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The Mott-insulating phase of the two-dimensional (2D) Bose-Hubbard model is expected to be
characterized by a nonlocal brane parity order. Parity order captures the presence of microscopic particle-
hole fluctuations and entanglement, whose properties depend on the underlying lattice geometry. We
realize 2D Bose-Hubbard models in dynamically tunable lattice geometries, using neutral atoms in a
passively phase-stable tunable optical lattice in combination with programmable site-blocking potentials.
We benchmark the performance of our system by single-particle quantum walks in the square, triangular,
kagome, and Lieb lattices. In the strongly correlated regime, we microscopically characterize the geometry
dependence of the quantum fluctuations and experimentally validate brane parity as a proxy for the
nonlocal order parameter signaling the superfluid–to–Mott-insulating phase transition.
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I. INTRODUCTION

According to seminal work by Landau, second-order
phase transitions are signaled by a change of a local order
parameter. However, some phase transitions defy this
classification in terms of a local order parameter and require,
as a generalization, nonlocal order parameters to describe
their underlying structure [1,2]. The Haldane insulator
constitutes a celebrated example for such a phase, in which
a string correlator captures the underlying nonlocal hidden
order [3,4], which has also recently been realized exper-
imentally [5,6]. Interestingly, the Mott-insulating (MI)
phase of the Bose-Hubbard (BH) model also features
nonlocal order, which accounts for quantum fluctuations
in the form of bound particle-hole pairs [7–9]. In one-
dimensional (1D)BH chains, theMI order has been revealed
by a parity order parameter of the on-site occupation
[7,8,10]. In two dimensions (2D), brane paritywas proposed
as a generalization of parity order for square lattices [11,12].
However, up to now, experiments directly measuring brane
parity in any 2D lattice geometry are lacking, as well as its
experimental validation as an order parameter for the MI
phase in 2D. A strategy to achieve the latter is provided by
mean-field theory, which predicts that the location of the

phase transition should scale with the coordination number
and thus the underlying lattice geometry. This scaling was
explicitly probed by measuring the local order parameter in
the superfluid (SF) phase [13]. Observing such scaling also
in brane parity provides an indication for the suitability of
brane parity as a 2D nonlocal order parameter.
Neutral atoms in optical lattices provide a pristine test

bed to realize low-dimensional Hubbard models [14] and
offer techniques for the detection of local observables using
quantum gas microscopes [15,16]. Optical lattices arise
through the interference pattern of laser beams, whose
layout is carefully chosen for a specific target geometry and
has led to the realization of a variety of lattices [17–21].
While optical lattices benefit from their inherent homo-
geneity and stability, the static nature of a given beam
layout restricts systems to fixed spatial geometries and
makes dynamical changes within a single experimental run
challenging. In contrast, arrays of optical tweezers can be
generated in almost freely programmable geometries [22]
and have allowed for studies of a variety of many-body spin
models. A number of approaches have been brought
forward to allow for similar programmability for itinerant
atoms based on realizing small systems of tunnel-coupled
optical tweezers [23,24] or dynamically controllable latti-
ces [17]. However, tweezer arrays in the itinerant regime
are difficult to scale to large system sizes due to inhomo-
geneities and, concomitantly, a large calibration overhead.
The realization of dynamically controlled lattices—pio-
neered in Ref. [17] to explore topological band structures
and subsequently applied in several experiments [25–27]—
typically involves active phase stabilization techniques,
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which come with experimental overhead to guarantee
reliable operation.
Here, we report on the realization of 2D Bose-Hubbard

models in passively phase-stable optical lattices with
square or triangular base geometry, which we combine
with local site-blocking beams to realize programmable
unit cells. We demonstrate this novel degree of flexible
control by implementing square, triangular, kagome, and
Lieb lattices in one experimental setup and benchmark their
quality through single-particle quantum walks. Increasing
the atomic density, we microscopically probe the strongly
interacting regime through nonlocal quantum fluctuations
and show their dependence on the underlying lattice
structure. Our measurements provide a quantitative char-
acterization of the phase transition point in these lattices
and experimentally establish brane parity [8,11,12] as a
meaningful nonlocal observable to characterize the SF-MI
phase transition in 2D models.

II. PROGRAMMABLE LATTICES

In our approach to realizing tunable lattice geometries,
we superpose a bow-tie lattice [28] (L2) with a mutually
noninterfering retroreflected 1D lattice (L1); see Fig. 1(a).
The two lattices are not only intrinsically phase stable but
also relative to each other as they are both phase referenced
to a common retroreflection mirror (see Appendix A). The
relative phase between the lattice potential minima, which
we refer to as “superlattice phase” Δφ, can be adjusted by
introducing a slight detuning between the lattice frequen-
cies (taking into account the distance between atoms and
the retroreflecting mirror). By additionally varying the
power ratio between the lattice beams V1=V2, the ground
band behavior can be tuned between square, triangular,
honeycomb, and 1D lattices. This setup realizes the flexibly
tunable lattice potential introduced in Ref. [17] while
avoiding the need for auxiliary beams or lattice phase
modulation required for active phase locking. On top of
these base lattices, we employ a digital micromirror device
(DMD) to project single-site-resolved beams through the
microscope objective; see Fig. 1(f). This procedure results
in a programmable repulsive potential landscape, blocking
atomic occupation on specific lattice sites, which allows for
the realization of an even larger class of derived lattice
potentials; see Figs. 1(d) and 1(e). At the same time, with
light only applied to blocked-out sites, this scheme min-
imizes cross-talk, reducing undesired local disorder. The
phase stability between these microscopic blocking beams
and the base lattice is ensured by active feed forward to
correct for slow thermal drifts [29].

III. LATTICE CHARACTERIZATION

In our experiment, we work with about 200 87Rb atoms
in the jF ¼ 1; mF ¼ −1i ground state, trapped in lattices at
a wavelength of λ ¼ 1064 nm and with DMD block-out

beams operating at 670 nm. For the data presented here, we
optimize the superlattice phase for the triangular lattice
condition Δφ ¼ 0 and extract a phase stability of σΔφ ¼
0.01ð1Þπ using L1 amplitude modulation spectroscopy (see
Appendix A). Starting with a 2D superfluid trapped in a
single layer of a vertical 1D lattice, we adiabatically ramp
up the horizontal lattices (L2, L1), such that the atoms form
a unity-filled Mott insulator with a typical filling of 0.97.
After performing measurements in the desired lattice
configuration, we ramp off L1 and perform single-site
resolved fluorescence imaging in L2. Because of pairwise
losses during fluorescence imaging, the resulting single-
shot images reveal the local atom number parity [16].
To demonstrate the flexible control over the lattice

geometry and benchmark the corresponding properties
of the ground band, we perform single-particle quantum

−1 0 1

−1

0

1

P
os

iti
on

 y
/

−1 0 1
−1

0

P
ot

en
tia

l (
ar

b.
)

0.0−− 0.5−− 1.0
Position x/

0.0

0.500

1.0

2 1

x

−5 0 5
Position x/

−5

0

5

y/

−5 0 5
x/

−5

0

5

y/

M
I (

sq
ua

re
)

M
I (

tr
ia

ng
ul

ar
)

S
F

2 1

L2

L1

PBS

12

x

y

(c)

(a)

(b) (f)

(d) (g)

(h)

(i)

(e)

FIG. 1. (a) Experimental setup realizing passively phase-stable
tunable lattices. The lattice 2 beam (L2, blue) is out-of-plane
polarized and forms a bow-tie lattice, realizing a square lattice
potential (b). The in-plane polarized lattice 1 beam (L1, orange)
can be added, with a well-defined superlattice phase Δφ ¼
2πΔx=ðλ=2Þ (see lattice potentials sketched in the right inset).
For the in-phase case, Δφ ¼ 0, an effective triangular lattice
geometry is realized (c). In the left inset, the combined lattice is
passively phase stable due to the retroreflection mirror serving as
a common phase reference. Temporal fluctuations of path lengths
lead to translations along either common paths or along trans-
lationally invariant directions. The arrows indicate the movement
of the interference pattern generated by the respective lattice upon
changes in the phase ϕ1;2. (d),(e) Single-site resolved image of a
Mott insulator in the square (d) and Lieb lattice (e). (f) Lattices
with more complex unit cells, e.g., as shown in panel (e), which
can be dynamically generated by projecting repulsive local
potentials through the objective, blocking out distinct lattice
sites. (g)–(i) MI phase hosting doublon-hole pairs (red shading),
observable as correlated parities (blue: positive; gray: negative).
Brane parity serves as a proxy for a nonlocal order parameter and
is given by the product of the on-site parities evaluated over an
analysis area (black frame). In the MI phase (g),(h), its value is
positive (for finite areas) and depends on the number of doublon-
hole pairs cut by the analysis boundary. In the SF phase (i),
parities are nearly uncorrelated, leading to a substantially smaller
brane parity.
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walks [30–32] in the respective 2D lattices. To achieve this
goal, we flip the hyperfine state of a single atom using
our local microwave addressing technique based on a
DMD [29,30]. After pushing out all but the spin-flipped
atom, we quench the lattices to a depth where the particle is
allowed to tunnel. As the wave function spreads coherently,
we expect the evolving site-resolved probability distribu-
tion to display interference patterns characteristic of the
specific lattice.
The density dynamics averaged over 250 experimental

repetitions and their hopping symmetry axes is displayed in
Fig. 2, showing excellent agreement with simulations. In

the square lattice at 10.0ð3ÞEð752Þ
r depth, where Eða=nmÞ

r ¼
h2=8ma2 denotes the recoil energy of the respective lattice
with spacing a, the two dimensions decouple, and we
observe the characteristic ballistically expanding wavefront

with a fitted hopping energy of J ¼ h × 31ð1Þ Hz along
the horizontal and Jv ¼ 0.92ð1ÞJ along the vertical direc-
tion; see Fig. 2(a). This agrees well with the hopping
rates obtained from band-structure calculations using the
lattice depth independently calibrated by amplitude modu-
lation spectroscopy. The small observed anisotropy is well
reproduced in our simulations when considering the differ-
ence in the lattice spacings as L2 intersects slightly non-
orthogonally at an angle of 90.7(1)°. For the triangular
lattice, the depths are tuned to an isotropic coupling

ratio, following the relation V1=E
ð532Þ
r ≈ 4þ V2=E

ð752Þ
r .

The associated quantum walk measurements shown in

Fig. 2(b) are performed at V2 ¼ 4.0ð1ÞEð752Þ
r with J ¼

h × 21ð1Þ Hz and exhibit circularly symmetric expansion
with a fitted residual diagonal anisotropy of Jd ¼ 1.05ð2ÞJ.
In general, the tunability of the ratio V1=V2 enables us to
deliberately vary the diagonal anisotropy, interpolating
between a square and a 1D lattice along the diagonal
(see Appendix B).
To characterize the emergent programmable lattices in

the presence of microscopic site-blocking potentials of
Vb ¼ h × 300ð90Þ Hz, we measure quantum walks at the
same base-lattice parameters as above. For the block-out
potential presented in Figs. 2(c) and 2(d), the expected
lattice geometries are the Lieb and kagome lattices for the
square or triangular base lattices, respectively. We again
find excellent agreement with simulations and observe that
the atom population remains on the nonblocked sites with
99(1)% probability, while cross-talk-induced disorder
is small.

IV. DOUBLON-HOLE FLUCTUATIONS

After characterizing the single-particle tight-binding
bands and the stability of the generated lattices through
the quantum walks, we proceed by studying the interact-
ing regime in the unity-filling Bose-Hubbard model
realized on the various lattice geometries. While the
ground state in the atomic limit (J=U ≪ 1) corresponds
to a unity-filled product state, quantum fluctuations in the
form of doublon-hole pairs emerge on top of the product
state at finite tunnel couplings [7,9]. In a perturbative
picture, regardless of the exact lattice geometry,
every bond in an isotropic lattice is expected to give rise
to equal nearest-neighbor hi; ji parity correlations of
C¼hŝiŝji− hŝiihŝji≈16J2=U2, where ŝj ¼ eiπδn̂j denotes
the local atom number parity, with δn̂ ¼ n̂ − 1 represent-
ing the deviation from the mean occupation. In the
experiment, we start with a 2D SF and then slowly
increase the local block-out potential in 150 ms to
Vb ¼ h × 450ð120Þ Hz. Subsequently, the horizontal lat-
tices are adiabatically and isotropically increased to a
depth corresponding to the desired J=U parameters in

200 ms, followed by a fast 1-ms ramp to V2 ¼ 90Eð752Þ
r ,

which freezes all quantum fluctuations. The interaction
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FIG. 2. Atomic densities due to quantum walks in various
lattice geometries. After preparing a single localized atom in the
center of the lattice (red site in insets), we measure the ballistic
dynamics of the wave function at various times (top to bottom).
The square (a) and triangular (b) lattices are realized in the ground
band of our superlattice. The Lieb (c) and kagome (d) lattices are
generated by locally projecting repulsive light on certain sites
(gray sites in insets). The interference fringes visible in the
experimental data (left) agree well with simulations (right),
indicating coherent evolution in a homogeneous and stable
lattice. Note that some color-map ranges have been adjusted to
facilitate displaying the large dynamic range.
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energies in this measurement are in the range of
U ¼ h × 200–300 Hz. In Figs. 3(a)–3(c), we compare
the correlations from 200 experimental runs evaluated
over 9 × 9 sites along the straight and diagonal neighbors
for the square, triangular, and Lieb lattices. We clearly
observe that diagonal correlations only arise in the case of
the triangular lattice. Furthermore, the growth in correla-
tions agrees with the perturbative dependence within
its range of validity for all lattice geometries along
their respective bond directions. When approaching the
phase transition, the pairs rapidly deconfine, resulting in
the observed reduction of neighboring correlations [7].
Our presented data are subject to less than 10%
of deviations in the hopping energies due to hopping
anisotropies and lattice calibration, and we estimate
about a 6% reduced correlator strength due to finite
temperatures.
In the case of the tripartite Lieb lattice, there exist two

types of sublattices with differing local coordination
number z: the hub sites with z ¼ 4 and the rim sites with
z ¼ 2. This geometry gives rise to a flat central band,

whose Bloch wave functions exclusively populate the rim
sites [33], which suggests that the influence of the flat band
might manifest as spatially distinct behavior on the two
sublattice types. In particular, in the SF phase, the super-
fluid density is expected to be higher on the hub sites
[34,35] and may be viewed as a tendency to depopulate the
flat band. To capture the effects of this spatial inhomoge-
neity, we analyze the on-site variance s2 ¼ hŝ2ji − hŝji2
averaged over either sublattice type; see Fig. 3(d). We can
indeed observe that the variance differs between the two
types of sites when approaching the phase transition, with
the hub sites displaying higher fluctuations. In the MI
phase, the on-site fluctuations correspond to the formation
of doublon-hole pairs with the site’s z neighbors, and they
grow with J=U as described by perturbation theory. In the
SF phase, we would similarly expect the sublattices to
show distinct atom number fluctuations due to the inho-
mogeneous superfluid density. However, as the parity is
bounded, the parity variance is also bounded, and at large
J=U, the difference in the parity variance decreases again.

V. BRANE PARITY

The different nature of the occupation fluctuations in the
SF and MI phases can furthermore be used to construct a
nonlocal order parameter characterizing the Mott-insulat-
ing phase: The brane parity order parameter is given by the
product of all parities as

ÔP ¼
Y

i∈L×L
ŝ1=Λi ¼ eiπδN̂=Λ; ð1Þ

where 1=Λ parametrizes the generally fractional parity,
eiπδn̂i=Λ, and δN̂ ¼ P

i∈L×L δn̂i denotes the total atom
number deviation within a region of interest (ROI),
L × L. In the Mott-insulating phase, fluctuations in the
occupation remain local, as shown above via the doublon-
hole correlations. Hence, fluctuations inside the ROI leave
the atom number invariant, resulting in an ÔP value
of unity. However, when the edge of the ROI cuts a
doublon-hole pair [see Figs. 1(g) and 1(h)], the atom
number within the ROI changes, resulting in a reduced
ÔP. In contrast, fluctuations in the superfluid phase are
global [see Fig. 1(i)], such that any fluctuation leads to
changes in the atom number within the ROI. This differ-
ence demonstrates thatOP can quantify the nonlocal nature
of a given state and give rise to distinct L-scaling behavior,
which can be approximated as logOP ∼ −L=Λ2 in the MI
and logOP ∼ −ðL logLÞ=Λ2 in the SF, respectively [8,12].
In the thermodynamic limit, brane parity serves as a true
order parameter for fractional parities with 1=Λ ¼ 1=

ffiffiffiffi
L

p
[12] as it remains finite in the MI phase while vanishing in
the SF phase [11,12]. As our experimental setup gives
access to only the integer parities ŝi instead of the full
occupation n̂i, we focus on integer brane parity, Λ ¼ 1,

FIG. 3. Doublon-hole fluctuations in the square (a) and the
triangular lattice (b). The straight-neighbor parity correlations
(blue) grow with ðJ=UÞ2 in both cases (line). The correlations of
the diagonal neighbor (orange), however, only grow in the case of
the triangular lattice. The color plots (top) show the 2D parity
correlations C of the neighboring sites. The colored edges in the
leftmost plot indicate the value shown in the main plot. (c) Fluc-
tuations in the Lieb lattice averaged over both hub and rim sites,
showing a behavior similar to the square lattice case in the
perturbative regime J ≪ U. The insets in panels (a)–(c) depict the
lattice geometry. (d) Fluctuations driven by coupling to neigh-
boring sites and thus the local coordination number. The
coordination number of the Lieb lattice depends on the site
within the unit cell. Accordingly, the on-site variance on the hub
sites (green) grows twice as fast as the rim sites (gray); see inset.
Solid lines show perturbative calculations, with an offset that
accounts for the finite filling of 0.97. Error bars denote the
standard deviation (s.d.) from a bootstrap analysis.
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which is expected to yield a perimeter-law decay of
logOP ∼ −L in the MI phase. However, as OP remains
finite for any finite analysis area and has a parametrically
larger absolute value in the MI than in the SF phase, integer
brane parity is still useful as a proxy for the true MI order
parameter and can capture the critical ðJ=UÞc within
experimental uncertainties (see Appendix C).
In Fig. 4(a), we plot integer brane parity evaluated over a

4 × 4 area as a function of J=U for the triangular, square,
and Lieb lattices. For data in the MI phase, varying the
analysis area furthermore shows scaling consistent with a
perimeter law; see Fig. 4(c). In all geometries, the location
of the phase transition is clearly represented as a departure
of brane parity from zero. The experimentally obtained
critical values ðJ=UÞc ≈ 0.04 and 0.06 for the triangular
and square lattices, respectively, agree well with quantum
Monte Carlo simulations [36,37]. We furthermore find a
collapse of OP for the different lattices when rescaling the
hopping energy with the coordination number of the lattice;
see Fig. 4(b). The observed collapse is consistent with
predictions by mean field theory and measurements of the
superfluid order parameter [13], thus providing further
validation for the use of brane parity as a proxy for the
nonlocal order parameter. Interestingly, we also observe the
collapse for the Lieb lattice when using the arithmetic mean
of its local constituents as an effective coordination number.
The systematic deviations for the Lieb lattice towards

higher parity values near the phase transition could hint
at a stabilizing effect of the flat band on the MI phase,
which is not captured by the applied simple rescaling with
coordination number—a point that needs further investi-
gation by theory and experiment.

VI. CONCLUSION

Employing a quantum gas microscope, we have dem-
onstrated a passively phase-stable approach to realizing 2D
Hubbard systems in programmable lattice geometries. In
various lattices, our microscopic measurements have exper-
imentally established integer brane parity as a nonlocal
observable suitable to characterize the 2D SF-MI phase
transition. Dimerizing sites with an out-of-phase super-
lattice to separate doublons into distinct sites, followed by
site-resolved imaging in the honeycomb lattice, would
furthermore allow for distinguishing doublons from holes
[17,25], which could enable the detection of the fractional
parity order for both bosonic and fermionic systems
[11,12]. Finally, our microscopic programmability of
on-site potentials enables the exploration of further lat-
tice-dependent many-body phenomena, ranging from the
engineering of novel Hamiltonians on top of flat bands
hosting exotic phases [33,38] to studying transport through
interfaces between regions with differing lattice geometry.
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Note added.—Recently, we became aware of related work
microscopically studying fermionic many-body systems in
actively phase-stabilized tunable lattice geometries [27] and
measuring brane parity order with error-corrected snap-
shots [39].

APPENDIX A: LATTICE PROPERTIES

1. Lattice phase stability

In the tunable base lattices implemented in Refs. [17,27],
where two independent but mutually interfering retrore-
flected laser beams are crossed, active phase stabilization is
required due to the “time phase” difference between the two
beams, α, being an unrestricted degree of freedom. For
beams with wave number k ¼ 2π=λ with a combined field
given by A ∼ eiky þ e−iky þ eiαeikx þ eiαe−ikx, the intensity
becomes jAj2 ∝ cos 2xþ cos 2yþ 4 cos α cos x cos y and

FIG. 4. (a) Brane parity across the SF-MI phase transition for
various lattice geometries analyzed over 4 × 4 sites. The mea-
surements in the triangular (red), square (purple), and Lieb
(green) lattices all show a change from zero to finite values of
integer brane parity. The critical ðJ=UÞc agrees with the phase
transition point obtained from quantum Monte Carlo simulations
(solid lines), indicating its suitability as a nonlocal order
parameter for the Mott-insulating phase. (b) Rescaling the
hopping energy with the respective (averaged) coordination
number z of the lattice, we find a collapse of the data, showing
that the phase transition scales with z. (c) Dependence of integer
brane parity with the analysis area containing L × L sites in the
MI phase at J=U ¼ 0.029 (triangular, red), 0.029 (square,
purple), and 0.033 (Lieb, green). Solid lines denote an expo-
nential fit consistent with perimeter-law scaling. The Lieb lattice
only contains even data points due to its 2 × 2-site unit cell. Error
bars denote the s.d. from a bootstrap analysis.
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thus realizes an interference structure that depends on α. As
bow-tie lattices (as used in our setup) fold the same beam
into the orthogonal axis, the time phase difference is
inherently fixed to α ¼ 0. In the following, we furthermore
show that this lattice is also structurally phase stable with
respect to variations in the “spatial phases” when super-
posing with an additional 1D lattice.
The layout of our lattice beams is shown in Fig. 5, with

the two axes kx;y ¼ kðcos θ;∓ sin θÞ. The square lattice
generated by lattice 2 and the 1D lattice generated by
lattice 1 have respective fields of A2 ¼ a1eiðky·rÞ þ
b1eiðkx·rþϕ2Þ þ b2eið−kx·rþϕ2þ2ϕ1Þ þ a2eið−ky·rþ2ϕ2þ2ϕ1Þ and
A1 ¼ c1eiðkx·rÞ þ c2eið−kx·rþ2ϕ1þΔφÞ, where Δφ indicates
the superlattice phase. This yields an overall light inten-
sity of

I ¼ jA1j2þjA2j2
¼ ða21þa22þb21þb22þ c21þ c22Þ
þ 2c1c2 cos½2kðu−u0Þcosθ− 2kðv−v0Þ sinθ−Δφ�
þ 2a1a2 cos½2kðu−u0Þcosθþ 2kðv−v0Þ sinθ�
þ 2b1b2 cos½2kðu−u0Þcosθ− 2kðv−v0Þ sinθ�
þ 2ða1b1þa2b2Þcos½2kðv−v0Þ sinθ�
þ 2ða1b2þa2b1Þcos½2kðu−u0Þcosθ�; ðA1Þ

where we have defined 2ku0 cos θ ¼ ϕ2 þ 2ϕ1 and
2kv0 sin θ ¼ ϕ2. Thus, the lattice potential only depends
on a translated position ðu − u0; v − v0Þ, confirming that,
structurally, the lattice is passively phase stable. The
potential structure corresponds to the one realized in
Ref. [17] but is subject to an additional ϕ1-induced
translational phase shift along the lattice 2 axis due to
the folded layout.

2. Bose-Hubbard parameters

The Bose-Hubbard model is given by

Ĥ ¼ −
X
hi;ji

Jijĉ
†
i ĉj þ

U
2

X
i

n̂iðn̂i − 1Þ þ
X
i

Vin̂i: ðA2Þ

The on-site potential Vi is experimentally calibrated, as
described in Appendix C. The hopping energy Jij and
interaction energy U are theoretically calculated and
verified for certain values by fitting the quantum walk
measurements and modulation spectroscopy, respectively.
Since the lattice potential Vðu; vÞ ∝ −Iðu; vÞ is not sepa-
rable, we perform a full 2D band-structure calculation
following Ref. [40]. On the one hand, this calculation yields
the band gaps used for the lattice depth calibration (see
Appendix B). On the other hand, we obtain the ground-
state Wannier wave functions wjðu; vÞ on lattice site j,
which we use to determine the hopping energy between
sites i and j by evaluating

Jij ¼
Z

dudvw�
i ðu; vÞ

�
−
ℏ2

2m
∇2 þ Vðu; vÞ

�
wjðu; vÞ

and the Hubbard interaction energy

U ¼ 4πℏ2as
m

Z
dudvdzjwðu; vÞwzðzÞj4

where as is the s-wave scattering length. The Wannier
function for the vertical direction wzðzÞ is independently
obtained from a 1D band-structure calculation due to the
separability of the lattice potential along this direction.
For the lattice geometries with site block-out, we

consider the influence of the block-out potentials within
the tight-binding model since the band gaps, which are
greater than h × 3 kHz, are much larger than the block-out
potentials, which are less than h × 450 Hz.

APPENDIX B: SINGLE-PARTICLE
MEASUREMENTS

1. Modulation spectroscopy

We calibrate the individual lattice depths by performing
amplitude modulation spectroscopy and find two d-band
resonances from which we determine the lattice depth with
about 2% uncertainty.
For the superlattice phase measurements shown in

Fig. 6, we amplitude-modulate lattice 1 within a deep
lattice-2 potential near the upper p-band resonance.
Because of the weak single-particle drive in an isolated
system, we analyze the response assuming a two-level
model with coupling Ω and modulation-frequency detun-
ing Δ. This model yields a mean excited-state population
of PeðΩ;ΔÞ ¼ 2=ð4þ δ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2ð4þ δ2Þ

p
Þ, with δ ¼ Δ=Ω.

Close to the superlattice in-phase condition, Δφ ¼ 0, the

FIG. 5. (a) Lattice beam layout denoting intersection half-angle
θ, field amplitudes of the incident beam passes fai; bi; cig, and
phase delays fϕig introduced by propagation. The superlattice
phase Δφ is depicted in Fig. 6(a). At an intersection angle of
2θ ¼ 90°, various lattice geometries can be realized [17] as
follows: in the absence of lattice 1, a square lattice (b); in its
presence, a honeycomb lattice for Δφ ¼ π (c); a triangular lattice
for Δφ ¼ 0 (d); and a 1D lattice in the limit of deep lattice 1 (e).
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coupling is proportional to the superlattice phase (here,
Ω=Δφ ≈ 660 Hz h=π), which we calculate from the band-
structure results. Considering the long and weak drives,
we assume that Gaussian fluctuations in the superlattice
phase ð∝ σΩÞ and in the lattice depth ð∝ σΔÞ dominate the
shape of the resonance. Thus, the excitation probability on
resonance is given by the twofold convolution over the
fluctuations, yielding

P̄eðΩÞ ∼ 1 −
Z

fN ðω;σ2ÞðxÞex2erfcjxjdx; ðB1Þ

where erfc denotes the complementary error function, and
fN ðω;σ2Þ is the probability of a normal distribution with
center ω2 ¼ 2Ω2=σ2Ω and variance σ2 ¼ σ2Ω=2σ

2
Δ.

In the experiment, we tune the superlattice phase by
varying the frequency difference Δf between the lattices
using an acousto-optic modulator, which yields a tuning
slope of Δφ=Δf ≈ π=250 MHz for the distance between
atoms and retroreflecting mirror of about 300 mm. At a

lattice-2 depth of V2 ¼ 185ð5ÞEð752Þ
r , where all dynamics in

the lattice are frozen and where we can separate the lattice
into its local potential wells, we modulate lattice 1 at

V1 ¼ 5.0ð2ÞEð532Þ
r , with a modulation depth of 0.25. As a

spectroscopic signature, we measure the fraction of atoms
remaining in the ground band after modulation by adia-

batically lowering the lattice depth to V2 ≈ 18Eð752Þ
r , lead-

ing to the loss of atoms populating higher bands; see
Fig. 6(b). By fitting the functional shape of Eq. (B1) to
our experimental data and converting from coupling
strength to the superlattice phase, this model allows us
to extract a standard deviation of the superlattice phase of
σΔφ ¼ 0.01ð1Þπ. Repeating this measurement weeks later

gave a similar excitation probability, demonstrating the
long-term stability of this lattice scheme.

2. Quantum walks

The quantum walk measurements shown in Fig. 2 are
performed by preparing a single atom and lowering the

lattice-2 depth from 25Eð752Þ
r (for square geometries) and

15Eð752Þ
r (for triangular geometries) to the depth used for

the dynamics measurements in 2.5 ms to avoid band
excitations. After the time evolution, we freeze the dynam-

ics by ramping up lattice 2 to 25Eð752Þ
r in 0.8 ms. We

postselect the data for a single detected atom and fit the
resulting time-dependent densities to numerical simulations
of the respective tight-binding lattice. For the base lattice
geometries, we fit the hopping energy along each bond
direction, as well as a time offset t0 to account for the finite
ramp times, yielding 2Jt0 ¼ 0.60ð1Þ and 0.32(5) for the
square and triangular geometries, respectively. The param-
eters of the base lattice fits are used for the Lieb and
kagome lattice simulations and agree with a direct fit to
the data.
By varying the depth ratio V1=V2 between the lattices,

we can furthermore tune the hopping energy ratio
between the straight bonds and the diagonal bonds, i.e.,
the geometry between a square lattice for V1 ≪ V2 and a
1D lattice for V1 ≫ V2. In Fig. 7, we show quantum
walks, in analogy to Fig. 2, performed with intermediate
anisotropic hopping ratios, which similarly agree with
simulations.
Quantitative comparisons between calibrated and fitted

hopping energies are presented in Table I, showing lattice-
depth-dependent anisotropies, with the coupling anisotro-
pies along the straight bonds being well captured by the
band-structure calculations. We can further observe devia-
tions of the absolute scales, giving rise to relative uncer-
tainties of up to 10%, which suggest slight imperfections in
the lattice beam parameters.

APPENDIX C: MANY-BODY MEASUREMENTS

1. On-site potential calibration

Our vertical lattice creates a spatially inhomogeneous in-
plane confinement potential. To estimate its potential depth,

FIG. 6. (a) The superlattice phase, Δφ ¼ 2πΔx=ðλ=2Þ, can be
precisely calibrated by amplitude-modulating lattice 1 (orange
solid line) near the band-gap frequency of a much deeper lattice 2
(blue solid line). Single-band excitations require dipolar modu-
lation (black dashed line), which is minimal when the lattices are
in phase (Δφ ¼ 0). The vertical dashed lines represent the
potential minima (and thus phase) of the respective lattices.
(b) Single-band amplitude modulation spectroscopy probing the
resonant-band excitation probability at the respective superlattice
phase. The solid line shows a fit from which we extract a
superlattice phase stability of σΔφ ¼ 0.01ð1Þπ, which was con-
firmed in a long-time measurement. Error bars denote the
standard error of the mean (SEM).

Exp. Sim. Exp. Sim.

FIG. 7. Densities due to quantum walks in anisotropic triangu-
lar lattices with fitted hopping energy ratios between diagonal and
horizontal neighbors of Jd=J ¼ 1.69ð3Þ (a) and 0.79(2) (b). The
insets show the site connectivity, with stronger couplings high-
lighted in orange.
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we increase the atom number loaded into the system until a
doubly filled Mott insulator forms in the center. The outline
of the atomic cloud then gives us the equipotential line at a
potential depth of the Hubbard interaction energy U.
Because of fluctuations in the atom number, the major
source of uncertainty for this calibration method stems
from determining the outline of the cloud.
Using this information, we calibrate the projected DMD

potential for blocking out the lattice sites. We adiabatically
ramp the square lattice into the atomic limit with the
projected potential switched on. While keeping the atom
number such that the outline of the atomic cloud remains
near the U-equipotential line, we vary the projected light
power. When reaching a projected potential of U, we
expect the population on the central blocked-out sites to
vanish. We therefore calibrate the DMD potential by
mapping the light power where the average filling of the
central blocked-out sites reaches less than 0.03 to a
potential shift of around U.

2. Lieb sublattice inhomogeneity

In order to validate the observation that the parity
variance differs between the hub and rim sublattice sites
of the Lieb lattice as shown in Fig. 3(d), we plot the
variance difference in Fig. 8. Comparing to the same
analysis performed in the square and triangular lattices,
we can see that only the Lieb lattice shows a significant
deviation from zero.
We expect the sublattice-dependent occupation fluctua-

tions to grow further into the SF phase; however, the data
show a peak already around the phase transition point. We
attribute this observation to the fact that, in contrast to the
atom number, the parity is bounded, which limits the
observable fluctuations. This behavior is also qualitatively

reproduced by inhomogeneous mean field calculations
[34], which similarly show a reduction in the parity
variance difference with increasing J=U.

3. Finite-size scaling of integer brane parity

To maximize the signal-to-noise ratio of integer brane
parity extracted from experimental data, we first crop the
images to a 7 × 7-site area in the center of the atomic cloud.
We then evaluate brane parity for all possible L × L-site
analysis areas within the original 7 × 7 sites and average
over the results. Note that in the case of the Lieb lattice, we
flip the sign ofOP for analysis areas with an odd number of
total lattice sites. In this section, we discuss how the choice
of L influences the value of OP as well as the extracted
phase transition point.
In the MI phase, we show that integer brane parity OP

is subject to a perimeter-law scaling, logOP ∼ −L; see
Fig. 4(c). Evaluated at different parameter regimes of J=U,
with increasing L, we additionally observe a slight trend
towards lower values than expected for a perimeter law.
This behavior can be partially attributed to finite-temper-
ature effects, which lead to the formation of uncorrelated
individual holes. Uncorrelated holes would lead to an area-
law scaling, logOP ∼ −L2, and thus a downward trend that
becomes more dominant with increasingly large analysis
sizes (due to the perimeter-area scaling) and with decreas-
ing J=U (due to the reduced probability of finding
correlated pairs). Note that this effect also gives rise to a
change in the nearest-neighbor parity correlators shown in
Fig. 3 (see also Ref. [7]), which in the perturbative regime
yields a relative reduction of about 2ð1 − n̄Þ ∼ 6%, where n̄
denotes the average filling in the atomic limit.
Another reason for a reduced brane parity in the MI

phase involves the inhomogeneous confining potential
from the lattice beams, leading to a coexistence of different
phases in the system depending on the local chemical
potential [16]. As a consequence, we expect a bias towards
a superfluid when including regions of smaller local

FIG. 8. Parity variance on the hub sites s2hub subtracted by the
variance on the rim sites s2rim for the triangular (red), square
(purple), and Lieb (green) lattices. The local variance differs
significantly only for the Lieb lattice. The solid line indicates
perturbative on-site fluctuations from doublon-hole pairs in the
MI phase. The dashed line indicates inhomogeneous mean-field
calculations at μ=U ¼ 0.5 in the SF phase.

TABLE I. Base lattice hopping energies obtained through fits to
the quantum walk measurements and from band-structure cal-
culations using lattice depths calibrated by amplitude-modulation
spectroscopy.

Geometry Lattice Depth Axis Calculations Fit

Square V2=E
ð752Þ
r

10.0(3) J=h 32.9(9) 31.2(6)

Jv=h 30.8(9) 28.8(6)

Triangular V2=E
ð752Þ
r

3.9(2) J=h 14.1(12) 15.8(3)

V1=E
ð532Þ
r

8.5(3) Jv=h 13.4(12) 15.1(3)

Jd=h 16.3(8) 16.7(3)

Positive V2=E
ð752Þ
r

3.9(2) J=h 9.0(8) 9.0(2)

anisotropic V1=E
ð532Þ
r

10.4(3) Jv=h 8.6(8) 8.9(2)

Jd=h 16.1(8) 15.2(3)

Negative V2=E
ð752Þ
r

3.9(2) J=h 22.5(16) 22.4(5)

anisotropic V1=E
ð532Þ
r

6.6(2) Jv=h 21.5(16) 22.6(5)

Jd=h 16.4(8) 17.7(4)
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chemical potential towards the edges of the atomic cloud.
As analyzing with larger L has a higher sampling frequency
at the edges than with smaller L, the inhomogeneity effects
are stronger for larger L.
In the SF phase, one would, in contrast, expect logOP ∼

−L logL scaling [8]. We do not directly observe such
scaling since the absolute OP values are much smaller and
lie within experimental noise already at L ∼ 4. However,
due to the difference in scaling compared with the MI
phase, we expect integer brane parity to serve as a more
accurate proxy for the order parameter when measured on
larger analysis areas L × L. In Fig. 9, we show the J=U
dependence of OP for different L and extract a simplified
estimate for the phase transition point ðJ=UÞ0: We linearly
fit the sloped part of the data (disregarding nonlinear
behavior predicted in the immediate vicinity of the phase
transition [7,8]) and assign the value at which the fit
vanishes as ðJ=UÞ0, for which we indeed observe con-
vergent behavior for increasing L.
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