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Based on the notion that the local dark-matter field of axions or axionlike particles (ALPs) in our Galaxy
induces oscillating couplings to the spins of nucleons and nuclei (via the electric dipole moment of the latter
and/or the paramagnetic axion-wind effect), we establish the feasibility of a new method to search for ALPs
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in storage rings. Based on previous work that allows us to maintain the in-plane polarization of a stored
deuteron beam for a few hundred seconds, we perform a first proof-of-principle experiment at the Cooler
Synchrotron (COSY) to scan momenta near 970 MeV=c. This entails a scan of the spin-precession
frequency. At resonance between the spin-precession frequency of deuterons and the ALP-induced electric
dipole moment (EDM) oscillation frequency, there is an accumulation of the polarization component out of
the ring plane. Since the axion frequency is unknown, the momentum of the beam and, consequently, the
spin-precession frequency are ramped to search for a vertical polarization change that occurs when the
resonance is crossed. At COSY, four beam bunches with different polarization directions are used to
make sure that no resonance is missed because of the unknown relative phase between the polarization
precession and the axion or ALP field. A frequency window of 1.5 kHz width around the spin-precession
frequency of 121 kHz is scanned. We describe the experimental procedure and a test of the methodology
with the help of a radio-frequency Wien filter located on the COSY ring. No ALP resonance is observed.
As a consequence, an upper limit of the oscillating EDM component of the deuteron as well as its axion
coupling constants are provided.

DOI: 10.1103/PhysRevX.13.031004 Subject Areas: Astrophysics, Particles and Fields

I. INTRODUCTION

In 1977, Peccei and Quinn proposed an extension of the
Standard Model of particle physics to include a global
chiral symmetry in order to explain the small if not
vanishing magnitude of the CP violation in quantum
chromodynamics (QCD) [1,2]. Since this so-called
Peccei-Quinn (PQ) symmetry is necessarily spontaneously
broken, the existence of the associated Nambu-Goldstone
boson was conjectured by Weinberg [3] and Wilczek [4]—
the latter coining the name axion for this pseudoscalar
particle which acquires a small mass term via nonpertur-
bative QCD effects. Since it was initially assumed that the
order parameters of the spontaneous breaking of the PQ
symmetry, fa, would be the electroweak (Fermi) vacuum
expectation value vF [5], the original axion model by
Peccei and Quinn could be rather quickly ruled out by
beam-dump experiments; see, e.g., Ref. [6]. The focus then
changed to the class of the so-called invisible axions with
fa ≫ vF, which are limited by two types of models, the
KSVZ model due to Kim [7] and Shifman, Vainshtein, and
Zakharov [8] and the DFSZ model due to Dine, Fischler,
and Srednicki [9] and Zhitnitsky [10]. For the canonical
QCD axion, which solves the strongCP problem, a relation
between its mass ma and the order parameter fa can be
determined [11], which to leading order reads

ma ¼
ffiffiffi
z

p
1þ z

mπfπ
1

fa
: ð1Þ

Here, mπ and fπ are the mass and axial decay constant
(chiral order parameter), respectively, of the pion, while
z ¼ mu=md ≈ 0.474 (see Ref. [12]) is the ratio of the u- and
d-quark masses. For the so-called axionlike particles
(ALPs) which are not related to the strong CP problem,
there is not such a relation. Rather, for a given value of the
decay constant fa, any value of the massma, in particular, a
smaller one than that determined by the relation (1), is
possible; see, e.g., Chap. 90 in Ref. [12].

Recently, however, a lighter type of axion field than
the canonical one was proposed [13,14] that is based on
the discrete ZN shift symmetry suggested by Hook [13] for
a dark world extension with N mirror and degenerate
worlds—one of which is ours. These worlds are linked by
the so-called ZN axion field. The latter still solves the
strong CP problem if the integer N is an odd positive
number but has a (approximately 2−N =2) smaller mass ma
versus 1=fa relation than the canonical QCD axion, i.e.,

ma ≃
�

1 − z
πð1þ zÞ

�
1=4

mπfπN 3=4zN =2 1

fa
; ð2Þ

which, in principle, can be justified for N ≫ 1 but, in
practice, already works for N ≥ 3 [14,15].
If sufficiently abundant, the canonical QCD axion, ALPs,

or ZN axions might be candidates for cold dark matter in the
Universe; see, e.g., Refs. [12,16] for recent reviews. In
Refs. [17–20], it is suggested that even axions and/or ALPs
of mass from 10−7 eV=c2 down to 10−22 eV=c2 could be
such candidates. This mass range is very challenging to
reach with any established technique. For instance, the
cavities of the microwave (haloscope) method, scanning
for resonance frequencies due to the inverse Primakoff effect
in strong magnetic fields, as suggested by Sikivie [21,22],
would have to be unwieldy large [23]. Still, axions or ALPs
of this mass range could be associated with cosmic dark
matter created in the big bang via the so-called preinfla-
tionary PQ symmetry-breaking scenario [12]. In this case,
these particles would be present now in sufficient concen-
trations to be regarded as an oscillating classical field that,
established primordially, would still exist without losing
most of its coherence. Locally within the Milky Way galaxy,
the population of axions or ALPs would be dominated by
those bound gravitationally to the Galaxy. Their speed is
limited by the virial velocity of the stellar ensemble, or
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roughly v ¼ 10−3c (cf. Chap. 27 in Ref. [12]), which is
similar to the orbital speed of the Solar System containing
Earth with respect to the center of the Galaxy. This would
result in a nonrelativistic distribution of the axion or ALP
velocities, producing spatially coherent, but time-dependent
oscillations summarized by the classical axion or ALP field

aðtÞ ¼ a0 cos½ωaðt − t0Þ þ ϕaðt0Þ�: ð3Þ

Here, a0 is the amplitude of the field, while ωa is the
pertinent angular frequency which, up to Oðfv=cg2Þ∼10−6

dispersive corrections, is determined by the axion or
ALP mass ma:

ℏωa ¼ mac2: ð4Þ

Finally, ϕaðt0Þ is the local phase of the axion or ALP field,
which not only is unknown but even changes depending on
the respective starting point t0 of any new measurement. The
lifetime of validity of this phase can be deduced by the
simple quantum estimate

τa ¼
h

mav2
; ð5Þ

while the spatial extent of the phase coherence is given by
the length

la ¼
h

mav
: ð6Þ

Therefore, for axions or ALPs with mass less than
10−7 eV=c2 considered here, any additional spatial depend-
ence on the right-hand side of Eq. (3) can be safely neglected
in laboratory experiments, e.g., also in axion searches in
storage rings, since according to Eq. (6) and v ≈ 10−3c the
pertinent coherence length would be about 12 km and even
proportionally larger for smaller masses.
Detection in the laboratory of the oscillating dark-matter

field of axions or ALPs given in Eq. (3) has to overcome the
extremely weak nature of the axion and ALP interactions
with each other and other subatomic particles. Since their
gravitational component can be safely neglected, these
interactions scale with the inverse of the PQ order param-
eter fa that empirically has to be much larger than the
electroweak vacuum expectation value, as mentioned
above. Nevertheless, the pseudoscalar nature of axions
and ALPs allows—in accordance with the Wigner-Eckart
theorem—for potential couplings to the total angular
momentum (spin) of nucleons and nuclei and, therefore,
opens up further avenues for the detection of the oscillating
dark-matter field from Eq. (3)—in addition to utilizing the
inverse Primakoff effect, astrophysical constraints, etc., as
specified, e.g., in Refs. [12,16]. This holds especially for
the mass region specified above, as the Primakoff-based

methods do not apply there. In fact, these spin couplings
can occur in two different ways, either by a coupling to
the electric dipole moment (EDM) of a non-self-conjugate
matter particle carrying nonzero spin (see, e.g., Ref. [24])
or via the pseudomagnetic direct coupling of the gradient of
the axion field to the spin of the matter particle, the so-
called axion-wind effect. There can be further CP-allowed
and even CP-violating couplings of axions or ALPs to
nucleons (or nuclei); see, e.g., the second term in Eq. (8)
and the first and third terms in Eq. (9) in Ref. [16]. These
interactions are not discussed here, since either they are
sensitive only to the (in the considered mass region)
suppressed spatial variation of the axion field (3) or they
couple only to scalar nucleon or nuclear densities which are
spin independent to leading order.
The first of these couplings to the nucleon or nuclear spin

(see Refs. [17,18]) is based on the introduction of an
oscillating component dac to the total EDM of the pertinent
matter particle:

dðtÞ ¼ ddc þ dac cos½ωaðt − t0Þ þ ϕaðt0Þ�; ð7Þ

pointing parallel to the spin direction, by the oscillating
axion or ALP field aðtÞ. Here, ddc is the permanent (static)
component of the pertinent EDM, while the other param-
eters follow from Eq. (3). In addition to astrophysical
constraints (see Ref. [12]), there are first limits reported in
Ref. [25] based on the upper bounds on the neutron EDM
measurements (see also Ref. [26]). These limits, however,
apply only to oscillations of frequency fac below 10−2 Hz,
i.e., axion and ALP masses below 10−17 eV=c2 (below
10−15 eV=c2 in the case of Ref. [26]). To search for
oscillating EDM components of higher frequency, other
methods have to be utilized.
It has been proposed to search for oscillating EDMs

with the help of electric, hybrid, or magnetic storage
rings [27–30]. Especially in the last case, the charged
particles in the comoving beam frame are subject to a large
electric field (cβ⃗ × B⃗) due to their relativistic motion cβ⃗
in the magnetic field B⃗ in the laboratory system. This
(effective) electric field closes the orbit such that the
resulting force always points toward the center of the ring.
The EDM of the charged particle, which is aligned with the
spin, feels a torque from this electric field. This causes the
spin to rotate about the electric field direction. If the EDM
is static, this rotation only wobbles the polarization about
its starting point, as the polarization precession in the ring
plane continually reverses the torque. If, however, the EDM
oscillates at the same rate as the torque reversal, then the
rotations accumulate, eventually creating a measurable
polarization component perpendicular to the ring plane.
Note that the action of an oscillating EDM on the spin can
be mimicked by a radio-frequency (rf) Wien filter when its
magnetic field, pointing horizontally, acts on the corre-
sponding magnetic dipole moment; cf. Eq. (13).
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The second coupling of the axion or ALP field to matter
particles is based on the “axion-wind” or “pseudomag-
netic” effect [3,31–38], causing a rotation of the spin of a
nucleon or nucleus around the gradient of the axion field
which acts analogously to a magnetic field [31,37–39]. The
term “axion wind” was coined in Ref. [39] (see Ref. [18]
for the extension to “ALP dark-matter wind” and, e.g.,
Refs. [40–42]) for the same pseudomagnetic field—this
time manifestly proportional to the velocity of the Earth-
bound spins with respect to the galactic axion or ALP field.
In that case, the actual velocity is a superposition of the
motion of the Solar System with respect to the axion field
plus the rotation of Earth around the Sun plus the rotation of
Earth around its axis plus the movement of the particle
inside the pertinent sample or experiment in the laboratory.
All the above complexity with the time-dependent orien-
tation of the pseudomagnetic field becomes entirely irrel-
evant to the in-flight spins of the beam particles in a storage
ring when the velocity is close to the speed of light. Most
remarkably, the corresponding pseudomagnetic field is then
always tangential to the beam orbit [43,44]; i.e., it plays the
role of an rf solenoid uniformly distributed along the ring
circumference [44,45].
The two spin-dependent axion or ALP couplings (EDM

and axion wind) can be expressed in the Lagrangian
formalism. The Lagrangian for the EDM coupling to
nucleons is given by the generic expression of Ref. [12]
in terms of the axion coupling gaNγ to the EDM operator:

LaNγ ¼ −
i
2
gaNγaΨ̄Nσμνγ5ΨNFμν

¼ −
i
2

dac
a0

aΨ̄Nσμνγ5ΨNFμν; ð8Þ

where N ¼ n; p denotes neutron or proton, respectively.
Note that the first line in Eq. (8) refers to ℏ ¼ c ¼ 1 units,
while the second line is given in SI units. After the Dirac
spinors ΨN are reduced to standard spinors, χN , and aðtÞ of
Eq. (3) is inserted for the generic ALP field aðt; x⃗Þ, the
pertinent Hamiltonian assumes the structure

HaNγ ¼ −
dac
a0

aðtÞ
�
χ†N

1

S
S⃗χN

�
· E⃗

≡ Ω⃗EDM · ðχ†NℏS⃗χNÞ; ð9Þ

defining the angular velocity Ω⃗EDM for the axion-EDM
coupling. In fact, χN can be extended to apply even for
the (2Sþ 1)-dimensional representations of nuclei, espe-
cially for the three-dimensional one of the deuteron d;
cf. Refs. [44,46,47]. In the following, the electric field is
interpreted as the effective field E⃗ ¼ cβ⃗ × B⃗.
The axion-wind case can be derived from the generic

interaction Lagrangian of the pseudomagnetic coupling
of an axion or ALP field aðt; x⃗Þ to an arbitrary fermion

field Ψf (where f can stand for the nucleon N, proton p,
neutron n, etc.). In the notation of Ref. [12], this
Lagrangian reads

Laff ¼ Cf

2fa
∂μaΨ̄fγ

μγ5Ψf ð10Þ

in terms of the dimensionless coupling constant Cf and the
generic axion or ALP decay constant fa which is inde-
pendent of the fermion (Dirac) field Ψf. If the latter is
reduced to standard spinors (cf. Ref. [44]) and the ALP
field aðtÞ of Eq. (3) is inserted for the generic field aðt; x⃗Þ,
the corresponding Hamiltonian in SI units has the structure

HaNN ¼ −
CN

2fa
ℏ∂0aðtÞ

�
χ†N

1

S
S⃗χN

�
· β⃗

≡ Ω⃗wind · ðχ†NℏS⃗χNÞ; ð11Þ

which is the axion-wind analog of the axion-EDM
Hamiltonian (9).
Quantitatively, the spin motion relative to the momentum

vector in purely magnetic fields is governed by the
subtracted, EDM-, and axion-wind extended Thomas-
Bargmann-Michel-Telegdi equation of Refs. [48,49] and
[44], respectively:

dS⃗
dt

¼ ðΩ⃗MDM − Ω⃗rev þ Ω⃗EDM þ Ω⃗windÞ × S⃗; ð12Þ

defined in terms of the angular velocities for the magnetic
dipole moment (MDM) including the Thomas precession,
the revolution of the beam (rev), the electric dipole moment
(EDM), and the axion-wind effect (wind):

Ω⃗MDM ¼ −
q
m

�
Gþ 1

γ

�
B⃗; ð13Þ

Ω⃗rev ¼ −
q
γm

B⃗; ð14Þ

Ω⃗EDM ¼ −
1

Sℏ
dðtÞcβ⃗ × B⃗; ð15Þ

Ω⃗wind ¼ −
1

Sℏ
CN

2fa
½ℏ∂0aðtÞ�β⃗; ð16Þ

where, to simplify the notation, terms including β⃗ · B⃗ are
omitted. S⃗ in the above equations denotes the spin vector in
the particle rest frame, t the time in the laboratory system,
β and γ the relativistic Lorentz factors of a particle of rest
mass m, and B⃗ the magnetic field in the laboratory system
pointing perpendicular to the ring plane. The magnetic
dipole moment μ⃗ and electric dipole moment d⃗ are both
pointing along the axis of the particle’s spin S⃗. The
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dimensionless quantity G (magnetic anomaly) is related to
the magnetic moment as follows:

μ⃗ ¼ g
qℏ
2m

S⃗ ¼ ð1þ GÞ qℏ
m

S⃗: ð17Þ

The oscillating axion or ALP field aðtÞ [see Eq. (3)]
generates the oscillating (ac) term in the electric dipole
moment dðtÞ; cf. Eqs. (7) and (9). Through the time
derivative ∂0aðtÞ, a second oscillating contribution in the
term Ω⃗wind [43–45] is present; cf. Eq. (11). It depends on
the specific coupling strength CN , while fa is the generic
axion or ALP decay constant, namely, the order parameter
of PQ breaking mentioned above. By just measuring a
vertical buildup of a polarization component perpendicular
to the ring plane, the EDM-induced axion coupling and
the axion-wind pseudomagnetic coupling cannot be dis-
tinguished, since they have the same effect on vertical
polarization. Moreover, for axion or ALP masses below
10−7 eV=c2, the sensitivity in any foreseeable search is not
expected to extend to the scale where the pseudoscalar
bosons determining the aðtÞ field would appear as a result
of known QCD processes; thus, if the possibility of ZN
axions is ignored here, these particles should be referred to
as ALPs rather than axions.
At COSY, which belongs to the class of purely magnetic

storage rings, we store in-plane beams of deuterons
of approximately 970 MeV=c beam momenta with a
spin-precession frequency of fspin ¼ frevjGγj ≈ 120 kHz
(where G ¼ −0.142 987 542 4 is the deuteron magnetic
anomaly and frev and γ the revolution frequency and
the relativistic factor of the circulating deuterons, respec-
tively) [50]. This corresponds to an ALP mass of about
5 × 10−10 eV=c2. Then, the simple quantum estimate of
the lifetime in Eq. (5) gives τa ≈ 8 s. The time for the
frequency scan to cross the ALP resonance should not be
much greater than this, or else the size of the polarization
jump will be attenuated. In fact, the crossing times are less
in this experiment. At the same time, the ALP field must be
able to act on all the particles in the beam simultaneously.
A similar estimate of the spatial extent of phase coherence
as in Eq. (6) gives the length la ≈ 2500 km. This coherence
length well exceeds the size of the storage ring (183.6 m
circumference). All parts of the beam and their particles
should, therefore, be exposed to the same ALP field as
given in Eq. (3).
Since the ALP oscillation frequency ωa in Eq. (3) is

unknown, it is necessary to slowly ramp the beam energy
and, thus, the spin-precession rate while continually mon-
itoring the vertical polarization with the hope of detecting
its sudden change (to which we refer as a polarization jump
in the following) as the resonance is crossed. For this, it is
crucial to be able to maintain the in-plane polarization
over the entire measurement cycle [51] and to continu-
ously monitor the spin-precession frequency with high

precision [52]. The phase of the EDM oscillation relative
to the polarization precession is also unknown [cf. ϕaðt0Þ
in Eqs. (3) and (7)], so four beam bunches are stored
simultaneously in the ring with different polarization
directions in order that all possible phases are adequately
sampled. A novel waveguide rf Wien filter designed for
EDM searches at COSY is successfully used to generate a
test signal in the beam polarization as a confirmation of
the method.
This paper describes the details of the first search for

ALPs using a storage ring. Section II provides a description
of the experiment with a polarized beam. This includes the
properties of the beam and the requirements for the search.
Subsections deal with the problem of using multiple beam
bunches to ensure that all phase possibilities are covered
and describe the management of the scanning process in
detail. Section II C describes how the rf Wien filter installed
in the COSY ring is used to create a resonance that
confirms our model for the process of generating a
polarization jump. The analysis of the data is covered in
Sec. III, and Sec. III E discusses how we handle a
systematic problem with false positive signals. There is
also a description of the model used for the calibration
of any polarization jump in terms of an oscillating EDM.
The various upper limits of the ALP-deuteron couplings are
discussed in Sec. IV. Conclusions and an outlook are
pursued in Sec. V. Details about the four-bunch procedure
and the calibration of the sensitivity of the measurement are
relegated to Appendixes A and B.

II. THE EXPERIMENT

The search for ALPs was performed at the Cooler
Synchrotron (COSY) located at Forschungszentrum
Jülich, Germany [53] in the spring of 2019 [50]. The
polarized deuteron beam (D⃗−) is generated in an atomic
beam polarized ion source [54]. A single polarized state is
made using a weak field transition unit. The beam is then
preaccelerated in the JULIC cyclotron. The beam polari-
zation is measured in the transfer line between the cyclotron
and the COSY ring using a dedicated low-energy polar-
imeter (see Ref. [55]). Deuterons are scattered from a
carbon target at a kinetic energy of 75.6 MeV [55]. The
quantization axis for the spins of the beam particles is
vertical, a direction imposed by the cyclotron fields.
Elastically scattered deuterons are detected at 40° in the
lab on either side of the beam using plastic scintillator
detectors. A description of deuteron spin polarization
is given by Tanifuji [56] and is consistent with the
Madison convention [57]. The analyzing power in this
configuration is Ay ¼ 0.61� 0.04 [55]. A left-right asym-
metry ðL − RÞ=ðLþ RÞ ¼ ð3pyAy=2Þ of −0.508� 0.007
is recorded. Repeating this measurement with the polarized
source rf transition turned off produces an asymmetry
of −0.159� 0.008. This is a measure of the geometrical
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errors in the detector and data acquisition setup. The
difference, −0.349� 0.011, results in a polarization of
py ¼ −0.38� 0.03.
The deuteron beam is injected into the COSY synchro-

tron at 75.6 MeV by stripping off the electrons in a thin
foil and ramped to an energy of 236 MeV (0.97 GeV=c
momentum). At this energy, the polarization of the stored
beam is measured using the forward detector from the
Wide Angle Shower Apparatus (WASA) facility [58], as
shown in Fig. 1.
A 2-cm-thick carbon block is inserted from above

the beam and brought into position with the bottom
edge aligned along the center of the WASA detector.
This requires that the beam be locally lowered by about
3 mm as it passes the carbon target. At the start of data
acquisition, the beam is heated vertically using rf white noise
generated in a band about one of the harmonics of the
vertical tune. This brings beam particles to the front face of
the target. From there, deuterons pass through the target.
Some are scattered into the WASA detector system. The
observed event rate is dominated by elastic scattering which
has a forward-peaked angular distribution. The relevant
analyzing powers for elastic scattering are shown in
Ref. [58]. The detector acceptance is divided by software
into four quadrants (left, right, down, and up). The sum of
these four detector rates is fed back to control the power level

of the white noise and maintain a constant event rate. Left-
right and down-up asymmetries are computed in real time in
four-second time intervals and made available for inspection
as each beam store progresses. The down-up data stream is
unfolded [59] based on the spin tune frequency in order to
generate a value of the magnitude of the rotating in-plane
component of the beam polarization.
A typical left-right asymmetry with the vertically polar-

ized beam running is 0.12� 0.02, where the error indicates
the variation in this value during the experiment. This
means that the cross section weighted average of the
analyzing power over the WASA detector acceptance
is 0.210� 0.035.
The beam is accelerated in less than a second to full

energy. Then electron cooling is applied for 71 s. This
reduces the phase space of the beam to a point where the
polarization lifetime in the horizontal plane could become
long [51]. Once electron cooling is complete, the operating
conditions for the beam are set. This requires minimizing
orbit deviations that would take the beam away from the
centers of quadrupole lenses and reducing other unneces-
sary deviations. Finally, the polarization, which begins in
the vertical direction, is rotated into the horizontal plane
using an rf solenoid.
The timing list for a machine beam cycle is given in

Table I.
In order to precess the deuteron polarization into the ring

plane, the rf solenoid is operated for 3 s on the ð1þ GγÞfrev
harmonic, where frev ¼ 750 602.6 Hz. At this frequency,
the relativistic factor is γ ¼ 1.126. A search, made either as
a scan or in fine steps, shows that the ð1þ GγÞ resonance
for the rf solenoid occurs at fsol ¼ 629 755.3 Hz.
The difference of these two frequencies, frev − fsol ¼
120 847.3 Hz, is the spin tune frequency fspin. The fre-
quency generators are synchronized with the 10 MHz
signal from the Global Positioning System; thus, the set
values are precise and stable out to several millihertz.
From these two frequencies and the assumption that the

TABLE I. Times for various COSYoperations during the beam
cycle.

Event in the cycle Time (s)

Acceleration off 0.674
E-cooling on 4–75
Carbon target moved in 75
White noise extraction on 77
WASA flag (DAQ on) 78
rf solenoid on (rotate py) 83–86
Quick ramp to start of scan 90.0–90.1
Constant frequency hold 90.1–120.1
Ramp to search for ALP 120.1–255.1
Constant frequency hold 255.1–285.1
COSY rf stop 287
End of data taking 288

FIG. 1. Cross-sectional diagram showing the layout of the
WASA forward detector, reprinted from Ref. [58]. The beam
travels from left to right (horizontal red arrow), closely passing a
2-cm-thick carbon block target along the way. The beam is heated
vertically to bring beam particles to the front face of the target.
Scattered particles moving forward exit the vacuum through a
stainless steel window at angles between 2° and 17°. They then
pass through two plastic scintillator window counters cut into pie-
shaped segments, an array of straw tubes for position and angle
tracking, a segmented trigger hodoscope, and five layers (light
blue) of plastic scintillator calorimeter detectors. The trigger
counter and calorimeter detectors are also divided into pie-shaped
segments. All the scintillator counters are read out using photo-
multiplier tubes mounted at the outer edge of each pie segment.
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COSY ring is purely magnetic, it is possible to deduce the
kinematic parameters of the beam given in Table II. This
parameter list is shown without errors, since they lie
beyond the range shown in the table. The values are
typical of the initial conditions of the deuteron beam in
the storage ring before ramping. The setup of the Wien
filter in Sec. II C contains the results of the scan used to
determine the ð1 − GγÞfrev spin resonance frequency. In
that case, the resonance shape is measured as part of the
matching process and found to have a fractional full
width of about 2 × 10−9 which represents one estimate of
its precision.
As for the spin tune frequency fspin, the analysis of the

polarization data allows us to measure it with a 10−10

precision [52], and the cycle-to-cycle variations are driven
by the stability of the power supplies and the resulting orbit
variations rather than by the precision of frequency setting.
It is important that the orbit does not deviate during the

course of a ramp. This requirement is tracked with the use
of beam position monitors.
The strategy for making the ALP search contains the steps

shown in Fig. 2. Because of the necessity to maintain
reproducible conditions for the rotation of the polarization
from the vertical into the horizontal plane, all machine cycles
begin at the same beam energy or revolution frequency, as
indicated by the blue horizontal axis in the figure. Once the
polarization rotation is complete, a quick ramp is made to
take the machine to the starting point for the scan. This
removes the necessity to search for a new resonance
frequency before every new scan. The scans, indicated by
the long sloping lines in Fig. 2, last for 135 s. Before and
after, there is a 30-s period with no ramp. This is meant to
provide extra data to characterize the starting and ending
points under stable conditions. The ramps are planned to
overlap at the ends, as shown in the figure. Since it is
possible that an ALP-induced resonance might occur near
the start or end, the overlap with the neighboring ramp is
planned so that the resonance can be correctly characterized.
Altogether, there are 103 ramps covering a range

from 119.997 to 121.457 kHz, or an axion mass range
of 4.95–5.02 neV=c2.
In detail, after completing the initial preparatory phase of

the machine cycle, the beam is brought to an interaction

with the polarimeter target by moving the target into the
correct position, turning on the rf white noise, and initiating
the feedback used to maintain the polarimeter count rate.
At this stage, the data acquisition (DAQ) is turned on. After
a short period that is used to check the vertical polarization,
the rf solenoid is activated to rotate the polarization into the
horizontal plane. For each scan, the machine is first set to
the starting conditions. Then, the first 30-s holding time
takes place, followed by the ramp and the second 30-s
holding time.
The rf solenoid, whose magnetic axis is along the beam

axis, operates by giving a series of small kicks to the rotation
of the polarization. The magnetic field, except for some mild
focusing effects, does not steer the beam. It, thus, maintains
the constant orbit length constraint. The rf solenoid is kept
running for 3 s. If allowed to continue, it would drive the
vertical polarization into an oscillating pattern [60]. The
solenoid strength is adjusted until the vertical polarization
component observed after the rotation is brought to zero.
See the beginning of Appendix A for more details.
If the beam, once in the plane of the ring, remains

polarized, then the down-up asymmetry in the WASA
forward detector oscillates with the precession frequency.
However, this frequency is much too large to be able to
observe even a single polarimeter event per oscillation;
thus, a different technique has been developed [52].
Namely, a value of the spin tune (ν ¼ Gγ) is assumed
and the data sorted among nine bins according to where
the spin tune would predict it would lie along a single
oscillation of the asymmetry. At the end of a preset time
interval of 4 s, the data accumulated in each of the time bins
are used to calculate a down-up asymmetry for that bin.

FIG. 2. Diagram of revolution frequency as a function of time
(black lines) showing how scans for axions are organized. The
diagram includes an early time (marked in red) when the rf
solenoid rotates the polarization into the horizontal plane. Then,
quick ramps take the machine to the start point for each ramp. Flat
parts are included at the beginning and end of each scanning ramp
to allow checks of the polarization with enhanced statistical
precision. The resonance jump is expected to appear at some time
during the scanning ramp.

TABLE II. Beam parameters.

Parameter Symbol (unit) Value

Revolution frequency frev (Hz) 750 602.6
Spin resonance frequency fsol (Hz) 629 755.3
Spin tune frequency fspin (Hz) 120 847.3
Lorentz factor γ [1] 1.126
Beam velocity =c β [1] 0.460
Orbit circumference l (m) 183.57
Number of deuterons per cycle Nd [1] ≈109
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These asymmetries are reproduced with a sinusoidal curve
from which the magnitude and phase of the oscillating
horizontal asymmetry are obtained. The value of the spin
tune is varied in small steps until a maximum in the
amplitude of the sine wave is found [59]. The resulting
magnitude and phase are recorded for that time bin. Data
from the in-plane polarization measurement are recorded
every 4 s in order to provide the statistics to complete this
search. The processing time is quick enough that values of
the horizontal asymmetry are made available in real time
during the experiment.
The horizontal polarization is subject to depolarization,

because betatron oscillations of the beam particles lead to
variations in their spin tunes. It has been shown that the
addition of sextupole fields to the ring allows for the
compensation of this depolarizing effect [51,61]. Thus, a
part of the setup for this search involves optimizing these
fields for the particular running conditions present in COSY
at the time of this search. Online data are used to determine
the horizontal polarization loss. Values for the strength of the
three families of sextupole magnets are adjusted until the
maximum polarization lifetime is obtained. During this
experiment, the lifetime continues to vary, because it is
very sensitive to running conditions. At all times, the slope of
the horizontal polarization with time is maintained with a
half-life greater than 300 s. Thus, no more than a quarter of
the polarization is lost during a typical scan.

A. Dealing with ALP phase

During the scan, the phase of the oscillating EDM with
respect to the rotating in-plane polarization (with refer-
ence to the beam-frame electric field) is not known. With
only a single beam bunch in the machine at one time, the
amplitude of a jump is modulated by a sine function of
this relative phase. This situation could easily allow an
ALP to be missed during a single scan. To avoid this, our
strategy is to use more than one beam bunch at the same
time, since the same ALP phase is shared among all of
these bunches. With the equipment available at COSY,
bunching the beam up through harmonic 4 was already
available.
A model study is performed to see if this change would

satisfy the requirement with no further additions to the
COSY ring. The details of this calculation are described in
Appendix A. Assuming a round rather than a racetrack-
shaped ring, it is found that four equally spaced bunches
offered four mutually perpendicular orientations of the
polarization direction relative to the beam-frame electric
field (see Fig. 23). As the beam circulates in the ring, these
four polarization directions rotate synchronously.
The COSY ring is racetrack shaped, with arcs and

straight sections of approximately the same length. This
breaks the simple rotation pattern. Two bunches on
opposite sides of the ring have a rotating polarization,
while the two bunches in between have a stationary phase

without any electric field. This pattern swaps four times
during each beam rotation. The sensitivity to all possible
ALP phases comes from the comparison between neigh-
boring bunches. During a single turn, the angle between
polarization vectors of two subsequent bunches oscillates
from 90° to 61.2° and back again. In this case, the actual
sensitivity must be averaged over the range of angles
covered in this oscillation. This results in a reduction of
the signal by 4.2%, and the presented results are corrected
for this effect.

B. Scan management

The approach to managing the scanning process is
described in Sec. II above and is shown in Fig. 2. In
preparing this scheme, one of the most crucial parts is
the precession of the polarization from the vertical to the
horizontal. To do this, the resonant frequency for the
rf solenoid on a harmonic of the revolution frequency
must be located experimentally to within about 0.1 Hz. This
level of precision requires several tests that demonstrate
an efficient precession process and the vanishing of the
vertical polarization component at the end. This procedure
is usually time consuming, taking longer than the series of
scans themselves at one frequency setting. It was decided to
separate the rf-solenoid-driven spin rotation from the rest
of the scan procedure in order to save time and effort. After
the rf-solenoid-driven spin precession is complete, the
COSY operating frequency is ramped to the starting point
for the scan and the scanning process begins. In this way,
the same resonance frequency is kept for all scans.
The ramping process itself must obey the constraint of

preserving the orbit circumference while maintaining the
optical properties of the beam. Even small variations can
alter the way that sextupole corrections affect the beam.
The resulting changes in the cancellation of depolarizing
effects would make the lifetime of the horizontal polari-
zation significantly smaller. For ramping, the two adjust-
able parameters on the machine are the magnetic field in the
arcs and the frequency of the rf cavity that bunches (and
accelerates) the beam. We choose to create a linear ramp in
momentum. The field of the ring magnets is usually
characterized by rigidity Bρ which itself is proportional
to the momentum. Thus, this requirement for the magnetic
field is met straightforwardly using

Bρ ¼ pc
q
; ð18Þ

where ρ is the curvature radius of a particle track in field B,
c is the speed of light, and q is the electric charge of the
nucleus. The bunching or accelerating cavity frequency
must obey the same constraints and should follow

frev ¼
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c4 þ p2c2
p c

Λ
; ð19Þ
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where m is the deuteron mass and Λ is the orbit circum-
ference. The value of frev used in the scan must be
recalculated at each step of the ramp. The quality of the
orbit control is checked by computing the root mean
square (rms) deviation of the orbit summed over all of
the beam position monitors in the ring. Control is adequate
when this deviation is less than 1 mm.
The ramps are controlled by providing continuously

changing momentum values to the COSY control system.
The ramps are calculated from a common starting point of
970 MeV=c, the same momentum used for the rf solenoid
on resonance. Then, the machine settings are moved to the
starting point for an ALP scan. Two speeds are employed
during the experiment. For the faster ramps, the initial and
final momenta are calculated according to

p0 ¼ 970ð1þ 1.173 × 10−4nÞ MeV=c; ð20Þ

pf ¼ p0 þ Δp; ð21Þ

where n is the number of the scan (see Fig. 2), either positive
or negative, away from 970 MeV=c and Δp is the momen-
tum change in 135 s. Table III gives the momentum change
Δp which is entered into the COSY control system and
the corresponding change in fspin and frev calculated from
the read back from the rf cavity frequency. For the faster of the
two ramps, the overlap between ramps is about 2.6 Hz.
For the slower ramps (second row), the same formula is

used for p0, but Δp is decreased. In this case, there is a
small coverage gap between adjacent ramps. The original
plan was to have the ramps overlap so that resonances near
the beginning or end of a scan would not be missed because
of reduced time near the center of the resonance. As it is,
they barely touch for the slow scans. There are 85 of the
faster scans made with n ranging from −42 to 42. For the
18 slow scans, n ranges from −60 to −43.
Each run usually consists of ten separate beam fills. One

out of five of the fills is deliberately unpolarized in order to
provide a baseline for no polarization effect. Thus, each run
usually consists of eight polarized fills. The results from
these fills are combined, as explained in more detail in the
analysis section below, to yield sensitivity results for the
range of the scan.
The goal for each fill is to begin with 109 polarized

deuterons. Because of changes in source and machine
operation efficiency over time, this value could vary up or

down by a factor of 2. These changes are reflected in the
final sensitivity as a function of the ALP frequency.
The calibration of the jump size in terms of the size of the

oscillating EDM is presented in Appendix B. Here, in the
description of the experiment, it is useful to illustrate an
example of the signal as it might appear for one bunch
during the experiment. This is shown in Fig. 3.
In the analysis of the scans, the data are rebinned into 2-s

bins, but the details of the resonance crossing as shown in
Fig. 3 are not apparent in the data. This same feature also
applies to the Wien filter test described in the next section.
If the scanning speed is slower, then more time is available
to make a polarization jump. Calibration calculations
discussed in Appendix B show that the jump size scales
as the square root of the reciprocal of the ramp rate.

C. Wien filter test

The COSY ring has been recently equipped with a
spin manipulation tool that allows for spin rotations
with minimal orbit disturbance, namely, a waveguide rf
Wien filter [62–65]. It is especially designed for precision
experiments including the measurements of permanent
EDMs in a magnetic storage ring, which are performed
at COSY in the framework of the JEDI Collaboration. The
electric field is generated in sync with a perpendicular
magnetic field so that the beam orbit is not perturbed. The
Wien filter can be rotated 90° around the beam axis without
breaking the vacuum to adjust the field directions to the

TABLE III. Change in beam parameters during the ramp.

Δp
(MeV=c) Δfrev (Hz)

Δ _frev
(Hz=s) Δfspin (Hz)

Δ _fspin
(Hz=s)

0.138 81.0 0.600 16.8 0.124
0.112 66.15 0.490 13.5 0.100

FIG. 3. Graph of the vertical component of the polarization
for a hypothetical resonance between the polarization rotation
and the frequency of the ALP. Three quantities are shown as a
function of time during a scan. The green line illustrates the
changing spin-precession frequency as time passes and the
momentum of the beam is ramped up. At 13 s, the spin tune
frequency and the ALP frequency in this model are the same. The
blue and red curves show the time dependence of the vertical
polarization component for two different choices of the ALP
phase. In this case, initial conditions are such that a large jump is
seen for a phase of zero and a much smaller, negative jump is seen
for a phase of π=2. These two cases sample the ALP phase along
perpendicular axes; thus, the sum in quadrature of the jumps
represents the strength of the ALP coupling to the deuteron.
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experimental needs. We choose to use this device to test the
ability of our system to detect a vertical polarization jump
when passing a resonance. For this, it is operated at a fixed
frequency on the ð1 −GγÞfrev resonance with the magnetic
field horizontal, such that the polarization is rotated about
a sideways axis. By scanning the Wien filter frequency
in small steps, the resonant frequency is found to be
871 450.039� 0.002 Hz. The scan of the rf frequency is
done in the way established for the ALP scans. In this setup,
the phase between the Wien filter oscillation and the
rotation of the in-plane polarization is arbitrary for each
fill of the machine. Thus, jumps are expected to be of
variable sign and magnitude in consecutive cycles.
Nevertheless, the result of a random distribution of phases
should be a series of jumps between a positive and negative
limit of the same size with more cases located near the
limits (projection of a sinusoidal function on the y axis). As
is the case for the ALP scans, the ramp operates between
120 and 255 s in the machine cycle, producing a ramping
time of 135 s. Ramps are made with the resonance in the
middle of the ramp. The ramps go in both directions. There
are two different ramp speeds, based on a total momentum
change of either 0.056 or 0.112 MeV=c during the ramp.
As an initial calibration of the strength of the Wien filter

magnetic field, the beam injected with a vertical polariza-
tion (no rf solenoid) is subjected to continuous operation
of the Wien filter from 88 to 285 s in the machine cycle.
Thus, time that is normally not a part of the scan in the
machine cycle is added to the time to observe oscillations.
This extra time comes mostly from the two 30-s periods
used previously for the nonramp data. This setup should
produce a continuous oscillation of the vertical polarization
component. Four different power levels are used for the
Wien filter, each differing from the previous by a factor of
2 in magnetic field. In Fig. 4, data are shown between
81 and 287 s. The Wien filter is turned on at t0 ¼ 88 s.
For the fits to the driven oscillations, the raw asymmetry

data from the measurements are averaged across all four
bunches and rebinned in 1-s intervals. Because of a slow
depolarization arising from synchrotron oscillations [60],
the oscillations are damped with time. These patterns are
reproduced using the function

ALRðtÞ ¼ Afe−½ðt−t0Þ=τ� cos½2πfdrvðt − t0Þ þ ϕ�g þ k; ð22Þ

where ALRðtÞ is the shape of the data, A is the amplitude,
τ is the decay constant, fdrv is the driven oscillation
frequency, ϕ is the phase, and k is the zero offset of the
asymmetry data. The results for the frequency fdrv, which is
a measure of the strength of the Wien filter magnetic field,
are given in Table IV. The right-hand column shows the
ratio between the frequency on that row and the previous
row. Given the power settings, this ratio should be two.
Within a few percent, this ratio is realized. Variations are
due to the properties of the control system of theWien filter.

When scans are recorded for the size of their jumps, a
power level of 0 db is used.

III. DATA ANALYSIS

The data available from each run consist of the left-right
asymmetry and the unfolded down-up asymmetry as
functions of time before, during, and after each scan.
These measurements are available from each of the four
beam bunches. Since the initial vertical polarization has
already been precessed into the ring plane, the left-right
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FIG. 4. Measurements of the oscillating left-right asymmetry
proportional to the vertical polarization produced by the con-
tinuous operation of the Wien filter at various power levels (noted
in the figure). The horizontal axis is time in seconds. The Wien
filter is on continuously. Data from all four bunches are combined
into a single asymmetry.

TABLE IV. Driven oscillation frequencies. The third column
contains the ratio of the current row frequency to the one in the
preceding row.

Power (db) Frequency (Hz) Ratio

−18 0.013 084(19)
−12 0.026 326(21) 2.0122(33)
−6 0.0528 16(25) 2.0062(19)
0 0.110 848(345) 2.0988(66)
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asymmetry where the jump may appear is initially close to
zero. Meanwhile, the down-up asymmetry, which is subject
to depolarization due to spin tune spread, declines slowly
with time. This behavior is usually linear. For each fill and
bunch, a linear fit to these data provides values of the in-
plane asymmetry (AIP) as a function of time during the
scan. Results from different bunches in the same fill are
consistent. Jumps are observed only for the test case using
the Wien filter to rotate the spins of the deuterons.
In line with the open science policy, the collected

semiraw experimental data are available in the Jülich
DATA repository [66]. Two independent analyses are
performed using somewhat different analysis algorithms
to define confidence intervals. As they yield consistent
results, in the following, we present only one of the
approaches based on the well-known Feldman-Cousins
[67] procedure, while the other can be found in Ref. [68].
Models, as described in the appendixes, are used to

relate the sizes of the jumps to the case where the beam
polarization is unity and the effects are generated by the
presence of an oscillating EDM. Subsequent examples of
left-right asymmetries in this section show the original
measurements; any jumps recorded are then normalized by
dividing by the linear fit to AIPðtÞ appropriate for the time
of the observation.
This section addresses, in turn, the calculation of AIP in

the presence of ramping, the general treatment of possible
jumps, and results for the Wien filter scans and the ALP
scans. The jumps for the four bunches are then combined
into a single result by fitting them to a sinusoid as a

function of the relative phase between the beam rotation
and the ALP oscillation. This process produces nonvanish-
ing amplitudes for the sine wave even in cases where no
effect is expected. This leads to a more complicated
interpretation, as explained in Sec. III E.

A. Calculation of the in-plane polarization

The analysis of the down-up in-plane asymmetry AIP is
described in Ref. [59]. Data consisting of down-up events
are gathered into 2-s time bins. As a function of time, the
angle of the polarization α is given by

α ¼ ωt ¼ 2πνfrevðt − t0Þ; ð23Þ

where the spin tune ν ¼ Gγ and the revolution frequency
frev are assumed to be constant and t is measured relative
to t0 at the beginning of the time bin. The events are
divided into 12 angular bins according to the value of α
modulo 2π. The down-up asymmetry ADU is calculated
for the events in each bin. Finally, a sinusoidal curve is fit
to ADUðαÞ. The amplitude of the sine curve becomes the
measure of AIP, the in-plane asymmetry. The phase of the
fit is tracked as a function of the time bin. A constant
value is interpreted as a validation that the initial choice
of spin tune is correct.
In the case of a scan, the spin tune undergoes a

linear ramp from time t1 to t2, as depicted in Fig. 3. At
the same time, the machine revolution frequency also
ramps. This gives

ωðtÞ ¼

8>><
>>:

2πν0frev;0 for t0 < t < t1;

2π½ν0 þ _νðt − t1Þ�½frev;0 þ _frevðt − t1Þ� for t1 < t < t2;

2πνffrev;f for t > t2;

ð24Þ

αðtÞ ¼
Z

t

t0

ωðt0Þdt0; ð25Þ

where the subscripts 0 andf correspond to the initial and final
values, respectively. Dotted symbols denote time derivatives.
Once the spin phase αðtÞ is known, the calculation of AIP
proceeds as in the no-ramp case mentioned above.

B. Calculation of polarization jump

The data to be used in the analysis come from the left-
right asymmetries recorded during the scanning process as
a function of time. An illustration based on data taken with
the Wien filter is shown in Fig. 5. With the level of time
binning used in this experiment, the jump appears to be
instantaneous. We represent this process using the step
function:

fðtÞ ¼
�
ALR;0 if t < tstep;

ALR;0 þ ΔALR if t ≥ tstep:
ð26Þ

In this equation, ALR;0 represents the left-right asymmetry
before the scan as well as the asymmetry before the jump.
The jump value ΔALR is the size of the change in the
asymmetry. In Fig. 5, the black curve uses tstep ¼ 187 s, the
time when the in-plane polarization rotation frequency and
the Wien filter frequency are the same. The step function is
a good representation of these data.
In the case of normal scans for an ALP, we do not know

a priori when the jump may have occurred, if at all. In this
case, the fit is repeated as tstep is given the time of each bin
from 121 to 257 s. When this is done for theWien filter data
in Fig. 5, the fits away from the resonance, as shown by
sample red and green curves, display a smaller value of
ΔALR. There is also a larger value of the fit χ2, as seen in
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Fig. 6 when tstep is away from the resonant frequency. Each
cycle and bunch of the ALP search data is scanned for such
a feature. The results are discussed in Sec. III D.

C. Wien filter scan analysis

The Wien filter scan data consist of 48 separate machine
cycles. The four bunches within each cycle display oscil-
lating jumps of the opposite sign. In each different cycle,
the phase between the Wien filter and the rotating in-plane
polarization is random. This results in variations in the

jump size from cycle to cycle that span the range of
possibilities. Statistical variations in the recorded asymme-
tries lead to errors in the jump of about 2%. In addition, the
phase uncertainty multiplies this size by the cosine of the
unknown relative phase. This acts to reduce all jump sizes.
But the peak of the distribution should be close to the
maximum value of one for the cosine.
To get a better estimate of the maximum, the absolute

values of the jumps for the two ramp speeds are placed
into separate distributions. In each case, there is a clear
maximum. The jump amplitude is found by interpolating
halfway between the bin with the maximum number
of cases in the upper 20% of the distribution and the
maximum in the distribution. This, in part, allows the
downward bias of the cosine effect to be corrected by
the possible upward bias of the jump statistical distribution.
An evaluation of this procedure using a Monte Carlo model
shows that the scatter of the answers is 2% given the
number of jumps recorded, roughly the same as the
statistical error in the jump size. The 2% error overlaps
with the model value of the maximum jump.
The experimental values obtained using this procedure

are presented in Table V along with the values from a
dedicated simulation. This simulation is performed sim-
ilarly to the one for the sensitivity calibration presented in
Appendix B, only using the actual working parameters
of the Wien filter and probing various relative phases.
In addition, as the Wien filter is a localized device, the
rotations are not combined but executed subsequently as
described for the rf solenoid simulation in Appendix A. The
resonance strength of the Wien filter is derived from the
ratio of the driven oscillation frequency (see Sec. II C) to
the revolution frequency in the storage ring at resonance:

ϵWF ¼
0.110 848 Hz
750 602.6 Hz

¼ 1.4768 × 10−7: ð27Þ

This converts to an oscillation amplitude of the spin
rotation per turn by the Wien filter of ψWF ¼ 4πϵWF
(see, e.g., Ref. [64]). Note that at this large resonance
strength the linear dependence between rotation amplitude
and polarization jump (see Appendix B) no longer holds,
and, thus, the ratio of the polarization signals for the two
ramp rates does not reflect the discussed scaling behavior.
While neither pair of values agrees within errors,

taken together there is a confirmation that the simulation
program correctly models the sensitivity of the
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FIG. 6. Reduced chi-squared plot of the step function fits for a
Wien filter scan from one cycle as a function of the time
assumed for the jump. The calculations are based on the data
from Fig. 5. The minimum corresponds to the time when the
resonance takes place.

TABLE V. Comparison of the maximum polarization jump
Δpy from simulation and experiment for the Wien filter test.

Δp (MeV=c) Simulation Experiment

0.112 0.75 0.796(15)
0.056 0.93 0.892(18)
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FIG. 5. Examples of step function fits for the Wien filter scan
data for a single bunch from one cycle. The black line is fit with
the jump (tstep) at the resonance crossing. The red and green
curves show the results for other choices of the jump time. In both
cases, the jump size is smaller and the reduced chi square of the fit
is increased (see Fig. 6).
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experiment. We, therefore, assume that the calibration
described in Appendix B may be used to determine our
sensitivity to ALPs.

D. ALP scan analysis

For the data generated during scanning for an ALP, the
process just described to locate the most probable time and
size for a jump is repeated for each machine cycle and
bunch. A typical example is shown in Fig. 7. Unlike the
Wien filter case, there is no apparent jump. The red curve
shows the largest possible jump found. This result is
consistent with the lack of a minimum in the associated
chi-square versus time plot presented in Fig. 8. Together,
these results point to the absence of a resonance between

the spin tune frequency and any ALP frequency within the
range of the scan. The vertical bars in Fig. 8 indicate the
standard deviation of the reduced χ2 distribution given byffiffiffiffiffiffiffiffiffiffiffiffi
2=ndf

p
, where ndf indicates the number of degrees of

freedom in the fit with ndf ¼ 2 × 15 flat region points þ68
scan region points—3 fit variables ¼ 95. (This corresponds
to a standard deviation of 0.145.) Figures 7 and 8 are for the
scan data what Figs. 5 and 6 are for the Wien filter data.
To avoid missing an ALP due to a phase mismatch, the

search results from all four bunches in each time bin of a
scan are combined to produce a single sinusoidal curve as a
function of possible phase using the formula

fðϕmÞ ¼ C1 sinϕm þ C2 cosϕm; ð28Þ

Â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

q
; ð29Þ

where m denotes the bunch number. The y axis is
renormalized and shows the amplitude of each jump
analysis divided by the in-plane asymmetry AIP at the time
of the tentative jump. The amplitude of the sinusoidal fit is
given by Eq. (29). The spacing between the bunches on
the ϕm axis is π=2 in Fig. 9. As discussed at the end of
Sec. II A, the spacing is not always equal but oscillates
between two extreme values. A correction is made for
this effect.
The jump amplitude Â (29) from the sinusoidal fit is

calculated for each time bin, and Fig. 10 shows the time
distribution of that amplitude for one cycle. For multiple
cycles covering the same frequency region, the mean
amplitude is calculated for each time bin as a weighted
average of amplitudes from the individual cycles. That
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FIG. 7. Example step function fit for an axion scan for a single
bunch from one cycle. There is no jump in asymmetry since
ΔALR ¼ −0.001 ð2Þ is consistent with zero.
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FIG. 8. Reduced chi-squared plot of the step function fits for an
axion scan from one cycle. The absence of a minimum indicates
no resonance. The vertical bar shows the standard deviation of the
chi-square values based on the number of degrees of freedom.
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FIG. 9. Left-right asymmetry jump for all four bunches, from
one cycle, as a function of the angle between the bunch
polarization and the axion phase ϕm for a single time bin. The
red curve is the sinusoidal fit from which the jump amplitude Â is
calculated.
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mean and its uncertainty enter the next stage of the
calculation of the confidence limit.

E. Construction of confidence interval

The use of Eqs. (28) and (29) is designed to capture any
possible ALP regardless of the ALP phase at the time of
resonance crossing. The cost of using these equations is
that near zero amplitude, where most of the results will be,
there is a systematic tendency to overestimate the size of
the jump. Equation (29) always generates a positive definite
value. There is no distribution about zero that would allow
zero as a mean. If Â would happen to be large compared to
its error, this effect would fade. To account for this positive
bias and calculate a meaningful upper limit, the Feldman-
Cousins procedure [67] is used to construct the confidence
interval. References [69,70] contain a detailed discussion
on how the procedure is used for these cases.
In these references, the discussion describes how to

interpret the estimated amplitude (Â) in terms of a true
amplitude (A). In order to facilitate the application to a large
number of time bins as a function of ALP frequency, we
switch to the amplitude normalized by the statistical error.
This gives the normalized estimated value (P̂ ¼ Â=σexp)
and true value (P ¼ A=σexp). The advantage is that
we do not need to regenerate the interpretation for each
time bin.
The probability density function (PDF) for data distrib-

uted according to Â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1 þ C2

2

p
is given in Eq. (2.2) in

Ref. [70]. Modifying this for the P quantity, we obtain

fðP̂jPÞdP̂ ¼ e−½ðP̂
2þP2Þ=2�P̂I0ðP̂PÞdP̂; ð30Þ

where I0 is the modified Bessel function of the first kind.
Equation (30) is called the Rice distribution. A two-
dimensional graphical representation of this distribution
for 0 ≤ P ≤ 6 is shown in Fig. 11. The red line denotes

Pbest, which is the value of P for which fðP̂jPÞ has the
maximum probability in the physically allowed region
for P.
The distortion of the distribution away from a typical

Gaussian shape where P ≈ P̂ becomes clear below P̂ ¼ 2.5.
For quantities that are near zero, the estimated or
experimental value is about one. This means that the
experiment seems to produce evidence of an effect even
though it is significant only at the one standard deviation
statistical level.
Next, a likelihood ratio R is calculated using the

following definition:

R ¼ fðP̂jPÞ
fðP̂jPbestÞ

: ð31Þ

Two examples of the likelihood curve for P ¼ 1.0 and 2.8
are shown, in blue, in the top row in Fig. 12. The Feldman-
Cousins confidence interval is constructed by determining
the bounds within which the integral of fðP̂jPÞ reaches the
desired confidence interval, e.g., 90%. The bottom row in
Fig. 12 shows the PDF for P ¼ 1.0 and 2.8 along with the
gray shaded region denoting the 90% confidence limit for
the two cases above.
The confidence limit bounds on P̂ are determined by

starting with the largest value of R where it is one and
following the two limit points given by the intersection of
a straight horizontal line with the likelihood ratio curve as
the line moves down the plot. In the upper left case, where
the curve ends at P̂ ¼ 0 as the horizontal line crosses
R ¼ 0.6, the left axis where P̂ ¼ 0 replaces the lower limit

FIG. 11. A two-dimensional Rice plot for one cycle. The red
line represents the value of P for which Eq. (30) is maximum for a
given value of P̂.
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FIG. 10. Amplitude Â from sinusoidal fit for a single cycle.
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of the R curve. This process continues until the integral
(gray shading) of the lower curve between the two limits
reaches the desired confidence level. For the right-hand
“Gaussian” case, both limits are still on the R curve and
are roughly symmetric about the peak of R. The lower
and upper limits of approximately 1.5 and approximately
4.6 represent the bounds of the 90% confidence interval.
For the “left-hand” case, there is only an upper limit at
approximately 2.6. Most of the data points in this experi-
ment follow this example.
A summary of all of the limits for P may be found in

Fig. 13. Inside the blue band, the confidence is 68%. The
gray band outside the blue band shows the edges for the
90% limit. For a given value of P̂, trace a line upward until
it crosses the appropriate boundary. The case shown is for
an upper limit only where there is no lower limit other than
zero. These limits correspond to a single beam fill in the
experiment with only one scan.
Since most scans comprise eight cycles, the confidence

interval needs to be constructed taking this into account. A
few scans comprise seven, nine, or 16 cycles. According to
the central limit theorem, for n cycles, P̂ follows a Gaussian
distribution, the mean amplitude remains at the same A
value, and the uncertainty is σn ¼ σexp=

ffiffiffi
n

p
. It is assumed

that this is approximately true, since, once set up, the beam
current reproduces well from cycle to cycle for any
particular scan. All σexp are the same for cycles being

averaged this way. The PDF for n cycles is a Gaussian
with P ¼ A=σn:

fðP̂jPÞ ¼ 1ffiffiffiffiffiffi
2π

p
σRice

eðP̂−μRiceÞ
2=2σ2Rice ; ð32Þ

μRice ¼
ffiffiffi
π

2

r ffiffiffi
n

p
L1=2

�
−
1

2

P2

n

�
; ð33Þ

σ2Rice ¼ 2þ P2

n
−
π

2
L2
1=2

�
−
1

2

P2

n

�
; ð34Þ

where L1=2 is the generalized Laguerre function.
Figure 14 is the two-dimensional plot for n ¼ 8 calcu-

lated using Eq. (32). The construction of confidence
interval follows the one-cycle case. The confidence interval
for n ¼ 8 is shown in Fig. 15. The edges of the blue and
gray bands represent the 68% and 90% confidence levels,
respectively.
Care must be taken if the observed P̂ is less than the

expected value μRice. These are considered to be from
downward statistical fluctuations, and P is calculated at
μRice as explained in Ref. [67]. For each experimentally
obtained value of P̂, the corresponding boundary values of
P are determined. This value is multiplied by the exper-
imental uncertainty σn to give the true amplitude A. In the
frequency range or axion mass range covered by the
experiment, no signal is observed that could not be
explained by a statistical fluctuation. Note that, in setting
a 90% confidence interval, one expects in 10% of the
cases a lower limit larger than zero even if no signal is

FIG. 13. A 68% (blue) and 90% (gray) confidence interval for
one-cycle analysis. On the x axis we have the estimated value P̂,
and on the y axis is the true value P.
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FIG. 12. Two examples, (left) P ¼ 1.0 and (right) P ¼ 2.8, for
the calculation of 90% confidence limits using the likelihood ratio
given by Eq. (31) (top row) and PDF given by Eq. (30) (bottom
row). The gray horizontal dashed line in the likelihood ratio
curves denotes the R value for which the corresponding P̂ values
(gray vertical dashed lines) forms the 90% integral in the PDF
curves. The gray shaded region marks the 90% integral region.
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present. This corresponds to our observation, as shown in
Fig. 16. From this, we also conclude that at this level
of precision there is no systematic effect resulting in a
fake signal.
The conversion into a limit of the oscillating EDM of the

deuteron is done through the equation

jddacj ¼ λA × 10−23 e · cm; ð35Þ

where here and in the following we use the convention that
the unit of electric charge e is defined to be positive. The
coefficient λ ¼ 316 for the fast ramps and 286 for the slow
ramps, respectively. λ is based on a model of the polari-
zation jump size for a particular ramp rate. The derivation
of Eq. (35) is given in Appendix B; see Eq. (B7).

IV. RESULT AND DISCUSSION

A. Limits of ALP signals

According to Refs. [44,45], the angular velocity Ω⃗ of
the extended Thomas-BMT equation (12) of a beam with
particles of mass m, charge q, spin S, Lorentz factor γ, and
velocity v⃗ ¼ cβ⃗ acquires the following oscillating term:

Ω⃗aðtÞ ¼ −
1

Sℏ
dac
a0

aðtÞcβ⃗ × B⃗ −
1

Sℏ
CN

2fa
ℏ∂0aðtÞβ⃗

¼ dac
cγm
qℏS

cos½ωaðt − t0Þ þ ϕaðt0Þ�β⃗ × Ω⃗rev

þ CN

2faS
ωaa0 sin½ωaðt − t0Þ þ ϕaðt0Þ�β⃗; ð36Þ

whenever a classical ALP field, as in Eq. (3), couples to the
particles stored in the beam; cf. Eqs. (8)–(11). Note that the
magnetic field in the laboratory system can be expressed
as B⃗ ¼ ð−mγ=qÞΩ⃗rev in terms of the angular revolution
velocity of the particle beam, Ω⃗rev, as shown in Eq. (14).

FIG. 15. A 68% (blue) and 90% (gray) confidence interval for
the multicycle analysis (n ¼ 8). On the x axis we have the
estimated experimental value P̂, and on the y axis is the true value
P. For an experimental value of P̂ ¼ 3.3, the true value P can be
found between 0 and 3.15 with a confidence of 90%.

FIG. 16. The blue histogram is the distribution of P̂, normalized
such that the integral is one. The experimental data are in good
agreement with the probability density function for P ¼ 0
[Eq. (32)] drawn in red. In both cases, there are n ¼ 8 cycles.
The vertical red line at P̂ ¼ 4.38 corresponds to the lower limit of
the 90% confidence interval being greater than zero. This is the
case for 9.63% of the contributing data points.

FIG. 14. A two-dimensional Rice plot for eight cycles. The red
line represents the value of P for which Eq. (32) is maximum for a
given value of P̂.
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According to Eq. (36), the spin rotation around the axis
β⃗ × Ω⃗rev (the latter always points radially outward, regard-
less of whether the beam is rotating clockwise or counter-
clockwise) is generated by the ac part of the electric dipole
moment of the beam particle [see Eq. (7)] which, in turn, is
induced by the ALP field, while the spin rotation with
respect to the longitudinal axis β⃗ of the beam (see
Refs. [44,45]) follows from the pseudomagnetic (axion-
wind) effect [18,39] of strength CN=fa in terms of the axion
decay constant fa [12]. In the experiment, we cannot
distinguish these two rotation types around two orthogonal
axes which both induce—on resonance—a polarization shift
in the vertical direction but are π=2 out of phase with each
other, so that the two rotation amplitudes add up coherently.
Thus, to obtain an upper limit on dac or CN=fa, one has

to assume that the other term vanishes, such that the bound
is saturated by one term only.
First, we assume that only the EDM term is present,

i.e., CN=fa ¼ 0. Figure 17 provides the 90% confidence
level sensitivity for excluding the ALP-induced oscillating
EDM of the deuteron, ddac, in the frequency range of
120.0–121.4 kHz and the corresponding axion mass range
of 0.495–0.502 neV=c2 represented on the upper axis. The
darker lines indicate the upper limit of the oscillating EDM,
and the lighter filled region above is the exclusion region.
The green and blue colors differentiate the two different
ramp rates mentioned in Sec. II B. The green indicates a
momentum change Δp ¼ 0.112 MeV=c and the blue
Δp ¼ 0.138 MeV=c.
The fluctuations in the exclusion plot result mainly from

two beam properties, intensity and polarization, as well as
the clock time during the scan. Good beam properties mean
better sensitivity. The dependency of intensity is seen in a

larger scale over multiple scans. If, for a particular
frequency range, a larger number of scans are performed,
the obtained sensitivity is better. This can be observed in
Fig. 17 around frequency 120.8 kHz, for example. The
decline in sensitivity within a cycle is mainly due to beam
depolarization.
A small contribution to these fluctuations arises from the

way ΔALR is calculated in Eq. (26). As a consequence,
the sensitivity becomes worse as one moves further from
the middle of the scan, because the imbalance in the number
of points on both sides of the anticipated jump in the
calculation ofΔALR leads to a larger uncertainty in the jump.
An example of how this sensitivity appears for a single scan
region comprising eight cycles is shown in Fig. 18. However,
the intensity of the beam and the polarization have the
greatest influence, and their combination is the reason for the
higher values (jddacj > 8 × 10−23 e · cm).
This experiment to search for ALPs in the storage ring

provides a 90% confidence level upper bound of

jddacj < 6.4 × 10−23 e · cm: ð37Þ

This value is used to calculate ALP coupling constants in
the next subsection and is based on the average of the
individual limit points in Fig. 17. These data are available
online in Ref. [71].

B. Limits of various ALP couplings

In this paper, we focus on the coupling of ALPs to the
deuteron spin via the oscillating part of the deuteron EDM
ddac and/or via the axion-wind effect proportional to Cd=fa.
For all these calculations, it is assumed that the local dark-
matter density ρLDM ¼ ð0.55� 0.17Þ GeV=cm3 (see, e.g.,
Chap. 27 in Ref. [12]) contains only ALPs.

FIG. 17. 90% confidence level sensitivity for excluding the
ALP-induced oscillating EDM (e · cm) in the frequency range
120.0–121.4 kHz (ma ¼ 0.495–0.502 neV=c2). More explana-
tion may be found in the text.

FIG. 18. Sensitivity of a single scan including eight cycles. The
sensitivity decreases and the curve gets larger as one moves away
from the center of the scan. There is no overlap between the scans
in this example.
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The bound on the amplitude of the oscillating deuteron
EDM ddac [cf. Eq. (37)] can be interpreted as a bound on the
axion coupling to the deuteron EDM operator [in analogy
to the axion coupling to the nucleon EDM operator gaNγ of
Eq. 90.38 in Ref. [12]; see also Eqs. (8) and (9)] in terms of
the electromagnetic fine-structure constant α:

jgadγj ¼
jddacj
a0

ffiffiffiffiffiffiffiffi
4πα

p

eℏc
< 1.7 × 10−7 GeV2: ð38Þ

Here, we assume that a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρLDMðℏcÞ3

p
=ðmac2Þ ¼

5.8 MeV. The occurrence of the axion or ALP amplitude
a0 in the denominator of Eq. (38) is typical when the
calculation is based on axions or ALPs as candidates for
(local) dark-matter particles. The inverse proportionality of
a0 and ma implies that the exclusion limits derived from
oscillating EDM measurements at similar experimental
sensitivity have to be linearly increasing functions of the
ALP mass ma.
Figure 19 shows the limit on jgadγj from this experiment

in cyan along with bounds for jgaNγj from the nEDM [25],
CASPEr-electric [72], and Beam EDM [73] experiments.
In addition, the figure presents the jgaNγj exclusion region

as tabulated in Ref. [74] via reformulating the limits of the
electron-EDM HfFþ experiment (see Fig. 3 in Ref. [26]).
Furthermore, a constraint on jgaNγj is shown that is derived
in Ref. [18] from assuming N þ γ → N þ a cooling in
SN1987A. Thus, the latter bound is based on the strength of
the coupling constant in the axion or ALP interaction with
the nucleon EDM and is, therefore, independent of ma.
Note, however, that Ref. [75] suggests an alternative
collapse mechanism for supernovae SN1987A that would
not place limits on the emission of ALPs or axions.
Moreover, following Ref. [74], an exclusion region is
shown that is based on a new constraint on the coupling
of thermally produced ALPs as calculated in Ref. [76]
from combined data of cosmic microwave background
spectra and baryon acoustic oscillations. However, accord-
ing to Ref. [76], these bounds are derived only for the
mass range 10−4 eV=c2 ≲ma ≲ 100 eV=c2. Our directly
measured upper bound (38) at ma ¼ 0.5 neV=c2 falls
within the model-dependent constraint obtained from
SN1987A but is stronger than the CASPEr-electric result
at ma ≈ 100 neV=c2.
Finally, in Fig. 19, jganγðmaÞjN lines of the ZN -axion

model are plotted which follow from the exclusion limits
of the presented EDM-based experiments and which run
parallel to the displayed QCD axion band. EachN must be
an odd-valued positive integer, as otherwise the pertinent
model would not solve the strong CP problem (see
Refs. [13,14]) and one would be back at the ALP case.
In detail, according to Eq. (2) combined with Eq. (90.5) in
Ref. [12], i.e.,

ganγ ¼ ð3.7� 1.5Þ × 10−3 GeV
1

faðmaÞjN
; ð39Þ

ZN axions with N > 81 are excluded by our bound (38)
at ma ≃ 5 × 10−10 eV=c2. Even if the canonical QCD
axion or ALP scenario prevails, the straight lines (propor-
tional to ma) that can be derived from Eq. (39) can still
serve as excellent guides for “extrapolating” exclusion
limits to different ALP masses and, therefore, comparing
the experimental sensitivities of the underlying measure-
ments of hadron (neutron, proton, deuteron, etc.) electric
dipole moments. For instance, the line N ¼ 63 shows
that the pertinent experimental sensitivity of the nEDM
limits is approximately a factor of 103 better than in our
experiment. This is compatible with a factor of approx-
imately 10−3 between the oscillating neutron EDM bounds
between 5.0 × 10−26 e · cm and 7.0 × 10−26 e · cm as
shown in Fig. 2 in Ref. [25] and our upper bound
jddacj < 6.4 × 10−23 e · cm; see Eq. (37). The line
N ¼ 89 indicates that the CASPEr-electric limit [72] is
roughly a factor of 20 less sensitive than that of our
experiment, while the sensitivity of the Beam EDM

FIG. 19. The 90% upper bound on jgadγ j from this experiment
(in cyan) is shown along with the bound on |ganγ | from experi-
ments such as nEDM [25], CASPEr-electric [72], HfFþ [26], and
Beam EDM [73] (as presented in Ref. [74]), in different shades of
red. Also, seen in green is the constraint, calculated in Ref. [18]
from the SN1987A supernova energy loss, which might be model
dependent [75]. In blue, a further constraint calculated in Ref. [76]
from the combined Planck 2018 and baryon acoustic oscillation
cosmological data is displayed (as presented in Ref. [74]).
Finally, the yellow lines N ¼ n, parallel to the QCD axion band
and plotted according to Eqs. (2) and (90.5) in Ref. [12], indicate
that ZN axions withN > n are excluded by the above-mentioned
measured bounds in their respective mass ranges. Figure courtesy
of Refs. [12,74].
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experiment [73] is slightly better than ours. Finally, the
HfFþ limits [26] exclude ZN axions with N > 95 in the
specified mass range. The corresponding N ¼ 95 line
implies that the sensitivity of this electron-EDM-based
experiment to constrain oscillating hadronic EDMs is
about 102 times worse than in our case.
The second coupling we consider is the ALP-gluon

coupling CG=fa, generated from the Θ̄ term for the
permanent EDM case, where the use of CG=fa instead
of just 1=fa takes into account that the ALP coupling
strength might differ from the axion one. The coupling is
given by [17,25,77]

dNacðtÞ

¼ S · κa
eℏc
2mc2

·
CG

fa
· a0 cos ½ωaðt − t0Þ þ ϕaðt0Þ�

≈ 2.4 × 10−16 e · cm ·
CG

fa
· a0 cos ½ωaðt − t0Þ þ ϕaðt0Þ�;

ð40Þ

where S and m are the spin and mass of the nucleon,
respectively, and κa is the chiral suppression factor of the Θ̄
term. Here, the loop-enhanced value κa ≈ 0.046 of
Refs. [12,25,77] is used. Note that the numerical factor
2.4 × 10−16 e · cm is the same for proton (or neutron) and
deuteron, because the ratio S=m ¼ ð1=2Þ=mp ≈ 1=md is
approximately the same for these particle species.
Compared to the direct determination of CG=fa in the
case of the nucleon, however, corrections are expected in
the deuteron scenario. From the isoscalar nature of the
deuteron nucleus and the isovector nature of the leading
low-energy pion-loop contribution to the nucleon EDM
[78–80], a severe cancellation between the contributions of
its proton and neutron components is anticipated; see,
e.g., Ref. [12]. Moreover, the small D-wave admixture of
the deuteron wave function affects the weights of these
individual nucleon components [81,82]. Finally, P- and
T-breaking meson-exchange terms contribute already at
leading tree-level order [83,84]. The latter contributions to
the permanent EDM of the deuteron, induced by the QCD-
theta term or more generalized chromoelectric EDMs of
quarks, are shown to be of similar magnitude as the single
nucleon ones; see, e.g., Refs. [81–90]. The ALP-gluon
coupling in the deuteron case is, therefore, denoted in the
following by an upper index d, i.e., Cd

G, to signal that this
coefficient is likely to contain corrections of order one
relative to the coupling CG in the nucleon scenario.
So, substituting S ¼ 1 and md for the deuteron, we get

the bound on the coupling constant:

����C
d
G

fa

���� ¼
���� ddac
2.4 × 10−16 e · cm × a0

����
< 0.46 × 10−4 GeV−1: ð41Þ

Note again the a0 dependence in the denominator which
implies a linear dependence of the bound on ALP mass ma
and is a signal that the calculation is based on axions or
ALPs as dark-matter candidates.
Figure 20 shows the upper bound on jCd

G=faj in compari-
son with the results on jCG=faj from the nEDM experiment
[25], the HfFþ electron EDM [26], and the Beam EDM [73]
experiments as well as the limits obtained from astrophysical
calculations such as big bang nucleosynthesis, solar core,
and supernova SN1987A [18]—the latter based on the
N þ γ → N þ a cooling mechanism. Details can be found
in Refs. [12,74]. Our result is within the limits obtained from
the supernova emission. In addition, three ZN lines are
plotted, given directly by 1=faðma;N Þ, as calculated in
Eq. (2). They show thatZN axionswithN > 81 andN > 63
are again excluded by the JEDI and nEDM [25] experiments
in their respective mass regions, while the eEDM-based
HfFþ exclusion region (see Ref. [26]) vetoes ZN axions
with N > 95 in the specified mass range. Note that the
apparently better fitting line N ¼ 96 can be excluded for
another reason, since ZN axions with even N do not solve
the strong CP problem.
Next, we consider the axion-wind case. By ignoring the

EDM term in Eq. (36), we can provide a bound on the ALP
(pseudomagnetic) coupling to the deuteron spin, jCd=faj.
On resonance and using Eq. (36), this limit can simply be
expressed in terms of the limit on the oscillating EDM (37),
|jddacj < 6.4 × 10−23 e · cm, as

FIG. 20. Figure showing the 90% upper bound on jCd
G=faj, in

cyan, in comparison with the jCG=faj nEDM [25], HfFþ [26],
and Beam EDM [73] results in various shades of red. Also shown
are the limits from supernova SN1987A, as calculated in Ref. [18]
in green, solar core [14,91] in lighter blue, and big bang
nucleosynthesis [92] in darker blue. The three yellow lines
N ¼ n, which are parallel to the QCD axion band, are calculated
directly from Eq. (2) and indicate that ZN axions withN > n are
excluded by the above-mentioned measured bounds in their
respective mass regions. Figure courtesy of Refs. [12,74].
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����Cd

fa

���� ¼
���� 2γmdc
eℏωaa0

���� · jΩ⃗revj · jddacj

¼
���� 2mdc
eℏGa0

���� · jddacj < 1.5 × 10−5 GeV−1: ð42Þ

In the second line, the ALP-resonance condition is applied,
i.e., ωa ¼ γjGΩ⃗revj, where G is here the magnetic anomaly
of the deuteron. Thus, this limit also shows a linear
dependence on the ALP mass ma indicating axions and
ALPs as dark-matter candidates.
The bound on the ALP-deuteron coupling jCd=faj is

shown in Fig. 21. Other limits shown in this figure are
bounds on ALP-neutron coupling.
Moreover, constraints from supernova SN1987A on

jCn=faj are shown in green that are calculated in
Ref. [102] and recently updated in Ref. [101]. Here, the
underlying cooling mechanism is assumed to be of brems-
strahlung type, i.e., NN → NNa. The result is, therefore,
based on the strength of the coupling constant in the axion
or ALP wind effect and is independent of ma. Remember,
however, that Ref. [75] suggests an alternative collapse
mechanism for supernova SN1987A that would not place
limits on the emission of ALPs or axions.
In addition, the displayed ZN ¼ 81 line indicates that

ZN axions with N > 81 at ma ≃ 5 × 10−10 eV=c2 are
excluded. Here, 1=faðma;N Þ of Eq. (2) is now rescaled
by a factor of approximately 1=3 in order to follow the

KSVZ axion line. The N ¼ 81 line shows that the under-
lying experimental sensitivity of the JEDI measurement is
compatible with, if not better than, that of the old
comagnetometers [95] and NASDUCK [96] experiments.
This underlines the statement made earlier that the axion-

wind effect in storage ring experiments is greatly enhanced
relative to other laboratory measurements because it
depends on the relative velocity of the axions with respect
to the particle under study [see Eq. (36)]. In storage rings,
one has v ≈ c, whereas for particles at rest in the laboratory
system [25,72], the relative velocity is given by the velocity
of Earth with respect to the center of our Galaxy, i.e.,
v ≈ 250 km=s ∼ 10−3c. Since the latter contribution can be
safely neglected in relativistic storage rings, the pertinent
pseudomagnetic field of the axion wind always points
tangentially to the beam trajectory. Therefore, the direction
of v⃗ is uniquely determined, while in laboratory experi-
ments it depends in a complicated way on a time-dependent
superposition of a considerable number of non-negligible
motions.
It should be noted that Ref. [25] assumes ρLDM¼

0.4GeV=cm3 in contrast to ρLDM¼0.55GeV=cm3 assumed
in this paper. Thus, quoted coupling constants in this paper
are approximately 0.85 times smaller compared to Ref. [25].

V. CONCLUSIONS AND OUTLOOK

This paper presents an experiment conducted to dem-
onstrate a new method to search for ALPs using an in-plane
polarized deuteron beam in a storage ring. The polarization
vector of the deuteron beam is influenced by ALPs due to
two effects. First, ALPs introduce an oscillating EDM,
causing a spin rotation around a radial axis in the storage
ring. Second, ALPs introduce the so-called axion-wind or
pseudomagnetic effect resulting in a spin rotation around
the longitudinal axis. Storage ring experiments are specifi-
cally sensitive to the second effect, because it scales with
the velocity of the particles with respect to the axion field
which moreover always points tangentially to the beam,
i.e., in the same direction in the comoving (rest) frame of
the beam particle.
The experiment did not see any ALP signal within the

achieved sensitivity. An upper limit on the deuteron
oscillating EDM is quoted for the first time. In the mass
range ma ¼ 0.495–0.502 neV=c2, oscillating EDM values
above approximately 10−22 e · cm are excluded by this
experiment at least at a 90% level, assuming a direct EDM
coupling. Constraints on other axion and ALP coupling
strengths, like the ALP coupling to the EDM operator of the
deuteron, gadγ , the ALP-gluon coupling of the deuteron,
Cd
G=fa, and the ALP (pseudomagnetic) coupling to the

deuteron spin Cd=fa, are estimated as well.
As a proof of principle for ALP searches in storage rings,

this experiment was just an exploratory study where the
actual data taking period for the axion search was only four

FIG. 21. Figure displaying the ALP-neutron coupling jCn=faj
from various experimental results (CASPEr-comag [93], νn=νHg

[25], CASPEr-Zulf [94], old comagnetometers [95], NASDUCK
[96], torsion balance [97], K3He comagnetometer [98], SNO [99],
neutron star cooling [100], and SN1987A [101]). The 90% upper
bound on the ALP-deuteron coupling, jCd=faj from the JEDI
experiment, is shown in cyan, and the corresponding ZN axion
line, labeled N ¼ 81 and parallel to the DFSZ and KSVZ axion
lines, is displayed in yellow. The limits from supernova
SN1987A, as calculated in Ref. [101] (see also Ref. [102]),
are presented in green. Figure courtesy of Refs. [12,74].
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days. In future experiments with extended beam times and
higher beam intensities, the sensitivity can be increased by
at least an order of magnitude. Systematic effects are not
expected to play an important role, since one is looking for
an ac effect at a particular frequency.
In the future, new types of storage rings to measure

the permanent EDM of charged hadrons are planned [29].
This would allow the search for axions essentially in the
whole mass range displayed in Figs. 19–21. For this kind of
storage ring, it is proposed to use a combination of radial
electric and vertical magnetic bending fields. In this case,
the spin-precession frequency Ω⃗MDM − Ω⃗rev is given by

Ω⃗MDM − Ω⃗rev ¼ −
q
m

�
GB⃗ −

�
G −

1

γ2 − 1

�
β⃗ × E⃗
c

�
: ð43Þ

By using appropriate combinations of the electric and
magnetic field, the amplitude of Ω⃗MDM − Ω⃗rev can be
varied from 0 to the values corresponding to ωa ¼
mac2=ℏ ≃ 10−9 eV=ℏ as described in Ref. [103]. In that
case, the relation of the EDM angular velocity [cf. Eq. (15)]
becomes

Ω⃗EDM ¼ −
1

Sℏ
dðtÞðE⃗þ cβ⃗ × B⃗Þ ð44Þ

but still agrees with the second line in Eq. (36) when
expressed as a function of the angular velocity of beam
revolution. Also, the relation of the axion-wind angular
velocity remains unchanged; see Eq. (16) and the third line
in Eq. (36).
Recently, various ideas have been discussed in the

literature to extend the here presented and established
storage ring searches for axions and ALPs: namely, by
applying, e.g., static Wien filters or modulating radio-
frequency cavities (see Ref. [44]) or by using radio-
frequency Wien filters operating at the sidebands of the
axion frequency ωa and ΩMDM as discussed in Ref. [30].
This kind of experiment can be further explored at

facilities like RHIC, NICA, or GSI/FAIR where polarized
hadrons beams are either available or planned or could be
added to the physics program. Using different particles
(protons, deuterons, nuclei, and even leptons) would allow
one to study the influence of spin and isospin on various
couplings. Moreover, it offers the possibility to perform
measurements with different G factors.
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APPENDIX A: CALCULATION OF THE
RELATIVE IN-PLANE POLARIZATION
DIRECTIONS USING FOUR BUNCHES

The signal of an ALP in a storage ring requires that the
oscillation of the EDM be in phase with the rotation of
the deuteron polarization in the ring plane. Specifically,
the maximum value of the EDM must occur when the
polarization is oriented perpendicular to the direction of
the electric field in the particle frame of reference. During
the search, the phase of the ALP is unknown. In order to
make the effect visible for any phase, we choose to operate
the COSY rf on the fourth harmonic (h ¼ 4) of the
revolution frequency and store four beam bunches. This
appendix demonstrates that this choice provides beams
with different phases between the oscillating EDM and
the direction of the rotating beam polarization. Since the
wavelength of the axion field is much larger than the
physical size of the COSY ring, this allows the ALP signal
to be observed regardless of the ALP phase.
The beam is loaded into COSY with the polarization

oriented in the vertical direction. Rotation of the polariza-
tion into the ring plane is accomplished by operating an
rf solenoid for a brief period of time. If the solenoid
rf operates at the same frequency as the in-plane rotation of
the polarization, then the small rotation induced by the
solenoid accumulates. Continuous running of the solenoid
produces an oscillation of the vertical polarization compo-
nent. If the solenoid is stopped when the polarization
reaches the in-plane orientation, then the beam is prepared
for the experiment.
This result may be calculated using a simple series of

classical rotations, each associated with one turn of the beam
aroundCOSY.For this, a comoving coordinate system is used
with the z axis pointing in momentum direction, the y axis
upward parallel to the magnetic field, and, consequently, the
x axis from the center of the ring outward as the beam is
rotating clockwise. In themodel, the polarization is described
by a vector ½px; py; pz� with the initial polarization [0, 1, 0].
One turn around the ring is described by two rotations, one (θ)
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for the precession in the ring magnets and another (α) for
the precession in the rf solenoid, as shown in Eq. (A1):

2
64
p0
x

p0
y

p0
z

3
75¼

2
64
cosα − sinα 0

sinα cosα 0

0 0 1

3
75
2
64

cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ

3
75
2
64
px

py

pz

3
75:

ðA1Þ

The primed spin vector is the result of one revolution of
the beam around the ring. The rotations may be treated
separately, since the length of the rf solenoid is very short
compared with the circumference of the ring. For the
purposes of a computer-based calculation, the precession
of the spins about the y axis in the ring magnets per turn is
given by θ ¼ −2πGγ, where G ¼ −0.142 987 542 4 is the
deuteron magnetic anomaly and γ ¼ 1.125 976 2 is the
relativistic factor at the initial beam energy. This rotation
is the same for every turn. The rf solenoid operates on a
harmonic of the revolution frequency and with an adjust-
able strength 4πϵsol, such that ϵsol ¼ fsol=frev with fsol
being the frequency of the resulting driven spin oscilla-
tions. Thus, α ¼ 4πϵsol cos½2πnð1þGγÞ þ ϕ�, where n is
the turn count (or the number of times the two rotations are
applied) and ϕ is a phase that is described later. For each
turn of the beam, the operation shown in Eq. (A1) is
repeated based on the result of the previous series of
rotations. The solenoid rotation α is cumulative, adding
another 4πϵsol cos½2πnð1þ GγÞ� to the previous value on
each turn.
A program is written to complete the numerical sum of

all rotations. In the model, 2 × 106 turns are used, and a
value of 4πϵsol ¼ 1.5708 × 10−6 brings the vertical polari-
zation very close to zero.
To simulate what happens for each of the four beam

bunches, we need to repeat the calculation described
above but with an initial phase added to the rf solenoid
angle α to describe the delay in the phase for each bunch.
For the first bunch, denoted as B0, ϕ ¼ 0. For the three
subsequent bunches, the starting phase is Uð1þGγÞ,
where U ¼ π=2; π, and 3π=2 for bunches B1, B2, and B3,
respectively.
The orientation of the polarization at the end of this

process can be described using the x and z coordinates
as follows.
The angle starts at the z axis. The first four columns in

Table VI show the results at the end of 2 × 106 turns. The
last column shows the differences in the polarization
directions between adjacent bunches, as predicted by the
rotation model. The phase angles in the next to last column
apply at the time that the bunch lands in the ring plane,
which is different for each bunch. There is also a polar-
imeter in the COSY ring that is capable of measuring the
phase at the beginning of each 4-s time interval. It is worth
noting that the spacing between the bunches is not equal

across the break from B3 to B0. Thus, we should be able to
tell from the relative phases which bunch is the first.
Sample results are given in Fig. 22.
The match of the phase differences in Fig. 22 with the

predictions in Table VI (column 5) shows that the process
of using an rf solenoid to rotate the spins into the horizontal
plane matches the model.
Using the model results as a starting point, we can

extrapolate forward in the calculation to the same point
in time for each bunch. If we choose the moment when
the rotation of B3 to the horizontal plane is complete,
then the in-plane rotation of bunches B0, B1, and B2
moves forward by 3π=2, π, and π=2, respectively. This
produces a final orientation of the polarization given by
Table VII.
An inspection of the x and z columns shows that these

four polarization directions form right angles to each other
in the beam coordinate system, thus mapping out a space in
all directions. The rotation of the ALP EDM is generated

TABLE VI. Model calculation of bunch spin directions as
measured at a fixed point in the ring, e.g., at the polarimeter.

Bunch x z Angle (rad)
Angle

Bðn − 1Þ-BðnÞ
B0 −0.639 562 0.768 740 −0.693 928
B1 −0.904 313 −0.426 870 −2.011 825 1.317 897
B2 0.187 022 −0.982 356 −3.328 722 1.317 897
B3 0.997 903 −0.064 724 −4.647 619 1.317 897
B0 (again) 2.329 493
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FIG. 22. Measurements of the phase of the in-plane polarization
of a four-bunch beam as a function of the time in the store after
the rf solenoid is turned off. The four bunches are B0, B1, B2,
and B3. The differences in phase angle are indicated by the red
diagram that includes the relative bunch angles in radians. A fixed
value of the spin tune Gγ is assumed during the analysis in order
to freeze any phase drift with time.
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by the presence of an electric field in the rest frame of the
deuterons as they pass through the ring magnets and are
subject to a vertical lab magnetic field. This induces a force
on the deuterons, F⃗ ¼ ecβ⃗ × B⃗, that bends them into the
closed orbit around the ring. The resulting electric field in
the comoving frame also creates a torque on the oscillating
EDM to the extent that the latter is perpendicular to the field
at the time that the EDM is at an extreme point in its
oscillation. Note that the electric field points toward the
center of the ring. With this assortment of polarization
directions, all phases (represented by sine and cosine
functions) generate a measurable change in the vertical
polarization, and no ALP field goes undetected due to
phase mismatch. In addition, the presence of polarizations
of opposite sign ensures that any nonzero offset in the
polarimeter that measures the size of the resonant jump is
offset by a jump on the opposite bunch that is of equal and
opposite sign.

The orientations of the polarization relative to the
electric field are illustrated by the diagram in Fig. 23.
It then becomes clear that the polarization direction for
each of the bunches relative to the local electric field is
perpendicular to the bunch preceding it. All the polar-
izations are either parallel or perpendicular to their
respective electric fields. This figure assumes a circular
ring without straight sections and a clockwise rotating
beam viewed from above.
These calculations may be repeated for the case of the

1 − Gγ harmonic. Here, the resulting phase gaps have a
different pattern, which is also confirmed experimentally
using the phase measurements. The modeling shows that a
good polarization distribution among the four bunches is
possible using either harmonic for the rf solenoid. There is
a sort of symmetry between the two possibilities. The sets
of phases as measured by a fixed polarimeter looking at the
bunches one at a time are distinctive and allow one to pick
out the “first” bunch in each group from its location next to
the single gap that is different from all the rest. This result is
impervious to a number of potential issues, including
whether or not the rf solenoid switching time is gradual
(as is the case experimentally) or instantaneous (as it is in
the model).

APPENDIX B: CALCULATION OF THE
SENSITIVITY CALIBRATION

Previous calculations of the response of the COSY
storage ring have been made using a “no-lattice” model
[60] of successive rotations without a breakdown for each
element of the ring. While the rotations in the bending
magnets are continuous in this model, other devices such as
the rf solenoid (see Appendix A) and the Wien filter are
relatively short and may be treated as having zero length.
The spin rotation per turn due to the bending magnet is
about the vertical axis and given by the rotation vector
θ⃗ ¼ −2πGγe⃗y ð¼ θe⃗yÞ. When we include the EDM, this
introduces another continuous effect with a rotation
about the radial [pointing outward from the center of the
bend assuming d > 0 in Eq. (15)] axis given by ψ⃗ ¼
2πΩ⃗EDM=jΩ⃗revj ð¼ ψ e⃗xÞ. As a result, one gets a new,
combined rotation about a new axis χ⃗:

χ⃗ ¼ θ⃗ þ ψ⃗ : ðB1Þ

The situation is depicted in Fig. 24.
To calculate the result within the no-lattice model, we

choose to tilt the reference frame about the z axis so that the
new y axis lies along the total rotation vector χ⃗. The angle of
tilt becomes

ξ ¼ arctan
ψ

θ
: ðB2Þ

FIG. 23. Diagram showing the orientations of the polarization
relative to the electric field for the four bunches circulating in the
storage ring, as given in Table VII. The black arrow shows the
direction of the clockwise rotating beam, while the rotation of
the spins of the deuterons in the comoving frame and the order of
the bunches on the ring (Bi, i ¼ 0, 1, 2, 3) are counterclockwise
(all viewed from above).

TABLE VII. Model calculation of bunch spin directions as
measured at a fixed point in time, i.e., when bunch B3 is
completely rotated into the horizontal plane.

Bunch x z

B0 0.064 724 0.997 903
B1 −0.997 903 0.064 724
B2 −0.064 724 −0.997 903
B3 (no change) 0.997 903 −0.064 724
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One turn through the storage ring is represented by

2
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3
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2
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3
75; ðB3Þ

where the vector ½px; py; pz� represents the initial projec-
tion of the polarization along the axes shown in Fig. 24 and
½p0

x; p0
y; p0

z� represents the resulting polarization. The first
and third square matrices handle the transformation of the
coordinate system, while the main rotation is described by
the middle matrix.
In the simulation used to calibrate the response of the

system to an axion, the revolution frequency of the
deuteron is ramped. The ramp is centered at the nominal
beam frequency of frev ¼ 750 602.6 Hz, with a 100 Hz
scanning range. The ramp rate for frev in the calculation is
1 Hz=s. As the ramp is followed, the small changes to the
relativistic factor γ and the elapsed time of a single turn
1=frev are followed as discussed in the main text.
In Eq. (7), the oscillating part of the EDM is described by

doscðtÞ ¼ dac cos½ωaðt − t0Þ þ ϕaðt0Þ�: ðB4Þ

This can be expressed in terms of the EDM rotation
angle ψoscðtÞ as

ψoscðtÞ ¼ ψ ac cos½ωaðt − t0Þ þ ϕaðt0Þ�: ðB5Þ

In this equation, t0 is assumed to be the time at the start of
the scan. Thus, time accumulates with an ever-decreasing
time step for each turn as the scan slowly ramps up the
revolution frequency. This causes the EDM oscillation,
initially out of step with the polarization rotation, to fall in
step and then out of step as the scan proceeds. Depending
on the exact conditions at the beginning, the individual
accumulation of the vertical polarization y0 as the resonance
is crossed may be any value between its positive and
negative limits. Thus, the size of the calculated jump varies
similarly. In order to know the maximum jump possible, the
calculation must be run with two orthogonal phases such as
ϕa ¼ 0 and π=2. Then, the sizes of the jumps are added in
quadrature to obtain the final value of the jump size.
The numerical simulation used in the calibration of the

sensitivity begins with a particular size of the oscillating
EDM and scanning rate to calculate the expected polari-
zation jump. For jumps that are much less than one
(assuming complete polarization), the relationship between
the EDM size and the jump is nearly linear. This allows us
to use just the slope given by the calibration. One example
of such a calculation begins with an EDM rotation of ψ ac ¼
8 × 10−9 rad=turn and a scanning rate of 1 Hz=s. After
calculating the jump for two orthogonal choices of the
axion phase, the results are combined and give a jump of
Δpy ¼ 0.0066, which is normalized to a beam polarization
of one. Tests with the calibration program demonstrate that
the jump scales with the reciprocal of the square root of
the ramping rate in the linear region. The ratio of EDM
rotation to total polarization jump must be scaled by
w ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rampðactualÞ=rampðcalibÞp ¼ 0.775 for the faster
scans and 0.700 for the slower scans.
The value of ramp(calib) is 1.00, and the values of ramp

(actual) are found in column 3 in Table III where the rates
are 0.600 Hz=s for the fast scans and 0.490 Hz=s for
the slow scans. The ratio or slope between ψ ac and Δpy

then becomes 9.35 × 10−7 rad=turn for the fast scans and
8.48 × 10−7 rad=turn for the slow scans.
Using the first (radially pointing) term in Eq. (36),

we can describe the amplitude of the contribution to
the determination of the oscillating EDM in terms of
ψ ac ¼ 2πΩa=jΩ⃗revj, where Ωa is the amplitude of the
oscillating angular velocity Ω⃗aðtÞ, by

dac ¼
1

2π

Sℏq
βγmdc

w
0.958

ψ ac; ðB6Þ

where the spin S is equal to one. The factor w corrects for
the ramp rate, and 0.958 corrects for the alternating straight
and curved sections in the COSY ring (see the end of
Sec. II A). For ease of connecting with the parameters of
the COSY ring, the charge q and the denominator of the
second fraction may be swapped for the beam momentum
expressed as ðBρÞ. Then, in the usual EDM units of

FIG. 24. Diagram showing the orientation of the rotation
vectors associated with an EDM precession in the presence of
bending in a storage ring. Coordinates and the bent particle path
are shown. The total rotation χ⃗ is the vector sum of θ⃗ and ψ⃗ . The

angle between θ⃗ and χ⃗, denoted by ξ, is the angle of the coordinate
system rotation (see the text). The size of ψ⃗ in this figure is
exaggerated to make it visible to the reader.
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e · cm and expressed in terms of the above quoted slope
between ψ ac and the jump Δpy, we have

jdacj ¼
1

2π

ℏ
Bρ

w
0.958

���� ψ ac

Δpy

����
calib

A; ðB7Þ

where A is the true value of the upper limit on the magnitude
of the jump. The second fraction in this expression has
the value of ℏ=Bρ ¼ 3.26 × 10−35 J · s · ðT · mÞ−1 ¼
2.03 × 10−14 e · cm, while the rest of the expression is
dimensionless. In this way, Eq. (35) is derived—including
the values 316 and 286, respectively, of the coefficient λ.
For typical values of the true A, values for dac usually lie
below 10−22 e · cm.
The oscillating EDM has a period that is comparable in

size to the revolution frequency. We make the approxima-
tion that the size of the EDM could be represented at any
moment by its average value during a time interval that is
chosen to be a fraction of a turn as the beam circulates in the
storage ring. The three-matrix formula shown above in
Eq. (B3) is repeated N times during each turn. For the
calculations reported here, we chooseN ¼ 15 for which the
calculations converge to a precision of 0.1%.
The calculations are repeated for spin rotation with

respect to the longitudinal axis of the beam arising from
the axion-wind effect, and the calibration matches the
rotation along radial axis as explained in this appendix.
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