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We present a fast, hierarchical, and adaptive algorithm for Metropolis Monte Carlo simulations of
systems with long-range interactions that reproduces the dynamics of a standard implementation exactly,
i.e., the generated configurations and consequently all measured observables are identical, allowing in
particular for nonequilibrium studies. The method is demonstrated for the power-law interacting long-range
Ising and XY spin models with nonconserved order parameter and a Lennard-Jones particle system, all in
two dimensions. The measured run times support an average complexity OðN logNÞ, where N is the
number of spins or particles. Importantly, prefactors of this scaling behavior are small, which in practice
manifests in speedup factors larger than 104. The method is general and will allow the treatment of large
systems that were out of reach before, likely enabling a more detailed understanding of physical
phenomena rooted in long-range interactions.
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I. INTRODUCTION

The statistical physics of interacting N-body systems
poses many important scientific problems that can be
solved by analytic methods only approximately or in
certain limits. Therefore, they are nowadays often inves-
tigated by means of computer simulations which can be
categorized into two main groups: molecular dynamics
(MD) simulations solve a system’s equations of motion
numerically and Monte Carlo (MC) simulations explore its
phase space in a stochastic manner. In both cases the
interaction among the constituents of the system has to be
taken into account, for MD simulations as forces and for the
MC method as energy changes associated with random
moves of the components. With short-range interactions
only a few other partners have to be considered while in the
long-range case all the other constituents of the system
are involved. This severely limits the accessible system size
N, since updating all constituents once naively requires
∼N2 operations, usually labeled as complexity OðN2Þ.

Since systems with long-range interactions are omnipresent
in nature [1–8], fast algorithms for their investigation are
highly desirable. Consequently, there has been a lot of
research proposing several methods addressing this inher-
ent computational challenge.
Two major classes of such methods are (i) methods based

on splitting the evaluation of the potential into short- and
long-range contributions, with one important example being
the Ewald summation [9], and (ii) hierarchical methods
where groups of components are treated collectively such as
the Barnes-Hut algorithm [10]. Algorithms from these two
classes reduce the computational complexity toOðN3=2Þ and
OðN logNÞ, respectively. However, they have some dis-
advantages in certain situations (periodic versus free boun-
daries, very large prefactors, control of systematic errors)
and cannot all equally well be employed in MD and MC
simulations. Only in MD, where all components progress
synchronously, advanced algorithms based on fast multipole
methods, particle mesh Ewald, and multigrid techniques
which calculate all forces at the same time lead to even
further reduced computational complexity. Most of these
studies focus on Coulomb interactions; for reviews, see
Refs. [11,12]. In contrast, typically MC algorithms work
asynchronously; i.e., they change only small parts of the
system at a time. There, these advanced methods cannot be
used successfully, since calculating all interactions after each
local update is wasteful even if done efficiently. To achieve a
similar improvement also for (asynchronous) Metropolis
MC simulations of long-range systems, we present a
hierarchical adaptive algorithm that for the here considered
systems reduces the computational complexity while main-
taining a small prefactor without introducing any systematic
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errors. The basic idea of our algorithm is the combination of
the inverted Metropolis criterion with an adaptive treelike
spatial decomposition of the interaction energy. Our algo-
rithm reproduces exactly the same Markov chain as a
traditional Metropolis implementation and can therefore
be used as a one-to-one replacement, enabling in particular
nonequilibrium studies as well.
This is a major conceptual difference to MC methods

that deviate from conventional Metropolis dynamics.
Prominent examples are nonlocal cluster algorithms
[13–15] for the simulation of spin systems which can
reduce complexity to OðNÞ, overcome critical slowing-
down, and hence be more efficient for equilibrium studies
close to criticality than any algorithm with local dynamics
including the one presented here. Furthermore, there is the
rejection-free event-chain MC method for systems with
continuous degrees of freedom [16]. It was first applied
with great success to hard-sphere systems and was later
developed further to treat systems with general interactions
[17,18]. It exploits that additive terms in the Hamiltonian
transpose to factors in the Boltzmann weight and thus allow
the application of a factorized Metropolis filter [17,19]. This
idea has also been used in the recent development of the
clock MC method [20] which in contrast to event-chain MC
simulations is applicable to Ising systems as well and has a
reported complexity of OðNÞ.
In this study, we demonstrate the power of our algo-

rithm by applying it to nonconserved long-range OðnÞ
vector spin models, the long-range Ising (n ¼ 1) model
(LRIM) and XY (n ¼ 2) model (LRXYM), with power-
law decaying potential, where we focus on integrable
interactions, and an off-lattice Lennard-Jones (LJ) particle
system, all in two dimensions. In equilibrium, we find that
the algorithm’s performance is excellent and run times
are in agreement with a complexity of OðN logNÞ for all
three systems. The LRIM undergoes a second-order phase
transition at the critical temperature Tc while the LRXYM
can have either a symmetry-breaking transition or a
Berezinskii-Kosterlitz-Thouless (BKT) transition, or even
both, depending on the decay of the long-range potential
[21]. For both spin models we consider three nonequili-
brium processes: quenches from a disordered configura-
tion to a temperature T < Tc into the ordered phase and to
Tc itself and a Kibble-Zurek protocol. The first case is
referred to as phase-ordering kinetics where coarsening
and aging phenomena [22–24] occur. In the second setup
critical aging [24,25] can be investigated. In the last
protocol the central aspect concerns the loss of adiaba-
ticity and the resulting formation of defects during the
crossing of phase transitions [26–28]. Such nonequili-
brium processes are governed by local dynamics and
consequently need to be modeled by local algorithms like
the one presented here. We show that in all cases a
significant speedup is achieved and point out other
systems where a similar performance can be expected.

The rest of the paper is structured as follows. In Sec. II
we first describe the general procedure of our algorithm.
We then apply it to the LRIM and the LRXYM in
Sec. III and the LJ system in Sec. IV. In Sec. V we
outline the applicability for a variety of other important
(spin) models. Finally, we conclude and give an outlook
in Sec. VI.

II. METHOD

In this section we present a general formulation of
the algorithm, with no reference to any system-specific
properties. We consider a system of N components
q ¼ ðq1;…; qi;…; qNÞ where qi can, for example, stand
for the spatial position ri, a binary Ising spin si ¼ �1,
or other internal degrees of freedom (which may also be
vector valued). The components qi and qj interact via a
symmetric pairwise potential Vi;j ¼ Vj;i such that the total
energy reads

E ¼ 1

2

X
i

X
j≠i

Vi;j: ð1Þ

For a traditional Metropolis MC simulation with local
dynamics at each step the update of a single randomly
chosen component qi is proposed:

qold ¼ ðq1;…; qoldi ;…; qNÞ
→ qnew ¼ ðq1;…; qnewi ;…; qNÞ: ð2Þ

The proposed update is accepted with the Metropolis
probability,

Pacc ¼ min ð1; e−βΔEÞ; ð3Þ

where ΔE ¼ Enew − Eold is the energy difference resulting
from the update and β is the inverse temperature. This
acceptance probability is then compared to a (pseudo)
random number ρ ∈ ½0; 1Þ. If the calculated probability is
larger than this random number, the update is accepted and
otherwise rejected. As only one component qi of the system
is updated, we can write the change in energy of the whole
system as

ΔE ¼
X
j≠i

ðVnew
i;j − Vold

i;j Þ: ð4Þ

Since in long-range interacting systems all constituents
of the system interact with each other, the calculation
of ΔE requires the evaluation of 2ðN − 1Þ interactions.
A Metropolis MC sweep (MCS) consisting of N updates
therefore has OðN2Þ complexity.
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The traditional way of performing a Metropolis simu-
lation is to calculate expð−βΔEÞ first and then compare it
to ρ. That is, an update is accepted only if

ρ ≤ e−βΔE ð5Þ

is fulfilled. Equivalently, one may write

ΔE ≤ −
ln ρ
β

≡ ΔEth ð6Þ

and first draw the random number determining the
threshold energy ΔEth. This shifts the decision about a
proposed update to the problem of determining whether
the actual energy difference ΔE involved in the update
lies below or above ΔEth. In order to achieve that, ΔE does
not need to be known exactly. Instead, it is enough to
establish sufficiently narrow, rigorous bounds ΔEmin ≤
ΔE ≤ ΔEmax. The update is either accepted if the upper
bound ΔEmax is smaller than ΔEth or rejected if the lower
bound ΔEmin lies above ΔEth. Avoiding the direct calcu-
lation of ΔE can reduce the complexity and, thus, result
in considerable speedups. This procedure can easily be
applied to other acceptance criteria such as, e.g., the
Glauber acceptance rule, giving a different expression
for ΔEth.
To construct the bounds ΔEmin =max we perform a spatial

decomposition of the simulation domain which is based on
an extrinsic treelike structure, in contrast to the intrinsic
decomposition for self-avoiding walks [29,30] and poly-
mers [31]. We note that any d-dimensional simulation box
of linear size L can be split into 2d boxes of size L=2. Of
course, each of these boxes can again be split into 2d boxes
of size L=4 and so on. This is repeated until each box
contains no more than one constituent. All theses boxes are
thus automatically arranged hierarchically on a tree T .
Inner nodes contain only the collective information needed
for the estimation of the interaction, whereas within each
leaf the single contained constituent is stored. The

construction of T has complexity OðNÞ and rebuilding
T completely at each update step would, therefore, be
inefficient. Instead we update T locally after an accepted
update. This requires OðlogNÞ operations, since only the
collective information of all the ancestor nodes of the leaf
containing the updated component needs to be modified.
This spatial decomposition of the simulation domain

allows us to split the energy difference which follows from
an update,

ΔE ¼
X
B∈D

ΔEB; ð7Þ

where D is the set of currently selected, nonoverlapping
boxes (which may be of different size) covering the
simulation space and ΔEB ¼ Enew

B − Eold
B is the exact

change in energy contributed by the interaction with the
constituents of box B. Accordingly, if we can find strict
lower and upper bounds ΔEmin =max

B of ΔEB, we can
establish bounds for the total energy change as well:

ΔEmin =max ¼
X
B∈D

ΔEmin =max
B : ð8Þ

General albeit not very tight bounds can be constructed by
assuming that all constituents of a box are located at the
points of minimal or maximal interaction, respectively.
We aim at finding bounds ΔEmin =max that are just

accurate enough to decide about the acceptance or rejection
of a proposed update. The general strategy is illustrated
with an example progression of the decomposition D in
Fig. 1. For easy visualization it is shown in two dimensions
and for a nonmoving component such as an Ising spin. We
start with the initial decomposition which is just the box
containing the whole system D ¼ fB0g; see Fig. 1(a),
where the position of the component qi to be updated is
marked by a red dot. The bounds ΔEmin =max ¼ ΔEmin =max

B0

of this initial decomposition are in most cases not accurate
enough to take the decision about the proposed update.

(a) (b) (c) (d)

FIG. 1. A visual sketch of an example progression for the decomposition of the interaction. The red dot marks the position of the
component for which the update is proposed. The interacting boxes are enumerated in ascending order in which they are placed into
the decomposition. From left to right always one box with high uncertainty is split into smaller boxes leading to more accurate
bounds for ΔE.
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Thus we replace B0 inDwith the child boxes B1;…; B2d of
B0 in T ; see Fig. 1(b). The bounds ΔEmin =max are updated
according to Eq. (8). With each pair of bounds ΔEmin =max

B
there is an associated uncertainty ΔB ¼ ΔEmax

B − ΔEmin
B for

each box in D. The sum of the uncertainties of the newly
inserted child boxes is by construction always smaller or
equal to the uncertainty of the removed parent box. If the
newly obtained bounds are not sufficiently narrow to reach
a decision, further boxes are split until a decision can
be made.
In order to do so, a strategy is needed to decide which

box to split next. It is generally beneficial to split boxes
which have a high uncertainty ΔB, since there the potential
for improving the bounds is greatest. A natural approach is,
therefore, to always select the box with the greatest ΔB for
splitting. Since searching an unordered set is computation-
ally very expensive, this would require us to keep all
elements of D strictly ordered with respect to their
uncertainties and new boxes could only be added to D
in logarithmic time Oðlog jDjÞ. An overall faster way is to
group boxes according to the integer part of their loga-
rithmic uncertainties δB ¼ blog2ΔBc and always select
some box from the nonempty set with the highest δB.
The number of the necessary operations is now indepen-
dent of the size of D, and a significant computational
overhead can be avoided this way.
The process of sequential decomposition of boxes is

sketched out in Fig. 1. The box B2 in Fig. 1(b) had a high
uncertainty and was replaced by its four child boxes in T ;
see Fig. 1(c). The next box to be split was B4. Such an
adaptive spatial decomposition can be performed in most
cases: on lattices, on graphs with different geometries, and
even in the case of continuous spatial degrees of freedom
although the nodes of T might not always correspond to
simple square or cubic boxes.
With this refinement protocol, we have effectively

constructed a hierarchical, adaptive (spatial) decomposi-
tion of the interactions, which depends strongly on the
current configuration, the energy difference due to the
proposed update ΔE, and the threshold energy ΔEth.
After the decision has been made the next update starts
again with D ¼ fB0g, since if a different component is
to be updated, the final decomposition will likely be
completely different.

III. LONG-RANGE OðnÞ MODELS

A. Model

We first consider the broad class of long-range interact-
ing OðnÞ vector spin models on two-dimensional (d ¼ 2)
L × L square lattices where the spins si are n-dimensional
unit vectors and each spin interacts with every other spin of
the system via a decaying power-law potential. For the
LRIM (n ¼ 1) there have been numerical studies regarding
its equilibrium as well as its nonequilibrium properties.

Results from simulations for other n, however, are very
sparse in literature, which may partly be explained by the
lack of a generally applicable and efficient algorithm for
their simulation.
This model class is described by the Hamiltonian,

H ¼ −
1

2

X
i

X
j≠i

Ji;jsisj; ð9Þ

where for free boundary conditions the interaction cou-
plings JFBCi;j decay with distance like

JFBCi;j ¼ rði; jÞ−ðdþσÞ: ð10Þ

Here, rði; jÞ ¼ jrði; jÞj is the Euclidean distance, d is the
spatial dimension, and σ > 0 is a tunable parameter
controlling the decay of the potential. The self-interaction
of the individual spins is set to zero; i.e., Ji;i ¼ 0.
To reduce finite-size effects we employ periodic boun-
dary conditions (PBC), implemented via Ewald summa-
tion [32], which takes all periodic images of the system
into account. For spins on fixed lattice positions the
Ewald summation can be incorporated directly into the
couplings [33],

JPBCi;j ¼
X∞

μ;ν¼−∞
jrði; jÞ þ μLêx þ νLêyj−ðdþσÞ; ð11Þ

which can be used in conjunction with the simple
minimum image convention, avoiding a significant com-
putational overhead.
For lattices with linear size L ¼ 2m with m being a

positive integer, it is intuitive to decompose the lattice into
smaller squares, which for the purpose of hierarchical
access are arranged on a quadtree. Starting with the full
lattice as the original box B0 (cf. Fig. 1) which encloses all
the spins, we decompose the lattice into four boxes with
half the linear size of the original box. This is repeated
until reaching the single spin level, where each box
contains only a single spin. We denote the level of
decomposition as Γ ∈ f0;…; mg, where Γ ¼ 0 corre-
sponds to the full lattice and Γ ¼ m is the single spin
level. The linear size of a box is LΓ ¼ 2m−Γ and the number
of spins inside this box is NΓ ¼ L2

Γ ¼ 4m−Γ.

B. Bounds ΔEmin =max
B for the spin-box interactions

Upon updating a spin si, the contribution of the box B to
the energy difference can be written as

ΔEB ¼ Enew
B − Eold

B

¼ −
X
j∈B

Ji;jsnewi sj þ
X
j∈B

Ji;jsoldi sj; ð12Þ
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where we identify the box B with the set of the indices of
the contained spins. One can rewrite Eq. (12) as

ΔEB ¼ −ðsnewi − soldi Þ
X
j∈B

Ji;jsj

¼ −Δsi
X
j∈B

Ji;jsj ¼
Xn
α¼1

ΔEB;α: ð13Þ

The total energy difference is equal to the sum of the energy
differences from each of the n components. For a lattice
spin system with PBC, the set of couplings which are
involved in a spin-box interaction is always uniquely
determined by the vector R from the spin to the center
of the box and the size of the box NΓ. In order to construct
bounds ΔEmin =max

B , we need the minimal and maximal
couplings in this set Jmin =max

Γ ðRÞ, which for monotonically
decaying couplings can be calculated in constant complex-
ity Oð1Þ and can, therefore, be determined on the fly.
For the more advanced bounds we additionally need the
integrated interaction,

JintΓ ðRÞ ¼
X
j∈B

Ji;j; ð14Þ

which corresponds to the total interaction strength with a
fully magnetized box B.
In the following subsections we devise several bounds

for the spin-box interaction. We start with the specific case
of the LRIM, which is a good starting point because of the
simpler form of the involved equations due to the scalar
nature of the interaction. Following the same strategy, we
then derive the corresponding expressions for general OðnÞ
vector spin models.

1. Bounds for the LRIM

For the LRIM, the contribution of the box B to the
energy difference Eq. (13) simplifies to

ΔEB ¼ 2soldi

X
j∈B

Ji;jsj; ð15Þ

where Δsi ¼ snewi − soldi ¼ −2soldi is used.
For bounds 1 we do not discriminate between spins

pointing up or down and use only the number of spins NΓ
contained in the box. It is clear that for each summand
of Eq. (15) −Jmax

Γ ðRÞ ≤ Ji;jsoldi sj ≤ Jmax
Γ ðRÞ holds. This

allows us to formulate the following bounds for Eq. (15),

ΔEmax
B ¼ −ΔEmin

B ¼ 2NΓJmax
Γ ðRÞ; ð16Þ

which are plotted in Fig. 2 as horizontal dash-dotted lines
as a function of Nþ

B=NΓ for one example situation,
where Nþ

B is the number of positive spins in the box
which is related to the magnetization of the box

MB ¼ Nþ
B − N−

B ¼ 2Nþ
B − NΓ. The parameters for this

example are linear lattice size L ¼ 128, decay exponent
of the potential σ ¼ 0.8, distance R ¼ ð50.5; 44.5Þ from
the spin to the center of the box B, and box size
NΓ ¼ L2

Γ ¼ 256. For other parameter values the curves
in Fig. 2 would look different, but the main features
would remain unchanged. Since these simple bounds do
not make use of the box magnetization MB, they are
constant and much wider than the more refined bounds
considered next.
In contrast, bounds 2 do depend on the magnetization

MB in a box B. To make use of MB we split the box B into
the sets of indices of spins pointing up Bþ or down B−,

B ¼ Bþ ∪ B−; ð17Þ

to rewrite Eq. (15) as

ΔEB ¼ 2soldi

 X
j∈Bþ

Ji;j −
X
j∈B−

Ji;j

!
: ð18Þ

For each box of the spatial decomposition we keep track
of the number of elements of B�, i.e., the number of
spins pointing up or down N�

B . For the sums in Eq. (18) it
follows that

N�
BJ

min
Γ ðRÞ <

X
j∈B�

Ji;j < N�
BJ

max
Γ ðRÞ: ð19Þ

FIG. 2. Comparison of the different bounds ΔEmin =max
B for the

interaction of a test spin pointing in positive direction with a box
B, normalized by the total interaction strength JintΓ defined in
Eq. (14). A pair of bounds always consists of an upper and a
lower bound which are kept in the same style. Nþ

B is the number
of spins pointing up and NΓ the total number of spins in the box.
Bounds 1 are given by 2NΓ multiplied with the maximum
interaction. Bounds 2 are refined by making use of the magneti-
zation of the box. Bounds 3 additionally employ the value of the
interaction with the fully magnetized box JintΓ ðRÞ. Bounds 4 are
the tightest bounds which can be obtained with the knowledge
of the magnetization and the set of interactions involved in a
spin-box interaction. For more information, see text.
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If soldi points into the positive direction, the rhs of Eq. (18)
becomes maximal if the first term is maximal and the
second one is minimal and vice versa for its minimum. This
yields the following lower and upper bounds for the spin-
box interaction:

ΔEmin
B ¼ 2½Nþ

BJ
min
Γ ðRÞ − N−

BJ
max
Γ ðRÞ�;

ΔEmax
B ¼ 2½Nþ

BJ
max
Γ ðRÞ − N−

BJ
min
Γ ðRÞ�: ð20Þ

If the test spin soldi points in the negative direction, Nþ
B and

N−
B have to be exchanged accordingly. In this picture the

upper bound ΔEmax
B corresponds to the situation where all

spins pointing in the same direction as the test spin are
placed at the position of the strongest interaction and the
spins pointing in the opposite direction at the spot of
the weakest interaction. For the lower bound ΔEmin

B the
positions are switched. Looking at the dashed lines in
Fig. 2, one observes that these bounds depend on the box
magnetizationMB and their uncertaintyΔB is much smaller
than for the rather loose bounds 1.
For bounds 3 we use JintΓ ðRÞ from Eq. (14). Since the

JintΓ ðRÞ do not depend on the spin configuration they can be
precalculated. The required computational effort is negli-
gible compared to the typical simulation time, whereas the
memory demands scale as OðN logNÞ. This can become
challenging for systems that are significantly larger than
those we consider here. Using JintΓ ðRÞ, Eq. (15) can be
rewritten as

ΔEB ¼ 2soldi

 
JintΓ ðRÞ − 2

X
j∈B−

Ji;j

!
: ð21Þ

This equation shows that the interaction of the test spin with
a box with some arbitrary configuration can be seen as the
sum of the interaction with the fully magnetized box where
all spins point in the same direction as the test spin and
twice the interaction of the spins inside the box which point
in the opposite direction. Alternatively, the interaction can
also be calculated using the interaction with the fully
magnetized box with all spins pointing in the opposite
direction of the test spin and adding twice the interaction
with the spins parallel to the test spin:

ΔEB ¼ 2soldi

 
2
X
j∈Bþ

Ji;j − JintΓ ðRÞ
!
: ð22Þ

In order to derive two new pairs of bounds for the spin-box
interaction we can again use Eq. (19), inserting it into
Eq. (21) and Eq. (22). As both pairs of bounds are valid, we
can combine the two bounds for the minimum and the two
bounds for the maximum by taking the tighter of the two
and obtain (again for soldi ¼ 1):

ΔEmin
B ¼ 2max½JintΓ ðRÞ − 2N−

BJ
max
Γ ðRÞ;

2Nþ
BJ

min
Γ ðRÞ − JintΓ ðRÞ�;

ΔEmax
B ¼ 2 min½JintΓ ðRÞ − 2N−

BJ
min
Γ ðRÞ;

2Nþ
BJ

max
Γ ðRÞ − JintΓ ðRÞ�: ð23Þ

These bounds are exact for fully magnetized boxes and still
very accurate for almost fully magnetized ones (see the
dotted lines in Fig. 2). This greatly enhances the perfor-
mance of the algorithm in the presence of large magnetic
domains, because the bounds of the boxes which fully lie
inside a domain are very accurate and thus the decom-
position can be coarser. At very large distances jRj ≫ LΓ
we find JintΓ ≈ NΓðJmin

Γ þ Jmax
Γ Þ=2, so that the crossing of

the pairs of bounds for the minimum or the maximum
would occur at Nþ

B=NΓ ≈ 0.5.
Exploiting the fact that the set of Ji;j can be sorted, we

can obtain even narrower bounds 4. For the second term in
the parentheses of Eq. (21) we replace the bounds from
Eq. (19), for which we assume that all spins interact with
Jmin =max
Γ ðRÞ, with the sum of the first N−

B of the couplings
sorted in ascending or descending order. These are the
tightest bounds which can be established using only the
magnetization of the box and the set of couplings involved
in the spin-box interaction. These bounds are plotted in
Fig. 2 as solid lines and as the previous bounds can be
calculated in Oð1Þ complexity if the abovementioned sums
are all computed and stored before the simulation. The
memory complexity of the algorithm using these bounds
would scale as OðN2 logNÞ, however, which limits the
applicability for large system sizes. Therefore, in the
following we employ bounds 3 for the LRIM which
embody the best compromise between performance and
memory requirements. For the iterative refinement of the
decomposition of the interaction, we proceed as described
in the general outline of the algorithm, with one modifi-
cation. It turns out to be beneficial to evaluate the
interactions with small boxes via a direct summation of
the spin-spin interactions since this is of comparable speed
and has no uncertainty.

2. Bounds for general OðnÞ models

In this section we propose a more general formulation for
bounds 1 and bounds 2 from the last section, valid for all
OðnÞ models with n > 1.
For bounds 1 the generalization is straightforward since

for each spin-spin interaction in Eq. (13) one has again
−2Jmax

Γ ðRÞ ≤ Ji;jΔsisj ≤ 2Jmax
Γ ðRÞ. This results in exactly

the same bounds as for the Ising model:

ΔEmax
B ¼ −ΔEmin

B ¼ 2NΓJmax
Γ ðRÞ: ð24Þ

For bounds 2 the box is again split up, however, for
each of the n components separately, into spins whose
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component sj;α points into positive or negative direction,
respectively,

B ¼ Bþ
α ∪ B−

α ; ð25Þ

where for each α the decomposition may be different.
This allows us to split the contribution ΔEB;α to the
energy difference as well:

ΔEB;α ¼ −Δsi;α

"X
j∈Bþ

α

Ji;jjsj;αj −
X
j∈B−

α

Ji;jjsj;αj
#
: ð26Þ

During the simulation we keep track of the component-
wise magnetization split into positive and negative
contributions:

M�
B;α ¼

X
j∈B�

α

jsj;αj: ð27Þ

Since there is no such relation as Nþ
B þ N−

B ¼ NΓ, valid
only for the LRIM, both directions need to be tracked for
each component, resulting in a total of 2n values M�

B;α

which need to be stored for each box B. The two sums in
Eq. (26) are bound by

M�
B;αJ

min
Γ ðRÞ <

X
j∈B�

α

Ji;jjsj;αj < M�
B;αJ

max
Γ ðRÞ: ð28Þ

If Δsi;α < 0 (which corresponds to the case where soldi
points into positive direction in the LRIM), Eq. (26)
becomes minimal (maximal) if the first sum becomes
minimal (maximal) and the second sum becomes maxi-
mal (minimal). This yields the following bounds:

ΔEmin
B;α ¼ jΔsi;αj½Mþ

B;αJ
min
Γ ðRÞ −M−

B;αJ
max
Γ ðRÞ�;

ΔEmax
B;α ¼ jΔsi;αj½Mþ

B;αJ
max
Γ ðRÞ −M−

B;αJ
min
Γ ðRÞ�: ð29Þ

If Δsi;α is positive, Mþ
B;α and M−

B;α have to be exchanged
accordingly. This componentwise formulation of bounds
2 for general OðnÞ vector spin models is completely
analogous to bounds 2 [cf. Eq. (20)] for the LRIM.
The complete bounds for the spin-box interaction follow

as the sum of the bounds for the individual components. As
in the case of the LRIM, these bounds are formulated in
terms of the extremal values of the positive and the negative
contributions to ΔEB. In addition to this rather intuitive
construction of the bounds, we present a more formalistic
derivation in the Supplemental Material [34]. The frame-
work developed there, including all the above presented
bounds and, additionally, a formulation of bounds 3 for
general OðnÞ models, may also be useful for the con-
struction of bounds for completely different models.

C. Example decomposition

In Fig. 3 we demonstrate the basic principle of our
algorithm in application to the LRIM using bounds 3 by
showing a single example snapshot and the corresponding
spatial decomposition of the interaction for a simulation
with σ ¼ 0.8 and L ¼ 256 at T ¼ Tc in equilibrium (the
system is chosen to be relatively small, so that details can
still be observed). Here, the spin under consideration is
positioned close to the center of the snapshot and is marked
in red. In the vicinity of the test spin—the green shaded
region—maximal resolution is reached: all the boxes are of
size 1 × 1 and contain only a single spin each. To ensure the
possibility of arbitrarily precise estimation of ΔE, inter-
actions with these spins have to be considered exactly
irrespective of which bounds are used, although we note
that this is formally equivalent to the use of bounds 2–4.
From top left to bottom right, the estimates of ΔEmax and

ΔEmin are more refined and approach ΔE. As one can see,
this is achieved by reducing the box sizes. The decom-
position adapts to the given configuration; i.e., regions
which have a bigger influence on the decision are covered
by smaller boxes. The scenario in Fig. 3 requires a rather
fine-grained decomposition, but this is not representative
and usually decisions can be made with a much coarser
decomposition. It is nonetheless a very illustrative example,
since it nicely demonstrates the progression of the algo-
rithm. Looking at a decomposition for other OðnÞ would
yield a similar picture with the direct neighborhood of the
test spin resolved in detail and the decomposition of more
distant regions composed of larger boxes.

D. Analysis of the run times

The speed of our algorithm strongly depends on the state
of the simulation, i.e., the current configuration, the choice
of the spin to be updated, the temperature, etc. The decision
becomes harder the closer the involved change in energy
ΔE is to the threshold energy ΔEth. For the extreme case of
ΔE ¼ ΔEth the interaction of the updated spin with all
other individual spins has to be evaluated exactly, implying
a worst case complexity of the algorithm of OðN2Þ per
sweep. However, ΔE and ΔEth are independent random
variables. Their respective distributions are different and
typically have a nonzero spread, such that the influence of
the worst case complexity of the algorithm on its average
complexity will in most cases be negligible. In the case of
high temperatures, one has ΔEth → ∞, which means that
the actual change in energy of the proposed update
becomes irrelevant, so that the initial bounds are suffi-
ciently narrow to accept it. Only the updating of the tree T
has to be performed, which yields the best case complex-
ity OðN logNÞ.
It is not straightforward to predict the average complex-

ity from the algorithm’s design alone, so that, in the
following, we record the resulting run times τ per sweep
for different physical settings. For all measurements
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we take care of minimizing possible hardware-related
influences. To be on the safe side and to not draw any
wrong conclusions in our analysis, we nonetheless assume
an error of 10% on our estimated run times to account for
remaining errors. For equilibrium simulations, the compu-
tational cost can relatively straightforwardly be extracted
from rather short runs, which allows us to consider a broad
temperature range. A further advantage is that the run times
only weakly depend on the initial conditions and can be
averaged over the full run after the equilibration. The
benchmarking is performed on a single hardware configu-
ration: single socket motherboard equipped with an Intel
Core i5-8500T CPU and 16 GB DDR4-2667 dual-channel
RAM. The algorithm is implemented in C++17 and compiled
using GCC8.3. Since modern processors do not run using a
constant frequency and use speculative execution, results of
benchmarks can fluctuate. This is especially a problem if the
compute nodes are occupied by other tasks. Therefore, we
take care to exclusively run a single simulation at a time per
compute node in order to minimize possible fluctuations.

1. LRIM

We first turn to the LRIM, which is the most prominent
representative of the long-range interacting OðnÞ models,
for which we use bounds 3 throughout, since their use

yields the best performance. We have checked that
using bounds 2 instead comes along with moderate,
size-independent losses of factors 2–5 for all the scenarios
except the equilibrium run times for very low temperatures,
where the frequent occurrence of strongly magnetized
boxes yields a more pronounced advantage for bounds
3, almost completely eliminating any system-size depend-
ence of the run times.
Equilibrium.—In Fig. 4 the equilibrium run times per

spin update τ=N (in units of μs) in dependence of the
system size are presented for different fractions of Tc in a
semilog plot for σ ¼ 0.8 [Fig. 4(a)] and σ ¼ 1.5 [Fig. 4(b)].
In both cases the growth of the run times crosses over to
linear behavior on the semilog scale irrespective of the
temperature T, in a manner compatible with OðN logNÞ
complexity. This we deem very plausible considering the
hierarchical progression of the algorithm through the use of
a tree. Based on this data (and Fig. 5 where we plot the run
times on a log-log scale), a power-law complexityOðN1þαÞ
with a small exponent α cannot, however, be completely
ruled out. In order to corroborate either of the two
hypotheses, significantly larger systems need to be con-
sidered. While a dedicated investigation of moderately
larger system sizes could still be feasible in principle,
significantly larger sizes are out of reach with the hardware
used in this study, due to the large memory requirements,

FIG. 3. Example decomposition of the LRIM lattice with σ ¼ 0.8 and L ¼ 256 simulated in equilibrium at T ¼ Tc. The spin which is
to be updated is marked by the red dot close to the center of the box. The boundaries of the boxes are represented as blue lines. Going
from top left to bottom right, the accuracy of the bounds of ΔEmin and ΔEmax increases with shrinking size of the boxes in the
decomposition. Boxes of size 8 × 8 are broken up directly into 1 × 1 boxes (green area); 2 × 2 and 4 × 4 boxes therefore do not occur.
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and a final assessment of the asymptotic scaling has to be
left for future studies.
We find that there is a clear dependence of the equilib-

rium run times on the simulation temperature, which is also
visualized in the inset of Fig. 4(b). This can be understood
qualitatively from the considerations made before: The
maximum close to the critical temperature stems from the
fact that the average threshold energy Eth is on average
close to the actual energy difference ΔE involved in the
proposed spin flips, which makes a fine decomposition of
the interaction necessary. In the case of very high temper-
ature one has ΔEth ≫ ΔE, and the actual change in energy
of the proposed spin flip becomes irrelevant. At low
temperatures an opposite mechanism is at work. Since
ΔEth → 0, almost only spin flips are accepted that do not
increase the energy, but a typical configuration at these
temperatures is (nearly) ordered. Thus, a single spin flip on
average has ΔE ≫ ΔEth, so that also this decision can be
made with loose bounds.
The comparison most relevant is likely the achieved

speedup factor, which can be visually appreciated from
Figs. 5(a) and 5(b), where we show the run times on a log-
log scale in comparison to an effective field simulation [35]

(dashed lines in the same color as the original data points)
and a direct summation (solid black line) of all interactions
(for the sake of better comparability, here we replace
T ¼ 10Tc by T ¼ 0.3Tc). The effective field approach
uses a relatively simple storage trick to save many
calculations whenever an update is not accepted. This
yields a massive speedup whenever low acceptance rates
are encountered, but requires the same number OðNÞ of
operations for an accepted update as in the direct summa-
tion, resulting in the same computational complexity
OðN2Þ [36]. Thus, the resulting run times are strongly
dependent on the acceptance rate of the simulation, which
means that this approach is especially fast at low temper-
atures where the acceptance rates are low [37]. At high
temperatures, many more proposed updates are accepted,
which gives the effective field approach only a minor
advantage over a direct summation. At the critical temper-
ature (for which our algorithm has the highest run-time),
we can report a speedup factor of ≈5500 for σ ¼ 0.8
and ≈12 000 for σ ¼ 1.5 compared to the effective field
approach (≈11 000 and ≈35 000, respectively, compared to
direct summation). For a temperature below Tc, e.g., for
T ¼ 0.5Tc, we observe a speedup of ≈1700 for σ ¼ 0.8
and ≈500 for σ ¼ 1.5 (≈40 000 and ≈43 000, respectively,
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FIG. 4. Equilibrium run times per spin update τ=N for the
LRIM versus system size N on a semilog scale for (a) σ ¼ 0.8
and (b) σ ¼ 1.5 and several temperatures T. In the inset of (b) we
show the combined data for both values of σ and the biggest
system size L ¼ 8192 as a function of T, demonstrating the
maximum around Tc.
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FIG. 5. Equilibrium run times per spin update τ=N for the
LRIM versus system size N plotted on a log-log scale for
(a) σ ¼ 0.8 and (b) σ ¼ 1.5 and several temperatures T. As
dashed lines in the same color as the original data points, we have
included the calculated run times for an effective field simulation.
Also included is the run-time obtained from a naive Metropolis
MC simulation using direct summation (dir. sum).
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compared to direct summation). For increasing system size
all these factors grow steadily. For each fixed temperature
there will be a crossover size above which our new
algorithm is faster than the effective field method. From
Fig. 5 one reads off that the crossover for T ¼ 0.3Tc occurs
at N ≈ 106 for the considered values of σ and, respectively,
N ≈ 105 for T ¼ 0.5Tc. For larger values of T the crossover
happens already for much smaller systems while for the
very low temperature T ¼ 0.1Tc the crossover cannot
yet be observed for the considered system sizes of up to
N ¼ 108 due to the extremely low acceptance rates (≈10−6)
and hence a very small prefactor of the run times of the
effective field approach. For this temperature the size
dependence of the run times vanishes almost completely,
which can be explained by the exactness of bounds 3 for
fully magnetized boxes.
For investigations of the phase transition, i.e., for

equilibrium simulations in the proximity of Tc, our method,
like any other local algorithm, is not a serious contender, at
least when nonlocal cluster algorithms are available as for
the Ising model. In such cases, its main field of application
is nonequilibrium scenarios.
Nonequilibrium.—We first focus on two cases: quenches

from a disordered start configuration (i) to a temperature
substantially below the critical temperature or (ii) to the
critical temperature. To mimic a physical evolution, in these
cases only local dynamics that preserves the dynamical
properties of the system may be used. Nonlocal update
schemes, including cluster algorithms, are not allowed,
which makes these scenarios the prime field of application
for our algorithm. In the first case, the system undergoes an
ordering process and consequently the dynamics of growth
of ordered structures in the system is of interest, both from
coarsening and aging perspective involving single- and
two-time quantities, respectively [22–24]. The physical
properties of this model during this process have recently
been investigated in Refs. [35,38–40] and are not part of the
discussion here. In Fig. 6(a) we present the time depend-
ence of the run-time of our algorithm per spin update τ=N
(in units of μs) as a function of simulation time for a phase-
ordering quench with σ ¼ 0.8 to Tq ¼ 0.1Tc for large
systems of linear sizes L ¼ 4096 and 8192. As in a typical
production run, the quoted times are averages over many
different start configurations and time evolutions. Also
shown, for sake of comparison, are the run times for the
effective field method [35] and a direct summation of the
interactions. We could quench to arbitrary temperatures
with our new algorithm, but choose Tq ¼ 0.1Tc to have the
same setting as in Ref. [35].
We observe that the time needed per update τ=N is

strongly dependent on how far the system has proceeded in
its ordering process for our algorithm and, even more,
for the effective field approach. Since the temperature in
our algorithm is set to a low temperature Tq ¼ 0.1Tc, we
typically draw threshold energies Eth comparatively close

to zero; i.e., spin flips which significantly increase the
energy are usually not accepted. At the start of our
simulation the configuration is completely disordered,
and for many proposed spin flips ΔE ≈ 0 ≈ ΔEth, so that
ΔE has to be known rather accurately. In the course of the
simulation, when the configurations are locally ordered,
proposed spin flips in domains have typically a large ΔE
and can mostly be rejected with very loose bounds. The
decision is more involved for spins positioned at domain
boundaries, where ΔE is typically much closer to zero, the
interactions often have to be resolved in more detail, and
the probability of acceptance is higher. With growing
domains fewer spins are situated at the domain boundaries
so that the average acceptance rate decreases, and the
effective field simulations become faster. Ultimately, the
run times of both methods reach their respective equilib-
rium run times at Tq.
Over the full process, our new approach is significantly

faster than the already very fast effective field method,
resulting in a ≈100 times faster total run-time until finite-
size effects are reached. A direct summation becomes in
these cases prohibitively expensive (a factor of ≈40 000
slower than our new algorithm), and cannot be used to
simulate systems of this size. This factor grows signifi-
cantly for increasing system size since the run times of the
two algorithms scale differently.
The second case of interest is critical aging, i.e., the

behavior of two-time quantities during quenches from a
disordered starting configuration to the critical temperature
[24,25]. With some modifications, such as a small initial
magnetization, it is also possible to investigate short-time
dynamics during such processes [41], but we here focus on
the completely disordered start. We present in Fig. 6(b) the
obtained run times per spin update τ=N (again in units of
μs) in our simulation with σ ¼ 0.8, where we use the same
notation as in Fig. 6(a) for the different methods. Here, the
run times both for the new algorithm and the effective field
approach remain more or less constant throughout the
whole simulation, although the system has not yet reached
equilibrium. In both cases only a small initial decay of the
run times is visible. Here, the advantage of the effective
field simulation over a direct summation is relatively small,
since the acceptance rates are of the order of 1. Albeit the
equilibrium simulation close to the critical temperature is
also one of the most difficult situations for our algorithm,
it nonetheless produces much smaller run times than the
effective field approach and the direct summation. In this
scenario the run times are close to those found in the
equilibrium simulations. We find a speedup of ≈6000
compared to the effective field approach and ≈8000 to
the direct summation, allowing for the investigation of this
process for the presented system sizes, which was entirely
out of reach before. A similar acceleration is also expected
for other nonequilibrium simulations with comparably high
acceptance rates.
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The third nonequilibrium process which we consider is
the Kibble-Zurek mechanism (KZM). This is a phenome-
non which is well accessible experimentally for the case of
long-range interacting quantum systems. Here, also in the
experiments the exponent σ of the long-range interaction
can be tuned to a desired value [42–44]. Since it has deep
relations to the physics of quantum annealers [45–47], with
the most prominent example being the D-Wave quantum
computer [48,49], it has recently attracted a lot of interest.
Here, we adopt the protocol described in Ref. [50] where
the KZM was investigated for the short-range XY model.
The system is first equilibrated at T ¼ 2Tc and then
annealed with different cooling rates τQ according to the
schedule TðtÞ ¼ Tcð1 − t=τQÞ for t ∈ ½−τQ; τQ�. The run
times per update for the KZM for L ¼ 8192 are shown in
Fig. 6(c). The gray lines show the timings for the
equilibration process which could in principle also be
performed using nonlocal update schemes and which is
therefore excluded from the comparison of the run times.
After the equilibration period with nearly constant speed
the run times ramp up, while staying very similar among
the different cooling rates. Close to the time where the
critical temperature is crossed, the run times reach a
maximum (corresponding roughly to the equilibrium run
times at Tc) After the crossing the broken adiabaticity
becomes visible in the run times of the algorithm: the run
times of the simulations with faster annealing schedules
(small τQ) lag behind the run times of the simulations with
the slower schedules. The same effect is visible for the run
times of the effective field method which are shown in the
inset, in comparison to the run times of the new algorithm,
as dashed lines with the same color code for τQ. Here,
again, the run times are calculated solely from measured
acceptance rates during the annealing, illustrating that the
acceptance rates also reflect the out-of-equilibrium nature
of the KZM, which explains the annealing-rate-dependent

run times of the effective field method. On average we find
a speedup of more than 5000 compared to the effective field
and more than 9000 compared to direct summation.
Another local algorithm for long-range interacting spin

systems is the clockMCmethod [20] based on the factorized
Metropolis filter [17,19]. It, too, is potentially applicable in
the scenarios discussed above. Yet, so far it has only been
applied to disordered long-range interacting spin systems in
equilibrium. We have implemented this method for the
ferromagnetic LRIM and tested it for quenches to low
temperatures. In its basic form where spin-spin interactions
are considered individually, we find that the times of
crossover to the asymptotic scaling behavior become pro-
hibitively large. This is due to drastically reduced acceptance
rates of the factorized Metropolis filter, when compared to
conventional Metropolis dynamics. In the framework of this
method there is, however, the possibility to treat multiple
factors collectively. This shifts the dynamics toward tradi-
tional Metropolis, increasing the acceptance rate, but also the
computational effort. For each physical setting (i.e., combi-
nation of T, L, σ, etc.) a different grouping of spins may
yield the best performance. A detailed analysis and com-
parison is beyond the scope of this study and will be
presented elsewhere [51].

2. LRXYM

As a concrete example for OðnÞ vector spin models
we consider the two-dimensional long-range XY model
(n ¼ 2) for L ∈ ½128; 8192�. Recently this model has
attracted a considerable interest in analytical work. It has
a much richer phase diagram than its short-range counter-
part with different types of phase transition depending on
the exponent σ of the power-law interaction. There can be
transitions between the paramagnetic, the ferromagnetic,
and the Berezinskii-Kosterlitz-Thouless phase [21]. For
intermediate values of 7
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FIG. 6. Run times per spin update τ=N for the LRIM versus simulation time t for σ ¼ 0.8 in quenches from a disordered start to
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undergo both a BKT transition at TBKT as well as a
symmetry-breaking transition at Tc < TBKT [21]. For
σ > 2 it is expected to fall into the same universality class
as its short-range counterpart. Simulation results, however,
are very sparse in literature, and to our knowledge the
model has previously only been simulated on diluted
graphs [52,53]. There exists a long-standing theoretical
prediction for the growth of the characteristic length scale
of the LRXYM [54] which has never been tested.
Especially for the intermediate regime it is very interesting
to investigate if this prediction holds true and if there is any
influence of the quench temperature (and of the phase in
which the system equilibrates) in this case.
The spins in the XY model are two-dimensional unit

vectors whose state can be represented by an angle
ϕ ∈ ½0; 2π�. Here, an update consists of the proposal of a
random angle ϕ ∈ ½0; 2π� for a randomly chosen spin and
the decision about the acceptance which is performed by
the new algorithm using bounds 2 as derived for the case of
general OðnÞ models. For a meaningful benchmarking of
the algorithm we need the σ-dependent transition temper-
atures. As we could not find any values in the literature, we
roughly estimate the transition temperatures by means of
short-time dynamics [55,56] for the different values of σ
considered here for which we obtain Tcðσ ¼ 0.8Þ ≈ 4.87,
Tcðσ¼1.5Þ≈2.74, and TBKTðσ¼2.5Þ≈1.66, respectively.
Equilibrium.—As for the LRIM we again look at the

equilibrium run times in dependence of the system size for
different fractions of Tc and several values of σ. In addition
to σ ¼ 0.8 and σ ¼ 1.5, we include σ ¼ 2.5 since there the
system at low temperatures is in the BKT phase which
potentially may have influence on the run times. The run
times are plotted in Fig. 7 where, compared to the LRIM,
we see an earlier and more clear-cut crossover to the
expected logarithmic scaling at N ≈ 2.5 × 105 [57].
Another difference to the run times of the LRIM are the
comparably higher run times for T ¼ 0.1Tc, which can be
blamed on the use of bounds 2 which, in contrast to bounds
3, do not become arbitrarily accurate for fully magnetized
boxes. In general, the temperature dependence of the run
times seems less pronounced. The speculation that the
nature of the low-temperature phase (BKT or ferromag-
netic) may manifest in the run times of the algorithm,
however, is not confirmed. For L ¼ 8192 and the same
values of σ, the run times for temperatures close to Tc are
less than a factor of 2 larger than in the LRIM, while
for temperatures farther away (excluding T ¼ 0.1Tc), this
factor can reach up to 3.
Compared to the LRIM, the effective field method for the

LRXYM is much less efficient at low temperatures since
the acceptance rates even at T ¼ 0.1Tc stay rather high
≈0.1 (as compared to ≈10−6 for the LRIM) yielding only a
speedup factor of ≈10 compared to a direct summation. In
conclusion, for L ¼ 8192 and the considered values of σ
and T, we find speedups of the order of 2000–20 000,

which are comparable to the speedups observed for
the LRIM.
Nonequilibrium.—As nonequilibrium settings we con-

sider the same processes for which we have benchmarked
the algorithm in the LRIM case. The measured run times
per spin update are plotted in Fig. 8. Similarly to the LRIM
case, also here we find a rather pronounced dependence of
the run times on t for the quench to Tq ¼ 0.1Tc, while for
the critical quench and the KZM, this dependence is again
much weaker. Overall, the situation in the latter two
protocols is fairly similar, since they are both concerned
with phenomena related to the critical behavior of the
system. For the quench to 0.1Tc we find an overall speedup
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of ≈1000 as compared to the effective field (and ≈8500 as
compared to the direct summation). The corresponding
speedup factors for the critical quench are approximately
3300 (4300) and 3500 (5500) for the KZM.

IV. LENNARD-JONES SYSTEM WITH FULL
INTERACTION RANGE

To highlight the power of our algorithm also for con-
tinuous spatial degrees of freedom, we finally demonstrate
its applicability to a Lennard-Jones particle system [58] with
potential

VLJ ¼ 4ϵ

��
σ

rij

�
12

−
�
σ

rij

�
6
�
: ð30Þ

Here, we keep the full interaction range, i.e., do not truncate
(and shift) the potential at the often employed cutoff
rc ¼ 2.5σ. It is well known that, e.g., the critical temperature
and critical density of a LJ system do depend on rc [59–61].
We consider N interacting particles in a volume Ld

whose linear extent L can be adjusted to yield the desired
density ρ ¼ N=Ld. Periodic boundary conditions are
applied which, due the fast decay of VLJ ∝ −r−6ij can easily
be realized by the minimum image convention; i.e., in this
application Ewald summation is not necessary.
For the here presented simulations, we use the most

general bound introduced in Sec. II; i.e., we virtually collect
all particles of a box at the points of minimal or maximal
interaction, respectively. This is analogous to bounds 2
introduced in Sec. III B for the LRIM. In equilibrium
simulations of particles the proposed MC moves can be
freely chosen. Here we perform 90% local displacements
within radius r ¼ σ and 10% nonlocal moves where the
particle’s potential new position is chosen randomly in the
whole simulation box. In Fig. 9 we show for d ¼ 2 the run

times per update τ=N for different N but fixed density
ρ ¼ 0.35 and varying temperature T, covering both the
(oversaturated) vapor and vapor-liquid phase. We find clear
evidence for OðN logNÞ complexity. The run times appear
largely independent of the temperature, which is in contrast
to the results for the LRIM in equilibrium. For smaller
densities, we generally find faster run times for the same
number of particles. An implementation for d ¼ 3 is
straightforward, too, and will be presented elsewhere [62].

V. APPLICABILITY AND LIMITATIONS

Although in this paper we only present in detail the
application of the algorithm to three different models, it can
be used for other lattice spin and off-lattice particle systems
as well. Of course, we are not restricted to two spatial
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dimensions nor to hypercubic lattices. Systems with
quenched disorder [63] are not excluded either: Random
field models [64] are trivially accommodated within the
framework introduced above since the extra field simply
enters as an offset to ΔE.
As mentioned in Sec. III D 1, the scaling of the run times

of the algorithm seems to be unaffected by the tightness of
the employed bounds. A reduction of the involved pre-
factor, however, can be achieved. Such constant speedups
can be decisive for the feasibility of large-scale simulations
which require massive compute resources. Besides the
above considered OðnÞ models with n ≥ 2, site-diluted
spin systems which model crystal defects through unoccu-
pied lattice sites [65,66] constitute another example where
bounds 3 [Eq. (23)] cannot be applied directly. For this
system modified bounds 3 can be used instead,

ΔEmin
B ¼ 2max½JintΓ ðRÞ − ð2N−

B þ N0
BÞJmax

Γ ðRÞ;
ð2Nþ

B þ N0
BÞJmin

Γ ðRÞ − JintΓ ðRÞ�;
ΔEmax

B ¼ 2 min½JintΓ ðRÞ − ð2N−
B þ N0

BÞJmin
Γ ðRÞ;

ð2Nþ
B þ N0

BÞJmax
Γ ðRÞ − JintΓ ðRÞ�; ð31Þ

whereN0
B is the number of vacancies in box B. This opens a

way to treat q-state Potts models as well [67], where the
components which are inert to both the old and the newly
proposed state would be treated as vacancies. Now, we need
to store the population of each of the q spin states for
all boxes.
Random field and site dilution are forms of disorder that

can easily be managed since they affect individual spins
and their interaction with the environment as a whole. More
challenging are models where disorder manifests as varia-
tion of the interaction of pairs of spins such as systems with
bond dilution [68] or the Edwards-Anderson spin-glass
model [69,70]. Here, the order parameter is not as closely
related to the spin-box interaction energy as the magneti-
zation in the case of the pure Ising model. This implies that
it is difficult to formulate an estimator similar to bounds 3
or bounds 2. Also in this more difficult case we have
checked that a reduction in complexity is achieved in
simulations using the basic bounds 1, although the speedup
is less pronounced as compared to the pure Ising case.
Another large class of problems consists of spin systems
with competing interactions, e.g., antiferromagnetic short-
range and ferromagnetic long-range interactions or vice
versa [71,72]. Here, one could, for example, evaluate the
short-range interactions directly and treat the long-range
interactions using our algorithm.
The LJ system considered above can easily be general-

ized to two-body potentials of other functional forms
and extended to multispecies systems. Depending on the
specific details of the different interactions between the
particles, many scenarios can be imagined. A general

approach would be to use a separate decomposition of
the system for each particle type.
Yet, the question about possible limitations of the

algorithm arises. Cases which might pose problems are
systems with interactions that do not decay sufficiently fast
(and thereby cannot be grouped together with decaying
interaction strength). For mean-field models the algorithm
may thus not be used (efficiently).

VI. CONCLUSION AND OUTLOOK

We have presented a general, hierarchical, and adaptive
algorithm for Metropolis Monte Carlo simulations of long-
range interacting systems. The range of possible applica-
tions of the algorithm is very broad. The formulation does
not depend on the lattice structure and is thus valid for both
general lattice spin models and systems with long-range
interacting particles in continuous space as long as the
interaction decays sufficiently fast with distance. In the two
applications considered here, viz. the nonconserved long-
range Ising model and a Lennard-Jones system in two
dimensions, we observe run times that support an average
asymptotic complexity of OðN logNÞ (where N is the
number of spins or particles), but the existing data for the
LRIM may also be described by a power law with a small
exponent. However, the scenario of a logarithmic scaling
seems more likely due to the hierarchical, treelike nature of
the algorithm and is also strongly supported by the scaling
of the run times for the LRXYM and the Lennard-Jones
particle system.
Importantly, our method has small prefactors for the

asymptotic scaling of the run times, resulting in speedup
factors which exceed 10 000 in relevant physical scenarios.
In a single day, we can perform simulations which before
would have taken ≈30 years with any of the established
methods, enabling the exploration of parameter ranges that
were hitherto not accessible.
Until recently it was only possible to investigate the

nonequilibrium properties of the long-range Ising model
during quenches to low temperatures where the low
acceptance rates allow an efficient simulation via the
effective field approach [35]. The application of the new
algorithm is not limited to this scenario, proving very
efficient also in the case of large acceptance rates, as
encountered, e.g., during quenches to the critical temper-
ature. While here we exemplify our algorithm for the long-
range Ising model and XY with nonconserved order
parameter and a Lennard-Jones system, our method can
easily be applied to other spin and off-lattice systems. One
application where we have already successfully employed
the algorithm is the phase separation in a conserved order
parameter simulation of the long-range Ising model where
the system evolves at the quench temperature through spin
exchanges [73]. Other nonequilibrium simulation settings
where long-range interactions are of interest are field-
driven hysteresis [74] and Kibble-Zurek processes, driving
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systems through phase transitions with different cooling
rates [26–28], for which we have explicitly shown that they
are now accessible with our new algorithm. Especially
interesting is the extension to quantum systems where the
Suzuki-Trotter mapping [75,76] of a d-dimensional quan-
tum system to the corresponding (dþ 1)-dimensional
classical system allows the application of our algorithm,
which is designed for general d. Very recently, motivated
by D-Wave experiments [77], Bando and Nishimori [78]
investigated the generalized quantum Kibble-Zurek mecha-
nism in the transverse-field Ising model coupled to an
external bath [79] where long-range interactions arise
naturally in Trotter direction. Also of great interest are
models where the quantum spins themselves interact via a
tunable long-range potential [80,81], which describes many
experimental situations [82,83]. The algorithm we present
here constitutes an important step toward an efficient
simulation of the corresponding classical system.
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