian can be written in the rotating frame as

HSðtÞ ¼ Δσgg þ
1

2
½ΩS;1ðtÞσeg þΩS;2ðtÞσer þ H:c:�: ð41Þ

Besides the Hamiltonian evolution, we assume the sensor
couples to the waveguide at a rate Γ via the channel
jei → jgi, as captured by the jump operator JS ¼ ffiffiffi

Γ
p

σge.
To generate a correlated emission field featuring the

Heisenberg scaling of the QFI, we initialize the sensor
in a coherent superposition of the lower states jψSð0Þi ¼
ðjgi − jriÞ= ffiffiffi

2
p

and control the Rabi frequencies ΩS;1ð2ÞðtÞ
of the applied fields according to the envelope shown in the
upper panel of Fig. 5(b): ΩS;1ðtÞ ¼ ΩS;1f− expð−t=τÞ −
exp½ðt − TÞ=τ� þ expð−T=τÞ þ 1g=½1 þ expð−T=τÞ −
2 expð−T=2τÞ� featuring gradual turning on at t ¼ 0 and
off at t ¼ T, and a constant strength in between [thin black
line in Fig. 5(b)]; ΩS;2ðtÞ is a Gaussian-shaped π pulse
of width σ ≪ Γ−1, applied at t≳ T þ Γ−1 [thin orange line
in Fig. 5(b)]. These time-dependent driving determine the
state of the emission field as a temporally inhomogeneous
MPDO via Eqs. (10) and (11).
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Such pulse envelopes can be regarded as a continuous-
time extension of the discrete scheme for the deterministic
generation of photonic GHZ-type entanglement via quan-
tum emitters [53]; see also Ref. [41]. To develop a physical
understanding, let us analyze the global state of the
sensor and the environment jΨðtÞi. Initialized in jΨð0Þi ¼
ðjgi − jriÞ ⊗ jvaci= ffiffiffi

2
p

, the global state evolves by sequen-
tial application of Aσn

½n� constructed from HSðtÞ and JS via

Eq. (10). As jgiðjriÞ is coupled (decoupled) with the
waveguide during the time window ½0; T�, and the sensor
almost relaxes to jgi at time t ¼ T, we have

jΨðTÞi ≃ ðjgi ⊗ jbrighti − jri ⊗ jvaciÞ=
ffiffiffi
2

p
; ð42Þ

with jbrighti ≃P
fσnghgjA

σN
½N�…Aσ1

½1�jgi ⊗ jσN;…; σ2; σ1i an
emission-field MPS generated via the driven-dissipative
dynamics in the channel jgi ↔ jei during ½0; T�. Next, a
short π pulse ΩS;2ðtÞ at phase π=2 [90] for jri → jei
transforms the global state to ðjgi ⊗ jbrighti − jei ⊗
jvaciÞ= ffiffiffi

2
p

, and the emitter starts to relax jei → jgi sub-
sequently. At a final time Tf ¼ Tþ a few Γ−1, the sensor
and the emission field disentangles jΨðTfÞi ≃ jgi ⊗
jΨEðTfÞi. The emission-field state

jΨEðTfÞi ≃ ðjbrighti − j1½T;Tf �iÞ=
ffiffiffi
2

p
ð43Þ

features a GHZ-like superposition between jbrighti, a multi-
photon MPS generated in ½0; T�, and j1½T;Tf �i, a single-
photon wave packet emitted in ½T; Tf �. Importantly,
unknown emitter parameters are encoded in jbrighti via
the driven-dissipative dynamics of the sensor in ½0; T�, with

which the associated QFI can obey a Heisenberg scaling of
∼T2 with time.
As a demonstration, we consider the sensing of the

emitter detuning θ ¼ Δ with a driving protocol involving
realistic finite-width pulses; cf. Fig. 5(b). We rely on the
general method introduced in Sec. III for the rigorous
calculation of both the global QFI IGðΔ; tÞ and the QFI
of the emission field IEðΔ; tÞ; the results are shown in
Fig. 5(c). As can be seen, in the time window ½0; T�, the
global QFI grows quadratically with time, whereas the QFI
of the emission field grows linearly and stays small. The
rapid growth of the global QFI is due to the strong
entanglement between the sensor and the waveguide
[cf. Eq. (42)]; in contrast, the QFI of the reduced state
of either the emission field or the sensor is small. This
difference highlights the nonlocal nature of the global QFI.
Focusing on the reduced dynamics of the sensor, the
different scaling behavior of the two QFIs reflects that
the underlying sensor evolution in ½0; T� has multiple
stationary states; cf. Sec. III C. These are easy to identify:
a dark stationary state ρst;1S ¼ jrihrj that is completely
decoupled from the driven-dissipative channel jgi ↔ jei
and a bright stationary state ρst;2S ≃ jgihgj established by the
driven-dissipative channel jgi ↔ jei. After the time win-
dow ½0; T�, the application of the short π pulse ΩS;2ðtÞ and
subsequent relaxation of the emitter in ½T; Tf � disentangles
the sensor and the waveguide. As a result, the global QFI is
transferred into the emission-field state Eq. (43), as evident
from the sharp growth of the emission-field QFI IEðΔ0; tÞ
in Fig. 5(c). Seeing from the perspective of the reduced
dynamics of the sensor, the short pulse ΩS;2ðtÞ and
subsequent relaxation pumps the population of ρst;1S

FIG. 5. Efficient information retrieval for a nonlinear and nonergodic three-level sensor driven by a time-dependent protocol. (a) The
sensor is driven by pulses ΩS;1ðtÞ and ΩS;2ðtÞ and emits correlated time-inhomogeneous multiphoton field featuring Heisenberg-limited
QFI. To fully retrieve the QFI, the decoder is driven correspondingly by pulsesΩD;1ðtÞ andΩD;2ðtÞ. For other parameters of the decoder,
see text. (b) Pulse shapes for the emitter (upper panel) and the decoder (lower panel). (c) The FI retrieved via the decoder during the
protocol in comparison with the FI retrieved by direct counting and homodyning, the global QFI IGðΔ0; tÞ and the QFI of the emission
field IEðΔ0; tÞ. We consider the sensing of the sensor detuning Δ as an example. Parameters: Δ0 ¼ 0;Ω ¼ 5Γ. (d) The FI retrieved via
the decoder at the end of the protocol in comparison with the FI retrieved by direct counting and homodyning, and the QFI of the
emission field IEðΔ0; TfÞ at the end of the protocol, for variable protocol duration T. Squares indicates the precision (the inverse of the
variance) achieved by averaging the maximum-likelihood estimation from K ¼ 5 × 103 simulated sensing interrogations of period
T ∈ ft1; t2g ¼ f120; 170g × Γ−1. Other parameters are the same as (c).
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into ρst;2S , resulting in a single stationary state (thus
recovering ergodicity) at the end of the sensing protocol.
To efficiently retrieve the Heisenberg-limited QFI, we

construct the parameters of the decoder according to our
general recipe Eq. (32) by propagating the LME of the
sensor. The resulting evolution of the decoder is para-
metrized by a time-dependent Hamiltonian

HDðtÞ ¼ −Δσgg þ
1

2
½ΩD;1ðtÞσeg þ ΩD;2ðtÞσgr þ H:c:�;

ð44Þ

and a time-independent jump operator JD ¼ JS ≡
ffiffiffi
Γ

p
σge

during the time window spanning from a few Γ−1 until
T [91]. The temporal envelope of the driving pulses
ΩD;1ð2ÞðtÞ are shown in the lower panel of Fig. 5(b). The
pulse ΩD;1ðtÞ (thick dashed line) is almost identical to
ΩS;1ðtÞ and features gradual turning on and off; it further
includes a short π pulse (at phase π=2) in ½T; Tf � immedi-
ately after ΩS;2ðtÞ. The short π pulse ΩD;2ðtÞ (at phase zero)
is applied at the same time as ΩS;2ðtÞ. In Fig. 5(c), the FI
retrieved via the decoder is compared with the QFI of the
emission field, the remarkable match confirms the opti-
mality of our retrieval scheme. In Fig. 5(d), we show the
QFI of the emission field at the end of the protocol,
IEðΔ0; TfÞ, and the FI retrieved by our scheme FðΔ0; TfÞ
for variable duration T (with Tf − T kept fixed), which
demonstrate a remarkable Heisenberg scaling. We further
show the precision (the inverse of the variance) achieved
by averaging the estimators via the maximum-likelihood
strategy for K ¼ 5 × 103 simulated sensing interrogations
of various period T ¼ t1; t2, which matches the retrieved
FI well. Finally, we emphasize the crucial role of the
ergodicity-recovering pulses of this driving protocol in
retrieving the Heisenberg-limited QFI.
In contrast, direct counting or homodyning of the

emission field retrieves only a vanishing portion of the
QFI and does not show superlinear scaling; cf. Figs. 5(c)
and 5(d). This can be understood by adopting the physical
picture developed above: Counting (or any other time-local
measurement) completely destroys the coherence between
the two components jbrighti and j1½T;Tf �i in the state of the
emission field Eq. (43), thus losing the advantageous
precision scaling.

C. Many-body quantum sensors

Finally, we demonstrate our information retrieval scheme
with an open quantum many-body sensor consisting of a
driven-dissipative transverse-field Ising spin chain;
cf. Fig. 6(a). The Hamiltonian of the spin chain is

HS ¼ −
XL
i≠j

V
ji − jjα σ

x
i σ

x
j − h

XL
i¼1

σzi : ð45Þ

We consider that the open spin chain couples to an optical
fiber as its input-output channel via the jump opera-
tor JS ¼ ffiffiffi

Γ
p P

i σ
z
i .

Such a sensor design can be realized naturally, e.g., with
multiple ions trapped in a linear Paul trap, of which the ion
number L typically ranges from a few to a few tens [65,66].
The transverse-field Ising Hamiltonian Eq. (45) can be
engineered via driving the internal state of the ions (i.e., the
spins) with far-detuned global Mølmer-Sørensen beams,
which provides adjustable exponent α for the spin-spin
coupling, as routinely done in ion-based analog quantum
simulation [65,66]. The ion-fiber interface can be mediated
via an optical cavity [cf. Fig. 6(a)], as realized experimen-
tally [92]. We consider driving the cavity mode with a
coherent input with strength ε, and consider the regime
Δ ≫ κ ≫ g, ε, where Δ is the cavity-ion detuning, κ is the
cavity damping rate, and g is the cavity-ion-coupling
strength. In this regime, the spin chain and the cavity
mode interact via a linearized dispersive coupling
Hcoup ¼ −εg2ðcþ c†ÞPi σ

z
i =ðΔκÞ. Adiabatic elimination

of the cavity mode results in the desired JS, with an
effective decay rate Γ ¼ 4ε2g4=ðΔ2κ3Þ.
We consider the sensor operating in the stationary regime

and construct the decoder parameters via Eq. (33). The
unique stationary state of the sensor in our case is an
infinite temperature state ρstS ¼ ID=D with D ¼ 2L, which

FIG. 6. Efficient information retrieval for a driven-dissipative
many-body sensor consisting of a transverse-field Ising spin chain.
(a) The decoder can be realized as a replica spin chain with an
opposite transverse field; cf. Eq. (46). The interface between the
sensor (decoder) and the waveguide can be realized by coupling
the spins to a driven damped cavity mode; a resonant contribution
of such a coupling is shown in the inset. (b) The autocorrelation
spectrum of the sensor emission field for different transverse-field
strength h: h ¼ 0.5V (light solid line) and h ¼ V (dark dashed
line). Other parameters: L ¼ 8;Γ ¼ 0.1V; α ¼ 3. (c) The FI for
the sensing of the transverse field h retrieved via the decoder
Fðh0; TÞ in comparison with the QFI of the emission field
IEðh0; TÞ for different size L of the many-body sensor. Parameters:
h0¼4V;Γ¼V;α¼∞ (i.e., nearest-neighbor interaction).
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allows for the reduction of Eq. (33) to a remarkably simple
relation, HD ¼ −W0HSW

†
0 and JD ¼ −W0JSW

†
0, with W0

an arbitrary unitary. We emphasize that such a relation
holds for a broad class of (finite-size) many-body sensors
that are described by a frustration-free Hamiltonian HS and
a Hermitian jump operator JS which mutually do not
commute ½HS; JS� ≠ 0, such that its unique stationary state
is an infinite temperature state. Note that while such a
stationary state is insensitive to external unknown param-
eters, the emission field of the sensor is highly sensitive.
Indeed, the emission field inherits the complex temporal
correlations from the quantum many-body dynamics as
governed by HS. We illustrate this in Fig. 6(b) in terms
of the emission spectrum SðωÞ ¼ R

dte−iωthJSðtÞJSð0Þist
[where h·i≡ trð·ρstS Þ], which is directly proportional to the
dynamic structure factor

R
dte−iωt

P
ijhσzi ðtÞσzjð0Þist of our

driven-dissipative spin model.
Choosing W0 ¼ expðiπPi σ

y
i =2Þ provides us with a

realization of the decoder parameters

HD ¼ −
XL
i≠j

V
ji − jjα σ

x
i σ

x
j þ h

XL
i¼1

σzi ð46Þ

and JD ¼ ffiffiffi
Γ

p P
i σ

z
i , which can be easily implemented

with a replica setup of the sensor. In Fig. 6(c), we show the
FI retrieved via the decoder for the sensing of the transverse
field h for different size L of the many-body sensor, which
matches the QFI of the emission field IEðh0; TÞ remarkably
well. With increasing size L, the retrieved FI manifests a
gradual crossover from a superlinear scaling approximately
∼L2 to a linear scaling approximately ∼L. This can be
qualitatively explained by noticing that the spin system
under consideration possesses a finite correlation length ξ;
therefore, Fðh;TÞ≲IEðh;TÞ∼L2 for L≲ ξ, and Fðh; TÞ≲
IEðh; TÞ ∼ ξL for L≳ ξ.

Beyond finite-range correlated lattice spin models, our
information retrieval scheme can be applied to other open
many-body sensor designs, e.g., sensors that operate in
the vicinity of dissipative phase transitions and possess a
divergent correlation length [42], which may enable poten-
tial precision enhancement based on dynamic critical
phenomena.

VI. ROBUSTNESS OF THE RETRIEVAL SCHEME
AGAINST EXPERIMENTAL IMPERFECTIONS

Realistic implementations of our retrieval scheme are
necessarily accompanied by imperfections. These include
(i) inaccurate control of the decoder parameters, (ii) photon
transmission loss, (iii) imperfect photon detection, e.g.,
finite detector efficiency and dark counts, and (iv) other
decoherence channels such as sensor (decoder) dephasing.
Nevertheless, the temporally quasilocal, matrix-product
structure of our measurement scheme offers it remarkable
resilience against the experimental imperfections, competi-
tive with temporally local measurement. Below, we dem-
onstrate this at the hand of the nonlinear two-level sensor
design introduced in Sec. V B.
First, we examine the robustness of our scheme against

imperfection (i), i.e., finite accuracy in the control of the
decoder parameters. As a demonstration, we consider a
mismatch between the decoder detuning ΔD and its ideal
value −Δ0, Δmis ¼ ΔD þ Δ0, and show in Fig. 7(b) the
retrieved FI by the imperfect decoder. Remarkably, the
imperfect decoder retrieves a significant portion of the QFI
of the emission field over a broad range of Δmis, with a full
width at half maximum ≃8.3Γ. We note that for sufficiently
large Δmis, the decoder is far detuned from the sensor and
ceases to scatter the incoming radiation field. As a result,
decoder-assisted measurement of the emission field
approaches direct counting, providing the same FI [hori-
zontal line in Fig. 7(b)]. The retrieved FI decreases slowly

FIG. 7. Robustness of the information retrieval scheme against experimental imperfections demonstrated via the nonlinear two-level
sensor example. (a) Experimental imperfections include the finite accuracy in the control of the decoder parameters, light transmission
loss (at a rate γ), finite detector efficiency η < 1, and dephasing of the sensor and decoder (at a rate γ). (b) The FI retrieved for finite
accuracy in the control of the decoder parameters exemplified by a mismatch Δmis between the decoder detuning ΔD and its ideal value
−Δ0, Δmis ¼ ΔD þ Δ0. The horizontal line shows the FI retrieved by direct photon counting (without the decoder). Parameters:
Ω ¼ Γ;Δ0 ¼ γ ¼ 0; η ¼ 1. (c) The FI FðΔ0; TÞ retrieved for finite η < 1 and γ > 0, assuming perfect control of the decoder Δmis ¼ 0.
Parameters for the simulation: Ω ¼ Δ0 ¼ Γ.
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and remains close to the QFI for small Δmis; cf., inset of
Fig. 7(b). These demonstrate remarkable robustness of our
information retrieval scheme against uncertainties in the
experimental control of the decoder.
Second, we demonstrate the robustness of our scheme

against imperfections (ii)–(iv). Photon transmission loss,
due to either waveguide attenuation or the imperfect
coupling between the sensor (decoder) and the waveguide,
can be modeled as decoherence via the introduction of
additional (unmonitored) environments [93]. This results in

additional decoherence termsD½JSðDÞdec �ϱ̃cdt to Eq. (34), with
JSðDÞdec the associated jump operator of the sensor (decoder).

To be specific, we consider JSðDÞdec ¼ ffiffiffi
γ

p
σge; i.e., we assume

the effective cooperativity of the sensor- (decoder)-
waveguide coupling to be C ¼ Γ=γ. Similarly, the finite
detector efficiency η < 1 can be accounted for by splitting
the decoder output into detectable and undetectable
parts, as modeled by an additional term ð1 − ηÞJρ̃cJ†dt½1 −
dN ðtÞ� to Eq. (34). Finally, we include the dephasing of the
sensor and decoder via the Lindblad operators γdepD½σSðDÞz �,
and we choose γdep ¼ γ for illustration.
We demonstrate in Fig. 7(c) the performance of our

scheme under imperfections (ii)–(iv), by comparing the
retrieved FI to IEðΔ0; TÞ, i.e., the retrieved FI in the absence
of imperfections. As can be seen, finite detector efficiency
η < 1 and nonzero γ=Γ in general reduces the retrieved FI.
Nevertheless, at modest strength of the imperfections,
γ=Γ ≤ 0.2 and η > 0.3, our scheme is able to extract a
significant portion of IEðΔ0; TÞ, which demonstrates its
experimental robustness. We note that these numbers are
well within the reach of state-of-the-art platforms for
quantum matter-light interface [15–23].

VII. CONCLUSION AND OUTLOOK

We establish a general method that retrieves the full QFI
of the nonclassical, temporally correlated fields emitted by
generic quantum sensors under continuous measurement.
As a result, our method allows for achieving the QCRB for
generic open quantum sensor designs. The key element
in our method is a quantum decoder which transforms
temporally correlated multiphoton states that are described
by MPSs to simple product states at its output. By injecting
the emission field of the open quantum sensor into the
decoder and then performing conventional, time-local
measurement on its output, our method effectively imple-
ments measurement of the sensor emission field in tem-
porally nonlocal MPS bases. Appropriate design of the
decoder, for which we construct a universal recipe via
Eq. (32) for generic open quantum sensors, renders the
effective measurement capable of achieving the QCRB. We
illustrate the effectiveness of our method at the example
of paradigmatic open sensor designs ranging from linear
force sensors, via nonlinear emitters, to driven-dissipative

many-body sensors, and we examine the resilience of our
method against experimental sources of noise and imper-
fections. With this verification of the feasibility, effective-
ness, and broad range of applicability, our method paves the
way for improving a wide range of sensor platforms toward
achieving their fundamental sensitivity limit allowed by
quantum mechanics. Along with the information retrieval
method, we introduce a MPS framework for the description
of continuous-measurement-based sensing technology,
which in particular results in an effective analytical
expression for the evaluation of the QFI of the emission
field of generic open sensors. This QFI provides us with a
refined, tighter QCRB for open quantum sensors as
compared to existing bounds [31–33]. The information
retrieval method that we introduce here can be viewed as a
universal quantum backaction evasion strategy for generic
(linear and nonlinear) driven-dissipative sensors. The
establishment of such a strategy is timely and essential
in view of the rapid progress of a broad spectrum of sensor
technologies toward the realm where their precision is
principally limited by the excess quantum noise of the
sensor setups—our scheme provides a general strategy to
optimally evade such noise.
Our method is particularly important for the emergent

nonlinear and complex sensor platforms that have been
developing rapidly in recent years in many areas of
experimental quantum optics. One highlight of these is
the synthetic quantum many-body systems integrated as
sensors [57,70,94] which, combined with our general
method as demonstrated in Sec. V, may open up new
vistas of driven-dissipative sensor devices that operate at
their ultimate precision limit harnessing many-body corre-
lations. Promising candidates range from ensembles of
nitrogen-vacancy centers embedded in microwave resona-
tors [95] via driven-dissipative atomic gas [28–30] to
many-body circuit QED [96] setups. Toward this goal,
an attractive outlook for future research is the reduction of
the complexity of the decoder design and maintaining at the
same time the high information retrieval efficiency based
on, e.g., low-rank MPO approximations [97–100] of the
emission field of complex sensor designs.
A few other prospects are worth future exploration as

well. First, our method can be readily extended beyond the
determination of small variations around the prior value, to
the estimation of parameters with a finite dynamical range.
In the first place, this amounts to adaptive schemes via
iterative adjustment of the decoder based on estimation
from prior measurement. Optimization of the associated
resource (e.g., time) consumption, e.g., by exploiting the
machinery of Bayesian inference, is an interesting open
question. Moreover, the extension of our scheme to optimal
waveform detection [31,101] is especially appealing in
view of the natural compatibility between our scheme and
time-dependent sensor designs. Finally, beyond the realm
of quantum sensing, the quasilocal, finitely correlated
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continuous measurement proposed in the present work may
prove to be a powerful tool for other quantum technological
applications including, e.g., the efficient certification and
tomography of large-scale multiphoton entangled states for
quantum simulation [62,102,103] and computation [104].
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APPENDIX A: QUANTUM FISHER
INFORMATION OF THE EMISSION FIELD:

PROOFS AND EXTENSIONS

In this appendix, we rigorously prove the formula for
the efficient calculation of the QFI of the emission field
presented in Sec. III B, and make a few extensions including
generalization to the case of multiple environments.

1. Proof of the formula for the quantum fidelity
of the emission field

Here we prove the fidelity formula Eq. (17), which is the
key for the calculation of the QFI of the emission field
(environment). Noticing that the global state Eq. (9) is an
entangled state of the sensor and the environment, let us
formally write down its Schmidt decomposition as

jΨðθ; TÞi ¼
XD
k¼1

skðθ; TÞjkðθ; TÞiS ⊗ jkðθ; TÞiE: ðA1Þ

Here, jkðθ; TÞiSðEÞ are an orthonormal basis of the
sensor (environment) (the Schmidt basis), and skðθ; TÞ
are non-negative real numbers satisfying

P
D
k¼1 s

2
kðθ; TÞ ¼

1 (the Schmidt coefficients), all dependent on the
unknown parameter θ. The reduced state of the sensor
and the environment, as defined by Eqs. (12) and (11),
respectively, can therefore be expressed as ρSðEÞðθ;TÞ¼P

D
k¼1s

2
kðθ;TÞjkðθ;TÞiSðEÞhkðθ;TÞj, allowing us to represent

ffiffiffiffiffiffiffiffiffiffi
ρSðEÞ

p conveniently. As a result, the quantum fidelity of the
environment state [cf. Eq. (16)] can be expressed as

FEðθ1;θ2Þ¼ trE

0
B@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k;k00
fkk00 ðθ1;θ2Þjkðθ1;TÞiEhk00ðθ1;TÞj

s 1
CA

¼ trð
ffiffiffi
f

p
Þ; ðA2Þ

in which we define the kernel

fkk00 ðθ1;θ2Þ¼ skðθ1;TÞsk00 ðθ1;TÞ
X
k0
ðs2k0 ðθ2;TÞ

×Ehkðθ1;TÞjk0ðθ2;TÞiEhk0ðθ2;TÞjk00ðθ1;TÞiEÞ

and the D ×D matrix f via f kk00 ¼ fkk00 ðθ1; θ2Þ.
Next, we relate Eq. (A2) to the generalized density

operator of the sensor μθ1;θ2ðTÞ; cf. Eq. (18). Adopting the
Schmidt decomposition Eq. (A1), the generalized density
operator can be expressed as

μθ1;θ2ðTÞ ¼
X
kk0

skðθ1; TÞsk0 ðθ2; TÞEhk0ðθ2; TÞjkðθ1; TÞiE

× jkðθ1; TÞiShk0ðθ2; TÞj: ðA3Þ

Straightforward calculation gives μθ1;θ2ðTÞμ†θ1;θ2ðTÞ ¼P
k;k00 fk;k00 ðθ1; θ2Þjk00ðθ1; TÞiShkðθ1; TÞj, in which

fk;k00 ðθ1; θ2Þ is defined in the line under Eq. (A2). As such,
its matrix representation is given by fT in the basis jkðθ1ÞiS,
with the superscript T denoting the matrix transpose. As
trace is invariant under matrix transpose, we conclude

FEðθ1; θ2Þ ¼ trð
ffiffiffiffiffi
fT

p
Þ ¼ tr

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μθ1;θ2ðTÞμ†θ1;θ2ðTÞ

q i
; ðA4Þ

which recovers Eq. (17).

2. Equivalent formulas for the quantum
Fisher information

Here we provide a few variants of Eqs. (15) and (22) that
relate the QFI to the quantum fidelity, which may be
convenient to use in certain cases. The discussion here is
applicable to both IEðθ; TÞ and IGðθ; TÞ. To simplify the
notation, we drop the subscripts and use Iðθ; TÞ to represent
the QFI and F ðθ1; θ2Þ the corresponding fidelity.
First, by differentiating the identity F ðθ; θÞ ¼ 1 and

using the symmetry F ðθ1; θ2Þ ¼ F ðθ2; θ1Þ, it is easy to
show ∂θ1∂θ2F jθ1¼θ2¼θ ¼ −∂2θ1F jθ1¼θ2¼θ. This allows us to
rewrite Eqs. (15) and (22) in a symmetric form

Iðθ; TÞ ¼ 4∂θ1∂θ2F ðθ1; θ2Þjθ1¼θ2¼θ: ðA5Þ
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Second, we can make use of the fact that if an analytic
function fðδÞ satisfies 0 ≤ fðδÞ ≤ fð0Þ ¼ 1, ∀ δ ∈ R,
then ∂

2
δ log fjδ¼0 ¼ ∂

2
δfjδ¼0, as can be verified by straight-

forward calculation. Taking fðδÞ ¼ F ðθ; θ þ δÞ, we can
rewrite Eqs. (15) and (22) as

Iðθ; TÞ ¼ −4∂2δ logF ðθ; θ þ δÞjδ¼0: ðA6Þ

Numerical calculation of the QFI requires the evaluation of
F ðθ; θ þ δÞ, which typically decreases with time exponen-
tially for δ ≠ 0. In this regard, Eq. (A6) is numerically more
robust than Eqs. (15) and (22), especially when T is large.

3. Extensions to multiple environments

In Sec. III B, we discuss the formula for the QFI of the
emission field Eq. (17) under the assumption that the open
quantum sensor is coupled with a single input-output
channel. Here we point out that if the sensor is coupled
with multiple environments, the same formula can be used
to calculate the total QFI of the environments, provided that
the update law of the generalized density matrix μθ1;θ2ðTÞ is
appropriately adjusted. Specifically, consider that the sen-
sor is coupled with environments m ¼ 1; 2;…;M via the
jump operator JmS and is interrogated by the Hamiltonian
HSðθ; tÞ (which includes the possible Lamb shifts due to
the sensor-environment coupling), the corresponding gen-
eralized density matrix evolves according to

dμ
dt

¼ −i½HSðθ1; tÞμ − μH†
Sðθ2; tÞ�

þ 1

2

XM
m¼1

f2JmS ðθ1; tÞμJm†
S ðθ2; tÞ

− ½Jm†
S ðθ1; tÞJmS ðθ1; tÞμþ μJm†

S ðθ2; tÞJmS ðθ2; tÞ�g:
ðA7Þ

This, together with Eq. (17), provides us with the total
fidelity of the environments; that is, in its definition
Eq. (16) ρEðθ; TÞ represents the joint state of all the
environments. The proof of this is similar to that presented
in Appendix A 1 by interpreting Eq. (A1) as the Schmidt
decomposition between the system (sensor) and all the
environments it couples with.
Similarly, in the presence of multiple environments,

the combination of Eqs. (22), (23), and (A7) provides us
with the global QFI of the sensor and all the environments it
couples with, as established in Ref. [32].

APPENDIX B: EFFICIENT INFORMATION
RETRIEVAL: PROOFS AND EXTENSIONS

In the main text, we construct the optimal effective
measurement via the decoder based on physical argu-
ment. In this appendix, we rigorously justify such a

construction. Specifically, we prove that (I) the “optimal”
effective measurement of the sensor emission field,
as introduced in Sec. IVA and defined by Eqs. (27)
and (28), is indeed optimal; it allows, in the neighbor-
hood of the prior information, for the retrieval of the full
QFI of the sensor emission field up to a (finite) constant,
and (II) such an effective measurement can be realized by
designing the decoder evolution according to the central
theorem of Sec. IV B. Besides the two proofs, we also
discuss the sensor-decoder entanglement, the efficiency
of the maximum likelihood estimation (MLE), and
possible extension of our scheme to the decoding of
spatially correlated many-body states described by dis-
crete MPSs.

1. The central theorem for the decoder construction
realizes the desired effective measurement

Let us first prove (II); i.e., the central theorem realizes
Eqs. (27) and (28). This is equivalent to prove that
Pθ½fσ�ng�≡ hΨtotðθ; TÞjΠfσ�ngjΨtotðθ; TÞi ¼ 1 for θ ¼ θ0,
where Πfσ�ng ¼⊗N

n¼1 j0inh0j as defined in Eq. (28), and
jΨtotðθ; TÞi is the (θ-dependent) joint state of the sensor,
the environment, and the decoder at time T. We can
express jΨtotðθ;TÞi¼Utotðθ;TÞjΨtotð0Þi, with Utotðθ; TÞ ¼
T UDEðTÞUSEðθ; TÞ the joint evolution operator of the
sensor, the environment, and the decoder, and jΨtotð0Þi ¼
jψSð0Þi ⊗ jvaci ⊗ jψDð0Þi their joint initial state. We note
that θ enters the sensor-environment evolution USEðθ; TÞ,
but not the decoder-environment evolution UDEðTÞ.
Let us further define an (unnormalized) state of the

sensor and the decoder by projecting the total state
jΨtotðθ; TÞi onto the environmental vacuum state,

jψ̃SDðθ; TÞi ≔ ð⊗N
n¼1 h0njÞjΨtotðθ; TÞi: ðB1Þ

It allows us to express Pθ½fσ�ng� ¼ hψ̃SDðθ; TÞjψ̃SDðθ; TÞi.
By exploiting the expression of USEðθ; TÞ and UDEðTÞ
[cf. Eq. (8)], we can express

jψ̃SDðθ; TÞi ¼
X
fσng

ðB̄σN
½N�…B̄σn

½n�…B̄σ1
½1�jψDð0ÞiÞ

⊗ ðAσN
½N�ðθÞ…Aσn

½n�ðθÞ…Aσ1
½1�ðθÞjψSð0ÞiÞ;

ðB2Þ

in which theD ×Dmatrices readAσn
½n�ðθÞ≡hσnjU½n�

SEðΔtÞj0ni
and similarly B̄σn

½n� ≡ h0njU½n�
DEðΔtÞjσni,σn ¼ 0, 1.The tensors

A½n�ðθÞ are related to the (θ-dependent) sensor Hamiltonian
and jump operator via Eq. (10), and similarly B̄½n� are
related to the decoder Hamiltonian and jump operator via
Eq. (29). Exploiting the Choi-Jamiolkowski isomorphism
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Y⊗X
P

ij cijjji⊗ jii↔X
P

ij cijjiihjjYT, we further have
Pθ½fσ�ng� ¼ tr½Λðθ; TÞΛ†ðθ; TÞ� with

Λðθ; TÞ ¼
X
fσng

ðAσN
½N�ðθÞ…Aσn

½n�ðθÞ…Aσ1
½1�ðθÞÞjψSð0Þi

× hψDð0ÞjðBσ1†
½1� …Bσn†

½n� …BσN†
½N� Þ: ðB3Þ

Now we are ready to show that the choice of the initial
state and the evolution of the decoder according to our
central theorem guarantees that Pθ½fσ�ng� ¼ 1 for θ ¼ θ0.
With such a choice, in Eq. (B3) the tensors B½n� are related
to A½n�ðθ0Þ [thus becoming θ0 dependent, B½n� → B½n�ðθ0Þ]
via the SVD procedure as described by Eq. (30), allowing
us to express

Λðθ0; TÞ ¼ ρSðθ0; TÞðR†
½N�ðθ0ÞÞ−1; ðB4Þ

in which

ρSðθ0; TÞ ¼
X
fσng

AσN
½N�ðθ0Þ…Aσ1

½1�ðθ0ÞjψSð0Þi

× hψSð0ÞjAσ1†
½1� ðθ0Þ…AσN†

½N� ðθ0Þ ðB5Þ

is the sensor density matrix at time T. We therefore have

Pθ0 ½fσ�ng� ¼ tr½ρ2Sðθ0; TÞðR½N�ðθ0ÞR†
½N�ðθ0ÞÞ−1� ¼ 1; ðB6Þ

where we use the fact that ρSðθ0; TÞ ¼ R½N�ðθ0ÞR†
½N�ðθ0Þ as

shown in Sec. IV B.

2. The sensor-decoder entangled state

The above formal proof also allows us to analyze the
sensor-decoder entanglement established by our informa-
tion retrieval method, consolidating the presentation of
Sec. IV D. To this end, we first notice, as per Eq. (31), that
Eq. (B4) can be rewritten as

Λðθ0; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρSðθ0; TÞ

p
WðTÞ; ðB7Þ

with WðTÞ the time-dependent unitary reflecting the
gauge redundancy. Adopting the spectrum decomposition
ρSðθ0; TÞ ¼

P
D
k¼1 pkðθ0; TÞjkðθ0; TÞihkðθ0; TÞj, we can

express Λðθ0; TÞ as

Λðθ0; TÞ ¼
XD
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkðθ0; TÞ

p
jkðθ0; TÞihkðθ0; TÞjWðTÞ:

ðB8Þ

Using the isomorphism jψ̃SDðθ;TÞi↔Λðθ;TÞ [cf. Eqs. (B2)
and (B3)], and noticing that jψSDðθ0; TÞi is a normalized

state, we conclude that the sensor and the decoder are in a
pure entangled state for θ ¼ θ0, ρSDðθ0; TÞ ¼ jψSDðθ0; TÞi
hψSDðθ0; TÞj, with

jψSDðθ0; TÞi ¼
XD
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkðθ0; TÞ

p
jkðθ0; TÞiS

⊗ (W†ðTÞjkðθ0; TÞiD) ðB9Þ

a natural purification of the sensor density matrix ρSðθ0; TÞ.
For θ ≠ θ0 but sufficiently close to θ0, the sensor and
decoder are in a mixed entangled state due to entanglement
with the environment.

3. The effective measurement is optimal

We proceed to prove (I); i.e., the effective measurement
that satisfies Eqs. (27) and (28) can fully retrieve the QFI
of the emission field up to a finite constant. The retrieved
FI, Fðθ; TÞ, is determined by the statistical distribution
Pθ½Dð0; TÞ� of the quantum trajectories of the stochastic
cascaded ME (34) for the joint sensor and decoder. For
unknown parameter θ located in the neighborhood of the
prior knowledge θ0, such a distribution is provided via the
Taylor expansion around θ0,

Pθ½fσ�ng� ¼ 1 −
1

2
ðθ − θ0Þ2∂2θPθ½fσ�ng�jθ¼θ0

þO½ðθ − θ0Þ3�;

Pθ½Dð0; TÞ� ¼ 1

2
ðθ − θ0Þ2∂2θPθ½Dð0; TÞ�jθ¼θ0

þO½ðθ − θ0Þ3�; ∀ Dð0; TÞ ≠ fσ�ng;
ðB10Þ

where fσ�ng ¼ f0; 0;…; 0g corresponds to the detection
of null photons as defined in the main text, and “OðxÞ”
stands for “on the order of x.” In arriving at Eq. (B10),
we use Pθ0 ½fσ�ng� ¼ 1 as per Eq. (27), and the fact
∂θPθ½Dð0; TÞ�jθ¼θ0

¼ 0; ∀ Dð0; TÞ, which is a necessary
condition to ensure 0 ≤ Pθ½Dð0; TÞ� ≤ 1. As a result,

Fðθ; TÞ ¼
X
Dð0;TÞ

f∂θPθ½Dð0; TÞ�g2
Pθ½Dð0; TÞ�

¼ −2∂2θPθ½fσ�ng�jθ¼θ0
þOðθ − θ0Þ; ðB11Þ

where we use the fact
P

Dð0;TÞ Pθ½Dð0; TÞ� ¼ 1.
Equation (B11) shows that the FI retrieved by our meas-
urement scheme is continuous in the neighborhood of θ0,
around the central value

Fðθ0; TÞ ¼ −2∂2θPθ½fσ�ng�jθ¼θ0

≡ −2∂2θðhψ̃SDðθ; TÞjψ̃SDðθ; TÞiÞjθ¼θ0
; ðB12Þ
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where jψ̃SDðθ; TÞi is defined in Eq. (B1). This establishes a
simple link between the retrieved FI and the norm of the
conditional state jψ̃SDðθ; TÞi. We emphasize that such a
link is a direct consequence of Eqs. (27) and (28) that
defines our effective measurement.
Under Eqs. (27) and (28), we can relate the two QFIs

introduced in Sec. III with jψ̃SDðθ; TÞi as well. It turns out
that the relation with the global QFI IGðθ; TÞ is particularly
compact and provides sufficient physical insights. The
global QFI is defined in Eq. (22) in terms of the sensor-
environment global state jΨðθ; TÞi [cf. Eq. (9)] prior to the
interaction with the decoder. Here we adopt an equivalent
expression

IGðθ; TÞ ¼ −2∂2δF 2
Gðθ; θ þ δÞjδ¼0

≡ −2∂2δðjhΨðθ; TÞjΨðθ þ δ; TÞij2Þjδ¼0: ðB13Þ

The equivalence stems from the fact that if an analytic
function fðδÞ satisfies fðδÞ ≤ fð0Þ ¼ 1, ∀ δ ∈ R, then
∂δfjδ¼0 ¼ 0 and ∂

2
δf

2jδ¼0 ¼ 2∂2δfjδ¼0, as can be checked
straightforwardly via the Taylor expansion of f2ðδÞ.
By setting fðδÞ ¼ FGðθ; θ þ δÞ we convert Eq. (22)
to Eq. (B13).
In our retrieval scheme, by coupling the decoder down-

stream from the sensor, the global state jΨðθ; TÞi is trans-
formed into jΨtotðθ;TÞi¼UDEðθ0;TÞjΨðθ;TÞi⊗ jψDð0Þi
of the sensor, the environment and the decoder as defined
in Appendix B 1. As UDEðθ0; TÞ is independent of θ, we are
allowed to rewrite Eq. (B13) as

IGðθ;TÞ ¼−2∂2δðjhΨtotðθ;TÞjΨtotðθþ δ;TÞij2Þjδ¼0: ðB14Þ

Let us focus on θ ¼ θ0, at which our effective measurement,
as defined by Eqs. (27) and (28), prescribes jΨtotðθ0; TÞi ¼
jvaci ⊗ jψSDðθ0; TÞi. Substituting this into Eq. (B14) gives

IGðθ0;TÞ¼−2∂2θðjhψ̃SDðθ;TÞjψSDðθ0;TÞij2Þjθ¼θ0
: ðB15Þ

Equation (B15) links the global QFI evaluated at θ ¼ θ0
to the conditional state jψ̃SDðθ; TÞi. This, again, is a direct
consequence of Eqs. (27) and (28) that defines our effective
measurement.
Using Eqs. (B12) and (B15), we can express the differ-

ence between the retrieved FI and the global QFI as

IGðθ0; TÞ − Fðθ0; TÞ ¼ 2h∂θψ̃SDðθ; TÞjPj∂θψ̃SDðθ; TÞijθ¼θ0

ðB16Þ

with P ¼ 1 − jψSDðθ0; TÞihψSDðθ0; TÞj a projector. We
note that the right-hand side of Eq. (B16) recovers (up
to a factor of 2) the familiar pure-state QFI formula
4½h∂θϕj∂θϕi − jhϕj∂θϕij2� if we replace the unnormalized
conditional state jψ̃SDðθ; TÞi with a normalized one
jϕðθ; TÞi. As such, we can loosely interpret this term as

the “leftover” information stored in the sensor and the
decoder that our effective measurement cannot retrieve.
The conditional state jψ̃SDðθ; TÞi evolves according to the
sequential map Eq. (B2) which, in the continuous time
limit, is equivalent to the SME (34) conditioned upon the
detection of null photons dN ðtÞ ¼ 0; ∀ t ∈ ½0; T�. Such
an evolution is in general not trace preserving—the norm of
jψ̃SDðθ; TÞi decays (typically exponentially) with time for
θ ≠ θ0. Only at θ ¼ θ0, the evolution is trace preserving.
We show in Appendix B 1 that it can be related to the Kraus
maps describing the sensor evolution. As we show below, it
is exactly such a dissipative, nonunitary evolution that
dictates that Eq. (B16) typically becomes a constant for
long evolution time T. In stark contrast, if we replace
jψ̃SDðθ; TÞi in Eq. (B16) with a normalized state jϕðθ; TÞi
that evolves unitarily, it is well known that the correspond-
ing pure-state QFI can (and typically does) grow with time.
To this end, let us define the nth map in Eq. (B2)

as K½n�ðθÞ ≔
P

σn
B̄σn
½n�ðθ0Þ ⊗ Aσn

½n�ðθÞ, and Kðθ; m; lÞ ≔
T
Q

l
n¼mþ1 K½n�ðθÞ. This allows us to reexpress Eq. (B2) as

jψ̃SDðθ; TÞi ¼ Kðθ; 0; NÞjψDð0Þi ⊗ jψSð0Þi; ðB17Þ

and as a result,

∂θjψ̃SDðθ; TÞijθ¼θ0
¼

XN
m¼1

Kðθ0; m; NÞ

× (∂θK½m�ðθÞjθ¼θ0
)jψSDðθ0; tm−1Þi;

ðB18Þ

where tm ≡mdt as defined in Sec. II B, and we make
the convention that Kðθ0; N; NÞ ¼ ID2 . As discussed in
Appendix B 1, our effective measurement condition
Eqs. (27) and (28) prescribes that the map Kðθ0; m; NÞ
satisfy

Kðθ0;m;NÞ¼ ðR̄−1
½N� ⊗ IDÞMðθ0;m;NÞðR̄½m�⊗ IDÞ ðB19Þ

with

Mðθ0; m; NÞ ¼
X
fσng

ðĀσN
½N�ðθ0Þ…Āσmþ1

½mþ1�ðθ0ÞÞ

⊗ ðAσN
½N�ðθ0Þ…Aσmþ1

½mþ1�ðθ0ÞÞ ðB20Þ

being the Choi-Jamiolkowski isomorphism of the Kraus map
describing the sensor evolution in the time interval ½tm; T�.
Being a CPTP map, Mðθ0; m; NÞ has at least one fixed
point (i.e., stationary state) [72,73]. As we show below, the
large-T behavior of the leftover information Eq. (B16)
is strongly dependent on whether such a fixed point is
unique—that is, whether the sensor evolution is ergodic.
To keep our presentation easy to follow, we first

illustrate this aspect with sensors whose evolution is time
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homogeneous [that is, the tensors in Eq. (B20) are identical,
A½n� ≡ A], for which ergodicity is a well-established math-
ematical property; see, e.g., Ref. [108]. Note that most
driven-dissipative sensors in the laboratory are time sta-
tionary (and are moreover ergodic). We then extend our
discussion to sensors whose evolution is time inhomo-
geneous, invoking the mathematical concept of “strong
ergodicity” [108]. Note that for the time-inhomogeneous
case (corresponding to the so-called inhomogeneous
Markov chain in mathematics), a complete understanding
of ergodicity and related properties is yet to be estab-
lished [108].

a. Time-homogeneous sensor evolution

In this case, A½n�ðθ0Þ ¼ Aðθ0Þ, and the fixed point of the
map Mðθ0; m; NÞ is identical to the fixed point of the
elementary map

P
σn
Āσnðθ0Þ ⊗ Aσnðθ0Þ ≔ Mðθ0Þ of each

time bin. If the fixed point is unique, the map Mðθ0Þ [and
thus, Mðθ0; m; NÞ] is ergodic; correspondingly, the MPS
constructed from Aðθ0Þ [cf. Eq. (9)] is an injective
representation [52]. Otherwise, Mðθ0Þ is nonergodic; the
corresponding MPS is not injective.
Let us first focus on the ergodic case by assuming that

Mðθ0Þ has a unique fixed point jρstSðθ0Þi,Mðθ0ÞjρstSðθ0Þi ¼
jρstSðθ0Þi, which is the isomorphic to the stationary density
matrix ρstSðθ0Þ of the sensor. We denote (the real part of)
the second largest eigenvalue of Mðθ0Þ as e−ξ with ξ > 0.
This allows us to write down the spectrum decomposition

Mðθ0; m; NÞ ¼ jρstSðθ0ÞihIDj þO½e−ξðN−mÞ�; ðB21Þ

where jIDi is the Choi isomorphism of ID. Correspondingly,
Eq. (B19) can be converted to

Kðθ0; m; NÞ ¼ ðR̄−1
½N� ⊗ IDÞjρstSðθ0ÞihIDjðR̄½m� ⊗ IDÞ

þO½e−ξðN−mÞ�: ðB22Þ

This indicates, via Eq. (B17), that jψSDðθ0; TÞi ¼
ðR̄−1

½N� ⊗ IDÞjρstSðθ0Þi þO½e−ξðN−mÞ�, and therefore,

Kðθ0;m;NÞ ¼ jψSDðθ0; TÞihIDjðR̄½m� ⊗ IDÞ þO½e−ξðN−mÞ�:
ðB23Þ

Physically, this means that if the sensor evolution is ergodic,
so is the sensor-decoder evolution constructed by our retrieval
scheme. Inserting Eq. (B23) into Eqs. (B18) and (B16),
we arrive at

IGðθ0; TÞ − Fðθ0; TÞ

¼
�XN

m¼1

O½e−ξðN−mÞ�
��XN

n¼1

O½e−ξðN−nÞ�
�

¼ const: ðB24Þ

The second equality of Eq. (B24) can be verified
easily by taking the continuous-time limit, where each
bracket in the second line becomes approximatelyR
T
0 dt exp½−ξðT − tÞ=Δt� ∼ const. Thus, we rigorously prove
that our retrieval scheme is optimal for all sensors whose
evolution is time homogeneous and ergodic.
Next, let us look at the case where the sensor evolution

has multiple stationary states ρstS ðθ0; αÞ, α ¼ 1; 2;…; d.
Correspondingly, the sensor density matrix at time T can
be expanded as ρSðθ0; TÞ ¼

P
α υαρ

st
S ðθ0; αÞ þOðe−ξNÞ.

Repeating the calculation above, we find

IGðθ0; TÞ − Fðθ0; TÞ ¼
XN
m;n¼1

X
α;β

c�n;αcm;β

�
1

υβ
− υαυβ

�

þ
XN
m;n

O½e−ξðN−mÞ�O½e−ξðN−nÞ�;

ðB25Þ

where we define the coefficients cn;α ≔ hIDjðR̄½m� ⊗ IDÞ×
ð∂θK½m�ðθÞjθ¼θ0

ÞjψSDðθ0; tm−1Þi. While the second line of
Eq. (B25) contributes to a constant, the first term is, in
general, unbounded in time. Physically, this is due to the
fact that the emission-field MPS generated by nonergodic
open dynamics may not be injective and may possess
long-range correlation. Indeed, for such a case not only
IGðθ0; TÞ − Fðθ0; TÞ, but also IEðθ0; TÞ − Fðθ0; TÞ may
grow with time. For the three-level sensor example pre-
sented in Sec. V B 2, in the time window ½0; T� where ΩS;1

is a constant, the sensor evolution is time homogeneous and
has two stationary states. Correspondingly, IGðθ0; TÞ −
Fðθ0; TÞ increases with time [for this specific model,
IEðθ0; TÞ − Fðθ0; TÞ is a finite constant as verified by
our numerics, but it may grow with time for general
nonergodic models]. The application of the short pulse
ΩS;2ðtÞ and subsequent relaxation of the sensor modifies
the sensor dynamics, leading to a unique stationary state at
the end of the interrogation. This allows for the efficient
retrieval of the Heisenberg-limited (global) QFI.

b. Time-inhomogeneous sensor evolution

Let us now extend the above analysis to time-
inhomogeneous driven-dissipative dynamics. As the ten-
sors A½n� are inhomogeneous, the fixed point of the map
Mðθ0; m; NÞ [cf. Eq. (B20)] is no longer determined by the
fixed point of the evolution of each time bin. Indeed, in the
most general case the fixed point of Mðθ0; m; NÞ may
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differ for different m. A proper notion of ergodicity in
inhomogeneous classical Markov chains invokes “strong
ergodicity”; see, e.g., Chap. 12 of Ref. [108]. Direct
translation to the quantum case leads to the following
definition.
Definition.—Quantum strong ergodicity. The set of

CPTP maps Mðθ0; m; NÞ in Eq. (B20) is strongly ergodic
if and only if there exists a unique jρstS ðθ0Þi such that

limN→∞ Mðθ0; m; NÞjρSi ¼ jρstS ðθ0Þi ðB26Þ

for all m and all (normalized) initial states jρSi.
Invoking such a definition, we see below that the proof

in Appendix B 3 a can be largely extended to the time-
inhomogeneous case, thus validating the optimum of our
retrieval scheme also for time-dependent sensor designs. To
this end, we again write down the spectrum decomposition
ofMðθ0; m; NÞ, akin to Eq. (B21), under the assumption of
strong ergodicity,

Mðθ0; m; NÞ ¼ jρstS ðθ0ÞihIDj þOðχmÞ; ðB27Þ

where χm is the real part of the second largest eigenvalue of
Mðθ0; m; NÞ. χm generally decays with the evolution time
N −m to ensure ergodicity, but not necessarily exponen-
tially as in Eq. (B21). On the basis of Eq. (B27), it is
straightforward to verify that Eqs. (B22) and (B23), with
the replacement O½e−ξðN−mÞ� → OðχmÞ, also hold for the
inhomogeneous case. As a result, we arrive at

IGðθ0; TÞ − Fðθ0; TÞ ¼
XN
m;n¼1

OðχmÞOðχnÞ; ðB28Þ

which, apparently, is a constant as long as χm decays with
the evolution time faster than ðN −mÞ−1. This is a very
mild requirement fulfilled by most sensor designs under
smooth time-dependent driving protocols. We thus extend
the effectiveness of our retrieval scheme to sensors whose
evolution is ergodic despite being time inhomogeneous.
In contrast, general time-inhomogeneous, nonergodic

evolution may result in long-range correlation in the
emission field, for which the efficiency of our retrieval
scheme is not guaranteed—not only IGðθ0; TÞ − Fðθ0; TÞ,
but also IEðθ0; TÞ − Fðθ0; TÞ may grow with time in
this case.

4. Extension to discrete matrix-product states

The proof presented above, thus the effectiveness of our
information retrieval scheme, holds equally for continuous
(as relevant to the emission field of open quantum sensors)
and discrete (as relevant to many-body lattice models)
MPSs. As an illustration of the latter, let us consider a one-
dimensional lattice spin model defined on n ¼ 1;…; N

sites with open-boundary condition (as relevant to realistic
experimental setups). We assume that the ground state of
the spin chain is described by a MPS

jΨi ¼
X
fσng

Vσ1
½1�…Vσn

½n�…VσN
½N�jσ1…σn…σNi:

Note that we label the sites from left to right, in contrast to
the main text but in accord with the standard convention for
a discrete MPS [52]. Without loss of generality, we assume
that the tensors V ½n� have a fixed bond dimension D; in
the bulk, they become translationally invariant V ½n� ¼ V,
1 ≪ n ≪ N, and we assume injectivity [52]. We consider
that the unknown parameter θ (the corresponding
prior information is θ0) enters the tensor V ½n�ðθÞ as local
field, and we have access to a subsystem consisting
of n ¼ 1; 2;…; L spins with L ≫ 1.
To efficiently retrieve the QFI of the subsystem, we can

apply our information retrieval scheme. We first convert the
tensors V ½n�ðθ0Þ, n ¼ 1; 2;…; L to the left normalized form

A½n�ðθ0Þ [which satisfy
P

σn
Aσn†
½n� ðθ0ÞAσn

½n�ðθ0Þ ¼ ID] via

sequential SVDs on a classical computer. We then use a
D-dimensional ancilla to sequentially interact with each
spin 1;…; L. The unitary operator between the ancilla and
the nth spin U½n�ðθ0Þ is chosen to satisfy

A0
½n�ðθ0Þ ¼ h↓njU†

½n�ðθ0Þj↓ni;
A1
½n�ðθ0Þ ¼ h↑njU†

½n�ðθ0Þj↓ni ðB29Þ

for n ¼ 2; 3;…; L. For n ¼ 1, U†
½n� in Eq. (B29) should be

replaced by hψAð0ÞjU†
½1� with jψAð0Þi the initial state of the

ancilla. Finally, we perform site-resolved projective meas-
urement of the subsystem of spins in the basis fj↑in; j↓ing.
Our studies in this work guarantee that such a measurement
is optimal: it can retrieve the QFI of the subsystem up to a
finite constant which, importantly, does not grow with the
subsystem size L.
The sequential interaction of an ancilla with multiple

spins has been demonstrated in trapped-ion quantum
simulators [109], and may also be possible with circuit
QED setups and nitrogen-vacancy centers in diamond.

5. Efficient processing of the measurement data

When our information retrieval scheme is applied to
general open sensors, the statistics of the resultant meas-
urement data is described by the distribution Eq. (B10)
in the neighborhood of the prior information θ0. Such a
statistical model also appears in various scenarios of
metrology, e.g., in superresolution astronomy [110]. For
such a statistical model, it has been shown that the
amplitude of the small deviation jθ − θ0j can be efficiently
determined by MLE [110]. In general, the sign of θ − θ0
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cannot be efficiently identified by the statistical model
alone, as Eq. (B10) depends only on ðθ − θ0Þ2 to the
lowest-order Taylor expansion. Nevertheless, the sign can
be predetermined using the prior information [86]: Suppose
the prior information provides a confidence interval
θ ∈ ðϑ0 − ϵ; ϑ0 þ ϵÞ, one can deliberately choose the
decoder parameter θ0 to be outside this interval, e.g., θ0 ¼
ϑ0þ a few ϵ, thus fixing the sign of θ − θ0. One can then
determine θ − θ0 via counting the decoder output, of which
the (normalized) inverse variance converges to Fðθ; TÞ≃
Fðθ0; TÞ, provided ϵ is sufficiently small. A rigorous
formulation of these aspects will be reported in a forth-
coming article by Guta [86].
It is interesting to point out that if θ is located exactly

at θ0, the FI is not a good quantifier of the estimation
error [110,111]. Indeed, in this case the estimator of MLE
always coincides with the actual value (and therefore, the
associated estimation error is zero), a statistical phenome-
non called “superefficiency” [110,111].

APPENDIX C: CALCULATION OF THE
DECODER PARAMETERS FOR

LINEAR SENSORS

Without loss a generality, we assume that both the
sensor and the decoder are initialized in the ground state
of the oscillator. The driven-dissipative evolution of a
linear sensor preserves the Gaussianity of its density
matrix. The sensor state ρSðtÞ can therefore be parametrized
as ρSðtÞ ¼ expf−½Q − uðtÞ�TGðtÞ½Q − uðtÞ�g, where Q ¼
ðXS; PSÞ consists of the two orthogonal quadrature
operators of the oscillator uðtÞ ¼ ðhXSðtÞi; hPSðtÞiÞ
with hOðtÞi ≔ tr½OρSðtÞ�, and GðtÞ is related to the
covariance matrix CðtÞ of the Gaussian state via G ¼
2σy cot−1½2CðtÞσy� [112], with σy the y component of
the Pauli operators. Such a representation allows us to
construct

ffiffiffiffiffiffiffiffiffiffi
ρSðtÞ

p
conveniently via the replacement

GðtÞ → GðtÞ=2 in ρSðtÞ. Straightforward calculation pro-
vides the mean quadratures

uðtÞ ¼
�

f
mω2

ð1 − cosωtÞ; f
ω
sinωt

�

and the covariance matrix elements

CXXðtÞ ¼
1

2mω
þ Γ
2m2ω2

�
t −

1

2ω
sinωt

�
;

CPPðtÞ ¼
1

2
mωþ Γ

2

�
tþ 1

2ω
sinωt

�
;

CXPðtÞ ¼ CPXðtÞ ¼
Γ

4mω2
ð1 − cos 2ωtÞ:

The use of these expressions and Eq. (32) provide us with
the decoder parameters as captured by Eq. (38).
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