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We show how to define a quantized many-body charge polarization P⃗ for ð2þ 1ÞD topological phases
of matter, even in the presence of nonzero Chern number and magnetic field. For invertible topological

states, P⃗ is a Z2 × Z2, Z3, Z2, or Z1 topological invariant in the presence of (M ¼ 2, 3, 4, or 6)-fold

rotational symmetry, lattice (magnetic) translational symmetry, and charge conservation. P⃗manifests in the

bulk of the system as (i) a fractional quantized contribution of P⃗ · b⃗ mod 1 to the charge bound to lattice

disclinations and dislocations with Burgers vector b⃗, (ii) a linear momentum for magnetic flux, and (iii) an

oscillatory system size dependent contribution to the effective 1D polarization on a cylinder. We study P⃗ in
lattice models of spinless free fermions in a magnetic field. We derive predictions from topological field
theory, which we match to numerical calculations for the effects (i)–(iii), demonstrating that these can be

used to extract P⃗ from microscopic models in an intrinsically many-body way. We show how, given a high

symmetry point o, there is a topological invariant, the discrete shift So, such that P⃗ specifies the
dependence of So on o. We derive colored Hofstadter butterflies, corresponding to the quantized value of

P⃗, which further refine the colored butterflies from the Chern number and discrete shift.
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I. INTRODUCTION

In the presence of symmetry, gapped quantum phases of
matter can acquire symmetry-protected topological invar-
iants. The paradigmatic example is the quantized Hall
conductance, which is specified by the Chern number, and
is defined only for systems with a U(1) charge conservation
symmetry. Since the discovery of topological insulators and
superconductors [1–3], there has been spectacular progress
in our understanding of symmetry-protected topological
invariants both for single-particle free fermion models
[4–6] and for interacting many-body systems [7–16].
Despite these advances, a complete understanding of
topological invariants arising from crystalline symmetries
is still lacking.
Recently, Refs. [17,18] applied ideas from topological

quantum field theory (TQFT) and the algebraic theory of

symmetry defects [13], which can be used to characterize
gapped quantum many-body systems, to develop a sys-
tematic classification of topological invariants for systems
with U(1) charge conservation, discrete (magnetic) trans-
lational symmetry, and rotational symmetry in two spatial
dimensions. In particular, Refs. [17,18] showed how
TQFT predicts the existence of a quantized many-body
polarization in the presence of twofold, threefold, four-
fold, or sixfold rotational symmetry. For invertible topo-
logical phases, which do not host anyon excitations, the
polarization acquires a Z2 × Z2, Z3, Z2, or Z1 classifica-
tion, respectively.
Remarkably, the TQFT prediction of a quantized charge

polarization applies also in the presence of a nonzero Chern
number and a nontrivial magnetic field. This appears to be
in tension with several statements made previously in the
literature about whether the polarization is well defined in
the presence of a nonzero Chern number [19,20].
The TQFT not only predicts the presence of the

invariant, but also its bulk physical manifestation. This
is in terms of a fractional quantized contribution of the
charge bound to lattice defects and a dual response, the
momentum of the ground state in the presence of addi-
tionally inserted magnetic flux.
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In contrast, the modern theory of polarization in insula-
tors is based on the Berry-Zak phase of single-particle wave
functions in momentum space [21–24]. This Berry phase
theory of polarization assumes the phase of the single-
particle states is globally well defined throughout the
Brillouin zone, which applies only in the case of zero
Chern number. For the case of nonzero Chern number,
while there has been work showing how one may define a
notion of polarization in the single-particle context by
fixing an origin in the Brillouin zone [24], its quantization
from crystalline symmetries, the effects of nonzero mag-
netic field, and its implication for bulk response properties
have not been studied.
In many-body systems with interactions, the single-

particle Berry phase formulation breaks down. It can be
replaced with a Berry phase theory based on twisted
boundary conditions or with an expectation of Resta’s
exponentiated polarization operator [25]. However, these
apply only to the effective 1D polarization, meaning the
system is viewed as an effective one-dimensional system;
such a 1D polarization is no longer an intensive quantity in
a higher-dimensional system.
In this paper we show how one can indeed define a

quantized charge polarization in an intrinsically many-body
fashion and in the presence of both nonzero Chern number
and nonzero magnetic field. This is not an effective 1D

polarization obtained by viewing the system as a 1D
system—rather, this is an intrinsic bulk 2D polarization,
which has nontrivial bulk responses mentioned above.
More specifically, we show that upon fixing a choice

of high symmetry point (HSP) o in the unit cell, one can

define two invariants,So and P⃗o.So is a discrete analog of
the Wen-Zee shift [26–31], which is an invariant associated
to U(1) charge conservation and SO(2) plane rotational
symmetry. We refer to So as the “discrete shift” because it
is a ZM invariant, while the Wen-Zee shift is a Z invariant.

P⃗o denotes the quantized charge polarization.
We show, through extensive numerical studies, how

these invariants can be extracted from bulk response
properties of microscopic models in multiple different
ways. We show how the predictions of the TQFT, including
the bulk response properties and the dependence of So

and P⃗o on o, can be precisely matched to calculations on
microscopic models.
As an application, we show how one can extract the

quantized charge polarization for the Hofstadter model [32]
of spinless free fermions in a nonzero magnetic field on a
lattice. This provides yet another way to color Hofstadter’s
butterfly (see Fig. 1), extending the recent coloring in
Ref. [33] based on the discrete shift, and the earlier coloring
with the Chern (TKNN) number [34,35].

FIG. 1. A menagerie of butterflies in the spinless square lattice Hofstadter model. α and β represent a plaquette center and vertex,
respectively. For any C4 symmetric origin o, So has a Z4 classification, while Po has a Z2 classification. We empirically find that
fSβ;Sα;Pβ;Pαg follow Eqs. (41), (42), (52), and (53), respectively. Note that Sα has period 8π in ϕ,Pβ has period 4π in ϕ, while Sβ

and Pβ have period 2π in ϕ. See Secs. IV and V for discussions.
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We note that the dependence of the polarization on
a choice of origin o is a well-known property of all
definitions of the polarization in electronic systems; it is
usually dealt with by considering instead changes in the
polarization as an external parameter is tuned, or by using
the overall charge neutrality of the system (for example, by
taking into account the background positive ions), which
removes the origin dependence [21]. While at first glance it
seems unusual that an invariant of a phase of matter could
have a dependence on a choice of origin, we explain it
further in subsequent sections.

A. Relation to prior work

Our work is closely related to several works over the past
decade that also study polarization and its physical con-
sequences but all in the context of Chern number C ¼ 0.
Responses associated to the discrete shift have also been
explored in microscopic models in recent works [33,36,37]
and in the context of topological field theory [17,18,38],
although the origin dependence of the discrete shift has not
been discussed in prior work.
References [19,39] discuss a quantized charge polariza-

tion in free fermion crystalline insulators with different
point group symmetries, assuming zero Chern number.
Reference [20] showed how, ignoring rotational sym-

metry, polarization is a “nonquantized” topological response
and can be defined for zero Chern number systems in an
intrinsically many-body fashion in terms of the momentum
of the ground state in the presence of magnetic flux.
Reference [40] earlier studied the momentum of magnetic
flux and mentioned its quantization by rotational sym-
metries. We note that the definition of the magnetic trans-
lation operator in a magnetic field, which is used to compute
the momentum, has a number of ambiguities that were not
fully considered in these previous works.
References [19,20] both asserted that the polarization is

not well defined in the presence of nonzero Chern number,
which disagrees with our results in the case where we have
both translational and rotational symmetry.
Reference [37] defines the polarization for systems with

C ¼ 0 and zero magnetic field via Wannier representation
theory, and characterizes it in terms of a fractional charge
bound to lattice defects with nontrivial Burgers vector.
Reference [41] also finds that lattice dislocations can have
fractionally quantized charges in a rotationally symmetric
system; here it appears that C ¼ 0 is being implicitly
assumed. We emphasize that our definition of fractional
charge of the lattice defects differs from the definition
presented in Refs. [37,41].

B. Organization of paper

The rest of the paper is organized as follows. In Sec. II
we summarize our main results. In Sec. III we review some
basic properties of lattice defects. In Secs. IV and V we

present detailed results for So and P⃗o, respectively, on the
square lattice, highlighting the various subtleties that arise
in matching the field theory to numerics. Section VI does
the same for M ¼ 2, 3, 6. In Sec. VII we discuss the origin
dependence of So; P⃗o from a field theory perspective. We
then conclude and discuss future directions.

II. OVERVIEW OF MAIN RESULTS

We consider a gapped phase of matter with the symmetry
group

G ¼ Uð1Þ ×ϕ ½Z2 ⋊ ZM�; ð1Þ

where Z2 denotes magnetic lattice translations and ZM for
M ¼ 2, 3, 4, 6 denotes point group rotations [42]. The
symbol ×ϕ implies that the magnetic translation operators,

generated by T̃x; T̃y, obey the algebra T̃−1
y T̃−1

x T̃yT̃x ¼ eiϕN̂ ,
where N̂ is the total fermion number. The tilde indicates
that the definition of the operator involves a U(1) gauge
transformation.
The charge conservation and translation symmetries

allow us to define a charge per unit cell ν. Each unit cell
can be divided into M subcells with equal flux ϕsub. The
total flux per unit cell is then ϕ ¼ Mϕsub. Note that for our
purposes, depending on the microscopic model we may
need to specify the flux within even smaller subregions of
the unit cell. Therefore we assume that the 2D system is
embedded in a continuum, and that the magnetic field B is
specified at each continuum point. This allows us to specify
ϕ;ϕsub exactly as real numbers, even though the symmetry
only requires us to define ϕ mod 2π. We comment further
on this in Sec. IV.
Let C be the Chern number of the system. We then define

the integer:

κ ≡ ν − C
ϕ

2π
: ð2Þ

κ is a Z topological invariant for the system if ϕ is known
exactly (and not just modulo 2π). Fixing C and ϕ, if the
charge per unit cell increases by an integer l, then
κ → κ þ l. For further intuition about κ and a heuristic
derivation of Eq. (2), see Appendix A 1 d.
For a given high symmetry point o of the lattice unit cell,

we will see that one can define a set of topological
invariants fSo; P⃗og. The transformation of fSo; P⃗og
under a change of o is fully determined if o is preserved
by aZM rotation symmetry group. Therefore, it is sufficient
to specify fSo; P⃗og for a single such o.
A subtle point is that the definition of the invariants

requires a choice of operators that represent the symmetry
group elements. In this work, we take C̃M;o to be a
“magnetic” rotation operator about o (a spatial rotation
combined with a gauge transformation), such that
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ðC̃M;oÞM ¼ 1. If we change this choice by C̃M;o →

C̃M;oeið2π=MÞχN̂ for some real number χ, then the invariant
So also transforms, So → So þ χC. Nevertheless, we will
see that there are canonical choices for C̃M;o that can
be made.
We caution that the vector P⃗o we refer to throughout the

text is different from the standard charge polarization vector
P⃗o, which for zero Chern number satisfies j ¼ ∂tP⃗o, where
j is the induced current. We show in Appendix B that

ðPo;x;Po;yÞ ¼ ðPo;y;−Po;xÞ ¼ P⃗o × ẑ: ð3Þ

However, since P⃗o appears most naturally in our theory,
we work in terms of P⃗o throughout and refer to it as
the polarization, recognizing this as a slight abuse of
terminology.

A. Warm-up: C4 symmetric lattice

We first illustrate our main results for the square lattice.
A representative unit cell with high symmetry points α (unit
cell center), β (unit cell vertices), γi (edge centers) is shown
in Fig. 2. The points γ1, γ2 are not translation equivalent but
are related by rotations about α. α; β; γ refer to maximal
Wyckoff position (MWPs), which are collections of points
related by lattice symmetries; the precise definition of a
MWP is given in Appendix A. α and β have an order 4 site
symmetry group generated by the magnetic rotation oper-
ators C̃4;α; C̃4;β (which also include a gauge transforma-
tion), with C̃4

4;α ¼ C̃4
4;β ¼ 1. The point γ has an order 2 site

symmetry group generated by the operator C̃2;γ, with
C̃2
2;γ ¼ 1. We can pick any of these points as our origin o.

First we define the invariants So; P⃗o for each possible
HSP o and list their properties; thereafter, we explain how
to use them to characterize the topological phase of the
given system.
Suppose o ¼ α or β. Then, So is defined mod 4 and

can take one of four possible values for a fixed Chern
number C. Next, suppose o ¼ γ, which is a C2 symmetric

point. Then Sγ is only defined mod 2. In all cases, we have
the constraint [33]

So mod 1 ¼ C
2

mod 1: ð4Þ

We next turn to P⃗o. For o ¼ α, β,

P⃗o ∈
�
ð0; 0Þ;

�
1

2
;
1

2

��
; ð5Þ

up to integer vectors. We write

P⃗o ¼
Po

2
ð1; 1Þ ð6Þ

in this case; Po is an integer defined mod 2. For o ¼ γ,
there are four possible choices:

P⃗γ ∈
�
ð0; 0Þ;

�
1

2
; 0

�
;

�
0;
1

2

�
;

�
1

2
;
1

2

��
; ð7Þ

up to integer vectors.
So; P⃗o for a C4 symmetric point, together with κ,

determines So0 ; P⃗o0 for all other o0. For example,

fSβ;Pβ; κg ¼ fSα þ 2Pα − κ;Pα þ κ; κg: ð8Þ

If we only know Sγ; P⃗γ; κ, we can determine P⃗α and P⃗β

fully, but can only determine Sα and Sβ mod 2 and not
mod 4. The relevant formulas are given in Table I. Thus, to
fully specify So; P⃗o for each high symmetry point in the
unit cell, we need to determine them for some o with the
largest possible site symmetry group.
In Fig. 1, we show colored Hofstadter butterflies for two

different originsα,β extracted for the square latticeHofstadter
model of spinless fermions. We find that fSβ;Sα;Pβ;Pαg
follow the empirical equations Eqs. (41), (42), (52), and (53),
respectively. In this figure, β corresponds to a site and α to a
plaquette center, where there is no site.
To distinguish two phases of matter based on So; P⃗o

(assuming C, κ and all other invariants are equal), we first
fix a common origin o (which must be a C4 symmetric
point) and find So; P⃗o for the two systems. If their values
are not equal, the two systems cannot be adiabatically
connected to each other in a symmetry-preserving manner.
It is important to note that comparing the crystalline
topological invariants of two phases is only meaningful
after fixing a common origin.

B. Basic properties and classification for fSo;P⃗og
We now generalize the above discussion to the case with

M ¼ 2, 3, 4, 6 [43]. In Table II we define the 2 × 2matrices

FIG. 2. Maximal Wyckoff positions for C2, C3, C4, and C6

symmetries (colored circles). × marks the unit cell center, which
we denote as α. The high symmetry points βi and γi each belong
to a single maximal Wyckoff position (β or γ), but are all
inequivalent under lattice translations. The dotted lines show a
possible division of the unit cell into M subcells.

ZHANG, MANJUNATH, NAMBIAR, and BARKESHLI PHYS. REV. X 13, 031005 (2023)

031005-4



Uð2π=MÞ, corresponding to elementary 2π=M rotations
around an origin o withM-fold rotational symmetry. These
describe the action of the rotation operator C̃M;o on space.
As above, we fix ðC̃M;oÞM ¼ þ1.
Then for any given o which is fixed under an order-M

rotation, fSo; P⃗og have a ZM × KM classification, where
KM ¼ fZ2 × Z2;Z3;Z2;Z1g for M ¼ 2, 3, 4, 6. A deri-
vation is given in Appendix A. More specifically, So is an
integer or half-integer defined modulo M, and it satisfies
Eq. (4). P⃗o is a two-component vector with the following
quantization condition and equivalence relation:

½1 − Uð2π=MÞ�P⃗o ∈ Z2;

P⃗o ∼ P⃗o þ Λ⃗; Λ⃗ ∈ Z2: ð9Þ

For fourfold and sixfold point groups, it is possible for
the HSP o to only be invariant under a smaller M0-fold
rotation. For example, we can haveM0 ¼ 2whenM ¼ 4, or
M0 ¼ 2, 3 when M ¼ 6. In these cases, the possible values
of fSo; P⃗og have a ZM0 × KM0 classification. The relations
defining them are as above, with M replaced by M0.
It will be convenient to parametrize P⃗o in the following

way:

P⃗o ¼

8>>>>><
>>>>>:

1
2
ðPo;x;Po;yÞ M0 ¼ 2

Po
1
2
ð1; 1Þ M0 ¼ 4

Po
1
3
ð1; 2Þ M0 ¼ 3

0 M0 ¼ 6:

ð10Þ

Here M0 is the maximal integer such that o is a fixed
point under rotations of order M0. Po can take any integer
value according to the KM0 classification. For example,
when M0 ¼ 2, there are four inequivalent choices for P⃗o:
P⃗o∈fð0;0Þ;ð1=2;0Þ;ð0;1=2Þ;ð1=2;1=2Þg. When M0 ¼ 3,
there are three inequivalent choices: P⃗o ∈ fð0; 0Þ; ð1=3;
2=3Þ; ð2=3; 1=3Þg. This is derived in Appendix A 3 a.
Next we discuss the origin dependence of So; P⃗o. If

we shift o → o0 ¼ oþ ðvx; vyÞ, then we can determine

fSo0 ; P⃗o0 g from fSo; P⃗og and κ, as specified in Table I.
Note that ðvx; vyÞ can be fractions of a lattice unit. For

fSo0 ; P⃗o0 g to be fully specified in terms of fSo; P⃗og, the
minimal rotation angle which preserves o0 must be a
multiple of the minimal rotation angle which preserves o.
In other words, the site symmetry group of o0 is isomorphic
to a subgroup of the site symmetry group of o. For example,
if o and o0 have site symmetry groups Z4 and Z2,
respectively, then fSo0 ; P⃗o0 g can be determined using
the M ¼ 2 entry of Table I.
Thus, in order to obtain a complete specification for each

high symmetry point, we need to know fSo; P⃗og for at
least one o which is invariant under an M-fold rotation.
Otherwise we will not be able to fully recover fSo0 ; P⃗o0 g
for each o0. Note, in particular, that the dependence of P⃗o
on o is completely determined by κ, and the dependence
of So on o is completely determined by P⃗o and κ.
Nevertheless, differences

ΔS ¼ Soðλ1Þ −Soðλ2Þ;
ΔP⃗ ¼ P⃗oðλ1Þ − P⃗oðλ2Þ ð11Þ

are independent of o. Here λ is some tuning parameter in
the Hamiltonian, H½λ�, which keeps the invariant κ fixed
and preserves the crystalline symmetry. This can be done,
for example, by fixing fν;ϕsubg. The reason we need to fix
κ is discussed in Sec. VII A.
Note that if we have a solid-state system of electrons

with some background positive charge due to ions, then the
total polarization of the system will be P⃗tot ¼ P⃗o þ P⃗ion;o.
If we assume that the ions have a charge of κ per unit cell,
then the origin dependence cancels and P⃗tot becomes
origin independent. In realistic systems, the excess charge
per unit cell ν − κ will be neutralized by a metallic gate,
which we would ignore to compute the total polarization.
As another example, if we take M ¼ 3, we have three

maximal Wyckoff positions invariant under threefold rota-
tion symmetry: α, β, and γ, with β ¼ αþ ð1=3; 1=3Þ and
γ ¼ αþ ð−1=3; 2=3Þ (see Fig. 2). Then,

fSβ;Pβ; κg ¼ fSα −Pα − κ;Pα − κ; κg;
fSγ;Pγ; κg ¼ fSα þPα − κ;Pα þ κ; κg: ð12Þ

TABLE I. Transformation of So and P⃗o under o→oþðvx;vyÞ,
which shifts the origin from one CM symmetric point to another
CM symmetric point. Note that So and P⃗o are only defined up to
equivalences as described in the main text. For M ¼ 4 we have
taken the unique nontrivial choice v⃗ ¼ ð1

2
; 1
2
Þ.

M Soþv⃗ P⃗oþv⃗

2 So − 4v⃗ · P⃗o þ 4κðv2x þ v2y þ vxvyÞ P⃗o þ ð−vyκ; vxκÞ
4 So þ 2Po − κ P⃗o þ ð− 1

2
κ; 1

2
κÞ

3 So − 3vyPo − 3κðv2x þ v2y þ vxvyÞ P⃗o þ ð−vyκ; vxκÞ
6 So 0

TABLE II. Elementary rotation matrices Uð2π=MÞ, for the
coordinate basis shown in Fig. 2.

M 2 3 4 6

Uð2π=MÞ �
−1 0

0 −1

� �
−1 −1
1 0

� �
0 −1
1 0

� �
0 −1
1 1

�
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C. Extracting fSo;P⃗og from microscopic models

For a given microscopic model, we can extract fSo; P⃗og
in several distinct ways, as summarized in Table III. To set
up the calculations, we first need to fix a rotation operator
C̃M0;o� , where the high symmetry point o� is invariant under
2π=M0 rotations and M0 ≤ M. In our examples we always
choose this operator so that ðC̃M0;o� ÞM0 ¼ þ1. We also
define translation operators T̃x, T̃y corresponding to the
elementary lattice vectors x, y, which obey the magnetic
translation algebra.
Our numerical procedure is guided by a topological

response theory derived using TQFT ideas [14,17,18].
This gives a Lagrangian density in terms of background
gauge fields:

L ¼ C
4π

A ∧ dAþSo

2π
A ∧ dωþ P⃗o

2π
· A ∧ T⃗ þ κ

2π
A ∧ AXY

þ
els

4π
ω ∧ dωþ P⃗s

2π
· ω ∧ T⃗ þ νs

2π
ω ∧ AXY þ � � � :

ð13Þ
Here, A is a background U(1) gauge field, and is defined so
that

R
dA represents the full magnetic field (and not just its

deviation from some background value), ω is a background
ZM “rotation” gauge field, which is treated as a real field
with quantized holonomies. AXY and T⃗ are the area element
and torsion 2-form, respectively, which are constructed
using translation gauge fields. The notation is described
more fully in Appendix F.
Importantly, the coefficients of these terms are all

quantized in specific patterns and defined modulo certain
equivalence relations, which can be systematically derived
for bosonic systems using group cohomology [17]. We are
only concerned with the first four terms, which have the
coefficients C;So; P⃗o; κ. In this paper, we carry out a
derivation of the quantization conditions on P⃗o in the case
of fermionic systems using a general theory of invertible
fermionic phases developed in Ref. [14] (see Appendix F of
this paper). We show that the quantization conditions on
P⃗o in invertible fermionic systems (i.e., without fraction-
alized excitations) are the same as for invertible bosonic

systems, in contrast to the Chern number and discrete
shift [33].

1. fSo;P⃗og from fractional charge of lattice
disclinations and dislocations

Given the magnetic rotation operator C̃M0;o� about a high
symmetry point o� and translation operators T̃x, T̃y , and the
Hamiltonian for the clean system with the full crystalline
symmetry Hclean, one can define a Hamiltonian in the
presence of a lattice disclination or dislocation Hdefect. This
is done through a cut-and-glue procedure described in
Appendix C. Hdefect is uniquely defined up to local
operators at the core of the defect. In our numerics we
take Hclean to be a free fermion Hofstadter model, usually
with nearest-neighbor hopping terms, but our methods
conceptually apply more generally, as we discuss in
Secs. IV and VI. In Appendix H, we demonstrate that
the dislocation charge calculation generalizes naturally to
Hamiltonians with next-nearest-neighbor hopping.
A lattice disclination has a nonzero disclination angle Ω

(Frank angle −Ω), and b⃗o is the Burgers vector. Here, the
subscript o means that the Burgers vector is measured by
the holonomy of a loop encircling the defect, which starts at
the point o. Note that o and o� need not be equal in general.
As we explain in Sec. III, for a disclination with Ω ≠ 0, the
value of b⃗o as defined above depends on o. However, for a
lattice dislocation, which has Ω ¼ 0, the value of b⃗o is
independent of o.
We can compute the fractional charge in the ground state,

QW mod 1, in a large region W surrounding a lattice
disclination or dislocation. We require that the boundaries
of the regionW align with the boundaries of the unit cell Θ.
The linear size of W must be much larger than the
correlation length. We first define the charge in a regionW:

QW ¼
X
i∈W

wtðiÞQi; ð14Þ

where the weight wtðiÞ ¼ 1 if i is in the interior ofW, while
if i lies on the boundary ∂W, 2πwtðiÞ is the angle subtended
by ∂W in the interior of W at i. Qi is the charge on site i in
the ground state of Hdefect. An example is shown in Fig. 6.

TABLE III. General equations for charge response (including dislocation and disclination charge), angular momentum, and linear
momentum. The last column explains the different special points that arise in each calculation.

Charge response QW ¼ C δΦW;o

2π þ ΩWSo
2π þ P⃗o · b⃗o þ νðkþ nirreg;o;Ω;b⃗Þ mod 1 o is origin of loop used to measure

Burgers vector b⃗o
Angular momentum loðmÞ ¼ Cm2

2
þSomþ KðC; LÞ mod M o is rotation center

Linear momentum pλ;yðmÞ ¼ −Po;ymþ Ky mod 1 o is determined by the “gauge origin”
ō through Eq. (61)

1D polarization −PO;x ¼ Ckϕ
2π Ly þ LyPo;y þ K mod1 O is origin used in Resta’s formula,

Eq. (26); o, O must satisfy Eq. (75).
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Using Eq. (13) along with Eq. (2), we then find

QW ¼ C
ΦW

2π
þ So

Ω
2π

þ P⃗o · b⃗o þ κnW;o mod 1 ð15Þ

¼ C
δΦW;o

2π
þ So

Ω
2π

þ P⃗o · b⃗o þ νnW;o mod 1: ð16Þ

ΦW is the total flux through the region W. nW;o is the
number of unit cells in W, and may be fractional. ΦW has
two contributions, ΦW ¼ ϕnW;o þ δΦW;o. Here, ϕnW;o is
the reference background flux within W. δΦW;o is the
excess magnetic flux in the region W relative to this
reference. The precise microscopic definitions of δΦW;o

and nW;o are quite subtle and nontrivial and explained in
detail in Secs. IV–VI.
Importantly, δΦW;o and nW;o in general depend on the

position of o relative to the chosen unit cell Θ.
Nevertheless, the final results for So and P⃗o are indepen-
dent of Θ. This is explained using the trimming method
developed in Appendix D.
Naively it may seem that the coefficients in Eq. (15)

should also depend on o�. One reason for our notation is
that Eq. (15) comes from a TQFT which is only sensitive
to o. But even in microscopic calculations, we find that
neither So nor P⃗o actually depends on o�. This is easily
seen for P⃗o, which can be defined using pure dislocations,
for whichΩ ¼ 0 and o� does not appear. To show thatSo is
independent of o�, we give a theoretical argument when
C ¼ 0, in Appendix B 3. We also have extensive numerical
evidence for this when C ≠ 0.
The above discussion implies that we can consider any

defect Hamiltonian, and extract So and P⃗o (which only
depend on o) by suitably defining δΦW;o and nW;o along
with the appropriate Burgers vector. To simplify the
disclination charge calculation of So we often choose
o ¼ o�, but this is not a requirement of the theory.

2. So from angular momentum

Alternatively, we can examine the action of rotations
and translations on the ground state in order to extract an
angular momentum or linear momentum. These dual
responses are a valuable consistency check on the value
of So obtained from the above charge response.
Importantly, to compare the values of discrete shift from
the disclination charge and angular momentum calcula-
tions, we need to set o ¼ o� in both cases.
Let jΨðmÞi be the ground state of the clean translation-

ally invariant system on a torus in the presence of m flux
quanta, m being an integer. Then,

C̃M0;ojΨi ¼ e2πilo=M
0 jΨi; ð17Þ

where recall that M0 is the largest integer such that o is
invariant under 2π=M0 rotations centered at o. We find that
the angular momentum lo obeys the formula

loðmÞ ¼ Somþ C
m2

2
þ KðC;LÞ mod M0; ð18Þ

where KðC;LÞ is a constant independent of m, depending
on the system size L and the Chern number C. The
numerical data of lo are shown in Fig. 18. For jΨi to be
an eigenstate of C̃M0;o, appropriate global holonomies of the
background gauge field and certain commensurate system
sizes must be chosen, as discussed in Ref. [33]. We note
that one can also recover So by locally inserting flux and
performing partial rotations [33].

3. P⃗o from linear momentum

The topological field theory, Eq. (13), predicts that the
polarization P⃗o also specifies the linear momentum of
U(1) flux [17]. We have found empirically that P⃗o can be
extracted by studying expectation values of an approximate
translation operator, as we briefly summarize below. See
Sec. V for additional details.
Suppose we wish to measure Po;y on the square lattice.

We consider a state on a clean torus with m ¼ ðϕ=2πÞLxLy

total flux quanta, where Lx, Ly are the number of unit cells
in the x and y directions. While the infinite plane possesses
an infinite magnetic translation symmetry along the two
directions, on the torus with magnetic flux it is not possible
to fully preserve translation symmetry along y unless
m=Ly ¼ ðϕ=2πÞLx is an integer. For general m, on the
torus we can insert the flux using a Landau-like gauge that
is almost translation symmetric along y, except for a small
strip which forms a cycle along y.
We then define an approximate translation operator:

T̃y ≔ T̂ye
i
P

j
λjc

†
j cj : ð19Þ

The expectation value of T̃y defines the linear momentum
pλ;y in the y direction:

hΨðmÞjT̃yjΨðmÞi ¼ e−γþi2πpλ;y : ð20Þ
In our numerics we define λ using Eq. (59). In particular,

we find empirically that there exist special choices of λ
for which pλ;y determines the quantized polarization Po;y

throughout the Hofstadter butterfly, as follows.
We find that for the Hofstadter model, for appropriately

chosen λ, the amplitude e−γðmÞ in general oscillates as a
function of m and it vanishes for certain special values
of m. Whenever the amplitude is nonzero, the linear
momentum is found to obey the following relation:

pλ;yðmÞ ¼ −Po;ymþ Ky mod 1; ð21Þ
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where Ky is piecewise constant in m (it can jump at the
values of m where the amplitude vanishes). The numerical
data of pλ;y are shown in Fig. 18.
The origin o is determined as follows. We first define a

point ō, referred to as the “gauge origin” for the vector
potential, which has the property that the holonomy of the
vector potential is trivial along the x and y cycles of the
torus that meet at ō [see Eq. (56)]. Then the origin o used to
obtain P⃗o is expressed in terms of ō; see Eq. (61).
In defining T̃y we in principle have the freedom to

combine it with an arbitrary global U(1) rotation:

T̃y → T̃yeiχN̂ ; ð22Þ

which corresponds to a shift λj → λj þ χ for each j. Once o
is fixed, then χ is fixed to be an integer multiple of ϕ by
fixing the flux through a dislocation created using T̃y , as
explained in Sec. Vand Appendix C. Thus we only need to
consider the case where

χ ¼ ϕvx ¼
2πm
LxLy

vx; ð23Þ

for some integer vx. Under such a shift in T̃y ,

pλ;y → pλ;y þmvxν

¼ pλ;y þmvx

�
Cm
LxLy

þ κ

�
: ð24Þ

If we consider only the term linear in m, this implies that

Po;y → Po;y − κvx ¼ Po;y mod 1: ð25Þ

Note that one could consider the case where vx is
fractional but quantized, and this would effectively corre-
spond to a shift of the HSP o by ðvx; 0Þ to a different HSP,
as we explain in Sec. V.
Analogous equations hold for Po;x, if we instead

start with a Landau-like gauge along x. Furthermore,
our procedure straightforwardly generalizes to rotational
symmetries of order M ¼ 2, 3, 4, 6; we discuss this in
Sec. VI D.
We have also measured P⃗o by studying the expectation

values of a partial translation operator T̃yjD, which is T̃y

restricted to some suitably chosen region D. This method
also allows us to extract a quantized P⃗o consistent with
dislocation charge, for a suitable choice of ō and of the
region D, when M is even. We discuss this further in
Secs. V and VI D.

4. P⃗o from dimensional reduction and 1D polarization

One can also define a 1D polarization along the î
direction by treating the system as an effectively 1D system

along î. Let us first consider î ¼ x̂. Then we can calculate
the 1D polarization using Resta’s formula [25]:

PO;x ¼
1

2π
arghΨjeið2π=LxÞ

P
j
jxn̂j jΨi: ð26Þ

The above expression depends on a choice of origin Ox
for jx, which we make explicit, i.e., jx ∈ f−Ox; 1 −Ox;
2 −Ox;…; Lx − 1 −Oxg. Empirically, we find that

−PO;x ¼
Ckϕ
2π

Ly þ LyPo;y þ K0 mod 1; ð27Þ

where k ≔ ðLx=2Þ − ōx þOx. Knowing the value of k is
not crucial in extractingPo;y. This result agrees with a field
theory prediction which we derive in Sec. V D.
Similar to the linear momentum calculation, we extract a

value of P⃗o that is consistent with other approaches only
when o, O satisfy a certain relation; see Eq. (75). This
calculation is independent of the specific details of the
gauge, as long as Φy is linear in ϕ. The full discussion is
contained in Sec. V D.

III. BASIC PROPERTIES OF LATTICE DEFECTS

Before discussing the numerical calculations in detail,
we review some useful background material on lattice
defects and their properties. A more extensive background
review is found in Appendix A. The quantum mechanical
details of constructing a defect Hamiltonian Hdefect through
a cut-and-glue procedure are described in detail for dis-
location defects in Appendix C.
We illustrate the procedure for constructing a dislocation

defect in Fig. 3. First we make a cut on an infinite clean
lattice and define the left (L) and right (R) sides of the cut.
We replace all bonds that cross the cut so that a point Li,
originally connected to some point Ri, is now connected to
Riþb⃗� . Here b⃗

� is an integer vector related to the dislocation
Burgers vector, which we define below.
We illustrate the construction of a disclination defect in

Fig. 4. We draw two rays l1, l2 which meet at the point o�,
such that l2 is obtained from l1 by rotating about o� through
the angleΩ > 0. Now we delete all points within the wedge
enclosed by l1 and l2, except those that lie exactly on l1. We
then reconnect the bonds so that a link i1j (where i1 lies on
l1) is replaced by a link i1j0, where j0 is obtained from j
upon rotating by Ω about o�.
The disclination angle Ω can be directly measured

from the defect lattice alone. It is the angle by which a
unit vector is rotated upon being parallel transported around
the defect. “Pure” dislocation defects are those with zero
disclination angle. They are characterized by a dislocation
Burgers vector b⃗, which is defined as follows. Starting
from a point o, consider a sequence of lattice translations
which encircles the defect (and no other defects) in
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counterclockwise fashion, and ends at o. For a dislocation,
the sum of these translations will not equal zero, but instead
some integer vector, which we define as b⃗. The above
dislocation construction gives two dislocations at the two
ends of the cut, with b⃗ ¼ �b⃗�. For a pure dislocation,
the shape of the loop and the choice of o do not affect the
value of b⃗.
The Burgers vector of a disclination with Ω ≠ 0 can be

measured similarly; note that o� and o need not be related.
Importantly, the Burgers vector when Ω ≠ 0 sensitively

depends on the choice of o, assuming o� is fixed. If we shift
o → oþ v⃗, then

b⃗oþv⃗ ¼ b⃗o þ ½1 − UðΩÞ�v⃗: ð28Þ

This is derived in Appendix A. As an illustration, Fig. 5
shows the same Ω ¼ ð2π=3Þ disclination but with different
Burgers vectors depending on the choice of o. Since
choosing v⃗ ¼ Λ⃗ to be an integer vector should give us
an equivalent characterization of the defect, we have the
equivalence:

b⃗o ≃ b⃗o þ ½1 −UðΩÞ�Λ⃗: ð29Þ

Thus, if v⃗ is fractional, b⃗oþv⃗ will not be equivalent to b⃗o.
If Ω ¼ ð2πk=M0Þ where k, M0 are coprime, the distinct
classes of Burgers vectors form a group KM0 as defined
in Sec. II.
Note that our construction ensures the following relation:

b⃗o� ≃ ð0; 0Þ; ð30Þ
FIG. 4. Cut-and-glue procedure of constructing a disclination.
(a) Original lattice on an open plane. (b) Cutting. (c) Gluing; this
creates new plaquettes ζi. (d) Reorganizing.

FIG. 5. (a) A pure disclination with Ω ¼ ð2π=3Þ created using
C̃3;o� via a cut-and-glue construction. The disclination core o� is
marked as ×. We can define a “frame,” i.e., an x, y basis at every
point on the defect lattice (they are plotted at the four plaquette
centers near the disclination). The frame rotates by −2π=3 upon
crossing the green dotted branch cut which passes through o�

and o. We calculate b⃗o ¼ v⃗1 þ v⃗2 þ v⃗3 þ v⃗4 for different o.
(b) o at a plaquette center. fv⃗1; v⃗2; v⃗3; v⃗4g ¼ fð−1; 1Þ; ð−1; 0Þ;
ð0;−1Þ; ð1;−1Þg. (c) o at one of the sites. fv⃗1; v⃗2; v⃗3; v⃗4g ¼
fð−2=3; 1=3Þ; ð−1=3;−1=3Þ; ð1=3;−2=3Þ; ð2=3;−1=3Þg. (d) o at
the other site. fv⃗1; v⃗2; v⃗3; v⃗4g ¼ fð−1=3; 2=3Þ; ð−2=3; 1=3Þ;
ð−1=3;−1=3Þ; ð1=3;−2=3Þg.

FIG. 3. Dislocation construction on a square lattice. (a) Drawing
a cut in the ŷ direction. (b) Conjugate hoppings. (c) Doing local
moves. (d) Reorganizing.

QUANTIZED CHARGE POLARIZATION AS A MANY-BODY … PHYS. REV. X 13, 031005 (2023)

031005-9



which can be verified by constructing the various classes of
disclinations forM ¼ 2, 3, 4, 6. Setting o ¼ o� thus ensures
that the defect has trivial Burgers vector. This is a convenient
choice to make in the following sections. Note that we
sometimes also use the notation b⃗o ∈ ½ð0; 0Þ� to indicate that
b⃗o is in the same equivalence class of (0, 0).

IV. CALCULATION OF So ON THE
SQUARE LATTICE

This section and the next are devoted to numerically
checking the predictions of the field theory for the square
lattice. This section reviews and generalizes the main
results from Ref. [33]. Analogous calculations for
M ¼ 2, 3, 6 are discussed in Sec. VI.
We fix our origin at a HSP o which has fourfold

rotational symmetry. There are two choices, α and β, as
shown in Fig. 2. α denotes the center of the unit cell, while
β denotes a corner. For calculations on the simplest square
lattice, we pick the unit cell shown in Fig. 6(c), where α
corresponds to a plaquette center and β corresponds to a
site. Note that the formulas for o ¼ γ are contained in the
discussion for C2 symmetric systems given in Sec. VI.
For either choice of o, we have two topological invariants,

So and P⃗o ¼ 1
2
Poð1; 1Þ. So is defined mod 4 and satisfies

So ¼ ðC=2Þ mod 1. Po is an integer defined mod 2.
We extract So in two physically different ways, through

the disclination charge and the angular momentum of flux.
The exact choice of unit cell does not affect the final result;
we show this in Appendix D.

A. Symmetry operators

First we define the magnetic rotation operator C̃4;o�

which is used to create a disclination centered at o� ¼ α, β:

C̃4;o� ≡ Ĉ4;o�e
i
P

j
λjc

†
j cj : ð31Þ

We require that a system with a pure disclination at o�

constructed using C̃4;o� has flux ϕ in each regular unit cell.
This condition forces C̃4

4;β ¼ þ1 [33]. When o� ¼ β, all
unit cells are regular, and then this condition in fact
completely fixes λj; this is an example where there is a
unique canonical choice for the rotation operator C̃4;o�

(once the Hamiltonian is fixed). For consistency in the
definitions of our operators, we demand that C̃4

4;α ¼ þ1

as well.
We also define translation operators T̃x and T̃y which

obey the magnetic translation algebra:

T̃−1
y T̃−1

x T̃yT̃x ¼ eiϕ
P

j
c†j cj : ð32Þ

The gauge transformations used to define the translation
operators are discussed in Sec. V.

B. Construction of clean Hamiltonian Hclean

In our numerical work we consider the Hofstadter model,
which has a spinless free fermion Hamiltonian of the form

Hclean ¼ −
X
hiji

tijc
†
i cj þ H:c:; ð33Þ

where the nearest-neighbor hopping terms tij ¼ teiAclean;ij

depend on a background vector potential Aclean, which
assigns flux ϕ per unit cell. The parameters in Hclean are
discussed in detail in Appendix A.
Although we mainly consider nearest-neighbor hopping

in our numerics, our theoretical predictions as well as
our numerical scheme apply much more generally. For

FIG. 6. Pure disclinations with two different o. (a) o ¼ β and (b) o ¼ α. The disclination core o� is marked as ×. The weightings wtðiÞ
within a representative choice ofW are marked near each site. When o ¼ α, there is an irregular unit cell at the disclination core. (c) The
unit cell choice; black solid lines represent hoppings.
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example, we can consider arbitrary next-neighbor hop-
pings. To illustrate this, in Appendix H we give evidence
showing that invariants extracted numerically in the square
lattice Hofstadter model remain well defined upon adding
next-neighbor hopping terms. Below we also argue that our
procedure works if Hclean has N-body interaction terms
for N > 2.
An important point is that we require the magnetic field

B to be defined everywhere within the unit cell. This means
that the total magnetic flux within any subregion of the unit
cell is specified as a real number. This requirement goes
beyond what is directly specified by the crystalline sym-
metry (which only demands flux ϕ mod 2π per unit cell).
But it is a physically natural requirement, since the most
general lattice models with the given symmetry have some
small amount of further neighbor hopping, between differ-
ent points within a single unit cell. In fact, specifying a
nearest-neighbor Hamiltonian with just ϕ mod 2π is ill
defined in a sense, because it does not specify how to
consistently perturb the model with further neighbor hop-
ping terms. Such a specification requires a choice of ϕ as a
real number, not just modulo 2π.

C. So from disclination charge

1. Construction of defect Hamiltonian Hdefect

Start with a clean lattice Hamiltonian Hclean which
depends on a background U(1) vector potential Aclean

through the variables eiAij;clean . Suppose we create a
lattice disclination (a detailed construction can be found
in Ref. [33]), and arrive at a defect Hamiltonian
Hdefect½eiAij;defect � through a cut-and-glue procedure. Here
Adefect is the vector potential on the defect lattice. Note that
irregular unit cells may exist at the center of each defect.
For example, there could be a triangular unit cell at the
center of an Ω ¼ ðπ=2Þ disclination [see Fig. 6(b)], or a
triangular unit cell at the center of a square lattice
dislocation (see Fig. 7). Irregular unit cells can have
different shapes depending on the value of M.
Away from the defect, the flux in any region is fully

determined by Aclean, and we can ensure that the system has
flux ϕ per unit cell. However, the flux in the immediate
vicinity of the defect depends on Aclean as well as on the
definition of the symmetry operator which creates the
defect. In particular, if we require a specific value of flux
in the unit cells immediately adjacent to the defect, there
will be a constraint on the definition of the symmetry
operators we use.

2. Charge prediction from field theory

Having fixed Hdefect, we compute the charge QW in a
region W containing the defect. We always require that the
boundary of W coincides with the boundary of a unit cell.
This ensures that the only irregular unit cells in W are near
the center of the defect. QW is defined by the formula

QW ¼
X
i∈W

wtðiÞQi: ð34Þ

The weights wtðiÞ are defined in Sec. II; this definition
ensures that QW þQW0 ¼ QW⊔W0 when two regionsW,W0
overlap only on their boundaries, as required by the
response theory. Note that the value of QW depends on
the definition of the unit cell.
This method of measuring QW applies to any local

gapped Hamiltonian, even if it has interaction terms. As
long as the system has a correlation length much smaller
than the linear size of W, the ambiguity in Hdefect near the
defect core will not affect the value of QW for sufficiently
large W.
The next issue is how to assign this charge to the

different terms in the response theory, which predicts that
for large enough W,

QW ¼ C
δΦW;o

2π
þSo

Ω
2π

þ P⃗o · b⃗o þ νnW;o mod 1: ð35Þ

HereΩ and b⃗o are the disclination angle and Burgers vector
of the defect, respectively. We fix b⃗o ¼ ð0; 0Þ throughout
this section, so the term with P⃗o does not contribute (this is
equivalent to saying that o ¼ o�).
The parts of this equation which require special care are

δΦW;o and nW;o [44]. We discuss how to define these below.

3. Definition of δΦW;o and nW;o

δΦW;o is, intuitively, the excess flux in the region W. To
define the excess flux, we must compute the flux inW, and
compare it to some background reference flux. There are
two possibilities. If o ¼ β, then all unit cells in W are

FIG. 7. Region W for a square lattice dislocation with

b⃗ ¼ ð1; 0Þ. The weightings wtðiÞ are labeled on each relevant
MWP. Dashed lines represent unit cell boundaries, and colored
circles represent the MWPs: α (red), β (blue), and γ (green).
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regular [see Fig. 6(a)], and nW;β ¼ 0 mod 1. Here δΦW;o¼0

if all unit cells have flux ϕ. On the other hand, if o ¼ α,
then there is an irregular unit cell at the disclination core
[see Fig. 6(b)].
In general, we can arrange to have at most one irregular

unit cell in the core of the defect, with some flux ϕirreg

which is determined by our choice of rotation operators. Its
area is denoted nirreg;o, which can be fractional. Note that

nW;o ¼ nirreg;o mod 1: ð36Þ

Then, if we choose our symmetry operators so that the
flux through each regular unit cell in Hdefect is ϕ, we have

δΦW;o ¼ ϕirreg − nirreg;oϕ: ð37Þ

Thus the value of δΦW;o depends on the value we assign
to nirreg;o.

4. Computation of nirreg;o
If o ¼ β, there are no irregular unit cells, as discussed

above, so we simply define nirreg;β ¼ 0 mod 1. If o ¼ α, we
find nirreg;α ¼ 3

4
mod 1. A heuristic argument is that the

cut-and-glue procedure for a π=2 disclination removes 1=4
of a unit cell at the disclination center; i.e., the irregular
unit cell at the disclination core consists of three subcells.
Each subcell contributes 1=4 of a full unit cell; therefore,
nirreg;α ¼ 3

4
mod 1. (A consistency check on this result is to

demand that the value of So corresponding to some
physical point o be the same whether we choose the unit
cell to satisfy o ¼ α or o ¼ β. If nirreg;β ¼ 0 mod 1, we find
it necessary to have nirreg;α ¼ 3

4
mod 1.)

We note that the previous step involves another subtlety.
Even if we know nirreg;o, there can be a further ambiguity in
δΦW;o. If nirreg;o is an integer, then Eq. (37) is perfectly well
defined modulo 2π. However, if nirreg;o ¼ a=b is a fraction
with a, b coprime, δΦW;o is not invariant under the
transformation ϕ → ϕþ 2π. To keep δΦW;o invariant, we
need to pick a lift of ϕ from ½0; 2πÞ to ½0; 2πbÞ. But this is
why we insist on specifying the actual magnetic field
everywhere in the unit cell. This fixes ϕ as a real number,
not just mod 2π, and so fractions of ϕ can be defined
unambiguously.

5. Computing So

For a π=2 disclination with b⃗o ¼ ð0; 0Þ, Eq. (35) predicts
that

So

4
¼ QW − νnW;o − C

δΦW;o

2π
mod 1: ð38Þ

This determines So=4 mod 1 in terms of well-defined
quantities. Note that our procedure to define nirreg;o and

δΦW is independent of the details of the Hamiltonian, in
particular if there are further neighbor hopping terms and
interaction terms. Therefore we expect that So can be
robustly extracted for any Hclean with a symmetric, gapped
ground state.

D. Angular momentum of flux

We can also compute So from the angular momentum
eigenvalues of C̃4;o� after inserting additional flux, if we
set o ¼ o�. On the torus, there are two positions on the
torus that are left invariant under a Ĉ4;o� rotation, o� and
o� þ ðL=2; L=2Þ. If L is odd, then the two positions are not
the same point in the unit cell. This is deemed unnatural
since we only want a single origin. Thus, we consider an
even length system on a torus, insert m total flux quanta
uniformly, and define

C̃4;ojΨðmÞi≡ eiðπ=2Þlo jΨðmÞi: ð39Þ

The field theory predicts that there will be a contribution to
lo which equals Sm. Indeed, we numerically find that

loðmÞ ¼ Cm2

2
þmSo þ KðC;LÞ mod 4: ð40Þ

The numerical data are shown in Fig. 18. Additional
technical details in these calculations, in particular a
discussion of partial rotations, can be found in Ref. [33].

E. Application to Hofstadter model

Reference [33] obtained So for the Hofstadter model,
taking o ¼ β to be at a site. Here we also study the case
where o ¼ α is at a plaquette center. The values of So
obtained using both disclination charge and angular
momentum are consistent. In the limit of small ϕ and ν,
our procedure also agrees with known results for con-
tinuum Landau levels, i.e.,So ¼ C2

2
mod 4 for either o ¼ β

or o ¼ α. The Hofstadter butterflies for So are plotted
in Fig. 1.
We find that they obey the following empirical formulas

(recall that β is chosen to be a site). For C > 0,

SβðϕÞ ¼
C2

2
− ðCþ 1Þ

�
Cϕ
2π

�
þ 2

X
p=q<ϕ=2π

odd q

�
Cþ q
2q

�
mod 4;

ð41Þ

where the third term of Eq. (41) we sum over all p=q in the
Farey sequence of order C that satisfy ðp=qÞ < ðϕ=2πÞ and
q odd. The value of Sβ for C < 0 can be obtained from
the transformation Sβðμ;ϕÞ ¼ 1 −Sβð−μ;ϕÞ which flips
the sign of C. Sβ ¼ 1 for the fully filled state with
ν ¼ 1, C ¼ 0.
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Similarly, we can set o ¼ α, which is the plaquette
center. For C > 0,

SαðϕÞ ¼
C2

2
þ C

�
Cϕ
2π

�
þ 2

X
p=q<ϕ=2π

odd q

�
Cþ q
2q

�
mod 4: ð42Þ

The value of Sα for C < 0 lobes can be obtained from the
transformation Sαðμ;ϕÞ ¼ 2C −Sαð−μ;ϕÞ, which flips
the sign of C. Sα ¼ 0 when C ¼ 0.
One can verify that Sβ has period 2π in ϕ, but Sα has

period 8π in ϕ. The physical reason is that the defect lattice
with o ¼ α has a triangular plaquette at the disclination
core. Under ϕ → ϕþ 2π, the background flux through this
triangular plaquette transforms as 3ϕ=4 → 3ϕ=4þ ð3π=4Þ.
Therefore Hdefect is invariant under ϕ → ϕþ 8π up to
gauge transformations.

V. CALCULATION OF P⃗o ON THE
SQUARE LATTICE

We next discuss three different ways to calculate P⃗o for
o ¼ α, β directly on the square lattice, using dislocation
charge, linear momentum, and a 1D polarization response.
(The case o ¼ γ is handled in Sec. VI.) In fact, we show that
P⃗α; P⃗β can also be computed if we knowSα,Sβ alone: see
the results in Table I, in particular Eq. (8). These results are
derived in Sec. VII and Appendix G. So in principle we can
also measure the polarization indirectly from the disclina-
tion charge and angular momentum responses. All the
calculations yield the same numerical values of P⃗αðβÞ, and
are consistent with field theory predictions.
In this section we will not require the rotation operator

C̃4;o� , but still use the translation operators satisfying
Eq. (32). Note that in Secs. V and VI and the related
Appendixes C and E we use A to denote the entire vector
potential on a lattice without dislocation or disclination
defects, so A has the same meaning as Aclean from the
previous section. The vector potential in a system with
lattice defects is denoted as Adefect.

A. P⃗o from dislocation charge

First we consider the charge bound to a single dislocation
(for an explicit construction of such a dislocation defect,
see Appendix C). We follow the procedure outlined in
Sec. IV C; similar arguments can be applied in this case.
For a defect with zero disclination angle and dislocation

Burgers vector b⃗ ¼ ð0;�1Þ or ð�1; 0Þ, there is a triangular
plaquette at the dislocation, and all other plaquettes within a
large radius are ensured to be regular through our con-
struction. Suppose the triangular plaquette has flux ϕirreg. If
the translation operator used to construct the dislocation is

T̃y ¼ T̂ye
i
P

j
λjn̂j ;

we find that when b⃗ ¼ ð0; 1Þ,

ϕirreg ¼ Aj0;j0þŷ − λj0 ; ð43Þ

where j0 is a specific point in the irregular unit cell at the
dislocation (see Appendix C 2 for a proof). Thus, the value
of ϕirreg is set by the combined choice of A, λ, and j0. In
particular, we show in Appendix C 2 that for vx ∈ Z, the
following transformations all take ϕirreg → ϕirreg þ ϕvx:
(1) taking j0 → j0 þ ðvx; 0Þ keeping A, λ fixed; (2) taking
λj → λj − ϕvx for each j, keeping A and j0 fixed. (Here we
can even take vx ∈ R.) In this section it turns out that fixing
a precise value of ϕirreg is not essential, but the above
discussion is also useful in Sec. V C.
The field theory predicts that the total charge in a region

W surrounding the dislocation is

QW ¼ C
δΦW;o

2π
þPo

2
þ ðkþ nirreg;oÞν mod 1; ð44Þ

where we write nW;o ¼ kþ nirreg;o for some integer k. Here
nirreg;o is the effective number of unit cells we assign to the
irregular unit cell at the dislocation. We use the subscript o
in nirreg;o because the value assigned to it will turn out to be
different for different high symmetry points o.
Recall from the general discussion in Sec. IV C that if all

regular unit cells have flux ϕ,

δΦW;o ¼ ϕirreg − ϕnirreg;o;

where ϕnirreg;o is the background flux assigned to the
dislocation plaquette.
Next we determine nirreg;o. First we consider o ¼ β (see

Fig. 7). The choice of nirreg;β should satisfy a few sanity
checks. First, it should lead to an integer-valued Pβ.
Numerically, only nirreg;β ¼ 0 or 1=2 give integer values
of Pβ; this can also be seen directly from Eq. (44) by
looking at the limit of zero Chern number and ν ∈ Z.
Second, the system with the same Hamiltonian but

with all orbitals filled has zero Chern number. It can be
adiabatically connected to one in which the points in the α,
β, γ maximal Wyckoff positions have integer charge Nα,
Nβ, Nγ , respectively. In this situation, the polarization can
also be defined using the dipole moment within each
subcell, and it is possible to show, independent of any
dislocation charge calculation, that

Pα ¼ Nβ þ Nγ mod 2; ð45Þ

Pβ ¼ Nα þ Nγ mod 2: ð46Þ

See Appendix B for the details. Now we show that Eq. (44)
only agrees with this result if we set nirreg;β ¼ 1

2
.
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To derive this explicitly, consider Fig. 7. We choose W
so that ∂W overlaps with β sites. Using our weighting
procedure, we get

QW ¼ 7Nα þ 7.5Nβ þ 15.5Nγ; ð47Þ

while from the field theory, if we set o ¼ β,

QW ¼ κð7þ nirreg;βÞ þ
Pβ

2
mod 1; ð48Þ

where κ ¼ Nα þ Nβ þ 2Nγ . Using Eq. (46) in the above
equations, and simplifying, we obtain nirreg;β¼1=2mod 1.
The above calculation was done in a limit with Chern

number zero. We now assume that nirreg;β ¼ 1=2 even when
C ≠ 0. This is reasonable because in the actual model under
study, changing the Chern number should not change
nirreg;β. After this step, we get the following prediction:

QW ¼ Pβ

2
þ
�
kþ 1

2

�
νþ C

δΦW;β

2π
mod 1; ð49Þ

whereW encloses only one dislocation, with one triangular
plaquette. Note that

δΦW;β ¼ ϕirreg −
ϕ

2

is completely well defined mod 2π since ϕ is specified as
a real number (see Sec. IV C 4). This allows us to find
Pβ mod 2 unambiguously.
Now let us discussPα. Again consider Fig. 7. Let us use

the exact same W (i.e., the same unit cell choice), so

QW ¼ 7Nα þ 7.5Nβ þ 15.5Nγ: ð50Þ

However, if we choose o ¼ α, the field theory now
predicts that

QW ¼ κð7þ nirreg;αÞ þ
Pα

2
mod 1: ð51Þ

In the Chern number 0 limit, demanding consistency with
Eq. (45) implies that nirreg;α ¼ 0 mod 1.
We have thus found that nirreg;o depends on whether o lies

at the corner or the center of a unit cell. The values of nirreg;o
are tabulated in Table IV. When we consider other values of
M in Sec. VI, we again find that nirreg;o must be fixed for
each o by requiring consistency with analytical results in
the limit of full filling.

B. Application to Hofstadter model

We apply Eq. (49) to the usual square lattice Hofstadter
model, choosing α at a plaquette center and β at a site as

before. The Hofstadter butterfly for Pβ is plotted in Fig. 1.
Pβ follows the empirical formula:

PβðϕÞ ¼ Cκ mod 2: ð52Þ

Note that Pβ has period 4π in ϕ and not 2π, because its
definition involves the quantity ϕ=2. [Also, if ϕ → ϕþ 2π
for fixed ν, Eq. (52) changes by C mod 2 so a shift of 4π is
needed to leave it invariant.] We use Eq. (52), along with an
eigenvalue database [34], to generate the Hofstadter butter-
fly forPβ in Fig. 1. We have only plotted it for 0 < ϕ ≤ 2π.
The values for 2π < ϕ ≤ 4π can be obtained either using
Eq. (52) or by reflecting the butterfly about ϕ ¼ 2π.
Similarly, with α at a plaquette center, and nirreg;α ¼ 0,

we find that

Pα ¼ ðCþ 1Þκ mod 2: ð53Þ

Pα has period 2π in ϕ, and is also plotted in Fig. 1.
Shifting ϕ → ϕþ 2π for fixed ν changes Eq. (53) by
CðCþ 1Þ mod 2, but as CðCþ 1Þ is even, this change is
trivial.

TABLE IV. nirreg;o;b⃗ for all possible high symmetry points o, for
M ¼ 2, 3, 4, 6. Points belonging to the sameMWP that rotate into
each other are given the same fβ; γg symbol but are distinguished
by their coordinates, measured with respect to α. M0 is the site
symmetry group at o.

nirreg;o;b⃗

M o M0 nirreg;o;b⃗¼ð1;0Þ nirreg;o;b⃗¼ð0;1Þ

2 α 2 0 0
2 β 2 1

2
1
2

2 γ 2 1
2

0

2 δ 2 0 1
2

4 α 4 0 0
4 β 4 1

2
1
2

4 γ2 2 1
2

0

4 γ1 2 0 1
2

3 α 3 0 0
3 β 3 1

3
2
3

3 γ 3 2
3

1
3

6 α 6 0 0
6 β1 3 1

3
2
3

6 β2 3 2
3

1
3

6 γ1 2 0 1
2

6 γ2 2 1
2

0

6 γ3 2 1
2

1
2
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Finally, note that there is a general relation between Pα

and Pβ which goes beyond just the Hofstadter model:

Pα −Pβ ¼ κ mod 2: ð54Þ

Equation (54) can be proven from field theory; we do this
in Sec. VII.

C. P⃗o from linear momentum

On a closed manifold, the field theory term ðP⃗o=2πÞ ·
A ∧ T⃗ can be rewritten as ðP⃗o=2πÞ · R⃗ ∧ F, plus some
additional terms, where F is the total magnetic flux, and
R⃗ ¼ ðX; YÞ is the translation gauge field mentioned below
Eq. (13). Consider the linear momentum in, say, the y
direction associated to a state with total flux 2πm ¼ ϕLxLy.
The linear momentum of the inserted flux, which is the
charge under the translation gauge field, is predicted to
receive a contribution,

δL
δY0

¼ Po;y

2π

Z
F ¼ Po;ym ¼ 1

2
Pom mod 1; ð55Þ

from this term. The mod 1 normalization is due to the
convention chosen to define Y. We now verify this
prediction from numerical calculations on the Hofstadter
model for o ¼ α, β by studying the system on a torus.
On a torus with magnetic flux 2πm ¼ ϕLxLy, a trans-

lation by y cannot be an exact symmetry of the Hamiltonian
in general, even after applying a gauge transformation. This
is because, for a fixed x, the holonomy

H
Axdx along a

noncontractible cycle of the torus changes by 2πm=Ly

under T̃y. If ðm=LyÞ ∈ Z, T̃y is an exact symmetry because
the change in

H
Axdx can be undone by a large gauge

transformation. For other values of m, T̃y needs to be
accompanied by an operator F 2πm=Ly

which adiabatically
inserts flux 2πm=Ly through the cycle running along x, to
make it an exact symmetry. In our work we do not use the
exact translation operator because it is difficult to numeri-
cally implement F 2πm=Ly

.
If the value of jmj mod Ly is of order 1, the inserted flux

from F 2πm=Ly
is Oð1=LyÞ, which vanishes in the thermo-

dynamic limit; therefore, T̃y ≃ T̃yF 2πm=Ly
is a good

approximation [20]. For general values of m, we find that
the expectation value of T̃y oscillates between 0 and 1 in
amplitude as a function ofm (indicating the closeness of the
approximation).
Apart from the flux in each unit cell, the vector potential

has another gauge-invariant quantity called the gauge origin
ō, which we define below. The operator T̃y also requires us
to fix a gauge transformation fλjg. The main result of this
section is that for a fixed system size and a fixed choice of
o, we find only one choice of ō and λ for which P⃗o is

quantized throughout the Hofstadter model. And remark-
ably, this value of P⃗o agrees with results from the
dislocation charge calculation.
We find that we can similarly measure P⃗o using the

expectation value of a partial translation operator T̃yjD
(again not an exact symmetry), which is T̃y restricted to an
appropriate region D. Further details of the linear momen-
tum calculations are found in Appendix E.

1. Definition of vector potential

We assume, as in the charge calculation, that the
holonomies of the vector potential A can be specified
along any loop in the continuum in which the lattice is
embedded. We define a gauge-invariant point, the gauge
origin ō ¼ ðōx; ōyÞ, such that the holonomy of A is zero on
the x and y cycles of the torus that intersect ō. Note that ō
need not correspond to a lattice site in general. Vector
potentials with different values of ō are not gauge equiv-
alent, and are distinguished in the treatment below.
To measure Po;y in our numerics, we insert a total of m

flux quanta on the torus using a Landau-like gauge along y.
One form of this gauge, shown in Fig. 8, is

Aj;jþx̂ ¼−
2πðy− ōyÞm

Ly
δjx;Lx−1;

Aj;jþŷ ¼
2πðx− ōxÞm

LxLy
;

j¼ ðjx; jyÞ; jx ∈ f0;…;Lx−1g; jy ∈ f0;…;Ly− 1g:
ð56Þ

FIG. 8. Gauge choices defined in Eq. (56) on an Lx × Ly
torus. Each blue arrow represents a vector potential Aij ¼
ð2π=LxLyÞ. Each red arrow represents a vector potential
Aij ¼ ð2π=LyÞ. ōx and ōy mark the distance between (0,0)
and the cycle with trivial holonomy in the x and y directions,
respectively. The blue region is the partial translation region D
which is centered around ōx þ ðLx=2Þ.
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Here, m≡ ðϕ=2πÞLxLy is the total number of flux quanta
through the torus. o can be determined from ō, as we
explain in the subsequent section.
To measure Po;x, we define a similar gauge, but instead

along x.

2. Approximate translation operator

Next we define the operator

T̃y ≔ T̂ye
i
P

j
λjc

†
j cj : ð57Þ

λj is a function of m. If T̃y were an exact symmetry, there
would be a set fλjg satisfying

Aiþŷ;jþŷ ¼ Aij − λi þ λj ð58Þ

everywhere on the torus. But as mentioned above, it is not
possible to have exact symmetry whenm=Ly ∉ Z. Thus we
can at best ensure that this relation holds everywhere except
for a small strip that we require to be centered at a fixed x.
Then the freedom in choosing λ is completely fixed up to
(i) an overall shift λj → λj þ χ for each j, (ii) the geometry
of the strip, including the position of its center and its
thickness, and (iii) the choice of λ for points that lie within
the strip (if any). We discuss these further below.
In our numerics we use the gauge

T̃y ¼

8>>><
>>>:

T̂ye
i
P

j
−ðπm=LyÞc†j cj jx < ōx

T̂ye
i
P

j
ðπm=LyÞc†j cj jx > ōx

T̂y jx ¼ ōx:

ð59Þ

Here jx is the x coordinate of the site j. For this T̃y , Eq. (58)
is violated only on the horizontal links that touch the
line jx ¼ ōx.
To measurePo;y, we need to express o in terms of gauge-

invariant properties of A or λ. If we fix A, λ as above, we can
define o as follows. First, we find the flux ϕirreg in a
dislocation plaquette created using T̃y . Recall from
Sec. VA that ϕirreg depends on A and λ as well as the
position of the dislocation, which is fixed by a point j0;
and if we shift j0 by an integer vector, ϕirreg can change
by multiples of ϕ. For the above choices of A and λ, we
thus define o so as to satisfy the following relation,
with j0;x ∈ Z:

ϕirreg ¼ ϕnirreg;o mod ϕ; ð60Þ

where nirreg;o was computed in Sec. VA. In the language of
that section, our choice of o ensures that the excess flux
δΦW;o in the dislocation plaquette constructed using T̃y is
zero (mod ϕ). Note that for an arbitrary choice of ϕirreg,

there may be no solution corresponding to any high
symmetry point o. But in Appendix C we prove that for
our choice of A, λ, Eq. (60) can be solved and implies

ox ¼ ōx þ
Lx

2
þ 1

2
mod 1: ð61Þ

Having fixed λj, we define the linear momentum pλ;y as
the expectation value of T̃y in the ground state jΨi with m
total flux quanta:

hΨjT̃y jΨi ≔ e−γþi2πpλ;y : ð62Þ

e−γ is the amplitude of the expectation value. Empirically,
we find that

pλ;y ¼ −Po;ymþ Ky mod 1: ð63Þ

The term linear inm is predicted by the response theory;Ky

is piecewise constant in m in our numerics, and can change
only when the amplitude vanishes. The numerical details
are shown in Fig. 18.
Using the above choice of λ in the Hofstadter model, we

find that the amplitude e−γ oscillates with m whenever
C ≠ 0, and for a discrete set of m values it vanishes [45].
For other values of m, the magnitude is nonvanishing
and the linear momentum is well defined. As a result,
for a fixed Lx, we can obtain the expected value of Po;y

throughout the Hofstadter butterfly except for a finite set of
ϕ values where Po;y is not determined. But for these ϕ
values, we can pick some other Lx and then extract Po;y.
The values of Po;y are quantized and agree with results
from the dislocation charge measurement.
Now we discuss alternative choices of λ. First there is the

freedom in shifting λj → λj þ χ for each j. As stated in
Sec. VA, taking χ ¼ ϕvx ¼ ð2πmvx=LxLyÞ changes the
flux ϕirreg assigned to an irregular unit cell at a dislocation
by −ϕvx (where vx ∈ R). If we continue to define o using
Eq. (60), then when vx is an arbitrary real number there is
no solution for o. But if vx is quantized to 0 or ð1=2Þ mod 1,
we see that o must change (in fact, we show in Appendix C
that ox → ox − vx). Hence, only discrete sets of global U(1)
transformations are allowed, and the effect of such trans-
formations is simply to change the value of o.
There is additional freedom in choosing the strip that

violates translation symmetry. The location of the center of
the strip can in principle be shifted by δ ∈ R if we define λj
as in Eq. (E2) (see Appendix E). In the Hofstadter model,
we find empirically that in order to get any quantized result
forPo;y throughout the butterfly, δmust be fixed so that the
center of the strip coincides with ōx, as in Eq. (59), i.e.,
δ ¼ 0. Remarkably, the quantized P⃗o extracted from the
above linear momentum calculation agrees fully with the
result from dislocation charge calculations.
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When C ¼ 0 in this model, taking δ ≠ 0 is equivalent to
taking λj → λj þ χ for some χ [46]. In this case any choice
of δ will give a quantized result Po0;y, but for a high
symmetry point o0 that depends on δ. In Appendix E we
discuss an alternative way to understand the choice of δ
using gauge-invariant quantities.
Empirically, we find that the thickness of the strip does

not matter, as long as λj varies linearly in jx within the strip
(otherwise we do not obtain quantized results throughout
the butterfly forPo;y). We can pick the parameters fLy; ōyg
arbitrarily, and this does not affect the result forPo;y. In the
limit of zero strip thickness, Eq. (59) is the only choice of λ
that we have found that gives quantized results throughout
the butterfly.

3. Partial translations

We can also use a partial translation operator T̃yjD ≔

T̂yjDei
P

j∈D
λjc

†
j cj to extract the same linear momentum. To

get quantized results for P⃗o, we empirically find that D
needs to be mirror symmetric about some cycle l along

which the holonomy ei
P

j∈l
Aj;jþŷ is real valued.

Here we define the linear momentum of a state with m
flux quanta as

hΨjT̃yjDjΨi ≔ e−γDþi2πpλ;y : ð64Þ

Numerically, we obtain Po through the equation

pλ;y ¼ −Po;ymþ Ky mod 2: ð65Þ

Here Ky is some constant which only depends on the Chern
number and the system size.
We find that there are only two choices of the parameters

fD; ō; λg which give a quantized Po;y throughout the
butterfly. In one case, (1) D is centered at the cycle
with x ¼ ōx (trivial holonomy), (2) ō is arbitrary, and
(3) T̃yjD ≔ T̂yjD, i.e., λj ≡ 0 for j ∈ D. However, empiri-
cally these choices give Po;y ¼ 0 everywhere in the
butterfly, which does not agree with the results obtained
from other methods.
In the second case, we choose (1)D centered at the cycle

with x ¼ ōx − ðLx=2Þ [holonomy ð−1Þm], for each m,
(2) ō ¼ oþ ðLx=2Þ þ ð1

2
; 1
2
Þ, and (3) T̃yjD is defined as

T̃y jD ≔

8<
: T̂yjDei

P
j
−ðπm=LyÞc†j cj jx ≤ ōx

T̂yjDei
P

j
ðπm=LyÞc†j cj jx > ōx:

ð66Þ

This choice of λ; ō; D is the only one we have found that
gives a quantized but nontrivial result for Po;y throughout
the butterfly. Furthermore, remarkably this agrees with the
other methods used in this section (dislocation charge,

linear momentum from full translations, and the 1D
polarization discussed below). We motivate this choice
further in Appendix E.

D. P⃗o from 1D polarization

It is natural to ask what the invariant P⃗o as defined above
has to do with other traditional many-body definitions of
the polarization. In this section we provide one concrete
answer: we consider a torus and compute the 1D polari-
zation along x as defined by Resta [22], treating Ly as a
parameter. We show that in addition to the usual term
proportional to C, there is a term LyPo;y which fixes the
dependence of the 1D polarization on the dimensionally
reduced coordinate.
Consider the 1D polarization in the x direction,

denoted Px. It is defined by the following action:

L1D ¼ −Px

Z
dxdtEx; ð67Þ

where Ex ¼ ∂tAx − ∂xAt is the x component of the electric
field. In this section we assume that A denotes the entire
vector potential and not just its deviation from some
background. The sign in Eq. (67) is chosen so that the
1D current j satisfies j ¼ ðδL1D=δAtÞ ¼ ∂tPx.
We now use the ð2þ 1ÞD field theory to make a

prediction for Px if the original 2D system is dimensionally
reduced to an effective 1D system in the x direction. We set
the rotation gauge field ω to zero for this calculation.
First consider the term with C:

C
4π

Z
dxdydtA ∧ dA

¼ C
4π

Z
CdxdydtðAtB − AxEy þ AyExÞ: ð68Þ

Here Ex; Ey; B are the full electric and magnetic fields,
respectively. Note that the Chern-Simons term is usually
written in terms of the deviation of the vector potential from
some background, but we have instead used the full vector
potential. This rewriting is motivated by the topological
field theory, derived in Appendix F, and will be justified by
the empirical results we show below.
If Ay ≠ 0 and Ex is independent of y, then we can rewrite

this term as

C
2π

Z
dxdt

�I
AyðxÞdy

	
Ex þ � � � ; ð69Þ

This step involves an integration by parts, which contrib-
utes a factor of 2. Since the system on the torus is not
exactly translationally symmetric, the holonomy ΦyðxÞ ¼H
AyðxÞdy has an x dependence. In order to extract a

spatially averaged polarization, which is what we calculate

QUANTIZED CHARGE POLARIZATION AS A MANY-BODY … PHYS. REV. X 13, 031005 (2023)

031005-17



microscopically using Resta’s formula below, we assume
Ex is a constant. Then the above term becomes

C
2π

Φy;av

Z
dxdtEx þ � � � : ð70Þ

Here,Φy;av ≔ ð1=LxÞ
R
dxdyAy is the average of the global

holonomies in the y direction. Thus the Chern number
contributes to the 1D polarization. The value of Φy;av

depends on the range of integration for x. If we assume
Ox ≤ x ≤ Lx þOx for someOx andΦyðxÞ is continuous in
this range, we can show that

Φy;av ¼ ϕLy

�
Lx

2
− ōx þOx

�
mod 2π: ð71Þ

Now note that there is also a contribution from the field
theory term Y ∧ dA:

Po;y

2π

Z
dxdydtY ∧ dA

¼ Po;y

2π

Z
dxdydtðYtB − YxEy þ YyExÞ

¼ Po;y

2π

I
dyYy

Z
dxdtEx þ � � �

¼ Po;yLy

Z
dxdtEx þ � � � : ð72Þ

Note that due to a normalization convention,
H
dyYy ¼

2πLy. The remaining terms in the field theory do not
contribute. Thus we naively expect that the 1D polarization
should be equal to

−PO;x ¼
Cϕ
2π

Ly

�
Lx

2
− ōx þOx

�
þ LyPo;y þ K0 mod 1;

ð73Þ

where we assume K is a constant that is independent of Lx
and Ly. We use the subscript O in PO;x to specify the
dependence of this quantity on Ox. As we now discuss, to
match Eq. (73) to a numerical calculation, we demand that
Ox be the origin of coordinates in that calculation.
Numerically we compute the quantity PO;x using Resta’s

formula:

PO;x ¼
1

2π
arghΨjeið2π=LxÞ

P
j
jxc

†
j cj jΨi; ð74Þ

where jx is defined with respect to the origin O≡
ðOx;OyÞ, i.e., jx∈f−Ox;1−Ox;2−Ox;…;Lx−1−Oxg.
HereO refers to the point on the torus where the coordinate
is chosen to be (0, 0).

Empirically, we find that PO;x exactly obeys Eq. (73).
Let us take a square lattice with Lx ¼ 20, Ly ¼ 12, 13, and
Ox ¼ 0; 1

2
as an example. The constant in ϕ contribution

LyPo;y þ K0 for the two different Ly is plotted in Fig. 9.
Empirically we find that the difference of the two gives the
desired answer Po;y when

ox ¼ Ox þ
Lx

2
þ 1

2
mod 1: ð75Þ

The presence of the ðLx=2Þ þ 1
2
term may seem mysterious,

but we show why it should be present in the C ¼ 0
case below.
Consider PO;x for a square lattice with one orbital per

site and at full filling ν ¼ 1. We analytically calculate
PO;xjν¼1 using Resta’s formula:

PO;xjν¼1 ¼
X
r

jx
Lx

mod 1

¼ LxðLx − 1 − 2OxÞ
2

Ly

Lx
mod 1

¼ Ly

�
Lx

2
−
1

2
−Ox

�
mod 1: ð76Þ

The coefficient of Ly equals −Po;y. In this special case
Po;y just equals ox mod 1 (zero at a site, and 1=2 at a
plaquette center). By equating these two expressions for
Po;y, we get Eq. (75). We expect that when C ≠ 0, Eq. (75)

FIG. 9. Butterflies showing the constant in ϕ contribution
LyPo;y þ K0 of the 1D polarization PO;x, for different Ox and
Ly. Fixing Lx ¼ 20, the result depends only on the parity of Ly.
For a fixed O, Po;y is the difference between the ϕ ¼ 0 intercept
for Ly ¼ 13 and Ly ¼ 12. O and o satisfy the relation Eq. (75).
For Ox ¼ 1

2
only half of the period 0 < ϕ < 2π is plotted.
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will continue to hold, and we have verified this expectation
numerically.
The relationship between O and o is reminiscent of the

linear momentum calculation in which one has to shift
the gauge origin ō by ðLx=2; Ly=2Þ þ ð1

2
; 1
2
Þ relative to o in

order to obtain P⃗o. We have numerically checked that
Eq. (73) gives consistent answers for different gauge
choices and for different system sizes.

VI. CALCULATIONS FOR GENERAL M

We now generalize our charge response, linear momen-
tum, and 1D polarization calculations. We discuss M ¼ 2,
3, 4, 6 together, and assume that o can be at any HSP within
the unit cell. We keep the choice of unit cell Θ arbitrary.
We focus on the details that differ from those outlined
previously when M ¼ 4.
Recall that M0 is the order of the rotation symmetry

which preserves o, while M is the largest possible value of
M0 considering all possible HSPs o. For the computations
below we need theM0-fold rotation operator C̃M0;o� defined
so that ðC̃M0;o� ÞM0 ¼ 1.

A. So from pure disclination charge

We can use the operator C̃M0;o� to create a pure
disclination at the high symmetry point o� and calculate
its charge response. As previously discussed, the origin o
used to measure the Burgers vector of the disclination need
not be equal to o�. And by pure disclination, we mean that
b⃗o ≃ ð0; 0Þ. In this case the field theory predicts that

QW ¼ C
δΦW;o

2π
þΩWSo

2π
þ νðkþ nirreg;o;ΩÞ mod 1; ð77Þ

where k is an integer. Note that the field theory is only
sensitive to o and not o�; it cares only about the measured
value of the Burgers vector and not about how the defect
was created microscopically.
The computation of δΦW;o and thenSo is done according

to the procedure discussed in Sec. IV C. As we discussed
there, a crucial detail is the area of the irregular unit cell
at the center of the disclination, which we here call nirreg;o;Ω.
We include a subscript Ω because, in general, this
number also depends on the disclination angle Ω.
nirreg;o;Ω is defined as

nirreg;o;Ω ≡

8>><
>>:

ð1 − Ω
2πÞ if o is at the center

of the unit cell

0 otherwise:

ð78Þ

This can be intuitively understood as follows. If the origin
is at the center of the unit cell, the disclination construction
process would remove a fraction Ω=2π of the central unit

cell (i.e., MΩ=2π subcells). If o is not at the center of the
unit cell, then it must be at the boundary of the unit cell. In
this case, there is no irregular unit cell; thus nirreg;o;Ω ¼ 0.
Note that when M ¼ 2, 3, 4, we can always choose o to be
on the boundary of the unit cell, so that there are no
irregular unit cells. On the other hand, this definition of
nirreg;o;Ω is needed especially for 2π=6 disclinations when
M ¼ 6, because the only C6 symmetric points are at the
unit cell centers, so in any 2π=6 disclination there will
necessarily be an irregular unit cell.

1. Comments on definition of nirreg;o
In the discussion above we emphasize that nirreg;o;Ω

depends on the relative position between o and the unit
cellΘ, and not the absolute position of either. We can pick a
different unit cell Θ which changes QW and nW;o simulta-
neously, leaving So invariant. We discuss this in detail in
Appendix D.
An important general point is that our definitions of

nirreg;o;Ω (and a similar quantity nirreg;o;b⃗ defined in the
next section) are only sensitive to the value of M and not
to the actual fine structure of the microscopic lattice.
Conceptually, we can imagine tiling the plane with unit
cells (square for M ¼ 4, hexagonal for M ¼ 3, 6, and so
on), and the only constraint is that the centers and corners
of these unit cells need to be at appropriate high symmetry
points of the microscopic lattice. In particular, the tiling
does not have to match the structure of hopping or
interaction terms in the microscopic Hamiltonian. Then,
we note that the number of unit cells in any region W is a
property of the tiling alone. Similarly, we can apply a cut-
and-glue procedure on the infinite plane tiling to get a tiling
for a surface with a dislocation or disclination defect. Then
the quantities nirreg;o;Ω and nirreg;o;b⃗ are properties of this
defect tiling alone. As such, these are independent of
microscopic details of the Hamiltonian such as the dis-
tribution of sites and the hoppings between them. The fact
that our prescription depends on the tiling rather than
on microscopic details such as hopping and interaction
terms makes it readily generalizable beyond the nearest-
neighbor Hofstadter models that we have mainly studied in
this work.

B. P⃗o from dislocation charge

We next calculate P⃗o from the charge response of a
dislocation (assume Ω ¼ 0). If a defect has a nontrivial
Burgers vector b⃗, it will generally also have an irregular
unit cell. This irregular unit cell is triangular if M ¼ 2, 4
and quadrilateral if M ¼ 3, 6. In this case, we find that the
area which should be assigned to the irregular unit cell
depends on b⃗, so we use the notation nirreg;o;b⃗.
The results are shown in Table IV. They are derived by

matching the dislocation charge result with known values
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of P⃗o in the C ¼ 0 limit (see Appendix B) from the same
real space picture discussed in the previous section, when
M ¼ 4. The origin dependence of nirreg;o;b⃗ can also be
understood from field theory. In Sec. VII we argue that the
following general formula holds:

nirreg;oþv⃗;b⃗ ¼ nirreg;o;b⃗ − vxby þ vybx; ð79Þ

where ðbx; byÞ is the dislocation Burgers vector, and
ðvx; vyÞ is a fractionally quantized vector that shifts o to

another HSP. Additionally, if b⃗ ¼ ð0; 0Þ, then nirreg;o;b⃗ ¼ 0;

and if b⃗ → −b⃗, then nirreg;o;b⃗ → −nirreg;o;b⃗ mod 1. This
condition means that a dislocation-antidislocation pair
has a total unit cell number which is an integer.
With this information, we can write down the charge

response for a dislocation:

QW ¼ C
δΦW;o

2π
þ P⃗o · b⃗þ νðkþ nirreg;o;b⃗Þ mod 1: ð80Þ

This is the main equation that we use for calculations
involving P⃗o for M ¼ 2, 3, 4, 6. As an example,

we numerically calculate P⃗o in a Hofstadter model on
the honeycomb lattice with different choices of o, whose
site symmetry groups are Z2, Z3, and Z6. The raw data for
P⃗o are shown in Fig. 10. Again, we note that the exact
choice of unit cell does not affect our calculation of P⃗o
and So. We show this in Appendix D.
Note that in order to find P⃗o, it is enough to compute

dislocation charge with b⃗ ¼ ð1; 0Þ; ð0; 1Þ; this is why
Table IV explicitly contains these values of b⃗.
Nevertheless, our procedure to compute dislocation charge
applies for general choices of b⃗. The main observation is
that nirreg;o;b⃗ only depends on the equivalence class of b⃗
under the equivalence

b⃗ ≃ b⃗þ ½1 − Uð2π=M0Þ�Λ⃗; ð81Þ

where Λ⃗ is an integer vector and 2π=M0 is the minimal
rotation that preserves o. For example, nirreg;o;b⃗ is invariant

if b⃗ is rotated by the angle 2π=M0. Since any b⃗ is in the
same equivalence class as either (1, 0) or (0, 1), Table IV is
sufficient for computations with general b⃗.

FIG. 10. So and P⃗o in the honeycomb Hofstadter model. The site symmetry group is ZM0 , withM0 ¼ 6, 3, 2 for the MWPs fα; β; γg,
respectively.Sα;Sβ1 ;Pα;Pβ2 ;Pβ1 ;Pγ3;x are all calculated from the charge response [Eq. (82)] of suitable lattice defects (here we have

not shown So and P⃗o for all possible o but only some representative ones). The numerical calculations are done on an open disk with a
radius R ¼ 20. The defects are located at the center of the disk. The noisy features appear since the butterfly is numerically calculated on
a finite size system rather than analytically derived with an empirical formula as in Fig. 1. In the first three main Landu levels, Sα

quantize to f1
2
� 0.0002; 2� 0.004; 9

2
� 0.04g; other invariants in the first three main Landau levels have similar standard deviations.
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Combining Eqs. (77) and (80), the complete charge
response of disclination and dislocation defects with
arbitrary o, ΩW , and b⃗o is

QW ¼C
δΦW;o

2π
þΩWSo

2π
þ P⃗o · b⃗þ νðkþnirreg;o;Ω;b⃗Þ; ð82Þ

where the effective irregular unit cell number now depends
on both Ω and b⃗. For all the examples that we study,
we observe the relation

nirreg;o;Ω;b⃗ ¼ nirreg;o;Ω;ð0;0Þ þ nirreg;o;0;b⃗ mod 1: ð83Þ

Here nirreg;o;Ω;ð0;0Þ; nirreg;o;0;b⃗ are the quantities we previ-
ously referred to as nirreg;o;Ω; nirreg;o;b⃗, respectively. This
relation matches our expectation from the field theory, in
which we can imagine separating a defect with parameters
ðb⃗;ΩÞ into two defects with parameters ½ð0; 0Þ;Ω�; ðb⃗; 0Þ
without changing the effective number of unit cells mod 1.

C. So from angular momentum

We denote as lo the angular momentum with o as the
rotation center. The many-body ground state on a clean
torus with m total flux quanta is jΨi. lo is defined by

C̃M;ojΨi ¼ eiloð2π=MÞjΨi: ð84Þ

Exactly as for M ¼ 4, we find that

lo ¼
Cm2

2
þ Somþ KðC;LÞ mod M: ð85Þ

The above equation works for any M ¼ 2, 3, 4, 6. In this
work we have also numerically calculated lα in the
honeycomb lattice, choosing o ¼ α. We extract the same
Sα from the disclination charge response (see Fig. 10). This
verifies the prediction that So can be measured using an
angular momentum dual response.
One can also perform a partial rotation to extract So.

The details (specialized to M ¼ 4) are in Ref. [33].

D. P⃗o from linear momentum

The procedure to calculate a linear momentum
ðpλ;x; pλ;yÞ and, hence, P⃗o on the square lattice generalizes
straightforwardly to the case where M ¼ 2, 3, 6. For M
even we can define T̃y precisely as for M ¼ 4. But for
M ¼ 3, we find that a slight modification is required in the
definition of λ:

T̃y ¼

8>>><
>>>:

T̂ye
i
P

j
−ðπm=LyÞc†j cj jx < ōx

T̂ye
i
P

j
ðπm=LyÞc†j cj jx > ōx

T̂ye
i
P

j
ðōx−jxÞðπm=LyÞc†j cj ōx − 1 < jx < ōx þ 1:

ð86Þ

This can be seen as a generalization of Eq. (59) which
smooths out the gauge transformation around the gauge
origin ō. The relevant equations for M ¼ 3 are identical to
the ones for M ¼ 2, 4:

hΨjT̃y jΨi ≔ e−γþi2πpλ;y ; ð87Þ

pλ;y ¼ −Po;ymþ Ky mod 1: ð88Þ

We have numerically checked that on the honeycomb
lattice we extract the same P⃗o as with the other methods
(see Fig. 10), assuming Eq. (61). Since Po;y is quantized
mod 3, the minus sign is crucial in this case, unlike in the
case M ¼ 2, 4, 6.
On the other hand, the partial translation calculation does

not generalize to the case where o is a C3 symmetric HSP.
This is because we appear to need the region D for partial
translations to be mirror symmetric along the cycle with
holonomy eiπm. But this is not possible for C3 symmetric
points. It is not clear whether a mirror symmetric region D
is essential for our calculation to work, or whether an
alternative method might work in this case; we leave this
question for future study.

E. P⃗o from 1D polarization

Finally, we can dimensionally reduce our 2D space
along y, and compute a 1D polarization Px in the x
direction. For M ¼ 4 we obtain an empirical formula,
Eq. (73), which matches the field theory prediction. We
rewrite it here:

−PO;x ¼
Cϕ
2π

Ly

�
Lx

2
− ōx þOx

�
þ LyPo;y þ K0 mod 1;

ð89Þ

where ō is the gauge origin, and O is the origin in Resta’s
formula, Eq. (26).
This equation turns out to also work for M ¼ 2, 3, 6. As

an example, in the honeycomb lattice, the position of the
sites are

i ¼
�
ix −

1

3
−Ox; iy −

1

3
−Oy

�
;

j ¼
�
jx þ

1

3
−Ox; jy þ

1

3
−Oy

�
: ð90Þ

i and j are at the β1 and β2 MWPs of the C6 unit cell,
respectively (see Fig. 2 for the unit cell convention), and
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ix; jx ∈ f0; 1;…; Lx − 1g, iy; jy ∈ f0; 1;…; Ly − 1g.
Similar to the linear momentum calculation, in order
to get a result for P⃗o which is consistent with the known
C ¼ 0 result, we need to choose Ox ¼ ox þ Lx

2
þ 1

2
mod 1.

VII. ORIGIN DEPENDENCE OF So;P⃗o

In this section we sketch how to derive the formulas
in Table I that express Soþv⃗; P⃗oþv⃗ in terms of So; P⃗o,
and κ. v⃗ is a quantized vector (perhaps fractional) such
that o; oþ v⃗ are both symmetric under M-fold rotations.
These relationships were commented on previously in
Secs. IV–VI. We leave the technical computations to
Appendix G. Background details and definitions regarding
the response theory which we use in this section are found
in Appendix F.
Let A be the full vector potential for the system (meaning

that dA ¼ F measures the total magnetic field). The full
Lagrangian which involves A is

L ¼ C
4π

A ∧ dAþ LA;o; ð91Þ

LA;o ≔
1

2π
A ∧ ðSodωþ P⃗o · T⃗ þ κAXYÞ: ð92Þ

Here dA is the total U(1) flux. The total U(1) charge
and flux in any region should physically be invariant under
a shift of origin, and therefore the contribution from the
term with C to any response property remains invariant
upon shifting the origin. Hence we only consider the
transformation of the remaining terms as given by LA;o.
Crucially, in LA;o the coefficient of the term with
ð1=2πÞA ∧ AXY is κ instead of ν, because the difference,
given by ðCϕ=4π2ÞA ∧ AXY, is now contained in the
term ðC=4πÞA ∧ dA.
To understand the transformation of LA;o, it will be most

convenient to use the discrete simplicial formulation of the
response theory, as developed in Ref. [17]; in that case,
the above wedge product should be interpreted as a cup
product, but we stick to wedge product notation below.
First note that a space group operation which performs a
rotation about o and then a translation takes the form
g ¼ ðr; hÞ, where r ∈ Z2; h ∈ ZM. The same group
element with respect to the shifted origin o0 ¼ oþ v⃗ takes
the form

g0 ¼ ðv⃗; 0Þðr; hÞð−v⃗; 0Þ:

Since the crystalline gauge fields encode some configura-
tion of group elements on a manifold, a shift of origin by a
fractional lattice vector v⃗ can be viewed as a “fractional”
gauge transformation of the crystalline gauge fields. In
particular, because this is not a true gauge transformation,

the crystalline gauge fluxes also get redefined, leading to a
transformation of the response coefficients.
In the simplicial formulation, if the gauge field is flat,

the crystalline gauge fluxes are defined by the terms
dω; AXY; ½1 −Uð2π=MÞ�−1dR⃗. (Note that in the discrete
case we can equivalently write T⃗ as dR⃗; we do this for the
rest of the section [47].) Under a shift of origin, these fluxes
transform into new quantities dω0; ½1 − Uð2π=MÞ�−1dR⃗0;
A0
XY . In Appendix G we show that

dω0 ¼ dω; ð93Þ

dR⃗0 ¼ dR⃗þ τ⃗Mdω; ð94Þ

A0
XY ¼ AXY þ ρMdωþ μ⃗M · dR⃗; ð95Þ

where τ⃗M; ρM; μ⃗M depend on v⃗. This transforms the
Lagrangian as follows:

LA;o0 ¼
1

2π
A ∧ ðSo0dω0 þ P⃗o0 · dR⃗

0 þ κ0A0
XYÞ: ð96Þ

Assuming a fixed choice of unit cell, the total charge
measured in any given region W should be the same for
either choice of origin. Thus,

Z
W
ðSodωþ P⃗o · dR⃗þ κAXYÞ

¼
Z
W
ðSo0dω0 þPo0 · dR⃗

0 þ κ0A0
XYÞ: ð97Þ

We now use Eqs. (93)–(95), and compare coefficients. This
gives us

κ ¼ κ0; ð98Þ

P⃗o ¼ P⃗o0−v⃗ ¼ P⃗o0 þ κ0μ⃗M; ð99Þ

So ¼ So0−v⃗ ¼ So0 þ P⃗o0 · τ⃗M þ κ0ρM: ð100Þ

These equations finally give the results in Table I: the
calculation reduces to showing Eqs. (93)–(95), and finding
ρM; μ⃗M; τ⃗M in terms of v⃗. We perform these calculations
in Appendix G; to obtain values for ρM¼2;4 which are
consistent with results for Chern number 0, we need to
make an assumption on the functional form of AXY , which
we explain there. The results are contained in Eq. (G13)
(τ⃗M), Eq. (G27) (ρM), and in Sec. G 0 3 (μ⃗M).
Note that Eq. (G13) implies

dR⃗0 ¼ dR⃗þM½1 −Uð2π=MÞ�dω: ð101Þ
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This is in fact equivalent to Eq. (28), which reads

b⃗oþv⃗ ¼ b⃗o þ ½1 − UðΩÞ�v⃗: ð102Þ

The equivalence can be shown as follows. First let us
identify dR⃗0 ¼ 2πb⃗oþv⃗, dR⃗ ¼ 2πb⃗o, dω ¼ Ω ¼ ð2πk=MÞ.
Then Eq. (101) becomes

b⃗oþv⃗ ¼ b⃗o þ k½1 −Uð2π=MÞ�v⃗: ð103Þ

To prove the equivalence, we need to show that the two
expressions for b⃗oþv⃗ are in the same equivalence class:

½1−Uð2πk=MÞ�v⃗¼k½1−Uð2π=MÞ�v⃗þ½1−Uð2π=MÞ�Λ⃗;
ð104Þ

for some Λ⃗ ∈ Z2. But this follows from the fact that
½1 − Uð2π=MÞ�v⃗ is always an integer vector.
As a check on Table I, we can see that the values of So

and P⃗o for zero Chern number given in Appendix B follow
the equations in the table. To check Table I when C ≠ 0,
we consider an example with C6 rotational symmetry in
Appendix G 4.
In this derivation we make the crucial assumption

that F is invariant under a shift of origin. Note that F ¼
dδAþ ðϕ=2πÞAXY , where δA is the deviation of the U(1)
gauge field from its background value. F can indeed be
made invariant under the transformation of Eq. (95),
if we take

δA → δA −
ϕ

2π
ðρMωþ μ⃗M · R⃗Þ: ð105Þ

Note that dδA only changes around a defect, where dω
and dR⃗ can be nonzero. The transformations of dδA; AXY
indicate that our conventions for “background flux” and
“excess flux” in each plaquette (measured by ϕAXY and
dδA, respectively) change by equal and opposite amounts.
But the total flux in each plaquette is invariant.

A. Transformation of P⃗o

Although ρM; τ⃗M depend sensitively on M, our calcu-
lations show that

μ⃗M ¼ ðvy;−vxÞ;

irrespective of the choice of M. This implies that

P⃗oþv⃗ ¼ P⃗o þ κð−vy; vxÞ; ð106Þ

for M ∈ 2, 3, 4, 6.

The fact that P⃗o transforms proportionally to κ has an
important consequence. If we consider two Hamiltonians
(1) and (2), which can, for example, be the end points of
some path in parameter space, we may naively imagine

differences of the form P⃗ð2Þ
o − P⃗ð1Þ

o to be completely
independent of o. But for P⃗o as defined in this work, this
is true only if κ2 ¼ κ1. Indeed, Eq. (106) implies that

P⃗ð2Þ
oþv⃗ − P⃗ð1Þ

oþv⃗ ¼ P⃗ð2Þ
o − P⃗ð1Þ

o þ ðκ2 − κ1Þð−vy;vxÞ: ð107Þ

Thus, in order to measure an origin-independent quantity
through differences of P⃗o, we must ensure that the initial
and final values of κ are equal.

B. Formula for n
irreg;o+ v⃗;⃗b

An interesting corollary of these results is that they allow
us to determine the correct assignments of nirreg;o;b⃗ for a

fixed b⃗, as we vary o. On an infinite plane lattice with
only dislocations, we can set ω ¼ 0, and so Eq. (95)
becomes

A0
XY ¼ AXY þ μ⃗M · dR⃗: ð108Þ

With μ⃗M as above, we integrate over a region W surround-
ing the dislocation, and reduce mod 1 to obtain

nirreg;oþv⃗;b⃗ ¼ nirreg;o;b⃗ − vxby þ vybx mod 1: ð109Þ

Once nirreg;o;b⃗ is known for a single origin o, the values of
nirreg;oþv⃗;b⃗ can be determined using Eq. (109), as we have
listed in Table IV. This nontrivial transformation rule is
confirmed by our numerical results and the analytical
results at C ¼ 0.

VIII. DISCUSSION

In this paper we describe several complementary many-
body approaches to measure the quantized charge polari-
zation P⃗o and the discrete shift So in gapped topological
phases, including those with a nonzero Chern number and
magnetic field. We extract P⃗o by studying the fractional
charge bound to dislocations, the linear momentum bound
to flux, and from an effective 1D polarization response. We
obtain explicit numerical results for the spinless Hofstadter
model with CM rotational symmetry, for M ¼ 2, 3, 4, 6,
by matching our microscopic calculations to field theory
predictions. We also obtain a theoretical understanding of
the origin dependence of P⃗o and the discrete shift So.
Together with the Chern number C and κ≡ ν − Cϕ=2π,
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the quadruple fC;So; P⃗o; κg completely specifies the
quantized charge response in systems with charge con-
servation, magnetic translation, and point group rotation
symmetry.
An important issue we wish to emphasize is how to

understand So; P⃗o as invariants describing a topological
phase. In the case of an origin-independent invariant such
as C or κ, knowing that the invariant differs between two
systems is enough to distinguish them as topological
phases. However, in order to distinguish two systems based
on their respective values of So or P⃗o, it is essential to first
fix a common origin o for both systems, and then compare
the various numbers. This is because two systems are in the
same phase only if they can be adiabatically connected
to each other without closing the gap or breaking the
symmetry, and while keeping their common origin o fixed.
Without fixing this common origin, we cannot meaning-
fully define the notion of adiabatic equivalence between
two systems.
In this paper we have focused on the quantization of P⃗o

due to nontrivial point group symmetry, M> 1. In the case
where we do not have point group symmetry, our methods
allow us to define an intrinsically two-dimensional many-
body polarization P⃗o for any real-space origin o, even
when C ≠ 0. It is an interesting question to understand the
relationship between our definition of polarization for
C ≠ 0 and the one based on free fermion band theory
proposed by Coh and Vanderbilt [24].
Since So and P⃗o are topological invariants that depend

on crystalline symmetry, their values cease to be quantized
if we break the crystalline symmetry by adding disorder. In
particular, if we introduce on-site or bond disorder which
breaks the rotational symmetry, So is no longer quantized.
If the disorder breaks either the translational or the rota-
tional symmetry, P⃗o is no longer quantized. Nevertheless,
the disorder averages of So; P⃗o remain quantized to their
respective clean values, although their standard deviations
increase with an increase in disorder strength. This was
shown numerically for So in Ref. [33] and is expected to
hold for P⃗o as well.
Next we comment on some unresolved issues in this

work. In both the linear momentum and 1D polarization
calculations, we need to pick a distinguished point and
relate it to o. For the linear momentum calculation, ō is the
gauge origin, and in the 1D polarization calculation, O
determines the coordinates for each site in Resta’s formula,
Eq. (26). In both calculations, we extract P⃗o correctly
only if o satisfies a certain relation with ō or O. In the
linear momentum calculation, we also find that if

T̃y ¼ T̂ye
i
P

j
λjc

†
j cj , for a fixed ō there is only one choice

of λ that gives a quantized Po;y throughout the Hofstadter
butterfly. These observations are completely empirical; we
leave a full explanation for future work.

For our linear momentum calculations we use an
approximate translation operator and thus have to work
with its expectation values rather than exact eigenvalues. It
would be useful to compute the linear momentum exactly
by incorporating a flux insertion operator that makes the
translation symmetry exact.
Additionally, under a shift of origin, the field theory does

not fix a unique transformation rule for So; P⃗o when
M ¼ 2, 4; instead it gives a few different possibilities as we
explain in detail in Appendix G. To fix the transformation
consistent with numerics and physical expectations, we
need to make some additional choices in the field theory
that are allowed but do not have an obvious physical
interpretation.
We close by pointing out some related open questions.

Previously, Ref. [24] proposed a way to define the charge
polarization as a single-particle Berry phase in momentum
space when C ≠ 0, by picking a suitable origin for the
Brillouin zone. It would be useful to understand whether
this choice can be related to the ones we make in defining
P⃗o using the dislocation charge and the linear momentum.
We have not commented on how the invariants So; P⃗o

manifest at corners and edges of the system. The relation
between disclination charge and fractional corner charge
when C ¼ 0 has been discussed in several places; see, e.g.,
Ref. [49]. References [20,24] specifically discussed an
edge charge interpretation of the polarization, Ref. [24] did
so in the context of Chern insulators, and Ref. [20] did so
from the perspective of a boundary Luttinger theorem when
C ¼ 0. It would be interesting to understand the corner and
edge charges in the context of our results, which apply for
general C and in the presence of a magnetic field.
Another interesting direction is to study the charge

polarization in fractional Chern insulators. In fact,
Refs. [17,18] use field theory to predict that this can indeed
be defined systematically and that its quantized fractional
values are sensitive to M as well as to the anyon content of
the theory. In such topologically ordered phases, the charge
polarization can encode a novel, nontrivial form of sym-
metry fractionalization which was called the “discrete
torsion vector” in Refs. [17,18].
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APPENDIX A: REVIEW

This appendix has three parts. First, we introduce
some standard definitions of quantities on a clean lattice.
Next, we introduce dislocation and disclination defects,
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and define the disclination angle and dislocation Burgers
vector. After that, we discuss the basic properties of So and
P⃗o from the perspective of disclination and dislocation
charge, respectively.

1. Definitions and background

a. Maximal Wyckoff positions

The definitions in this section are taken from Ref. [50].
Fix an origin o. Suppose we are given a set of points in the
infinite plane which form a lattice with spatial symmetry
group Gspace. On this lattice (assumed to be without any
defects), we define a Hamiltonian Hclean with translation
operators T̂x; T̂y corresponding to translations by the
elementary lattice vectors, and additional point group
symmetry operators, defined with respect to o. The full
symmetry group G of Hclean can contain operations in
Gspace as well as internal symmetry operations.
For any point p in the plane, the site symmetry groupGp

is the subgroup of operations in Gspace that leaves p
invariant. Two points p, p0 are said to have site symmetry
groups that are conjugate to each other ifGp0 ¼ gGpg−1 for
some g ∈ Gspace. The Wyckoff position containing p is the
set of all points whose site symmetry groups are conjugate
to Gp. For example, every point p0 obtained from p by a
lattice translation or rotation is in the same Wyckoff
position as p. Furthermore, every point with a trivial site
symmetry group belongs to a single Wyckoff position.
p is in a maximalWyckoff position (MWP) if Gp is not a

proper subgroup of Gp0 for any other site p0. In Fig. 2, we
show the MWPs for the wallpaper groups p2; p3; p4; p6.
Note that when Gspace ¼ p4, the high symmetry point γi
has site symmetry group Gγ ≅ Z2 but is still in a MWP,
even though there are other points with site symmetry
group Z4. This is because there is no point with site
symmetry group Z4 that contains Gγ . We always choose o
to belong to a MWP.
It is important to distinguish a MWP, which is a

collection of points, from a single high symmetry point
of a unit cell. Our notation for HSPs is βi, γi, where β, γ
denotes the MWP and i runs over the corresponding HSPs
which are inequivalent under lattice translations.

b. Unit cells and subcells

A unit cell Θ for the given lattice corresponds to a
division of lattice points into elementary repeating units.
Starting with a clean lattice on the infinite plane, pick a
HSP α for which the site symmetry group contains the full
point group. (This choice may not be unique.) Then define
α and its lattice translates as the centers of each unit cell.
This is the convention used in Fig. 2. Now consider any
other point q. If q is equidistant from n > 1 unit cell
centers, q is assigned to be on the common boundary of n
unit cells centered around α. If q is closest to one particular

α point, we say that q lies in the interior of the unit cell.
By convention, the corners of the unit cell are labeled as β
(or βi, if there are multiple HSPs in the same MWP);
any other points on the unit cell boundary are denoted
γ; δ;… as required.
Note that this definition does not fully determine the

shape of the unit cell; we only require the subcells to rotate
into each other, and there is still a lot of freedom in drawing
the exact boundaries.
Now let us specialize to the case where Hclean has an

M-fold rotational symmetry. We can subdivide an M-fold
rotationally symmetric unit cell into M subcells. Figure 2
illustrates such a division. We only require that subcells
rotate into each other under rotations about α. We have no
constraint on the shape of the subcells: in Fig. 11 we show
two equally valid shapes. Therefore, although the vertices
of each subcell are fixed by our definition of the unit cell;
the boundaries are otherwise arbitrary.

c. Parameters in Hclean

In our numerics, we consider Hofstadter models, i.e.,
free fermion Hamiltonians of the form

Hclean ¼ −
X
ij

tijc
†
i cj þ H:c:; ðA1Þ

where i, j are site indices and the hopping terms tij ¼
te−iAclean;ij depend on a background vector potential Aclean.
We mainly take tij ¼ 1 if i, j are nearest neighbors,
and tij ¼ 0 otherwise. However, in Appendix H we also
consider the Hofstadter model with next-neighbor hopping
terms, as an illustration.
For any loop l, the enclosed flux equals

argðQhiji∈l tijÞ ¼
P

hiji∈l Aclean;ij mod 2π, where the
sum is taken counterclockwise. We assume that Hclean

has the symmetry Gf ¼ Uð1Þf ×ϕ Gspace, where Uð1Þf
denotes the group U(1) whose order 2 element is the
fermion parity operation. This means that the total flux in
each unit cell equals ϕ mod 2π.
If Hclean is defined on a torus with side lengths L1, L2

instead of the infinite plane, the Z2 translation symmetry is
broken down to ZL1

× ZL2
if there is no flux; if there is

FIG. 11. Two representative ways of dividing a C4 unit cell into
subcells.
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flux, the symmetry is still broken down to a subgroup but
the details are more complicated.
As we explain in the main text, we demand that the

magnetic field is specified everywhere within a unit cell.
This requirement goes beyond the specification of Hclean
and of the symmetry data. We also note (see in particular
Appendix H) that our numerical methods are expected to
generalize to arbitrary gapped systems with next-neighbor
hopping and interaction terms.

d. Definition of ν and κ

A lattice system with U(1) charge conservation sym-
metry has a filling per unit cell given by Neηu:c:=Norb.
where Ne is the number of electrons, Norb is the number of
orbitals, and ηu:c: is the number of orbitals per unit cell. On
a clean torus, this reduces to ν ≔ ðNe=Nu:c:Þ, where Nu:c: is
the total number of unit cells. If the system has a unique,
gapped ground state and has Chern number C, ν and C
are related by Eq. (2), which also defines the integer κ.
Equation (2) can be derived, for example, using the
following argument [18,51].
The quantity e2πiν is by definition the Aharonov-Bohm

phase corresponding to the adiabatic transport of a 2π flux
around a unit cell, which has flux ϕ. Now the braiding
phase of a flux ϕ1 around another flux ϕ2 can alternatively
be expressed in terms of the Hall conductance σH; it equals
eiϕ1ϕ2σH ¼ eiϕ1ϕ2ðC=2πÞ. Taking a 2π flux around a unit cell
corresponds to setting ϕ1 ¼ 2π;ϕ2 ¼ ϕ. Thus the same
Aharonov-Bohm phase can be expressed in two ways:

ei2πν ¼ eiϕC ðA2Þ

⇒ ν ¼ C
ϕ

2π
mod 1 ðA3Þ

⇒ ν ¼ C
ϕ

2π
þ κ; ðA4Þ

where κ ∈ Z. If C ¼ 0, ν ¼ κ.
In the limit of small flux per unit cell, 0 ≤ Cϕ=2π ≤ 1, κ

has a simple interpretation. When κ ¼ 0, a state with Chern
number C corresponds to a system of C filled Landau
levels. Therefore, κ is simply the deviation of the total
filling from the Landau level limit. In a system with
ϕ ¼ 2πp=q, where p, q are coprime, the filling on a torus
takes the form ν ¼ r=q for some integer r. Then Eq. (2) can
be written as a Diophantine equation r ¼ qκ þ pC for the
integers C, κ. In the Hofstadter model it can further be
shown that jCj ≤ q=2. This Diophantine equation is often
used in the study of the Hofstadter model.
Finally, suppose we place the system on a closed

manifold with lattice defects. This could, for example,
be the surface of a cube, which has eight corners, each
being a disclination with disclination angle π=2. In this
case, the actual filling per unit cell differs from ν. In fact,

the difference is proportional to the discrete shift, as
discussed in Ref. [33].

2. Origin dependence of b⃗o
Here we prove Eq. (28) in the main text. We define a Z2

translation gauge field R⃗ and a ZM rotation gauge field ω
(see Appendix F for a detailed definition). The holonomy
of ðR⃗;ωÞ around a defect equals some space group element
which we denote as ðb⃗o;ΩÞ, with b⃗o ∈ Z2;MΩ=2π ∈ ZM.
b⃗o and Ω encode the dislocation Burgers vector and the
disclination angle of each defect. We assume that the
starting point of the loop is an integer vector away from
o. Now suppose we choose a different starting point for the
loop o0 ¼ oþ v⃗, where v⃗ may be fractional. We wish to
relate b⃗o0 to b⃗o.
The group element which describes the same defect but

with respect to the new origin o0 is obtained from ðbo;ΩÞ by
conjugating with the translation ðv⃗; 0Þ:

ðv⃗; 0Þðb⃗o;ΩÞð−v⃗; 0Þ ¼ ½b⃗o þ v⃗ −UðΩÞv⃗;Ω�: ðA5Þ

Here UðΩÞ is the rotation matrix with angle Ω. The above
result follows from the multiplication law for the space
group. This group element must give the holonomy of R⃗;ω
with respect to a loop starting at o0. Thus we find that

b⃗o0 ¼ b⃗o þ v⃗ −UðΩÞv⃗; ðA6Þ

as claimed.

3. Properties of So;P⃗o

The results below were first obtained in Refs. [17,33],
and are compiled here for completeness. Suppose the
rotation point group of the system is ZM, and consider
an origin o whose site symmetry group is ZM0 . The
topological response theory which defines So; P⃗o is
reviewed in Appendix F. Although the quantization con-
ditions are derived using group cohomology arguments that
are mathematically involved, the following intuition is
enough to understand them. If a lattice defect has discli-
nation angle Ω and Burgers vector b⃗o, the total charge at
the defect is a sum of various independent contributions
from the field theory, Eq. (13). In particular, the term
ðSo=2πÞA ∧ dω assigns this defect a fractional charge
SoðΩ=2πÞ, while the term ðP⃗o=2πÞ · A ∧ T⃗ assigns the
defect a fractional charge P⃗o · b⃗o.
First, we argue that So is either an integer or a half-

integer, and it is defined modulo M0. Note that the term
ðSo=2πÞA ∧ dω assigns U(1) charge So=M to a defect
with disclination angle 2π=M and zero Burgers vector. On a
closed spatial manifold of genus g, the total charge assigned
by this term equals ðSo=2πÞ

R
dω ¼ 2Soð1 − gÞ. This must
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be an integer, for each g, irrespective of the other terms in
the response theory. Therefore, 2So must be an integer.
Now, the charge at any defect can be changed by an

integer through local operators which add a fermion at the
defect. Therefore, the topological terms ðSo=2πÞA ∧ dω
and ðSo þM0=2πÞA ∧ dω, which assign charge So=M0
and ðSo=M0Þ þ 1 to an elementary 2π=M0 disclination,
are topologically equivalent (in fact, we can show that
their difference does not contribute to the partition
function on a closed manifold). This leads to the relation
So ≃So þM0.
The arguments given in Ref. [33] further show that if

the generator of rotations at o satisfies C̃M0
M0;o ¼ þ1, there

is a relation

So ¼
C
2

mod 1: ðA7Þ

Thus, S is an integer or a half-integer according as C is
even or odd. In particular, once we fix o and the Chern
number, So can only take one of M0 distinct values.
Next, we explain the quantization of P⃗o, which turns

out to be very sensitive to M0. Consider a lattice defect
with parameters ðb⃗o;ΩÞ. The response theory predicts
that the fractional charge at such a defect receives a
contribution

P⃗o · b⃗o mod 1

from the term with P⃗o. Let us shift the origin by a lattice
vector Λ⃗. This takes b⃗o → b⃗o þ Λ⃗ −UðΩÞΛ⃗. The charge at
the defect with respect to the new origin is

P⃗o · ½b⃗o þ Λ⃗ − UðΩÞΛ⃗� mod 1:

For the theory to be consistent under a shift of origin, the
above quantities must agree mod 1; i.e.,

P⃗o · ½Λ⃗ − UðΩÞΛ⃗� ¼ 0 mod 1: ðA8Þ

We can now take the minimal allowed disclination angle
Ω ¼ ð2π=M0Þ, and obtain the desired quantization:

P⃗o ·

�
Λ⃗ −U

�
2π

M0

�
Λ⃗
	
¼ 0 mod 1: ðA9Þ

The distinct choices of P⃗o compatible with this
condition form a group which we denote KM0 . Using
the rotation matrices given in Table II, we show below
that P⃗o is a nontrivial topological invariant only when
M0 ¼ 2, 3, 4. The general parametrization for P⃗o is given
in Eq. (10).

a. Deriving the quantization of P⃗o

The matrix representation of Uð2π=M0Þ for different M0
(chosen to be consistent with the coordinate axis definitions
in Fig. 2) is given in Table II.
When M0 ¼ 2, Eq. (A9) gives

2Po;xΛx þ 2Po;yΛy ¼ 0 mod 1; ðA10Þ

for any Λx, Λy. Therefore, we setPo;x ¼ ðPo;x=2Þ;Po;y ¼
ðPo;y=2Þ, where Po;x;Po;y are integers.
When M0 ¼ 3, Eq. (A9) gives after simplification:

Po;x ¼ Po;y ¼ −2Po;x mod 1; ðA11Þ

implying that we can set P⃗o ¼ ðPo=3Þð1; 2Þ for some
integer Po, with Po ≃Po þ 3.
When M0 ¼ 4, Eq. (A9) gives after simplification:

Po;x ¼ Po;y ¼ −Po;y mod 1; ðA12Þ

implying that we can set P⃗ ¼ ðPo=2Þð1; 1Þ for some
integer Po, with Po ≃Po þ 2.
When M0 ¼ 6, Eq. (A9) gives after simplification:

Po;x ¼ Po;y ¼ 0 mod 1; ðA13Þ

implying that P⃗o must be an integer vector and is therefore
trivial.

APPENDIX B: CALCULATION OF P⃗o
AND So WHEN C= 0

1. P⃗o

Here we show how to calculate P⃗o in the limit of
zero Chern number, where the system can be adiabatically
connected to an insulator in which the charge density is a sum
of δ functions at themaximalWyckoff positions i ¼ α, β, γ, δ.
The charge at these points is always an integer, of the formNi.
In this limit, the polarization P⃗o is related to the dipole
moment P⃗o ≔

P
j∈Θ Qjr⃗j mod Z2, whereΘ is the unit cell,

and r⃗j is a representative position vector for the point j.

Next we relate P⃗o to the desired quantity P⃗o: we
show that

ðPo;x;Po;yÞ ¼ ðPo;y;−Po;xÞ mod Z2: ðB1Þ
This is true irrespective of any rotational symmetries. The
argument is as follows (it is adapted from statements in
Ref. [20], although our result differs from theirs by a sign).
We consider a clean lattice in which the vector potential
satisfies At ¼ 0, and the translation gauge fields have
components satisfying the “natural” choice:

Xx ¼ Yy ¼ 1; Xy ¼ Yx ¼ 0
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[implying that
R r⃗f
r⃗i
ðXx; YyÞ ¼ r⃗f − r⃗i]. We set ω ¼ 0 for

convenience and assume that

L ¼ C
4π

A ∧ dAþ P⃗o

2π
· A ∧ dR⃗þ νA ∧ AXY;

neglecting all other terms. With the above assumptions,
L can be expanded as follows:

L¼ C
4π

ð−Ax∂tAyþAy∂tAxÞ−
Po;x

2π
∂tAyþ

Po;y

2π
∂tAx: ðB2Þ

Therefore the expression for the current j is

j ¼
�
δL
δAx

;
δL
δAy

�

¼ 1

2π
∂tð−Po;y;Po;xÞ þ

C
2π

ð−Ex; EyÞ; ðB3Þ

where Ex, Ey are the electric field components. But
when C ¼ 0, we can also write (after picking a suitable
normalization)

j ¼ 1

2π
∂tP⃗o: ðB4Þ

Comparing the equations for j then gives Eq. (3). The
above argument holds on the infinite plane or the torus,
with and without rotational symmetry.
Below we consider M ¼ 2, 3, 4 separately; for M ¼ 6,

P⃗o ≃ ð0; 0Þ. We first determine P⃗o as a dipole moment, and
then find the corresponding P⃗o.
M ¼ 2: Using Fig. 2 as reference, we find that,

modulo 1,

P⃗α ¼
1

2
ðNβ þ Nγ; Nβ þ NδÞ;

P⃗β ¼
1

2
ðNα þ Nδ; Nα þ NγÞ;

P⃗γ ¼
1

2
ðNα þ Nδ; Nβ þ NδÞ;

P⃗δ ¼
1

2
ðNβ þ Nγ; Nα þ NγÞ: ðB5Þ

This implies that, modulo 1,

P⃗α ¼
1

2
ðNβ þ Nδ; Nβ þ NγÞ;

P⃗β ¼
1

2
ðNα þ Nγ; Nα þ NδÞ;

P⃗γ ¼
1

2
ðNβ þ Nδ; Nα þ NδÞ;

P⃗δ ¼
1

2
ðNα þ Nγ; Nβ þ NγÞ: ðB6Þ

M ¼ 3: Figure 2 shows that, modulo 1,

P⃗α ¼
1

3
ðNβ þ 2Nγ; Nβ þ 2NγÞ;

P⃗β ¼
1

3
ðNγ þ 2Nα; Nγ þ 2NαÞ;

P⃗γ ¼
1

3
ðNα þ 2Nβ; Nα þ 2NβÞ: ðB7Þ

This implies that, modulo 1,

P⃗α ¼
1

3
ðNβ þ 2Nγ; 2Nβ þ NγÞ;

P⃗β ¼
1

3
ðNγ þ 2Nα; 2Nγ þ NαÞ;

P⃗γ ¼
1

3
ðNα þ 2Nβ; 2Nα þ NβÞ: ðB8Þ

Since by convention P⃗o ¼ Po
3
ð1; 2Þ mod 1, the value of

Po can be read off from the x component of the above
equations.
M ¼ 4: Figure 2 shows that, modulo 1,

P⃗α ¼
Nβ þ Nγ

2
ð1; 1Þ;

P⃗β ¼
Nα þ Nγ

2
ð1; 1Þ: ðB9Þ

In this case, P⃗o¼ P⃗o mod 1, andPαðβÞ ¼NβðαÞ þNγ mod 2.
The polarization at the points γ1, γ2 with C2 symmetry
can be obtained from the above M ¼ 2 results by taking
γ2 ¼ γ, γ1 ¼ δ, and Nγ ¼ Nδ.

2. So

The calculation of So in a system withM-fold rotational
symmetry proceeds by constructing a disclination with
disclination angle 2π=M at o and measuring the fractional
charge QW in a region W around the disclination. When
C ¼ 0 we can consider the fully filled limit in which the
charge at any point in the MWPs i ¼ α, β, γ, δ is equal to
Ni. Then, by working out the different cases, we find that

So ¼ No mod M; ðB10Þ

for o ¼ α, β, γ, δ.

3. Argument that So is independent of o�

Here we use a square lattice calculation with C ¼ 0 as an
example to argue that So does not depend on the origin o�
used to construct the disclination, but only on the point o
used to measure the dislocation Burgers vector. Say we
want to prove that Sβ is independent of the origin. We
consider o� ¼ β and o� ¼ α separately and construct two
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different Ω ¼ ðπ=2Þ disclinations using C̃4;o� (see Fig. 12).
We fix o ¼ β in both cases and extract Sβ from the charge
response. We have numerically checked thatSβ in for these
two choices of o� are the same (see Fig. 1). Now we
analytically show thatSo is independent of o� when C ¼ 0.
We pick the regionW shown in Fig. 12. We first consider

Fig. 12(a) where o� ¼ β. In the C ¼ 0 limit, the charge
response is

QW ¼ Sβ

4
þ 12ν mod 1: ðB11Þ

A direct counting of Wannier orbitals gives

QW ¼ 12Nα þ
�
12þ 1

4

�
Nβ þ 24Nγ: ðB12Þ

Since ν ¼ Nα þ Nβ þ 2Nγ , we obtain Sβ ¼ 1
4
Nβ.

Now we switch to o ¼ α [see Fig. 12(b)]. The Burgers
vector is nontrivial and there is an irregular unit cell in the
defect core contributing nirreg;b⃗;o ¼ 1

2
ν. Taking C ¼ 0, the

impure disclination charge is

QW ¼ Sβ

4
þPβ

2
þ
�
6þ 1

2

�
ν mod 1: ðB13Þ

A direct counting of Wannier orbitals gives

QW ¼ 7Nα þ
�
6þ 3

4

�
Nβ þ

�
12þ 3

2

�
Nγ: ðB14Þ

We now use the C ¼ 0 result Pβ ¼ Nα þ Nγ which was
obtained above. Combined with the above equations,

we again obtainSβ ¼ 1
4
Nβ. This completes our verification

that Sβ is independent of o�. We can apply similar
arguments to verify that So is independent of o� for each
o and each M ¼ 2, 3, 4, 6.

APPENDIX C: MICROSCOPIC CONSTRUCTION
OF A DISLOCATION HAMILTONIAN

In this appendix, we demonstrate a systematic method
to construct a dislocation Hamiltonian Hdefect in terms of
the Hamiltonian Hclean on a clean rotationally symmetric
lattice with M ¼ 2, 3, 4, 6. The procedure is similar in
spirit to the construction of disclination defects given
in Ref. [33].
Since the dislocation is a defect of the translation

symmetry, the construction necessarily involves the mag-

netic translation operator T̃ ≡ ei
P

j
λjc

†
j cj T̂, which is a

translation followed by a gauge transformation which
ensures that T̃ is a symmetry of Hclean. For concreteness,
we write a general form of the Landau gauge on the square
and honeycomb lattices below [this is analogous to the
previously defined gauge on the torus, Eq. (56)]. For the
square lattice,

Aj;jþŷ ¼ ðjx − ōxÞϕ;
j ¼ ðjx; jyÞ; jx ∈ Z; jy ∈ Z: ðC1Þ

This vector potential is defined on an infinite plane. In this
appendix, we use A≡ Aclean to denote the entire vector
potential on the clean lattice. ō ¼ ðōx; ōyÞ is called the
gauge origin. On the honeycomb lattice, consider Fig. 13.
Assume that the boundaries of the unit cell align with the
hoppings. Then define

FIG. 12. Pure disclinations with two different choices of o�. (a) o� ¼ β, (b) o� ¼ α. Dashed lines represent unit cell boundary. (c) The
M ¼ 4 unit cell.
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Ai;iþð−1=3;2=3Þ ¼ Aj;jþð1=3;1=3Þ ¼ ðx − ōxÞ
ϕ

2
;

i ¼
�
ix −

1

3
; iy −

1

3

�
; ix ∈ Z; iy ∈ Z;

j ¼
�
jx þ

1

3
; jy þ

1

3

�
; jx ∈ Z; jy ∈ Z: ðC2Þ

i and j are site indices at MWP β and MWP γ of the C3 unit
cell, respectively (refer to Fig. 2 for the unit cell
convention).
Using the aforementioned gauge choices, we now explain

how to construct the dislocation Hamiltonian Hdefect for
each M, starting with Hclean. In our numerics we use this
procedure to construct dislocations with b⃗ ¼ ð�1; 0Þ;
ð0;�1Þ; all other dislocation Burgers vectors lie in the
same equivalence class as one of these choices of b⃗.

1. C2, C4 dislocation

Let us consider a dislocation on the simplest square
lattice as an example. The construction below generalizes
naturally to C2 lattice dislocations since both of them have
quadrilateral unit cells. Given an origin o and the desired
dislocation Burgers vector b⃗, the procedure for constructing
Hdefect is summarized in three steps: (1) draw a cut parallel
to b⃗, (2) define conjugate hopping terms, (3) perform
local moves.
The first step is to draw a linear cut in the direction

of b⃗ [b⃗ ¼ ð0; 1Þ in Fig. 14]. This cut starts and
ends on two plaquette centers. The cut intersects a
set of links in the lattice corresponding to hopping

terms in Hclean. We only consider two-fermion hopping
terms below.
Consider a particular term which intersects the cut, and is

of the form c†Lj
cRj

e−iALjRj in Hclean. Lj and Rj are sites on

the left and right of the cut, respectively. We conjugate only
the operator cRj

with the translation operator T̃y:

e−iALjRj c†Lj
cRj

→ e−iALjRj c†Lj
ðT̃ycRj

T̃†
yÞ

¼ e−iALjRj × e−iλRj c†Lj
cRjþ1

: ðC3Þ

Starting with Hclean, we delete the original
hoppings e−iALjRj c†Lj

cRj
and add the new hoppings

e−iðALjRj
þλRj Þc†Lj

cRjþ1
to obtain Hdefect. In the example

shown in Fig. 14, this procedure creates a dislocation with
b⃗ ¼ ð0; 1Þ on the −y side of the cut and an antidislocation
with b⃗ ¼ ð0;−1Þ on þy side of the cut.
We want to consistently ensure that the irregular unit

cells in this construction are all triangular, and not
pentagonal or in some other irregular shape. Therefore,
in the third step, we make one local change of the hopping
terms such that both the dislocation and antidislocation
have a triangular plaquette [see Fig. 14(c)]. This fully
determines Hdefect.

2. Properties of ϕirreg on square lattice

Here we derive several statements that were made in
Sec. V regarding the flux ϕirreg in a dislocation plaquette on
a square lattice.

FIG. 13. Landau gauge on a honeycomb lattice with differ-
ent gauge origin ō. Each blue arrow represents a hopping
phase Aij ¼ ðϕ=4Þ.

FIG. 14. Dislocation construction procedure on a square lattice.
(a) Drawing a cut in the ŷ direction. (b) Conjugate hoppings.
(c) Doing local moves. (d) Reorganizing.
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a. Proof of Eq. (43)

Consider Fig. 14. We refer to the point j in this figure as
j0 in the main text. For a b⃗ ¼ ð0; 1Þ Burgers vector, the
flux in the irregular dislocation plaquette can be written
in terms of the vector potential Adefect on the defect lattice
as follows:

ϕirreg ¼ Adefect;ij þ Adefect;jk þ Adefect;ki: ðC4Þ

From Eq. (C3), we see that the new hopping created in the
defect lattice tc†i cke

−iAdefect;ik can be calculated in terms of
the vector potential on the clean lattice; i.e.,

Adefect;ik ¼ Aij þ λj:

Moreover, Adefect;ij ¼ Aij and Adefect;jk ¼ Ajk. Therefore,

ϕirreg ¼ Ajk − λj: ðC5Þ

In the main text we explicitly write j ¼ j0, k ¼ j0 þ ŷ.

b. Change in ϕirreg

Next we prove the claims in Sec. VA about how ϕirreg

changes when either λ or j0 is changed.
(1) Suppose we change j0 → j0 þ ðvx; 0Þ, vx ∈ Z,

keeping A, λ fixed. Then the change in ϕirreg is

Δϕirreg ¼ Aj0þðvx;0Þ;j0þðvx;0Þþŷ − λj0þðvx;0Þ
− ðAj0;j0þŷ − λj0Þ: ðC6Þ

Now we use Eq. (58). On the infinite plane, Eq. (58)
holds exactly, while on the torus, where it is not
exact everywhere, we ensure that the dislocation is
constructed within a region where this equality does
hold. Then we get

λj0 − λj0þðvx;0Þ ¼ Aj0;j0þðvx;0Þ − Aj0þŷ;j0þðvx;0Þþŷ:

ðC7Þ

Therefore,

Δϕirreg ¼ Aj0þðvx;0Þ;j0þðvx;0Þþŷ − Aj0;j0þŷ

þ Aj0;j0þðvx;0Þ − Aj0þŷ;j0þðvx;0Þþŷ ðC8Þ

¼ þϕvx: ðC9Þ

The last equality is because the sum over Ameasures
the flux in a rectangle of side lengths vx and 1 in the
x and y directions, respectively.

(2) Suppose we change λj → λj þ χ for each j, and
χ ¼ ϕvx. j0 and A are fixed. Then from Eq. (C5),
Δϕirreg ¼ −ϕvx.

c. Proof of Eq. (61)

With λj as defined in Eq. (59), we calculate ϕirreg given
that the dislocation is created at x ¼ j0;x on the torus:

ϕirreg ¼

8>><
>>:

ðj0;x − ōxÞϕþ ϕ
2
Lx j0;x < ōx

ðj0;x − ōxÞϕ − ϕ
2
Lx j0;x > ōx

0 j0;x ¼ ōx:

ðC10Þ

Since the sites have integer x and y coordinates, we use
Eq. (60), along with the following relation, which can be
read off from Table IV:

nirreg;o ¼ −
�
ox þ

1

2

�
mod 1: ðC11Þ

This relation is defined mod 1 because an integer change of
nirreg;o does not change o mod Z2.
From these two conditions we find that ox ¼ ōx − 1

2
−

ðLx=2Þ mod 1 whenever j0;x ≠ ōx. This is the same as our
numerical observation using Eq. (61).

3. C3, C6 dislocation

We can use a similar method to construct a C3 or C6

dislocation in the honeycomb lattice. Figure 15 shows the
full procedure for constructing a b⃗ ¼ ð0;�1Þ dislocation
and antidislocation pair.

FIG. 15. Dislocation construction procedure on a honeycomb
lattice. (a) Draw a cut in the ŷ direction. (b) Conjugate a set of
hopping terms. (c) Perform local moves. (d) Reorganize.
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With some fixed gauge origin ō≡ ðōx; ōyÞ, we construct
Hdefect from Hclean following the same three steps as above.
For consistency we choose the irregular unit cell to be
quadrilateral (rather than, say, an octagon). As above,
using δΦW;o ¼ 0, we demand that T̃y should create a
dislocation with ϕirreg ¼ ϕnirreg. Using λj defined in
Eq. (86), we again recover the relation between ox and
ōx to be ox ¼ ōx − ðLx=2Þ − 1

2
mod 1.

APPENDIX D: INDEPENDENCE OF fSo;P⃗og
UNDER SHIFT OF UNIT CELL

In this appendix, we describe the trimming method
which serves as a tool to prove that P⃗o and So do not
depend on the choice of unit cell Θ. It is worth noting that
the linear momentum calculation and the 1D polarization
calculation are completely independent of Θ. Only the
charge response calculation depends on Θ. We provide
two examples to illustrate the method, for So and P⃗o,
respectively.

1. So

Consider a pure disclination on the square lattice with the
C4 symmetric origin o at a site, as shown in Fig. 16(a). We
consider the two choices of unit cell Θ1, Θ2 shown in
Figs. 16(c) and 16(d). We also define two regions W1, W2

whose boundaries are aligned with those of Θ1, Θ2,
respectively.
Following Eq. (77), the charge response for W1 can be

written as

QW1 ¼
So

4
þ
�
k1 þ

3

4

�
νþ CδΦW1

2π
mod 1; ðD1Þ

where k1 is the integer part of nW1
. Since o is at the center

of the unit cell, we have no;irreg;Ω ¼ 1 − ðΩ=2πÞ ¼ 3
4
as

defined in Eq. (78). The charge response for W2 can be
written as

QW2 ¼
So

4
þ k2νþ

CδΦW2

2π
mod 1: ðD2Þ

The extra flux δΦW is only inserted near the defect,
and W1 and W2 only differ at their boundary. Therefore,
δΦW1 ¼ δΦW2.
In order to prove that So extracted in the two equations

above is the same, we need to show that QW1 −QW2 ¼
ðk3 þ 3

4
Þν. Since we can arbitrarily add a full unit cell on the

boundary ofW1 orW2, k3 can vary freely without changing
So, but the fractional part in parentheses needs to be 3

4
.

In order to compare QW1 and QW2, we trim W1 into W2.
This only requires cutting out subcells on the boundary,
which is assumed to be far away from the defect. Thus, on
the boundary we expect the charge in each unit cell to be ν,
and the charge in each subcell to be 1

4
ν. With this

information, we can explicitly calculate QW1 −QW2.
For example, in Figs. 16(a) and 16(b), QW1 −QW2 ¼

ð6þ 3
4
Þν, which satisfies the aforementioned condition. The

above process is repeated for disclinations with M ¼ 2, 3,
4, 6 lattice with arbitrary o and Ω. In all cases, the value of
QW1

−QW2
obtained from the trimming method is con-

sistent with a fixed value for So. This allows us to check
that the extracted So does not depend on Θ.

2. P⃗o

We use a similar procedure to prove that P⃗o does
not depend on the choice of Θ. Consider the honeycomb
lattice dislocation shown in Fig. 15(d) with Burgers vector
b⃗ ¼ ð0;−1Þ. Let us consider o to be at a plaquette center.
Two choices of Θ are shown in Figs. 17(c) and 17(d).
The charge response with unit cell as in Fig. 17(c) can be

written as

QW1 ¼ P⃗o · b⃗þ
�
k1 þ

2

3

�
νþ CδΦW1

2π
mod 1: ðD3Þ

Again, k1 is the integer part of the number of unit cells
enclosed by W1. Since the position of the origin relative to
the center of the unit cell is ð2

3
;− 1

3
Þ, the fractional value of

nirreg can be read off from Table IV. Similarly, the charge
response with Θ2 as in Fig. 17(d) can be written as

QW2 ¼ P⃗o · b⃗þ k2νþ
CδΦW2

2π
mod 1: ðD4Þ

Similar to the previous example, δΦW1 ¼ δΦW2, and we
need to show that QW1 −QW2 ¼ ðk3 þ 2

3
Þν.

FIG. 16. Trimming method for a pure disclination on the square
lattice. We consider two regions. (a) W1 and (b) W2. W1, W2

correspond to choices of the unit cell shown in (c) and (d),
respectively. The origin o is defined to be at a site. Black solid
lines represent hoppings. Here W1 is trimmed into W2 by
excluding subcells at the boundary.
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In the example shown in Figs. 17(a) and 17(b),
each subcell contributes 1

3
ν. We have QW1 −QW2 ¼ 14

3
ν ¼

ð4þ 2
3
Þν, giving the expected answer.

This procedure can be extended toM ¼ 2, 3, 4, 6 lattices
with arbitrary o and b⃗. With this we can verify that P⃗o does
not depend on Θ.

APPENDIX E: FURTHER DETAILS IN LINEAR
MOMENTUM CALCULATION

In this appendix, we first state some numerical observa-
tions on how the quantization of the linear momentum
changes upon starting with the operator T̃y as in Eq. (59) but
then changing the location of the strip that violates trans-
lation symmetry. Then we discuss some technical details
regarding the partial translation method. The numerical
results of linear momentum can be seen in Fig. 18.
We note that in the main text, the origin o for the charge

polarization is defined in terms of the gauge origin ō. This
is, however, not the only way to define o. For a given A, λ,
where λ is associated to the operator T̃y, there is a point õ
which satisfies

λõ − Aõ;õþŷ ¼ 0: ðE1Þ

õ does not change under gauge transformations, which take
Aij → Aij þ fj − fi and λj → λj − fj þ fjþŷ. This trans-
formation of λj is obtained by solving Eq. (58) after gauge
transforming A. Therefore õ is a gauge-invariant point, and
we can in principle define o in terms of õ by constraining
the flux at a dislocation defect. This involves arguments

similar to the ones in Appendix C. However, we do not use
õ in the present work.

1. Freedom in changing location of strip

Consider the choice of λ in Eq. (59). Apart from global
U(1) transformations, we can consider other choices of λj
which serve equally well as approximate symmetries. For
example, we can consider

T̃ 0
y ¼

8>>><
>>>:

T̂ye
i
P

j
−ðπm=LyÞc†j cj jx < ōx þ δ

T̂ye
i
P

j
ðπm=LyÞc†j cj jx > ōx þ δ

T̂y jx ¼ ōx þ δ;

ðE2Þ

for some real number δ ≠ 0. The vector potential is again
almost symmetric with respect to T̃ 0

y ; the strip where T̃ 0
y is

locally not the symmetry of the Hamiltonian is, however,
shifted from ō by the amount δ in the x direction. However,
the expectation value of T̃ 0

y does not yield the desired
invariant Po;y. We have numerically checked that for any
δ ≠ 0, the resulting values of Po;y are not even quantized
throughout each gapped phase of the Hofstadter model
when C ≠ 0. And when C ¼ 0, choosing δ ≠ 0 continues

FIG. 18. Bare numerical result of (top) angular momentum lo
which follows Eq. (40); both calculated on an Lx × Ly ¼
12 × 12 torus. Bottom: linear momentum pλ;y which follows
Eq. (21), calculated on the Lx × Ly ¼ 19 × 11 and Lx × Ly ¼
20 × 11 torus, respectively. All panels are plotted in the
0 < ϕ < 2π range.

FIG. 17. Trimming method for a dislocation. (a) Honeycomb
dislocation with region W1 covering the b⃗ ¼ ð0;−1Þ dislocation.
The boundary of W is aligned with unit cell boundary of (c),
shown as red dashed line. (b) The regionW2 after trimming. Now
the boundary ofW2 is aligned with the hopping, which is also the
unit cell boundary of (d), shown as black solid line.
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to give a quantized result, but certain choices of δ will give
Poþð1=2;0Þ;y instead of Po;y.
These observations can be understood as follows.

Suppose we calculate Po;y using T̃y for a given choice
of strip, and then change the strip position by δx̂ as in
Eq. (E2). In general, if δ ≠ 0, λj changes by kjπm=Ly

for each j that was crossed by the strip as it was shifted.
kj ¼ �1 if j lies exactly on the initial or the final position
of the strip, and kj ¼ �2 if j lies in between the initial and
final positions of the strip. Let S be the set of points crossed
by the strip. Then,

T̃y → T̃ye
i
P

j∈S
ðkjπm=LyÞn̂j : ðE3Þ

When C ¼ 0, we verify numerically that the state jΨi is an
almost exact eigenstate of n̂j, with expectation value κ
(the statement being exact for the Hofstadter model). Thus
we obtain:

T̃y → T̃ye
iπmκ

P
j∈S

ðkj=LyÞ: ðE4Þ

Since the number of points j corresponding to a fixed kj is
always a multiple of Ly, the extra factor is of the form
ð−1Þk0m, where k0 ¼ 0 or 1, and is fixed by the actual values
of kj and κ. If k0 ¼ 0, Po;y is invariant. But if
k0 ¼ 1, Po;y → Po;y þ 1=2.
Note that this reasoning breaks down when C ≠ 0:

jΨðmÞi is not an eigenstate of
P

j∈S n̂j, and Po;y hence
can be expected to depend sensitively on the strip position.
As mentioned in the main text, empirically we have found
that the strip needs to be aligned with the gauge origin ō in
order to obtain consistent results for Po;y.

2. Partial translation

In the partial translation calculation we define the
operator T̃yjD and find that we need to pick a particular
choice of D, so that D is a cylinder defined mirror
symmetrically about the cycle x ¼ ōx − ðLx=2Þ [with
holonomy ð−1Þm]. This set of choices recovers P⃗o that
is consistent with the dislocation charge calculation. There
is another natural choice of parameters: we can chooseD to
be defined around x ¼ ōx, and choose T̃yjD ¼ T̂yjD. We

numerically find that this choice gives P⃗o ¼ 0 everywhere
in the butterfly. We do not have a complete explanation for
why the first set of choices is required. However, we find a
resemblance between this result and the calculation of
angular momentum through partial rotations discussed
previously in Ref. [33].
In that calculation we need to choose a disk D centered

around a special point o2, which is one of the two
vertices invariant under the chosen rotation operator at
a vertex v, Ĉ4;v. The holonomy of A around either cycle

which crosses o2 is eiπm in a system with m flux quanta.
But if we choose a disk centered around the other fixed
point o1, with respect to which A has trivial holonomy,
the resulting value of the discrete shift varies irregularly
within the same Hofstadter lobe and is not meaningful.
Thus if we consider partial spatial symmetries, the
calculation of both So and P⃗o involves the part of the
system with eiπm holonomy rather than the part of
the system with trivial holonomy.
We can provide some more heuristic numerical evidence

explaining this choice. We consider a system at fixedC and
plot the phase of a randomly chosen low-energy single-
particle eigenstate for different choices of m (see Fig. 19).
We empirically find that the phase variation in the y
direction nearly vanishes around the cycle x ¼ ōx. Note
that our choice of D excludes the region around x ¼ ōx.
The phase of hΨjT̃yjDjΨi is nearly unaffected by this
choice of D. However, choosing D to exclude the region
around x ¼ ōx − ðLx=2Þ will significantly change
hΨjT̃yjDjΨi. The above discussion suggests that the region
around x ¼ ōx − ðLx=2Þ is in a sense more important than
the region around x ¼ ōx in order to extract P⃗o.

APPENDIX F: DERIVATION OF TOPOLOGICAL
RESPONSE THEORY

Here we discuss the construction of the topological
response theory for invertible fermionic phases with the
symmetry group Gf ¼ Uð1Þf ×ϕ ½Z2 ⋊ ZM�. This con-
struction was first developed for bosonic topological phases
in Ref. [17], and a partial extension to invertible fermionic
phases focusing on So was discussed in Ref. [33]. In this
appendix, after reviewing the definition of crystalline gauge
fields, we present two computations that are new: a
derivation of the complete response theory using results
from Ref. [14], and a derivation of the quantization of P⃗o
from field theory.

FIG. 19. The U(1) phase of a randomly chosen low-energy
single-particle eigenstate on a 64 × 64 torus. The gauge origin is
at ō ¼ ð51þ 1

2
; 0Þ. The parameters are (left) m ¼ 5, C ¼ 1,

(right) m ¼ 15, C ¼ 1. The variation in phase along y is lowest
around x ¼ ōx.
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1. Review of crystalline gauge fields

Consider a 3-manifold M3. We define real-valued
differential 1-form gauge fields δA;X;Y;ω∈Ω1ðM3;RÞ.
δA denotes the part of the vector potential in excess of
the uniform background, and we identify δA ∼ δAþ 2π.
(Note that the quantity A is taken to mean the entire vector
potential.) R⃗ ¼ ðX; YÞ represents the Z2 translation com-
ponent. ω is a ZM rotation gauge field. The full gauge field
is denoted as B ¼ ðδA; R⃗;ωÞ. It is non-Abelian and
composes according to the group law of Gf.

The flux of B has three components ðF; T⃗; dωÞ. F ≔
dδAþ ϕAXY is the density of magnetic flux. It consists of a
background contribution ϕAXY proportional to the area
element AXY , and an excess contribution which is measured
by dδA. We can equivalently write F ¼ dA, where A is the
full vector potential.
AXY depends on ðX; YÞ, and its precise form also

depends on the value ofM, but when ω ¼ 0, AXY ¼ X ∪ Y.
T⃗ is the torsion; the quantity ð1=2πÞ RD2 T⃗ measures the

total dislocation Burgers vector within a 2D region D2.
When we use orthogonal coordinates, for example when
M ¼ 4, we can write T⃗ ≔ dR⃗þ iσyω ∧ R⃗, where iσy ¼


0 1

−1 0

�
. The general definition of T⃗ depends on how we

fix our coordinate basis. We note, however, that in the
original simplicial formulation of the response theory,
we can simply define T⃗ ¼ dR⃗ for any value of M, because
the second term can be removed by a suitable gauge
transformation [17].
dω is the disclination density; the quantity

ð1=2πÞ RD2 dω measures the total disclination angle within
D2. In order to correctly encode the curvature and torsion of
M3, we set R⃗;ω equal to the SO(2) components of the
coframe fields and the spin connection on M3.
There is a very important issue that was not commented

upon in Refs. [17,33]. Since the dislocation Burgers vector
can in general be origin dependent, the translation gauge
fields must themselves be origin dependent. This means
that quantities in the action constructed out of the crystal-
line gauge fields may all in principle carry an origin
dependence. We return to this point in Appendix G.
We impose the condition that B is a Gf gauge field

through quantization conditions on the total flux of B thro-
ugh closed and open 2D submanifolds ofM3. If D2 ⊂ M3

is a closed 2D submanifold, then the gauge field on D2

must be flat; i.e.,

T⃗ðx⃗Þ ¼ 2π

�
1 − U

�
2π

M

�	X
j

⃗ljδð2Þðx⃗ − x⃗jÞ; ðF1Þ

δAðx⃗Þ ¼ 2π
X
j

mjδ
ð2Þðx⃗ − x⃗jÞ; ðF2Þ

ωðx⃗Þ ¼ 2π
X
j

njδð2Þðx⃗ − x⃗jÞ; ðF3Þ

within D2, where ⃗lj ∈ Z2 and mj; nj ∈ Z. This physically
corresponds to saying that the only sources of flux inD2 are
points at the positions x⃗j, which each carry an integer
number of flux quanta. Note that the factor ½1 −Uð2π=MÞ�
appears in the condition for T⃗, because a Burgers vector of
the form ½1 −Uð2π=MÞ�r⃗, r⃗ ∈ Z2, is in the trivial class (see
Appendix A) and therefore corresponds to a trivial quantum
of flux.
On open manifolds, we can have nonflat gauge field

configurations, which can assign fractions of a flux
quantum. The following conditions ensure that the net
flux of the crystalline gauge fields in a region, although
fractional, always corresponds to an element of Gspace:

T⃗ðx⃗Þ ¼ 2π
X
j

⃗ljδð2Þðx⃗ − x⃗jÞ; ðF4Þ

ωðx⃗Þ ¼ 2π

M

X
j

njδð2Þðx⃗ − x⃗jÞ: ðF5Þ

Even when we allow nonflat gauge field configurations
on an open manifold, the integral through any closed 2D
submanifold D2 must still be appropriately quantized:

1

2π

Z
D2

T⃗ ¼
X
j

⃗lj ¼
�
1 −U

�
2π

M

�	⃗
ltot;

1

2π

Z
D2

dA ¼ 1

M

X
j

mj ¼ mtot;

1

2π

Z
D2

dω ¼ ntot; ðF6Þ

where mtot; ntot ∈ Z and ⃗ltot ∈ Z2. Physically, ntot is the
Euler characteristic of D2.

2. Response theory

a. General derivation

The general construction of a response theory for
invertible fermionic topological phases with symmetry
group Gf¼Uð1Þf×ϕ ½Z2⋊ZM� was outlined in Ref. [33].
In that work, specific quantization conditions on the
discrete shift were derived by ignoring translations. Here
we recall the main steps in the derivation, but also consider
translations, with a view to obtaining the quantization
of P⃗o.
First, note that the quantity ½ω2� ∈ H2ðGb;Z2Þ specifies

Gf as a group extension of Gb by Zf
2. To express ω2 in

terms of the gauge fields, we define
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Bð2Þ
2 ≔

1

2
ð2F þ kdωÞ ¼ πB�ω2; ðF7Þ

where B� refers to the pullback via B [meaning B�ω2ðxÞ ¼
ω2½BðxÞ� for x ∈ M3] [52]. As mentioned in Ref. [33], if
the chosen 2π rotation operator acts as the identity, we
should set k ¼ 1 in the above definition; if it acts as the
fermion parity ð−1ÞF, we should set k ¼ 0. Accordingly,
here we use k ¼ 1.
Note that the choice of k in the definition ofω2 and hence

Bð1Þ
2 specifies the angular momentummod 1 of the fermion.

In general, ω2 specifies the fractional Gb quantum numbers
of the fermion [14].

Next, we define the quantity Bð1Þ
2 ¼ πB�n2, where

n2 ∈ Z2ðGb;Z2Þ is a general 2-cocycle, which is also
one piece of the data in the classification of Ref. [14].
In our case, n2 specifies the fermion parity change in the
ground state after introducing a Gb flux quantum. It turns

out that the most general possible parametrization of Bð1Þ
2 is

as follows:

Bð1Þ
2 ≔

1

2
f2kFFþkωdωþ½1−Uð2π=MÞ�−1k⃗T · T⃗þkAAXYg;

ðF8Þ

where kF; kω; kA ∈ Z and k⃗T ∈ Z2. For M ¼ 3, 6, we
require k⃗T ¼ ð0; 0Þ. This parametrization of n2 can be
found, for example, in Appendix D of Ref. [17]. We also
use the fact that n2 ≃ n2 þ ω2 (this is proven in Ref. [14]
and is an equivalence due to relabeling fermion parity
defects in the invertible phase). We use this equivalence to
set kF ¼ 0.
The three remaining terms have the following interpre-

tation: (1) kω is the fermion parity change upon inserting a
set of disclinations with Ω ¼ 2π; (2) k⃗T · Λ⃗ specifies the
fermion parity change in a region upon introducing dis-
locations with total Burgers vector ½1 −Uð2π=MÞ�Λ⃗; (3) kA
specifies the fermion parity per unit cell.
Then, the main result (obtained using the general theory

developed in Ref. [14]) is that the Lagrangian density L
which gives the topological response theory for an invert-
ible fermionic phase with symmetry Gf and chiral central
charge c− must satisfy

dL ¼ 2

π

�
1

2
Bð1Þ
2 ∧ ðBð1Þ

2 þ Bð2Þ
2 Þ þ c−

8
Bð2Þ
2 ∧ Bð2Þ

2

	
mod 2π:

ðF9Þ

Its meaning is the following. The 2-cocycles n2, ω2

(alternatively, the quantities Bð1Þ
2 ; Bð2Þ

2 ) together specify
the Gb quantum numbers of the fermions and the fermion
parity defects in the system. But in order to ensure that the
Gb quantum numbers of all symmetry defects are well

defined in ð2þ 1ÞD, we need an extra condition given by
Eq. (F9). Note that if the rhs of this equation corresponds to
a nontrivial class in the group H4½Gb;Uð1Þ�, there is no
solution for L, and the system can only live on the boundary
of a ð3þ 1ÞD symmetry-protected topological (SPT) phase
whose effective action is defined by the quantity dL.
For free fermion phases, we can set C ¼ c−; in gen-

eral, C ¼ c− mod 8.
The response theory finally obtained from this condition,

by substituting Bð1Þ
2 ; Bð2Þ

2 and integrating, takes the form

L ¼ C
4π

A ∧ dAþSo

2π
A ∧ dωþ P⃗o

2π
· A ∧ T⃗ þ κ

2π
A ∧ AXY

þ
els

4π
ω ∧ dωþ P⃗s

2π
·ω ∧ T⃗ þ νs

2π
ω ∧ AXY þ � � � ;

ðF10Þ

where the dots refer to additional terms that can be nonzero
even if δA;ω are both zero. We note that because dL only
involves F, L is written entirely in terms of A, even though
one might expect that it should be written in terms of δA.
The coefficients in this equation can all be expressed in
terms of kω, kT , kA, as we now show for P⃗o.

b. Quantization of P⃗o using response theory

The quantization of So and its dependence on c− was
discussed in Ref. [33]. Below we only discuss the quan-
tization of P⃗o. In the next section we discuss the origin
dependence of So and P⃗o.
Note that the derivative of the term with P⃗o in Eq. (F10)

can be written as ðP⃗o=2πÞ · dA ∧ T⃗ ¼ ðP⃗o=2πÞ · F ∧
T⃗ þ � � �. When kF ¼ 0, such a term can only come from

the Bð1Þ
2 ∧ Bð2Þ

2 term in Eq. (F9). Indeed, by comparing the
two equations we must have

P⃗o

2π
F ∧ T⃗ ¼ 1

π
F ∧ 1

2
½1 − Uð2π=MÞ�−1k⃗T · T⃗ mod 2π:

ðF11Þ

The above equation implies that

P⃗o ¼ ½1 −Uð2π=MÞ�−1ðk⃗T þ 2k⃗T;SPTÞ mod Z2: ðF12Þ

The term with k⃗T;SPT ∈ Z2 arises as a constant of integra-
tion. It does not contribute to dL, and can physically be
thought of as the polarization in a bosonic SPT phase which
is stacked onto the original fermionic phase. We now use
the conditions k⃗T ; k⃗T;SPT ∈ Z2, along with the fact that

integer choices of P⃗o do not contribute to the partition
function. With this we obtain the quantization result
claimed in the main text. In particular, the classification
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of P⃗o for invertible bosonic and fermionic systems is the
same, in contrast to the results for the Hall conductance
and So.
There is no dependence of P⃗o on c− because in

Eq. (F9) the terms proportional to c− only depend on
F and dω, and not on T⃗. The nontrivial values of P⃗o are
entirely due to k⃗T when M ¼ 2, 4, and entirely due to
k⃗T;SPT when M ¼ 3.
Finally, we note that the first four terms in Eq. (F10) can

be rewritten in a perhaps more familiar form, using the
relations ν ¼ κ þ ðCϕ=2πÞ and F ¼ dδAþ ϕAXY :

L ¼ C
4π

δA ∧ dδAþ So

2π
ω ∧ dδAþ P⃗o

2π
· R⃗ ∧ dδA

þ ν

2π
dδA ∧ AXY þ � � � : ðF13Þ

The advantage of this representation is that it makes the
physical invariant ν explicit, and is also closer in spirit to
the Chern-Simons response theory of the continuum
quantum Hall effect, which only includes δA. However,
it is a weaker form of the field theory, because it leaves out
several terms that were explicit in Eq. (F10). For the
derivations in the main text, we write the field theory in
terms of A and not δA. Remarkably, our empirical findings
are easier to explain using Eq. (F10) than with the above
Lagrangian.

APPENDIX G: COMPUTATIONS FOR SEC. VII

Here we use the simplicial formulation of the topological
response theory [17] to derive the quantities ρM; μ⃗M; τ⃗M
defined in Eqs. (93)–(95).

1. Fractional gauge transformations

The definition of each group element gi ¼ ðri; hiÞ ∈
Gspace implicitly depends on the choice of origin o. For
example, h ¼ ð0; 1 mod MÞ is the element in Gspace

corresponding to a rotation by angle 2π=M (about o).
Now suppose o0 ¼ oþ v⃗, as before. The group element g0

i
which implements the same transformation but with respect
to the new origin o0 can be expressed as follows:

g0
i ¼ ðv⃗; 0Þgð−v⃗; 0Þ; ðG1Þ

which corresponds to translating from o0 to o, applying g,
and translating back. Now we use the group multiplication
law in Gspace,

ðr1; h1Þðr2; h2Þ ¼ ½r1 þ Uð2πh1=MÞr2; h1 þ h2�; ðG2Þ

to find that

g0
i ¼ ½ri −Uð2πhi=MÞv⃗þ v⃗; hi�: ðG3Þ

2. Change in So

First we study the transformation of dω. A cocycle
representative for dω can be explicitly written on a
2-simplex with the group elements g1;g2; ðg1g2Þ−1:

dωðg1;g2Þ ¼
½h1�M þ ½h2�M − ½h1 þ h2�M

M
; ðG4Þ

where ½a�M ≔ a mod M. Since dω does not depend on the
translation group variables, it is unaffected by the trans-
formation in Eq. (G3). Therefore, we have

dω0 ¼ dω: ðG5Þ

Next we study the quantity dR⃗. An explicit cocycle
representative is

dR⃗ðg1;g2Þ ¼ r1 þ r2 − ½r1 þ Uð2πh1=MÞr2�
¼ ½1 − Uð2πh1=MÞ�r2: ðG6Þ

This implies that

dR⃗0ðg1;g2Þ
≔ dR⃗ðg0

1;g
0
2Þ

¼ ½1 −Uð2πh1=MÞ�fr2 þ ½1 − Uð2πh2=MÞ�v⃗g ðG7Þ

¼ dR⃗þ ½1 −Uð2πh1=MÞ�½1 − Uð2πh2=MÞ�v⃗: ðG8Þ

The second term only depends on h1, h2, just like dω. In
fact, it is coboundary equivalent to a multiple of dω. This
can be seen by computing a cohomology invariant we
denote IΩ, which for a general cocycle f2 ∈ Z2ðGspace;ZÞ
is defined as

IΩ½f2� ≔
XM−1

j¼0

f2ðhj;hÞ mod M; ðG9Þ

where we recall h ¼ ð0; 1Þ. We can show that IΩðdωÞ ¼ 1

using Eq. (G4), and also that IΩðdR⃗Þ ¼ IΩðAXYÞ ¼ 0.
Thus, IΩ is an invariant corresponding to the ZM subgroup
of H2ðGspace;ZÞ.
Up to coboundaries, we have by assumption,

dR⃗0 ¼ dR⃗þ τ⃗Mdω; ðG10Þ

therefore, for any integer vector u⃗,

IΩðu⃗ · dR⃗0Þ ¼ IΩðu⃗ · dR⃗Þ þ IΩðu⃗ · τ⃗MdωÞ
¼ IΩðu⃗ · dR⃗Þ þ u⃗ · τ⃗M mod M: ðG11Þ
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But we can compute

IΩðu⃗ · dR⃗0Þ

¼ IΩðu⃗ · dR⃗Þ þ u⃗ ·
XM−1

j¼0

½1−Uð2πj=MÞ�½1−Uð2π=MÞ�v⃗

¼ IΩðdR⃗Þ þ u⃗ ·M½1−Uð2π=MÞ�v⃗ mod M: ðG12Þ

By comparing Eqs. (G11) and (G12), and using the fact that
u⃗ can be arbitrary, we see that

τ⃗M ¼ M½1 − Uð2π=MÞ�v⃗: ðG13Þ

The components of τ⃗M are ambiguous up to multiples
of M, since IΩ is a ZM invariant. This only means that
So0 is determined up to multiples of M, as we
already know.
Finally, we study the transformation of the area element

AXY . We know that AXY should be quadratic in the trans-
lation gauge fields if it corresponds to an area element.
Consider the ansatz,

AXYðg1;g2Þ ¼ rT1QMUð2πh1=MÞr2; ðG14Þ

where QM is a 2 × 2 matrix. The 2-cocycle condition for
AXY is

AXYðg1;g2Þ þ AXYðg1g2;g3Þ
¼ AXYðg2;g3Þ þ AXYðg1;g2g3Þ: ðG15Þ

Upon substituting in the ansatz for AXY, we find that

rT1 ½Uð2π=MÞTQMUð2π=MÞ −QM�r2 ¼ 0: ðG16Þ

This implies that

Uð2π=MÞTQMUð2π=MÞ ¼ QM: ðG17Þ

Thus the particular form we chose for AXY ensures that QM
is a constant matrix with no dependence on group variables.
We also demand that

AXYðx; yÞ − AXYðy;xÞ ¼ 1;

which is a normalization condition. Solving these two
conditions, we get the following possibilities for QM:

Q2 ¼
�
Qxx 1

0 Qyy

�
; Qxx; Qyy ∈ Z; ðG18Þ

Q4 ¼
1

2

�
2Q0 1

−1 2Q0

�
; Q0 ∈ Z; ðG19Þ

Q3;6 ¼
�−1 1

0 −1

�
: ðG20Þ

Note that for M ¼ 2, 4, QM is not uniquely fixed by
Eq. (G17). This is important in what follows. Upon shifting
the origin, we obtain

A0
XY ¼ fr1 − ½Uðh1Þ− 1�v⃗gTQMUðh1Þfr1 − ½Uðh2Þ− 1�v⃗g:

ðG21Þ

We now write

A0
XY ¼ AXY þ ρMdωþ μ⃗M · dR⃗;

for some ρM; μ⃗M, up to coboundaries. Evaluating the
invariant IΩ, we find that

IΩðA0
XYÞ ¼ ρM ¼ −Mf½Uð2π=MÞ − 1�v⃗gTQMUð2π=MÞv⃗:

ðG22Þ

After expanding out this expression for each M using
Table II, we find that

ρ2 ¼ 4ðvxvy þ v2xQxx þ v2yQyyÞ mod 2; ðG23Þ

ρ3 ¼ −3ðv2x þ v2y þ vxvyÞ mod 3; ðG24Þ

ρ4 ¼ −2ðv2x þ v2yÞð1þ 2Q0Þ mod 4; ðG25Þ

ρ6 ¼ 0 mod 6: ðG26Þ

Note that the transformation rule depends on the choice of
Qxx;Qyy for M ¼ 2 and on Q0 for M ¼ 4. We find that
numerical results are matched only if we set Qxx¼Qyy¼1

and Q0 ¼ 0. Upon doing so, we obtain

ρ2 ¼ 4ðvxvy þ v2x þ v2yÞ mod 2;

ρ3 ¼ −3ðv2x þ v2y þ vxvyÞ mod 3;

ρ4 ¼ −2ðv2x þ v2yÞ mod 4;

ρ6 ¼ 0 mod 6: ðG27Þ

Knowing τ⃗M; ρM allows us to conclude that

So0 ¼ So þMP⃗o · ½1 − Uð2π=MÞ�v⃗þ ρM; ðG28Þ

which gives the complete expression for the transformation
of So. Thus the field theory does not uniquely fix the
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transformation rules forM ¼ 2, 4; we needed to make some
additional choices guided by numerics.

3. Change in P⃗o

Finally, we find μ⃗M, which fixes the transformation
of P⃗o. The calculation is given below. We discuss the
different values of M separately. We assume

A0
XY ¼ AXY þ ρMdωþ μ⃗M · dR⃗: ðG29Þ

M ¼ 2: The invariants which characterize the coho-
mology class of μ⃗2 · dR⃗ are IX, IY , which are defined as

IX½f2� ≔ f2ðxh;xhÞ þ f2ðh;hÞ mod 2; ðG30Þ

IY ½f2� ≔ f2ðyh; yhÞ þ f2ðh;hÞ mod 2: ðG31Þ

Here x ¼ ½ð1; 0Þ; 0�, y ¼ ½ð0; 1Þ; 0�, h ¼ ½ð0; 0Þ; 1�. We
can check that IXðdωÞ ¼ IYðdωÞ ¼ 0 mod 2. We can also
show that

IX½μ⃗2 · dR⃗� ¼ 2μ2;x mod 2; ðG32Þ

IY ½μ⃗2 · dR⃗� ¼ 2μ2;y mod 2: ðG33Þ

Therefore,

IXðYÞðA0
XY − AXYÞ ¼ 2μ2;xðyÞ: ðG34Þ

But when M ¼ 2, ½1 −Uðh1Þ�v⃗ ¼ 2h1v⃗ for any v⃗ (where
h1 is just an integer mod 2). Using this in Eq. (G21),
we obtain

A0
XYðg1;g2Þ ¼ ðr1 þ 2v⃗ÞTQ2ðr2 þ 2h2v⃗Þ:

Then, by direct calculation we get

IX½A0
XY − AXY � ¼ ð1þ 2vx; 2vyÞQ2ð1þ 2vx; 2vyÞT

− ð2vx; 2vyÞQ2ð2vx; 2vyÞT −Qxx

ðG35Þ

¼ 2vy mod 2; ðG36Þ

IY ½A0
XY − AXY � ¼ ð2vx; 1þ 2vyÞQ2ð2vx; 1þ 2vyÞT

− ð2vx; 2vyÞQ2ð2vx; 2vyÞT −Qyy

ðG37Þ

¼ 2vx mod 2: ðG38Þ

This means that 2μ⃗2 ¼ 2ðvy; vxÞ mod Z2. Putting this back

into the transformation rule for P⃗o, we get the following
result (mod 1):

2Po0;x≔2Po;xþκIX½A0
XY −AXY �¼2Po;xþ2κvy; ðG39Þ

2Po0;y≔2Po;yþκIY ½A0
XY−AXY �¼2Po;yþ2κvx: ðG40Þ

Note that this result is independent of the choice for
Qxx;Qyy made above, as these quantities cancel out of
the final expression.
M ¼ 4: We can directly see the result by setting

P⃗o ¼ ðPo=2Þð1; 1Þ and vx ¼ vy ¼ ðv0=2Þ mod 1 in the
above calculation for M ¼ 2. The result is

Po0 ¼ Po þ κv0 mod 2: ðG41Þ
The results for M ¼ 2, 4 are in fact all equivalent to
Eq. (106).
M ¼ 3: We wish to prove Eq. (106). If we parametrize

v⃗ ¼ v0
3
ð1; 1Þ and P⃗o ¼ ðPo=3Þð1; 2Þ, this requires us to

show that

Po0 ¼ Po þ 2κv0 mod 3: ðG42Þ

The invariant giving the cohomology class of μ⃗3 · dR⃗ is IX,
defined as

IX½f2� ≔ f2ðxh;xhÞ þ f2½ðxhÞ2;xh�
− f2ðh;hÞ − f2ðh2;hÞ mod 3: ðG43Þ

By direct calculation, we can show that

IX½μ⃗3 · dR⃗� ¼ 3μ3;x ¼ Po mod 3: ðG44Þ

Again we use A0
XYðg1;g2Þ¼fr1− ½1−Uðh1Þv⃗�gT ×

Q3Uðh1Þfr2− ½1−Uðh2Þv⃗�g. We use the same procedure
discussed for M ¼ 2. After some (tedious) algebra, we
indeed obtain Eq. (G42), or equivalently Eq. (106).

4. Example: Verifying the transformation rules for So

In this section, we use the honeycomb lattice as an
example to verify that the field theory formulas obtained
above agree with numerical results.
Consider the honeycomb lattice with a disclination

whose disclination angle is Ω ¼ ðπ=3Þ, as shown in
Fig. 5(a). We define the unit cell Θ so that the plaquette
center is the center of the unit cell (i.e., the point α). Let us
consider three choices of o, shown in Figs. 5(d), which
lead to different values of b⃗o and nirreg, as summarized in
Table IV. (1) Setting o ¼ α, we get a pure disclination with
b⃗o∈ ½ð0;0Þ� and nirreg;o;Ω¼ 2

3
[Fig. 5(b)]. (2) Setting o ¼ β1,
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we get an impure disclination with b⃗o ∈ ½ð0;−1Þ� and
nirreg;o;b⃗ ¼ 1

3
[Fig. 5(c)]. (3) Setting o ¼ β2, we obtain a

different impure disclination with b⃗o ∈ ½ð−1; 0Þ� and
nirreg;o;b⃗ ¼ 1

3
[Fig. 5(d)].

Without loss of generality we can assume the flux
through the quadrilateral plaquette to be 2

3
ϕ. Since W is

defined to align with the boundary of the unit cell,W is the
same for all three choices above. This means thatQW is also
the same, but is described by three different equations:

QW ¼ Sα

3
þ ðkþ 2=3Þν;

QW ¼ Sβ1

3
þ ðkþ 1=3Þνþ P⃗β1 · ð0;−1Þ þ

Cϕ
6π

;

QW ¼ Sβ2

3
þ ðkþ 1=3Þνþ P⃗β2 · ð−1; 0Þ þ

Cϕ
6π

; ðG45Þ

where k is the integer part of nW . We then equate the three
expressions and cancel out the ϕ dependence to derive a
relation betweenSα and Sβ. Equating the first two gives us

Sα þ 2κ ¼ Sβ1 þ κ þPβð1=3;1=3Þð1; 2Þ · ð0;−1Þ mod 3;

Sα ¼ Sβ1 þPβð1=3;1=3Þ − κ mod 3; ðG46Þ

where we use κ ≡ ν − ðCϕ=2πÞ. On the other hand, setting
o ¼ β1, oþ ð− 1

3
;− 1

3
Þ ¼ α, the field theory [Eq. (G28)]

predicts

Sα ¼ Sβ1 þ 3P⃗βð1=3;1=3Þ · ð1; 0Þ − κ mod 3;

Sα ¼ Sβ1 þPβð1=3;1=3Þ − κ mod 3; ðG47Þ

which is exactly the same equation. Equation (G46) can
also be confirmed numerically (the numerical raw data
are given in Fig. 10). This verifies the field theory
prediction Eq. (G28).
We remark that we can use the same honeycomb lattice

Hamiltonian Hclean to construct defects with different
disclination angles. We can then apply similar procedures
to verify the M ¼ 2, 3, 6 transformation rules for Soþv⃗

and P⃗oþv⃗.

APPENDIX H: GENERALIZATION TO MODELS
WITH NEXT-NEAREST-NEIGHBOR HOPPING

In the main text, we argue that our method of extracting
So and P⃗o works for an arbitrarily complicated unit cell

with further neighbor hopping and interaction terms, as
long as it isCM symmetric. In order to apply our dislocation
or disclination charge calculation to measure So; P⃗o in
these generalized Hamiltonians, we need to construct a
defect Hamiltonian Hdefect, measure the charge QW in a
region W, and then specify the quantities nirreg;o; δΦW;o.
We argue that our numerical procedure allows us to
specify these quantities as long as Hclean is local and has
a gapped, symmetry-preserving ground state, irrespective
of its other properties.
We now provide numerical evidence that our procedure

gives the expected quantized P⃗o when we add next-
neighbor hopping (numerically it is much harder to verify
this for interaction terms, and we do not pursue this here).
Consider a Hofstadter model with the unit cell shown in
Fig. 20. The Hamiltonian with this unit cell has next-
neighbor hopping. We set the nearest-neighbor hopping
amplitude equal to t ¼ 1, and tune the next-neighbor
(diagonal) hopping amplitude t0 between 0 and 1. There
is a flux ϕ through each unit cell. Since we require the unit
cell to be C4 symmetric, we also require that there is a
flux ϕ=2 through each triangle in the unit cell, as shown
in Fig. 20.
We extract the Z2 invariantPα from a dislocation charge

computation. The respective butterflies as a function of t0
are shown in Fig. 21. We see that the invariant is indeed
quantized and well defined mod 2 throughout the main
Hofstadter lobes. In the t0 ¼ 0 limit, the butterfly reduces to
the one for Pα in Fig. 1.

FIG. 20. Left: b⃗ ¼ ð0; 1Þ dislocation of a square lattice with
next-nearest-neighbor hopping (red links). The C4 symmetry
requires all four colored triangles with different orientations
having same flux ϕ=2. Right: the choice of unit cell. There are no
sites at the MWP α and γ, and there is only one site at β. The next-
nearest-neighbor hoppings cross each other.
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