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Exploring non-Hermitian phenomenology is an exciting frontier of modern physics. However, the
demonstration of a non-Hermitian phenomenon that is quantum in nature has remained elusive. Here, we
predict quantum non-Hermitian phenomena: the fractional quantum Zeno (FQZ) effect and FQZ-induced
photon antibunching. We consider a quantum optics platform with reservoir engineering, where nonlinear
emitters are coupled to a bath of decaying bosonic modes whose own decay rates form band structures.
By engineering the dissipation band, the spontaneous emission of emitters can be suppressed by strong
dissipation through an algebraic scaling with fractional exponents—the FQZ effect. This fractional scaling
originates uniquely from the divergent dissipative density of states near the dissipation band edge, different
from the traditional closed-bath context. We find FQZ-induced strong photon antibunching in the steady
state of a driven emitter even for weak nonlinearities. Remarkably, we identify that the sub-Poissonian
quantum statistics of photons, which has no classical analogs, stems here from the key role of non-
Hermiticity. Our setup is experimentally feasible with the techniques used to design lattice models with
dissipative couplings.
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I. INTRODUCTION

While enchanting non-Hermitian properties unattainable
in Hermitian systems are widely revealed [1–10], genuine
quantum non-Hermitian phenomenology is still largely
uncharted territory. For a classical system, coupling to an
environment induces dissipation and can be well described
by a non-Hermitian Hamiltonian. On the quantum level,
however, dissipation occurs with quantum fluctuations,
something fundamentally absent in the classical regime.
Exploring quantum non-Hermitian phenomena, thus,
involves identifying observable consequences driven by
the role of non-Hermiticity amid quantum fluctuations.

In this direction, the possibility to ingeniously design
dissipation with quantum materials enables unique oppor-
tunities. Experimentally, non-Hermitian physics such as
parity-time symmetry [1] were simulated with photons
[11–13], atoms [14–18], electronic spins [19], and super-
conducting qubits [20]. Recently, realizations of dissipative
couplings with an array of photonic resonators [21], atomic
spin waves [17], or polaritons [22,23] coupled to a reservoir
have led to engineered dissipative lattice models with non-
Hermitian bands. However, the observed phenomena to date
were classical in nature. Theoretically, non-Hermitian effects
under the quantum mechanical framework are being actively
pursued [24–30], but the difficulty to tackle the dynamical
long-time behaviors of open many-body quantum systems
has severely limited these studies to single-particle physics
and short timescales. Though highly sought after, unam-
biguous quantum non-Hermitian phenomena have remained
elusive so far.
Here, we predict quantum non-Hermitian phenomena—

the fractional quantum Zeno (FQZ) effect and FQZ-
induced photon antibunching, based on a quantum optics
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setup harnessing reservoir engineering [31–41]. The system
consists of nonlinear quantum emitters, such as atoms and
artificial atoms, which host multiple excitations with non-
linear interactions. We exploit an engineered “open bath”
represented by a continuum of decaying bosonic modes in a
lattice with dissipative couplings, whose own dissipation
rates form band structures. Different from previous reservoir
engineering, which designs the energy dispersion of a closed
medium, we manipulate the dissipation band of the open
bath to dynamically tailor the system-bath interaction. As the
central result, we show the FQZ effect emerging in the long-
time emitter dynamics, where the spontaneous emission of
emitters is dissipatively suppressed according to an algebraic
scaling with fractional exponents. The scaling behaviors of
n ¼ 1; 2;… excitations, moreover, are distinct, which can
be controlled via the detuning of emitters. By analyzing
the steady-state second-order correlation function of the
weakly driven emitter, we show strong, FQZ-induced photon
antibunching even for a weak nonlinearity. Different from
conventional quantum light generation [42–44], the present
sub-Poissonian quantum statistics of photons is driven
by structured dissipation captured by a non-Hermitian
Hamiltonian, which opens the door to exploring non-
Hermitian quantum optics.
The FQZ effect predicted here is conceptually different

from the familiar nonanalytic phenomena in quantum
optics and condensed matter physics. It generically results
from the combination of strong dissipation and a divergent
dissipative density of states (dDOS)—the number of bath
modes with a particular dissipation rate—near the dissipa-
tion band edge. In the closed-bath context, including the
extensively studied spin-boson problems in quantum optics
and various impurity models in condensed matter physics
[45–48], the system-bath interaction is constrained by
energy conservation. Instead, our setup has the distinctive
feature that such energetic constraint is removed owing to
the open nature of the bath. Thus, while gapless modes are
crucial for conventional nonanalytic phenomena [47], the
present fractional scaling is possible regardless of whether
or not the bath has gapless energy or dissipation spectra.
It further has the unique property where the scalings of
n-excitation states are different for various n, which cannot
occur in platforms with the closed bath [39,48–62],
including nanophotonic systems and solid-state band-gap
materials, where the resonance condition locks the emitter
with the bath energetically. As an important consequence,
we show the sub-Poissonian quantum statistics of photons
resulting from the key role of non-Hermiticity.
We also emphasize a novel approach based on the

Keldysh formalism for efficient solutions of the full
dynamics of nonlinear emitters immersed in the open bath.
In particular, we are able to identify the role played by
non-Hermitian Hamiltonians in the steady-state quantum
correlation functions of the weakly driven emitters, capi-
talizing on a deep relation [63,64] between the master

equation and the scattering theory. Mathematically,
compared with the established Green function approach
associated with the closed bath, the open bath enriches
the analytic structure of the emitter Green functions: The
branch cut corresponding to the continuum generally
becomes a “branch circle” instead of a line, which
challenges the studies of quantum few-body and many-
body dynamics. We circumvent this difficulty by introduc-
ing the effective fictitious bath.
The phenomena and principles described here exist for a

wide class of dissipation band structures and for the open
bath in arbitrary dimensions. Our results are also of
relevance for current experiments with quantum materials,
where realizing dissipative lattice models and engineering
non-Hermitian band structures are state of the art, while
demonstrating quantum non-Hermitian phenomena has
remained an open challenge.
We begin in Sec. II by outlining the main results and their

implications. In Sec. III, we describe the quantum mechani-
cal model of emitters coupled to a one-dimensional (1D)
open bath. In Sec. IV, we develop the general formalism for
solutions of the dynamics and quantum correlations of
weakly driven emitters. In Sec. V, we study the spontaneous
emission of an emitter with single and two excitations,
respectively, and show the FQZ effect. We also study the
quantum correlation between two emitters. In Sec. VI, we
analyze the second-order correlation function of a weakly
driven emitter and show FQZ-induced sub-Poissonian light
generation. In Sec. VII, we present a scaling analysis for
the arbitrary bath. In Sec. VIII, we discuss the experimental
implementations, and we conclude our paper in Sec. IX.

II. OVERVIEW OF MAIN RESULTS

Our setup is illustrated in Fig. 1(a), where one or several
emitters are coupled to an engineered bosonic open bath
in one dimension. The emitter is nonlinear with multiple
bosonic excitations and is weakly driven by an external
field. This may be cavities with Kerr interactions or two-
level systems in the limit of infinite repulsive interactions.
The emitters and the open bath as a whole constitute an
open quantum system whose dynamics is governed by a
master equation (see Sec. III): It contains a time evolution
governed by an effective non-Hermitian emitter-bath
Hamiltonian and quantum jumps [65,66] associated with
the emission of quanta from the open bath into the auxiliary
reservoir [Fig. 1(a)]. The effective Hamiltonian associated
with the open bath describes a dissipative lattice with an
energy band ϵk ¼ 2J sinðkþ θÞ and a dissipation band
γk ¼ Γð1þ cos kÞ. In the limit of Γ=ð2JÞ → 0, the closed
bath is recovered, where the rich physics of various
impurity models has been extensively studied ranging from
quantum optics [46–48] to condensed matter physics [45].
Instead, we are interested in the unexplored physics in

the strong dissipation limit Γ=ð2JÞ ≫ 1, where the inter-
action between the emitters and the open bath is no longer
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restricted by energy conservation, and the dissipation band
γk is expected to play the central role in determining
quantum emissions. Analogous to the density of states
associated with energy dispersion, we characterize the
dissipation band with the dDOS, i.e., the number of modes
DsðγÞ at the dissipation rate γ. In 1D, we have

DsðγÞ ∝
���� 1

∂kγk

����: ð1Þ

We explore how γðkÞ and dDOS influence the sponta-
neous emissions of multiple excitations of emitters and
their statistics as quantified by the second-order correla-
tion function.
It is challenging to solve the master equation of the

entire open system consisting of the emitters and the open
bath, when the emitters are highly nonlinear and exter-
nally driven. In particular, it is difficult to pinpoint the role
played by the non-Hermitian Hamiltonian in the dynami-
cal long-time behaviors of the emitters. We address this
challenge by developing a framework based on the
Keldysh formalism [67,68] and the scattering theory.
Our road map consists of two steps (see Sec. IV).

First, we develop an efficient approach to solve the
spontaneous emission of multiple excitations in nonlinear
emitters without driving, based on the Keldysh formalism
(Fig. 2). With respect to the Green function approach
associated with the closed bath, the open bath significantly
enriches the analytic structure of the emitter Green func-
tion. Here, the branch cut corresponding to the continuum
generally becomes a “branch circle” instead of a line, which
separates the first Riemann surface to two disconnected
regions, and challenges the studies of multiple excitations.
This issue is solved by the analytic continuation, which
naturally introduces the concept of an effective fictitious
bath. Second, we connect the steady-state quantum
correlation functions of the weakly driven emitter with
Green functions of the undriven case, based on a relation
between the multiparticle scattering amplitudes and the
steady state of the master equation as initially proposed in
Refs. [63,64].
In particular, to demonstrate quantum non-Hermitian

phenomena, we focus on the quantum nature of light
as indicated by the second-order correlation function
gð2Þð0Þ < 1 of the driven emitter. We explicitly identify
the role of non-Hermiticity by establishing the relation

gð2Þð0Þ ¼
���� 1

1 −UΠfð2ωdÞ
����2; ð2Þ

where ωd is the driving frequency, U is the strength of
the nonlinear interaction, and the function Πf is directly
related to Green functions determined by non-Hermitian
Hamiltonians. This allows us to show how the sub-
Poissonian photon statistics despite weak nonlinearity
results from the non-Hermitian part of the Hamiltonian.
Applying the above formalism, we predict the FQZ

effect, where the spontaneous emission rate γn of n
excitations (n ¼ 1; 2;…) in emitters scales with the bath
dissipation rate Γ as

γn ∝ Γ−νn ; ð3Þ

where the exponent νn < 1. Equation (3) indicates that the
decay rate is suppressed by strong dissipation, similarly as
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FIG. 1. Illustration of a nonlinear emitter coupled to a 1D open
bath and the fractional quantum Zeno (FQZ) effect. (a) Setup. An
emitter a (blue ball) is coupled to a bosonic bath b (gray). The
bath b is coupled to the auxiliary bath c (yellow). Top: energy
levels of a driven emitter with n excitations (n ¼ 0, 1, 2), whereΔ
is the detuning from the central frequency of the bath b and U is
the strength of nonlinear interaction. (i) Engineered open bath for
the emitter. Bosonic mode bj in a lattice of Nb sites, in general,
has the tunneling rate J and phase θ. The auxiliary modes cj have
the common, large loss rate γc=2. Both bj and bjþ1 are coupled to
the lossy mode cj with the coupling rate g (j ¼ 1;…; Nb − 1).
This engineers a dissipative coupling between bj and bjþ1 with
the rate Γ=2, where Γ ¼ 4g2=γc [cf. Eq. (5)]. (ii) The open bath
exhibits the dissipation band γk (red curve) with the bandwidth
2Γ. The corresponding dDOS is shown by the black curve.
(b) FQZ effect. Strong dissipation Γ ≫ 2J confines the emitter to
the dissipation band edge with divergent dDOS. This leads to the
FQZ effect and a multiexcitation quasibound state: Their decay
rate γn ∝ Γ−νn (νn < 1 for n ¼ 1, 2) is suppressed by large Γ via
the scaling with fractional exponent νn. (c) FQZ-induced photon
antibunching. The n-dependent FQZ effects allow one to en-
gineer γ1 < γ2 in such a way to enable photon blockade in the
emitter even for weak nonlinearity U.
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the well-known QZ effect (see, e.g., Refs. [70–79]), but the
algebraic scaling here has the fractional exponent, differ-
ently from the characteristic featureless Γ−1 scaling of the
QZ effect. Moreover, the scaling behavior of γn varies with
the number n of excitations, which can be controlled via the
detuning of the emitter.
The physical picture for the FQZ effect is the following.

When the open bath is strongly dissipative by itself, the
emitters are dynamically imposed to mainly couple with the
long-lived bath modes hosted near the dissipation band
edge [Fig. 1(b)]. The dDOS of this region then determines
the scaling behaviors of the emitters: Whenever the dDOS
there diverges, fractional scaling arises as in Eq. (3),

regardless of whether γk is gapless or not. The scaling
analysis for the open bath with arbitrary dissipation
band structure and dimension is summarized in Table I
(see Sec. VII).
Specifically, for a single excitation, we identify the long-

lived quasibound state as the superposition of the emitter
excitation and the bosonic modes of the open bath, whose
decay rates as given by Eq. (3) determine the emitter
dynamics at long times (see Fig. 3 and Sec. VA 1). The
bath modes in the quasibound state are confined to
the dissipation band edge, forming a giant cloud around
the emitters. The spatial size of the cloud grows with the
bath dissipation rate Γ through a nonanalytic scaling.
Consequently, when two emitters are present, the open
bath mediates simultaneous sizable and remote quantum
correlations of emitters, with a correlation length increasing
with Γ. These results are shown in Fig. 4 and Sec. VA 2.
For two excitations with nonlinear interactions, we find

the emergence of quasibound states with the FQZ scaling
ν2 < ν1 < 1. For instance, ν1 ¼ 1=2 and ν2 ¼ 1=3 for single
and two excitations indicates a much faster spontaneous
decay of two excitations compared to a single excitation.
Moreover, the scalings can be independently controlled via
the emitter detuning and the nonlinear interaction. These
results are summarized in Fig. 5 and Sec. V B.
As a remarkable manifestation of FQZ effect, we show

it opens a new route toward the generation of strong
antibunching, even in the limit of weak interactions
[Figs. 1(c) and 6]. By using Eq. (2) to analyze gð2Þð0Þ of
a single emitter under a weak driving field, we find
significant antibunching behavior of excitations (see
Sec. VI). We show how it results from the appropriately
engineered γ1 < γ2, enabled by the independently control-
lable, different FQZ effects of one and two excitations. In
particular, we can achieve strong antibunching in the weak-
interaction regimeU=2 < 2γ1 < γ2, even when interactions
are so small as U=2 < γ1.
The FQZ-induced antibunching originates from the

structured dissipation of the open bath and, therefore,
is conceptually different from the conventional mecha-
nisms including strong nonlinearities [42] and interferences
[43,44]. Notably, it represents a first genuine quantum
phenomenon emerging from non-Hermitian bands.
Our results have important implications for advancing the

field of non-Hermitian physics into fully quantum regimes.
Despite significant interest and ongoing efforts, state of the
art experiments (see, e.g., Refs. [11,13–15,17,18,20–23]) on
non-Hermitian phenomena in quantum systems have been
limited to classical or single-particle physics. Theoretically
(see, e.g., Refs. [25–29]), it remains an open challenge to
explicitly show quantum many-body phenomena purely
governed by a non-Hermitian Hamiltonian in the full
quantum dynamics including quantum jumps, without con-
ditioning on the measurements such as postselections. Our
work sheds light on how to surmount these challenges.

Fictitious bath

(a) (b)
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II

I

I

I

(d)
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Open bath
Pole
Branch
 cut

I

FIG. 2. Illustration of the concept of the formalism for emitters
in the open bath. The illustrated bath has the complex energy
spectrum ϵk − iγk, with ϵk ¼ 2J sin k and γk ¼ Γð1þ cos kÞ,
for k ∈ ð−π; π�. (a)–(c) Distinct analytical structures of the
Green function GðωÞ in the complex frequency plane ω ¼
ReðωÞ þ iImðωÞ, when the bath is (a) closed, (b) open with
Γ=ð2JÞ < 1, and (c) open with Γ=ð2JÞ > 1. In (a), the orange
dots denote the poles of GðωÞ, representing the bound states, and
the red line denotes the branch cut ∈ ½−2J; 2J�, representing the
scattering continuum. In (b) and (c), the red ellipses denote the
branch cut parametrized by ðϵk; γkÞ, whose major axis is denoted
by the dashed line. The self-energy (11) obtained from the residue
theorem [69] is ΣðωÞ ¼ 0 in region II (white) but is finite in
region I (blue). Regions I and II are separated by the branch cut.
The emitter dynamics is GðtÞ ¼ RCðdω=2πÞGðωÞe−iωt with an
integration along a contour C (yellow curve) in I. (d) Concept of
the fictitious bath. We use the analytical continuation [69] to
construct a fictitious bath with a simple spectrum, which
generates the same emitter dynamics. The associated Green
function GfðωÞ has a line branch cut (red line) and two poles
(yellow dots), so GðtÞ ¼ RC0 ðdω=2πÞGfðωÞe−iωt can be effi-
ciently calculated. This concept is applicable for multiple
excitations and wide parameter regimes from Γ=ð2JÞ ≪ 1 to
Γ=ð2JÞ ≫ 1.
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III. EMITTERS COUPLED TO AN OPEN BATH

In this section, we describe in detail the theoretical model
for the emitters coupled to a 1D open bath and outline the
key quantities we are interested in.
Our setup in Fig. 1(a) consists of three ingredients:

emitters a (blue ball), a bath of bosonic modes b (gray), and
an auxiliary bath of lossy modes c (yellow). (i) We consider
the paradigm of one and two emitters. In the rotating frame
with respect to the central frequency of b modes, the
Hamiltonian of emitters is written as

Hemit ¼
X
l¼1;2

��
Δa†l al þ

U
2
a†2l a2l

�
þ εða†l e−iωdt þ H:c:Þ

�
;

ð4Þ
where Δ is the detuning of emitters. The second term is the
on-site Kerr interaction with strength U, which in the limits
U → 0 andU → ∞ describes a free boson mode and a two-
level system, respectively. The third term describes the
driving field with amplitude ε and driving frequency ωd.
(ii) The free propagation of the bosonic mode b in a lattice
of Nb sites is described by the tight-binding Hamiltonian
Hb ¼

PNb
j¼1ðJeiθb†jbjþ1 þ H:c:Þ with the hopping strength

J and the nontrivial phase θ ≠ 0, where bj (b†j ) is the
annihilation (creation) operator at site j. (iii) Finally, the
lossy modes cj (j ¼ 1;…; Nb − 1) have the common decay
rate γc=2.
We assume that the coupling of emitters to local

modes bj¼0;d is described by the Jaynes-Cummings (JC)
Hamiltonian Hsb ¼ Ωða1b†0 þ a2b

†
d þ H:c:Þ with a Rabi

frequency Ω. As shown in (i) in Fig. 1(a), neighboring
modes bj and bjþ1 are both coupled to the mode cj
with a coupling strength g, described by Hbc ¼ g

P
jðb†j þ

b†jþ1Þcj þ H:c.
When the decay rate γc=2 of the bath c is much larger

than all the other energy scales, it can be adiabatically
eliminated [80,81] to yield a master equation for the
reduced density matrix ρ associated with the hybrid system
that consists of the emitters and the bath b, i.e.,

∂tρ ¼ −i½Hemit þHsb þHb; ρ� þDb½ρ�: ð5Þ
Here, the dissipator takes the form

Db½ρ� ¼ −fHD;ρgþ Γ
X
j

�
bjþ1ρb

†
j þ bjρb

†
jþ1 þ 2bjρb

†
j

�
;

ð6Þ

where HD ¼ Γ
P

j ½ðb†jbjþ1 þ H:c:Þ=2þ b†jbj� with the
effective decay rate Γ ¼ 4g2=γc. The dissipator Db leads
to a dissipative coupling rate Γ=2 between neighboring
bath modes bj and bjþ1 in the lattice on top of the
coherent coupling rate J, along with an on-site decay

rate Γ of bj. We note that dissipatively coupled lattices
have been recently engineered with atoms [17,18] and
photonic resonators [21]. Subsequently, we denote the
effective non-Hermitian Hamiltonian of Eq. (5) by
Heff ¼ Hemit þHsb þHb − iHD.
Thus, the master equation (5) describes a scenario where

quantum emitters are coupled to an “open bath” b, which
undergoes dissipation by itself as governed by the dissipator
Db, apart from its own coherent evolution as governed by
Hb. Competition of this two processes is characterized by
the ratio Γ=ð2JÞ. In the limit of Γ=ð2JÞ → 0, the traditional
closed bath is recovered [45–48], whereas, in the opposite
limit of Γ=ð2JÞ ≫ 1, the bath is dominated by its open
nature.
Our goal is to study the spontaneous emissions of

multiple excitations in emitters and the dynamics of
quantum correlation functions. We specifically consider
two paradigmatic cases.

(i) We first consider the case without the driving
field (ε ¼ 0), and the emitter a1 is initially popu-
lated with one and two excitations, while the bath b
is initially in the vacuum state. We study the
spontaneous emissions of excitations at times
t > 0 characterized by

GðtÞ ¼ −ih0jalðtÞa†1ð0Þj0i;

DðtÞ ¼ −i
1

2
h0ja21ðtÞa†21 ð0Þj0i; ð7Þ

with l ¼ 1, 2, where the average is taken on the
vacuum state j0i.

(ii) We then consider a single emitter a1 driven by a
weak field (ε ≠ 0). We analyze the statistics of the
emitter excitations in the steady state, as quantified
by the second-order correlation function

gð2ÞðτÞ ¼ 1

n2
Tr
h
a†1a

†
1ðτÞa1ðτÞa1ρss

i
ð8Þ

with n ¼ Trða†1a1ρssÞ being the first-order correla-
tion function, in the steady state ρss of the master
equation (5). Whenever gð2Þð0Þ < 1, the statistics is
sub-Poissonian [42], which is genuine quantum
statistics with no classical analogs.

IV. FORMALISM

In this section, we systematically develop an efficient
approach based on the Keldysh formalism and the scattering
theory to solve for the dynamics and quantum correlation
functions of the weakly driven and nonlinear emitters. In
particular, it allows us to identify purely non-Hermitian
scenarios. In principle, for small systems, the master
equation (5) can be solved numerically. However, to
access the dynamical long-time behaviors of the highly
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nonlinear, driven emitters in the thermodynamic limit
Nb → ∞ requires intensive numerical calculations based
on the finite-size scaling. Moreover, while the emitter and
the open bath as a whole undergoes Markovian time
evolution described by the master equation, we remark
that the dynamics of the emitter, by itself, is non-
Markovian because of the structured dispersion and
dissipation of the open bath, and a successive elimination
of the bath b from Eq. (5) to obtain a master equation for
the emitters is not valid.
Our approach to obtain the full dynamics of emitters

hinges on two important elements. (i) In the master
equation (5) without driving (ϵ ¼ 0), the action of the
jump operator depletes the excitations from the open bath,
but the effective Hamiltonian Heff commutes with the
number operator N ¼Pl a

†
l al þ

P
j b

†
jbj, and. therefore,

the steady state is the vacuum state. Consequently, the
spontaneous emission dynamics of n (n ¼ 1; 2;…) exci-
tations is fully captured by the n-particle retarded Green
function in the vacuum state. In Secs. IVA–IV C, we
develop the formalism for undriven emitters coupled to
the open bath. (ii) When emitters are weakly driven (ϵ ≠ 0),
although the steady state of the master equation is out of
equilibrium, which violates the dissipation-fluctuation
theorem, we are able to connect the correlation functions
of the weakly driven emitter with Green functions of the
undriven case following the spirit of Refs. [63,64], as
described in Sec. IV E. Detailed derivations in our forma-
lism can be found in Appendixes A and B.

A. Non-Hermitian emitter-bath Hamiltonian

Without the driving field (ϵ ¼ 0), at zero temperature the
steady state of the master equation (5) is the vacuum state
j0i. In the vacuum state, the time-ordered single-particle
Green functions GtðtÞ ¼ −ih0jT alðtÞa†1ð0Þj0i and the
retarded Green functions GRðtÞ ¼ −ih0j½alðtÞ; a†1ð0Þ�j0i
coincide with each other, i.e., GtðtÞ ¼ GRðtÞ≡GðtÞ. As
a result, in the frequency domain, all the emitter Green
functions in the single-excitation subspace are determined
by GðωÞ ¼ h0ja½1=ðω −HeffÞ�a†j0i. In general, in the
vacuum state, all the emitter Green functions in the
n-excitation subspace are determined by the retarded
n-particle (n ¼ 1; 2;…) Green function. Hereupon, we
drop “retarded” for convenience.
Thus, the dynamics of undriven emitters is purely

governed by the effective emitter-bath Hamiltonian Heff
(see also Appendix B), which in the momentum space is
written as

Heff ¼ Ha þ
X
k

ðϵk − iγkÞb†kbk

þ Ωffiffiffiffiffiffi
Nb

p
X
k

�
a†1 þ a†2e

ikd
�
bk þ H:c: ð9Þ

with bk ¼ ð1= ffiffiffiffiffiffi
Nb

p ÞPj bje
−ikj (k ∈ ð−π; π�). In Eq. (9),

the second term is the non-Hermitian Hamiltonian describ-
ing the open bath, which exhibits structured dispersion
relation ϵk ¼ 2J cosðkþ θÞ and dissipation rate γk ¼
Γð1þ cos kÞ. It is easy to check that ½Heff ; N� ¼ 0 with
N ¼Pl a

†
l al þ

P
k b

†
kbk; i.e., the number of excitations is

a good quantum number. In subsequent discussions, we
assume θ ¼ −π=2 without loss of generality.

B. Property of the Green function
associated with the open bath

To derive the dynamics of undriven emitters, we obtain
the single-particle Green function GðωÞ analytically by
integrating out bath modes b. For instance, for a single
emitter, we obtain

GðωÞ ¼ 1

ω − Δ − ΣðωÞ ; ð10Þ

which is determined by the self-energy

ΣðωÞ ¼ Ω2

Z
dk
2π

1

ω − ϵk þ iγk
: ð11Þ

One can then further obtain the two-particle Green function

DðωÞ ¼ 1

Π−1ðωÞ −U
ð12Þ

with ΠðωÞ ¼ i
R
dω0Gðω0ÞGðω − ω0Þ=ð2πÞ. The general

expression of Green functions for many emitters is derived
in Appendix A.
As a reference point, let us first recall how to obtain the

emitter dynamics in a closed bath where γk ¼ 0. There, it
follows from the Lehmann spectral representation GðωÞ ¼R
∞
−∞ AðxÞ=ðω − xþ i0þÞdx that the emitter dynamics is
determined by the analytic structure of the Green function
GðωÞ in the complex ω plane shown in Fig. 2(a). There,
two isolated poles ϵs [i.e., G−1ðϵsÞ ¼ 0] correspond to the
energies of bound states, and the branch cut x ∈ ½−2J; 2J�
represents the continuum of the bath, i.e., the scattering
states. Thus, GðωÞ in the entire complex plane is deter-
mined only by the nonzero spectral weight AðxÞ in the
vicinity of poles and branch cut that can be obtained
straightforwardly [69]. Based on the Lehmann representa-
tion, the Fourier transform of GðωÞ can be obtained
efficiently; the contribution from poles leads to the long-
term oscillation of the remnant excitation in the emitter,
while, depending on the energy dispersion of the bath,
the branch cut gives rise to (non-)Markovian decay [e.g.,
the power-law (exponential) decay ∼1=tδ (e−γt)].
For the open bath, however, the momentum-dependent

decay rate γk ≠ 0 generally leads to nontrivial and rich
analytic structure of GðωÞ. As illustrated in Figs. 2(b)
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and 2(c), according to Eq. (11), the branch cut deforms
from the structureless straight line to an ellipse ðϵk; γkÞ (red
curve) parametrized by k. It separates the first Riemann
surface (RS) to two disconnected regions: The self-energy
is ΣðωÞ ¼ 0 in the white region (ω ∈ II) but finite in the
blue region (ω ∈ I). Depending on the ratio Γ=ð2JÞ, the
elliptical branch cut undergoes an interesting deformation
[Figs. 2(b) and 2(c)]: Its major axis (dashed line) shrinks
from a line on the real axis for Γ=ð2JÞ < 1 to a point for
Γ=ð2JÞ ¼ 1 and then expands in the orthogonal direction in
the negative imaginary axis for Γ=ð2JÞ > 1.
When GðωÞ exhibits a branch circle, the two-particle

Green function (12) contains an even more complicated
analytic structure consisting of a “branch area.” As such,
the computation of emitter dynamics is nontrivial, where it
is generally hard to perform the Fourier transform (yellow
curve) and the convolution directly.

C. Efficient solution via a fictitious bath

In order to efficiently solve the emitter dynamics, we
introduce the “fictitious bath”: As we prove, an appropriate
fictitious bath with a simple spectrum

ω̄k ¼

−iΓ − 2Jeff sin k; for Γ=2J < 1;

−iΓ − 2iJeff cos k; for Γ=2J > 1
ð13Þ

with Jeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jJ2 − Γ2=4j

p
generates exactly the same

dynamics of the emitters [Fig. 2(d)].
The dispersion (13) of the fictitious bath is obtained

using the analytic continuation, as illustrated in Figs. 2(c)
and 2(d), which allows one to collapse the complex
elliptical branch cut to a line coinciding with its major
axis. Mathematically, the Fourier transforms FðtÞ ¼R
Cðdω=2πÞFðωÞe−iωt (F ¼ G, D) are integrals along the
yellow contour C in region I, which is not contractible due
to the elliptical branch cut in the first RS. However, it turns
out that the self-energy ΣðωÞ can be properly defined in the
second RS by analytic continuation (see Appendix A). As
an example, for one emitter, in region II of the first RS and
region I of the second RS, ΣðωÞ≡ ΣfðωÞ is unified as

ΣfðωÞ ¼ Ω2

Z
dk
2π

1

ω − ω̄k
: ð14Þ

The advantage of the analytic continuation is that one can
further deform the integral contour C to C0 (yellow curve)
in the second RS.
Thus, the emitter dynamics is completely determined by

the fictitious bath

FðtÞ ¼
Z
C0

dω
2π

FfðωÞe−iωt ð15Þ

for (F ¼ G, D) through the simple analytic structure of
GfðωÞ ¼ 1=ðω − Δ − ΣfÞ and DfðωÞ ¼ ½Π−1

f ðωÞ − U�−1

with ΠfðωÞ¼ i
R
dω0Gfðω0ÞGfðω−ω0Þ=ð2πÞ. Figure 2(d)

showcases the significantly simplified analytical structure
of the Green function GfðωÞ associated with the fictitious
bath. There, two poles ϵ̄s (orange dots) and a branch cut ω̄k
(red line) remarkably connect two foci of the original
elliptical branch cut of GðωÞ in the original model. The
spectral weights Z̄−1

s ¼ 1 − ∂ωΣfjω¼ϵ̄s
and AðxÞ of poles

and the branch cut can be obtained analytically, giving rise
to single- and two-excitation dynamics described by GðtÞ
and DðtÞ, respectively [69].
The fictitious-bath approach can be applied to efficiently

compute the dynamics of multiexcitations or multiple
emitters in a generic 1D open bath in the thermodynamic
limit. We emphasize, however, that the bath dynamics, e.g.,
the multiexcitation scattering off the emitter and the propa-
gation in the bath, cannot be studied via the fictitious bath.
Interestingly, the spectrum ω̄k of the fictitious bath in

Eq. (13) coincides with that of the original bath under
open boundary conditions (OBCs) in the thermodynamic
limit. It is worth noting that the original open bath under
OBCs exhibits a skin effect [2]. In contrast, the effective
Hamiltonian of the fictitious bath exhibits completely
different eigenstates, without a skin effect.

D. Dissipative density of states

In the context of closed baths with structured energy
dispersions ϵk, the energy density of states (DOS) of the
bath has played an important role in the emitter-bath
interaction. For an open bath with also structured dissipa-
tion described by γk, analogously, we introduce dDOS
labeled byDsðγÞ, namely, the number of bath modes with a
dissipation rate γ. The 1D dDOS is defined as

DsðγÞ ≔
Z

dk
2π

δðγ − γkÞ: ð16Þ

Explicit calculation of Eq. (16) leads to Eq. (1). In Sec. VII,
we introduce dDOS in arbitrary dimensions and analyze the
behavior of the self-energy through dDOS for arbitrary
open baths with strong dissipations.

E. Second-order correlation function
of a weakly driven emitter

We turn to calculate the steady-state correlation func-
tions of an emitter a driven by a weak field with frequency
ωd. By weak, we mean the driving strength ε is finite but
much smaller than the spectral gap of the system without
the driving field. In the presence of driving (ϵ ≠ 0), the
steady state of Eq. (5) is nonequilibrium, for which the
dissipation-fluctuation theorem no longer holds. However,
we can connect the steady-state correlation functions with
the Green function of the undriven case.
Such a connection is enabled by a relation between

scattering and the master equation formalism as first
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proposed in Ref. [63], where the intuitive picture is the
following: In the weakly driven system, the driving field
just pumps the system by injecting multiple photons;
thus, the pumping process can be considered as the few-
photon scattering off an undriven system. This idea has
been successfully applied to many quantum optical
systems [64,82,83]. Here, we follow the similar spirit,
as detailed in Appendix B.
In particular, we obtain the first- and second-order

correlation functions of the weakly driven emitter in terms
of Green functions of the undriven case as

ha†aiss
ε2

¼
����
Z

∞

−∞
dte−iωdth0jT að0Þa†ðtÞj0i

����2;
ha†a†ðτÞaðτÞaiss

ε4
¼
����
Z þ∞

−∞
dt1dt2e−iωdðt1þt2ÞGðτ; t1; t2Þ

����2

with Gðτ; t1; t2Þ ¼ −ih0jT a1ðτÞa1ð0Þa†1ðt1Þa†1ðt2Þj0i=2.
Here, aðtÞ ¼ eiH

†
eff tae−iHeff t is governed by the non-

Hermitian Hamiltonian (9) without driving.
As the key result, by applying the Dyson expansion to

calculate Green functions of the undriven emitter (see
Fig. 11, Appendix A), we obtain

gð2ÞðτÞ ¼ j1þ Π̄fðτÞTð2ωdÞj2; ð17Þ

with the scattering matrix Tð2ωdÞ ¼ ½U−1 − Πfð2ωdÞ�−1
and the two-particle Green function

Π̄fðτÞ ¼ i
Z

dω0

2π
Gfðωd þ ω0ÞGfðωd − ω0Þe−iω0τ:

In the asymptotic limit τ → ∞, gð2Þð∞Þ → 1 as Π̄fðτÞ tends
to zero. In the limit τ → 0, we obtain gð2Þð0Þ in Eq. (2) from
the identity Π̄fð0Þ ¼ Πfð2ωdÞ.
Since gð2Þð0Þ < 1 indicates the quantum nature of light,

Eqs. (2) and (17) provide us the central principle to
explicitly identify the role played by the non-Hermiticity
of the effective Hamiltonian in generating sub-Poissonian
quantum light.
We emphasize that the formalism developed in this

section is general, applicable for arbitrary non-Hermitian
band structures ϵk − iγk of the bath.

V. FRACTIONAL QUANTUM ZENO EFFECT

Based on the above formalism, in this section, we
explore the emitter physics in the strong dissipation regime
Γ=ð2JÞ ≫ 1, for ϵk ¼ 2J sin k and γk ¼ Γð1þ cos kÞ, and
reveal the FQZ effects for different numbers of excitations.
Cases for the open bath with arbitrary forms of dissipation
bands and dimensions are discussed in Sec. VII.

A. Single excitation

We begin with studying the dynamics in the single-
excitation subspace, where the on-site interaction U does
not play any role and the non-Hermitian emitter-bath
Hamiltonian (9) becomes quadratic. We consider the cases
with one and two emitters, respectively.

1. Single emitter

When the open bath is dominated by its intrinsic
dissipation for Γ=ð2JÞ ≫ 1, vital for the emitter dynamics
at long times are bath modes with small dissipation rates.
To gain intuitions into the physics, let us first consider a
bath with the finite size Nb and, thus, a discrete dissipation
spectrum [Fig. 3(i)], where there opens a gap δγ ¼
2π2Γ=N2

b between the mode bπ with γk ¼ 0 and the rest
modes bk≠π . Under the condition Ω=δγ ≪ 1, the fast-
decaying modes bk≠π can be adiabatically eliminated
in the lowest-order perturbation treatment, yielding an
effective Hamiltonian H0

eff ¼ Ωða†1bπ þ b†πa1Þ=
ffiffiffiffiffiffi
Nb

p þ
ðΔ − iγ1Þa†1a1. It describes that the emitter, which has
the effective decay rate γ1 ≈ ðΩ2=NbΓÞ

P
k≠π 1=ð1þ

cos kÞ ∝ Γ−1 (i.e., standard QZ effect), is coupled to a
single bath mode bπ with an effective coupling strength
Ω=

ffiffiffiffiffiffi
Nb

p
. Thus, the emitter with Δ ¼ 0 is expected to

undergo a Rabi oscillation at frequency 2Ω=
ffiffiffiffiffiffi
Nb

p
, which

is protected by the QZ effect. As such, we refer to the
regime of Ω=δγ ≪ 1 as the pseudo-single-mode regime.
The above analysis for the finite-size limit is verified by

numerical simulations using the original non-Hermitian
Hamiltonian Heff in Eq. (9) with a finite size Nb under
the condition Ω=δγ ≪ 1. Specifically, we find two eigen-
states of Heff coincide with that of the above effective
model, whose eigenvalues show the expected Γ−1 scaling
[Fig. 3(a)]. The numerical result of time-dependent pop-
ulation ha†1ðtÞa1ðtÞi in Fig. 3(b) clearly shows QZ dynam-
ics, where the strong bath dissipation constrains the emitter
to a coherent evolution in the subspace of the emitter and
the mode bπ .
However, in the thermodynamic limit [Fig. 3(ii)], the

structured dDOS associated with the dissipation band,
which diverges near the edge, invalidates the above
single-mode picture. To reveal the resulting emitter dynam-
ics, we employ the formalism developed in Sec. IV to
obtain the self-energy [69]

ΣfðωÞ ¼
−iΩ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðωþ iΓÞ2 − 4J2eff
p ð18Þ

and the Green function GfðωÞ ¼ 1=½ω − Δ − ΣfðωÞ� asso-
ciated with the fictitious bath. In the regime Γ=ð2JÞ ≫ 1,
where the bath undergoes strong dissipation by itself, the
contribution to the emitter dynamics from the branch cut is
found to decay as ∼e−Γt (see Appendix A). On the long
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times Jt ≫ 1=Γ, as shown, the emitter dynamics is deter-
mined by the poles ϵs ≡ ϵb − iγb of Gf, i.e., G−1

f ðϵsÞ ¼ 0,
where ϵb and γb represent the energy and the decay rate of
the quasibound state, respectively. Interestingly, the quasi-
bound states exhibit different behavior depending on the
detuning Δ.
For zero detuning Δ ¼ 0, two quasibound state

solutions

ϵs ≡ ϵb − iγb ¼
1

2

�
�

ffiffiffi
3

p
− i
��Ω4

2

�
1=3

Γ−1=3 ð19Þ

exhibit the same nonanalytic scalings with Γ, in both the
energy and the decay rate. Thus, the quasibound state
displays the FQZ effect. Note that ϵb=γb¼

ffiffiffi
3

p
is a constant.

Equation (19) is confirmed by the numerical solutions of
G−1

f ðϵsÞ ¼ 0 in Fig. 3(c).

The long-lived quasibound state is a superposition of
the emitter and the bosonic modes of the open bath,
i.e., jBi ¼ c1a

†
1j0i þ

P
k fkb

†
kj0i, where c1 and fk are

the coefficients. As detailed in Appendix C, we find fk ¼
c1ðΩ=

ffiffiffiffiffiffi
Nb

p Þf1=½ϵs − ðϵk − iγkÞ�g. According to Eq. (19),
the average momentum of the bath component is sharply
localized at kb → π, as indicated by the fact that ϵs → 0 for
Γ → ∞. In real space, the bath modes localized around
the emitter form a giant cloud with a large localization
length lb ∝ ðΓ=ΩÞ2=3 [see Eqs. (C3)–(C6), Appendix C],
which increases with Γ through a nonanalytic scaling. The
giant size of the cloud as shown in Fig. 3(d) extends
impressively over hundreds of lattice sites at large Γ. Note
that the asymmetry is due to the asymmetry of the bath
under k → −k.
Thus, the emergence of the FQZ effect can be

understood: The strong bath dissipation effectively tailors
the coupling of emitter with the continuum to the
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FIG. 3. Spontaneous emission of an emitter with single excitation in a strongly dissipative open bath. Left [(i),(ii)]: physical picture.
(i) Pseudo-single-mode regime: In a finite-size bath, the gap in the dissipation spectrum (red dots) isolates the long-lived bath mode bπ
from bk≠π . Eliminating bk≠π yields an effective model where the emitter a (blue ball) couples only to bπ . (ii) Thermodynamic limit:
Because of divergent dDOS (1) (colored square) at k ¼ π of the dissipation band γk (red curve), the emitter couples strongly to the
dissipation band edge. Center [(a),(b)]: QZ effect in the pseudo-single-mode regime. (a) Scalings with the bath dissipation Γ=J. By
diagonalizing the Hamiltonian (9) with the Rabi frequency Ω=J ¼ 1, size Nb ¼ 50, and detuning Δ ¼ 0, we find two eigenstates
agreeing with that of the effective model in (i). The (positive) energy and decay rate are shown as a function of Γ=J. (b) Population
dynamics ha†ðtÞaðtÞi. Numerical results are obtained using Eq. (9) with Ω=J ¼ 0.3 and Nb ¼ 10, for Γ=J ¼ 20, 500 (solid and dashed
line, respectively). Right [(c)–(f)]: FQZ effect in the thermodynamic limit. (c) Scaling behavior of the quasibound states whenΔ ¼ 0. By
numerically solving the poles of the function GfðωÞ using Eq. (18) with Ω=J ¼ 1, we show the (positive) energy and decay rate of the
quasibound state as a function of Γ=J. (d) Giant quasibound state. Its wave function is found by diagonalizing Eq. (9) with Nb ¼ 2000,
Δ ¼ 0, and Ω=J ¼ 1. The amplitude of its bath component at lattice site j ∈ ½−1000; 1000� is shown for Γ=J ¼ 100, 1000 (solid and
dashed line, respectively). (e) Population dynamics ha†ðtÞaðtÞi ¼ jGðtÞ2j when Δ ¼ 0. Here, GðtÞ is obtained from the numerical
Fourier transform of GfðωÞ with Ω=J ¼ 1 and Γ=J ¼ 100, 1000 (solid and dashed line, respectively). (f) Scaling behavior of the
quasibound state when Δ ≠ 0. By numerically solving the poles of GfðωÞ with Ω=J ¼ 1, 0.1 (solid and dashed line, respectively),
we plot the decay rate of the quasibound state, whose energy is Δ, as a function of Γ (black line) for Δ=J ¼ −0.7 and a function of Δ
(red line) for Γ=J ¼ 10 000, respectively. (a), (c), and (f) are double-log plots. In (b) and (e), the initial conditions are ha†ð0Það0Þi ¼ 1
and the vacuum state of the bath.
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dissipation-band edge near k ¼ π; there, the divergent
dDOS gives rise to a strong emitter-bath interaction,
leading to the fractional scaling behavior of the emitter.
Indeed, as we rigorously prove later in Sec. VII, the
fractional scaling always emerges if the dDOS near the
dissipation band edge diverges, irrespective of whether γk is
gapless or not. This is in strong contrast to what happens in
the closed-bath case, where the bound state is created if the
emitter is on resonance with the edge of the energy band ϵk
(in our case, this corresponds to the limit of Γ → 0 and
when tuning Δ ≈�2J near resonance with the edge of
ϵk ¼ 2J sin k at k ¼ �π=2).
The excitation population ha†1ðtÞa1ðtÞi ¼ jGðtÞj2 on the

emitter is determined by the Fourier transform of the Green
function GfðωÞ. In the long-term limit, the result [69]

GðtÞ ≈ 4

3
e−γbt cosð

ffiffiffi
3

p
γbtÞ ð20Þ

from the double-pole approximation represents the long-
lived oscillation between two quasibound states. It indi-
cates that both the revival time and the lifetime of the
emitter become longer when Γ increases, while the maxi-
mum revival population is almost constant as a result
of ϵb=γb ¼

ffiffiffi
3

p
. In Fig. 3(e), we show the dynamics of

ha†1ðtÞa1ðtÞi obtained from the numerical Fourier transform
of GfðωÞ. It agrees with Eq. (20) very well at times
t > 1=Γ.
For a finite detuning Δ ≠ 0, however, the two quasi-

bound states show different scalings, i.e.,

ϵð1Þs ¼ Δ − i
Ω2ffiffiffiffiffiffi
2Δ

p eiðπ=4ÞΓ−1=2; ð21Þ

ϵð2Þs ¼ −i
�
Ω4

2Δ2
þ 2J2

�
Γ−1: ð22Þ

The decay rate of the first quasibound state in Eq. (21)
exhibits the FQZ scaling ∝ Γ−1=2, in contrast to the other
one in Eq. (22) with the QZ scaling ∝ Γ−1. Interestingly,
the former also scales fractionally as ∝ Δ−1=2 with Δ. In
Fig. 3(f), we present the numerical solutions for the decay
rate of the first quasibound state, which confirm the
predicted nontrivial scalings. The long-term dynamics of
the emitter is primarily determined by Eq. (21), which
indicates an oscillation with frequency Δ and a decay
dynamics that can be fractionally suppressed via enhancing
both Γ and Δ.

2. Two emitters

We now show that the FQZ effect leads to remarkable
remote, long-term quantum correlation between two emit-
ters. Tunable long-range correlation has been actively
pursued in the closed-bath context such as using atoms

coupled to a photonic crystal [37,39,58]. Therein, however,
a trade-off exists between the correlation length and the
correlation strength, because the increase of photonic
localization length in the atom-photon bound state is
accompanied with reduced atomic population. Here, we
show that the strongly dissipative open bath can mediate
simultaneous substantial and long-range quantum correla-
tion, due to the formation of a dark quasibound state
composed of two emitters and the bath component with a
very large spatial size.
We focus on the interesting case Δ ¼ 0 and assume

the distance d of two emitters to be an even number
without loss of generality. Again, we start from the
pseudo-single-mode regime [Fig. 4(i)] to gain some
intuition. In this case, adiabatic elimination of the
bath modes bk≠π yields the effective non-Hermitian
Hamiltonian H0

eff ¼
P

l¼1;2½−iγla†l al þΩ=
ffiffiffiffiffiffi
Nb

p ða†l bπ þ
H:c:Þ�, where γ1 is the same as before and γ2 ≈
ðΩ2=NbΓÞ

P
k≠π e

−ikd=ð1þ cos kÞ. It describes a three-
level system where two emitters are coupled to the bath
mode bπ , protected by the standard QZ effect. In the limit
Γ=ð2JÞ → ∞, the antisymmetric superposition of two
emitters in the odd channel forms a dark state jψ−i ¼
ða†1 − a†2Þj0i=

ffiffiffi
2

p
decoupled from all bath modes, whereas

in the even channel the symmetric superposition of
emitters hybridizes with the bπ mode to form two bright
states, jψþi ¼ c1ða†1 þ a†2Þj0i=

ffiffiffi
2

p þ c2b
†
πj0i, where c1

and c2 are coefficients. This physical picture indicates
that, due to the dark state, excitation initially populating
the first emitter is transferred to the second emitter
at some time t < Γ−1 even when they are remotely
separated.
In the thermodynamic limit, however, two emitters are

strongly coupled to the dissipation band edge with diver-
gent dDOS [Fig. 4(ii)]. For the separation d within the
spatial size of the localized bath modes, analogy with the
pseudo-single-mode case suggests potential creations of
dark (bright) quasibound states in odd (even) channels.
Mathematically, we determine the energy and the decay

rate of the two-emitter quasibound states from the poles of
Green functions G�ðωÞ ¼ 1=ðω − Σ�

f Þ in the even (odd)
channels þ (−), where the self-energies Σ�

f are [69]

Σ�
f ðωÞ ¼ −i

Ω2½1� zdþðωÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðωþ iΓÞ2 − 4J2eff

p ð23Þ

with zþðωÞ ¼ iðωþ iΓÞ=2Jeff þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−½ðωþ iΓÞ2=4J2eff �− 1

p
.

The approximate solution for the complex energy ϵs of
the quasibound state can be obtained analytically via the
Taylor expansion. ForΩ=J >

ffiffiffiffiffiffiffiffi
2=d

p
, we find two solutions

for the “dark” quasibound states

ϵs ¼ �R − idΩ2Γ−1 ð24Þ
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in the odd channel with R ∼ Γ−2 and two solutions for the
bright quasibound states in the even channel:

ϵs ¼
1

2
ð�

ffiffiffi
3

p
− iÞð2Ω4Þ1=3Γ−1=3: ð25Þ

The above results indicate that the decay rate of the
dark quasibound state is controlled by the distance d and
exhibits QZ scaling. Instead, the two bright quasibound
states are blind to d and feature the FQZ scaling Γ−1=3 the
same as the single-emitter case, except that the prefactor is
enhanced by a factor of 41=3. These analytical results are
confirmed by numerical solutions of the poles of the Green
functions G�ðωÞ, as shown in Fig. 4(c). Note that the dark
quasibound state relies on strong dissipation and divergent
dDOS of the dissipation band edge; hence, it is different in
nature from the bound states with small decay rates in the
context of a closed bath with multiple emitters [57,84],
where the energy resonance mechanism plays a fundamen-
tal role.

According to Eqs. (23)–(25), the bright quasibound
state of the complex energy ϵs exhibits the localization
length lb ∼ 1= log½jzþðϵsÞj�, which sets a characteristic
length scale for the interaction of two emitters.
Remarkably, jzþj → 1 in the limit Γ=ð2JÞ → ∞ indicates
a remote correlation mediated by the bath mode near
the dissipation-band edge, where the FQZ effect gives
rise to a nonanalytic scaling of the correlation length
lb ∝ ðΓ=ΩÞ2=3 with Γ.
The dynamics of two emitters directly follows from the

Fourier transforms G1nðtÞ ∼
R ðGþ �G−Þe−iωtdω=ð4πÞ for

n ¼ 1, 2 as [69]

iG1nðtÞ ¼
2

3
e−γ̄t cosð

ffiffiffi
3

p
γ̄tÞ � 1

2
e−ðΩ2d=ΓÞt; ð26Þ

where γ̄ ¼ Ω4=3=ð4ΓÞ1=3. In Fig. 4(d), we numerically
perform the Fourier transforms to obtain the time-
dependent population ha†nðtÞanðtÞi ¼ jG1nðtÞj2 and the
correlation jha†2ðtÞa1ðtÞij of two remote emitters separated
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FIG. 4. Remote state transfer and quantum correlation between two emitters mediated by a strongly dissipative open bath. Left [(i),
(ii)]: physical picture. (i) Pseudo-single-mode regime: For a finite-size bath, elimination of bath modes bk≠π yields an effective model
where emitters a1 and a2 interact via a single mode bπ , forming a dark state and two bright states. (ii) Thermodynamic limit: Because of
divergent dDOS (colored square) at k ¼ π of γk (red curve), two emitters interact strongly with the dissipation band edge, yielding two
dark and two bright quasibound states. Center [(a),(b)]: QZ effect in the pseudo-single-mode regime. (a) Scaling with Γ=J. By
diagonalizing Eq. (9) with Rabi frequency Ω=J ¼ 1 and Nb ¼ 70 sites, we find a dark state (solid line) and two bright states (dashed
line) described by the effective mode in (i). Their energy (black line) and decay rate (red line) are shown as a function of Γ=J. The energy
of the dark state is approximately 10−15J and negligible. (b) Population dynamics ha†l ðtÞalðtÞi (l ¼ 1, 2). Results are numerically
obtained using Eq. (9) with Ω=J ¼ 0.3 and Nb ¼ 60, for Γ=J ¼ 500, 10 000 (black and blue line, respectively). Right [(c)–(f)]: FQZ
effect in the thermodynamic limit. (c) Scaling behavior of the dark and bright quasibound states. By numerically solving the poles of
G�ðωÞ [69] using Eq. (23) with Ω=J ¼ 1 and distance d ¼ 30, we plot the energy and decay rate as a function of Γ=J. (d) Dynamics of
populations and correlations. Results are obtained via numerical Fourier transform of G�ðωÞ with Ω=J ¼ 0.3 and Γ=J ¼ 40 000.
(e) Maximum population ha†2a2imax and (f) long-time quantum correlation jha†2ðtÞa1ðtÞij at Jt ¼ 1000 as a function of d (even number),
with Ω=J ¼ 0.3 and Γ=J ¼ 10 000, 40 000, 100 000 (square-dashed, dashed, and dot-dashed line, respectively). In (a)–(f), the detuning
is Δ ¼ 0. In (b) and (d)–(f), the initial conditions are ha†1ð0Þa1ð0Þi ¼ 1, ha†2ð0Þa2ð0Þi ¼ 0, and the vacuum state of the bath. (a) and (c)
are double-log plots.
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by d ¼ 30. The results at long times t > 1=Γ agree very
well with Eq. (26).
When d=lb ≪ 1, Eq. (26) predicts the maximal trans-

ferred population on the second emitter is ha†2a2imax →
0.36 [Fig. 4(d)] at the time ts∼π=ð ffiffiffi

3
p

γ̄Þ. When d increases,
ha†2a2imax diminishes [Fig. 4(e)] due to the increased decay
rate of the dark quasibound state [see Eq. (24)]. However,
as long as d=lb ≪ 1, the population decreases as ∝ −d=lb,
leading to a state transfer that can occur across hundreds of
lattice sites.
Interestingly, due to the presence of the dark quasibound

state, a remote correlation jha†2ðtÞa1ðtÞij ∼ 0.25 between
two emitters can exist for a remarkably long time, as
expected from Eq. (26) under the condition t < Γ=ðdΩ2Þ;
see Fig. 4(d). The remoteness of the long-term correlation is
showcased in Fig. 4(f). When d < Γ=ð1000Ω2Þ, we see that
the correlation diminishes linearly and slowly with d,
remaining substantial over a distance d ∼ 200 even at such
a long time Jt ¼ 1000. These results suggest the possibility
to flexibly engineer simultaneous significant and remote
correlations in practice where the finite-size bath is gen-
erally in between the thermodynamic and the quasi-single-
mode limits.

B. Two excitations

In this section, we study the spontaneous emission of two
excitations in an emitter with the on-site interaction U. We
show that the decay rate of two excitations exhibits distinct
FQZ scalings from the single-excitation counterpart, which
can be tuned via U and Δ.
Since the effective emitter-bath Hamiltonian (9)

commutes with N, we can expand it in the two-excitation
subspace spanned by the basis fa†21 j0i= ffiffiffi

2
p ≡ jdi;

a†1b
†
kj0i≡ jkie; b†kb†k0 j0i≡ jkk0ig. We obtain

H0
2 ¼ ðU þ 2ΔÞjdihdj þ

X
k

ðΔþ EkÞjkiehkj

þ
X
k

ffiffiffi
2

p
Ωffiffiffiffiffiffi
Nb

p ðjkiehdj þ H:c:Þ

þ
X
kk0

ðEk þ Ek0 Þjkk0ihkk0j

þ
X
kk0

ffiffiffi
2

p
Ωffiffiffiffiffiffi
Nb

p ðjkiehkk0j þ H:c:Þ; ð27Þ

where Ek ¼ εk − iγk is the complex energy of the bath
mode bk.
Because the bath mode bπ has zero complex energy

Eπ ¼ 0, Eq. (27) indicates two kinds of resonant processes.
(i) For the interaction U ¼ −Δ, the doublon state jdi (i.e.,
two excitations in the emitter) is resonant with the state jπie
(i.e., one excitation in the emitter and one excitation
at k ¼ π in the bath). (ii) When U ¼ −2Δ, the resonant

coupling occurs between the doublon state jdi and the state
jππi (i.e., two excitations at k ¼ π in the bath).
It turns out that, in the resonant case U ¼ −Δ, the decay

rates of two excitations have different scaling behaviors
from the single-excitation sector. Under the condition
Ω2=ΔΓ ≪ 1, the states jkk0i (i.e., two excitations in the
bath) can be adiabatically eliminated (see Appendix C). To
leading order, the dynamics is governed by the effective
non-Hermitian Hamiltonian

H00
2 ¼

ffiffiffi
2

p
Ωffiffiffiffi
N

p
X
k

ðjkiehdj þ H:c:Þ þ
X
k

Ekjkiehkj ð28Þ

in the rotating frame, which is exactly the Hamiltonian in
the single-excitation sector with Δ ¼ 0 and Ω →

ffiffiffi
2

p
Ω.

Equation (28) immediately allows us to use the earlier
results of the single excitation to understand the physics of
two excitations with the interaction U ¼ −Δ. Specifically,
it indicates the existence of two giant two-excitation
quasibound states whose complex energies are

ϵs ≡ ϵb2 − iγb2 ¼
1

2
ð�

ffiffiffi
3

p
− iÞð2Ω4Þ1=3Γ−1=3: ð29Þ

We thus conclude that the spontaneous emission of two
excitations is characterized by

DðtÞ ≈ 4

3
e−γb2t cosð

ffiffiffi
3

p
γb2tÞ ð30Þ

at long times, which exhibits the FQZ effect without
explicit dependence on Δ and U.
To validate above analysis, we apply the approach in

Sec. IV and derive the two-particle Green function
DfðωÞ ¼ ½Π−1

f ðωÞ −U�−1 associated with the fictitious
bath. By numerically solving the poles of DfðωÞ, we find
the energy and decay rate of two-excitation quasibound
states under the condition U ¼ −Δ. The numerical results
shown in Figs. 5(a) and 5(b) confirm the Γ−1=3 scaling
and the insensitivity to Δ. By numerically performing the
transformation DðtÞ ¼ R DfðωÞe−iωtdω=2π, we obtain the
spontaneous emission of two excitations, as shown in
Fig. 5(c) for various Γ and Fig. 5(d) for various Δ.
These results clearly corroborate Eq. (30); in particular,
variations in the finite detuning barely influence the emitter
dynamics.
That the spontaneous emission rate of two excitations

with interactionU ¼ −Δ scales as Γ−1=3 and is independent
of Δ is in strong contrast to the single-excitation counter-
part, where the decay rate scales as Γ−1=2 and can be
controlled by Δ [cf. Eq. (21) and Fig. 3(f)]. As shown in
Fig. 5(c), the single excitation undergoes a significantly
slower decay compared to two excitations. The large
difference between the decay rates of one and two
excitations is even more dramatic in Fig. 5(d). There,
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increasing Δ further suppresses the single-excitation decay
as Δ−1=2, in contrast to the “frozen” evolution trajectory of
two excitations.
For U ≠ −Δ, the fractional scalings appear generically;

see Fig. 5(e) for Δ=J ¼ −1. Since in the noninteracting
limit two excitations exhibit similar scaling behaviors as

the single excitation, we anticipate the FQZ scaling to cross
over from Γ−1=2 to Γ−1=3 when the interaction is tuned from
U ¼ 0 to U ¼ −Δ, as observed in Fig. 5(e).
Intriguingly, the independently tunable FQZ scalings for

different numbers of excitations points to the possibility
to tailor the emitter dynamics into the desired excitation
subspaces. For instance, we can engineer the detuning
Δ ¼ −U and bath dissipation Γ in such a way that the two
excitations decay much faster than the single excitation.
This has the direct consequence of the hierarchical Zeno
effect; namely, any weak pump field cannot populate
the two-excitation subspace in the characteristic time-
scale ∼Γ1=2, leading to confined dynamics in the single-
excitation subspace.

VI. FQZ-INDUCED ANTIBUNCHING

In this section, we study the statistics of emitter exci-
tations in the presence of a weak driving field. As predicted
in Sec. V B, due to the FQZ effect, the dynamics is
expected to be frozen in the single -excitation subspace
even with a weak nonlinearity. Conventionally, the strong
single-photon nonlinearity relies on strong Kerr inter-
actions [42] or interference [43,44]. Here, we show that
the FQZ effect presents a new mechanism in the limit of
weak interactions.
Consider the driving light is on resonance with the single

excitation, i.e., ωd ¼ Re½ϵð1Þs �. It is instructive to first obtain
some estimation for the second-order correlation gð2ÞðτÞ
in Eq. (17) in the regime Γ=J ≫ 1. Assuming the approxi-

mation GfðωÞ ∼ 1=ðω − ϵð1Þs Þ [85], which leads to Π̄fðτÞ∼
e−iðϵ

ð1Þ
s −ωdÞτ=½2ðωd − ϵð1Þs Þ�, the resulting analytical expres-

sion reads

gð2ÞðτÞ ∼
�����1þ Ce−iðϵ

ð1Þ
s −ωdÞτ

1 − C

�����
2

: ð31Þ

The ratio C ¼ U=½2ðωd − ϵð1Þs Þ�, as a figure of merit,
determines the statistics of the emitter excitations. For
Δ ≠ 0, we obtain from Eq. (21) that C ¼ iU

ffiffiffiffiffiffiffiffiffijΔjΓp
=Ω2,

and Eq. (31) suggests gð2Þð0Þ ∼ 1=ð1þ jCj2Þ < 1.
As an example, we analyze the photon statistics in

the case U ¼ −Δ, where the decay rate γ2 ∼ Γ−1=3 of
two excitations is larger than that γ1 ∼ Γ−1=2 of the single
excitation. In the limit jCj ≫ 1, Eq. (31) reduces to

gð2Þð0Þ ∼ Ω4

U3Γ
≪ 1; ð32Þ

which indicates the sub-Poissonian statistics. The result (32)
explicitly provides the scaling of gð2Þð0Þ on Ω, U,
and Γ. In addition, gð2ÞðτÞ saturates to unity in the time-

scale τ ¼ 1=γ1 ¼ 1=Im½ϵð1Þs �. The condition (32) can be
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Sec. IV. (a) Scalings of the energy (black line) and decay rate (red
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dissipation rate Γ. The Rabi frequency is Ω=J ¼ 1 and
Δ=J ¼ −1. (b) Decay rate of the quasibound state as a function
of Δ, when Γ=J ¼ 1000 and Ω=J ¼ 0.1, 1 (red and black line,
respectively). (a) and (b) are double-log plots. (c),(d) Compar-
isons between spontaneous emissions of single and two excita-
tions, when (c) Γ is changed and Δ=J ¼ −1 and (d) Δ is changed
and Γ=J ¼ 100. In (c) and (d), Ω=J ¼ 0.1. (e) FQZ scaling Γ−ν
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Δ=J ¼ −1 and Ω=J ¼ 1. Beside each curve, the extracted value
of −ν is labeled.
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understood using an intuitive picture: As the decay rate
of two excitations is ∼Ω4=3Γ−1=3 [see Eq. (29)], the con-
dition (32) indicates the interaction U is stronger than the
two-excitation decay rate suppressed by the FQZ effect.
Figures 6(a) and 6(b) numerically validate the strong

antibunching when U ¼ −Δ. There, the Rabi coupling
Ω=J ¼ 0.3 is fixed, and the driving light is on resonance,

i.e., ωd ¼ Re½ϵð1Þs �. In Fig. 6(a) for Γ=J ¼ 103 and
U=J ¼ −Δ=J ¼ 0.3, the numerical result of gð2ÞðτÞ explic-
itly displays the antibunching behavior. In Fig. 6(b), we
plot the numerical values of gð2Þð0Þ in the Γ-U plane
for U ¼ −Δ. As shown by the black curve, to realize a
desired gð2Þð0Þ ¼ 0.05, the required nonlinearity U
becomes weaker as Γ increases, and in the large Γ limit
U ∼ Γ−1=3, confirming the analysis based on Eq. (32).
When U ≠ −Δ, remarkably, capitalizing on the rich

controllability over the FQZ scalings and, thus, the
decay rates in different excitation subspaces, strong anti-
bunching arises even for sufficiently weak nonlinearity
U=2 < 2γ1 < γ2, as numerically shown in Fig. 6(c).
This can be understood by noting that, without the non-
linearity U, the decay rates of the two excitations have

the same scaling relation as the single excitation, i.e.,
γ2 ¼ 2γ1 ∼ ðjΔjΓÞ−1=2. When increasing U to the resonant
point −Δ, however, the two-excitation decay rate is
gradually enhanced to γ2 ∼ Γ−1=3 (see Fig. 5). In the
crossover regime 0 < U < −Δ, therefore, one expects
antibunching even in the weak nonlinearity regime
U=2 < 2γ1 < γ2. In Fig. 6(c), we show sub-Poissonian
statistics, i.e., gð2Þð0Þ < 1, for Γ=J ¼ 38.8, Ω=J ¼ 0.79,
and Δ=J ¼ −0.3, where gð2Þð0Þ monotonically decays
to 0.2 in the weak nonlinearity regime U=2 < 2γ1. In
Fig. 6(d), gð2Þð0Þ < gð2ÞðτÞ unambiguously displays anti-
bunching behavior. We remark that the ability to engineer
γ2 > 2γ1 due to the FQZ hierarchy allows for gð2Þð0Þ < 0.5
even when the interaction is so small as U=2 < γ1.
This cannot be accessed through the featureless QZ effect,
where γ2 ≈ 2γ1 results in gð2Þð0Þ > 0.5 for U=2 < 2γ1.

VII. SCALING BEHAVIORS FOR THE
ARBITRARY OPEN BATH

In previous sections, we illustrate the FQZ effect for the
1D open bath with γk ¼ Γð1þ cos kÞ, which is gapless. To
further understand the physics of the FQZ effect, we now
present a general scaling analysis for the open bath with
arbitrary dissipative bands γðkÞ in dimensions d ¼ 1, 2, 3.
As we show, the FQZ effect generically occurs as the result
of strong dissipation and divergent dDOS near dissipative
band edges, regardless of whether the bath spectrum is
gapless or not. This makes the present fractional scaling
intrinsically different from the conventional nonanalytic
phenomena for which gapless modes are crucial.
Without loss of generality, we concentrate on the purely

dissipative open bath [i.e., ϵðkÞ ¼ 0]. In general, the
dissipative band γðkÞ has three characteristics. (i) The
minimum dissipation rate is γmin ≡min½γðkÞ�, which nec-
essarily sits at the dissipation band edge with the quasi-
momentum k0. When γmin ≠ 0, it provides the dissipative
gap of the open bath. (ii) For a spatially homogeneous bath,
the dissipative dispersion near the dissipative gap (edge) at
k0 can be approximated as

γðkÞ ¼ γmin þ cΓjk − k0jμ: ð33Þ

Here, the power μ depends on the specifics of γðkÞ, the
coefficient c is such that ckμ is dimensionless, and Γ
characterizes the dissipation bandwidth. (iii) The dDOS in
d dimensions is defined as

DsðγÞ ≔
Z

ddk
ð2πÞd δ½γ − γðkÞ�: ð34Þ

According to Eq. (33), the dDOS near γmin is given by

DsðγÞ ¼
A

ð2πÞd
ðγ − γminÞ−1þðd=μÞ

μðcΓÞd=μ ; ð35Þ
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FIG. 6. The FQZ-induced antibunching in a driven emitter.
(a) Second-order correlation function gð2ÞðτÞ as a function of time
τ. We calculate gð2ÞðτÞ in Eq. (8) based on Eq. (17), with the
interaction U=J ¼ −Δ=J ¼ 0.3 and the bath dissipation rate
Γ=J ¼ 1000. The driving frequency is ωd=J ¼ −0.303.
(b) Minimal gð2Þð0Þ in the parameter spaces of interaction U=J
and dissipation Γ=J when U=J ¼ −Δ=J. Calculations are based
on Eq. (2). The black curve denotes where gð2Þð0Þ ¼ 0.05. In (a)
and (b), the JC coupling strength is Ω=J ¼ 0.3. (c),(d) Strong
antibunching in the weak-interaction regime U=2 < 2γ1 < γ2.
(c) Minimal gð2Þð0Þ as a function of interaction U. (d) gð2ÞðτÞ
for U=J ¼ 0.3 and ωd=J ¼ −0.42. In (c) and (d), we use
Γ=J ¼ 38.8, Ω=J ¼ 0.79, and Δ=J ¼ −0.3.
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where the coefficient A depends on the dimensions. We
immediately see that the dDOS near γmin diverges when
d=μ < 1 but vanishes when d=μ > 1.
Now consider an emitter coupled with the open bath as

before, and we are interested in the scaling behaviors of the
complex energy ϵs of the quasibound states. We illustrate
our analysis for Δ ¼ 0 and single excitation. By extending
the formalism in Sec. IV to the d-dimensional bath, we aim
to solve sþ ΣðsÞ ¼ 0, where s ¼ −iω and the self-energy
reads as

ΣðsÞ ¼ Ω2

Z
ddk
ð2πÞd

1

sþ γðkÞ : ð36Þ

Since relevant for the long-time dynamics are the bath
modes in the vicinity of γmin, we use Eq. (33) to obtain

Σ ¼ AΩ2

ð2πÞd
1

μðcΓÞd=μ
Z

Λ

γmin

1

sþ γ

1

ðγ − γminÞ1−ðd=μÞ
dγ

¼ C

�
Λ0

Γ

�
d=μ 1

s0
F

�
1;
d
μ
;
d
μ
þ 1;−

Λ0

s0

�
: ð37Þ

Here, we introduce a cutoff Λ and redefine s0 ¼ sþ γmin
and Λ0 ¼ Λ − γmin ∝ Γ. Moreover, Fðα; β; ζ; zÞ is the
hypergeometric function, and the coefficient C depends
on the dimensions. When the dissipation scale Γ is largest
compared to all the other relevant energy scales, we can
expand the self-energy (37) in terms of the small parameter
js0=Λ0j. We refer to Appendix D for detailed analysis.
At the leading order, we find (i) fractional scaling, Σ ∝

Γ−d=μ for d=μ < 1, (ii) logarithmic behavior, Σ ∝ ðlnΓÞ=Γ
for d=μ ¼ 1, and (iii) integer scaling, Σ ∝ Γ−1 for d=μ > 1.
Finally, by solving sþ ΣðsÞ ¼ 0, we analytically derive the
scaling relations for the complex energy ϵs of quasibound
states. The scalings for Δ ≠ 0 are obtained in a similar way.
In Table I, we collect the results of ϵs of the quasibound

states with the smallest decay rate, for γmin ≠ 0 and
γmin ¼ 0, respectively. We see that fractional scalings
always arise whenever DsðγminÞ → ∞, whereas the stan-
dard QZ effect emerges if DsðγminÞ → 0. Note that,
although singular dDOS may appear at other places of
the Brillouin zone, in the strong dissipation regime,
only the dDOS near γmin is important for the dynamical
long-time behaviors of the emitters.

To validate above analysis, we numerically solve the
poles of the single-particle Green function for three
examples of γðkÞ. The results for Δ ¼ 0 are presented
in Fig. 7. The first example is γðkÞ ¼ γ0 þ Γð1þ cos kÞ,
corresponding to the gapped version of the 1D case
considered in previous sections. If gapless modes are
necessary for the fractional scalings, one would expect
the FQZ effect to disappear. Instead, in Fig. 7(a), we find
the FQZ effect under various gap sizes of γ0, where the
Γ−1=2 scaling agrees with what is predicted from the
quadratic dissipative dispersion γðkÞ ¼ γ0 þ Γðk − πÞ2=2
with the divergent dDOS at γ0. As the second example,
we consider a gapless 1D dissipation band γðkÞ ¼
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij sinðkÞjp
=3. We see that standard QZ effect emerges

[Fig. 7(b)]. This can be understood, because γðkÞ ∝ jkj1=2
near γmin ¼ 0, so that the dDOS vanishes at k ¼ 0, leading
to the linear scaling according to Table I. The third example
is γðkÞ ¼ Γð3þ cos kx þ cos ky þ cos kzÞ in 3D. Similarly
as its 1D counterpart analyzed previously, this is a
gapless spectrum with γðkÞ ∝ jk − πj2 near γmin ¼ 0 at

TABLE I. Scaling analysis of the complex energy ϵs of the longest-living quasibound state for an arbitrary open bath in d dimension.
C is a general notation for prefactor.

d=μ dDOS Gapped open bath (γmin ≠ 0) Gapless open bath (γmin ¼ 0)

d
μ < 1 limγ→γmin

DsðγÞ ¼ þ∞ Δþ Cðγmin − iΔÞ−1þðd=μÞΓ−d=μ 

CΓ

1
1−2μ=d ðΔ ¼ 0Þ

Δþ Cð−iΔÞ−1þðd=μÞΓ−d=μ ðΔ ≠ 0Þ
d
μ ¼ 1 limγ→γmin

DsðγÞ ¼ const ≠ 0 Δ − iCΓ−1 lnð Γ
γmin

Þ Δ − iCΓ−1 lnðΓϵÞ
d
μ > 1 limγ→γmin

DsðγÞ ¼ 0 Δ − iCΓ−1 Δ − iCΓ−1
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γðkÞ and dimension of a purely dissipative bath. (a) γðkÞ ¼
γ0 þ Γð1þ cos kÞ, for γ0=Ω ¼ 10, 50, respectively, (b) γðkÞ ¼
ðΓ=3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij sinðkÞjp

, and (c) γðkÞ¼Γð3þcoskxþcoskyþcoskzÞ.
(d) FQZ-induced antibunching in a gapped bath with γðkÞ ¼
γ0 þ Γð1þ cos kÞ. In (a)–(c), we take Δ ¼ 0. In (d), we choose
Δ=Ω ¼ −0.2, Γ=Ω ¼ 25, interaction U=Ω ¼ 0.2, γ0=Ω ¼ 5, and
ωd=Ω ¼ −0.23, and J ¼ 0.
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k ¼ ðπ; π; πÞ. However, Fig. 7(c) reveals a completely
different behavior from the 1D case, where the QZ effect,
instead of the FQZ effect, emerges, due to the vanishing 3D
dDOS at γmin ¼ 0.
In summary, we arrive at the physical picture that the

FQZ effect occurs whenever the open bath itself under-
goes strong dissipation and DsðγminÞ diverges, irrespec-
tive of whether there are gapless modes or not. This
conclusion is applicable also for the case with multiple
excitations. As an application, in Fig. 7(d), we show the
FQZ-induced strong photon antibunching for a weak
nonlinearity when the bath has the gapped dissipation
spectrum γðkÞ ¼ γ0 þ Γð1þ cos kÞ. Note that, as shown
by Table I, manipulation of dDOS can tune the scaling
behavior, e.g., from fractional scalings to logarithmic
behavior or to integer scalings.

VIII. EXPERIMENTAL IMPLEMENTATION

Although the FQZ effect is predicted in the thermody-
namic limit, it can be observed for the open bath with the
finite size Nb, provided Nb and the system parameters are
such that the condition Ω=δγ ≫ 1 with δγ ¼ 2π2Γ=N2

b is
satisfied (see Appendix E). In this section, we present the
microscopic setup for realizing the FQZ effect by using
ultracold atoms in the state-dependent optical lattices, as
schematically illustrated in Fig. 8. Recently, engineered
lattice models with dissipative couplings have been dem-
onstrated with the momentum-space lattice of cold atoms
[18] as well as an ensemble of photonic resonators [21] or
atomic spin waves [17] coupled to the auxiliary reservoir.
Our implementation of the master equation (5) is in line
with these experiments.
We encode the emitter a, the bath b, and the auxiliary

bath c in three ground-state hyperfine levels of the bosonic
atom, labeled as j1i, j2i, and j3i, respectively.

(i) In state j1i, atoms can undergo Feshbach resonance
and realize the nonlinear term ðU=2Þa†2a2 To realize
the driving field, we can prepare the atomic Bose-
Einstein condensate (BEC) in another hyperfine
state labeled by j4i and use the external laser field
with frequency ωd to induce the transition between
j4i and j1i. This implements the driving term
εa†e−iωdt þ H:c:, where ε is related to the mean-
field wave function of the BEC.

(ii) In state j2i, atoms are deeply trapped in the 3D
optical lattice with Nb sites. For realizing the FQZ
effect, the term

P
j Je

iθb†jbjþ1 þ H:c: is not neces-
sary, as shown previously. Note that, for general
purpose, this term can be readily realized via a two-
photon Raman transition between the adjacent
lattice sites [86], where the phase θ is controlled
via the relative phase of the coupling lasers. The
term Ωa†b0 þ H:c: is implemented by using the
laser to induce the transition between j1i and j2i.

(iii) In state j3i, atoms are free in the y − z directions but
are deeply trapped in a 1D optical lattice in the
x direction, where the tunneling rate is ignorable.
When atoms are excited to j3i, they are quickly lost
from the system in the y − z directions with the loss
rate γc=2. Both bj and bjþ1 are near-resonant
coupled to cj via lasers (j ¼ 1;…; Nb − 1), with
the coupling rate g. For large loss rate γc=2, modes
cj can be adiabatically eliminated to realize the
nonlocal dissipator in Eq. (6) with Γ ¼ 4g2=γc. To
observe the FQZ effect requires one to tune the
parameters to satisfy Ω=δγ ≫ 1.

An alternative atomic platform may be provided by
thermal atoms in a vapor cell [14]. A unique feature of such
setup is that atomic spin waves created by the electromag-
netic-induced transparency in spatially separated optical
channels is naturally dissipatively coupled via flying atoms.
By further controlling the separation and laser beams, a
dissipative atomic-spin-wave lattice has been realized [17].
The light interacting with the spin waves in an optical
channel, thus, represents an emitter coupled to the open
bath, whose properties can be detected via the transmission
spectroscopy.

IX. CONCLUSION

In this work, we predict quantum non-Hermitian phe-
nomena, the FQZ effect and the FQZ-induced sub-
Poissonian photon statistics, based on a paradigm where
nonlinear emitters interact with an engineered open bath.

x

yz

FIG. 8. Implementation scheme with cold atoms for the master
equation (5). We use three hyperfine levels of the bosonic atom,
labeled as jii (i ¼ 1, 2, 3), respectively, to encode the emitter a,
the bath b, and the auxiliary bath c. In j1i, atoms can undergo
Feshbach resonance. In j2i, atoms are deeply trapped in the 3D
lattice (gray). In j3i, atoms are free in the y − z directions but
deeply trapped in a 1D optical lattice (orange) in the x direction.
We prepare the atomic BEC in another hyperfine state labeled by
j4i and use the laser with frequency ωd to induce the transition
between j4i and j1i. States j1i and j2i are coupled by lasers. Both
bj and bjþ1 are near-resonant coupled to cj with the coupling
rate g. When atoms are excited to j3i, they are quickly lost from
the system in the y − z direction with a large loss rate γc=2.
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The FQZ effect generally arises from the combination of
strong dissipation and divergent dDOS near the dissipation
band edge and has no immediate counterpart in the closed-
bath context. Capitalizing on its unique, excitation-number-
dependent scaling behaviors, we are able to judiciously
design a hierarchy of decay rates for the emitters. This
opens a new route toward the generation of strong
photon antibunching in the limit of weak nonlinearities.
Remarkably, we identify that the present sub-Poissonian
quantum statistics of photons is driven by the key role of
non-Hermiticity. Our result presents a first step toward the
exploration of non-Hermitian quantum optics. It is also of
relevance in the context of recent experiments for non-
Hermitian lattice models, where demonstrating quantum
non-Hermitian phenomena remains an open challenge.
Our work offers a new way to design the system-bath

interaction by engineering the intrinsic dissipation band
structure of the open bath. When the bath undergoes strong
dissipation by itself, the emitters are dynamically enforced
to mainly couple with the weakly dissipating modes hosted
near the dissipation band edge, whose dDOS plays a central
role in the dynamical long-time behaviors of emitters. This
route complements the conventional way to engineer the
emitter-bath interaction in the closed-bath context which
crucially relies on the energy resonance. It also opens a new
path to realize interesting quantum non-Hermitian physics,
as well as quantum simulations of many-body systems.
Beyond engineering either an energy or a dissipation band
of the bath, it is interesting to explore how their combi-
nations may give rise to intriguing quantum effects.
In summary, our work provides a feasible route in the

highly desired, yet challenging, quest for non-Hermitian
quantum many-body effects. Beyond the general funda-
mental interests, ultimately, understanding the role played
by non-Hermiticity in fully quantum regimes will enable us
to leverage recent advances in non-Hermitian Hamiltonian
engineering for actual quantum applications.
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APPENDIX A: GREEN FUNCTIONS
AND ANALYTIC CONTINUATIONS

In this section, we derive the retarded Green func-
tions GRðωÞ and DRðωÞ for the undriven emitters. By
the appropriate analytic continuation, we introduce the
Green function GfðωÞ also available in the second RS,
which naturally gives rise to the effective Hamiltonian
H̄eff describing emitters coupled to the bath with the
simple dispersion relation and decay rates. In the first
and second subsections, we study the situations for
single and two emitters. In the third section, we derive
DRðωÞ using the ladder diagram. The retarded Green
function DðtÞ in the time domain can be efficiently
calculated using the analytic continuation DfðωÞ
of DRðωÞ.
Before proceeding, we remark that, at zero temperature,

the steady state of the master equation (5) without the
driving field (ϵ ¼ 0) is the equilibrium state represen-
ted by the vacuum state j0i of excitations. There,
the fluctuation-dissipation theorem applies. Specifically,
time-ordered single-particle Green functions GtðtÞ ¼
−ih0jT alðtÞa†1ð0Þj0i and the retarded Green functions
GRðtÞ ¼ −ih0j½alðtÞ; a†1ð0Þ�j0iθðtÞ coincide with each
other. Similarly, the time-ordered two-particle Green
function DtðtÞ ¼ −ih0jT a21ðtÞa†21 ð0Þj0i=2 coincides with
the retarded two-particle Green function DRðtÞ ¼
−ih0j½a21ðtÞ; a†21 ð0Þ�j0iθðtÞ=2. That is, GtðtÞ ¼ GRðtÞ≡
GðtÞ, and DtðtÞ ¼ DRðtÞ≡DðtÞ, which have simple
relations GðtÞ ¼ GKðtÞθðtÞ and DðtÞ ¼ DKðtÞθðtÞ with
Keldysh Green functions GKðtÞ ¼ −ih0jfalðtÞ; a†1ð0Þgj0i
and DKðtÞ ¼ −ih0jfa21ðtÞ; a†21 ð0Þgj0i=2, respectively.
We show later in Appendix B 1 how one can effici-
ently study the spontaneous emission of n excitations
(n ¼ 1; 2;…) through the n-particle retarded Green func-
tion in j0i.

1. Single emitter

For the open bath, the three Green functions, i.e., the
retarded GR

b , the advanced GA
b , and the Keldysh GK

b Green
functions, in the frequency domain are

GbðωÞ ¼
 
GK

b ðωÞ GR
b ðωÞ

GA
bðωÞ 0

!

¼
 −2iγk

ðω−εkÞ2þγ2k

1
ω−εkþiγk

1
ω−εk−iγk

0

!

in the Keldysh space, where the dispersion relation εk ¼
2J cosðkþ θÞ and the decay rate γk ¼ Γð1þ cos kÞ. As
shown in Fig. 9, the Dyson expansion of the Rabi coupling
term gives rise to the Green function
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GðωÞ ¼
�
GKðωÞ GRðωÞ
GAðωÞ 0

�

¼ 1

ðω − ΔÞσx − Ω2

N

P
kσ

xGbσ
x
; ðA1Þ

where σx is the Pauli matrix. More explicitly, the analytic
structure of the retarded Green function

GRðωÞ ¼ 1

ω − Δ − Ω2

N

P
k

1
ω−εkþiγk

fully determines the dynamics of the emitter. In the main
text, we focus on the case θ ¼ −π=2.
Since the bath has the mode-dependent dispersion relation

εk and decay rate γk, the branch cut ωk ¼ εk − iγk forms an
ellipse rather than collapsing into a line like that in the closed
system (γk ¼ 0). The ellipse centered at ð0;−ΓÞ has the
major axis 2J and Γ for 2J > Γ and 2J < Γ, respectively. In
the special case 2J ¼ Γ, the branch cut becomes a circle. In
the thermodynamic limit, the self-energy

ΣðωÞ ¼ Ω2

Z
dk
2π

1

ω − ωk
¼ Ω2

Z
jzj¼1

dz
2πiz

1

ω − λðzÞ

becomes the contour integral in the z plane (z ¼ eik),
which is completely determined by the poles z0, i.e.,
ω − λðz0Þ ¼ 0, and the corresponding residues.
Before performing the lengthy calculation, we notice that

the complex function λðzÞ conformally maps the annular
region 1 < jzj < zmax ¼ j½J þ ðΓ=2Þ�=½J − ðΓ=2Þ�j into the
inner region of the first RS, i.e., the region inside the
ellipse, where, in particular, the contour jzj ¼ ffiffiffiffiffiffiffiffiffi

zmax
p

is
mapped to a line connecting the foci of the ellipse (see
Fig. 10). As a result, for ω localized inside the ellipse, the

poles z0 are always in the region 1 < jzj < zmax, which
results in the vanishing ΣðωÞ in the first RS. The analytic
continuation can be performed by the deformation of the
integral contour from jzj ¼ 1 to jzj ¼ ffiffiffiffiffiffiffiffiffi

zmax
p

, which repro-
duces the same self-energy ΣðωÞ in the first RS and extends
it to the second RS. More specifically, for 2J > Γ,

ΣfðωÞ ¼Ω2

Z
jzj¼ ffiffiffiffiffiffi

zmax
p

dz
2πiz

1

ωþ iΓ− iðJ− Γ
2
Þzþ iðJþ Γ

2
Þz−1

¼Ω2

Z
jzj¼1

dz
2πiz

1

ωþ iΓ− iJeffzþ iJeffz−1

¼Ω2

Z
dk
2π

1

ωþ iΓþ 2Jeff sink
; ðA2Þ

where Jeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 − Γ2=4

p
and in the last step we use the

relation z ¼ eik. The comparison between ΣðωÞ and the
last line in Eq. (A2) shows that the bath of the emitter can
be effectively replaced by that with a much simpler
spectrum ω̄k ¼ −iΓ − 2Jeff sin k, where the decay rate is
the constant Γ. Similarly, for 2J < Γ,

ΣfðωÞ ¼Ω2

Z
jzj¼ ffiffiffiffiffiffi

zmax
p

dz
2πiz

1

ωþ iΓ− iðJ− Γ
2
Þzþ iðJþ Γ

2
Þz−1

¼Ω2

Z
jzj¼1

dz
2πiz

1

ωþ iΓþ iJeffzþ iJeffz−1

¼Ω2

Z
dk
2π

1

ωþ iΓþ 2iJeff cosk
;

where Jeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2=4 − J2

p
. For this case, the effective

bath has the spectrum ω̄k ¼ −iΓ − 2iJeff cos k, where the
dispersion relation becomes trivial.
The advantage of the analytic continuation is to collapse

the complex elliptical branch cut to the line connecting the
foci of the ellipse in the second RS. The contour integrals in
ΣfðωÞ can be obtained efficiently as

ΣfðωÞ ¼
Ω2sgn½1 − jz−ðωÞj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωþ iΓÞ2 − 4J2eff

p ;

z−ðωÞ ¼ −i

"
ωþ iΓ
2Jeff

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωþ iΓÞ2

4J2eff
− 1

s #

for 2J > Γ and

ΣfðωÞ ¼
iΩ2sgn½1 − jz−ðωÞj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðωþ iΓÞ2 − 4J2eff

p ;

z−ðωÞ ¼ i
ωþ iΓ
2Jeff

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðωþ iΓÞ2

4J2eff
− 1

s

for 2J < Γ. The self-energy ΣfðωÞ results in the analytic
continuation GfðωÞ ¼ 1=½ω − Δ − ΣfðωÞ� of GRðωÞ.FIG. 10. Conformal map from the λ plane to the z plane.

FIG. 9. Feynman diagram for the single-excitation Green
function. The thin (bold) arrow denotes the bare (exact)
single-excitation Green function of the emitter, and the curvy
line denotes the bare propagator of the bath mode.
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The spontaneous decay of the excitation is described by
the Fourier transformGðtÞ ¼ R ðdω=2πÞe−iωtGfðωÞ, which
is determined by the behaviors in the vicinity of poles and
branch cuts of Gf. For 2J > Γ, the Green function

GfðωÞ ¼
X
s

Zs

ω − εs
þ
Z

2Jeff

−2Jeff

dx
π

1

ω − xþ iΓ

×
Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff − x2

p
ð4J2eff − x2Þðx − Δ − iΓÞ2 þ Ω4

is determined by the poles εs [i.e., G−1
f ðεsÞ ¼ 0], the

corresponding residues

Zs ¼
1

1 − ∂ωΣfjω¼εs

; ðA3Þ

and the contribution from the branch cut, whose Fourier
transform can be performed straightforwardly as

GðtÞ ¼ −i
X
s

Zse−iεst − i
Z

2Jeff

−2Jeff

dx
π

×
Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff − x2

p
ð4J2eff − x2Þðx − Δ − iΓÞ2 þΩ4

e−ixt−Γt:

For 2J < Γ, the Fourier transform of the Green function

GfðωÞ ¼
X
s

Zs

ω − εs
−
Z

2Jeff

−2Jeff

dx
π

1

ω − ixþ iΓ

×
Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff − x2

p
ð4J2eff − x2Þðx − Γþ iΔÞ2 þΩ4

gives

GðtÞ ¼ −i
X
s

Zse−iεst þ i
Z

2Jeff

−2Jeff

dx
π

×
Ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff − x2

p
ð4J2eff − x2Þðx − Γþ iΔÞ2 þΩ4

e−ðΓ−xÞt: ðA4Þ

2. Two emitters

For two emitters in the open bath, the retarded Green
function

GRðωÞ ¼ 1

ω − Δ − ΣðωÞ

of emitters is determined by the self-energy matrix ΣðωÞ
whose element is

Σll0 ðωÞ ¼
Ω2

N

X
k

eikðl−l0Þ

ω − εk þ iγk
: ðA5Þ

In the thermodynamic limit, the matrix element becomes

Σll0 ðωÞ ¼ Ω2

Z
dk
2π

eikdll0

ω − εk þ iγk

¼ Ω2

Z
jzj¼1

dz
2πiz

zdll0

ω − λðzÞ

¼ Ω2

Z
jzj¼1

dz
2πiz

zdll0

ωþ iΓ − iðJ − Γ
2
Þzþ iðJ þ Γ

2
Þz−1 ;

where dll0 ¼ l − l0.
The analytic continuation can also be applied here as

Σf;ll0 ðωÞ¼Ω2

Z
jzj¼ ffiffiffiffiffiffi

zmax
p

dz
2πiz

zdll0

ωþ iΓ− iðJ−Γ
2
Þzþ iðJþΓ

2
Þz−1

¼Ω2zdll0=2max

Z
jzj¼1

dz
2πiz

zdll0

ωþ iΓ− iJeffzþ iJeffz−1

¼Ω2zdll0=2max

Z
dk
2π

eikdll0

ωþ iΓþ2Jeff sink

¼ idll0Ω2zdll0=2max

Z
dk
2π

eikjdll0 j

ωþ iΓþ2Jeff cosk

for 2J > Γ and

Σf;ll0 ðωÞ¼Ω2

Z
jzj¼ ffiffiffiffiffiffi

zmax
p

dz
2πiz

zdll0

ωþ iΓþ iðΓ
2
−JÞzþ iðΓ

2
þJÞz−1

¼Ω2zdll0=2max

Z
jzj¼1

dz
2πiz

zdll0

ωþ iΓþ iJeffzþ iJeffz−1

¼Ω2zdll0=2max

Z
dk
2π

eikjdll0 j

ωþ iΓþ2iJeff cosk

for 2J < Γ. In the matrix form, the self-energy reads

ΣfðωÞ ¼ Ω2

Z
dk
2π

1

ωþ iΓþ 2Jeff cos k
þ Ω2

Z
dk
2π

×
eikd

ωþ iΓþ 2Jeff cos k

 
0 i−dz−d=2max

idzd=2max 0

!

for 2J > Γ and

ΣfðωÞ ¼ Ω2

Z
dk
2π

1

ωþ iΓþ 2iJeff cos k
þΩ2

Z
dk
2π

×
eikd

ωþ iΓþ 2iJeff cos k

 
0 z−d=2max

zd=2max 0

!

for 2J < Γ, where d is the distance between two emitters.
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By comparing the self-energies Σf and Σ, we can write
the effective Hamiltonians

H̄eff ¼ Δ
X
l

a†l al þ
X
k

ð−2Jeff cos k − iΓÞb†kbk

þ Ωffiffiffiffi
N

p
X
k

h�
a†1 þ idzd=2maxeikda

†
2

�
bk

þ b†k
�
a1 þ i−dz−d=2max e−ikda2

�i
for 2J > Γ and

H̄eff ¼ Δ
X
l

a†l al þ
X
k

ð−2iJeff cos k − iΓÞb†kbk

þ Ωffiffiffiffi
N

p
X
k

h�
a†1 þ zd=2maxeikda

†
2

�
bk

þ b†k
�
a1 þ z−d=2max e−ikda2

�i
for 2J < Γ.
The analytic continuation and effective models allow us

to diagonalize the Green function analytically as follows.
For 2J > Γ, the Green function

GfðωÞ ¼
1

ω − Δ − ΣfðωÞ

¼ S

�
GþðωÞ 0

0 G−ðωÞ

�
S−1 ðA6Þ

is diagonalized in the “�” channels with eigenvalues

G�ðωÞ ¼
1

ω − Δ − Σ�ðωÞ
; ðA7Þ

where the transformation

S ¼ 1ffiffiffi
2

p
 
i−d=2z−d=4max i−d=2z−d=4max

id=2zd=4max −id=2zd=4max

!

and the self-energy in the “�” channels can be obtained as

Σ�ðωÞ ¼ Ω2

Z
dk
2π

1� eikd

ωþ iΓþ 2Jeff cos k

¼

8>><
>>:

− Ω2½1�zd−ðωÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωþiΓÞ2−4J2eff

p ; jz−ðωÞj < 1;

Ω2½1�zdþðωÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωþiΓÞ2−4J2eff

p ; jzþðωÞj < 1;

z�ðωÞ ¼ −
ωþ iΓ
2Jeff

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωþ iΓÞ2

4J2eff
− 1

s
:

For 2J < Γ, the Green functions have the same forms as
Eqs. (A6) and (A7), where

S ¼ 1ffiffiffi
2

p
 
z−d=4max z−d=4max

zd=4max −zd=4max

!

and the self-energy is

Σ�ðωÞ ¼ Ω2

Z
dk
2π

1� eikd

ωþ iΓþ 2iJeff cos k

¼

8>><
>>:

i Ω2½1�zd−ðωÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðωþiΓÞ2−4J2eff

p ; jz−ðωÞj < 1;

−i Ω2½1�zdþðωÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðωþiΓÞ2−4J2eff

p ; jzþðωÞj < 1;

z�ðωÞ ¼ i
ωþ iΓ
2Jeff

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðωþ iΓÞ2

4J2eff
− 1

s
:

Eventually, the dynamics of emitters is completely deter-
mined by the analytic structure of G�ðωÞ that is obtained
analytically.
For 2J > Γ, the Fourier transform of the Green functions

GσðωÞ¼
X
s

Zσ
s

ω−εσs
þ
Z

2Jeff

−2Jeff

dx
2πi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff −x2

p
ω−xþ iΓ

×

(
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff −x2
p

ðx− iΓ−ΔÞ− iΩ2½1þσzd−ðx− iΓÞ�

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff−x2
p

ðx− iΓ−ΔÞþ iΩ2½1þσzdþðx− iΓÞ�

)

in the σ ¼ � channels results in

GσðtÞ¼−i
X
s

Zσ
se−iε

σ
s t−
Z

2Jeff

−2Jeff

dx
2π

e−iðx−iΓÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff −x2

q

×

(
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff −x2
p

ðx− iΓ−ΔÞ− iΩ2½1þσzd−ðx− iΓÞ�

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff−x2
p

ðx− iΓ−ΔÞþ iΩ2½1þσzdþðx− iΓÞ�

)
;

where εσs and Zσ
s are the poles and the corresponding

residues

Zσ
s ¼

1

1 − ∂ωΣσðωÞjω¼εσs

of Gσ .
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For 2J < Γ, the Fourier transform of the Green functions

GσðωÞ¼
X
s

Zσ
s

ω−εσs
−
Z

2Jeff

−2Jeff

dx
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff−x2

p
ω−ixþ iΓ

×

(
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff−x2
p

ðx−Γþ iΔÞþ iΩ2½1þσzd−ðix− iΓÞ�

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff−x2
p

ðx−Γþ iΔÞ− iΩ2½1þσzdþðix− iΓÞ�

)

leads to

GσðtÞ¼−i
X
s

Zσ
se−iε

σ
s tþ
Z

2Jeff

−2Jeff

dx
2π

e−ðΓ−xÞt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2eff−x2

q

×

(
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff−x2
p ðx−Γþ iΔÞ−iΩ2½1þσzdþðix−iΓÞ�

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J2eff−x2
p

ðx−Γþ iΔÞþ iΩ2½1þσzd−ðix−iΓÞ�

)
:

3. Two excitations

In the two-excitation subspace of a single emitter, the
dynamics is determined by the retarded Green function

DðtÞ ¼ −i
1

2
h½a2ðtÞ; a†2ð0Þ�iθðtÞ

¼ −i
1

2
ha2ðtÞa†2ð0ÞiθðtÞ;

where the second equation is valid for the initial vacuum
state. As shown in Fig. 11, the Fourier transform DRðωÞ ¼R
dteiωtDðtÞ of DðtÞ can be obtained by the Dyson

expansion of the on-site interaction U as

DRðωÞ ¼ 1

Π−1ðωÞ −U
;

where

ΠðωÞ ¼ i
Z

dω0

2π
GKðω0ÞGRðω − ω0Þ

is the convolution of GK and GR. For the general non-
equilibrium problem, GK , GR, and GA are three independent
Green functions, and the fluctuation-dissipation theorem
GKðωÞ ¼ ½1� 2nðωÞ�½GRðωÞ −GAðωÞ� is satisfied only in
the equilibrium state. In the present case, the nature of the
bath in zero temperature results in the relation GKðωÞ ¼
GRðωÞ −GAðωÞ that can also be checked directly from
Eq. (A1). As a result, the convolution becomes

ΠðωÞ ¼ i
Z

dω0

2π
½GRðω0Þ − GAðω0Þ�GRðω − ω0Þ

¼ i
Z

dω0

2π
GRðω0ÞGRðω − ω0Þ; ðA8Þ

where in the second equation the causality condition is used.
To perform the Fourier transform DðtÞ ¼ R ðdω=2πÞ×

DRðωÞe−iωt efficiently, we introduce the analytic conti-
nuation

DfðωÞ ¼
1

Π−1
f ðωÞ − U

ðA9Þ

of DRðωÞ, where

ΠfðωÞ ¼ i
Z

dω0

2π
Gfðω0ÞGfðω − ω0Þ:

Since in the integral contour of the Fourier transform
DRðωÞ¼DfðωÞ, the Fourier transformDðtÞ¼R ðdω=2πÞ×
DfðωÞe−iωt. Compared with the original convolution (A8),
ΠfðωÞ has the simple structure of branch cuts. With
knowing the analytic structure of Gf, i.e., as shown in
the first subsection the simple behaviors in the vicinity of
poles and branch cuts, we can calculate ΠfðωÞ and DRðωÞ
as well as the Fourier transform efficiently.

APPENDIX B: STEADY-STATE CORRELATION
FUNCTIONS OF THE DRIVEN EMITTER

In this section, we present the approach to systemati-
cally calculate the quantum correlation functions of the
weakly driven emitter in the steady state of the master
equation (5). First, in Appendix B 1, we consider an
undriven emitter and show that the spontaneous emission
of n excitations is fully determined by the retarded
n-particle Green function (of the emitter) in the vacuum
state. Then, in Appendix B 2, we take into account the
weak driving field in the master equation. Following
Refs. [63,64], we develop a perturbative solution and

FIG. 11. Feynman diagram for the two-excitation Green func-
tion. The first term is the convolution of two exact single-
excitation Green functions. In the second term, the dashed line
denotes the interaction of the emitter.

FRACTIONAL QUANTUM ZENO EFFECT EMERGING … PHYS. REV. X 13, 031009 (2023)

031009-21



connect the physical observables of the driven emitter
with Green functions of the undriven case.

1. Master equation without driving

Our starting point is the master equation (5) without the
drive (ϵ ¼ 0), i.e.,

_ρ ¼ L0ρ

¼ −i½H0; ρ� −
Γ
2

X
j

�n
O†

jOj; ρ
o
þ 2OjρO

†
j

�
: ðB1Þ

Here, H0 ¼ Hemit þHsb þHb, where the Hamiltonian
for an undriven emitter is Hemit ¼ Δa†aþ ðU=2Þa†a†aa,
the emitter-bath coupling Hsb ¼ Ωa†b0 þ H:c:, and Hb ¼P

j Je
iθb†jbjþ1 þ H:c: The jump operator in Eq. (B1) is

Oj ¼ bj þ bjþ1. We stress that the effective Hamiltonian

Heff ¼ H0 − i
Γ
2

X
j

O†
jOj ðB2Þ

commutes with the total particle number N ¼ a†aþP
j b

†
jbj:

½Heff ; N� ¼ 0: ðB3Þ

Thus, the number of excitations is preserved in the
nonunitary time evolution driven by Heff. Consequently,
the steady state of Eq. (B1) at zero temperature is the
vacuum state j0i.
We now show that the dynamics for the initial pure

state ρð0Þ ¼ jψð0Þihψð0Þj with finite n excitations can be
efficiently studied using Heff . Exploiting the property (B3),
the Dyson expansion gives rise to the formal solution

ρðtÞ ¼ e−iHeff tρð0ÞeiH†
eff t þ Γ

X
j1

Z
t

0

ds1e−iHeffðt−s1ÞOj1e
−iHeffs1ρð0ÞeiH†

effs1O†
j1
eiH

†
effðt−s1Þ

þ Γ2
X
j1;j2

Z
t

0

ds1

Z
s1

0

ds2e−iHeffðt−s1ÞOj1e
−iHeffðs1−s2ÞOj2e

−iHeffs2ρð0ÞeiH†
effs2O†

j2
eiH

†
effðs1−s2ÞO†

j1
eiH

†
effðt−s1Þ þ � � �

¼
���ψ ð0ÞðtÞ

ED
ψ ð0ÞðtÞ

���þ Γ
X
j1

Z
t

0

ds1
���ψ ð1Þ

j1
ðt; s1Þ

ED
ψ ð1Þ
j1
ðt; s1Þ

���
þ Γ2

X
j1;j2

Z
t

0

ds1

Z
s1

0

ds2
���ψ ð2Þ

j1;j2
ðt; s1; s2Þ

ED
ψ ð2Þ
j1;j2

ðt; s1; s2Þ
���þ � � � : ðB4Þ

Here, the density matrix ρðtÞ is an incoherent superposition of states jψ ð0ÞðtÞi, jψ ð1Þ
j1
ðt; s1Þi, etc., where each of them is

governed by the effective Hamiltonian Heff in the corresponding subspace, i.e.,���ψ ð0ÞðtÞ
E
¼ e−iHeff tjψð0Þi;���ψ ð1Þ

j1
ðt; s1Þ

E
¼ e−iHeffðt−s1ÞOj1e

−iHeffs1 jψð0Þi;���ψ ð2Þ
j1;j2

ðt; s1; s2Þ
E
¼ e−iHeffðt−s1ÞOj1e

−iHeffðs1−s2ÞOj2e
−iHeffs2 jψð0Þi: ðB5Þ

Since the jump operator always depletes excitations
from the system, the series in Eq. (B4) is automatically
truncated after acting the jump operator nþ 1 times. As a
result, we have to study only the dynamics of the initial
pure state jψð0Þi governed by the effective Hamiltonian
Heff , where the transition between the subspaces with
different excitation numbers is described by the jump
operator.
It follows from Eqs. (B4) and (B5) that the spontaneous

emission probability of n excitations in the undriven emitter
is given by

Pn ¼ tr½jnihnjρðtÞ� ¼ jhnje−iHeff tjnij2: ðB6Þ

This is just the norm square of the n-particle Green function
GR

n in the vacuum state, which is completely determined
by Heff.
In summary, we can solve the full dynamics of the emitter

first in subspaces with different excitation numbers governed
by the effective Hamiltonian Heff and then connect the
results using the jump operator. Interestingly, for the trivial
steady state j0i, since Heff j0i ¼ 0, the dynamics in the
subspace with n excitations is described by

GR
n ðωÞ ¼ −i

1

n!

Z
dteiωth0j½anðtÞ; a†nð0Þ�j0iθðtÞ

¼ −i
1

n!

Z
∞

0

dteiωth0janðtÞa†nð0Þj0iθðtÞ: ðB7Þ
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Thus, the fluctuation-dissipation theorem holds in the sub-
space for Green functions of the emitter in the vacuum state,
even though the system state is out of equilibrium.

2. Weakly driven system

With the above results, we now consider the case when
the emitter is driven by an external field with the driving
frequency ωd and the driving strength ϵ ≠ 0. In the rotating
framework with respect to ωd, the master equation reads

_ρ ¼ L0ρþ LεðtÞρ; ðB8Þ

where L0 is the Liouvillian for the undriven system and Lε

describes the driving field with the strength ϵ:

LεðtÞρ ¼ −i½εðA† þ AÞ; ρ�; ðB9Þ

with the operator A ¼ aeiωdt in our case.

In general, one has to solve the master equation (B8)
numerically to study the full dynamics. However, there
are also special cases which allow us to obtain the steady
state and time evolution analytically. It turns out that, for
the weak driving strength ε much smaller than the
spectral gap of the Liouvillian L without the driving
term and the steady state of L is not degenerate, the
dynamics can also be studied using the Green functions
GR

n in subspaces with different excitations. This state-
ment has been proven in Ref. [63] and applied to study
photon pair generation in Ref. [48]. In the following, we
use it for our case.
Specifically, we can expand ρðtÞ to some order of ε for

corresponding problems. For our purpose of calculating the
second-order correlation function, we expand ρðtÞ up to the
fourth order of ε (the nth-order term is denoted by ρn,
n ¼ 0; 1;…; 4). For the vacuum steady state ρ0 ¼ j0ih0j of
the undriven system, we obtain

ρðtÞ ¼ T e
R

t

0
½L0þLεðt1Þ�dt1ρ0

¼ ρ0 þ ρ1ðtÞ þ ρ2ðtÞ þ ρ3ðtÞ þ ρ4ðtÞ

¼ eL0tρ0 þ
Z

t

0

ds1eL0ðt−s1ÞLεeL0s1ρ0 þ
Z

t

0

ds1

Z
s1

0

ds2eL0ðt−s1ÞLεeL0ðs1−s2ÞLεeL0s2ρ0

þ
Z

t

0

ds1

Z
s1

0

ds2

Z
s2

0

ds3eL0ðt−s1ÞLεeL0ðs1−s2ÞLεeL0ðs2−s3ÞLεeL0s3ρ0

þ
Z

t

0

ds1

Z
s1

0

ds2

Z
s2

0

ds3

Z
s3

0

ds4eL0ðt−s1ÞLεeL0ðs1−s2ÞLεeL0ðs2−s3ÞLεeL0ðs3−s4ÞLεeL0s4ρ0: ðB10Þ

By using Eq. (B4), and keeping in mind that the undriven effective HamiltonianHeff [see Eq. (B2)] is number conserving,
we calculate Eq. (B10) as

ρðtÞ ¼ ρ0 − iε
Z

t

0

ds1
h
e−iHeffðt−s1ÞA†ρ0 − ρ0AeiH

†
effðt−s1Þ

i

− ε2
Z

t

0

ds1

Z
s1

0

ds2
h
e−iHeffðt−s1ÞA†e−iHeffðs1−s2ÞA†ρ0 þ ρ0AeiH

†
effðs1−s2ÞAeiH

†
effðt−s1Þ

i

þ ε2Γ
X
j1

Z
t

0

ds1

Z
s1

0

ds2

Z
t−s1

0

ds3e−iHeffðt−s1−s3ÞOj1e
−iHeffs3

h
e−iHeffðs1−s2ÞA†ρ0A

þ A†ρ0AeiH
†
effðs1−s2Þ

i
eiH

†
effs3O†

j1
eiH

†
effðt−s1−s3Þ

þ ε2
Z

t

0

ds1

Z
s1

0

ds2
h
e−iHeffðt−s2ÞA†ρ0Ae

iH†
effðt−s1Þ þ e−iHeffðt−s1ÞA†ρ0Ae

iH†
effðt−s2Þ

i

− ε2
Z

t

0

ds1

Z
s1

0

ds2
h
ρ0Ae

iH†
effðs1−s2ÞA† þ Ae−iHeffðs1−s2ÞA†ρ0

i
þ ρ3ðtÞ þ ρ4ðtÞ; ðB11Þ

where the third-order and fourth-order terms are useful for the excitation statistics. Finally, the steady state ρss is obtained as
taking t → ∞.
Note that one can benchmark the above derivations using a two-level system with A ¼ σ−,H0 ¼ 0, and the jump operator

σ−. In this case, following similar steps, the steady-state density matrix up to ε2 is derived as
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ρss ∼
�
1 −

4ε2

γ2

�
jgihgj − i

2ε

γ
ðjeihgj − jgihejÞ þ 4ε2

γ2
jeihej;

which is exactly the steady-state solution

ρss ¼
4ε2 þ γ2

8ε2 þ γ2
jgihgj − 2iεγ

8ε2 þ γ2
ðjeihgj − jgihejÞ

þ 4ε2

8ε2 þ γ2
jeihej

of the Liouvillian L0 þ Lε up to the order ε2.

Now we are ready to calculate for our case the first- and
second-order correlation functions of the driven emitter
in the steady state. Keeping the second-order terms in
Eq. (B11), we obtain

ha†aiss ¼ ε2
����h0ja 1

ωd −Heff
a†j0i

����2: ðB12Þ

Keeping the fourth-order terms in Eq. (B11), we obtain

ha†a†ðτÞaðτÞaiss
¼ Tr½aeLτðaρssa†Þa†�

¼ Tr

�
aeL0τ

Z
τ

0

ds1

Z
s1

0

ds2Lεðs1ÞLεðs2Þðaρ2a†Þa†
�
þ Tr

�
aeL0τ

Z
τ

0

ds1Lεðs1Þðaρ3a†Þa†
�
þ Tr

�
aeL0τðaρ4a†Þa†

�

¼ ε4
����h0ja 1 − eiðωd−HeffÞτ

ωd −Heff
a†j0ih0ja 1

ωd −Heff
a†j0i þ h0jaeiðωd−HeffÞτa

1

2ωd −Heff
a†

1

ωd −Heff
a†j0i

����2; ðB13Þ

where the quantum regression theorem is used in the
second row.
The correlation functions (B12) and (B13) can be written

in terms of Green functions on the vacuum state. In the
compact form, we have

ha†aiss
ε2

¼
����
Z

∞

−∞
dte−iωdth0jT að0Þa†ðtÞj0i

����2;
ha†a†ðτÞaðτÞaiss

ε4
¼
����
Z þ∞

−∞
dt1dt2e−iωdðt1þt2ÞGðτ; t1; t2Þ

����2;
ðB14Þ

withGðτ;t1;t2Þ¼−ih0jT aðτÞað0Þa†ðt1Þa†ðt2Þj0i=2, where
aðtÞ ¼ eiH

†
eff tae−iHeff t is governed by the undriven effective

Hamiltonian and the Green functions are all defined on the
vacuum state.
From the above analysis, we show explicitly that, even

though our system is weakly driven, the relevant physical
observables of the system can be calculated from Green
functions of the undriven system in the vacuum state, which
is governed by Heff. In the explicit form, the normalized
second-order correlation function is found as

gð2ÞðτÞ ¼
jh0ja 1−eiðωd−Heff Þτ

ωd−Heff
a†j0ih0ja 1

ωd−Heff
a†j0i þ h0jaeiðωd−HeffÞτa 1

2ωd−Heff
a† 1

ωd−Heff
a†j0ij2

jh0ja 1
ωd−Heff

a†j0ij4 : ðB15Þ

It is completely determined by the spectral properties of
the effective Hamiltonian Heff in the single- or two-
excitation subspaces, respectively. Therefore, once the
eigenproblem of Heff in the undriven case is solved, we
can obtain gð2ÞðτÞ.
Based on Eq. (B14), we can now apply the Dyson

expansion as illustrated in Fig. 11 to calculate the right side
and obtain

gð2ÞðτÞ ¼
����1þ

�
i
Z

dω0

2π
GRðω0ÞGRð−ω0Þe−iω0τ

�
Tð0Þ

����2:
ðB16Þ

Here, the poles and branch cuts of

TðωÞ ¼ 1

U−1 − i
R

dω0
2π G

Rðω0ÞGRðω − ω0Þ
correspond to the quasibound state and continuum of Heff
in the two-excitation subspace. This eventually leads to
Eq. (2) in our text.

APPENDIX C: SCALING BEHAVIORS
IN QUANTUM ZENO REGIMES

In this section, we study the scaling behaviors in the
quantum Zeno regime. In parallel with Appendix A,
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we investigate the analytic structure of GfðωÞ and GσðωÞ
for the large Γ in Appendixes C 1 and C 2. The approximate
analytical expressions of Green functions GRðωÞ in the
time domain are achieved, which agree with the exact
results quantitatively. In Appendix C 3, the effective
Hamiltonian for two excitations is derived via the pertur-
bation theory, which gives rise to the scaling behavior in a
good agreement with the exact solution.

1. Single emitter

In the large Γ limit, the leading order in the Taylor
expansion of G−1

f ðωÞ leads to two poles ϵs¼� ¼
iðΩ4=2Þ1=3eið2πs=3ÞΓ−1=3 for the resonant case Δ ¼ 0 and
two poles

ΣfðωÞ ¼
iΩ2sgn½1 − jz−ðωÞj�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðωþ iΓÞ2 − 4J2eff

p ;

z−ðωÞ ¼ i
ωþ iΓ
2Jeff

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðωþ iΓÞ2

4J2eff
− 1

s
;

ω ¼ i

�
Ω4

2Γ

�
1=3

eið2π=3Þs;

sgn½1 − jz−ðωÞj� ¼ −1;

ε1 ¼ Δ − i
Ω2ffiffiffiffiffiffi
2Δ

p eiðπ=4ÞΓ−1=2;

ε2 ¼ −i
�
Ω4

2Δ2
þ 2J2

�
1

Γ

for the finite Δ.
We can also analytically obtain the wave function of

the quasibound states with the complex energy ϵs. Without
loss of generality, here we focus on the case Δ ¼ 0. In the
momentum space representation, the quasibound state is
jBi ¼ c1a

†
1j0i þ

P
k fkb

†
kj0i, where c1 and fk are coef-

ficients. The c1 can be obtained via the residue Zs of the
Green function at ω ¼ ϵs [see Eq. (A3)], giving

c1 ¼ Zs ¼
ϵ2s þ 2iΓϵs − 4J2

2ϵ2s þ 3iΓϵs − 4J2
: ðC1Þ

In the limit Γ=ð2JÞ→∞, c1→2=3. The fk can be calcu-
lated using the self-energy matrix element in Eq. (A5) with
ω ¼ ϵs, giving

fk ¼
Ωc1ffiffiffiffiffiffi
Nb

p 1

ϵs − ðϵk − iγkÞ
; ðC2Þ

where in our case ϵk ¼ 2J sinðkÞ and γk ¼ Γ½1þ cosðkÞ�.
In Fig. 12(a), we show the numerical result (solid curve) of
jfkj by diagonalizing the effective Hamiltonian Heff and
compare it with Eq. (C2). A good agreement is found.

In real space, the quasibound state is jBi ¼ c1a
†
1j0i þP

j fjb
†
j j0i, where fj is the amplitude of the bath compo-

nent at lattice site j. Noting that the emitter is locally
coupled to b0, the fj can be obtained from the self-energy
matrix element (A5) with ω ¼ ϵs, which yields

fj ¼
Σj0ðϵsÞ

Ω
c1; ðC3Þ

where for Γ=ð2JÞ > 1 we have

Σj0ðωÞ ¼

8>>><
>>>:

−i
Ω2ej ln βþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðωþ iΓÞ2 − 4J2eff
p ; ðj > 0Þ;

−i
Ω2e−j ln β−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−ðωþ iΓÞ2 − 4J2eff
p ; ðj < 0Þ;

β�ðωÞ ¼
iðωþ iΓÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðωþ iΓÞ2 − 4J2eff

p
Γ� 2J

ðC4Þ

with Jeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2=4 − J2

p
. In Fig. 12(b), we numerically

calculate jfjj by diagonalizing Heff in real space. We see
that the numerical results (solid curve) agree very well with
that obtained from Eq. (C3). Note that, in general, βþ ≠ β−,
and, therefore, the quasibound state has a different locali-
zation length on the left and right sides of the emitter.
In the limit Γ=ð2JÞ → ∞, where βþ ≈ β−, one can obtain

a simplified expression for the average momentum kb and

k/
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FIG. 12. Comparison between the analytic and numerical
results for the bath component of the single-emitter quasibound
state in (a) momentum space and (b) real space representation. In
both (a) and (b), the numerical results (blue solid curves) are
obtained from diagonalizing the effective Hamiltonian Heff with
the open-bath size Nb ¼ 2000, the emitter detuning Δ ¼ 0, bath
dissipation strength Γ=J ¼ 100, and the coupling strength
Ω=J ¼ 1. The analytical results (red dashed curves) in (a) are
obtained from Eq. (C2) and in (b) are obtained from Eq. (C3).
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the average localization length lb of the bath component.
In this limit, we find ln βþ ≈ iπ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2iϵs=Γ

p
. Using,

e.g., ϵs ¼ 1
2
ð ffiffiffi

3
p

− iÞðΩ4=2Þ1=3Γ−1=3, we obtain ej ln βþ ¼
e−ijkb−j=lb , where

kb ¼ π −
ffiffiffi
3

p

22=3

�
Ω
Γ

�
2=3

; ðC5Þ

lb ¼ 22=3
�
Γ
Ω

�
2=3

: ðC6Þ

Thus, when Γ=ð2JÞ → ∞, kb → π, and lb increases as
ðΓ=ΩÞ2=3. In Fig. 12(a), the momentum at which the peak
occurs is well described by Eq. (C5).

2. Two emitters

For two emitters, we solve the equations 1=G�ðεÞ ¼ 0
to obtain the poles for the resonant case Δ ¼ 0. Here,
we focus on only the even distance d, since for the
odd distance it turns out that the physics is the same
by interchanging the þ and − channels. In the even
channel, the leading term in the Taylor expansion of
1=GþðεÞ results in the same scaling behavior εs¼� ¼
ið2Ω4Þ1=3eið2πs=3ÞΓ−1=3 with the prefactor enhanced by a
factor of 41=3. In the odd channel, two poles are

εs ¼ sR − i
Ω2d
Γ

;

where the positive R ∼ Γ−2 for Ω >
ffiffiffiffiffiffiffiffi
2=d

p
J. For the

small Ω <
ffiffiffiffiffiffiffiffi
2=d

p
J, two poles merge into a single pole

ε ¼ −iΩ2d=Γ.
In the þ channel, the residues Zs ∼ 2=3 and the con-

tribution from the branch cut is negligible, which leads to

GþðtÞ ∼ −i
4

3
e−ðΩ4=4ΓÞ1=3t cos

� ffiffiffi
3

p �
Ω4

4Γ

�
1=3

t

�
:

In the − channel, the residues Zs ∼ 1 and the contribution
from the branch cut cancels that from one residue for
Ω >

ffiffiffiffiffiffiffiffi
2=d

p
J. For the small Ω <

ffiffiffiffiffiffiffiffi
2=d

p
J, the contribution

from the branch cut is negligible, and only a single pole
with residue Zs ∼ 1 survives. As a result, the Green
function reads

G−ðtÞ ∼ −ie−ðΩ2d=ΓÞt:

The transformation S leads to

iGR
11ðtÞ ¼

2

3
e−ðΩ4=4ΓÞ1=3t cos

� ffiffiffi
3

p �
Ω4

4Γ

�
1=3

t

�
þ 1

2
e−ðΩ2d=ΓÞt;

iGR
12ðtÞ ¼

2

3
e−ðΩ4=4ΓÞ1=3t cos

� ffiffiffi
3

p �
Ω4

4Γ

�
1=3

t

�
−
1

2
e−ðΩ2d=ΓÞt:

3. Effective models of two excitations

In this subsection, we derive the effective Hamiltonian in
the two -excitation subspace using the perturbation theory,
where Δ is finite and the resonance condition U ¼ −Δ is
assumed. The two-excitation sector is spanned in the basis
fa†2j0i= ffiffiffi

2
p ≡ jdi;a†b†kj0i≡ jkie;b†kb†k0 j0i≡ jkk0ig. Under

the conditionU ¼ −Δ, the doublon state jdi and states jkie
are nearly degenerate. We can adiabatically eliminate the
states jkk0i as

H00
2 ¼ H0 þ

X
k

Ω2

N

X
p

1

Δ − ω̄p
jkiehkj

þ Ω2

2N

X
kk0

�
1

Δ − ω̄k
þ 1

Δ − ω̄k0

�
jkiehk0j;

where the unperturbed Hamiltonian

H0 ¼ ð2ΔþUÞjdihdj þ
X
k

ðΔþ ω̄kÞjkiehkj

þ
ffiffiffi
2

p
Ωffiffiffiffi
N

p
X
k

ðjkiehdj þ H:c:Þ

and ω̄k ¼ −iΓ − 2iJeff cos k.
The adiabatic elimination of two-excitation states jkk0i

leads to the constant energy shift

δω ¼ Ω2

N

X
p

1

Δ − ω̄p
∼ −i

Ω2eiðπ=4ÞsgnðΔÞffiffiffiffiffiffiffiffiffiffiffiffi
2jΔjΓp

and the effective potential in the momentum space. The
bound state

jΨBi ¼ ujdi þ
X
k

fkjkie

of the effective Hamiltonian Hð2Þ
eff satisfies

Ebu ¼ ð2ΔþUÞuþ
ffiffiffi
2

p
Ωffiffiffiffi
N

p
X
k

fk;

Ebfk ¼ ðΔþ ε̄kÞfk þ
ffiffiffi
2

p
Ωffiffiffiffi
N

p u

þ Ω2

2N

X
p

�
1

Δ − ω̄k
þ 1

Δ − ω̄p

�
fp; ðC7Þ

where the bound state energy Eb corresponds to the poles
of DfðωÞ and ε̄k ¼ ω̄k þ δω.
The leading term of poles is determined by the

Hamiltonian H0. For the resonant case U ¼ −Δ, H0 is
exactly the Hamiltonian in the single -excitation sector
with Δ ¼ 0 and Ω →

ffiffiffi
2

p
Ω. Thus, the poles ofDfðωÞ scale
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as Γ−1=3. The subleading correction can be obtained by the
solution of Eq. (C7). The solution

u ¼
ffiffiffi
2

p
Ω

εb
ffiffiffiffi
N

p
X
k

fk

of u leads to the equation

ε̄kfkþ
Ω2

2N

X
p

�
1

Δ− ω̄k
þ 1

Δ− ω̄p

�
fpþ

2Ω2

εbN

X
p

fp¼ εbfk;

where εb ¼ Eb − Δ.
The formal solution

fk ¼ Ω2

� 2
εb
C0 þ 1

2
C1

εb − ε̄k
þ C0

2ðΔ − ω̄kÞðεb − ε̄kÞ
�

is determined by two constants

C0 ¼
1

N

X
p

fp; C1 ¼
1

N

X
p

1

Δ − ω̄p
fp:

The constants obey the self-consistent equations

C0 ¼
�
2

εb
I1ðεbÞ þ

1

2
I2ðεbÞ

�
C0 þ

1

2
I1ðεbÞC1;

C1 ¼
�
2

εb
I2ðεbÞ þ

1

2
I3ðεbÞ

�
C0 þ

1

2
I2ðεbÞC1;

where the integrals

I1ðεbÞ ¼ Ω2

Z
dk
2π

1

εb − ε̄k
¼ Σfðεb − δωÞ;

I2ðεbÞ ¼ Ω2

Z
dk
2π

1

ðΔ − ω̄kÞðεb − ε̄kÞ

¼ ΣfðΔÞ − Σfðεb − δωÞ
εb − δω − Δ

;

I3ðεbÞ ¼ Ω2

Z
dk
2π

1

ðΔ − ω̄kÞ2ðεb − ε̄kÞ
¼ −∂ΔI2ðεbÞ

are evaluated analytically. Eventually, the poles of DR can
be determined by

det

 
2
εb
I1ðεbÞ þ 1

2
I2ðεbÞ − 1 1

2
I1ðεbÞ

2
εb
I2ðεbÞ þ 1

2
I3ðεbÞ 1

2
I2ðεbÞ − 1

!
¼ 0:

APPENDIX D: SCALINGS FOR
ARBITRARY OPEN BATHS

In this section, we present the detailed derivations
leading to the results in Table I, for the open bath with
arbitrary dissipative dispersions and dimensions.
We consider a tight-binding open bath with the dis-

sipative band structure γðkÞ at dimensions d ¼ 1, 2, 3.
We concentrate on the purely dissipative bath and set
ϵðkÞ ¼ 0. We denote the minimum dissipation rate as
γmin ≡min½γðkÞ�, which of course sits at the dissipation
band edge, at some lattice momentum k0. We assume the
bath is spatially homogeneous. Near the band gap (edge)
γmin, the dissipative dispersion can be approximated as

γðkÞ ≈ γmin þ cΓjk − k0jμ; ðD1Þ

where the power μ depends on the specific form of γðkÞ,
the coefficient c ∝ aμ with a the lattice constant, and Γ is
some dissipation energy scale. We define the number of
the bath modes with the decay rate γ (i.e., dDOS) as
DsðγÞ ≔

R ½ddk=ð2πÞd�δ½γ − γðkÞ�. Near γmin, it follows
from Eq. (D1) that

DsðγÞ ¼
A

ð2πÞd
ðγ − γminÞ−1þðd=μÞ

μðcΓÞd=μ ; ðD2Þ

with A ¼ 2; 2π; 4π for dimension d ¼ 1, 2, 3, respectively.
Therefore, when d=μ < 1, limγ→γmin

DsðγÞ → ∞, whereas
for d=μ > 1, limγ→γmin

DsðγÞ ¼ 0.
Now suppose an emitter with the on-site energy Δ is

coupled to the open bath with a coupling rate Ω. We begin
with Δ ¼ 0. Since the bath is purely dissipative, for
convenience, we introduce s ¼ −iω, so the poles of the
single-particle Green function, corresponding to the quasi-
bound states, are determined by

sþ ΣðsÞ ¼ 0; ðD3Þ

where the self-energy function ΣðsÞ associated with the
purely dissipative open bath is given by

ΣðsÞ ¼ Ω2

Z
ddk
ð2πÞd

1

sþ γðkÞ : ðD4Þ

In the following, we analytically calculate Eq. (D4).
Since the main contribution to the long-time emitter
dynamics comes from the vicinity of γmin, we expand
γðkÞ near γmin via Eq. (D1) and change the integral variable
from the quasimomentum to γ via Eq. (D2). We obtain

Σ ¼ AΩ2

ð2πÞd
1

μðcΓÞd=μ
Z

Λ

γmin

1

sþ γ

1

ðγ − γminÞ1−ðd=μÞ
dγ; ðD5Þ
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where we introduce a cutoff Λ. It follows from Eq. (D1)
that Λ ∝ Γ. Denoting s0 ¼ sþ γmin and Λ0 ¼ Λ − γmin,
Eq. (D5) is calculated as

Σ ¼ AΩ2

ð2πÞd
ðΛ0Þd=μ
μðcΓÞd=μ

1

s0

Z
1

0

�
1þ Λ0

s0
t

�
−1
t−1þðd=μÞdt

¼ C

�
Λ0

Γ

�
d=μ 1

s0
F

�
1;
d
μ
;
d
μ
þ 1;−

Λ0

s0

�
: ðD6Þ

Here, Fðα; β; ζ; zÞ is the hypergeometric function, and
the precoefficient C ¼ Bðdμ ; 1ÞAΩ2=½ð2πÞdμcd=μ� with B
the beta function.
By substituting Eq. (D6) into Eq. (D14), we can solve for

the quasibound state solutions. We are interested in the
regime jΛ0=s0j ≫ 1 of Eq. (D6), corresponding to when Γ is
the largest energy scale compared to all the other relevant
scales as discussed in our manuscript. As such, we can
expand the hypergeometric function in terms of the small
parameter js0=Λ0j ≪ 1 and derive the analytical solutions at
the leading order. In the following, we analyze the cases
where γmin ≠ 0 and γmin ¼ 0, respectively.

1. The bath has a dissipative gap (γmin ≠ 0)

(i) When d=μ < 1, we substitute F½1;ðd=μÞ;ðd=μÞþ1;

−ðΛ0=s0Þ�¼½1þðΛ0=s0Þ�−d=μF½ðd=μÞ;ðd=μÞ;ðd=μÞþ
1;1=ð1þ s0

Λ0Þ� in Eq. (D6). At the leading order of
js0=Λ0j ≪ 1, we obtain ΣðsÞ¼C0ðsþγminÞ−1þðd=μÞ ×
Γ−d=μ, where C0 ¼ CF½ðd=μÞ; ðd=μÞ; ðd=μÞ þ 1; 1�
and we use s ¼ s0 − γmin. Inserting it into Eq. (D14),
we find two quasibound states residing in the
dissipative gap

s1 ¼ −C0γ−1þðd=μÞ
min Γ−d=μ; ðD7Þ

s2 ¼ −γmin þ αΓ−1=ðμ=d−1Þ; ðD8Þ

with some coefficient α. The long-term emitter
dynamics is determined by s1 in Eq. (D7).

(ii) When d=μ > 1, we insert F½1; ðd=μÞ; ðd=μÞþ 1;

−ðΛ0=s0Þ� ¼ ½1þðΛ0=s0Þ�−1F½1;1; ðd=μÞþ 1;1=ð1þ
s0
Λ0Þ�≈ ðs0=Λ0ÞF½1;1; ðd=μÞþ 1;1� into Eq. (D6).
Thus, at the leading order of js0=Λ0j ≪ 1, we obtain

ΣðsÞ¼C00ðΛ0−1þd
μ=Γ

d
μÞ¼ C̃00Γ−1, with C00 ¼CF½1;1;

ðd=μÞþ1;1�. Here, we exploit the fact that Λ0 ¼
Λ − γmin ∝ Γ according to Eq. (D2), with some
constant C̃00. In this case, we find one solution to
Eq. (D14), describing a quasibound state in the
dissipative gap:

s ¼ −C̃00Γ−1: ðD9Þ

(iii) When d=μ ¼ 1, we substitute F½1; 1; 2;−ðΛ0=s0Þ� ¼
½lnð1þ Λ0=s0Þ=ðΛ0=s0Þ� into Eq. (D6). At the leading

order of js0=Λ0j, we have ΣðsÞ ¼ CðΛ0dμ−1=Γ
d
μÞ×

ln ðΛ0=s0Þ. Since Λ0 ∝ Γ as mentioned before, for
jsj ≪ γmin ≪ Γ, we have Σ ≈ C̃ð1=ΓÞ ln ðΛ=γminÞ.
Inserting it into Eq. (D14), we find one quasibound
state in the dissipative gap:

s ¼ −C̃
lnð Γ

γmin
Þ

Γ
: ðD10Þ

2. The bath has gapless dissipation (γmin = 0)

(i) When d=μ < 1, at the leading order of js=Λj,
we obtain ΣðsÞ ¼ C0s−1þðd=μÞΓ−d=μ, with C0 ¼
CF½ðd=μÞ;ðd=μÞ;ðd=μÞþ1;1�. Therefore, Eq. (D14)
has solutions

s ¼ ð−C0Þ1=ð2−d=μÞΓ−1=ð2μ=d−1Þ: ðD11Þ

(ii) When d=μ > 1, we obtain the leading expression
ΣðsÞ ¼ C̃00Γ−1, with C00 ¼ CF½1; 1; ðd=μÞ þ 1; 1�. In
this case, we find

s ¼ −C̃00Γ−1; ðD12Þ

which is the same as the gapped case.
(iii) When d=μ ¼ 1, we have the leading expression

ΣðsÞ ¼ CðΛd
μ−1=Γ

d
μÞ ln ðΛ=sÞ. Considering Λ ∝ Γ,

we find

s ¼ −C̃
lnðΓηÞ
Γ

ðD13Þ

with some energy scale η.
When Δ ≠ 0, the quasibound state solutions are deter-

mined by

s − iΔþ ΣðsÞ ¼ 0: ðD14Þ

We can redefine s̃ ¼ s − iΔ and then follow similar steps
as before.
In summary, the above derivations lead to the results in

Table I in the text.

APPENDIX E: GENERIC OPEN BATH
WITH A FINITE SIZE

In this section, we show that the emitter dynamics
obtained from the Green function approach in Appendix A,
though developed in the thermodynamic limit, remains valid
for a finite-size bath under the condition

α≡ Ω
δγ

¼ Ω
2π2

N2
b

Γ
≫ 1: ðE1Þ
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Here,Ω is the Rabi frequency,Nb is the finite size of the bath,
δγ is the dissipative gap, and Γ is the bath dissipation rate.
Moreover, apart from the strong dissipation regime, we
illustrate the emitter dynamics for a generic bath dissipation
from the coherent limitΓ=2J → 0 to the intermediate regime
Γ=2J ∼ 1 and for various coupling phases θ ∈ ½0;−π=2�.
We first validate the Green function approach for a finite-

size, strongly dissipative, bath in three scenarios: α < 1,
α ∼ 1, and α > 1, respectively. For the spontaneous emis-
sion of a single excitation in an emitter, we compare the
results obtained from two approaches: (i) We compute the
population dynamics of single excitation, P1ðtÞ, by numeri-
cally evolving the state via the non-Hermitian emitter-bath

Hamiltonian in Eq. (9) with U ¼ 0; (ii) we use P1ðtÞ ¼
jGðtÞj2 with GðtÞ in Eq. (A4). We remark that Eq. (E1)
indicates α depends on both Γ and Nb. In Fig. 13(a), we
change Nb and fix Γ. The black curve denotes the emitter
dynamics from the Green function function, i.e., as in the
thermodynamic limit, while the dashed curves denote the
results from approach (i) for various Nb. We see that, when
α < 1, the finite-size dynamics is significantly different
from that in the thermodynamic limit, but the two become
compatible with each other when Nb is increased to α ≫ 1.
In Fig. 13(b), we change Γ and fix Nb. As shown, the two
approaches agree well with each other by choosing a
smaller Γ so that α ≫ 1.
Although our key results in the main text are for the

strongly open bath, our developed approach applies to
arbitrary parameter regimes of the bath. In Fig. 14(a),
we present the dynamics of single excitation with the
detuning Δ ¼ 0, when a bath of the size Nb ¼ 60 is
nearly coherent Γ=2J → 0, weakly dissipative Γ=2J < 1,
and in the intermediate regimes Γ=2J ≳ 1. We consider
θ ¼ 0;−π=6;−π=3;−π=2, respectively. As α ≫ 1, we see
that the results from the Green function approach (solid
curves) agree well with the time evolution via the non-
Hermitian (dots). In Fig. 14(b), we show the spontaneous
emissions of two excitations in an emitter coupled to the
bath with the finite size Nb ¼ 60 and various Γ. The solid
curves denote the results obtained from P2ðtÞ ¼ jDðtÞj2,
where DðtÞ is the Fourier transform of the fictitious two-
particle Green function (A9). The dotted lines denote the
calculation of P2ðtÞ via the non-Hermitian Hamiltonian in
Eq. (27) of the main text. Again, we find perfect good
agreement between the two.
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FIG. 14. Spontaneous emission of (a) single excitation and (b) two excitations in an emitter coupled to a finite-size bath
with various dissipation and coupling phase. In all panels, the solid line denotes the result obtained via the Green function
approach with Ω=J ¼ 1, and Γ=2J ¼ 0.005, 0.3, 1.005, 3 (red, blue, black, and green line, respectively); the dots denote the results
obtained using the corresponding non-Hermitian Hamiltonian with the finite size Nb ¼ 60. In (a), the single-excitation popu-
lation P1ðtÞ is obtained as a function of time t for Δ=J ¼ 0. In (b), the two -excitation population P2ðtÞ is obtained for
Δ=J ¼ −U=J ¼ −1.
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FIG. 13. Spontaneous emission of single excitation in an
emitter coupled to a strongly open bath with the finite size
Nb. The solid curves denote the result obtained via the Green
function approach, and the dashed line denotes the results
obtained using the corresponding non-Hermitian Hamiltonian
with a finite Nb, detuning Δ=J ¼ 0 and Rabi frequencyΩ=J ¼ 1.
(a) Results for Nb ¼ 20, 60, 150 (green, blue, and red line,
respectively) and the bath dissipation rate Γ=2J ¼ 100. The
corresponding α in Eq. (E1) is α ¼ 0.1, 0.9, 5.7. (b) Results
for Γ=2J ¼ 100, 500, 5000 (red, yellow, and purple line,
respectively) and Nb ¼ 150, corresponding to α ¼ 5.7, 1.1, 0.1.
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