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The modern thermodynamics of discrete systems is based on graph theory, which provides both
algebraic methods to define observables and a geometric intuition of their meaning and role. However,
because chemical reactions usually have many-to-many interactions, chemical networks are described by
hypergraphs, which lack a systematized algebraic treatment and a clear geometric intuition. Here, we fill
this gap by building fundamental bases of chemical cycles (encoding stationary behavior) and cocycles
(encoding finite-time relaxation). We interpret them in terms of circulations and gradients on the
hypergraph and use them to properly identify nonequilibrium observables. As an application, we unveil
hidden symmetries in linear response and, within this regime, propose a reconstruction algorithm for large
metabolic networks consistent with Kirchhoff’s voltage and current laws.
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I. INTRODUCTION

A. Context and motivations

One main task of nonequilibrium physics is identifying
the nontrivial forces that drive a system out of equilibrium
and the currents that develop both inside the system and in
its interface with the outside environment.
Perhaps the simplest example is that of a Brownian

particle moving on a ring. The system is described by
the Langevin equation _xðtÞ ¼ F(xðtÞ)þ ηðtÞ for the par-
ticle’s position xðtÞ, where FðxÞ is the deterministic force
and ηðtÞ is the thermal noise (Gaussian and white). The
one-dimensional nature of the problem makes it easy to
decompose the force into conservative and nonconservative
contributions: FðxÞ ¼ −V 0ðxÞ þ f, where, for a ring of
length L, VðxÞ ¼ Vðxþ LÞ is a periodic potential and
f ¼ R L0 dxFðxÞ. The source of the drive is identified in the
scalar parameter f: For f ¼ 0, the system relaxes with a
vanishing current to an equilibrium steady state governed
by the Boltzmann distribution associated with the potential
VðxÞ, while for f ≠ 0, the system is driven to a non-
equilibrium steady state characterized by a nonvanishing

current [1]. Notice that it is the geometry of the ring that
allows for a nonzero steady-state current in this latter case.
The aforementioned model has arguably little relevance

in real-world settings, but there are alternative scenarios
where cycles are encountered naturally in relation to
nonequilibrium behavior. For instance, molecular motors
perform in cycles [2,3], and cycles appear in most bio-
chemical reactions, such as those involved in gene regu-
lation and metabolic functions of living systems. This
motivates us to consider the framework of chemical
reaction networks (CRNs) [4–8], describing sets of reac-
tions involving chemical species. Each reaction has its
inherent chemical activity: It transforms (a combination of)
reactants into products giving rise to a net flux of matter, the
current, in response to an intrinsic chemical force, the
affinity. At equilibrium, currents and affinities vanish.
Thereupon, external currents can be injected into the
system through external chemostats, which then foster
nonequilibrium behavior. Consider, for example, a minimal
model of glycolysis [9] for the consumption of ATP in
the cell:

∅⇌
1

Gly;

Pyr⇌
2

∅;

Glyþ 2ADP⇌
3

2ATPþ 2Pyr;

ATP⇌
4

ADP: ð1Þ
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The first two reactions stand for the couplings with external
chemostats (depicted by ∅): The cell imports and expels
glucose (Gly) and pyruvate (Pyr), effectively fixing their
concentrations. In reaction 3, a molecule of Gly is used to
convert two molecules of low-energy adenosine diphos-
phate (ADP) into two molecules of high-energy adenosine
triphosphate (ATP). The chemical energy stored in ATP is
then released during the spontaneous dephosphorylation
(reaction 4) and used to fuel the physiological activity of
the cell. One sees that whenever the four reactions are
performed, respectively, once, twice, once, twice, the
number of molecules of each species is preserved. This
is an example of a chemical cycle [8,10], that is, a sequence
of reactions that does not alter the overall state of the
system. The cell is maintained in a nonequilibrium steady
state, dissipating energy for its metabolic activity since
chemostats sustain net currents of Gly (consumed) and Pyr
(produced). Interestingly, the chemical cycle plays a role
similar to periodicity for the Brownian particle on a ring.
In this example and in generic CRNs, the full analogy is

hindered by the fact that interactions are inherently discrete
and dependent on the topology of the reaction network. It is
thus natural to ask the following questions: How can one
identify the conservative and nonconservative contributions
to the chemical force? How do they entail transient and
steady currents? Based on works by Kirchhoff on electrical
circuits and Kolmogorov on Markov chains, Hill and
Schnakenberg, among others, proposed a framework to
describe, in a steady state, the source of irreversibility as
stemming from chemical cycles. Using the graph-theory
notion of spanning tree, they identified a fundamental set of
cycles defined on the population graph and explained their
physical relevance to identify the chemical driving forces.
This approach has been successfully exploited in several
applications [11–15] and recently extended, by one of us,
by introducing graph cocycles [16], a notion dual to that of
cycles. The notion of the cocycle was the missing piece in
Schnakenberg’s analysis to understand the finite-time
structure of chemical forces, beyond the steady state.
Albeit elegant, in practice, such settings apply only to
noninteracting (linear) networks that can be represented
as simple graphs [17]. This is the case, for instance, of
resistor (or flow) networks [18], minimal biochemical
models [15,19–21], or unimolecular CRNs [22] where
each reaction involves one reactant and one product
[e.g., reaction 4 in Eq. (1)].
However, real-world networks involve interactions

among several species [e.g., reaction 3 in Eq. (1)], making
them best represented as hypergraphs [23], that is, gener-
alized graphs where hyperedges connect more than two
nodes (see Fig. 1). Hypergraphs have recently emerged as a
new challenge in network science [24–26], and they lack a
comprehensive theoretical understanding. A key point is
that no notion of spanning tree exists for hypergraphs,
precluding the Hill-Schnakenberg analysis. Interactions
are, of course, fundamental in inorganic chemistry where

heterogeneous catalysis increases the efficiency of reaction
pathways [27], as well as in intracellular processes, where
autocatalytic interactions are at the core of the capability
of living systems to self-replicate [28]. Interactions give
rise to nonlinearities at the level of chemical concentra-
tions, resulting in a spectrum of dynamical behaviors not
displayed by noninteracting networks [29]. It thus appears
crucial, in interacting CRNs, to build a geometry of hyper-
graphs aimed at identifying a decomposition of nonequili-
brium physical observables such as currents and affinities.
This is the objective of the present work.

B. Main results and structure of the paper

Here, we establish a framework that extends the Hill-
Schnakenberg analysis to the case of interacting CRNs.
Crucially, we follow a novel algebraic approach to build
generalized notions of cycles and cocycles (see Fig. 2).
This allows us to bypass the conceptual bottleneck of
previous analyses of noninteracting CRNs that relied on
graph theory (specifically, on spanning trees). To do so, a
conceptual shift is required: from graph-theoretical objects
to vector spaces. The newly defined cycles and cocycles
reduce to the Hill-Schnakenberg ones for noninteracting
CRNs and, in the fully interacting case, allow one to build
geometrical notions that (i) generalize the graph-theoretical
ones, (ii) provide a physical decomposition of observables
(currents and forces), and (iii) reveal hidden structures in
the underlying network exchanges.
A generic reaction network is described by a stoichio-

metric matrix S, encoding its topology (see Fig. 1). For
noninteracting networks, S coincides with an inci-
dence matrix relating the nodes and edges of an oriented
graph, with S⊤ (respectively, S) representing a discretized
gradient (respectively, divergence). The noninvertibility of

FIG. 1. Reactions X1 þ X2 ⇌
1

X3 and 2X3 ⇌
2

X1 involve
an interspecific interaction between species X1 and X2 and an
intraspecific interaction between two molecules of X3. (a) Hyper-
graph representation composed of N ¼ 3 nodes corresponding to
the species fX1; X2; X3g and two hyperedges corresponding to
reaction 1 (purple) and reaction 2 (orange). The hyperedges differ
from simple edges as they present branches that can connect to
different nodes (purple) or to the same node (orange). In panel
(b), the first reaction corresponds to a nonpairwise interaction as
it involves all three species; the second reaction is still pairwise at
the level of nodes, but the multiplicity of its edge is different from
1, due to the branching. As a consequence, the stoichiometric
matrix S associated with the network is not an incidence matrix
(see Sec. I B), as shown in panel (c).
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S, due to the interdependence of its degrees of freedom, is a
known issue [30,31]. A key step in our approach is to
geometrically construct a Green-function integrator G⊤ that
allows for a partial inversion of S⊤ along a spanning tree. The
procedure is explicit and naturally generalizes to the case of
interacting CRNs, enabling us to extend the notion of
integration and differentiation along a hypergraph. Thus, we
establish a potential condition for the forces and connect it to
the notion of reversibility for the dynamics and to that of the
(chemical) potential for the thermodynamics.
Equipped with such a geometric interpretation, we put

forward a decomposition of chemical forces into con-
servative and nonconservative contributions, akin to the
Helmholtz-Hodge decomposition of vector calculus in R3.
For the unfamiliar reader, such a decomposition of a vector
field,F ¼ −∇V þ ∇ ×A ∈ R3, provides a separation of the
force into two components: (i) a gradient force that is
conservative and (ii) a nongradient force with zero diver-
gence (i.e., of zero total flux through any closed surface)
that drives irreversible stationary behavior. We discuss the
analogy with our decomposition of chemical forces and its
implication for nonequilibrium physics [32,33]. Physically,
conservative and nonconservative forces generate currents of
different geometric types. On one side, “tidal” currents
control the transient relaxation to the steady state and are
due to conservative forces; on the other side, cyclic currents
characterize the steady state in the presence of nonconserva-
tive forces. Although easily pictured on graphs, such features
also survive on hypergraphs (see Fig. 2). We provide a
guideline to identify the different sets of currents in this case,
based on the notions of algebraic cycles and cocycles. Such
concepts have direct consequences for the dynamics of
interacting CRNs: We show, for instance, that the slow
modes of nonlinear relaxation are controlled by the cocycles
when a timescale separation occurs (and this, arbitrarily far
from the steady state). Close to equilibrium,we show that the
linear responses to the external field and to initial conditions
present a hidden spectral symmetry.
As a practical application, we consider the problem

of thermodynamically consistent reconstruction of CRNs
involved in various cellular functions, e.g., metabolism
[34–41] (but other multiomics data sets could also be
considered). The problem is, roughly, the following: DNA
sequencing grants knowledge of the enzymes possibly
present in a cell, and enzyme specificity identifies the
substrates (metabolites) that bind and interact. Thus, the
stoichiometry of the metabolite network is known.
However, the currents of the reactions are not known,
and one needs some principles to make an informed guess
about the overall currents expressed by the cell. Such
currents, and thus the (phenotypic) state of the network,
are subject to myriad of constraints. In particular, funda-
mental physical constraints include (i) mass balance and
(ii) thermodynamic feasibility. While the first is a simple
linear constraint, the second is nonlinear, and it has proven

FIG. 2. Graphical summary of core geometrical concepts
introduced in the paper. (a) Gradient field, deriving from a
potential, in continuum space. A level line of the potential splits
space into two components, the bounded one being represented as
an “island” (purple). (b) Zero-divergence nongradient field in
continuum space, which generates forces along cycles (green).
(c) Graph representing a noninteracting network, where an island
(purple) splits the species into two sets and defines a character-
istic potential (1 on the island, 0 elsewhere). Its gradient is
localized at the island boundary, on the set of outward edges
(solid line) defining a cocycle. We identify a core set of islands
and cocycles that form a basis of conservative forces. Such forces
drive transient (“tidal”) currents that flow through the island
boundaries and control the overall relaxation of currents.
(d) Graph cycle (green) supporting stationary currents, driven
by nonequilibrium forces (quantified by summing forces along
cycles). (e) Hypergraph of an interacting network, where we
define a potential landscape that generalizes the above notions of
islands, which are now nonflat (shades of purple representing the
“altitude” map). The boundary of an island defines a cocycle as a
weighted set of hyperedges (solid line). (f) Hypergraph cycles
possessing a complex topology and involving reactions with
different weights (levels of green). The physical decompositions
of forces and currents extend from graph to hypergraph.
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difficult to implement in reconstruction algorithms [42–46].
Given the network topology, these algorithms aim at
navigating in the landscape of possible metabolite currents
compatible with some known value of uptake and secretion
rates. On one hand, our framework grants a simple linear-
regime approximation of such a landscape that allows one to
explore it. The best feature of this reconstruction approach is
that the only free parameters are some positive real numbers,
one per internal reaction involved in a cycle. Once these
parameters are given and we have some intuition about
which external currents are independent, the reconstruction
is just a simple linear formula that allows one to explore a
landscape of solutions. On the other hand, the geometric
tools that we introduce enable us to identify a nontrivial set
of exact linear relations between combinations of internal
and external currents, which are valid arbitrarily far from the
linear regime and thus provide strong constraints on the
landscape of solutions.
The paper is organized as follows. For the sake of clarity,

we dedicate Sec. II to noninteracting networks whose
configuration space is a graph, and we review the analysis
of Hill-Schnakenberg, extending it to include finite-time
relaxation (in the spirit of Ref. [16]). In this context, we
discuss the complete mapping between the graph-theoretical
analysis and the algebraic framework, which sets the stage
for Sec. III. Therein, we show how to fully extend the theory
to interacting CRNs by defining generalized cycles and
cocycles that give a geometrical meaning to integration and
differentiation on hypergraphs. In Sec. IV,we put forward the
announced decompositions of chemical forces (affinities)
and currents and explainhow these tools provide the rationale
behind the notions of chemical affinity and chemical poten-
tial, as well as stochastic aspects such as local detailed
balance and entropy production rate. Finally, as applications
of the formalism, in Sec. V, we study the linear responses of
CRNs disclosing a spectral symmetry between the equilib-
rium relaxation and the driven steady-state perturbations. In
conclusion, we propose an algorithmiclike procedure for
feasible reconstructions of realistic metabolic networks.

C. Setup and notation

In this paper we work with CRNs with mass-action
kinetics. More precisely, we consider a dilute, well-stirred
mixture of N chemical species interacting through R
reactions. Each reaction is uniquely specified by two
(non-negative) integer-valued vectors, νþρ and ν−ρ, which
give the number of molecules per species being produced
(þ) and consumed (−) by reaction ρ. Grouping the species
in a vector X ¼ ðX1;…; XNÞ⊤, reaction ρ can be written as

νþρ · X ⇌
kþρ

k−ρ
ν−ρ · X; ð2Þ

where · is the scalar product [see Eq. (1) for an example].
Each reaction is strictly reversible, that is, can occur both in
the forward and backward direction with reaction-rate

constants k�ρ > 0. Thus, for each reaction, we introduce
a pair of velocities λ�ρ ðxÞ describing the rate of change of
the chemical concentrations x ¼ ðx1;…; xNÞ⊤ in the cor-
responding direction. For a large number of particles
(i.e., negligible fluctuations), the velocities are propor-
tional to the concentrations of the species partaking in the
reaction �ρ,

λ�ρ ðxÞ ¼ k�ρ xν
�ρ ∀ ρ; ð3Þ

with the notation convention ab ¼Qi a
bi
i . Then, we define

the net current Jρ of reaction ρ as the difference between the
two reaction velocities,

JρðxÞ ¼ λþρ ðxÞ − λ−ρ ðxÞ: ð4Þ

The dynamical evolution of the concentration vector xðtÞ in
time, given some initial concentrations at t ¼ 0, is given by
a deterministic rate equation:

d
dt

xðtÞ ¼ SJ(xðtÞ); ð5Þ

where S is the stoichiometric matrix, of dimensions N × R,
whose columns describe the net stoichiometry of each
reaction Sρ ¼ ν−ρ − νþρ. As such, S encodes the topology
of the network and acts as a discrete divergence in Eq. (5),
which can be seen as a continuity equation. Finally, for
each reaction ρ, we introduce the reaction affinity Aρ

defined as

AρðxÞ ¼ log
λþρ ðxÞ
λ−ρ ðxÞ

¼ log

�
kþρ
k−ρ

x−Sρ
�
: ð6Þ

Equation (6) corresponds to the usual mass-action force,
which implies the following constitutive relation between
Jρ and Aρ:

JρðxÞ ¼ λþρ ðxÞ½1 − exp (−AρðxÞ)�: ð7Þ

It quantifies the chemical drive, i.e., how an imbalance in
the concentrations of reactants and products results in a net
reaction current.
Finally, while we adopt the language of chemical

reactions here, the framework of Eqs. (2)–(7) generally
describes the dynamics of interacting populations in the
large system size limit. The only stringent assumption is
that reactions (e.g., infection events in epidemic models or
genetic mutations in evolutionary dynamics) are reversible,
so Eq. (6) is well defined.

II. NONINTERACTING REACTION NETWORKS

We dedicate this section to noninteracting networks
where each reaction involves the transformation of a
species into another:
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Xi ⇌
kþρ

k−ρ
Xj: ð8Þ

In this case, the stoichiometric matrix S takes the form of an
incidence matrix, namely,

Siρ ¼
8<
:

−1 if i is the species consumed by ρ

þ1 if i is the species produced by ρ

0 otherwise:

ð9Þ

The objective of this part is to relate the algebraic and
graph-theoretical pictures underlying such a set of reac-
tions, in view of extending these to the case of interacting
CRNs (see Sec. III). To do so, we quickly review the Hill-
Schnakenberg approach in Sec. II A and translate it in the
algebraic framework in Sec. II B. We then provide the first
result of this paper: an integrator matrix G⊤ inspired by
geometry, which allows one to integrate conservative forces
on a graph and obtain the potentials from which they
derive. Finally, notice that Eq. (8) also describes a Markov
chain between states labeled by the Xi’s (this is one of
Schnakenberg’s standpoints).

A. Cycles and cocycles in graph theory

Noninteracting CRNs like Eq. (8) admit a graphical
representation in terms of nodes (or vertices) and edges (or
links). The incidence matrix in Eq. (9) describes the
topology of an oriented graph G, where each reaction ρ
is a directed edge pointing from a source node sðρÞ to a
target node tðρÞ, and each node represents a species (see
Fig. 3 for an example). Notice that, since we assume
reactions are reversible, the orientation of the edge coin-
cides with the orientation of the (chosen) forward direction
in Eq. (2), as entailed in S. Without loss of generality, we
consider simply connected graphs.
Following the Hill-Schnakenberg approach [4,6,47], we

introduce the notion of spanning tree, defined as a con-
nected subgraph of G, containing every node but no closed
paths [Fig. 4(b)]. Clearly, in general, there are several
spanning trees, and their number depends on the topology
of G. We fix one, which we call TG. Choosing TG
corresponds to splitting the edges of G into edges that
are excluded from the spanning tree and edges that belong
to it [Fig. 4(c)]. In graph theory [17], these distinct edges
are, respectively, named chords and cochords, and we
associate them with two indices, α ∉ TG spanning the set of
chords and γ ∈ TG spanning the set of cochords.
Adding a chord α back into TG generates a closed path.

Removing a cochord γ from TG generates a cut, i.e., a
splitting of the nodes of G into two disconnected islands or
components. Such closed paths and cuts can be given the
following orientations: For the closed path, the direction is
along it; for the cut, the choice is a source and target among
the two disconnected islands. We thus define the cycle CðαÞ
as the closed path generated by restoring the chord α into

TG, oriented in the same direction as the generating chord α
[Fig. 4(d)]. We define the cocycle CðγÞ as the set of edges
that sew the cut generated by the removal of the cochord γ.
Conventionally, the source island is chosen to be the island
containing the source node sðγÞ so that all the edges in CðγÞ
are taken to be parallel to the generating cochord γ [Fig. 4(f)].
Notice that if the cochord γ is a bridge, i.e., if it does not
belong to any closed path, the corresponding cocycle
contains only the cochord γ. On the other hand, if the
cochord γ belongs to one (or more) closed path in G, the
corresponding cocycle contains all the chords (possibly
flipped) associated with those closed paths. Namely, for
any pair of chord and cochord ðα; γÞ, we have that
γ ∈ CðαÞ⇔α ∈ CðγÞ, with the pair of edges ðα; γÞ oriented
parallel to each other in CðγÞ and antiparallel (head-tail
orientation) in CðαÞ. This encodes the fact that whenever
γ ∈ CðαÞ, the cycle CðαÞ possesses nodes both in the source
and in the target of the cut corresponding to the cocycle CðγÞ,
and the edges of this cycle must present a zero flux in total
between the source and target. This “duality” property
between CðαÞ and CðγÞ is nontrivial, and its manifestation
can be seen in multiple forms in the following [48].
Cocycles and cycles are the central graph-theoretical

ingredients of this paper. A cycle is a closed path in
the space of reactions. As such, it corresponds to a
sequence of transformations that connect a node back to
itself. In the spirit of Hill-Schnakenberg’s theory, we
use cycles to characterize nonequilibrium steady states.

FIG. 3. Example of graphical representation for a noninteract-
ing reaction network of the type in Eq. (8). (a) Stoichiometric
matrix of a noninteracting network, which is an incidence matrix
describing the relation between the species or nodes and the
reactions or edges. Each column Sρ has exactly a þ1 entry
corresponding to the species produced by the reaction ρ and a −1
entry corresponding to the species consumed by the reaction ρ.
(b) Each column of S as an edge between a source node sðρÞ and
a target node tðρÞ. (c) Graph representation for all the reactions in
the network, where each node is a species and each edge is a
reaction. Since the reactions are reversible, the orientation of the
edges is conventional.
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The interpretation of cocycles is less intuitive but will play
a central role. Those sets of reactions are associated with a
binary splitting of the graph into two separate subsystems;
as will become clear in the following sections, they are
associated with (i) fluxes of matter with no circulation,
relating to the modes of relaxation of the dynamics, and
(ii) conservative forces, which “derive” from a potential.

B. Algebraic definition of cycles and cocycles

We now detail how to algebraically relate cycles and
cocycles to S. Namely, we associate cycles and cocycles
with two families of vectors, which not only retain the same
properties as on the graph but also, algebraically, occur to
be bases of two complementary and orthogonal (real-
valued) vector spaces,

Ker S⊥ Im S⊤; ð10Þ

namely, the kernel Ker S and the coimage Im S⊤ of the
stoichiometric matrix.

First, we count the number of independent degrees of
freedom. We know from the graph construction that the
total number of cycles and cocycles is equal to the number
of reactions or edges R and, likewise, to the number
of columns of S. The latter is, in turn, related to the
dimensions of the image and kernel of S via the rank-nullity
theorem:

R ¼ rankSþ dim Ker S: ð11Þ

It is known that the rank M of the incidence matrix of any
connected graph is N − 1, [49] with the matrix possessing a
sole left null vector l0 ¼ ð1; 1;…; 1Þ. This reflects the
fact that the sum of the entries in any given column of S is
zero. Physically, l0 has the status of a mass conservation
law, and one verifies that the dynamics in Eq. (5) indeed
conserves the quantity l0 · xðtÞ: In a closed system, i.e., in
the absence of fluxes in and out of the system, Lavoisier’s
law of mass conservation is satisfied. Algebraically, the N
species hence present M ¼ N − 1 independent degrees of

FIG. 4. Summary of the notions from graph theory, which are discussed in the text. (a) Example of an oriented graph G obtained from
the stoichiometric or incidence matrix S of a noninteracting CRN. Each node represents a species, and each edge a reaction.
(b) Spanning tree TG, represented here with blue-marked edges, obtained by pruning edges from the original graph so as to remove every
closed path (while keeping a connected tree). (c) Picking TG, which corresponds to (a choice of) splitting of the edges in G between the
cochords (in blue), forming TG, and the chords (in red). The set of chords is spanned by the index α and the set of cochords by the index
γ. Cochords like γ0 are named bridges as they do not belong to any closed path, in contrast, for instance, to the cochord γ, which belongs
to two closed paths. (d) Reintroducing a chord α into the spanning tree, which generates a cycle CðαÞ oriented according to the
orientation of the chord α. By construction, each cycle only contains a single chord (the generating one). (e) Removal of a cochord γ
from the spanning tree, which generates a cut, i.e., a splitting of the full graph in two disconnected islands or components. In particular,
we use the term “source island” (respectively, “target island”) to refer to the component containing the source node sðγÞ [respectively,
target node tðγÞ] of the generating cochord. This allows one to establish the orientation of the cut. (f) Cocycle CðγÞ defined as the set of
edges that reconnect the source island to the target island after removing the cochord γ. The example shows three elements: the cochord γ
and the two chords associated with cycles that contain γ. All three edges are oriented parallel to the cochord γ, in order to connect the
source to the target.
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freedom. Accordingly, one can use Euler’s formula together
with Eq. (11) to relate the number of cycles and cocycles to
the fundamental subspaces of S: One finds that the cycles
are, in number, equal to the dimension of the kernel,
dim Ker S ¼ R −M, and that the cocycles are, in number,
equal to M ¼ rankS, the number of independent columns
of S (i.e., independent reactions).
In the previous section, we introduced two indices, α and

γ, to span the chord and cochord sets, respectively. The
same labeling can be introduced for the columns of S. From
the definition of TG, the M columns labeled with γ are (a
choice of) linearly independent columns of S. For conven-
ience, we order them in such a way that 1 ≤ γ ≤ M
and M þ 1 ≤ α ≤ R. Then, we introduce two families of
column vectors in RR, denominated by fcαg and fcγg,
respectively, and defined as

ð…; cα;…Þ ¼
� −T
1R−M

�
; ð…; cγ;…Þ ¼

�
1M
T⊤

�
: ð12Þ

Here, 1n is the n × n identity matrix, and T is an M ×
ðR −MÞ rectangular matrix defined by the graph G as

Tγα ¼
8<
:

þ1 if cochord γ ∈ CðαÞ and k to it

−1 if cochord γ ∈ CðαÞ and ∦ to it

0 otherwise;

ð13Þ

where k and ∦ refer to whether or not the orientation of the
edge γ (as prescribed by S) matches the orientation of the
cycle it belongs to. By construction, the vector cα thus
specifies the composition (and orientation) of the edges
entering in CðαÞ, with cαα0 ¼ δαα0 , since in the chord set only
the generating chord α belongs to CðαÞ and dictates its
orientation. (Here and below, δij denotes the Kronecker
delta.) Analogously, the vector cγ contains nonzero entries
for any edge that belongs to the cocycle CðγÞ, such that
cγρ ≠ 0 if and only if ρ ∈ CðγÞ and cγγ0 ¼ δγγ0 since the only
cochord contained in CðγÞ is the generating one. Albeit not
obvious, the same matrix T (up to a sign) controls the
composition of both cycles and cocycles, as expressed by
Eq. (12). This is the algebraic encoding of the duality
discussed in the previous section.
Because of the identity matrices in Eq. (12), all vectors

cα and cγ are linearly independent, and one can easily check
that they span orthogonal subspaces since

cγ · cα ¼ 0 ∀ γ; α: ð14Þ

Furthermore, the geometric construction ensures that the
vectors cα belong to the kernel of S, that is,X

ρ

Siρcαρ ¼ 0 ∀ α; i: ð15Þ

This represents the fact that any node i in a cycle has
exactly one incoming and one outgoing edge. As a
consequence, cycles and cocycles form a basis for, respec-
tively, the kernel of S and its orthogonal complement, i.e.,
the coimage of S, Im S⊤. This is the algebraic characteri-
zation of cycles and cocycles, which complements their
definition from graph theory. Likewise, a vectorial repre-
sentation holds for the chords and the cochords: the
canonical vectors eγρ ¼ δγρ and eαρ ¼ δαρ in RR. All in
all, we have identified two alternative bases for RR, which
we can merge into the following two matrices:

ðeγ; eαÞ ¼
�
1M 0
0 1R−M

�
; ðcγ; cαÞ ¼

�
1M −T
T⊤ 1R−M

�
:

ð16Þ

The left-hand matrix is the canonical basis in RR obtained
from the chord and cochord vectorial representation. The
right-hand matrix is the nonorthogonal basis formed by the
vectorial representation of cycles and cocycles. One can
easily verify the following orthogonality relations:

eα · cα
0 ¼ δαα0 ;

eγ · cγ
0 ¼ δγγ0 : ð17Þ

From now on, we use the terms cycles and cocycles for both
the vectors defined in Eq. (12) and the graph-theoretical
objects defined in the previous paragraph, as they are
equivalent. We use the term chemical cycle to designate any
vector generated by a linear combination of the cα’s.

C. Integrating conservative forces on the graph

As anticipated in the Introduction, the transposed inci-
dence matrix S⊤ is the discrete gradient operator prescrib-
ing the relation between the nodes and the edges of
the graph. Accordingly, we define a force F ∈ RR to be
conservative if it verifies a potential condition F ¼ −S⊤V,
with V ∈ RN a potential defined on the nodes of G and
Fρ ¼ −ðS⊤VÞρ ¼ VsðρÞ − VtðρÞ. Algebraically, it is equiv-
alent to F ∈ Im S⊤ ¼ ðKer SÞ⊥ , which is the space
spanned by the cocycles; thus, we can write

F ¼
X
γ

Fc
γcγ ð18Þ

or, equivalently, F · cα ¼ 0; ∀ α. Notice that, from
Eqs. (12) and (17), the coefficient Fc

γ of the linear
combination coincides with the entry γ of F, i.e.,
Fc
γ ¼ F · eγ ¼ Fγ .
Here, the main difficulty to solve for the potential V in

F ¼ −S⊤V is the noninvertibility of S, which prevents the
identification of a discrete “integrator” associated with S⊤.
Once again, graph theory comes in handy. Upon arbitrarily
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fixing a root node, let us orient all edges in TG towards it
and define ∀ i the subset UðiÞ containing all the nodes that
are upstream node i along the spanning tree, including i
itself; also, we number reactions starting from the root (see
Appendix A for details). Then, we introduce the N × N
square matrix G defined as

Gij ¼
�
1 if node j ∈ UðiÞ
0 otherwise;

ð19Þ

which is invertible. See Fig. 5 for an example. In
Appendix A, we prove that the matrix G⊤ then takes the
form of a lower-triangular integration operator on TG:
namely, if F is conservative, a solution to F ¼ −S⊤V is
given by the matrix G⊤ in the following way. For an
arbitrary vector F, let us define a potential Vi on each node
from the set of coefficients Fc

γ in Eq. (18) as

Vi½Fc
γ � ¼

X
1≤γ≤M

ðG⊤ÞisðγÞFc
γ ¼

X
1≤γ≤M

Fc
γδi∈U(sðγÞ): ð20Þ

The sum in Eq. (20) runs over all the edges in TG. Using the
definition of G, one sees that, for fixed i,

P
j ðG⊤Þij runs

over all the nodes that have i among their upstreamers.
Moreover, for every node j, except the root, there exists
exactly one γ such that j ¼ sðγÞ ¼ γ þ 1. Thus, the sum in
Eq. (20) runs over the unique path on TG between node i
and the root. Hence, it corresponds to a discrete integration
of the entries Fc

γ along the spanning tree. Notice that, from
Eq. (20), the potential of the root is zero since the root, by
convention, only has incoming edges. This means that the
potential in Eq. (20) is uniquely defined up to a constant
shift (fixed by Vroot ¼ 0), in analogy to the constant of
integration in standard calculus.
Notably, the product S⊤G⊤ reads, as proved in

Appendix A,

−S⊤G⊤ ¼
�
0 1M
0 T⊤

�
; ð21Þ

where the first column is full of zeros and the matrix T is
the same matrix as defined in Eq. (13). This special
structure encodes the fact that the stoichiometric matrix
is not full rank, but it contains some built-in redundancy.
The M ×M square identity matrix 1M represents the
inversion procedure between S⊤ and G⊤, illustrated in
Eq. (20). The first column ð0…0Þ⊤ reflects the existence of
the conservation law l0, and the T matrix reflects the
interdependence among reactions. Namely, only M out of
the R columns of S are linearly independent while the
remaining columns, labeled with α and associated with the
cycles fcαg, can be obtained as a linear combination of
the former. The matrix T encodes the following: Denoting
by SM the first M (independent) columns of S and Sdep the
last ones (corresponding to R −M dependent reactions),

one reads from Eq. (21) that Sdep ¼ SMT. The relation in
Eq. (21) is key in our analysis because it lies at the core of
its extension from noninteracting to interacting CRNs,
presented in Sec. III.
Excluding the first null column, on the right-hand

side (rhs) of Eq. (21), one recognizes the cocycle basis
of Eq. (12). Thus, the columns of G⊤, except the first one
associated with the root, can be seen as M ¼ N − 1
potential landscapes, which, upon “differentiation” via
S⊤, give the cocycle vectors fcγg. We thus define the
potential vector vγ ¼ ðG⊤ÞsðγÞ as the column sðγÞ of G⊤.
Then, cγ ¼ −S⊤vγ , and vγ is a characteristic potential
landscape (entries are 0 or 1) defined on the nodes of G.
It is, in fact, a characteristic of the cut generated by the

FIG. 5. (a) Spanning tree for the example CRN in Fig. 3. We
pick node 1 (red) as the root and oriented all edges towards it. The
enumeration of the nodes (in black) and the edges (bold blue)
follows the natural convention detailed in Appendix A: It entails a
simple one-to-one correspondence between the nodes j ≠ root (in
black) and the cochords γ ∈ TG: namely, ∀ j ≠ root ∃ γ s.t.
j ¼ γ þ 1 ¼ sðγÞ. (b) The N × N matrix G for the aforemen-
tioned spanning tree, constructed as detailed in the main text. The
first line and first column (in red) refer to the root and reflect the
fact that we have oriented all the edges towards it. As a
consequence, all the nodes ≠ root are upstream from it; hence,
the first line is full of 1’s. (c) Matrix G⊤, which presents the
lower-triangular structure of an integral operator on the spanning
tree. The first column (in red) coincides with the mass con-
servation law l0, and the 0’s in the first line (red) fix the root
potential to Vroot ¼ 0 [see Eq. (20)]. (d) LastM ¼ N − 1 columns
of G⊤ in one-to-one correspondence with the M cocycles. In
particular, one reads from theþ1 entries of the column j ¼ γ þ 1
the source island of the cocycle CðγÞ. For example, if we remove
the cochord γ ¼ 2 from the spanning tree in panel (a), we
generate a cut with nodes 3 and 4 being disconnected from the
rest of the graph. Algebraically, the appearance of a source island
corresponds to the emergence of a new conservation law. Indeed,
the last M columns of G⊤ correspond to the conservation laws
obtained by removing the cocycles.
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removal of the cocycle cγ , as discussed previously. In
particular, the target island, containing the root, is the
subgraph held at zero potential while the source island,
corresponding to the þ1 entries in vγ, is held at unit
potential. From a graphical viewpoint, the cocycle cγ is
therefore the boundary of the source island vγ , which, upon
removing cγ , remains isolated (Fig. 5).

III. INTERACTING REACTION NETWORKS

We now show how the notions of cycles and cocycles,
together with the geometrical picture of islands, can be
extended to hypergraphs using linear algebra, and we
discuss some important consequences for the macroscopic
dynamics of xðtÞ.

A. Alternative construction of cycles and cocycles

Let us consider a generic interacting CRN whose top-
ology is encoded in the stoichiometric matrix S with rank
M. Algebraically, the rank of S quantifies the number of
independent species and independent reactions, which are
the same by rank-nullity theorem. Accordingly, one can
pick M independent reactions and, following the same
convention as in Sec. II B, reorder the columns of S in a
way such that they are placed first. Their label index is then
1 ≤ γ ≤ M. These are the independent reactions that, in the
case of noninteracting networks, constitute the cochords
defining the spanning tree TG. The remaining α-labeled
reactions are in number R −M ¼ dim Ker S, so M þ 1 ≤
α ≤ R. Contrary to noninteracting networks, the conserva-
tion laws are generally more than one, being in number
N −M ¼ dim Ker S⊤ ≥ 0. From Eq. (5), each of them is
associated with a physical quantity that is conserved.
We now show how the algebraic row reduction of S

allows one to identify the following: (i) a choice of N −M
conserved quantities and (ii) a generalization of the cycle
and cocycle bases for the (nonincidence) matrix S. Using,
for instance, the Gauss-Jordan elimination, a standard
procedure in linear algebra [51], the stoichiometric matrix
S is reduced to

−GS ¼
�

0 0
1M T

�
: ð22Þ

Here, the N × N matrix G is invertible and encodes the
elementary operations performing the Gauss-Jordan elimi-
nation (see also Appendix A for another explicit construc-
tion of G). Upon a permutation of rows, one recognizes in
the rhs of Eq. (22) the canonical reduced row echelon
form [51], where the M pivot elements constitute the
bottom-left identity matrix 1M. [52] The first N −M ≥ 0
rows filled with zeros reflect the fact that S is not full row
rank, in general, due to the possible existence of con-
servation laws. We stress that the reduced row echelon
form, and hence the matrix T in Eq. (22), is unique; it does

not depend on the specific form ofG (which is not unique).
Applying the matrix G to Eq. (5), one obtains

d
dt

(GxðtÞ)i ¼ 0; for 0 ≤ i ≤ N −M: ð23Þ

Thus, the first N −M elements of Gx are (a choice of)
conserved quantities for the evolution of concentrations.
The interdependence among reactions is what the matrix

T in Eq. (22) encodes: Each dependent column Sα is given
by Sα ¼

P
γ SγTαγ. Notably, we can use the notion of

independence or dependence among reactions to restore the
terms chords and cochords even in the absence of a
spanning tree. In particular, we denote chords (respectively,
cochords) the set of dependent (respectively, independent)
reactions in S.
Let us now use the invertibility of G and take the

transpose of Eq. (22) so that

S⊤ ¼ −
�
0 1M
0 T⊤

�
ðG−1Þ⊤: ð24Þ

Since G is full rank, the image of S⊤ is spanned by the M
nonzero columns of the reduced row echelon form. This
explains the choice of the same notation T as for the matrix
in Eq. (13), which was used to construct the cycles and
cocycles for simple graphs. In that case, the matrix T was
built from the spanning tree (see Sec. II A) while here it is
obtained by algebraic row reduction. As a consequence, the
entries of the new matrix T are no longer restricted to
f0;�1g as in Eq. (13) but may take fractional entries (see
Appendix A). In both cases, T allows one to define a basis
for Im S⊤, which, in the previous case, was identified as the
space spanned by the cocycles fcγg. Accordingly, we
interpret the column vectors in ð1M TÞ⊤ as a family of
generalized cocycles fcγg. Thus, it is natural to use matrix
T in Eq. (22) to construct a basis for the kernel of S. In
particular, we define a family of generalized cycles fcαg as
the column vectors in ð−T⊤ 1R−MÞ⊤. As in Sec. II B, the
rank-nullity theorem ensures that these vectors constitute a
basis for Ker S. In fact, it is possible to show that any basis
of Ker S can be reduced to that form, with T uniquely
defined by Eq. (22) (see Appendix A).
We have shown how the row reduction of S allows one to

identify bases for the kernel and the coimage of S, which
we connect to the previously defined cycles and cocycles.
In fact, using this algebraic procedure for noninteracting
CRNs yields the previous expressions, Eq. (12), for the
cycles and cocycles—provided the graph is oriented using
the convention depicted in Fig. 5. In this sense, the newly
defined vectors fcαg and fcγg are genuine generalizations
of the graph cycles and cocycles, and we use the same
terminology to designate them. Notably, the orthogonality
relations in Eqs. (14) and (17) apply directly to the new sets
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fcγg and fcαg, which opens the possibility of interpreting
them as geometrical objects on hypergraphs.
We conclude with a remark. The vectors fcαg and the

fcγg are not the only bases of Ker S and Im S⊤ (for
instance, the first M columns of S span Im S⊤). The
definitions of cycles and cocycles we put forward allow
for a physical decomposition of the chemical affinities and
currents (see Sec. IVA), and they can be used to build a
geometrical representation of the forces and currents on
hypergraphs, as we present now. We stress that, although
chemical cycles (spanning Ker S) are known to play an
important role [8,10], the basis fcαg that we introduce
brings new physical content, through a one-to-one corre-
spondence between a chord and its associated cycle, which
is very helpful to map precisely which reactions are
affected by nonequilibrium drive. (See also Appendix D
for a definition of oblique projectors based on the cα’s and
cγ’s that generalizes to arbitrary CRNs those defined in
Ref. [16] for noninteracting CRNs.)

B. Geometry of hypergraphs

1. Cycles

The geometrical aspect of cycles and cocycles is rooted
in the orthogonality relations Eqs. (14) and (17). They are
the expression of the one-to-one correspondences between
cocycles and independent reactions, and between cycles
and dependent reactions. In the previous section, we
pointed out that for interacting CRNs, the entries of the
cycle vectors cα may be fractional. Contrary to the case of
noninteracting CRNs, cycles are decorated with weights
given by the entries of the T matrix in Eq. (22).
Intuitively, these physical weights express the (fractional)
number of times that each reaction must be performed
along a cycle in order to leave the state of the system
invariant. For illustrative purposes, we report in Fig. 6 the

example of an interacting CRN with five chemical
species and four reactions. In this case, the stoichiometric
matrix has rank M ¼ 3 and exhibits N −M ¼ 2 con-
servation laws and a number of cycles R −M ¼ 1. From
Eq. (22), one obtains T ¼ ð−1=2;−1=2; 0Þ⊤ and c ¼
ð1=2; 1=2; 0; 1Þ⊤ (we drop the index α for simplicity).
One sees that identifying the cycle graphically is
not straightforward on the hypergraph [Fig. 6(c)].
Nevertheless, cycles are still an important feature of
the dynamics: We see their relevance for nonequilibrium
steady states and the practical consequences of the
duality between cycles and cocycles (i.e., that they are
described using the same matrix T).

2. Conservative forces can be integrated

We now ask the following question: What is the
geometrical meaning of the weights in the matrix T,
underlying both cycles and cocycles. First, let us recall
the integration matrix G⊤ previously introduced for
noninteracting CRNs. It was explicitly constructed by
fixing a spanning tree TG and one root [see Eq. (19) and
Appendix A] such that the ðN − 1Þ × ðN − 1Þ bottom-right
block contains the set of paths on the spanning tree along
which we integrate the conservative force F to define the
potential V [Eq. (20)]. From a purely graphical viewpoint,
each path can be interpreted as the unique “escape route” in
TG along which a unit “charge” placed on a given node is
expelled through the root, leaving no trace along the way
(see Fig. 7). Thus, following this geometrical view, we may
reexpress matrix G⊤ as

ð25Þ

FIG. 6. (a) Example of an interacting CRN involving four reactions and five species fX1; X2; X3; X4; X5g. (b) Corresponding
stoichiometric matrix S, which is no longer an incidence matrix. Its columns contain more than two entries, and the values of the
stoichiometric coefficients are, in general, different from �1. As reported in the main text, the rank S ¼ 3, and the matrix has two left
null vectors and one cycle, respectively, l1 ¼ ð1; 2; 1; 2; 0Þ, l2 ¼ ð0; 0; 1; 1; 1Þ, and c ¼ ð1=2; 1=2; 0; 1Þ⊤. (c) Hypergraphical
representation of the reaction scheme in terms of nodes (species) and hyperedges (reactions). Following the convention described
in the main text, the independent reactions (cochords in blue) are numbered first, and the dependent reaction (chord in red) associated
with the cycle c is numbered last. (d) Reactions (1, 2, and 4) involved in the cycle c, highlighted in green. Upon performing each reaction
ρ a (fractional) number of times cρ, each species Xi is consumed and produced the same amount.
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where the escape routes constitute the bottom-right
ðN − 1Þ × ðN − 1Þ submatrix ofG⊤. For graphs, the escape
routes involve a succession of adjacent edges, irrespective
of the connectivity of each node, which is reflected in
the entries of G⊤ being 0 or 1. This is no longer the case
in hypergraphs due to the presence of branching in the
hyperedges. Notice that in Eq. (25) the root is naturally
associated with the conservation law l0, which appears as
the first column of G⊤. Thus, for the case of interacting
CRNs, it is natural to generalize the structure in Eq. (25) by
picking a root for each of the (now possibly multiple)
conservation laws of S. By doing so, one obtain a set of

roots, each one associated with a given conservation law;
we may ask what the corresponding escape routes are on
the hypergraph, i.e., the “hyperpaths” along which a charge
placed on any node is expelled through the roots, leaving
no trace. In the absence of a spanning tree, we lack a
graphical procedure to find such escape routes; never-
theless, in Appendix A, we show that, given a suitable set of
roots [53], the escape routes can be obtained algebraically
and are uniquely defined. By construction, they involve the
M independent reactions (the cochords) in analogy to the
escape routes defined by the spanning tree in simple graphs.
Accordingly, we introduce a generalized matrix G⊤,

ð26Þ

where the conservation laws (spanning Ker S⊤) constitute
the first N −M columns, the top-right block is padded with
0’s, and theM ×M bottom-right square matrix contains the
escape routes from each node ∉ frootsg. In Fig. 8, we
represent such escape routes for the example given in
Fig. 6. Compared to the case of simple graphs, each escape
route is now a “multipath,” i.e., a combination of the
hyperedges, and is decorated with weights that tell how
many times each cochord reaction needs to be applied for
the unit charge to vanish through the roots. As such, they
constitute the generalization to hypergraphs of the simple
escape routes identified from the spanning tree in graphs.
Most notably, the matrix in Eq. (26) realizes the row
reduction of Eq. (22); see Appendix A for a proof. This

FIG. 7. Bottom-right ðN − 1Þ × ðN − 1Þ block of the matrix
G⊤, defined by the transpose of Eq. (19), showing the integration
paths along the spanning tree, which are used in Eq. (20). These
correspond to the unique escape routes connecting any node j ≠
root to the root. Here, we report G⊤ for the example in Fig. 3,
where the corresponding block is highlighted in purple. Notice
that every node j ≠ root is the source sðγÞ of exactly one edge in
the spanning tree [see Fig. 5(a)]. Hence, for a fixed j ≠ root, the
sum

P
γ G⊤

jsðγÞ runs over all the edges that connect the node j to
the root. For the example in Fig. 5(a), we graphically depict the
escape routes for the various nodes 2 ≤ j ≤ N ¼ 5.

FIG. 8. Escape routes read as lines of the bottom-right ðM ×MÞ block in the G⊤ matrix. For interacting CRNs, there is no simple
graphical procedure to fill the entries of G⊤. Nevertheless, an algebraic algorithm to identify the entries of G⊤ is described in
Appendix A. Here, we report theG⊤ for the example of Fig. 6. The numbering of the nodes follows the convention discussed in the main
text: The two roots are labeled as nodes 1 and 2, and the rest of the nodes are numbered subsequently (see Fig. 6). In this case, the
rank S ¼ M ¼ 3; hence, we highlight in purple the bottom-right ð3 × 3Þ block. We also represent the escape routes graphically, together
with the entries of the corresponding line. By construction, the escape routes are constrained to live on the independent reactions
(cochords); for this reason, we have removed from the hypergraph reaction 4, which is the reaction associated with the cycle c (the red
chord in Fig. 6).
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corresponds to a geometrically informed choice for the
matrix of the row reduction.
Like for the graph, we can use the matrixG⊤ to invert the

relation F ¼ −S⊤V ¼Pγ F
c
γcγ , for any conservative force

F ∈ Im S⊤. Physically, this means that the matrix G⊤
allows one to integrate any conservative force F on the
hypergraph in order to find the corresponding potential
landscape V. In particular, denoting G⊤

M the N ×M right
block obtained by excluding the conservation laws from
G⊤ [see Eq. (26)], one finds

ð27Þ

Notice that the firstN −M rows ofG⊤
M are padded with 0’s,

which corresponds to fixing the potential Vroot ¼ 0 ∀ root.
What we discussed so far generally holds for any
conservative force defined on the network. In Sec. IV,
we make contact between the integration procedure, which
we just detailed, and the dynamics and thermodynamics of
mass-action systems: If F is the chemical affinity vector
whose components are defined in Eq. (6) and the system is

closed, the integration procedure in Eq. (27) yields the
chemical potential of thermodynamics V ¼ μ. Similarly, if
Fc
γ ¼ logðkþγ =k−γ Þ, the integration in Eq. (27) leads to the

standard chemical potential of thermodynamics, V ¼ μ⦵.
(Notice that such potentials are defined up to linear
combinations of the conservation laws, which can always
be added to V while leaving F unchanged.)

3. Cocycles

For simple graphs G, we have identified each cocycle cγ

with a binary splitting of G into a source and a target island.
This is no longer true for the hypergraph, which is not
necessarily split into two disconnected islands when a
cocycle is removed (see, for instance, Fig. 9). We thus ask,
what is the geometrical interpretation of cocycles for the
hypergraph?
We have seen how the matrix G⊤

M transforms a set of
conservative forces defined on the cochords into a set of
potentials defined on the nodes (with zero potential on the
chosen roots). Additionally, this matrix directly relates to
the family of cocycles since, from Eq. (22), we have
−ðS⊤G⊤

MÞγ ¼ cγ . We thus define the characteristic potential
vγ ¼ ðG⊤

MÞγ, ∀ γ, such that cγ ¼ −S⊤vγ: Each potential vγ ,

FIG. 9. (a) Cocycles fcγg, with 1 ≤ γ ≤ 3, for the example of the interacting CRN introduced in Fig. 6. Removing a cocycle results in
the emergence of a new conservation law vγ, which can be read from the columns of G⊤

M. We interpret the nodes belonging to the new
conservation law as the source island of the corresponding cocycle, where each node has a certain weight (altitude). For instance, by
removing the cocycle c1, one identifies from vγ¼1 ¼ ðG⊤

MÞγ¼1 a source island (orange) containing nodes 3, 4, and 5 with different
(negative) weights. The conservation laws are reported for every cocycle, c1 to c3. We stress that, in contrast to the case of simple graphs,
the source islands are generally not disconnected from the roots, as in the case of the orange and blue islands. Let us focus on cocycle c3,
which consists of the sole reaction 3. We compare the dynamical relaxation of the island concentrations zγðtÞ ¼ vγ · xðtÞ upon
suppressing (to various degrees) (b) reaction 2 and (c) reaction 3. Equation (5) is solved numerically with the initial condition
xið0Þ ¼ 1 ∀ i. The rates are chosen in accordance with the Wegscheider criterion (37) with k�ρ ∼Oð1Þ ∀ ρ. In panel (c), the rates of
reaction 3 are suppressed by factors of ε ¼ 10−1; 10−2, and 10−3 (different shadows) such that k�ρ¼3 ↦ εk�ρ¼3 and k

þ
ρ =k−ρ¼3 ¼ const. The

dashed lines correspond to the equilibrium steady-state value obtained for ε ¼ 0, i.e., full suppression of reaction 3. As anticipated, in
this case, z3 becomes a constant of motion.
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differentiated with S⊤, generates the cocycle cγ . By analogy
with graphs, we define the source island of cγ from the set
of nodes i such that vγi ≠ 0. Then, the cocycle cγ is the
boundary of the island vγ, i.e., the set of reactions that
connect this island to the rest of the nodes. This is useful in
metabolic reconstruction (see Sec. V B) because identify-
ing the internal and external reactions involved in a cocycle
yields exact relations between their corresponding currents.
In addition, because the entries of vγ are no longer simply
0’s or 1’s, its associated island on the hypergraph now has a
geography. Namely, each node i is given an altitude vγi
which quantifies the impact of i on the outward flux along
the cocycle: As shown in Appendix A, vγ is the potential
landscape that ensures the cochord γ presents a unit current.

4. Coarse graining of the dynamics
based on cocycles

Finally, let us connect the geometrical pictures of the
islands, identified by the columns of G⊤

M, with the
dynamics. Applying the G matrix to Eq. (5), one finds
that each island concentration zγðtÞ ¼ (GMxðtÞ)γ evolves
according to the corresponding cocycle flow, such that

d
dt

zγðtÞ ¼ J · cγ ∀ γ: ð28Þ

Equation (28) can be seen as an integrated continuity
equation, where zγðtÞ is the sum of the concentrations of the
nodes of the island, weighted by the components of vγ

(which can be seen as the elevation map of the island) and
cγ · J is the total current flowing across its boundary.
Islands thus constitute a geometrical coarse graining of
the N species intoM independent and macroscopic degrees
of freedom, which describe the relaxation of the system to
its steady state.
Now, assume that one is able to cancel the current cγ · J,

i.e., effectively “remove” the cocycle cγ from the hyper-
graph. Then, from Eq. (28), one sees that the (weighted)
concentration of the island is conserved, zγ ¼ const.
Accordingly, the vector vγ can be seen as a new con-
servation law that emerges when removing cγ . While this is
expected for the graph, for which the removal of a cocycle
always generates a new disconnected component, it is
nontrivial for the hypergraph. In fact, at the level of the full
hypergraph (see Fig. 9), the source and target islands are
still connected after the removal of the cocycle, and no new
component necessarily arises. The physical interpretation is
the following: Exchange between the source and the target
islands is still possible after the removal of the cocycle, and
vγ is an emergent conservation law but not necessarily a
mass-conservation law (i.e., its entries can be negative), in
contrast to the case of the graph.
We end this section by putting forward a possible

application of this formalism to control, in the chemical
setting. In chemistry, molecular inhibitors are often

employed to delay, slow, or prevent chemical reactions.
Like in inverse catalysis, the inhibitor acts by suppressing
the reaction-rate constants k�ρ → 0 of a target reaction ρ,
thus introducing a slow timescale at the kinetic level. In
complex CRNs, it is not clear a priori what the effect is of
suppressing a reaction on (i) the macroscopic relaxation
timescale and (ii) the steady-state concentrations reached
in the long-time limit. It depends on a number of fac-
tors, including the initial condition, the distribution of
reaction-rate constants, and the topology of the network.
Nevertheless, some insights follow directly from our
algebraic approach. In particular, we have identified the
cocycles as the relaxation modes of the dynamics, whose
removal leads to the emergence of new conservation laws
(left zero modes of S). As such, we expect them to have a
strong impact on the timescales of relaxation. In Fig. 9,
we show the finite-time relaxation of the island concen-
trations zγ [Eq. (28)] for the example in Fig. 6 when a
cocycle is suppressed, compared to the case when a
noncocycle reaction is suppressed. As anticipated, the
behavior strongly differs. The removal of a reaction that
is not a cocycle minimally affects the finite-time dynamics,
leaving the characteristic relaxing time and the equilibrium
steady state unchanged. On the contrary, upon decreasing
the reaction rates of a cocycle, the dynamics develops a
plateau, which corresponds to a new timescale controlled
by the inhibitor. In the limit of complete suppression of the
cocycle, the system relaxes to a new equilibrium state,
which is a sign of the emergence of a new conservation law.

IV. PHYSICS OF CHEMICAL CURRENTS
AND AFFINITIES

In this section, we make contact between the geo-
metrical framework developed so far and the physical
and thermodynamic description of CRNs. First, we use
cycles and cocycles to represent currents J and affinities A
for arbitrary CRNs, which are the vectors defined in
Eqs. (4)–(6) that control the dynamics and thermodynamics
of the system. In particular, we put forward a decom-
position for A and J, respectively, into conservative and
nonconservative forces and into transient and steady-state
currents. Then, building on such decompositions, we show
how (i) for closed systems, the (conservative) chemical
affinity relates to the chemical potentials of thermodynam-
ics, (ii) the potential condition for the affinity breaks down
for chemostatted systems, and (iii) the a priori determin-
istic notion of chemical affinity relates to the entropy
production rate of stochastic thermodynamics.

A. Geometrical decomposition
of currents and affinities

Generalizing the graph approach of Ref. [16], we intro-
duce the decomposition of the affinity vector A ∈ RR in
terms of cocycles and chords as
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A ¼
X
γ

Ac
γcγ þ

X
α

Ae
αeα: ð29Þ

Notice that this decomposition is not orthogonal since
cγ · eα ≠ 0. Nevertheless, it has a clear physical interpre-
tation. In the first term of Eq. (29), we recognize the
conservative part of the affinity in accordance with
Eq. (18); we now prove that the second term contains
the nonconservative part. In continuous space, a test for
conservativeness is Stokes’ theorem, which states that the
circulation—the line integral along any closed path—of a
conservative force field vanishes. In our setting, any closed
path in the space of reactions can be expressed as a linear
combination of the basis of cycles, as it belongs to Ker S.
[54] Thus, to compute the circulation of A, it is sufficient to
compute its scalar product with the cycles fcαg. Using the
orthogonality conditions, Eqs. (14) and (17), one obtains

cα · A ¼ Ae
α ∀ α: ð30Þ

Thus, the coefficient Ae
α in Eq. (29) results from integrating

the affinity vector along cycle cα, and it quantifies the
deviation from Stokes’ theorem. Using Eq. (6) in Eq. (30),
one sees that the coefficients fAe

αg do not depend on the
system concentrations [47]: They constitute a set of
parameters that are intrinsic to the dynamics and quantify
the nonequilibrium drive. Indeed, we can express the
conservative condition for A as the requirement for all
coefficients Ae

α to vanish:

cα · A ¼ Ae
α ¼ 0 ∀ α; ð31Þ

which, for graphs, is Kirchhoff’s voltage law (KVL) [47],
and we keep the same name for generic CRNs. Whenever
Eq. (31) is fulfilled, the full affinity vector reduces to the
conservative part [Eq. (18)] and can be integrated using the
procedure described in Secs. II C and III B 2. Importantly,
having a conservative affinity is equivalent to having
stochastic reversibility of the underlying dynamics at the
level of populations (proofs are given in Appendix B).
Hence, although the condition of having a conservative
affinity seems to only pertain to the deterministic level, it
also applies to the stochastic one, relating to the notion of
detailed balance in stochastic population dynamics (see,
also, the discussion is Sec. IV D). Such characterizations of
reversibility are analogous to that of a Langevin equation of
the form ∂txðtÞ ¼ F(xðtÞ)þ ηðtÞ [with FðxÞ the force and
ηðtÞ centered Gaussian white noise]. Indeed, in this case,
the process xðtÞ is stochastically reversible if and only if
the force derives from a potential, if and only if its
circulation along any loop is zero. All in all, Eq. (29)
can be viewed as a generalization of the Helmholtz-Hodge
decomposition of the affinities on a hypergraph.
Let us now introduce the complementary decomposition

for the vector of currents J ∈ RR in terms of cochords and
cycles:

J ¼
X
γ

Jeγeγ þ
X
α

Jcαcα: ð32Þ

Once again, one can identify an analog of it for vector
calculus in continuous space. In the same way as a closed
surface splits R3 into an inner and an outer region, every
cocycle cγ splits the network (either a graph or a hyper-
graph) into source and target islands (see Figs. 4 and 9). By
construction, any flux between the source and the target
must flow through the cocycle itself. If we take the scalar
product between Eq. (32) and a cocycle cγ , one find

cγ · J ¼ Jeγ ∀ γ: ð33Þ

Thus, the coefficient Jeγ in Eq. (32) represents the total
current flowing from the source to the target along the
corresponding cocycle cγ . Equation (33) corresponds to a
surface integral of the current, i.e., a “flux” across the
“boundary” of the source island. Using the definition of vγ ,
one has

cγ · J ¼ ð−S⊤vγÞ · J ¼ −vγ · ðSJÞ; ð34Þ

where, on the rhs, we recognize the divergence SJ entering
in Eq. (5). Hence, Eq. (34) can be seen as a divergence
theorem for CRNs: The total current outward from the
source island is equal to the volume integral (weighted
by vγ) over the source island of the divergence of the
current. Finally, the coefficient Jeα ¼ eα · J is the local
current flowing along chord α.
Assuming that, in the long-time limit, the dynamics

reaches a stationary state, x� ¼ limt→∞ xðtÞ, then the sta-
tionary current vector J� ¼ Jðx�Þ belongs to the kernel of S
[see Eq. (5)]:

SJ� ¼ 0: ð35Þ

For graphs, Eq. (35) corresponds to Kirchhoff’s current law
(KCL) [47], and we keep the same name for generic CRNs.
It ensures the balance between all currents entering and
exiting each node. Using Eq. (32), J� reduces to a linear
combination of cycles: J� ¼Pα J

c;�
α cα. It follows that the

currents Jeγ flowing from the source to the target of each
cocycle are transient and that they vanish at the steady state.
Notice that the cocycle-chord and cochord-cycle bases

used in the decompositions of Eqs. (29) and (32) are
different than the bases of Eq. (16). We stress that the
advantage of these two decompositions lies in their direct
physical interpretation. Indeed, the conservative condition
is expressed in the vanishing of the cycle affinities at all
times, as seen in Eq. (31) (this requirement is sometimes
called thermodynamic feasibility). In addition, the con-
dition of stationarity is expressed in the vanishing (in the
long-time limit) of the transient currents, as seen in
Eq. (33). Table I in Sec. VI summarizes these results.
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We conclude the section by recalling the definition
of entropy production rate σ in terms of currents and
affinities [55]:

σ ¼ J · A ¼
X
γ

JeγAc
γ þ

X
α

JcαAe
α; ð36Þ

where we used Eqs. (29) and (32) in the second equality.
Notice that the first contribution vanishes at the steady state
while the second contribution vanishes for reversible
dynamics.

B. Conservative affinities
and thermodynamic potential(s)

For a closed system, i.e., in the absence of couplings
with external reservoirs [56], we expect the concentrations
xðtÞ governed by Eq. (5) to relax to an equilibrium state
xeq ¼ limt→∞ xðtÞ, fixed by the initial conditions. In this
scenario, the internal currents are driven by nonequilibrium
initial conditions and are expected to vanish at the steady
state, JðxeqÞ ¼ 0. This is guaranteed by a choice of reaction
rates in accordance with the Wegscheider criterion [57],
which states that the product of the forward rates along any
cycle cα is equal to that of the backward rates:

YR
ρ¼1

�
kþρ
k−ρ

�
cαρ ¼ 1; ∀ α: ð37Þ

Equation (37) is a necessary and sufficient condition
for the dynamics in Eq. (5) to relax to an equilibrium
steady state with JðxeqÞ ¼ 0 (⇔AðxeqÞ ¼ 0). As proven in
Appendix B, it is equivalent to having stochastic revers-
ibility for the underlying population dynamics or, equiv-
alently, to the existence of a vector μ⦵ such that

kþρ
k−ρ

¼ exp½−ðS⊤μ⦵Þρ�: ð38Þ

One recognizes that μ⦵ plays the role of the (dimension-
less) standard chemical potential of equilibrium thermo-
dynamics [56]. In fact, if one pictures the chemical reaction
ρ as a transition between molecular conformations in the
(standard) landscape of possible chemical combinations of
atoms, then the rhs of Eq. (38) is the ratio of Kramers
transition rates in such a landscape.
For noninteracting CRNs, Eq. (38) is equivalent to a

local detailed balance condition [7,10]:

kþρ
k−ρ

¼ expðμ⦵sðρÞ − μ⦵tðρÞÞ; ð39Þ

as S is an incidence matrix. Notice that Eq. (39) is also the
standard condition of detailed balance for Markov chains
with respect to a configuration probability Pi ∝ expð−μ⦵i Þ.
Reading from Eq. (38) that the forces logðkþρ =k−ρ Þ derive
from the potential μ⦵, we can use the integration procedure
of Sec. II C: Fixing a root on the graph, we have

expðμ⦵i Þ ¼
Y

ρ∈½root→i�

kþρ
k−ρ

; ð40Þ

where the product is taken along any arbitrary path on
the graph G from the root to node i. The result does not
depend on the choice of path, thanks to Eq. (37). The
choice of root changes μ⦵ by a global constant without
affecting Eq. (39).
For interacting CRNs, the generalization of this integra-

tion procedure is described in Sec. III B 2: Equation (38)
shows that the force of components Fρ ¼ logðkþρ =k−ρ Þ

TABLE I. Main concepts and results for interacting CRNs.

Algebraic definitions Geometrical interpretation Physical significance

Cycles Maps dissipative currents on the hypergraph. Basis for steady-state currents (KCL):
SJ ¼ 0⇔ J ¼Pα J

c
αcα [Eq. (35)].

ðcαÞ ¼
� −T
1R−M

� See Sec. IVA. Onsager response to external drive:
ðLPÞα;α0 ¼ cα⊤Λ−1cα

0
[Eq. (67)].

See Sec. III A.

Cocycles Maps transient currents on the hypergraph.
Boundary of island vγ .

Basis for conservative forces (KVL):
cα · A ¼ 0⇔ A ¼Pγ A

c
γcγ [Eq. (31)].

ðcγÞ ¼
� 1M
T⊤
� See Secs. III B 3 and IVA. Onsager relaxation to equilibrium:

ðLQÞγγ0 ¼ cγ⊤Λcγ0 [Eq. (58)].
See Sec. III A

Relation between the matrices
T and S: −GMS ¼ ð1M T Þ.

GM identifies islands whose boundaries
are the cocycles cγ .

Coarse-grained evolution of island population:
d
dt ðGMxÞγ ¼ J · cγ [Eq. (28)].

G⊤
M is an integrator on the hypergraph:

V ¼Pγ ðG⊤
MÞγAc

γ .
Constraints in metabolic reconstruction:

Jeγ ¼ GMSYJY [Eq. (82)].

See Sec. III A and Eq. (22). See Sec. III B 2 and Eq. (27).
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derives from the potential μ⦵; hence, one fixes a set of roots
from the conservation laws [58], and μ⦵i is obtained by a
weighted summation of the Fρ’s along the multipath that
connects the roots to node i (see Fig. 8 for an example).
Here, different choices of roots will lead to expressions of
μ⦵ that differ by a linear combination of conservation laws
[which does not affect Eq. (38)].
The correspondence with equilibrium thermodynamics

also includes the chemical potential μiðtÞ of species i
defined as μiðtÞ ¼ μ⦵i þ log xiðtÞ. Using Eqs. (6) and (38),
this yields an expression for the vector of affinities in a
closed system (valid at all times):

A ¼ −S⊤μ: ð41Þ

Picturing AðxÞ as the chemical force [see Eq. (7)], one sees
that, in closed (equilibrium) systems, it derives from a
potential that is precisely the chemical potential μ. We
prove in Appendix B that the converse is true. Note that μ
can be reconstructed from A using the integration pro-
cedure described in Sec. III B 2.
Finally, via Eq. (41), one sees that, at the level of the

decomposition in Eq. (29), the Wegscheider condition
ensures Ae

α ¼ 0 at all times. Hence, for closed systems
(i.e., reversible dynamics), only the cocycle contribution
in Eq. (29) survives at finite times, and it vanishes in the
long-time limit Ac

γðt → ∞Þ ¼ 0; this describes the process
of relaxation to equilibrium. Algebraically, this implies
from Eq. (41) that the equilibrium chemical potential μeq ¼
limt→∞ μðtÞ is a left null vector of the stoichiometric matrix,
μeq · S ¼ 0; i.e., it is a linear combination of conservation
laws (see also Ref. [61] for insights on the role of
conservation laws). In particular, for closed noninteracting
CRNs, μeq is proportional to the mass conservation law l0,
and equilibrium is reached when species all have the same
chemical potential.

C. How chemostatting breaks
conservative conditions

Suppose now that the reaction-rate constants k�ρ do not
fulfill the Wegscheider condition in Eq. (37). This is often
the case in phenomenological models of evolutionary
games [62], gene regulatory networks [63], or theoretical
ecology [64], where effective reactions are typically irre-
versible. As a result, the dynamics evolves towards a
nonequilibrium steady state or a limit cycle or a more
complex behavior. To make contact with thermodynamics
while still being irreversible, in CRNs, the breakdown of
theWegscheider condition is usually prescribed through the
coupling with different chemostats that drive the system out
of equilibrium [65]. Each chemostat is depicted as a
reservoir of a single chemical species, which is put into
contact with the system and exchanges molecules (Fig. 10).
Conventionally, the corresponding reaction reads

∅ ⇌
γþi

γ−i
Yi; ð42Þ

where Yi is the chemostatted species and γ�i are the rate of
particle exchange with the chemostat, which, contrarily to
the bulk rates fk�ρ g, are not thermodynamically constrained
by the Wegscheider condition. We parametrize the effect of
chemostat i via a driving parameter ai defined by

γ−i
γþi

¼ exp ðμ⦵i − aiÞ: ð43Þ

Following Refs. [8,10,66], we label the set of chemo-
statted species with Y and the remaining species with X,
such that X ∪ Y forms the set of all chemical species.
Accordingly, we group internal and external reactions into
an N × ðRþ jYjÞ extended stoichiometric matrix Sres,
namely,

Sres ¼ ð SY j S Þ with SY ¼
�
1jYj
0

�
; ð44Þ

where the first jYj columns of Sres represent the chemo-
statting reactions [Eq. (42)]. The evolution of the correspond-
ing concentrations yðtÞ and xðtÞ reads ðd=dtÞ(yðtÞ; xðtÞ) ¼
SresJ(xðtÞ; yðtÞ), the first jYj component of J being the
external currents of the chemostatting reactions:

Ji ¼ γþi − γ−i yi ¼ γþi ½1− expðμi−aiÞ� ðfor 1≤ i≤ jYjÞ:
ð45Þ

Thus, for open systems, the full affinity vector A takes the
following form:

A ¼ −S⊤res μþ a; ð46Þ

FIG. 10. Sketch of a system of chemical species put in contact
with external chemostats. The chemostats are treated as infinite
reservoirs of a single chemical species. For illustration, the
chemostat i (here, in orange) exchanges orange particles with
the system, and it is characterized by a pair of reaction rates γ�i
and a driving parameter ai.
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where a ∈ RR is the vector of driving affinities, aρ ¼ aiδρ;i
(for 1 ≤ i ≤ jYj). Equation (46) is valid arbitrarily far from
equilibrium and expresses how the chemostatting, in general,
leads to irreversibility since, when a ∉ ImS⊤, the potential
condition in Eq. (31) breaks down.
In practice, in order to drive nonequilibrium, one needs

at least two chemostats held at different values of the
driving parameter a, which is why one often encounters
“Δμ” in the literature as the effective driving force [67,68].
Proof.—For a single chemostat, the driving affinity

vector takes the form a ¼ ða; 0…0Þ⊤. By construction,
l0 · Sres ¼ ð1; 0…0Þ⊤, which constitutes a generating
vector for the space where a lives. It follows that
a ¼ al0 · Sres, and the affinity becomes

A ¼ −S⊤res½μðtÞ − al0�: ð47Þ

The total affinity vector A ∈ Im S⊤res is therefore still
conservative and the dynamics still reversible, and the
equilibrium state is given by μeq ¼ al0. ▪
For noninteracting CRNs, the emergence of nonequili-

brium behavior can be understood graphically. To do so, we
augment the original graph by an extra node ∅ and, for
each chemostatting reaction in Eq. (42), we introduce a new
edge linking the chemostatted species Yi to the node∅ (see
Fig. 11). By construction, the incidence matrix of the
augmented graph is endowed with an extra line:

ð48Þ

which bookkeeps the exchange of particles between the
chemostatting node ∅ and the system. As shown in
Fig. 11(d), adding more than one chemostatting edge
results in the appearance of new cycles in the graph.
Those “emergent” cycles are associated with cycle affinities
Ae
α that do not necessarily satisfy the Wegscheider con-

dition and thus play the role of driving the system out of
equilibrium. Again, one sees that at least two chemostats
are needed for an emergent cycle to appear. Following the
procedure outlined in Sec. II A, one finds the corresponding
basis for cocycles and cycles; these now include both the
internal and the emergent cycles, which are graphically
identified. One verifies that the number of emergent cycles
is given by [69]:

#emergent cycles ¼ dim Ker Sres − dim Ker S ð49Þ

in accordance with the algebraic result of Ref. [10] (for
generic interacting CRNs).
Other chemostatting procedures [8,10,47] consist in

fixing the concentrations of the chemostatted species
(treated as external parameters); however, then S is no
longer an incidence matrix, and the graph-theory approach
is not applicable. In contrast, the present setting preserves
the geometrical insights introduced in Secs. II A–II C when
going from closed to open systems.

D. Connection with the entropy production rate

The thermodynamic equilibrium conditions discussed
in Sec. IV B are equivalent to requiring the reversibility
of the underlying stochastic process (as described in
Appendix B). Considering the dynamics of the vector of
the population n ¼ ðn1;…; nNÞ of the species, every
transition associated with a reaction ρ in Eq. (2) verifies
the detailed balance condition

Wþ
ρ ðnÞ

W−
ρ ðnþ SρÞ

¼ Peqðnþ SρÞ
PeqðnÞ ∀ n: ð50Þ

Here,W�
ρ ðnÞ ¼ Wðfni ↦ ni � SiρgÞ denotes the transition

rate at the population level, and the equilibrium distribution
PeqðnÞ is a product-form Poisson-like law (constrained by
the conservation laws) of parameters xeq. We refer to
Appendix B for an explicit expression of PeqðnÞ and to
Appendix C for the transition rates. The vector xeq

represents the average value of the species concentrations
in the long-time limit and depends on the initial condition.
Introducing the quasipotentialΦðnÞ¼−ð1=ΩÞ logPeqðnÞ

associated with the equilibrium law, whereΩ is the system’s
volume, Eq. (50) can be rewritten as

FIG. 11. Example of the graphical representation of chemo-
statting for unimolecular reactions. (a) Species labeled Yi are
subjected to chemostatting reactions (in blue) with rates γ�i ,
describing the contact with reservoirs. (b) Chemostatting one
species corresponds to the simple addition of one edge in the
graph which connects the node ∅ to the corresponding chemo-
statted species/node. In this case, the only cycle present in the
graph is the internal one (in green). (c) Chemostatting a second
species results in the emergence of a new cycle, depicted in
yellow. (d) The same holds true when chemostatting a third
species, and so on. Such emergent cycles (in yellow) are not
constrained by the Wegscheider condition on the rates and they
can drive the system out of equilibrium.
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Wþ
ρ ðnÞ

W−
ρ ðnþ SρÞ

¼ expf−Ω½Φðnþ SρÞ −ΦðnÞ�g: ð51Þ

At large volume Ω ≫ 1 with fixed x ¼ n=Ω, one finds that
ΦðnÞ → ϕðxÞ with

ϕðxÞ ¼
X
i

ðxi log xi − xi − xi log x
eq
i − xiÞ: ð52Þ

Here, one recognizes that ϕðxÞ is the free energy density,
that is, the difference between the energy density and
the entropy density. Notice that ϕðxÞ is minimum (and
cancels) at x ¼ xeq. Defining (for any n and x ¼ n=Ω)
xi ¼ expðμi − μ⦵i Þ, one can expand Eq. (51) for Ω ≫ 1,
which yields the expression of the entropy production Σρ of
reaction ρ:

ΣρðxÞ ¼ log
Wþ

ρ ðnÞ
W−

ρ ðnþ SρÞ
¼ −(S⊤∇ϕðxÞ)ρ; ð53Þ

(∇ϕðxÞ)i ¼ log xi − μeqi þ μ⦵i ¼ μi − μeqi : ð54Þ

We keep the usual denomination of entropy production
for this ratio of rates at the population level, but we remark
that it plays the same role as the affinity at the deterministic
level of reaction-rate constants [see Eq. (6)]. We observe
that the constant μeqi in Eq. (54) plays no role in Eq. (53)
since μeq ∈ Ker S⊤. [70] We can thus write, for the vector Σ
of the Σρ’s,

ΣðxÞ ¼ −S⊤μðxÞ: ð55Þ

Here, ΣðxÞ comes from the stochastic dynamics [lhs of
Eq. (50)] while the associated chemical potential μðxÞ comes
from the equilibrium distribution [rhs of Eq. (50)] and is thus
of thermodynamic nature.We stress that Eq. (55) can be read
for any occupation state of the system. If evaluated for the
xðtÞ solution of the rate equation (5), we see that Σ(xðtÞ)
becomes equal to the affinityA(xðtÞ) and goes to zero at long
times, as expected in equilibrium.
Last, let us consider the case of an open system in contact

with reservoirs. Following the chemostatting procedure of
Sec. IV C, one defines the vector of the entropy production
rates of individual reactions as in Eq. (53), now including
chemostatting reactions. Accordingly, at large Ω, one finds

ΣðxÞ ¼ −S⊤res μðxÞ þ a; ð56Þ

where the computation is performed directly from the
expression of the ratio of transition rates. Interestingly,
Eq. (56) expresses the condition of local detailed
balance [71,72] (see Ref. [73] for a review and
Refs. [61,74] for the case of CRNs), with a playing the
role of a chemical drive. As before for Eq. (55), this
equation holds for any occupation n (at large Ω) through

x ¼ n=Ω and not just for the deterministic concentration
xðtÞ; it makes the link between stochastic aspects (on the
lhs) and thermodynamic quantities (the rhs being expressed
as a function of chemical potential and drive). If evaluated
for the deterministic xðtÞ, Eq. (56) takes exactly the form
of the affinity A [see Eq. (46)]. We refer the reader to
Refs. [74–76] for relations to the second law.

V. CLOSE-TO-EQUILIBRIUM REGIME

A. Linear responses for CRNs

We now apply our framework to study the response
of interacting networks to small out-of-equilibrium pertur-
bations from an equilibrium stationary state. As discussed
in Sec. IV B, the Wegscheider condition for closed
CRNs ensures the existence of an equilibrium steady
state xeq, fixed by the initial conditions and characterized
by the vanishing of all the currents and affinities,
Jeqρ ¼ Aeq

ρ ¼ 0 ∀ ρ. Close to this equilibrium state, we
can linearize Eq. (7) and reexpress it in matrix form:

J ≃ ΛA; ð57Þ

where Λ is the R × R diagonal matrix of linear suscep-
tibility defined by the diagonal entries ðΛÞρρ ¼ λþρ ðxeqÞ ¼
λ−ρ ðxeqÞ ¼ λeqρ . Despite the familiar form of a linear phe-
nomenological relation [55], Eq. (57) is not very inform-
ative about the system’s response. It describes the local
response of each current Jρ to a small perturbation of the
corresponding affinity Aρ without taking into account the
cross-couplings between chemical reactions. In this sense,
the Onsager reciprocal relations [77] are trivially satisfied,
with Λ being a diagonal matrix. Furthermore, Eq. (57) is
blind to the underlying network topology: We know that
only M out of the R reactions (and the corresponding
currents) in the network are linearly independent due to
cycles. Thus, a natural question is how cross-couplings
among reactions emerge in this context and how they
relate to the network structure. The decompositions
introduced in Sec. IVA will provide a natural framework
to address these aspects.
Equation (57) is valid whenever the affinity is small, but

one may further assume that the system is (i) closed, with
affinity A ≪ 1 remaining small and conservative while
relaxing to zero, or (ii) open, with an external source (e.g., a
chemostat) providing a constant nonconservative contribu-
tion to the total affinity A ≪ 1. In the first case, the system
exhibits a transient relaxation towards xeq. In the second
case, the system reaches a nonequilibrium steady state x�,
close to xeq, with positive entropy production. We treat
these two cases separately before revealing the connections
between them, in the spirit of the Einstein relation between
diffusivity and mobility.
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1. Transient response

We have already seen how the finite-time relaxation is
fully captured by the M cocycle currents Jeγ in Eq. (28)
(even outside the linear-response regime, when a steady
state is reached). By substituting the decomposition in
Eq. (32) in Eq. (5), one directly sees that the currents Jcα
do not contribute to the time evolution of xðtÞ since
cα ∈ Ker S. Accordingly, we can plug Eq. (57) into the
definition of Jeγ and get

Jeγ ¼ cγ · J ¼ cγ · ΛA ¼
X
γ0

cγ⊤Λcγ0|fflfflffl{zfflfflffl}
ðLQÞγγ0

Ac
γ0 ; ð58Þ

where we used the decomposition in Eq. (29) together with
KVL, Eq. (31). Equation (58) describes the linear relation
between transient currents Jeγ and conservative affinities Ac

γ .
They vanish together in the long-time limit, as xðtÞ → xeq.
Accordingly, we identify the matrix LQ in Eq. (58) as an
M ×M relaxation matrix. It is symmetric and positive
definite in accordance with Onsager reciprocal relations.
We introduce the distances from equilibrium for the

concentration xðtÞ and the chemical potential μðtÞ as

δxðtÞ ¼ xðtÞ − xeq; ð59Þ

δμðtÞ ¼ μðtÞ − μeq; ð60Þ

so that δx; δμ⟶
t→∞

0. Then, from Eq. (41), the affinity vector
becomes

A ¼ −S⊤μ ¼ −S⊤δμ ¼ −S⊤ðXeqÞ−1δx; ð61Þ

where in the second equality we have introduced a diagonal
matrix Xeq whose entries are given by ðXeqÞi ¼ xeqi . In
addition, by applying the matrix G to δxðtÞ, one gets

ð62Þ

where δzðtÞ is the vector containing the distance to
equilibrium for the zγ variables, δzγ ¼ zγðtÞ − zeqγ . The first
N −M zeros in Eq. (62) correspond to the conservation
laws l [by definition, l · δxðtÞ ¼ 0]. The relation in
Eq. (62) can be inverted using the structure of the row
reduction [see Eq. (A16) in Appendix A], and one obtains

δxðtÞ ¼ SMδzðtÞ; ð63Þ

where we recall that SM is the matrix consisting of the M
first columns of S. We place Eq. (63) into Eq. (61) to obtain
an expression for the affinity as a function of the reduced
set of variables δzγ. In particular, for the M cocycle
affinities Ac

γ we find

Ac
γ ¼ −

X
γ0
(S⊤MðXeqÞ−1SM|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

HQ

)γ;γ0δzγ0 ; ∀ γ: ð64Þ

Notice that theM ×M matrix HQ defined in this relation is
symmetric and positive definite, in accordance with the
conservative nature of Ac

γ . Finally, combining Eqs. (28),
(58), and (64), we obtain the linear evolution of δz:

d
dt

δzðtÞ ¼ −BδzðtÞ; ð65Þ

where B ¼ LQHQ is the stability matrix whose spectrum
controls the relaxation to the equilibrium state and it is
strictly positive, SpB ¼ SpLQHQ > 0. As a consequence,
the system relaxes monotonically to the equilibrium steady
state, which in the theory of dynamical systems is called a
stable node. Interestingly, the matrices LQ and HQ, which
appear naturally in our deterministic framework, have a
physical meaning in the underlying stochastic dynamics. It
is known that Gaussian temporal fluctuations around
equilibrium are well described by the (linearized) chemical
Langevin equation [78]. In Appendix C, we show that the
Onsager matrix LQ appears to be the covariance matrix of
the Gaussian noise entering the Langevin description,
where, in the large but finite Ω asymptotics, δzðtÞ becomes
a stochastic process. The matrix HQ appears as the Hessian
matrix associated with the quadratic quasipotential φðδzÞ ¼
1
2
δz⊤HQδz from which the conservative force −LQ∇Φ of

the Langevin equation is obtained [see Eq. (C12)], describ-
ing the equilibrium Gaussian distribution ∝ exp½−ΩφðδzÞ�
of the deviation δz around its average value 0.

2. Steady-state response

For an open system, relaxation to equilibrium is impeded
by the continuous supply of external currents, as described
in Sec. IV C. Then, the overall affinity is nonconservative
and takes the explicit form given by Eq. (46) with the
nonvanishing circulations Ae

α determined by the chemo-
statting parameters a:

Ae
α ¼ cα · A ¼ cα · a ≠ 0 ∀ α: ð66Þ

Consider, for simplicity, the case of a time-independent
chemostatting, a ≪ 1, so that the system reaches a non-
equilibrium steady state x� linearly close to the equilibrium
state, δx� ¼ x� − xeq ≪ 1. In the linear regime, we can
place Eq. (57) into Eq. (66) so that

Ae
α ¼ cα · Λ−1J ¼t→∞X

α0
cα⊤Λ−1cα

0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðLPÞαα0

Jc;�α0 ; ð67Þ

where in the last equality we used the current decom-
position in Eq. (32) under the steady-state condition, i.e.,
when only the cyclic currents survive, Jc;�α ¼ limt→∞ JcαðtÞ.
The matrix LP in Eq. (67) describes the linear relation
between the nonconservative affinities maintaining the
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systemout of equilibriumand the nonzero currents character-
izing the steady state. As such, it corresponds to the Onsager
matrix of the steady-state response, and one verifies that it is
symmetric and positive definite. Notice that the response in
Eq. (67) corresponds to the one initially studied by
Schnakenberg [47]. In his analysis, Schnakenberg empha-
sized the thermodynamic significance of cycles. Indeed, we
see that the steady-state response is fully determined by a
number of currents and affinities given by the number of
cycles in the underlying topology.
Notably, the dimensions of the Onsager matrices

controlling the transient response LQ and the steady-state
response LP are not the same: They are fixed by the number
of cocycles and cycles, respectively. In both cases, the
off-diagonal contributions to the response emerge once
we restrict the analysis to the subset of physically relevant
currents and affinities. Formally, this is achieved by
projecting the total currents and affinities on the subspaces
defined by the cycles and the cocycles (see Appendix D). A
natural question is how the two Onsager matrices LP and
LQ are related, given that (i) they describe, respectively,
relaxation to equilibrium and response to a small drive (that
one thus expects to be related fluctuation dissipation), and
(ii) they live in (complementary) spaces of different
dimensions. We address this question in the next paragraph.

3. Hidden fluctuation-dissipation symmetries

Following the same convention for the ordering of the
reactions as in Sec. II B, we subdivide the diagonal matrix
Λ as

Λ ¼
�ΛM 0

0 ΛR−M

�
; ð68Þ

where the upper diagonal block ΛM corresponds to the M
cochord reactions and the lower diagonal blockΛR−M to the
R −M chord reactions. In doing so, from Eqs. (58) and
(67), the Onsager matrices LQ and LP explicitly read

LQ ¼ ΛM þ TΛR−MT⊤; ð69Þ

LP ¼ Λ−1
R−M þ T⊤Λ−1

M T; ð70Þ

with no apparent connections between them for generic Λ.
In order to unveil such a connection, we perform the

following diagonal transformation for the variables:

Ĵ ¼ Λ−1=2J; Â ¼ Λþ1=2A: ð71Þ
One sees from Eq. (57) that such a change of variable
corresponds to a rescaling of the linear-regime current-
affinity relation, such that Ĵ ¼ Â. Moreover, it preserves the
orthogonality structure between the potential condition A ∈
Im S⊤ and the stationary condition J ∈ Ker S discussed in
Sec. IVA: For the new variables, these conditions become

Â ∈ Im ðSΛ1=2Þ⊤ for conservative affinities; ð72Þ

Ĵ ∈ Ker SΛ1=2 for stationary currents; ð73Þ

involving complementary orthogonal subspaces,

Im ðSΛ1=2Þ⊤ ⊥Ker SΛ1=2: ð74Þ

The matrix Λ being invertible, one easily verifies that
fΛ1=2cγg constitutes a basis for the subspace in Eq. (72)
while fΛ−1=2cαg forms a basis for the subspace in Eq. (73).
Accordingly, we can introduce rescaled cocycles and cycles
defined as ĉγ ¼ Λ1=2cγΛ−1=2

γ and ĉα ¼ Λ−1=2cαΛ1=2
α .

The new cycles and cocycles still satisfy the orthogon-
ality relations in Eqs. (14) and (17) and constitute a basis in
RR, namely,

fĉγ; ĉαg ¼
�
1M −T̂
T̂⊤ 1R−M

�
; ð75Þ

where T̂ ¼ Λ−1=2
M TΛ1=2

R−M. As a consequence, the decom-
positions for the affinity in Eq. (29) and the current
in Eq. (32) readily generalize to the new representation,
with macroscopic components defined as Ĵeγ ¼ ĉγ · Ĵ,
Ĵcα ¼ eα · Ĵ, Âc

γ ¼ eγ · Â, and Âe
α ¼ ĉα · Â. Finally, in the

linear regime, the Onsager matrices L̂Q and L̂P, such
that Ĵeγ ¼

P
γ0 ðL̂QÞγγ0 Âc

γ0 and Âe
α ¼

P
α0 ðL̂PÞα;α0 Ĵc;�α0 , are

obtained following the same procedure as before, and they
read

L̂Q ¼ 1M þ T̂T̂⊤ ¼ Λ−1=2
M LQΛ

−1=2
M ; ð76Þ

L̂P ¼ 1R−M þ T̂⊤T̂ ¼ Λ1=2
R−MLPΛ

1=2
R−M: ð77Þ

Interestingly, the two matrices T̂T̂⊤ and T̂⊤T̂ share the
same nonzero eigenvalues, meaning that the Onsager
matrices L̂Q and L̂P also have the same spectrum up to
the multiplicity of eigenvalue λ ¼ 1.
Proof.—Let us consider an eigenvector w and the

corresponding eigenvalue λ ≠ 0 of the matrix T̂⊤T̂ so that

∃w∶ T̂⊤T̂w ¼ λw: ð78Þ

By multiplying by T̂ on the left, one gets T̂T̂⊤T̂w ¼ λT̂w.
If T̂w is different from zero, then λ is also an eigenvalue of
the matrix T̂T̂⊤. Ad absurdum, let us assume that T̂w ¼ 0.
From Eq. (78), we see that this implies λw ¼ 0, which is
against the original assumption (λ ≠ 0). As a consequence,
for any nonzero eigenvalues λ,

λ ∈ Sp T̂⊤T̂⇔ λ ∈ Sp T̂T̂⊤: ð79Þ

▪
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The diagonal transformation in Eq. (71) reveals a hidden
symmetry in the spectrum of the Onsager matrices of
complex CRNs. It links the transient relaxation of the
system produced by a spontaneous (or imposed) fluctuation
to the stationary response of the system to a drive:

Sp
≠1

L̂P ¼ Sp
≠1

L̂Q; ð80Þ

which generalizes to network topologies the 1D Einstein
relation μE ¼ D between the mobility μE and the diffusion
constant D (setting kBT ¼ 1). For CRNs, the Onsager
matrices LP and LQ play the roles of matricial mobility
and diffusivity (see Appendix C), respectively.We stress that
this symmetry is nontrivial: The two matrices have different
dimensions due to the existence of conservation laws and
cycles.

B. Linear-regime thermodynamically feasible
reconstruction of metabolic networks

Typically, in metabolomics, some species are injected
into the cell by external reactions ∅⇌Y of the kind
introduced in Sec. IV C. Such chemostatting reactions
naturally give rise to emergent cycles whose driving
affinities are generally nonzero [10]. In contrast, there is
no drive associated with internal cycles, which have
vanishing affinity according to KVL [Eq. (31)]. This results
in thermodynamic feasibility, that is, the existence of a
potential vector μ such that Aρ ¼ −S⊤ρ μ and JρAρ ≥ 0 for
any internal reaction [79]. At the same time, mass balance
is ensured by the continuity equation, Eq. (5), which
reduces to KCL at stationarity [Eq. (35)].
In metabolic reconstruction, a subset of external currents

are treated as known (fixed) parameters, and the problem
consists in predicting a thermodynamically feasible value
(or range of values) for the remaining set. We label JY the
known external currents and refer to the remaining set of
reactions as internal, with (unknown) current state J. Then,
KCL can be expressed as

SJ ¼ −SYJY; ð81Þ

where we have separated the known external reactions in
SY from the remaining reactions in S. The presence of
internal cycles for S means that the linear problem in
Eq. (81) is generally underdetermined, and the solution
space is multidimensional. This is the case in standard
cellular networks, for which additional constraints such as
upper or lower current bounds or the optimization of
objective functions are typically imposed to reduce the
solution space. In practice, solving Eq. (81) while properly
taking into account the thermodynamic constraints has
proven computationally difficult due to the nonlinearity of
KVL. On the other hand, if all the reactions in the network
are independent (i.e., there are no internal cycles), the
solution to Eq. (81) is unique and fully determined by the

set of external currents JY . In this case, S is full column
rank (M ¼ R) and J ¼ GMSYJY , with GM defined in
Eq. (26) (where G is associated with the stoichiometric
matrix S of the internal reactions).

1. Insights from geometry

For an arbitrary network S of internal reactions, we can
use the framework introduced in Sec. III A to identify
independent and dependent reactions, the cochords fγg and
chords fαg. Such a decomposition is not unique; however,
it allows one to identify a limited number of degrees of
freedom affected by the nonlinearity of the KVL constraint.
Consider a cocycle cγ and its associated island vγ ¼

ðG⊤
MÞγ (see Sec. III B 3). At a steady state, its population

vγ · x is constant, so 0 ¼ vγ · ∂tx ¼ vγ · ðSJ þ SYJYÞ. Using
cγ ¼ −S⊤vγ , one finds

cγ · J ¼ ðGMSYJYÞγ: ð82Þ

Physically, Eq. (82) establishes a balance between the flux
of internal currents (lhs) and that of the external currents
(rhs) at the boundary of the island vγ. Noticing that cγ · J is
nothing but the component Jeγ in the current decomposition,
Eq. (32), we see that Jeγ is fully determined by the external
currents JY , depends linearly on them, and is not affected
by the thermodynamic constraint of KVL. In particular, this
is true for “bridge” reactions, i.e., reactions that do not enter
any internal cycles, for which cγ ¼ eγ . The identification of
bridges is independent of the choice of chords and
cochords, and one may wonder what the biological
advantage is of having bridges in a metabolic pathway.
These internal reactions have a current Jγ ¼ ðGMSYJYÞγ
fully determined by the external environment of the cell
(characterized by the uptake and secretion rates JY).
More generally, the full set of components Je ¼ ðJeγÞ and

Jc ¼ ðJcαÞ of the decomposition, Eq. (32), of J on cochords/
cycles takes the form

ð83Þ

This choice of basis thus tells us thatM linear combinations
of the internal currents fJeγg are independent of the cycle
currents fJcαg and fully determined by an explicit linear
function of the external currents. We surmise that such
strong constraints between the components of J are of
interest in metabolic reconstruction. As a consequence,
the difficulties of imposing KVL are condensed into the
determination of the Jcα’s as, in general, a nonlinear
function of the external currents [the last R −M lines on
the rhs of Eq. (83)]. Clearly, imposing Jcα ¼ eα · J ¼ 0, i.e.,
effectively removing chords from the network, provides a
feasible reference state J0,
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J0 ¼
�
GMSYJY

0

�
; ð84Þ

which only exists on the chosen M independent (cochord)
reactions. Such a solution is simple in the sense that the
internal current state is a linear function of the external
currents, and the currents associated with every cycle
are zero (so KVL is trivially verified). As detailed below,
this is the case in state-of-the-art algorithms of metabolic
reconstruction, which de facto lack a procedure to fully
explore the role of cycles in metabolic pathways.
We now study some examples to understand how the

unknown function in Eq. (83) can be determined in a linear-
regime assumption close to equilibrium, before presenting
a generic algorithmic procedure valid in this regime. To
keep matters simple, we consider here noninteracting
networks, but the method fully applies to interacting ones
(since, as will become apparent, it relies on the algebraic
tools we have presented).

2. Noninteracting network, one internal cycle

As the simplest possible case, consider the network

where, for simplicity, wemomentarily loosen the assumption
that there are no multiple reactions with the same stoichi-
ometry. We assume that Jext1 is known and that all other
currents have to be reconstructed. Notice that J4 is also an
external current, which we could fix, but we should keep in
mind that, by mass conservation, Jext4 ¼ Jext1 . In general, not
every set of external currents can be independently fixed, so
some care is needed in choosing the boundary data.
We now want to impose dynamic and thermodynamic

constraints. At the nodes of the network, KCL clearly
implies

where the current J2 now acts as a free parameter. As long
as KCL is involved, this parameter could take any real
value. We now implement thermodynamic feasibility to
reduce the span of J2. Given the constitutive equation (6)
and identifying the internal cycle

KVL yields

λþ2 λ
−
3 ¼ λ−2 λ

þ
3 ; ð85Þ

where the λ�ρ ’s are evaluated at the steady state
λ�ρ ¼ λ�ρ ðx�Þ. Let us now rewrite this in terms of the
external current Jext1 , the internal current J2 (which we
take as a free parameter), and the velocities λ−2 and λ−3
(chosen arbitrarily). After a little work, we obtain

J2 ¼
1

1þ λ−3 =λ
−
2

Jext1 : ð86Þ

In reconstruction problems, the actual values of λ−2 and λ−3
are usually not known. However, from the fact that they are
positive, this latter equation implies

0 ≤ J2 ≤ Jext1 : ð87Þ

This restricts the range of feasible values for J2 and, most
importantly, prescribes the current directionality. For pos-
itive Jext1 , both currents J2 and J3 have to flow from left to
right, which makes physical sense: One would not expect a
river that bifurcates around an island to have upward flows
along one of its branches.
However, reconstruction procedures that just implement

KCL may fail to impose this constraint, thus producing
thermodynamically infeasible behaviors. For instance, if
Jext1 ¼ 0, one could have a perpetuummobile in the absence
of forces:

The same solution as Eq. (86) can be found using
the linear-regime approach. In view of Eq. (57), KVL
prescribes

0 ¼ A2 − A3 ≈
J2
λeq2

−
Jext1 − J2

λeq3
; ð88Þ

leading to

J2 ¼
1

1þ λeq3 =λ
eq
2

Jext1 ; ð89Þ

which, in fact, is almost identical to Eq. (86) except for the
fact that it is written in terms of equilibrium values of
the velocities. For the sake of our analysis, notice that,
provided the velocities are just some positive quantities,
Eqs. (86) and (89) impose the exact same constraint. Here,
linearization has no actual consequence.
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3. Noninteracting network, two cycles

Let us now consider

where we already implemented KCL in terms of the
external currents Jext2 , Jext3 and the internal currents J5, J7.
KVL on the two internal cycles instead prescribes

λþ5 λ
−
7 ¼ λ−5 λ

þ
7 ; ð90Þ

λþ4 λ
−
5 λ

−
6 ¼ λ−4 λ

þ
5 λ

þ
6 : ð91Þ

Selecting λ−4 ; λ
−
5 , and λ−6 as free parameters, after some

work, we find the linear equation J7 ¼ J5λ−7 =λ
−
5 , and letting

β ¼ 1þ λ−7 =λ
−
5 , we obtain the quadratic equation

β

λ−5 λ
−
6

J25 þ
�
1

λ−5
þ β

λ−4
þ β

λ−6
−

Jext3

λ−5 λ
−
6

�
J5 þ

Jext2

λ−4
−
Jext3

λ−6
¼ 0:

ð92Þ
Once again, notice that when there is no external current
Jext2 ¼ Jext3 ¼ 0, we get J5 ¼ J7 ¼ 0 (no perpetuum
mobile). Otherwise, for given values of Jext2 and Jext3 , one
can use this equation to explore the possible values of the
internal currents in terms of arbitrarily chosen parameters
λ−4 ; λ

−
5 , and λ−6 .

This quadratic problem is already becoming complicated
(and it is easy to foresee that, for more complicated
topologies, this will give rise to higher-order polynomial
systems). Given that we are interested in some bulk
characterization of the landscape, an analytical solution
may be unrealistic. Therefore, like in the previous example,
let us proceed by linearization of KVL:

0 ¼ A5 − A7 ≈
J5
λeq5

−
J7
λeq7

; ð93Þ

0 ¼ A4 − A5 − A6 ≈
J4
λeq4

−
J5
λeq5

−
J6
λeq6

: ð94Þ

The first equation easily gives J7 ¼ J5λ
eq
7 =λ

eq
5 , and letting

βeq ¼ 1þ λeq7 =λ
eq
5 , the second equation yields�

1

λeq5
þ βeq

λeq4
þ βeq

λeq6

�
J5 þ

Jext2

λeq4
−
Jext3

λeq6
¼ 0: ð95Þ

However, this simple linear equation, given the external
currents, provides a reconstruction for any given choice of
positive real λ’s. Notice that this equation can also be
obtained from Eq. (92) by disregarding terms of order J2.
Thus, this reconstruction, which is the limiting case of a
feasible reconstruction, is also thermodynamically feasible.

4. Considerations and problem setting

The key results of these examples are the following: Direct
imposition of Kirchhoff’s laws and linearization lead to
thermodynamic feasibility of reconstruction. The first result
is consistent with the basic tenets of reaction-rate theory, but
it becomes increasingly complicated as topology becomes
less trivial. Known algorithms rely on the identification and
removal of infeasible cycle currents from solutions of
Eq. (81), performed by sampling and postprocessing the
solution space of Eq. (81) using linear optimization proce-
dures [45,80,81]. In practice, such algorithms will hit the
boundary of the space of solutions, where internal cycles are
effectively removed, leading to a “trivial” solution of the type
in Eq. (84). In the first example, there are two such trivial
solutions: J2 ¼ 0 or Jext1 − J2 ¼ 0.
Given that metabolic reconstruction is a very under-

determined problem and that one is more interested in
spanning a space of viable solutions rather than specific
solutions, we can resort to linearization to obtain a broad
range of feasible reconstructions. Given the stoichiometric
matrix of a metabolic network, the first step is to split it into
internal reactions S, which we want to reconstruct, and
external reactions SY , for which there exist data or
we want to control. Notice that from Eq. (81), any left
null vector l of S that is not a left null vector of SY imposes
a constraint (interdependence) among the parameters JY .
Once a good choice of independent external reactions is
made, we fix some input currents JY and produce a recon-
structed current state J that satisfies both KCL and KVL.
We base our solution on the linear-regime assumption.

5. Linear-regime reconstruction algorithm

(1) Input the metabolite stoichiometric matrix and split
it as ðSY; SÞ in terms of external reactions SY and
internal reactions S. In the following, we refer to R
as the number of internal reactions andM as the rank
of S.

(2) Input the external currents JY .
(3) For all left null vectors l of S, check that

l · SYJY ¼ 0; otherwise, revise the input currents
or reduce the number of external reactions and go
back to (1).

(4) Row-reduce the matrix S to obtain the matrix GS.
(5) Reorder reactions in such a way that GS takes the

form in Eq. (22); reorder S accordingly.
(6) Input R real positive parameters λeqρ .
(7) Let Λ ¼ diagfλeqρ gρ, let diagðΛM;ΛR−MÞ ¼ Λ, and

let LP be as in Eq. (70).
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(8) Let

J ¼
� ð1M − TL−1

P T⊤Λ−1
M ÞGMSYJY

L−1
P T⊤Λ−1

M GMSYJY

�
: ð96Þ

In Appendix E, we derive Eq. (96) and prove that it
satisfies both KCL and KVL. Namely, every current state J
obtained from Eq. (96) by fixing JY and the λ’s is
thermodynamically feasible. Most importantly, the full
space of feasible solutions (within the linear regime) is
explored by varying the λ’s in Eq. (96).
The rationale behind the algorithm can be understood by

reexpressing the solution as follows:

ð97Þ

where we made contact with the current decomposition of
Eq. (32) bynoticing that cochordsfeγg and cyclesfcαg form,
respectively, the first M and last R −M columns of the left
matrix in the first line of Eq. (97). Then, Eq. (97) corresponds
to a perturbative solution around the loopless reference point
Eq. (84), where one reintroduces the chords (and the internal
cycles) and assumes the validity of the linear-regime
approximation for the full set of currents. In other words,
the term L−1

P T⊤Λ−1
M GMSYJY in Eq. (97) is a linear-regime

expression of the unknown functionðJYÞ in Eq. (83).
The reconstruction problem in our approach is thus

particularly simple: One just needs to focus on the chord
currents fJcαg (< 10% of the total reactions in realistic
networks [80]) for which we provide a linear-response
solution in terms of a susceptibility matrix L−1

P T⊤Λ−1
M .

The latter contains the ratio of λ’s and has well-defined
asymptotics as the λρ’s are sent to 0 orþ∞ (see Appendix E
and Fig. 12 for an example), which makes it possible to
meaningfully explore all the thermodynamically feasible
values for fJcαg, irrespectively of the particular choice of
dependent reactions associated with Eq. (84). In our
approach, note that we stay close to the equilibrium case
(where the stationary solution of the rate equation is unique,
once the conserved quantities are fixed): The description
of transitions between multiple attractors (including
possible limit cycles) is beyond the reach of our per-
turbative approach and remains unaddressed in metabolic
reconstruction.
Our algorithm is different from simply linearizing the

currents in classical frameworks such as ll-COBRA or
CycleFreeFlux [45,80,81] because, in those frameworks,
many cycle currents are simply set to zero. The free para-
meters in our approach are the coefficients λρ ≥ 0 for each
reaction ρ involved in internal cycles. In the next section, we
comment on their possible biochemical interpretation.

VI. OUTLOOK

Interacting mass-action CRNs present a host of behav-
iors coming from the multiplicity of fixed points [82,83]
and ranging from nonlinear oscillations [84] to chaos [85].
In our work, we focused on the stationary state and on
relaxation properties, but the decomposition of currents
and affinities that we identified could be useful tools to
study such nonstationary phenomena. Naturally, the geo-
metrical tools that we identified could help one study the
role played by deficiency [22,86,87] in dissipation and
noise [63,88]. The symmetries in linear response could be
compared to the recent approach of Ref. [89]. The
separation of timescales that we identified in Sec. III B 4
through the evolution of the population of islands asso-
ciated with cocycles bears a strong resemblance to the
control of chemical kinetics through catalysts and inhib-
itors, following, for instance, the recent methods presented in
Ref. [15]. In addition, autocatalysis plays an essential role in
biochemical processes, and only recently have the classi-
fications of CRNs leading to this type of self-replication been
identified [28]. Such a classification could be investigated in

FIG. 12. Metabolic reconstruction based on Eq. (96) for the
example introduced in Sec. V B 3. We fix the values of the
external currents, respectively, Jext2 ¼ 0.3 and Jext3 ¼ 0.2, and
choose J4 and J7 to be the chord currents Jcα associated with the
two internal cycles. The details of the computations are provided
in Appendix F. (a) Full range of feasible values for the chord
currents (shown in red), obtained by exploring the asymptotics of
the susceptibility matrix L−1

P T⊤Λ−1
M for 0 ≤ λ’s ≤ ∞. The five red

points are the values of ðJ4; J7Þ obtained by sending every λ to
either 0 or ∞. They correspond to the boundary solutions of the
type in Eq. (84), where cycles are effectively removed from the
network (notice that the multiplicity of such solutions is given by
the number of spanning trees, which, in this case, is precisely 5).
The monotonicity of the susceptibility matrix (see Appendix E)
allows us to interpolate between such solutions and explore the
full space of feasible currents as a function of the λ’s ≥ 0.
Similarly to Eq. (87), the positivity of the λ’s constrains the
feasible values of the cycle currents. Then, any point within the
red region is thermodynamically feasible, and one would need
some biological knowledge to further reduce the span of possible
values. (b) Corresponding solution space, using Eq. (96), for the
remaining cochords—in this case, J1, J5, and J6—after identify-
ing the solution space for the chords. Notice that J1 is indepen-
dent of the chord currents and always equal to J1 ¼ −Jext3 − Jext2 .
It is an example of a bridge current, which is not affected by the
presence of internal cycles in the network.
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the light of our geometrical tools. Another geometrical
approach was recently proposed in Ref. [90], where the
notion of Hessian geometry of CRNs was constructed; it
would be worth identifying the link between such an
approach and the notions of cycles and cocycles that we
have put forward. In the same way, geometrical decom-
positions were identified in Markov processes [91] and in
field theories [32], which may be related to the ones we
define. Of course, much could be gained from going beyond
thewell-stirred limit by considering extended systemswhere
spatial inhomogeneities play a role.
On the graph-theoretical side, a known duality exists

between vertices and faces for planar graphs, which, in our
language, exchanges the roles of cycles and cocycles.
For nonplanar graphs, the concept of matroid [92] allows
one to treat abstract independence sets based on circuits and
to generalize dualities. For noninteracting CRNs, such
duality thus implies a mapping between stationary currents
(supported by cycles) and transient ones (supported by
cocycles). It would be interesting to investigate the con-
sequences of such a mapping. Our definition of cycles and
cocycles of the hypergraph associated with a generic CRN
leads to natural questions: Can such duality be extended to
a class of hypergraphs, and what could we learn from it?
Cycles were also recently shown to control several aspects
of fluctuations and large deviations in the graph associated
with Markov jump processes [93–95]. Such results could
be extended to dynamics on hypergraphs using the tools we
have put forward.
Regarding the reconstruction algorithm of Sec. V B, the

main open questions are about how to further constrain
solutions with empirical data or reasonable target functions,
and whether the linear-regime assumption is consistent
with physiological conditions. For the latter, further analy-
sis is needed to characterize the difference between the
linear-regime landscape and the algebraic variety of sol-
utions of the nonlinear KVL. For the former, the main
virtue of our proposal is that the coefficients λeqρ are
independent of each other and can take any real value,
while previous reconstruction efforts had to consider non-
convex spaces of parameters where optimization algo-
rithms could get stuck in subspaces or at boundaries. We
argue that these parameters also make biochemical sense by
going back to their linear-response definition. Using the
fluctuation-dissipation paradigm, the coefficients λeqρ quan-
tify the spontaneous activity of a system at equilibrium, that
is, in the absence of external currents. In theory, one would
have to realize the sole reaction ρ in vitro and measure its
activity. In practice, given that a single reaction’s activity
can be associated with the expression of the enzyme that
catalyzes it, we propose that λeqρ could be roughly propor-
tional to the abundance of the corresponding enzyme, for
which there could be available data.
In this paper, we treated mass-action CRNs, but most of

the results, being of topological nature, apply tomore generic
reaction kinetic laws (such as effective enzymatic models),

with the only requirement being that there exist conjugate
currents and forces such that J > 0 if and only if A > 0, and
J ¼ 0 if and only if A ¼ 0. Mass-action kinetics is special
because the cycle affinitiesAe

α do not depend explicitly on the
populations and, therefore, are constants of motion.
In this respect, an interesting direction to explore is that

of reaction networks where species are not chemical but
rather biological. In that case, no notion of thermodynamic
feasibility imposes that the affinities of internal cycles have
to be zero, but the decompositions of affinities and currents,
together with our geometrical and physical interpretation
(Table I), still apply. In such a context, migration from
regional pools of species can also play the role of chemo-
statting. Ecological and evolutionary models are known to
present a variety of phenomena such as strong space-time
fluctuations [96], chaos [97], or sensitivity to noise [98].
Systems modeled by (generalized) Lotka-Voltera equations
[96,97,99] are particularly amenable to the tools we
propose, as, at the population level, they can be put in
correspondence with CRNs [100]. The geometrical con-
cepts we have identified can aid in the study of such
problems.
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APPENDIX A: INTEGRATION AND
DIFFERENTIATION ON THE NETWORKS

OF CHEMICAL REACTIONS

1. Noninteracting CRNs: Integration on spanning trees

Consider a set of unimolecular reactions, as in Sec. II,
and assume that the corresponding graph G is connected.
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The stoichiometric matrix satisfies ðS⊤VÞρ ¼ VtðρÞ − VsðρÞ,
so S⊤ can be seen as a gradient operator, which transforms
a potential V defined on every species or node i into a
(chemical) force field between the source sðρÞ and target
tðρÞ of every reaction or edge ρ. In this appendix, we build
an explicit “integrator”: In other words, if a conservative
force A belongs to Im S⊤, we want to build a potential V
such that A ¼ −S⊤V. This is achieved by defining an
integrator matrix G⊤ from the entries of S. Then, we
present how these two matrices are related.
We remark that V is not unique: If V and V0 yield the

same A, we have S⊤ðV0 − VÞ ¼ 0, so V0 − V ∈ Ker S⊤,
meaning that the two potentials are equal up to a global
constant since Ker S⊤ is spanned by l0 ¼ 1;…; 1. This is
similar to what happens in the continuum when integrating
a function: A primitive is defined up to a constant.
Since the labeling and the orientation of reactions are

arbitrary, we can redefine them for convenience. We first
arbitrarily select one of the nodes, which will play the role
of the “root” of the graph. Then, we fix a spanning tree TG
(see Fig. 4), that is, a set of M independent reactions. This
allows one to fix the orientations: The edges in TG are
directed toward the root while the other edges (the chords)
are oriented arbitrarily. We then begin labeling, starting
with the nodes. The root is node 1, and we label the other
nodes incrementally from the root along TG as follows (see
Fig. 3): At every branching point of TG, we pick one of the
branches and continue the numbering of species incremen-
tally, until we reach a “leaf” (i.e., a node of the graph
without any further edge). We then return to the last
branching point and continue the procedure until every
remaining node is exhausted. Next, we label the edges.
From node 2, a single edge points towards the root, which
we label as edge 1. Recursively, the edge pointing out of
node γ þ 1 (for 1 ≤ γ < M) is labeled as edge γ. This
process exhausts the M ¼ N − 1 cochords, labeled from 1
to M. The remaining R −M chords (equal, in number, to
the number of cycles) are labeled arbitrarily fromM þ 1 to
R. Thus, for the first M columns of S (indexed by
1 ≤ γ ≤ M), we have sðγÞ ¼ γ þ 1 and tðγÞ ≤ γ. This result
implies that the stoichiometric matrix takes the form

ðA1Þ

Here, we see that (i) on the N ×M block SM, the matrix
−1M lies on the lower diagonal, and on every column γ,
there is a single entry 1 on line tðγÞ ≤ γ; (ii) the last R −M
columns correspond to the chords, which are the dependent
reactions. Thus, there exists anM × ðR −MÞmatrix T such

that Sdep ¼ SMT, encoding the fact that every column of
Sdep can be expressed as a linear combination of the M
independent columns of SM. In fact, this encodes a
graphical property: Every chord is part of a cycle (and
every cycle has exactly one chord, see Fig. 4), and the
algebraic dependency we just explained encodes that the
chord reaction can be obtained by applying all the cochord
reactions of the cycle (with the adequate orientation).
Finally, notice that the first line of S contains only positive
entries since, by our convention, the root only has enter-
ing edges.
We define anN × NmatrixG fromEq. (19), andwe recall

thatUðjÞ is the set of nodes (including j) that are upstream of
j on TG. From a potential V defined on the nodes (and
imposed to verify Vroot ¼ 0), we define a set of forces

Aγ ¼ VsðγÞ − VtðγÞ ¼ −ðS⊤VÞγ ðA2Þ

for every cochord. Because the line i of G⊤ contains 1 for
every node located in between the root and node i [i.e., for
every node j such that i ∈ UðjÞ], we have, by a telescoping
sum,

Vi ¼ Vi − Vroot ¼
X
γ

Aγδi∈U(sðγÞ) ¼
X
γ

ðG⊤Þi;sðγÞAγ:

ðA3Þ

Notice that, for every node j ≠ root, there is exactly one
cochord γ on the spanning tree such that j ¼ sðγÞ. This
allows one to express the sum in Eq. (A3) as an integration
along the unique path of cochords γ connecting node i to the
root along the spanning tree. Equations (A2) and (A3)
express a one-to-one relation between a set of M forces
Aγ defined on the cochords and a set of N ¼ M þ 1

potentials Vi (including Vroot ¼ 0) defined on the nodes.
These two equations thus encode the differentiation and the
integration of a conservative force on a graph: Indeed, ifA ∈
ImS⊤ is a “gradient,” the potential V defined through the
“integral” in Eq. (A3) of M components of A generates the
full vectorA throughA ¼ −S⊤V. As remarked above, such a
potential V is unique up to a constant, and the condition
Vroot ¼ 0 fixes V uniquely (independently of the choice of
the spanning tree).
We now identify an algebraic relation between G and S.

For every node j ≠ root (i.e., 2 ≤ j ≤ N), we define a unit
“charge” as the potential Vj, a vector of entries Vj

i ¼ δij.
The corresponding forcesAj defined on the cochords from
Eq. (A2) have entries

Aj
γ ¼

8<
:

−1 if tðγÞ ¼ j

1 if sðγÞ ¼ j

0 otherwise;

i:e:; Aj
γ ¼ −ðS⊤M 0Þγj

ðA4Þ
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where S⊤M 0 is the M ×M matrix constituted of the M last
columns of S⊤M [the transpose of the matrix defined in
Eq. (A1)]. By direct application of Eq. (A3), we see that the
unit potential Vj is obtained from the force Aj as

Vj
i ¼ δij ¼

X
γ

ðG⊤Þi;sðγÞAj
γ: ðA5Þ

We now interpret this relation algebraically. Since sðγÞ ¼
γ þ 1, we define GM as the M ×M submatrix of G
deprived from its first line and column [i.e., GM is the
black submatrix of G in Fig. 5(b)]. Then, the identity (A5)
yields, from Eq. (A4),

−G⊤
MS⊤M 0 ¼ 1M: ðA6Þ

See Refs. [30,31] for related results in incidence matrix
inversion and Ref. [15] for applications in chemistry.
Before moving on, let us take a closer look at this

relation. Because G⊤
M is lower triangular with only 1’s on

the diagonal, it is invertible, and its inverse is given by
−S⊤M 0. We thus read Eq. (A6) as follows: The subset of M
independent reactions between M independent species is
described by the lines of matrix S⊤M 0, which constitutes an
invertible “core” of the full (and transposed) stoichiometric
matrix S⊤. To arrive at Eq. (A6), we realize that S⊤M 0 defines
a set of forces on the cochords whose integration along the
path from the root to any node j ≠ root gives the “unit
charge” potential Vj defined above—which is quite natural
from the graph perspective. This provides an electrostatic
picture of the incidence matrix of G. To proceed, one now
remarks that Eq. (A6) implies

−S⊤M 0G⊤
M ¼ 1M; ðA7Þ

which is algebraically trivial but not obvious from the
underlying graph-theoretical viewpoint. Yet, completing
the matrices, it implies that

ðA8Þ

where ðS⊤MÞ1 is the first column of S⊤M and where we use the
fact that l⊤

0 is a right null vector of S⊤ (and thus of S⊤M).
Transposing this relation and using the structure of S given
by Eq. (A1) with Sdep ¼ SMT, we obtain

−GS ¼
�

0 0

1M T

�
; ðA9Þ

where the first line contains only zeros. This is Eq. (21)
from the main text. Physically, it encodes the fact that S⊤,

seen as a gradient operator, can be inverted on the cochords
by the matrix −G⊤ and that, if cochord forces are
conservative, Aγ ¼ −ðS⊤VÞγ ¼ −ðS⊤MVÞγ , then the corre-
sponding chord forces can be written as

Aα ¼ −ðS⊤VÞα ¼ −ðT⊤S⊤MVÞα ¼
X
γ

TγαAγ; ðA10Þ

i.e., they are expressed as a linear combination of the Aγ’s.
Mathematically, Eq. (A9) encodes the row reduction of S in
an echelon form (see, e.g., Ref. [51]). Such an identity is at
the basis of our geometrical analysis of complex CRNs in
Sec. III and of the algebraic analysis presented in the next
paragraph.

2. Interacting CRNs: Integration on multipaths

To generalize the construction presented in the previous
paragraph, we now follow a complementary path. The
matrix S⊤ can still be understood as a (weighted) discrete
gradient: Every line ρ of S⊤ shows, for a given reaction ρ,
how the products (respectively, reactants) contribute pos-
itively (respectively, negatively) to the affinity Aρ. Our
aim is to explain how to “invert” that gradient and to define
an integration that allows one to explicitly reconstitute a
potential V such that A ¼ −S⊤V if A ∈ Im S⊤ is a con-
servative affinity. For complex CRNs and their correspond-
ing hypergraph (see Sec. III and Fig. 1), the notion of a
spanning tree does not exist, and the topological construc-
tion of the previous paragraph (which consists in integrat-
ing from a chosen root to a node along the spanning tree)
cannot be generalized.
Here, we follow a mirror procedure, starting from the

algebra, to build a geometrical picture. Denoting by M the
rank of S, we reorder the reactions and species so that
the firstM reactions are independent and the lastM species
are independent. Namely, the first M columns of S are
linearly independent, and the same holds for the last M
lines. The row reduction of S in echelon form (see, e.g.,
Ref. [51]) ensures that there exists an invertible N × N
matrix G such that

ðA11Þ

(notice that the ordering conventions we use means that the
lines of 0’s are placed first compared to the canonical
row reduction). The matrix G is not unique, and its entries
can be found by the Gauss-Jordan elimination procedure
through elementary line and column operations [51]. This
ensures that the entries of G can be taken as rational when,
as in our case, S has integer entries.
To learn about geometry, it is convenient not to rely on

Gauss-Jordan elimination and instead build the matrix G in
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an explicit manner. We first fix a basis of Ker S⊤ as N −M
column vectors representing conservation laws (whose
entries are taken as rational). Then, postulating the follow-
ing form,

ðA12Þ

we show that there exists an M ×M matrix G⊤
M
0, which

ensures that the following key relation is satisfied:

−S⊤G⊤ ¼
�
0 1M
0 T⊤

�
: ðA13Þ

We notice that the N −M columns of conservation laws
in Eq. (A12) ensure the N −M first column of 0’s in
Eq. (A13). Then, by our ordering conventions, the first M
columns of S are independent and form an N ×M matrix
SM, so we can organize S⊤ as

ðA14Þ

Here, Sdep are the R −M last columns of S, which depend
on the first M ones; this means that they can be expressed
as a linear combination of those, i.e., that there exists an
M × ðR −MÞ matrix T such that Sdep ¼ SMT. From this
property, we see that the proof of Eq. (A13) reduces to
showing that

−S⊤M 0G⊤
M
0 ¼ 1M; ðA15Þ

where S⊤M 0 is the M ×M matrix consisting of the last M
columns of S⊤M, and G⊤

M
0 is theM ×M matrix consisting of

the last M lines of G⊤
M [defined in Eq. (A12)]. Physically,

S⊤M 0 represents a core set of M independent reactions
between M independent species. Crucially, it is an invert-
ible matrix since the last M species are independent [101].
This implies that one can define G⊤

M
0 as the inverse of

S⊤M 0, which ensures that the relation (A15) is satisfied. Since
S⊤M 0 has integer entries, we obtain thatG has rational entries
(as is also the case when defining G through Gauss-Jordan
elimination).
As we just described, this shows that the form of G⊤

given in Eq. (A12) allows for the row reduction of S as in

Eq. (A11), with the “escape routes” in Eq. (A12) being
precisely given by the M ×M matrix G⊤

M
0 defined by

Eq. (A15). Before showing that the elements of that matrix
play the geometrical role of escape routes, we need to prove
that the row-reducing matrix G defined in Eq. (A12) is
invertible. We can do this by exhibiting its inverse: One
checks with Eqs. (A14) and (A15) that

ðA16Þ

is the inverse of G, provided the conservation laws in
Eq. (A12) are organized (as columns) as

ðA17Þ

Up to this point, the specific choice of basis for the
conservation laws was left undetermined, and this form
fixes it. Its existence is shown ad absurdum.
Proof.—Consider an arbitrary choice of basis for the

N −M conservation laws, and split it as follows:

ðA18Þ

Correspondingly, we split the N lines of the matrix S as

ðA19Þ

where, by hypothesis, the M lines of S2 are independent
while the N −M lines of S1 depend on those of S2,
meaning that there exists a ðN −MÞ ×M matrix U such
that

S1 ¼ US2: ðA20Þ

This identity and the decompositions above imply, from the
definition of conservation laws (they span KerS⊤), that

S⊤2 U⊤C1 þ S⊤2 C2 ¼ 0: ðA21Þ

Let us now show that C1 is invertible. Ad absurdum, if this
is not the case, there exists a vector x ≠ 0 such that
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C1x ¼ 0. From Eq. (A21), this implies S⊤2 C2x ¼ 0, and
since the M columns of S⊤2 are independent, we also have
C2x ¼ 0. From Eq. (A18), we then find�

csv

laws

�
x ¼ 0. ðA22Þ

which is absurd since the column vectors of the matrix of
conservation laws are independent.Hence,C1 is an invertible
matrix. Multiplying Eq. (A18) by C−1

1 on the right, we see
that the conservation laws can be organized as in Eq. (A17),
as announced. [Notice that matrixU in Eqs. (A17) and (A20)
is the same, as seen from Eq. (A21).] ▪
To summarize, the stoichiometric matrix can be row

reduced in echelon form as in Eq. (A11), with an invertible
matrix G taking the form in Eq. (A12) and whose inverse
takes the explicit form in Eq. (A16), provided the columns
of conservation laws in Eq. (A12) are organized as in
Eq. (A17). We now depict how these algebraic results can
be translated in geometrical terms.
The interpretation of Fig. 5 of the matrix G for graphs

can be generalized to hypergraphs, without relying on the
notion of the spanning tree. To do so, one defines an escape
protocol as follows. The N −M dependent species are
labeled as roots. For each of theM independent species, we
place a unit charge in its corresponding node i, and we ask
howmany times each of theM independent reactions has to
be applied (possibly a fractional and/or negative number of
times) in order to completely expel the charge from i
through the set of roots. How each reaction acts on the
charges is governed by the stoichiometry of Eq. (2).
Because the matrix S⊤M 0 precisely represents the action of
the independent reactions on the independent species, we
see that Eq. (A15), rewritten as

−G⊤
M
0S⊤M 0 ¼ 1M; ðA23Þ

shows that the line entries of G⊤
M
0 precisely solve the

escape problem. Indeed, since
P

kðG⊤
M
0ÞikðS⊤M 0Þkj ¼ −δij,

we see that applying each independent reaction k (with
1 ≤ k ≤ M) a number ðG⊤

M
0Þik of times will expel a unit

charge from node i while leaving the rest of the nodes ∉
frootg empty (see Fig. 8). We thus see how the algebrai-
cally trivial passage from Eq. (A15) to Eq. (A23) allows
one to build a geometrical interpretation of the lines of the
row-reducing matrix G⊤. In Sec. III B 3, we explain how
this leads to a generalization of the notion of cocycle from
graphs to hypergraphs.
There also exists a geometrical interpretation ofEq. (A15).

Here, instead, one places a unit force on a cochord (i.e.,
independent reaction) γ and askswhich charge needs to be set
on the independent nodes (that are not roots) so as to produce
this force. The solution is now given by the columns ofG⊤

M
0.

Indeed, we read from
P

kðS⊤M 0ÞγkðG⊤
M
0Þkγ0 ¼ −δγγ0 that

column γ of G⊤
M
0 gives the set of charges on the set of

independent species k that generates a unit force on the
cochord γ (and 0 on the other cochords, γ0 ≠ γ). Notice that
on the chords, thegenerated force is not necessarily equal to 0
(it is, in fact, given by the entries of T, which are used to
define cocycles; see Sec. III B 3). For every γ, this set of
charges can be seen as the “elevation map” of an “island”
associated with cγ . Such an elevation map is a potential
landscape that generates a force given by the entries of
cocycle cγ (see Fig. 9 for an example).
As a last remark, we explain how, following an argument

similar to that leading to the form of Eq. (A17) for the
conservation laws, one finds a basis of the chemical cycles
(that is, of Ker S) such that

ðA24Þ

where T is the matrix that expresses the dependency
Sdep ¼ SMT of the dependent reactions of Sdep as a function
of the independent ones of SM [see the decomposition
in Eq. (A14)].
Proof.—We start from a basis of Ker S composed of

R −M column vectors written as

ðA25Þ

The definition of cycles tells us that SMðTC1 þ C2Þ ¼ 0.
The same ad absurdum argument as above tells us that C1

is invertible, so we can multiply the basis (A25) on the right
by C−1

1 and still keep a matrix whose columns are a basis
for the cycles. We use the form in Eq. (A24) since the
relation above implies TC1 þ C2 ¼ 0, as the columns of
SM are independent. ▪
This proof is the algebraic counterpart, for generic

CRNs, of the property that the same matrix T controls
the dependency between reactions and the organization of
cycles—a property we also obtained in Sec. II B from graph
theory for unimolecular reactions.

APPENDIX B: REVERSIBILITY AND THE
WEGSCHEIDER-KOLMOGOROV CONDITION

Consider the set of R complex reactions (2) between N
species X, described by the N × R stoichiometric matrix S.
These reactions describe, at the microscopic level, a
stochastic population process on the numbers n of
each chemical species X and, at the macroscopic level,
a continuity equation (5) for the evolution of the
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concentrations xðtÞ, which involves the current J of Eq. (4),
expressed in terms of the affinities defined in Eq. (6). In this
appendix, we present, in a unified manner, the equivalence
between the so-called Wegscheider condition [57] [equiv-
alent to Kolmogorov’s criterion [102] in the language of
Markov chains (see, e.g., Refs. [103])] and varied notions
of reversibility, both at the microscopic population level
and the macroscopic concentration level.
We stress that the rate constants k�ρ of the reactions (2)

are macroscopic in the sense that they enter in the
deterministic description in Eq. (5) of the real-valued
concentrations x and do not depend on the system’s size.
They differ from the microscopic rates of the individual
reactions, which, at the molecular level, scale with the
system’s volume Ω as

κ�ρ ¼ Ω
k�ρ
Ων�ρ ∀ ρ; ðB1Þ

where Ων�ρ ¼ Ω
P

i
ν�ρ
i . Thus, at a fixed number of mol-

ecules, reactions involving (the collision of) several species
are rarer as Ω gets larger (see, e.g., Sec. VII. 5. 3 in
Ref. [104]). Notice that when we discuss the population
dynamics stochastic process, the vector x denotes the
rational-valued vector n=Ω representing the discrete con-
centrations of species. See also Appendix C for a dis-
cussion on the large-Ω asymptotics.
We recall (see Sec. III) that we can fix a basis of R −M

cycles cα that span the right null space Ker S of S, of
dimension R −M. The following properties are equivalent:

(I) Wegscheider’s condition:

∀ α;
Y
ρ

�
kþρ
k−ρ

�
cαρ ¼ 1; ðB2Þ

i.e., the product of macroscopic transition rates of
every cycle is the same in both directions along
the cycle.

(I’) Kolmogorov’s condition:

∀ α;
Y
ρ

�
κþρ
κ−ρ

�
cαρ ¼ 1; ðB3Þ

i.e., the product of microscopic transition rates of
every cycle is the same in both directions along
the cycle.

(II) Existence of the standard chemical potential μ⦵:

∃ μ⦵∶ ∀ ρ;
kþρ
k−ρ

¼ exp ½−ðS⊤μ⦵Þρ�: ðB4Þ

For noninteracting CRNs, this shows detailed bal-
ance; see Eq. (39).

(III) Existence of concentration-canceling affinities:

∃ xeq∶ ∀ ρ; AρðxeqÞ ¼ 0: ðB5Þ

(IV) Existence of concentration-canceling currents:

∃ xeq∶ ∀ ρ; JρðxeqÞ ¼ 0: ðB6Þ

(V) Reversible constrained product Poisson law at the
population level:

∃ xeq∶ jPeqi ∝
X
n

ðΩxeqÞn
n!

δ(lðnÞ −L)jni ðB7Þ

is an equilibrium steady state of the microscopic
dynamics of occupation numbers. We use the Doi-
Peliti ket notation j·i for occupation states (see the
proof). The components of lðnÞ are the conserved
quantities, their values being the components of L
(fixed by initial condition). Vector notations are used
(n! ¼QN

i¼1 ni!, etc.).
(VI) Microscopic reversibility: The stochastic dyna-

mics of occupation numbers n verifies detailed
balance.

(VII) Gradient condition on affinities:

∀ t; A(xðtÞ) ∈ Im S⊤: ðB8Þ

Remark.—In the proofs, we often make use of the
following form of the affinity of a reaction ρ, which comes
from Eq. (6),

AρðxÞ ¼ log
kþρ
k−ρ

− ðS⊤ log xÞ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{∈ImS⊤

ρ: ðB9Þ

1. Proof of I⇔I’

For every cycle cα, we have

Y
ρ

�
κþρ
κ−ρ

�
cαρ ¼

Y
ρ

�
kþρ
k−ρ

�
cαρ
Ωðν−ρ−νþρÞcαρ ¼

Y
ρ

�
kþρ
k−ρ

�
cαρ ðB10Þ

since
Q

ρΩðν−ρ−νþρÞcαρ ¼Ω
P

iρ
Siρcαρ ¼Ω

P
i
ðScαÞi and Scα¼ 0,

by definition. The conditions (B2) and (B3) are thus the
same. ▪

2. Proof of I⇔II

If II holds, then for any cycle cα, since Scα ¼ 0, one has

Y
ρ

�
kþρ
k−ρ

�
cαρ ¼ exp ð−cα · S⊤μ⦵Þ ¼ exp ð−μ⦵ · ScαÞ ¼ 1;

ðB11Þ
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which yields I. Conversely, if I holds, for any cycle
c ∈ Ker S, we have

A · c ¼ log
Y
ρ

�
kþρ
k−ρ

�
cρ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼0 from Eq: ðB2Þ

þ log x−Sc|fflfflfflffl{zfflfflfflffl}
¼0

¼ 0; ðB12Þ

which implies that A ∈ ðKer SÞ⊥ ¼ Im S⊤; combining
with Eq. (B9), we obtain logðkþ=k−Þ ∈ Im S⊤, which is
precisely Eq. (B4). ▪
In practice, if the rates verify Wegscheider’s condition

(B2), identifying a standard corresponding chemical poten-
tial μ⦵ can be done using the hypergraph integration
procedure described in Sec. III B 2.

3. Proof of II⇔III

If II holds, then

∀ ρ; AρðxeqÞ ¼ 0

⇔∀ ρ; ðS⊤ log xÞρ ¼ log
kþρ
k−ρ

¼ðB4Þ − ðS⊤μ⦵Þρ ðB13Þ

⇔ μ⦵ − log xeq ∈ KerS⊤: ðB14Þ

However, Ker S⊤ is never an empty set, so we can find xeq

canceling all affinities, which is III. Conversely, if III holds,
Eq. (B9) implies that logðkþ=k−Þ ∈ Im S⊤, which is
precisely II. ▪

4. Proof of III⇔IV

It is obvious from the expression (4) of the currents as a
function of the affinities. Notice that, interestingly, this
means that for complex CRNs, stochastic reversibility
is equivalent to the existence of a fixed point with zero
macroscopic current for the deterministic dynamics
of Eq. (5).

5. Proof of III⇔V

We use Fock space notations for occupation vectors jni
and the Doi-Peliti operators [105,106] to represent the
reactions at the microscopic level of occupation numbers
(see Refs. [107–109] for reviews). We attach an annihila-
tion operator ai and a creation one a†i to every species i.
For a single species, they act as ajni ¼ njn − 1i, a†jni ¼
jnþ 1i, while for several species, they only act on their
attached species. The number operator n̂i ¼ a†i ai is diago-
nal, and n̂ijni ¼ nijni. The action of the creation or
annihilation operators on (arbitrarily normalized) uncon-
strained Poisson laws is well known and easily checked:

ai
X
n

xn

n!
jni ¼ xi

X
n

xn

n!
jni; ðB15Þ

a†i
X
n

xn

n!
jni ¼ n̂i

xi

X
n

xn

n!
jni: ðB16Þ

When constraints are present inside the Poisson law as on
the rhs of Eq. (B7), similar replacement rules ai ↦ xi and
a†i ↦ ðn̂i=xiÞ hold as in Eqs. (B15) and (B16), provided the
operators on the lhs leave the conserved quantities lðnÞ
unchanged.
In the Doi-Peliti approach, the Markov dynamics in the

population space is represented as a linear operator W
acting on the probability vector jPðtÞi ¼Pn Pðn; tÞjni.
For the R reactions of the form (2), we decompose
W ¼Pρ Wρ with

Wρ ¼ κþρ ½ða†Þν−ρaνþρ − n̂ν
þρ � þ κ−ρ ½ða†Þνþρ

aν
−ρ − n̂ν

−ρ �;
ðB17Þ

where the microscopic rates κ�ρ are defined in Eq. (B1).
Every reaction respects the conservation laws of S, so
one can apply the replacement rules mentioned above
to compute the action of Wρ on the vector jPeqi defined
in Eq. (B7). It is a matter of simple algebra, using the
definition of affinity of Eqs. (4)–(6), to find

WρjPeqi

¼ −Ω
�
k−ρ ð1− eAρÞ

�
n̂
Ω

�
ν−ρ

þ kþρ ð1− e−AρÞ
�
n̂
Ω

�
νþρ	

jPeqi;

ðB18Þ

where Aρ ¼ AρðxeqÞ. Let us now look at the proof of
the equivalence III⇔V. If III holds, then we have the
existence of a vector of concentrations xeq, which cancels
every affinity; see Eq. (B5). From the identity (B18), we
find that WρjPeqi ¼ 0, where jPeqi defined in Eq. (B7) is
evaluated on the xeq that we just found (whose components
are thus promoted from being average concentrations to
being parameters of a constrained product Poisson law).
This proves that jPeqi is a steady state of W. To check
explicitly that it verifies detailed balance, one introduces a
diagonal operator P̂eq whose components along the diago-
nal are those of the vector jPeqi in Eq. (B7). Detailed
balance is then equivalent to checking that WP̂eq ¼
P̂eqW⊤. Using the identities aiP̂

eq ¼ Ωxeqi P̂
eqða†i Þ⊤ and

a†i P̂
eq ¼ ðΩxeqi Þ−1P̂eqa⊤i , [110] one finds

WρP̂
eq − P̂eqW⊤

ρ ¼ P̂eqfκ−ρ ðeAρ − 1Þða†νþρ
aν

−ρÞ⊤
þ κþρ ðe−Aρ − 1Þða†ν−ρaνþρÞ⊤g ðB19Þ

where Aρ denotes AρðxeqÞ. If III holds, then from Eq. (B5),
we obtain WρP̂

eq
ρ ¼ P̂eqW⊤

ρ ð ∀ ρÞ; hence, summing over
ρ, detailed balance indeed holds. Conversely, if V holds,
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there exists a vector xeq such that WP̂eq ¼ P̂eqW⊤, and
Eq. (B19) yieldsX

ρ

fκ−ρ ðeAρðxeqÞ − 1Þa†νþρ
aν

−ρ

þ κþρ ðe−AρðxeqÞ − 1Þa†ν−ρaνþρg ¼ 0 ðB20Þ
since P̂eq is an invertible operator. Now consider a
given reaction ρ, applied in the direction where it trans-
forms jni into jn − νþρ þ ν−ρi. Since, by hypothesis,
reaction ρ is the only one performing that transformation,
by taking the scalar product of Eq. (B20) between
hn − νþρ þ ν−ρj and jni, we obtain that e−AρðxeqÞ − 1 ¼ 0.
We thus see that, necessarily, AρðxeqÞ ¼ 0ð ∀ ρÞ, which is
precisely III. ▪

6. Proof of V⇔VI

Obviously, V implies VI. Conversely, if the microscopic
occupation-number dynamics verifies detailed balance, we
show that Kolmogorov’s condition (B3) is verified, which
will prove that I’, and hence V, holds (as we already
showed). Consider a basis of cycles cα of the stoichiometric
matrix S. They can be taken to have (positive or negative)
integer entries. Then, a given cα corresponds to a succes-
sion of reactions, where each reaction ρ is used cαρ times.
In fact, depending on the precise order in which these
reactions are applied, the algebraic cycle cα corresponds to
many possible cycles at the population level. We now
consider a given cα and arbitrarily choose such an ordering.
This leaves any configuration of the occupations invariant
(and the same is true if the cycle is applied in reverse order).
Detailed balance at the level of occupations implies that the
product of transition rates of the cycle and its reverse are the
same, at the level of population rates. Using the Doi-Peliti
formalism, we express such product of rates, starting from
configuration n, as follows:

Y←
ρ

ðκþρ Þcαρ hnjða†Þcαρν−ρacαρνþρ jni: ðB21Þ

The rate for reaction ρ is raised to the power cαρ, and the
arrow on the product sign indicates that the operators of
the first reaction (in the considered ordering) are placed to
the right of the ones of the next reaction, down to the last
reaction involved. For the reversed reaction, the product of
rates is

Y→
ρ

ðκ−ρ Þcαρ hnjða†Þcαρνþρ
ac

α
ρν

−ρ jni: ðB22Þ

Now noticing the identity hnjða†Þcαρν−ρacαρνþρ jni ¼
hnjða†Þcαρνþρ

ac
α
ρν

−ρ jni, [111] the equality of Eqs. (B21)
and (B22) yields that, for all α,

Q
ρðκþρ Þcαρ ¼

Q
ρðκ−ρ Þcαρ ,

which is given in Eq. (B3). ▪

7. Proof of I⇔VII

Every implication in I ⇒ VII ⇒ II is immediate, using
the identity (B9). We already showed that II ⇒ I; thus,
finally, we have both I ⇒ VII and VII ⇒ I. ▪
Notice that, interestingly, in the implication VII ⇒ II

inferred from Eq. (B9), we deduce a property that is valid
independently of xðtÞ (namely, logðkþ=k−Þ ∈ Im S⊤) from
a property depending on xðtÞ [namely, AðxðtÞÞ ∈ Im S⊤].

APPENDIX C: EFFECTIVE FOKKER-PLANCK
AND LANGEVIN DYNAMICS CLOSE

TO AN EQUILIBRIUM POINT

Consider an arbitrary function fðnÞ of the population
state, i.e., the number of particles n for each chemical
species X. The master equation on the probability distri-
bution Pðn; tÞ in the population space, for the chemical
reactions (2), is equivalent to the following evolution
equation for the average hfi ¼Pn Pðn; tÞfðnÞ:
∂thfi ¼

X
n;ρ

fðnÞfWþ
ρ ðn−SρÞPðn−Sρ; tÞ−Wþ

ρ ðnÞPðn; tÞ

þW−
ρ ðnþSρÞPðnþSρ; tÞ−W−

ρ ðnÞPðn; tÞg ðC1Þ
¼
X
n;ρ

Pðn; tÞf½fðnþ SρÞ − fðnÞ�Wþ
ρ ðnÞ

þ ½fðn − SρÞ − fðnÞ�W−
ρ ðnÞg; ðC2Þ

where Sρ designates the column vector of S describing
reaction ρ, and W�

ρ ðnÞ ¼ Wðfni ↦ ni � SiρgÞ are the
transition rates at the species population level. In full
generality, the transition rates are given by the product
of the “molecular” reaction rates κ�ρ and the number of

reactants n½ν�ρ� ¼ n!=ðn − ν�ρÞ!:

W�
ρ ðnÞ ¼ κ�ρ n½ν

�ρ� ¼ Ωk�ρ
n½ν�ρ�

Ων�ρ ; ðC3Þ

where, in the second equality, we used Eq. (B1) to make the
dependence of the molecular rates on system size explicit.
Notably, the extensivity of the rates κ�ρ depends on the
stoichiometry of the corresponding reactions ν�ρ. Such a
dependency expresses the fact that collisions between
particles, which are required for multiple-species reactions
to occur, get rarer when Ω increases at fixed n. The scaling
of Eq. (C3) tells that, at fixed Ω, collisions also get rarer as
the number of involved species is larger, in line with
intuition (see, e.g., Refs. [11,104,112,113]). The relevance
of such a scaling is, for instance, seen as follows: Using
these rates in Eq. (C2) for fðnÞ ¼ ni, one recovers the
macroscopic rate equation (5) as Ω → ∞, with x ¼ n=Ω
fixed (in the large-Ω limit where the average of the product
of concentrations becomes the product of their average).
In the large-size asymptotics Ω → ∞, we expand

Eq. (C2) for the rescaled function of the concentrations
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f̄ðxÞ ¼ fðΩxÞ and for the probability density P̄ðx; tÞ, and
define W̄þ

ρ ðxÞ ¼ k�ρ xν
�ρ
, to get

∂thf̄i ¼
Z

dNx
X
ρ

P̄ðx; tÞf½W̄þ
ρ ðxÞ − W̄−

ρ ðxÞ�
X
i

Siρ∂if̄ðxÞ

þ 1

2Ω
½W̄þ

ρ ðxÞ þ W̄−
ρ ðxÞ�

X
i;j

SiρSjρ∂ijf̄ðxÞg; ðC4Þ

where we neglected terms of order Ω−2 and higher. We
recognize the first square brackets to be the macroscopic
current JρðxÞ; see Eq. (4). The coefficient of ∂ijf̄ is pro-
portional to the symmetric matrix DðxÞ of components

DijðxÞ ¼
X
ρ

1

2
SiρðW̄þ

ρ ðxÞ þ W̄−
ρ ðxÞÞðS⊤Þρj; ðC5Þ

so, overall, Eq. (C4) becomes

∂thf̄i ¼

X

i

(SJðxÞ)i∂if̄ðxÞ þ
1

Ω

X
ij

DijðxÞ∂ijf̄ðxÞ
�
:

ðC6Þ

Formally, the evolution equation (C6) for the average of
f̄ðxÞ is the same as that of a Fokker-Planck equation
corresponding to the Langevin equation

∂txðtÞ ¼ SJ(xðtÞ)þ η(xðtÞ; t); ðC7Þ

with ηðx; tÞ Gaussian white noise of zero average and
covariance hηiðx; tÞηjðx; t0Þi ¼ ð1=ΩÞDijðxÞδðt0 − tÞ (notice
that the time discretization of such multiplicative noise has
no importance in the small-noise regime Ω → ∞ that we
are considering). However, the problem of such a formal
treatment is that it discards possible scaling with Ω of the
probability density P̄ðx; tÞ itself [and consistently of f̄ðxÞ],
which would invalidate the large-Ω expansion and trunca-
tion. This problem was noted within a large variety of
contexts in the literature [78,104,114–116]. A regime
where the above expansion is necessarily valid is that of
xðtÞ close to a stationary point x�, i.e., xðtÞ ¼ x� þ δxðtÞ
with SJðx�Þ ¼ 0 and δxðtÞ ¼ OðΩ−1=2Þ. Then, the
Langevin equation (C7) reduces to

∂tδxðtÞ ¼ SJ(x� þ δxðtÞ)þ ηðtÞ; ðC8Þ

where J(x� þ δxðtÞ) is understood as truncated to first order
in δxðtÞ (i.e., the Langevin equation is linear) and the cen-
tered Gaussian noise ηðtÞ is now additive with correlations,

hηiðtÞηjðt0Þi ¼
1

Ω
D�

ijδðt0 − tÞ: ðC9Þ

Here, the matrix D� is obtained from Eq. (C5) and reads

D� ¼ Dðx�Þ ¼ SΛ�S⊤; ðC10Þ

whereΛ� is theR × R diagonal matrix with the entries of the
vector 1

2
ðkþρ x�νþρ þ k−ρ x�ν

−ρÞ.
In general, in irreversible dynamics, the drift of this

Langevin equation is not simply related to the noise
covariance matrix D� of Eq. (C10). Focusing on con-
servative affinities as in Sec. VA, the dynamics is revers-
ible, and there exists an equilibrium stationary point
x� ¼ xeq (see Appendix B) that cancels the current and
the affinity vectors. Then, using Eqs. (57) and (61)
and remarking that Λ� ¼ Λ, one has Jðxeq þ δxÞ ¼
ΛAðxeq þ δxÞ ¼ −ΛS⊤ðXeqÞ−1δx, and thus, from Eq. (C8),

∂tδxðtÞ ¼ −DðXeqÞ−1δxðtÞ þ ηðtÞ; ðC11Þ

with D ¼ D� ¼ DðxeqÞ. Hence, at the same time, the
symmetric matrix D ¼ SΛS⊤ from Eq. (C10) plays the
role of the noise amplitude and the prefactor of the potential
gradient in the Langevin equation (C11), which is an
incarnation of the Onsager reciprocity [55,77].
We now connect the previous analysis to the core of the

paper. We first note that the rank ofD isM and notN. Thus,
in general, some directions of the noise present a zero
amplitude. This corresponds to the fact that the degrees of
freedom xðtÞ representing the instantaneous concentrations
at time t present one or several conservation law(s), both at
the deterministic level of the rate equation (2) and at the
stochastic level. In Sec. VA, we identified M independent
degrees of freedom δzðtÞ, defined in Eq. (62), at the
deterministic level. Using the same procedure at the
stochastic level, we define a stochastic process δzðtÞ from
δxðtÞ [that satisfies Eq. (C11)]. Now, the noise that governs
the evolution of δzðtÞ is nonsingular. Indeed, multiplying
Eq. (C11) by G, using Eq. (63), and taking the last M
components, we find, by direct computation,

∂tδzðtÞ ¼ −LQHQδzðtÞ þ η̃ðtÞ; ðC12Þ

where the (now nonsingular) centered Gaussian white
noise η̃ðtÞ ∈ RM has correlations hη̃iðtÞη̃jðt0Þi ¼ ð1=ΩÞ×
ðLQÞijδðt0 − tÞ. In these expressions, LQ and HQ are the
M ×M matrices defined in Eqs. (58) and (64), respectively.
As expected, the deterministic drift of Eq. (C12) is the same
as the one derived at the deterministic level [see Eq. (65)].
At the stochastic level, for δzðtÞ, the matrix LQ plays, at the
same time, the role of a relaxation response matrix close to
an equilibrium point and of a correlation matrix for the
noise that describes the small Gaussian fluctuations close to
that point. Accordingly, the Gaussian stationary probability
density of the linearized Langevin equation (C12) is
P̄ðδzÞ ∝ exp½−ðΩ=2Þδz⊤HQδz�, where we thus identify
the matrix HQ as the Hessian matrix of the equilibrium
quasipotential. This concludes our illustration that the two
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matrices LQ and HQ appearing in Sec. VA in the analysis
of the deterministic relaxation close to an equilibrium point
in fact also play a role at the Gaussian stochastic level.

APPENDIX D: CYCLES, COCYCLES, AND
OBLIQUE PROJECTORS

In this appendix, we show how the decompositions in
Eqs. (29) and (32) of the affinity and current can be
reformulated in terms of complementary oblique pro-
jectors. We follow Ref. [16], where the formalism was first
introduced and discussed for graphs (corresponding to
unimolecular reactions). From the families of cocycles
and cycles introduced in the main text, we define two
R × R matrices as

ðD1Þ

By construction, their images correspond to the spaces
spanned by the cγ’s and the cα’s, namely, ImQ⊤ ¼ ImS⊤
and ImP ¼ Ker S. Taking the transpose of Eq. (D1), one
obtains two more matrices,

ðD2Þ

whose images are now spanned by the eγ’s and eα’s, i.e.,
ImQ ¼ SpanðeγÞ and ImP⊤ ¼ SpanðeαÞ.
We recall that a square matrix A is a projector if and only

if it is idempotent, A2 ¼ A. It can be directly checked that
this property holds for Q⊤ and P, as well as for Q and P⊤,
making them oblique projectors with Q⊤ ≠ Q and P ≠ P⊤
as soon as T is present. In particular, they form pairs of
complementary oblique projectors such that PþQ ¼
P⊤ þQ⊤ ¼ 1R and QP ¼ Q⊤P⊤ ¼ 0.
As a consequence, we may reexpress the decompositions

of Eqs. (29) and (32) in the main text as

A ¼
X
γ

Ac
γcγ þ

X
α

Ae
αeα ¼ Q⊤Aþ P⊤A; ðD3Þ

J ¼
X
γ

Jeγeγ þ
X
α

Jcαcα ¼ QJ þ PJ: ðD4Þ
These expressions are analogous to the ones reported in
Ref. [16], with the main difference being that here the
operators are not derived from the spanning tree of a
graph but from the family of fcγg and fcαg constructed in
Sec. III A using the reduced-row echelon form of S. Thus,
the construction we put forward in Sec. III and in this
appendix generalizes the oblique projector method of
Ref. [16] for the decomposition of currents and affinities

from unimolecular CRNs (and graphs) to arbitrary CRNs
(and their associated hypergraphs).
We conclude the section by pointing out a connection

between the oblique projectors and the Onsager matrices of
linear response (see Sec. VA). First, one can always define
new projectors using a change of basis. In particular, we
may define Q̂ ¼ Λ−1=2QΛ1=2 and P̂ ¼ Λ−1=2PΛ1=2, which
are still complementary oblique projectors. Then, one finds

ðD5Þ

ðD6Þ

Thus, in both representations, the Onsager matrices appear
as the invertible cores of the symmetric R × R matrices
constructed from the oblique projectors. In Ref. [16], the
matrices in Eqs. (D5) and (D6) were shown to govern the
different contributions to the entropy production in linear
response; thus, we have shown in Sec. VA that these
matrices also control the macroscopic relation between
currents and affinities in the linear-response regime for
generic CRNs.

APPENDIX E: PROOF OF RECONSTRUCTION
FEASIBILITY

We show that Eq. (96) is consistent with stationary KCL,

ð SY j S Þ
�
JY
J

�
¼ 0; ðE1Þ

and with linear-regime KVL, obtained by plugging Eq. (57)
into Eq. (31), namely,

P⊤Λ−1J ¼ 0; ðE2Þ

where we made use of the oblique projector P introduced in
Appendix D. We find T by row reduction of S and consider

Q ¼
�−GMS

0

�
¼
�
1M T
0 0

�
; ðE3Þ

obtained by adding or removing sufficient zero rows to
make it a square R × Rmatrix. The matrixGM is defined in
Eq. (26) in the main text. As explained in Appendix D, Q
and P are complementary oblique projectors, so P ¼ 1 −Q
and SP ¼ 0. Then, solutions of the system Eqs. (E1) and
(E2) can be found by exploiting the projector algebra. In
particular, expanding the identity

J ¼ PJ þQJ; ðE4Þ
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we find

SQJ ¼ −SYJY; ðE5Þ

P⊤Λ−1PJ þ P⊤Λ−1QJ ¼ 0; ðE6Þ

where JY are the external currents. By applying the matrix
GM to the first, in view of Eq. (E3), we find

QJ ¼
�
GMSYJY

0

�
; ðE7Þ

where we used Q2 ¼ Q. Plugging this latter into the
second, we find

P⊤Λ−1PJ ¼ −P⊤Λ−1
�
GMSYJY

0

�
: ðE8Þ

A solution Jþ that is consistent with the above equation can
be found by the Moore-Penrose pseudoinverse

Jþ ¼ −ðP⊤Λ−1PÞþP⊤Λ−1
�
GMSYJY

0

�
: ðE9Þ

Projecting, once again, PJ ¼ PJþ, using Eq. (E4), we
finally find

J ¼ ½1R − PðP⊤Λ−1PÞþP⊤Λ−1�
�
GMSYJY

0

�

¼
� ð1M − TL−1

P T⊤Λ−1
M ÞGMSYJY

L−1
P T⊤Λ−1

M GMSYJY

�
; ðE10Þ

where, in the last expression, we made explicit the
projector-based solution in terms of known matrices.
The fact that the above system is full rank means,
a posteriori, that this solution is unique and correct.
Finally, let us comment on the structure of the matrix

L−1
P T⊤Λ−1

M , which, within our approach, controls the
response of the network to the external current JY through
the chords. Using Eq. (70), one sees that the matrix depends
on the λ’s via ratios of the type λα=λγ ∀ cycle α and for any
reaction γ that belongs to it. Its asymptotics for the set of
ratios read

L−1
P T⊤Λ−1

M ∼ ΛR−MT⊤Λ−1
M for λα=λγ ≪ 1; ðE11Þ

L−1
P T⊤Λ−1

M ∼ ðT⊤Λ−1
M TÞ−1T⊤Λ−1

M for λα=λγ ≫ 1: ðE12Þ

As expected, in the limit λα=λρ → 0, the solution J falls
back to Eq. (84), and the network behaves effectively as a
treelike network, where internal cycles have been removed.
Remarkably, the opposite limit in Eq. (E12) does not
depend on the λα’s but only on the ΛM (excluding bridges).
This asymptotics is reached monotonously and does not
diverge with ΛM, making it possible to explore the full set

of feasible J as parametrized by the λγ’s. The monotonicity
is inferred from the identity

∂

∂λρ
ðL−1

P TΛ−1
M Þ ¼ ½1R−M þ Ť⊤T�−1 ∂Ť

⊤

∂λρ
½1M þ TŤ⊤�−1;

ðE13Þ

where we denoted Ť⊤ ¼ ΛR−MT⊤Λ−1
M [notice that the

matrices between the square brackets on the rhs of
Eq. (E13) have a positive spectrum].

APPENDIX F: COMPUTATIONAL DETAILS
FOR THE RESULTS IN FIG. 12

In this appendix, we detail how the linear-regime
metabolic reconstruction algorithm proposed in Sec. V B 5
applies, in practice, to the example presented in Sec. V B 3,
leading to the results displayed in Fig. 12. We first split the
reactions into external chemostatting reactions 2 and 3,
and R ¼ 5 internal reactions 1,4,5,6, and 7. The resulting
stoichiometric matrix of internal reactions has 2 cycles. We
pick reactions 4 and 7 to be their corresponding chords,
meaning that reactions 1, 5, and 6 are cochords. For
convenience, in the rest of this appendix, we order the
reactions as (1, 6, 5, 4, 7) and label them as (I, II, III, IV, V).
The chemostatting and internal stoichiometric matrices can
then be written

SY ¼

0
B@ 0 0

1 0

0 1

1
CA; S ¼

0
B@ 1 −1 0 −1 0

0 1 −1 0 −1
0 0 1 1 1

1
CA:

ðF1Þ

The row-reducing matrix G is found as described in
Appendix A 2, and −GS takes the form of Eq. (22), with

G ¼

0
B@−1 −1 −1

0 −1 −1
0 0 −1

1
CA; T ¼

0
B@ 0 0

1 0

1 1

1
CA: ðF2Þ

The cycles and cocycles are found using the matrix T as
summarized in Table I, with the rank of S beingM ¼ 3. We
read from the matrix T that reaction I is a bridge since it is
involved in none of the cycles.
Then, the key matrix LP defined in Eq. (70) takes the

form

LP ¼
 

1
λII
þ 1

λIII
þ 1

λIV
1
λIII

1
λIII

1
λIII

þ 1
λV

!
: ðF3Þ

The chord currents are obtained from the last lines of
Eq. (96) as
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�
JIV
JV

�
¼

0
B@− λIVðλIIþλIIIþλVÞJext3

þλIVðλIIIþλVÞJext2

λIIðλIIIþλIVþλV ÞþλIVðλIIIþλVÞ
λIVλVJext2

−λIIλVJext3

λIIðλIIIþλIVþλV ÞþλIVðλIIIþλVÞ

1
CA: ðF4Þ

We check explicitly that, as shown on general grounds in
Sec. V B 5 and Appendix E, they are monotonic functions
of each of the individual λI; ...; λV when the others are
fixed (with each of these parameters being positive). As
expected, they are functions only of ratios of λ’s, and taking
limits of the λ’s to 0 and to þ∞ yields well-defined and
finite chord currents. Using these properties, one obtains
the results displayed in Fig. 12(a) for the possible values
taken by the chord currents in Eq. (F4), for the specific
choice ðJext2 ; Jext3 Þ ¼ ð0.2; 0.3Þ. The cochord currents are
obtained in a similar manner from the first lines of Eq. (96),
and one obtains the results displayed in Fig. 12(b).
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