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Understanding topological matter is an outstanding challenge across several disciplines of physical
science. Programmable quantum simulators have emerged as a powerful approach to studying such
systems. While quantum spin liquids of paradigmatic toric code type have recently been realized in the
laboratory, controlled exploration of topological phases with non-Abelian excitations remains an open
problem. We introduce and analyze a new approach to simulating topological matter based on periodic
driving. Specifically, we describe a model for a so-called Floquet spin liquid, obtained through a periodic
sequence of parallel quantum gate operations that effectively simulates the Hamiltonian of the non-Abelian
spin liquid in Kitaev’s honeycomb model. We show that this approach, including the toolbox for
preparation, control, and readout of topological states, can be efficiently implemented in state-of-the-art
experimental platforms. One specific implementation scheme is based on Rydberg atom arrays and utilizes
recently demonstrated coherent qubit transport combined with controlled-phase gate operations. We
describe methods for probing the non-Abelian excitations, and the associated Majorana zero modes, and
simulate possible fusion and braiding experiments. Our analysis demonstrates the potential of program-
mable quantum simulators for exploring topological phases of matter. Extensions including simulation of
Kitaev materials and lattice gauge theories are also discussed.
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I. INTRODUCTION

Techniques for quantum simulation of topological quan-
tummatter and lattice gauge theories are now being actively
explored. Since many of these systems are difficult to treat
analytically or to simulate on classical computers, often
even fundamental concepts are not well understood. Of
particular interest are topological phases [1], whose
long-range entanglement generates a host of interesting
properties, such as emergent gauge fields [2,3], quantum
error-correcting codes [4], and excitations with nontrivial
statistics [5]. Recent developments in superconducting-
qubit technology [6] and neutral atom arrays [7–9] have
provided exciting signatures of Z2 topological order [6,10],
the simplest realization of an Abelian topological order. An
outstanding challenge is developing methods which would
enable these platforms to explore and control non-Abelian
topological order. In such systems, the exchange of
quasiparticles can result in non-Abelian unitary operations
acting on a degenerate set of ground states, which encode

protected quantum information (logical qubits). This prop-
erty makes the non-Abelian anyons not only a fascinating
condensed-matter phenomenon but also a building block of
topological quantum computation (TQC) [4,5], since the
logical subspace is robust against local errors and protected
by a gap to the rest of the spectrum. While there has been a
long-lasting effort to realize this kind of topological order
in solid-state systems [11] and several theoretical proposals
have been put forward to probe it with synthetic systems,
such as cold atoms [12–14] and polar molecules [15,16],
the direct observation of its exceptional properties has thus
far eluded experimental realization.
In this work, we introduce an approach to creating and

controlling non-Abelian topological matter based on peri-
odic modulation. Specifically, we show how the gapped
non-Abelian phase of the Kitaev honeycomb model can be
effectively realized as a Floquet spin liquid, generated by
time evolution under a repeating sequence of two-body
Ising Hamiltonians [17]. In particular, while the time-
averaged Hamiltonian corresponds to the gapless phase
in Kitaev’s model, the first-order correction breaks time-
reversal symmetry and induces a finite energy gap, which is
crucial for stabilizing the non-Abelian excitations.
We demonstrate that such a Floquet spin liquid can be

implemented in a hardware-efficient way using program-
mable arrays of neutral atoms. This approach combines
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coherent qubit transport with parallel two-qubit controlled
phase gates and global single-qubit rotations to realize the
Floquet spin liquid in a digital fashion. Using these efficient
primitives, we develop a Hamiltonian simulation toolkit
to prepare, control, and measure topological matter. By
combining physical insights and variational optimization,
we first demonstrate how to reliably perform time evolution
and prepare ground states of the honeycomb model in the
non-Abelian phase. Subsequently, we show that this tool-
box can be used to study the defining properties of the
chiral non-Abelian theory at different levels of experimen-
tal complexity: The chiral nature of the edge modes can be
probed by performing a simple quench of the boundary
conditions while a minimal additional overhead allows us
to create and adiabatically transport the non-Abelian
Majorana particles characteristic of the Kitaev B phase.
These Majorana zero modes are fractionalized fermions

and when brought together can fuse to either an occupied or
unoccupied fermion mode. We show how the tools devel-
oped here can be used to implement braiding and fusion
experiments, probing their non-Abelian nature. In particu-
lar, the degenerate subspace formed by multiple Majoranas
can be manipulated by exchanging particles which is the
basis for topological quantum computing. We furthermore
design a dynamical protocol to read out the local fermion
content—a necessary component for characterizing the
fusion and braiding rules of the anyonic theory. By
introducing a local magnetic field, we couple the fermion
to a system with Z2 vortices, which correspond to simple
qubit observables. Then, we leverage an emergent two-
level system (TLS) analogy to design a composite pulse
sequence which improves the fidelity of the particle-to-
vortex mapping.
We note that the Majorana modes can also be created in

the Abelian toric code phase, either at the intersection of e
and m boundaries or in the bulk at the end points of 1D
lattice defects [18,19]. Recent experiments [20] explored
gate-based manipulation of such states without energetic
protection provided by the spectral gap. In contrast, the
Floquet spin-liquid phase and the non-Abelian anyons
explored in this work are analogous, respectively, to
pþ ip superconductors and the corresponding Majorana
modes pinned to vortex excitations. The anyons discussed
in this work are pinned to pseudo-vortices, which reside at
the ends of flipped-bond strings.
Our method can also be adapted to implement general-

izations of the Kitaev honeycomb model with long-range
and many-body interaction, or external fields. These
systems are subjects of extensive theoretical and exper-
imental studies [11], and cannot be simulated efficiently on
a classical device, making them prime candidates for
quantum simulation. Finally, the tools developed here for
the implementations of generalized Kitaev models can also
be used to study integrability-breaking quenches and to
potentially simulate lattice gauge theories in ð1þ 1ÞD

with substantially shorter circuit depths compared to
existing methods.

II. FLOQUET SPIN LIQUID

First, we describe the dynamical mechanism for creating
the gapped non-Abelian phase in a periodically driven
system. Consider a two-dimensional honeycomb lattice
with three types of interactions in the three different
directions [Fig. 1(a)]. Their respective Hamiltonians are

HX ¼ −JX
X
hi;jiX

XiXj; ð1aÞ

HY ¼ −JY
X
hi;jiY

YiYj; ð1bÞ

HZ ¼ −JZ
X
hi;jiZ

ZiZj; ð1cÞ

where hi; jiX=Y=Z denotes the appropriate set of links.
Each of these two-body interactions can occur naturally
in a magnetic system, but due to their extreme spatial
anisotropy it is difficult to realize the three of them,
H0 ¼ HX þHY þHZ, at the same time.
In a digital simulation, however, it is possible to

periodically apply the interactions Eqs. (1a)–(1c) one at
a time. Then, over one driving period, the unitary evolution
is described by

UðτÞ ¼ e−iHXτe−iHYτe−iHZτ ¼ e−iHF ½τ�τ; ð2Þ

where τ is the Trotter step. If the frequency of the drive is
high enough (τ is small), this evolution can be captured by
an effective Hamiltonian HF½τ� which is given by the
Magnus expansion [21]. For Eq. (2), the first two terms are

HF½τ� ¼ HX þHY þHZ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
H0

−
i
2
τ½HX;HY �

−
i
2
τ½HX;HZ� −

i
2
τ½HY;HZ� þOðτ2Þ: ð3Þ

This kind of Floquet Hamiltonian engineering by time
averaging has been used in the past to construct prethermal
phases including time crystals [22–25] and lattice gauge
theories [26,27]. In these approaches, the terms other than
H0 are typically detrimental to the desired evolution and
must be suppressed. In contrast, we find that the first-order
terms OðτÞ, explicitly written in Eq. (3), are crucial for an
efficient realization of the desired non-Abelian phase,
as discussed below.
The leading-order term,

H0 ¼ HX þHY þHZ; ð4Þ
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realizes the Kitaev honeycomb model [28], which describes
a highly anisotropic spin system on a honeycomb lattice
[Fig. 1(a)]. This model features several gapped Abelian
topological phases when jJαj > jJβj; jJγj, and a gapless
non-Abelian phase where the linear dispersion is protected
by the time-reversal symmetry. That symmetry needs to be
broken in order to introduce a gap in the spectrum, which is
necessary for a finite correlation length of the excitations
thus making them localizable. The first-order dynamical
correction to the effective Hamiltonian,

H1 ¼ −
iτ
2
ð½HX;HY � þ ½HX;HZ� þ ½HY;HZ�Þ; ð5Þ

which consists of three-body operators of the form XiYjZk,
breaks the time-reversal symmetry since the signs depend
on the particular ordering of applied Hamiltonians in
Eq. (2), here, HX, HY , HZ. Because the gapped phase
disappears in the static, high frequency limit τ → 0, the
effective Hamiltonian realizes an intrinsically dynamical
Floquet spin liquid. In the latter part of this work, we
develop more sophisticated sequences to further suppress
higher-order terms in Eq. (3), enabling coherent control
of the particles, while at the same time controlling the
relative signs and magnitudes of the desired three-body
terms H1. We discuss this procedure, and a more special-
ized approach for the state preparation, in Sec. IV. Similar
dynamical constructions have been used to propose Floquet

FIG. 1. Kitaev honeycomb model on a digital Rydberg simulator. (a) The three types of spin-spin interactionsHX,HY , andHZ applied
along the three directions of the honeycomb lattice together form the highly anisotropic Kitaev honeycomb model described by the
Hamiltonian H0 in Eq. (4). After breaking the time-reversal symmetry, this model hosts a gapped non-Abelian phase. (b) The plaquette
operators Wp ¼ Y1Z2X3Y4Z5X6 ¼ �1 commute with all the link operators HX , HY , HZ and form an extensive set of conserved
quantities. We associate the presence of a Z2 vortex at the plaquette p ifWp ¼ −1. The ground state has no vortices; i.e.,Wp ¼ þ1 for
all p. (c) In this work we develop the toolbox for the three capabilities necessary to fully probe a non-Abelian system on a digital
simulator: state preparation, manipulation, and readout. (d) Four Majorana zero modes encode a topological qubit, as they span a two-
dimensional Hilbert space (for the case shown here) that is separated by the gap from the rest of the spectrum. The logical states
j0iL; j1iL correspond to the unoccupied and occupied zero mode, respectively. Measurement in the logical ZL or XL basis is performed
by fusing the Majoranas in an appropriate configuration and measuring the presence of a fermion particle. Moving the Majorana
particles around each other performs nontrivial unitary operations in the logical subspace—a manifestation of their non-Abelian nature.
(e) The spin degrees of freedom are encoded in the magnetically insensitive hyperfine states fj0i; j1ig of 87Rb atoms, and a highly
excited Rydberg state jri is used to perform two-qubit entangling gates. We utilize reconfigurable Rydberg arrays to implement the
Floquet Hamiltonian of the Kitaev spin liquid in a parallel fashion. This approach is simple, scalable, and all of its components have
already been demonstrated in recent experiments [8].
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symmetry-protected topological phases [29] and the reali-
zation of chiral edge phenomena [30].
The Kitaev Hamiltonian H0 þH1 has an extensive

number of conserved quantities given by plaquette oper-
ators [Fig. 1(b)],

Wp ¼ Y1Z2X3Y4Z5X6; ð6Þ

for each plaquette p ∈ f1;…;Mg, where M ¼ N=2 is the
total number of plaquettes and N is the number of spins in
the system. The collection of values W ¼ fWp ¼ �1jp ∈
1;…;Mg defines a symmetry sector and it can be shown
that the ground state lies in the sector where Wp ¼ þ1 for
all p [31]. We associate the presence of a Z2 vortex on
the plaquette p if Wp ¼ −1 and call the collection W a
“vortex sector”; in this language the ground state is
vortex-free. Even though the number of symmetries is
extensive, the vortex configuration does not specify the
wave function exactly and each sector has a Hilbert space
of dimension 2N=2.
Before proceeding we note that in many previous

proposals, including the original work of Kitaev [28],
the time-reversal symmetry was broken in a perturbative
fashion—either by applying an external magnetic field [28]
or by introducing ancillary gadgets to mediate interactions
[32]. A key advantage of our dynamical scheme is that the
time-reversal symmetry is broken without creating vortices:
Each driving term in Eq. (2) separately commutes with
the plaquette operators, ½HZ;X;Y;Wp� ¼ 0, so the effective
Hamiltonian commutes as well ½HF½τ�;Wp� ¼ 0, irrespec-
tive of τ. Additionally, each of the HamiltoniansHX;Y;Z can
be written as a free-fermion Hamiltonian [28], which means
the heating due to Trotterized time evolution is significantly
suppressed and does not grow indefinitely [33,34]; see
Appendix B for more details. This makes our Floquet
spin liquid especially attractive for experimental imple-
mentation, where Trotter heating can be a limiting factor.
The implementation can also be made hardware effici-
ent, especially on reconfigurable Rydberg atom arrays,
where dynamically toggling between HX;Y;Z is a natural
operation [8].

III. EXPERIMENTAL IMPLEMENTATION

Recently, Rydberg atom arrays have been used to
implement analog simulation of quantum spin systems
with Ising [7,9] and XXZ [35] Hamiltonians, using pro-
grammable, fixed atom geometry. Most recently, a new
architecture introduced coherent and parallel transport of
atoms allowing for dynamically reconfigurable connectiv-
ity [8]. In this approach, qubits are encoded in two
magnetically insensitive hyperfine states j0i; j1i while
excitation to the Rydberg state jri is used for performing
entangling gates [Fig. 1(e)]. This encoding provides
long coherence times, enabling the execution of tens of

thousands of parallel moves. Even for hundreds of qubits,
the quantum gates can be performed by illuminating the
atoms with a global laser beam which provides a native
parallelism of quantum operations with little to no crosstalk
[36,37], thanks to the rapidly decaying van der Waals
interactions. Therefore, reconfigurable Rydberg atom
arrays are easily scalable and especially well suited for
performing parallel quantum circuits where during each
step, or gate layer, each qubit participates in at most
one gate.
Here we describe how the Floquet unitary Eq. (2) can be

implemented in this experimental platform in a hardware-
efficient manner. Since the honeycomb lattice is bipartite,
every link connects the odd (•) and even (∘) sublattices; see
Fig. 1(a). Therefore, the evolution under each of the two-
body Hamiltonians HX,HY ,HZ can be implemented within
a single gate layer using a global pulse that simultaneously
acts on all qubits. This pulse performs the two-body gate
G2ðθÞ ¼ eiθZZ, which is equivalent to a controlled phase
gate up to local Z rotations. First, the atoms are all
transported in parallel and brought together along the
XX links [see Fig. 1(e)], and a Raman pulse performs a
global single-qubit gate that changes the basis from Z to X
in the hyperfine manifold. Then, the entangling gate
operation G2 is applied to all pairs in parallel, which
effectively performs e−iHXτ. The atoms are then transported
again to the next link configuration and the procedure is
repeated, with an appropriate basis change in between,
requiring at all times only a single family of entangling
gates (controlled phase gates). The dynamical change of
connectivity in a system of tens to hundreds of qubits
available in Rydberg atom arrays is central to the realization
of our Floquet protocol. Moreover, such programmability
allows us to implement periodic boundary conditions
without significant overhead, which removes gapless edge
modes that obstruct ground state preparation under open
boundary conditions.
The characteristic coherence time of such a digital

simulation depends on the error rates of the constituent
components. In particular, since the global single-qubit
gates within the hyperfine manifold and the transport of
atoms have negligible effect on the coherence of stored
qubits [8,38,39], the errors will be dominated by the two-
qubit operations. Most recently, control-Z Rydberg gates
with fidelities beyond 99.5% have been demonstrated [37],
and are expected to go above 99.9% in the near future.
Moreover, the control-Z gate is a special case of the G2 gate
(θ ¼ π=4), and similar gates with smaller angles are faster
and therefore expected to work at even higher fidelities.
While the implementation in reconfigurable Rydberg

tweezer arrays is particularly efficient, the scheme
described in this work can be realized in other quantum
simulation platforms. For example, trapped-ion quantum
charge-coupled devices [40,41] support dynamical con-
nectivity while superconducting-qubit devices allow for
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selective application of two-body gates [6], both of which
can be used to realize the Floquet cycle as described here.

IV. VARIATIONAL OPTIMIZATION
FOR NEAR-TERM DEVICES

In this section, we describe a procedure to systematically
construct high-fidelity pulse sequences for resource effi-
cient Hamiltonian simulation and state preparation through
variational optimzation, guided by physical insights and
experimental simplicity.
As described in Eq. (3), the symmetry-breaking three-

body terms appear in the first order of theMagnus expansion
in the Floquet unitary Eq. (2). Thus, the repeated application
of this unitary, with an appropriate value of τ, should already
resemble the time evolution underH to a certain degree. We
can further improve the fidelity if we promote the individual
phases to variational variables which we then optimize.
Concretely, the circuit ansatz of depthD consists ofD blocks
based on the Floquet unitary in Eq. (2),

UDðfθgÞ ¼
YD
i¼1

Ubðθ⃗iÞ; ð7Þ

where fθg enumerates the set of all variational parameters.
The ith block, Ubðθ⃗iÞ, is

Ubðθ⃗iÞ ¼ eiθ
x
i XXeiθ

y
i YYeiθ

z
i ZZ; ð8Þ

where XX, YY, ZZ denote the respective two-qubit gates
applied to all appropriate links in parallel—this corresponds
to Eq. (2) with the couplings promoted to variational
variables. Thus, a circuit ansatz of depth D consists of 3D
two-qubit gate layers interleaved with global single-qubit
rotations.
Within a fixed vortex sector, the Floquet dynamics

are exactly solvable and the individual terms correspond
to quadratic, free-fermion operators; see Ref. [28] and
Appendix A. This enables efficient analytical or numerical
treatment of the circuit in Eq. (7), including calculation of
gradients ∂θ⃗UD. In particular, we can simulate a system of
N sites by working with matrices of size N × N. Then, we
are free to optimize the phases fθg, and hence the pulse
sequence, using our choice of a numerical optimization
method. The cost function Q to be minimized would
depend on the specific application. Moreover, the transla-
tional invariance of the system enables us to analytically
evaluate low-order terms in the Magnus expansion. In the
next section, we use it to build intuition underlying good
solutions to the variational problem.

A. Effective Hamiltonian

First, we focus on constructing effective Floquet
Hamiltonians using the variational ansatz above.
Specifically, we minimize the cost function,

QH ¼ kUDðfθgÞ − e−iHτk2F;

using gradient descent starting from a randomized
symmetric configuration of phases, as described below.
The norm we use is the squared Frobenius norm,
kAk2F ¼ TrAA†, which is amenable to simple gradient
calculation; see Appendix D for details.
An example pulse for τ ¼ 0.05 andD ¼ 4 is presented in

Fig. 2(b). Here, the general structure can be understood
as the optimizer fixing the correct signs and magnitudes of
the target three-body terms. The intuition that such a
symmetric configuration of phases is enough for this
purpose can be inferred from a simpler D ¼ 2 case
where we parametrize all phases with two variables ϕ; δ:
U2 ¼ eiðϕ−δÞHXeiϕHYeiðϕþδÞHZeiðϕþδÞHXeiϕHYeiðϕ−δÞHZ . The

first two orders of the Magnus expansion are Hð0Þ
F ¼

2ϕH0 and

−iHð1Þ
F ¼ ϕðϕ − δÞ½HX;HY � þ ðϕ2 − 2ϕδ − δ2Þ½HX;HZ�

þ ϕðϕ − δÞ½HY;HZ�:

In particular, by choosing δ appropriately, we can
make the ½HX;HZ� coefficient negative while keeping
½HY;HZ� and ½HX;HY � positive. Demanding the two
have opposite signs and equal magnitude—which guaran-
tees uniform couplings when combined with the signs
from commutators—we get the condition

0 ¼ 2ϕ2 − 3ϕδ − δ2 ⇒ δ ¼ ð−3�
ffiffiffiffiffi
17

p
Þϕ=2;

which we can straightforwardly solve. This simple example
shows that we can freely tune the strength and signs of the

three-body terms arising in Hð1Þ
F .

Unfortunately, reducing the contribution of higher-order

terms Hðn>1Þ
F while preserving the first two is a formidable

challenge and we empirically find that the variational
landscape has many local minima and plateaus making
the optimization result strongly dependent on a good initial
seed. However, it is much easier to find good HF½τ� for
small τ, and thus the following recursive procedure turns
out to be successful: After obtaining a good approximation
toHF½τ� at depthD, we apply the e−iHF½τ�τ unitary twice and
use it as an initial guess for a depth-2D approximation to
HF½2τ�. This corresponds to evolving the system for time
2τ and asking the optimizer to correct the combined
discrepancies, which intuitively should be perturbatively
small in τ and thus amenable to gradient-based methods.
The results are presented in Fig. 2(d) where the

many-body evolution is simulated with various effec-
tive Hamiltonians and the failure rate of this process
is measured via the many-body state overlap as
1 − jheiHF½τ�te−iHtij2. As expected, the HF½τ ¼ 0.1� evolu-
tion (yellow) at D ¼ 4 outperforms the D ¼ 4 simulation
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withHF½τ ¼ 0.05� (blue) by a factor of 2 in the time it takes to
reach a certain threshold (dashed line); intuitively, this is
consistent with the τ ¼ 0.05 circuit requiring twice the
number of gates for the same physical time Jt. However,
theD ¼ 8HamiltonianHF½τ ¼ 0.1� (brown) obtained by the
abovementioned recursive construction allows for 6 times
longer time evolution while requiring the same number of
total applied gates as the τ ¼ 0.05 case. While the improve-
ment is not surprising, we find that already at circuit depth
D ¼ 8 it is difficult to find reasonable solutions without
guided initial state and thus this iterative procedure is
essential for finding good Hamiltonians at larger τ, allowing
for long evolution time. The general task of finding optimal
pulse sequences is an interesting optimization problem and
could be a fertile ground for quantum signal processing [42]
and machine learning methods, which have been used in the
past to successfully engineer robust pulse sequences for
nuclear magnetic resonance (NMR) [43].

B. Variational state preparation (VSP)

In principle, an efficient Floquet Hamiltonian enables
both the energetically protected operations on the non-
Abelian excitations and adiabatic state preparation.
However, each Hamiltonian evolution step requires sev-
eral gate layers, which limits the total available evolution
time. We find that the state preparation step can be
significantly improved, compared to the adiabatic state
preparation, by employing the same variational methods
used to develop efficient Floquet Hamiltonians. Intui-
tively, it is easier to transform a given initial vector to the
final one (state preparation) compared to approximating
many-body evolution on the full Hilbert space (effective
Hamiltonian construction). Again, we use the same circuit
ansatz from Eq. (7), but instead of minimizing a Frobenius
norm of the Hamiltonian evolution we choose to use the
many-body state overlap as the cost function for the
optimizer,

FIG. 2. Variational circuits for Hamiltonian engineering and state preparation. (a) The circuit ansatz from Eq. (7) suffices for efficient
approximation of the target Hamiltonian as well as finding specialized circuits for state preparation. The variational circuit yields pulse
sequences that result in Floquet Hamiltonians where both the strength and signs of couplings can be controlled. Preparing a certain
output state is less demanding then reconstructing a many-body operator; thus, with the same variational ansatz, we can prepare the non-
Abelian ground state more efficiently than performing adiabatic evolution in terms of both the gate count and resulting fidelities. (b),(c)
Phases obtained through variational optimization on a relatively small 30-qubit system realizing effective Hamiltonian evolution
and variational state preparation, respectively. (d) For engineered Floquet Hamiltonians, longer pulse sequences can systematically
improve the approximation to the target Hamiltonian H. (e) Performance of the variational state preparation on an L × L lattice. Error in
the final state as a function of the circuit depth D for several system sizes. The error decreases exponentially with D as 1 − F ∝
exp½−AL−αðD −D0Þ� for low depths; we estimate α ≈ 2.43, A ≈ 73, and D0 ¼ 5. (f) The number of two-qubit gate layers necessary to
achieve the many-body state fidelity of 90% for a system of N ¼ 2L2 spins.
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QVSP ¼ −jhψ finjUDðfθgÞjψ iniij2;

where ψ ini and ψ fin are the initial and target states,
respectively. This cost function and its gradient can also
be evaluated efficiently using the free-fermion picture; see
Appendix D for details.
In Fig. 2(e), we present the performance of VSP

for ψ ini and ψ fin being the vortex-free ground states
of HZ and H, respectively. The ground state of HZ
is obtained by projecting a product state ψ0 into
the no-vortex symmetry sector, which can be done in a
single step by performing projective measurements
of Wp operators or, alternatively, by passively cooling
the state using conditional gate operations which progres-
sively remove vortices; we describe these procedures in
Appendix E 1. The task accomplished by the VSP corre-
sponds to the transition from the toric code (the Abelian
phase) to the non-Abelian chiral phase. We find that the
error in the preparation of the target state decreases as
expð−DL−αÞ in the low-depth regime, where L ¼ ffiffiffiffiffiffiffiffiffi

N=2
p

and we numerically estimate α ≈ 2.43. Remarkably, even
though the circuit depth scales with the system size—as
required since crossing a phase transition involves building
up long-range order—the depth necessary for state prepa-
ration is accessible in Rydberg atom arrays even for
hundreds of spins. We note that a similar state preparation
scheme, although not employing the Floquet stabilization
of the non-Abelian phase nor experimental codesign, has
been explored in Ref. [44].
The many-body fidelity is convenient for optimizing

the performance of the VSP but it is not very useful for
experimentally assessing the quality of the final state and its
robustness to errors. For this purpose, we additionally
benchmark the state preparation under a control noise
model. We simulate a VSP circuit, which prepares a logical
state encoded in the ground state, with the optimal phases
modified by errors sampled from a uniform distribution.
We then read out the logical state with our dynamical
quench protocol (discussed later) and the outcome allows
us to quantify the quality of the prepared state in an
experimentally feasible way. We find that even imperfect
state preparation results in a high probability of correct
measurement outcome, up to large phase fluctuations of
δθ ≈ 0.06. This suggests that our state preparation pro-
cedure is, to a certain extent, robust against these types of
errors; the details of this benchmark can be found in
Appendix F.
We also point out a subtlety related to the different

ground-state degeneracy of the Abelian and non-Abelian
phases: The dimension of the ground-state manifold in
the toric code phase is 4, while for the non-Abelian phase
it is 3. This means that one of the ground states is not
adiabatically connected to the non-Abelian theory and
becomes an excited state. By choosing an appropriate
initial product state jψ0i ¼ j0iN , we ensure that the system

is orthogonal to this undesired state. We discuss this
important point in more detail in Appendix E.
Finally, we note that Hamiltonian learning methods

[45,46] could be used to confirm the preparation of the
non-Abelian phase without the need for sophisticated
control of the excitations. Similarly, variational state prepa-
ration combined with effective Hamiltonian evolution suf-
fices to probe the chiral nature of the edge modes. However,
performing basic TQC operations, such as braiding and
fusion measurements, not only verifies the non-Abelian
nature of the particles but also paves the way to more
complex computing tasks. In the rest of this work we focus
on describing steps necessary to achieve these goals.

V. CONTROLLING NON-ABELIAN EXCITATIONS

One of the remarkable properties of the Kitaev honey-
comb model is the presence of excitations that exhibit non-
Abelian statistics, specifically of the Ising anyon type [5].
Unlike the Abelian anyons present in the toric code
model [4], operations on the non-Abelian σ particles result
in unitary matrices—not only a global phase—acting on the
logical qubit subspace. In this section, we present the steps
necessary to create, manipulate, and read out the non-
Abelian σ particles, which hold Majorana zero modes. For
the rest of this work, we use the terms “Majorana zero
mode” and “σ particle” interchangeably.

A. Creating and moving zero modes

To create Majorana zero modes, first the sign of a single
bond can be flipped adiabatically, which affects the J
coupling and the overlapping three-body terms in the
extended Hamiltonian H, without changing the vortex
sector W [32]. This modifies the spectrum, turning one
of the excited fermion eigenstates states into a low-energy
bound state localized around the flipped bond. As a chain
of adjacent bonds are adiabatically flipped, the energy of
the original fermion state decreases exponentially with
distance, rapidly approaching a zero energy mode that can
be occupied at no cost. This forms a nearly degenerate two-
dimensional ground space. Furthermore, local measure-
ments can no longer determine whether the originally
excited state is occupied or unoccupied; hence, these states
form topologically protected “logical states” (j0iL and j1iL)
which we identify with sectors 1 and ψ , respectively.
Taken together, this degenerate subspace can also be

interpreted as two Majorana zero modes, supported on
plaquettes connected by the flipped bond (Fig. 3). Since the
global fermion parity is conserved, the simplest nontrival
system consists of four Majorana modes, which span a two-
dimensional logical subspace. For a given pairing, these
two states correspond to no fermions (11) or two fermions
present (ψψ) [Fig. 1(d)]. This two-level system can be
manipulated by transporting Majorana modes. This can be
done in a topologically and energetically protected way by
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adiabatically flipping the signs of appropriate bonds using
the effective Hamiltonian evolution.
Our Floquet approach to stabilizing the excitations has

the crucial advantage that a local modification of phases in
the variational ansatz Eq. (7) automatically modifies, to
leading order, the emergent three-body terms in an appro-
priate manner. The variational circuit is straightforwardly
extended to include such local modifications, and can be
optimized at every step if necessary. Experimentally, local
phases can be realized either with local Rydberg laser
control or by separating local terms into separate gate
layers.

B. Localized-fermion readout

The key step necessary to complete the particle fusion is
the readout of the localized-fermion state (either 1 or ψ). In
our case, these fermions are formed from two adjacent
Majoranas, ψ ¼ ðc1 þ ic2Þ=2, brought together to perform
fusion, as in the final step of Fig. 5(a). In other words, we
want to check whether the two Majorana modes are paired
or not. In our figures we indicate such pairing checks with
solid blue arrows. The key insight is that the magnetic field

in the Z direction, applied to the bond shared by the
adjacent Majorana particles, couples the ψ particle to an
empty state with two vortices [Fig. 4(a)]; i.e., it destroys a
fermion and flips adjacent plaquettes. This state, without a
localized fermion, is the ground state in the two-vortex
sector. Because the initial state couples strongly to another
eigenstate, the two effectively form a detuned two-level
system with the detuningΔ on the order of the bulk gap; see
Appendix I for the details of this TLS model. Alternatively,
if the fermionic mode is initially empty, we create a
localized-fermion mode in addition to the two vortices.
However, in the two-vortex sector, there is no localized-
fermion state and the momentum eigenstates form a band
with quadratic dispersion. Hence, the empty state is weakly
coupled to a detuned continuum, and the response to the
local magnetic field quench is different than for the
occupied state discussed above.
This discrepancy in the response allows us to differ-

entiate between the two states in an experiment: We utilize
the strong coupling to map the ψ particle to the two Z2

vortices whose presence is read out by measuring the
adjacent plaquette operatorWp—a simple spin observable.
This realizes a measurement within the TQC framework. It
is also similar in spirit to phase measurements in atomic
systems. We emphasize that our protocol does not depend
on any fine-tuned parameters and can be calibrated inde-
pendently in a small-scale experiment.
In Fig. 4(c), we show the time evolution of the relevant

plaquette expectation value hWpi after the quench. As
expected, we observe a much stronger response during the
quench from the occupied fermionic mode compared to
the empty one. The figure of merit for the readout is the
difference between the two cases,

F ¼ jhWpiemp − hWpioccj=2; ð9Þ

and, ideally, we could map the empty state to hWpiemp ¼
þ1 and the occupied state to hWpiocc ¼ −1. That would
allow us to distinguish them with perfect fidelity F ¼ 1.
Unfortunately, the system undergoes detuned oscillations
in the TLS, never achieving the maximal contrast.
However, we can leverage the two-level analogy, and the
flexibility of digital simulation, to devise robust composite
drives that increase the fidelity dramatically. Such pulses
have long been used in the NMR community. We find that a
simple two-stage composite drive already increases F
substantially. It consists of the time evolution until the
first local minimum and the subsequent evolution for the
same time albeit with a negative detuning [Fig. 4(b)]. We
achieve the negative detuning by keeping the local mag-
netic field fixed while driving with −H, an easy task in our
digital approach. In Fig. 4(c), the first pulse lasts until the
dashed line and the use of the composite pulse improves the
fidelity from F ¼ 0.43 to F ¼ 0.89.
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FIG. 3. Majorana zero modes. Movement of non-Abelian
modes can apply nontrivial unitary operations to the logical
subspace. (a) Two modes localized on adjacent plaquettes are
created when the sign of a single bond coupling is adiabatically
flipped (red). The flipping of subsequent bonds in a ladderlike
pattern allows for their transport. (b) As the modes are moved
away from each other, their energy decreases exponentially fast
with the separation distance, eventually resulting in the Majorana
zero modes. The degenerate logical subspace encodes the
protected qubit: The empty mode corresponds to j0iL and the
occupied one to j1iL. See also Fig. 1(d).
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Including effective magnetic fields in the model prevents
the exact solution and makes the analysis of the system
much more difficult. However, we can obtain an approxi-
mate solution using the fermionic Gaussian state (FGS)
ansatz [47,48]—this choice is well motivated here since
eigenstates in well-defined vortex sectors are exactly
Gaussian. Hence, we expect this variational ansatz to
interpolate well between them. We find that the FGS
predictions are in good agreement with the exact results
for small system sizes and short to intermediate times; see
Appendixes H and J for details.
In the effective Hamiltonian, we include the magnetic

field by performing a single-qubit Z-phase gate eiθZ at the
appropriate site; since the field is local, this first-order
treatment is enough to approximate the full Hamiltonian
evolution. Finally, because the readout procedure depends
only on local quenches, it can be calibrated in a relatively
small 30-qubit experiment where the degree of control over

the state is much larger, and subsequently used in the full-
scale simulation. We describe such a protocol in detail in
Appendix J and supplement it with exact spin-picture
simulations. We note that going beyond quench dynamics,
and optimizing the performance of this readout scheme
with a variational procedure, is an interesting direction for
future work.
With these tools, allowing for the preparation, move-

ment, and readout of the excitations, it should now be
possible to perform the two basic experiments character-
izing an anyonic theory: fusion and braiding. We describe
them briefly in the following section.

VI. FUSION AND BRAIDING

First, we consider a procedure to confirm the non-
Abelian fusion rule,

σ × σ → 1þ ψ ; ð10Þ

corresponding to the recombination of two σ particles.
Unlike the toric code case, where combining two
particles always gives a deterministic result, here fusing
σ particles can, under certain circumstances, produce
either a vacuum state or a ψ fermion, with equal
probabilities. This behavior is a hallmark of a non-
Abelian theory [5].
We initialize the logical j0iL state by preparing two pairs

of unoccupied Majorana modes (labeled 1-2 and 3-4) using
the adiabatic protocol described in the previous part. Next,
we move modes 2 and 3 in such a way that they recombine
in the opposite pairing [Fig. 5(a)]; i.e., 1-3 and 2-4. In the
language of TQC, this operation corresponds to the
measurement in an orthogonal basis, e.g., fjþiL; j−iLg,
and thus we expect both results to appear with equal
probability. Physically, along the adiabatic path, the states
become exponentially degenerate (zero modes) and thus the
transition from one configuration to another is maximally
diabatic, resulting in equal superposition of the final states
j11i þ jψψi. The evolution of the state can be traced by
monitoring the state’s decomposition in terms of the
instantaneous logical basis [Fig. 5(b)]. Finally, we check
for the presence of the ψ fermion with our dynamical
quench protocol. In experiment, measuring equal weights
of the vacuum and ψ states, combined with the high
correlation between the two pairs, would confirm the
non-Abelian fusion rule Eq. (10).
Fusion rules do not specify an anyonic theory com-

pletely. On top of it, we need to identify the braiding
properties of excitations, i.e., the transformations of the
degenerate state manifold upon moving anyons around
each other. As we have discussed in the case of fusion,
swapping the modes 2 and 3 results in the application of a
π=2 rotation on a Bloch sphere, or equivalently a change of
basis. Now, performing this operation twice (in a way that
results in mode 2 looping around mode 3) corresponds to

FIG. 4. Readout of the localized fermion. (a) Magnetic field h
creates or annihilates the localized fermion mode and flips the
neighboring plaquettes. This allows for mapping the presence of a
local excitation to a spin observable. (b) The effective two-level
system is conveniently represented on a Bloch sphere. We use a
two-part pulse consisting of the Rabi drive under the Hamiltonian
HðΔÞ and the second equally long evolution under Hð−ΔÞ with
an opposite sign of the detuning. (c) The plaquette expectation
value for the two states of interest under evolution with the two-
stage pulse sequence. The opposite detuning is achieved by
utilizing the digital nature of the simulation and applying −H
instead of H. The use of the composite pulse increases the
contrast from F ¼ 0.43 (first pulse, dashed line) to F ¼ 0.89
(both pulses).
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applying the π=2 rotation twice—resulting in a π pulse that
encodes the

Ubraid ¼
�
0 1

1 0

�
ð11Þ

operation in the logical manifold up to global phases. The
initial configuration is the same as the fusion experiment,
but now mode 2 is looped around mode 3 and the logical
state is measured in the original basis, i.e., 1-2 and 3-4.
At the end, we end up in the starting configuration, but a
nontrivial braid has been completed between the Majorana
particles.
After completing the braiding operation, we should end

up in a flipped state, j0iL → j1iL, which can be verified by
performing the readout and measuring the state j1iL with
probability close to unity. This concludes the characteri-
zation of the non-Abelian properties of the excitations in
the system.

VII. RESOURCE ESTIMATES AND
EXPERIMENTAL FEASIBILITY

Next, we discuss resources necessary to implement
our proposal in quantum hardware. In Rydberg atom
arrays, two-qubit gate fidelities are the dominant source
of error, compared to extremely efficient single-qubit gates
and atom transport [8,38,39], and thus we focus on the
number of two-qubit gate layers necessary. We summarize
our findings in Table I, where we assume a time step
Jτ ¼ 0.25 for the time evolution and the readout procedure;
this value is large enough to enable efficient implementa-
tion while still ensuring good performance of fusion
and braiding operations. We emphasize that even larger
Trotter angles do not necessarily lead to the breakdown
of the topological phase due to the free-fermion nature of
the honeycomb model; see Appendix B for details. The
resource estimates for these circuits are quite favorable for
near-term experimental exploration of the non-Abelian
phase. For example, preparation of the non-Abelian phase

FIG. 5. Fusion of non-Abelian anyons. (a) Two pairs of
Majorana modes (1,2 and 3,4) are created in the logical j0iL
state (empty zero mode) and subsequently moved and brought
together in a different configuration. During each step the modes
are moved a single site by adiabatically flipping the sign of the
subsequent bond. (b) Many-body overlap with instantaneous
logical basis states along the adiabatic path. The λ ¼ 0, 0.5, and
1.0 correspond to initial, intermediate, and final state of the fusion
experiment depicted in (a). This adiabatic process corresponds to
a change of logical basis or, equivalently, applying a Hadamard
gate. The simulation was performed on an L × L lattice with
L ¼ 20 with an idealized, target Hamiltonian. In practice, this
will be realized using Floquet circuits (see Fig. 2). The modes
are initially placed on neighboring plaquettes and the two
pairs are separated by L=2 − 2, which results in the total of
2ðL=2 − 2 − 1Þ ¼ 14 steps necessary to complete the fusion. For
braiding at a characteristic distance bL=3c, the required number
of steps is 9bL=3c − 23.

TABLE I. Gate-layer estimate for the proposal. The number of required two-qubit gate layers varies between the
different steps of the proposal. Several ingredients, such as state preparation, can be realized in current experimental
platforms. The estimate is performed for a system size with N ¼ 2L2 qubits and the time evolution implemented
with depth-D circuit.

Stage Number of gate layers Source

Initial projection 6 Appendix E 1
State preparation 22þ 0.3L2 Fig. 2(f)
Time evolution (one step) 3D Eq. (7)
Topological readout 60D Fig. 4

Total (edge dynamics) 28þ 0.3L2 þ 30D Appendix G
Total (fusion) 28þ 0.3L2 þ 12DðL − 1Þ Fig. 5
Total (braiding) 28þ 0.3L2 þ 12Dð9bL

3
c − 18Þ Fig. 5
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in a 72-qubit system would consume only 33 two-qubit
gate layers. This remarkable efficiency is a direct result of
the hardware-efficient encoding, utilizing simple Floquet
sequences of parallel two-qubit gates and global single-
qubit rotations to generate the higher-order terms that
stabilize the non-Abelian phase.
Finally, we estimate the achievable many-body fidelity

in near-term devices with faulty two-qubit gates. There are
two competing processes: Longer sequences can ideally
achieve higher state preparation fidelity, but accumulate
more errors due to noisy entangling operations. To estimate
the optimal circuit depth D�, for a given two-qubit gate
fidelity f, we use the heuristic scaling presented in Fig. 2(e)
and assume an exponential decay of the many-body fidelity
with the circuit volume,

F ðD; fÞ ∼ ð1 − e−AðD−D0ÞL−αÞf6L2D; ð12Þ

which allows us to calculate the optimal depth D�ðfÞ and
the corresponding maximal many-body overlap F �. In
Fig. 6, we plotD� andF � as a function of the system sizeN
and the gate fidelity f ¼ 1 − 10p. Since current state-
of-the-art devices can readily reach f > 0.995 and are
projected to achieve f > 0.999 in the near term, our
estimate shows that significant many-body overlap with
the topological ground state can be achieved in large
systems of approximately a hundred qubits. In practice,
the many-body fidelity is the most stringent measure and
generically decays exponentially with system size. As such,
signatures of the non-Abelian topological phase should
remain visible at larger system sizes as well.

VIII. DISCUSSION AND OUTLOOK

The results presented in this work indicate that non-
Abelian Floquet spin liquids can be dynamically created
through applications of periodic pulse sequences in a
hardware-efficient manner. In particular, we develop a dyna-
mical protocol where the desired gapped Hamiltonian is
obtained by engineering higher orders of the Magnus
expansion and construct efficient pulse sequences that
approximate the target Hamiltonian and state preparation.
These tools can be utilized to encode logical information in
the Majorana zero modes that can be adiabatically created
and controlled with our effective Hamiltonian approach,
providing a blueprint for exploring non-Abelian phases of
matter using Rydberg atom arrays in the near term. In
particular, the Hamiltonian realization leads to energetic
protection against coherent errors, such as control errors or
spurious magnetic fields which induce local unitary rota-
tions. In contrast, in a realistic simulation, incoherent errors
will build up over time, unless removed by cooling.
Developing hardware-efficient cooling for the models stud-
ied here, for example, by midcircuit readout of stabilizers as
in quantum error correction, may be important in practice for
stabilizing the topological phase at long times. The addition
of such periodic readout intervals can also allow one to
combine the present method with recently proposed Floquet
quantum error-correcting codes, which dynamically realize
topological phases via repeated measurements [49,50].
Exploration of topological order in hybrid models with
Hamiltonian evolution and midcircuit measurements—
both of which can be realized using similar experimental
controls—is an intriguing future research direction.
The methods developed here can also be applied to

study various extensions of the Kitaev model, which
are the topic of current research, both theoretical and
experimental. Adding external magnetic fields [51–53],
Heisenberg interactions [53,54], or more complicated
many-body terms [55] may drastically change the behavior
of the system. For example, different topological phases,
with new classes of anyonic excitations, have been postu-
lated for some of these extensions while others are especially
relevant for real-world materials [11]. Additionally, we can
leverage the efficient state preparation of the Kitaev honey-
comb ground state and digital Hamiltonian evolution to
simulate quenches away from the integrable non-Abelian
phase to more complicated models, which are difficult to
model on a classical computer. Such quenches enable the
study of integrability breaking and thermalization near
integrable points [56–58]. Furthermore, it could also be
used to probe excitations of the quenched Hamiltonian [59],
which is especially interesting due to the underlying topo-
logical order of the non-Abelian phase.
Our approach can be extended to efficiently simulate

other, more exotic models. For instance, an important class
of lattice gauge theories can be efficiently simulated by
implementing three-body interactions [60], using a family
of gates G3ðθÞ ¼ expðiθZiZjZkÞ combined with sublattice
rotations (see Appendix K). Such a family of three-qubit

FIG. 6. Optimal circuit depth and fidelity in near-term devices.
(a) The optimal circuit depth D� maximizing the many-body
fidelity during state preparation, balancing the Trotterization and
gate errors. The corresponding number of gate layers is 3D�.
(b) The maximal many-body fidelity F � at the given two-qubit
gate fidelity f and system size N, achieved at the optimal state
preparation circuit depth D�. We note that the many-body fidelity
is a stringent measure and many observables, such as topological
readout, should be more robust to errors; see Appendix F for
further discussion.
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gates can be implemented as a natural extensionofG2ðθÞ [37]
since arranging atoms in a triangle guarantees a symmetric
blockade, as discussed in Appendix C. The speed and
robustness to errors for such operations can likely be
improved further using optimal-control methods [61]. In
the absence of an exact solution, several of the methods
employed in this work would have to be modified. For
example, the variational state preparation relies on the ability
to calculate the many-body overlap in order to minimize
the cost function. Instead, one would need to resort to the
adiabatic state preparation or variationalmethods involving a
quantum-classical feedback loop [62]. Simplifying these
requirements and optimizing these methods is another
interesting direction for future research.
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APPENDIX A: EXACT SOLUTION USING
MAJORANA OPERATORS

In this appendix, we summarize the solution of the
extended Kitaev Hamiltonian using Majorana operators.
We follow exactly the original derivation in Ref. [28].
Each spin degree of freedom is decomposed into four

Majorana operators: bx; by; bz; c. Together they span a four-
dimensional Hilbert space H̃, which necessitates the pro-
jection to the physical two-dimensional spaceH.We achieve
this by restricting ourselves to the þ1 eigenspace of the
projector,

D ¼ bxbybzc; ðA1Þ
thus imposing D ¼ 1; i.e., jψi ∈ H if and only if
Djψi ¼ jψi. The physical spin operators (Pauli σx=y=zÞ)
are represented with

σα ¼ ibαc; ðA2Þ
which holds as long as they act on jψi ∈ H.
The HamiltonianH ¼ H0 þH1 reduces in the Majorana

picture to

H ¼ i
4

XN
i≠j¼1

Aijcicj; ðA3Þ

where Aij ¼ 2Jijuij þ 2Kijuikukj and uij vanishes if the
sites i, j are not connected. In terms of the Majorana

degrees of freedom, uij ¼ ibðαÞi bðαÞj ¼ −uji, and all of them
commute with the Hamiltonian, thus encoding the effective
gauge degrees of freedom. We choose the ordering in such
a way that i, j belong to the odd (•) and even (∘) sublattices
[Fig. 1(a)], respectively. The plaquette operator Wp from
Eq. (6) is given by an oriented product of the uij bonds
around the plaquette.
The Hamiltonian (A3) is quadratic in the Majorana

operators, which means the quantum state is fully
characterized by the skew-symmetric real matrix Γij ¼
ði=2Þh½ci; cj�i. The time evolution can be solved exactly
and is given by

ΓðtÞ ¼ U†ðtÞΓð0ÞUðtÞ; ðA4Þ

where UðtÞ ¼ expð−AtÞ.

APPENDIX B: HEATING OF THE FLOQUET
KITAEV SPIN LIQUID

Here, we discuss heating due to the intrinsic errors
associated with Trotterized Hamiltonian evolution. As
shown in Appendix A, the Kitaev honeycomb model is
equivalent to a system of free fermions [28]. Therefore,
unlike generic many-body systems, it does not heat up
indefinitely when subjected to external driving [33,34].
Instead, the energy of the system increases by a factor
∝ ðJτÞ2 during short-time relaxation process and sub-
sequently stabilizes without further heating, as presented
in Fig. 7.
Intuitively, the Floquet drive with frequency Ω ≔ 2π=τ

introduces Floquet bands spaced at intervals of the order Ω.

FIG. 7. Heating of the Floquet spin liquid. Change in the
expectation value of the target Hamiltonian EðtÞ¼hψðtÞjHjψðtÞi
as a function of time. The energy rises sharply in short-time
dynamics and eventually stabilizes to a value of the order ðJτÞ2.
This behavior is a special feature of our free-fermion model and
does not occur for generic interacting many-body systems.
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If Ω is larger than the local energy scale, the heating
becomes suppressed since correlated many-body processes
are required to accommodate this large amount of energy.
In other words, different Floquet bands need to overlap
for the energy absorption to occur. In generic interacting
systems, the many-body bandwidth grows with the system
size N and, unless Ω ∝ N, different Floquet bands will
eventually overlap, leading to energy absorption and
heating. In the free-particle system, however, the spectrum
corresponds to the single-particle dispersion and is thus
bounded regardless of the system size; this results in no
heating as long as Ω is larger than that bandwidth. Since no
energy quanta can be absorbed, the only effect of the drive
comes from virtual processes which enter as ðJ=ΩÞ2 and
dress local operators.
Thanks to these special properties, the Kitaev honey-

comb model is uniquely suited for the first large-scale
demonstration of digital quantum simulation since the
heating effects should be significantly suppressed com-
pared to generic quantum systems.

APPENDIX C: RYDBERG GATES FOR
HAMILTONIAN EVOLUTION

Besides the application in this work, the G2ðθÞ ¼ eiθZZ

and G3ðθÞ ¼ eiθZZZ families of gates allow for simulation
of various exotic Hamiltonians such as lattice gauge
theories. Here, we introduce and characterize a simple
realization of the G3 gate with three Rydberg pulses,

G3ðθÞ ¼ RðΔ1; τ1; 2ϕÞRðΔ2; 2τ2;ϕÞRðΔ1; τ1; 0Þ; ðC1Þ

where RðΔ; τ;ϕÞ is a Rydberg pulse with the detuning Δ,
time τ, and phase ϕ, defined as the time evolution e−iHτ

under the Hamiltonian,

H ¼ V∞
Ryd þ

Ω cosϕ
2

X̂ −
Ω sinϕ

2
Ŷ − Δjrihrj; ðC2Þ

where we use the energy units of Ω, the time is in the units
of Ω=2π, and V∞

Ryd denotes the perfect Rydberg blockade
constraint; i.e., the jrri and jrrri states are infinitely
detuned from the rest of the system. The two- and three-
body W states arising due to the Rydberg blockade are
defined as

W2 ¼
1ffiffiffi
2

p ðj1ri þ jr1iÞ;

W3 ¼
1ffiffiffi
3

p ðjr11i þ j1r1i þ j11riÞ:

Contrary to the original Levine-Pichler gate [36], the
pulse time is not constrained by τi ¼ 2π=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Δ2

i

p
, which

would enforce that the j110i → jW20i transition closes
exactly after every pulse R. Amazingly, one can still find

reasonable gates with this symmetry (up to six digits of
precision), but for exact gates none of the manifold
rotations close exactly. Instead, as shown in Fig. 8, the
Rydberg populations of the W1 and W3 transitions are
equal after every pulse. In fact, the population after the
second pulse is the same as after the first, and the final
rotation “reverses” the Rydberg state populated with the
first pulse. In Fig. 9, we plot pulse parameters that realize
G3ðθÞ for θ between 0 and π=4. The discontinuity around
0.03 is caused by the necessity to perform an additional
rotation on the Bloch sphere in order to acquire phases
larger than the threshold value. Similar jump occurs again

FIG. 8. Three-qubit gate: Populations. Population dynamics
during a pulse sequence realizing G3ðθ ¼ 0.2Þ. (a) Population of
the hyperfine states during the gate execution. After every pulse
(dashed line), the populations are equal between curves. Addi-
tionally, the second pulse leaves the populations unchanged
allowing for the final symmetric “reverse” rotation; see Eq. (C1)
for comparison.

FIG. 9. Three-qubit gate: Pulse parameters. Values of the phase
jump, detunings, and timings for a given accumulated phase θ.
These plotted quantities define the G3ðθÞ pulse sequence
through Eq. (C1).

NON-ABELIAN FLOQUET SPIN LIQUIDS IN A DIGITAL … PHYS. REV. X 13, 031008 (2023)

031008-13



for larger angles but is outside of the range we plot. In
general, optimal-control methods can be used to find more
efficient gate implementations [61].

APPENDIX D: VARIATIONAL ANSATZ
COST FUNCTIONS

In order to find a good set of angles fθg for variational
state preparation or effective Hamiltonian engineering, we
need to perform optimization within the family of circuits
defined by Eq. (7). Given a reasonable initial guess, we
can use gradient methods, such as gradient descent, to
quickly find reasonable solutions. Here, we describe how to
calculate the cost functions and their gradients in terms of
the free-fermion state Γ and the Hamiltonian matrix Aij.
First, let us consider state preparation and the cost

function,

QVSP ¼ −jhψ finjUDðfθgÞjψ iniij2;

based on the state overlap. The initial state jψ inii is captured
by a matrix Γini and the target state jψ fini is captured by Γfin.
The overlap between two pure states ψ1, ψ2 defined by Γ1,
Γ2 is [63]

jhψ1jψ2ij2 ¼ Pf½ðΓ1 þ Γ2Þ=2�; ðD1Þ

where Pf½M� represents a Pfaffian of the matrix M.
Therefore, the gradient is given by

∂θiQVSP ¼ −
1

2
Pf½ðΓfθg þ ΓfinÞ=2�

× Tr½ðΓfθg þ ΓfinÞ−1∂θiΓfθg�;

where we define Γfθg ¼ Ũ†ðfθgÞΓiniŨðfθgÞ that describes
the evolved state UDðfθgÞjψ inii. The ∂θiΓfθg gradient is
given by

∂θiΓfθg ¼ Ũ†ðfθgÞΓini∂θi ŨðfθgÞ þ ∂θi Ũ
†ðfθgÞΓiniŨðfθgÞ;

where ŨðθÞ describes evolution in the Majorana picture;
cf. Eq. (A4). The circuit can be efficiently evaluated by
precalculating the eigendecomposition of the ansatz
matrices, e.g.,

eθZZ ¼ QeθΣQT for ZZ ¼ QΣQT;

where Q, Σ are precomputed and Σ is a real block-diagonal
matrix with 2 × 2 blocks, which makes the exponentiation
very fast. In these terms, thegradient of a single ansatz term is

∂θeθZZ ¼ QΣeθΣQT;

which means that the only operations involved are matrix
multiplications and efficient 2 × 2 exponentiations.

On the opeartor level, we use the squared Frobenius
norm:

QH ¼ kUDðfθgÞ − e−iHτk2F;

where kAk2F ¼ Tr½AA†�. This describes the distance in the
operator space between the desired evolution over time τ
and the effective evolution realized by the Trotterized
circuit UDðfθgÞ. In the Majorana picture it is given by

QH ¼ kŨðfθgÞ − e−Aτk2F;

cf. Eq. (A4). The gradient is given by

∂θiQH ¼ 2Tr½ðŨðfθgÞ − e−AτÞ × ∂θi ŨðθÞ�;

which can be efficiently calculated by applying methods
described above.

APPENDIX E: INITIALIZATION FOR STATE
PREPARATION PROCEDURE

The variational state preparation discussed in the main
text transforms the toric code state into the non-Abelian
chiral phase. In this appendix, we summarize steps neces-
sary for the preparation of that initial state, the toric code
state, on the honeycomb lattice and discuss the conse-
quences of the changing ground-state degeneracy across
the transition from one topological phase to another.

1. Projection to the no-vortex sector

To prepare the desired topological phase, within our
framework, we use the fine-tuned VSP circuits developed
above. However, utilizing these methods requires that
we are already in the correct vortex sector, since the
variational circuit ansatz Eq. (7) contains only terms that
commute with the plaquette operators. This is desirable as it
guarantees that once we establish the correct vortex
configuration W, it will not change. In this section, we
discuss the two possible methods for projecting into the no-
vortex sector.
Consider the state jψ0i ¼ j0iN where all spins are

initially pointing down, which is the ground state of HZ
for JZ > 0. Now, we want to project the state into the
desired symmetry sector jψ inii ¼ Pjψ0i,

jψ inii ¼
YN=2−1

p¼1

�
1þWp

2

�
jψ0i; ðE1Þ

which creates the toric code state [28]; see Appendix E 2
for the details of the mapping. To realize the projector P,
we utilize nonunitary operations (either dissipation or
measurement and conditional correction) that can prepare
a long-range entangled state faster than local unitary
operations. This method has been used to prepare the toric
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code state in recent experiment [8] and has been gen-
eralized to the preparation of various complicated long-
range entangled states [64–66]. We also consider a
dissipative method for state preparation, which does not
require midcircuit measurement, that takes time linear in
system size.
We emphasize, however, that these approaches cannot be

straightforwardly used to prepare our final target state
which has a nonzero Chern number. Indeed, we heavily
rely on the fact that the projected state jψ inii corresponds to
the toric code state and the remaining Z2 vortices can be
moved by applying products of Pauli strings, a particularly
simple constant-depth operation; see Appendix E 2 for
details.
We propose two schemes to experimentally perform the

projection P from Eq. (E1). In both cases, we start by
preparing the system in a product state j0i on each site. In
the first approach [Fig. 10(a)], we measure all plaquette
operators Wp using one ancilla qubit per plaquette. This is
similar to the procedure performed experimentally in
Ref. [8] although here the operators are supported on six
sites (which requires six control-Z gates per ancilla).
Measuring the ancillas projects the system into a specific
vortex sector, with vortices corresponding to Wp ¼ −1,
with the additional constraint of even number of vortices in
every row. Then, we remove the vortices by pairing them up
within each row according to a prescription given by, e.g.,
the minimum weight perfect matching algorithm [67]. The
vortices are moved between plaquettes within a row by
applying Pauli Z strings connecting them. This procedure
prepares a no-vortex state in constant time Oð1Þ, but it
requires midcircuit measurement and feed-forward capa-
bilities. However, these particular capabilities may be
inconvenient in near-term devices.
The second approach removes the measurement require-

ment but instead takes Oð ffiffiffiffi
N

p Þ time [Fig. 10(b)]. Here, we
again use ancillas to encode the plaquette expectation

values, but instead of projectively measuring the ancillas,
we conditionally move the vortices by applying Pauli
strings only if a vortex is present at the initial plaquette.
Conditioning the movement in this way prevents the
proliferation of vortices and can be implemented with a
three-qubit control-Z gate. We choose a single plaquette in
every row (leftmost ones in Fig. 10) as a sink and direct the
vortex flow toward that site where eventually all vortices
get annihilated. This process is a form of many-body
cooling and the energy is removed by resetting the ancillas
after each round of transport. The time complexity of this
procedure is proportional to the largest distance possible
and thus scales with the linear system size Oð ffiffiffiffi

N
p Þ.

2. Mapping to the toric code

Here, we briefly describe the mapping from the honey-
comb model to the toric code in the JZ ≫ JX; JY limit, and
see that the projection initializes the fixed point of the toric
code phase.
In this limit, we can approximate the low-energy physics,

as described in Ref. [4], by projecting into the þ1 eigen-
space of each ZiZj operator along a Z-type link. This
reduces the two qubits along a link to one effective qubit,
spanned by two states j00i and j11i. After projection, the
six-body Wp plaquette operator becomes an effective four-
body plaquette operator, acting as YZYZ [see Fig. 11(a)].
Thus, the Wp ¼ þ1 eigenspace corresponds to the
ground space of the Wen-plaquette model [68], which is
equivalent to the toric code model under a local unitary
transformation.
Recall that during the initialization all qubits are initial-

ized in j0iN . Since all subsequent steps commute with ZiZj

along Z links, this ensures the final state has both Wp ¼ 1

for all p but also ZiZj ¼ þ1 for each Z link. As such, the
projection step prepares the fixed-point state at JZ > 0,
JX ¼ 0, JY ¼ 0, which is the starting point for both
adiabatic and variational state preparation of the non-
Abelian phase at JZ ¼ JX ¼ JY . The initial state also
introduces a constraint on the measured values of Wp.
Namely, the product of Wp ’s along a row of plaquettes
must be even, since it is equivalent to the product of two
nontrivial horizontal Z loops. As a result, the number of
Wp ¼ −1 outcomes must be even in every row, and the
corresponding anyons can be paired up by only applying Z
strings [see Fig. 11(c)] as long as measurement errors are
negligibly small.

3. Degeneracy across the A−B transition

The dimension of the ground-state manifold on a torus is
dictated by the number of superselection sectors in the
underlying topological quantum field theory. For the toric
code phase this is 4, while for the non-Abelian phase (Ising
anyons) that number is 3. This means that one of the ground
states is not adiabatically connected to the non-Abelian

(a) (b)

FIG. 10. Projection to the vortex-free sector. The starting point
of the variational state preparation is the toric code state that can
be obtained by removing the vortices from the initial product
state. (a) Projective measurement of the Wp plaquette operators
and subsequent pairing of vortices in Oð1Þ time. The gray arrows
symbolically indicate the transport of atoms, which is imple-
mented by applying the Z Pauli strings depicted in Fig. 11.
(b) Conditional transport of vortices to a single plaquette in every
row, which effectively results in cooling the system to the no-
vortex sector in Oð ffiffiffiffi

N
p Þ time.
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theory and becomes a highly excited state. This state
corresponds to the ð−1;−1Þ configuration of the two
nontrivial loops on the torus, which are additional sym-
metries of the system with periodic boundaries, and are
related to the logical operators in the toric code phase [69]
[Fig. 11(b)]. By choosing an appropriate initial state
jψ0i ¼ j0iN , we ensure that the system is orthogonal to
this undesired state since jψ0i is an eigenstate of the

horizontal Z loop with the þ1 eigenvalue and all sub-
sequent operations commute with the Z loops.

APPENDIX F: READOUT FIDELITY WITH
NOISY PREPARATION

The variational state preparation can be quantified in
terms of the many-body overlap with the target state QVSP.
However, despite being in principle measurable [8] with
interference techniques, this value has little utility for
quantifying the quality of state preparation in an experi-
ment. In this appendix, we study the performance of VSP in
the presence of control noise; i.e., all phases fθg in the
preparation circuit are modified by a phase error from a
uniform distribution ½−δθ; δθ�. This error model captures,
for example, the uncertainty in the global pulse parameters
such as the pulse time or phase. This approach does not
incorporate effects that violate translational invariance such
as field inhomogeneity. The simulation is performed on an
L × L lattice for L ¼ 10 with a circuit UD¼61ðfθ þ δθgÞ,
and we averaged over a 100 noise realizations.
In order to quantify the robustness of state preparation,

we prepare a j0iL logical state in the two-dimensional
logical subspace, similar to the fusion and braiding experi-
ments. Then, we perform an ideal (noise-free) readout
using the procedure described in Sec. V B. In Fig. 12(a),
we show the readout quench dynamics for both reference
logical states (empty or occupied) as well as the state
prepared using a noisy circuit with δθ ≈ 0.03. We find that
the noise deteriorates the signal and effectively reduces the
expectation value of the logical-state operator ð1þWpÞ=2.
In Fig. 12(b), we plot the expectation value of that operator
as a function of the noise strength δθ. The logical expect-
ation value can be interpreted as a probability of measuring

(a)

(b)

(c)

FIG. 11. Mapping between Kitaev honeycomb and toric code.
(a) By projecting all Z links into the ZZ ¼ þ1 eigenspace, each
link can be modeled by an effective qubit with two states,
j0̃i ¼ j00i and j1̃i ¼ j11i. Therefore, under this mapping, the
six-body plaquette operator Wp becomes a four-body plaquette,
corresponding to the stabilizers of the Wen-plaquette model. This
is also equivalent to the toric code model under single-site
rotations. (b) The Kitaev honeycomb has two noncontractible
loops which commute with all link operators and all Wp, and
hence do not change during time evolution. Each of these
operators map onto a pair of logical operators in the toric code.
(c) Partial logical operators (open strings) of the Wen-plaquette
model can be used to construct string operators in the honeycomb
model which anticommute with vortices living at their end points.
A string connecting two vortices in the same row will consist
solely of Z operators.

(a) (b)

FIG. 12. Noisy state preparation of logical states. (a) Dynam-
ics of the plaquette expectation value during the readout
quench. (b) Logical expectation value of ð1þWpÞ=2 as a
function of phase noise. This can be interpreted as the
probability of identifying the state as j0iL. For δθ > 0.06,
where the success probability falls below 50%, the state cannot
be reliably identified.
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the target logical state; this value falls below 50% around
δθ ≈ 0.06, which signifies that for noise above that value
the logical state cannot be reliably prepared. We note that
the expectation value saturates at a value < 0.5, which
signifies that for a noisy circuit the excited state is prepared
with a higher probability than the ground state.

APPENDIX G: CHIRAL EDGE MODES

The simplest physical experiment that can be performed
using the tools introduced in this work is the observation of
the chiral edge states. The Kitaev B phase has a nonzero
Chern number in the gapped bulk and so the bulk-edge
correspondence [70] guarantees gapless chiral edge modes.
This means that transport at the edge has a preferred

direction. For this purpose we introduce mixed boundary
conditions [Fig. 13(a)]: In one direction (the x coordi-
nate) we preserve the periodic boundaries, but in the
other we use open boundary conditions; effectively, the
system lives on a cylinder. The Hamiltonian in this
geometry is realized by not applying gates to the links
across the open boundary.
The edge modes are gapless and hence the ground

state is difficult to prepare. However, for the purpose of
observing the chiral properties of the system, we can
circumvent this issue. Instead, we prepare the gapped

bulk phase on a torus and subsequently quench with the
cylinder Hamiltonian. In a very short time, the edge
modes will thermalize but the chiral response to sub-
sequent perturbations will be preserved.
In experiment, it is straightforward to probe expectation

values of Pauli operators and their higher moments—
correlation functions. The Y magnetization has been
shown to exhibit a unidirectional transport [71], but for
our purposes we propose to monitor edge correlators
hY2xY2xþ1i which naturally occur in the Hamiltonian,
and any perturbation that anticommutes with such terms
should induce nontrivial dynamics. Here we perturb the
system with a Z operator (π pulse) on a single site at the
edge [Fig. 13(a)] and monitor the two-point spin correlation
function.
In Fig. 13(b), we show the time evolution of the

normalized signal (the background value is subtracted)
for a 30 × 30 lattice. Initially, the only affected observ-
able is the one that includes the quenched site. This
perturbation propagates to the right, confirming the chiral
nature of the edge. The wave packet slowly disperses
and eventually loops around the boundary. Besides
observing chiral edge modes in a digital simulation, this
simple experiment can be used to verify the state pre-
paration procedure as well as the effective Hamiltonian
evolution.

APPENDIX H: MAGNETIC FIELDS AND
FERMIONIC GAUSSIAN STATES

In the presence of a magnetic field, the Kitaev
Hamiltonian is no longer solvable. However, we are able
to capture the main features of the short-time dynamics
using a variational ansatz for the wave function that is
compatible with the Majorana solution of the model.
In the original solution (without magnetic fields),

the Hamiltonian is effectively quadratic since the bond
Majorana pairs uij ¼ ib

αij
i b

αij
j are conserved and treated

as classical variables ½uij; H� ¼ 0; cf. Eq. (A3) and the
discussion below. In terms of Majorana operators, a local z
field is expressed as Zj ¼ ibzjcj for the field at site j and it
does not commute with uij; this is because the magnetic
field flips the plaquette operators Wp and couples different
vortex sectors. However, the field is local so it anticom-
mutes only with the ujj0 on the corresponding ZjZj0 bond
but commutes with all others; thus, all but one bond
variables remain conserved. We can capture this effect
by breaking up the affected bond and working with the
extended set of Majoranas fc1;…;N; b

z
j; b

z
j0g. The resulting

Hamiltonian with the −hZj magnetic field is

H½h� ¼ H0 − Jbzjb
z
j0cjcj0 − K

X
k

uj0kbjbj0cjck − ihbzjcj;

ðH1Þ

(a)

(b)

FIG. 13. Chiral edge modes. The simplest experiment probing
properties of the Kitaev B phase is the observation of chiral edge
states. Their presence manifests in a unidirectional transport after
a single-qubit quench (red dot). (a) The system with a cylindrical
topology: the edge x direction is periodic while the other one has
open boundary conditions. Measured operators are denoted with
yellow links. (b) After the initial quench, the two-body edge
correlations experience a wave-packet-like propagation due to
chiral edge modes. The direction is dictated by the sign of the
time-reversal symmetry-breaking term.
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where H0 corresponds to Eq. (A3) with the bond ZjZj0

removed, and the
P

k term symbolically represents the
four three-body terms that contain the j, j0 bond. The
Hamiltonian in Eq. (H1) is no longer quadratic, but we can
make the calculation tractable and capture the main features
of the new system by applying an appropriate wave
function ansatz. In this case, we choose the fermionic
Gaussian states which have celebrated considerable success
in simulating complex many-body systems [48,72,73].
Now, we briefly describe the basic ideas behind the FGS

approach while a detailed description, with non-Gaussian
generalizations, can be found in Ref. [48]. The variational
ansatz is jψi ¼ e−ic

TMcjvaci and the state is fully deter-
mined by the covariance matrix

Γij ¼
i
2
h½ci; cj�i; ðH2Þ

and thus satisfies Wick’s theorem,

hcicjckcli ¼ −ðΓijΓkl − ΓikΓjl þ ΓilΓjkÞ; ðH3Þ

which allows us to simplify expressions considerably. The
equations of motion in real and imaginary time are given by

dtΓ ¼ ½H;Γ�; ðH4aÞ

dτΓ ¼ −Γ − ΓHΓ; ðH4bÞ

whereH ≔ H½Γ� ¼ 4δhHiΓ=δΓ is the functional derivative
of the expectation value of the Hamiltonian. In the special
case of quadratic Hamiltonians H ¼ ði=4ÞPi;j Aijcicj,

this formalism is exact and Hij ¼ Aij—this is the case
for the Kitaev model without magnetic fields.
Applying the above formalism to Eq. (H1) enables

approximate simulation of the quench dynamics governed
by the Kitaev Hamiltonian with local magnetic fields.
We benchmark this method against exact results on a
small 30-qubit system (Fig. 14), where it performs well,
and use it to predict the readout fidelity in a larger
system (Fig. 4).

APPENDIX I: EFFECTIVE TWO-LEVEL
SYSTEM

The key insight behind the readout procedure introduced
in the main text is that the state with a localized fermion
(j1iL) and the state without one (j0iL) react differently
to quenching a local magnetic field. The magnetic field
operator Zj acting on the site j is represented in the
Majorana description by

Zj ¼ ibzjcj; ðI1Þ

where bzj is the “bond Majorana” (see Appendix H) that
enters in the plaquette operators and cj is the “matter
Majorana” that forms the fermionic spectrum of the system.
Crucially, bzj anticommutes with the plaquette operator
(see Appendix A) and cj commutes with it; thus, we can
decompose the Zj operator into two parts, one acting in the
plaquette space and the other in the matter space.
Consider a situation with two pairs of zero modes where

each pair occupies adjacent plaquettes (but pairs are
separated), as in the inset of Fig. 14. Since the distance
between the two modes is small (on the order of the
lattice spacing), they are no longer degenerate and the first
excited state consists of fermions localized on the bonds
shared by the occupied plaquettes. When deconstructed
into Majorana particles, we expect that state to have large
overlap with cj, which we can symbolically decompose
into cj ≈ aþ a†, where j denotes the index of a site on the
bond. Now, if we apply a local magnetic field Zj ¼ ibzjcj to
the vertex j, the response of the system will depend on
whether the localized-fermion state is occupied or not. In
both cases, the quench couples to a state with two real
vortices (flipped plaquettes). Importantly, the fermionic
spectrum of the two-vortex sector with two flipped bonds
(used to create Majorana modes) is identical to the vortex-
free sector of the uniform-bond Hamiltonian (with no
flipped bonds).
If the localized mode is occupied, the a† component of cj

will not contribute and the resulting state amounts to
annihilating the matter fermion with a and flipping the
two neighboring plaquette operators with bzj (creating two
vortices). This state is in fact the ground state of the
uniform vortex-free sector and we can approximate the

FIG. 14. Readout calibration. Plaquette expectation value after
quench of the occupied and empty state. The shaded lines
correspond to the FGS time evolution with the full Hamiltonian
while the circles are the result of exact simulation in the spin
picture using engineered Floquet Hamiltonian (as would happen
in the experiment). The dashed line marks the end of the first
pulse. Inset: the 30-spin lattice configuration with periodic
boundary conditions and the location of Majorana modes. The
magnetic field acts on the sites marked with red dots.
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dynamics as an effective two-level system with the Rabi
frequency proportional to the magnetic field. Additionally,
the vortex-free ground state has a slightly different energy
from the initial state, which results in a nonzero detuning Δ
in the two-level system. In total, we have a product state of
two spin-1=2 states, one from each Majorana pair.
If the localized mode is not occupied, the a operator

has no effect and the system is coupled to a two-vortex
state where a† creates a localized fermion. However,
there is no localized fermion in the spectrum of the
two-vortex sector with a flipped bond, which means
that the system couples weakly to a continuum of
momentum modes, with very small overlaps. This results
in weak, damped oscillations in the plaquette expectation
values.
To validate this two-level picture, we can extract the

energy difference between the states and the state overlaps,
and subsequently compare these parameters to the Rabi
frequency and detuning extracted from numerics. We find
that the two agree up to a few percent.

APPENDIX J: CALIBRATING THE READOUT
PROCEDURE

We propose a small-scale (30-qubit) experiment to
both verify the state preparation and calibrate the
readout procedure. The lattice consists of 3 × 5 pla-
quettes and the target phase has a state with two pairs
of adjacent Majorana modes in its spectrum; see inset
of Fig. 14. This mode can be either occupied (j1iL) or
empty (j0iL).
Because the system is so small, we can easily target both

j1iL and j0iL with variational state preparation, which
removes the need for applying the effective Hamiltonian,
thus significantly shortening the circuit depth. Then, we
perform the magnetic field quench using the effective
Hamiltonian and calibrate the readout procedure without
implementing either fusion or braiding operations. The
readout of the particle content is a local operation, and we
expect that the procedure calibrated in a small system will
perform similarly well. In fact, the pulses applied in
Figs. 4 and 14 have exactly the same magnetic field and
first-pulse timing.
In Fig. 14, the readout procedure has been simulated

exactly (in the original spin picture) to remove any errors
due to the FGS approximation. The good agreement with
the full Hamiltonian evolution in the FGS approximation
(shaded lines) suggests that the FGS is a reasonable
predictor for readout fidelities in larger systems.

APPENDIX K: LATTICE GAUGE THEORIES
WITH THREE-QUBIT GATES

The goal is to simulate the ð1þ 1ÞD lattice gauge theory
Hamiltonian H ¼ Hg þHm þHm−g,

Hg ¼ −f
X
i

L2
i;iþ1;

Hm ¼ μ
X
i

c†i ci;

Hm−g ¼ −ðJ=2Þ
X
i

ðc†iþ1Uiþ1;ici þ H:c:Þ; ðK1Þ

where the c†i (ci) are the fermion creation (annihillation)
operators satisfying the canonical anticommutation rela-
tions, L2

i;iþ1 represents the energy of the electric field on the
fi; iþ 1g bond, and Uiþ1 is the gauge-matter-coupling
operator. Note that there is no magnetic field energy since
for one spatial dimension the only gauge-invariant combi-
nation of Ul ’s would be a loop around the whole system.
The most difficult step in making such theories amenable

to digital spin simulations is the treatment of the fermionic
canonical anticommutation relations. Usually, the resulting
spin Hamiltonian involves conditional evolution and addi-
tional degrees of freedom [74], where the fermionic phases
are tracked by ancillas. Fortunately, in (1þ 1)D the
situation is much simpler: No conditional evolution or
ancillary qubits are required. This results in the typical spin
Hamiltonian:

HJ ¼ −J
X
i

τxi;iþ1ðXiXiþ1 þ YiYiþ1Þ;

Hf ¼ −λE
X
i

τzi;iþ1;

Hm ¼ μ
X
i

ð−1ÞiZi; ðK2Þ

which corresponds to Eqs. (1a)–(1c) in Ref. [75]. Note that
the matter-gauge coupling is now given by the XXX and
XYY operators.
The most expensive term to simulate is the three-qubit

matter-gauge coupling, which under general decomposition
schemes requires around 20 two-qubit operations [76], but
in Ref. [75] the authors performed the entire single Trotter
step with just eight two-qubit gates. Here, we propose to
use the native G3 gates to realize the same Trotter step with
two three-qubit gates combined with sublattice rotations.
Moreover, Ref. [75] was limited to θ ≈ π=4, which severely
limits their control over the Trotter step and associated
heating. While they argued (and supported their claim with
numerical simulations) that this drive frequency is well
within the regime of slow heating, the full flexibility of
G3ðθÞ allows not only a more precise digital simulation
with a smaller Trotter error but also a comprehensive study
of heating processes in lattice gauge theories.
Naively, we would require four gates (XXX and XYY

for each of two neighbors), but a natural Floquet echo
trick might reduce it to two. Instead of performing XXX
and XYY separately, we instead apply a π=4 rotation
resulting in XðX þ YÞðX þ YÞ. This is the gate we want up
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to the mixed terms XYX and XXY. However, in the
subsequent round we can do a −π=4 rotation resulting in
XðX − YÞðX − YÞ such that, to first order, the mixed terms
cancel out. This methods gives us a 4× reduction in the
circuit depth over Ref. [75] while retaining full control
over the accumulated phase θ.
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