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Quantum-computation architecture based on d-level systems, or qudits, has attracted considerable
attention recently due to their enlarged Hilbert space. Extensive theoretical and experimental studies have
addressed aspects of algorithms and benchmarking techniques for qudit-based quantum computation and
quantum-information processing. Here, we report a physical realization of a qudit with up to four
embedded levels in a superconducting transmon demonstrating high-fidelity initialization, manipulation,
and simultaneous multilevel readout. In addition to constructing SUðdÞ operations and benchmarking
protocols for quantum-state tomography, quantum-process tomography, randomized benchmarking, etc.,
we experimentally carry out these operations for d ¼ 3 and d ¼ 4. Moreover, we perform prototypical
quantum algorithms and observe outcomes consistent with expectations. Our work will hopefully stimulate
further research interest in developing manipulation protocols and efficient applications for quantum
processors with qudits.
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I. INTRODUCTION

Quantum-computational advantage is largely enabled by
the exponentially growing Hilbert space for storing and
processing of information. In the most commonly discussed
architecture, the basic unit is a two-level system forming a
qubit with the computation space growing as 2N for N
qubits. This exponential scaling can be further extended to
dN by introducing qudits, i.e., quantum d-level systems, as
basic computational units [1,2]. Such an expanded Hilbert
space can be realized without increased hardware complex-
ity in popular quantum-computation platforms [3,4]. In
addition to a larger Hilbert space and saved hardware
resources, other potential advantages of qudits have also
attracted considerable research interest. For example, the
accuracy and efficiency of simple quantum circuits and
algorithms can be enhanced by qudit-based architecture [5].

Quantum simulation can enjoy the flexibility of qudits,
with which the many-body Hamiltonian can be encoded
directly for simulating higher-spin systems [6], such as
bosonic spin-1 models with d¼3. In quantum-nonlocality-
based information processing, the qudit also plays an
important role by helping to close out the detection loop-
hole often tormenting Bell test experiments [7,8]. In
quantum-key distribution, the qudit can lead to increased
security and a higher key rate [9], and with the qudit as a
quantum repeater, an improved communication scheme is
possible [10].
Implementations of qudits have been studied on various

physical platforms. For trapped ions with multilevels, an
experimental realization was reported recently [11]. A
universal operation set for implementing qudit-based com-
putation, including state preparation, single-qudit gates,
two-qudit gates, and measurement schemes has been
provided [3,12]. Qudits based on multilevel atom arrays
are employed to explore dipole-dipole interactions [13].
For photonic systems, a variety of inherent properties of a
photon, including its orbital angular momentum [14],
frequency bin [15,16], time bin [17,18], and path [5], have
been used to construct qudits. Moreover, qudit-based
quantum computation is studied in continuous spin sys-
tems [19], nitrogen-vacancy centers in diamond [20],
and nuclear-magnetic-resonance (NMR) systems [21,22].
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In recent years, qubit-based superconducting quantum-
computation (SQC) research has witnessed significant
progress in quantum machine learning [23], quantum
chemistry [24,25], quantum simulation [26], quantum error
correction [27], and quantum-computational advantage
with more than 50 qubits [28], etc., with the transmon
as a favored physical realization due to its insensitivity to
charge noise [29]. Because of its tunable multilevel
structure, a superconducting transmon is naturally made
for implementing a qudit, and investigating the manipu-
lations of higher-excited states has become a significant
priority to realize qudit-based architecture for quantum-
information processing. In qubit-based SQC where quan-
tum information is encoded in a computational space unit
spanned by the lowest two levels, higher-excited states also
play a non-negligible role in the implementation of quan-
tum operations, such as the two-qubit gate [30–32] and
shelving readout [33,34] protocols.
Recently, employing superconducting transmon qudits

as basic units for quantum-information processing has
attracted increased attention, with quantum information
encoded into an expanded Hilbert space augmented by
higher-excited states. Operational protocols for universal
gates and algorithms have been explored theoretically for
the transmon qudit [35]. However, most earlier studies
focused on qutrit manipulation for d ¼ 3 [36–42] or
simulation for d ¼ 4 [43], limited by the nature of the
transmon. The coherence time of higher-excited states
decreases as the number of excitations increases, approx-
imately proportional to 1=m with m labeling the number of
excitations [44]. The charge-parity effect, which often
manifests itself as a beat note in the Ramsey interference,
causes an increased frequency dichotomy for higher lev-
els [44,45], and hence undermines precise manipulations
through frequency addressing or phase correction. The
implementation of qudit-based architecture thus calls for
stricter requirements on the quality of the transmon device.
Specifically, it requires the transmon to have a longer
coherence time and weaker charge-parity effect. When both
of these requirements are fulfilled, as it is for the device
used in our experiment, the advantages of qudits emerge. In
addition, the ability to simultaneously discriminate multiple
states also contributes to high-fidelity implementation.
This work implements high-fidelity qudit manipulations

for d ¼ 3 and d ¼ 4 in a specifically designed and
fabricated superconducting transmon exhibiting long
coherence time and weak charge-parity effect. We accom-
plish simultaneous four-state readout with fidelity above
91.1% for each state. To benchmark the performance, we
prepare and measure a four-level state with fidelity of
99.64% and experimentally estimate the error per gate as
ð7.6� 0.1Þ × 10−4 [ð1.5� 0.1Þ × 10−3] for π=2 pulses
between levels fj1i; j2ig (fj2i; j3ig). We also implement
several rudimentary algorithms to show the efficacy and
efficiency of the single-qudit processor. Our experiments

demonstrate the feasibility of encoding and processing
more than one bit of quantum information in a single
superconducting transmon, and we hope it will stimulate
more interest in theoretical and experimental studies of the
qudit-based quantum-information-processing architecture.
This paper is arranged as follows. First, the arbitrary

SUðdÞ operation construction with its physical realization
and common benchmarking protocols, such as quantum-
state tomography [36,46], quantum-process tomography,
and randomized benchmarking [3] are discussed in Sec. II.
Then, the discrete Fourier-transform algorithm, Grover’s
algorithm, and the variational quantum-eigensolver algo-
rithm in quantum chemistry are implemented in our qudit
system as applications in Sec. III. We end with a conclusion
and outlook in Sec. IV.

II. GATE DESIGN AND BENCHMARKING

In this section, we describe the gate decomposition
theory and the relevant protocols for benchmarking. We
cover the construction protocols for SUðdÞ operations with
their physical realizations in a transmon qudit in Sec. II A
and the protocols for quantum-state tomography, quantum-
process tomography, and randomized benchmarking in
Sec. II B.

A. Construction of SUðdÞ operations
Microwave-driven transitions can drive a qudit, connect-

ing levels in a quantum system as in trapped-ion system or a
superconducting one, etc., with designated single- or
multiphoton transitions to perform qudit manipulations.
Between any two d levels, the coupled transition provides a
universal form

R̂m;nðθ;ϕÞ ¼ exp
h
−
iθ
2
ðcosϕσ̂m;n

x þ sinϕσ̂m;n
y Þ

i
ð1Þ

of rotation, with σ̂m;n
x ¼ jmihnj þ jnihmj and σ̂m;n

y ¼
−ijmihnj þ ijnihmj. Here, jmi and jni with m; n ¼
0; 1;…; d − 1 and m ≠ n are arbitrary basis states of the
d-level qudit. With R̂m;nðθ;ϕÞ, the transitions that cannot be
directly implemented are constructed from a combination
of several transitions in sequence, for example,

R̂m;mþ2ðθ;ϕÞ ¼ R̂m;mþ1ð−π;ϕ1Þ
× R̂mþ1;mþ2ðθ;ϕ2ÞR̂m;mþ1ðπ;ϕ1Þ; ð2Þ

with ϕ1 þ ϕ2 − π=2 ¼ ϕ, i.e., from first swapping the
amplitudes between jmi and jmþ 1i, then carrying out
the rotation operation between jmþ 1i and jmþ 2i, and
finally, swapping the amplitudes for jmþ 1i and jmi back.
To simplify the above composite operation, we typically
choose ϕ2 ¼ ϕ and ϕ1 ¼ π=2 as a symmetric and standard
protocol. Whenever R̂m;nðθ;ϕÞ precedes another rotation
R̂m;nðθ0;ϕ0Þ on the same two levels, it is convenient to
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eliminate some constituting pulses in the sandwiched
structure of Eq. (2) to simplify the total sequence.
Besides microwave-driven transitions, the generalized

phase gate defined as P̂ðΦ⃗Þ¼P
k expðiϕkÞjkihkj is another

important repertoire for qudit manipulation. It can be
realized by 3ðd − 1Þ resonant pulses according to
Ref. [3]. Often it gets too complicated, particularly when
it appears in the middle of a sequence as an independent
unitary operation. Inspired by the idea of a virtual Z gate
from qubit control [47] and noting that

R̂m;nðθ;ϕÞP̂ðΦ⃗Þ ¼ P̂ðΦ⃗ÞR̂m;nðθ;ϕþ ϕm − ϕnÞ; ð3Þ

we find that one can swap the generalized phase gate from
arbitrary positions of a circuit to the very beginning, and
then ignore it, as with the virtual Z gate [47]. Such a virtual
operation requires zero time; hence, it can be executed
perfectly. With such a generalized virtual phase gate,
operation sequences can be further simplified. An arbitrary
SU(2) operation can then be constructed effectively as in
the following:

Ûm;n
2 ðθ;ϕ; λ; δÞ ¼ P̂ðΦ⃗ð1ÞÞR̂m;n

�
θ;
π

2

�
P̂ðΦ⃗ð2ÞÞ;

ϕð1Þ
k ¼

8<
:

− λ
2
; k ¼ m;

λ
2
; k ¼ n;

0; otherwise;

ϕð2Þ
k ¼

8<
:

δ − ϕ
2
; k ¼ m;

δþ ϕ
2
; k ¼ n;

0; otherwise:

ð4Þ

The actual decomposition of an arbitrary unitary oper-
ation on a d-level qudit into a sequence of unitary
operations on two-level subsystems follows the idea of
Gaussian elimination [48–50]. An SUðdÞ operation can
normally be expressed as a unitary matrix of order d, and
the Gaussian elimination algorithm takes this matrix as
input and outputs a sequence of SU(2) operations between

various pairs of the d levels, or simply expressed as in the
following:

Û0;1;…;d−1
d ¼ P̂ðΦ⃗ÞÛmk;nk

2 � � � Ûm1;n1
2 Ûm0;n0

2 ; ð5Þ

where a total of (kþ 1) SU(2) operations are required in a
given order and ml; nl ∈ f0; 1;…; d − 1g; l ¼ 0; 1;…; k.
There are two strategies of Gaussian elimination. The
normal one and the bubbling one are described in
Algorithms 1 and 2, respectively. Figure 1 illustrates the
decomposition process for d ¼ 4. With the abovemen-
tioned protocol, an arbitrary SUðdÞ operation can be
constructed based on two-level ones.
As for experiments, our qudit system is constructed with

a superconducting transmon [29], whose Hamiltonian can
be expressed as Ĥ ¼ 4ECðn̂ − ngÞ2 − EJ cos ϕ̂ with Ec the
charging energy and EJ the Josephson energy. For suitable
parameters, several bound states exist in the cosine poten-
tial well, as shown in Fig. 2(a). The anharmonicity of the
cosine potential for the qudit ensures that the transition
frequencies between any two energy levels are different.
Several single- or two-photon transitions are shown in
Fig. 8 with specific parameters for our device in Table I.
It is easy to find that for adjacent transitions, or transitions

(a) (b) (c) (d)

FIG. 1. A circuit diagram illustration for arbitrary unitary operations on a four-level system. (a) The Gaussian elimination method
decomposes an SU(4) operation into a sequence of SU(2) operations plus a generalized phase gate, as in normal or bubbling Gaussian
elimination. Here, gray arrows represent SU(2) operations in a subspace spanned by any two levels. (b) Such SU(2) operations can be
constructed by two generalized phase gates with a two-level rotation operation R̂m;nðθ;ϕÞ sandwiched in between. Black arrows
represent transitions between two levels with a microwave drive. (c) The arbitrary rotation R̂m;nðθ;ϕÞ can be realized by direct
multiphoton coupling, or a sequence of transitions between adjacent levels without crossing to nonadjacent ones. (d) If a transition
R̂m;nðθ0;ϕ0Þ follows another R̂m;nðθ;ϕÞ in the same two-level subspace, some auxiliary adjacent transitions according to Eq. (2), as
shown in the black dashed box, can be neglected at all times, which constitutes a straightforward strategy to simplify circuit.

FIG. 2. Qudit-level diagram and readout calibration. (a) The
quantum state is encoded as a superposition of several bound levels
in a cosine potential well labeled by j0i, j1i, j2i, and j3i. Higher
levels on this device are plotted as gray dashed lines. (b) The
quadrature representation of readout benchmarking, with fidelities
P0 ¼ 99.1%, P1 ¼ 94.5%, P2 ¼ 94.5%, and P3 ¼ 91.1%. The
qudit is prepared in jkiwith a possible global phase and measured
in jki with a probability Pk.
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between neighboring levels of a transmon, a shorter
evolution time is needed than for two-photon ones due
to stronger single-photon couplings. To suppress the
charge-parity effect, EJ=Ec is designed to take a large
ratio (EJ=EC ≈ 88) compared to the usual values.
The transmon qudit is coupled to a readout resonator,

whose frequency responds differently when the qudit is
prepared in different states, facilitating simultaneous read-
out of the qudit directly. As shown in Fig. 2(b), the first four
states labeled j0i, j1i, j2i, and j3i can be distinguished with
high fidelity. The details on the readout can be found in
Appendix C.
Taking into consideration both the energy-level structure

and readout fidelity, we can implement a qudit system of
d ≤ 4 with three transitions on neighboring levels over a
short operation time, although two-photon transitions as
well as the fifth state j4i (d ¼ 5) remain observable, which
would likely increase our ability to manipulate for d > 4 in
the future. The beat frequency of the Ramsey interference
between j2i and j3i is less than 0.1 MHz, and thus impairs
only the manipulations slightly which constitutes the key
reason for our success in the high-fidelity SU(4) manipu-
lations. At the same time, if we choose the bubbling
Gaussian elimination instead, which is the most suitable
for the qudit under discussion, no more than dðd − 1Þ=2
operations are needed, resulting in at most dðd − 1Þ π=2
pulses and a complexity of Oðd2Þ that is close to the
theoretical limit. Mathematically, the Gaussian elimination
is not restricted to a specific elimination order. In other
words, both the normal one and the bubbling one can fulfill
the samegoal, but the order of elimination, or the elimination
strategies, exhibit different complexities in a specific quan-
tum system depending on the level structure. We choose
normal Gaussian elimination which is widely known and
general in this work, leading to a complexity ofOðd3Þ, when
an arbitrary SU(2) operation has to be expanded in terms of
adjacent SU(2) transitions. This strategy avoids optimiza-
tions in the ladder system than the bubbling strategy,
especially in the present system, consistent with our moti-
vation for a universal demonstration.

B. Quantum-state tomography, quantum-process
tomography, and randomized benchmarking

Quantum-state tomography (QST) is a standard method
for determining the density matrix of a state. Here we

follow the multilevel QST protocol developed in a NMR
system [46] and a superconducting transmon qutrit [36].
With the readout process presented in Sec. II A, only the
diagonal elements of density-matrix operator ρ̂ can be
accessed. To measure an arbitrary density-matrix element
of a qudit, several operations for swapping off-diagonal
elements to linear combinations of the diagonal ones are
needed before measurement. For d ¼ 4, we apply a total of
12 operations M̂l; l ¼ 0; 1;…; 11 (listed in Appendix D)
before measurement, and the measured probabilities are
Pl;k ¼ hkjM̂†

l ρ̂M̂ljki with l ¼ 0; 1;…; 11 and k ¼ 0, 1, 2,
3, and

P
k Pl;k ¼ 1. An overdetermined group of equations

can then be derived, whose solution gives the unknown ρ̂.
According to the properties of the density matrix, the
maximum likelihood estimation (MLE) [51,52] with the
simple estimation of ρ̂ from Eq. (D2) taken as the initial
guess, reduces the impact of other undesirable errors on the
output density matrix. Figure 3 displays QST measurement
results for a superposition state jψi¼ð1−iÞj0i= ffiffiffi

8
p þj1i=ffiffiffi

2
p

−ð1þiÞj2i= ffiffiffi
8

p
, finding ρ̂ ¼ jψihψ j with a high

99.64% fidelity. For dimensions with d > 4, we can
construct an analogous measurement operator. For d¼3,
we can simply truncate the above d ¼ 4 protocol.
Quantum-process tomography (QPT) is based on

QST [3,49]. It provides a convenient measure to character-
ize a quantum process. Similar to QPT for a qubit, we
initialize our qudit in a set of given states, then apply the
process we want to determine, and at the end of the process,
we carry out QST to measure the final state. For a quantum
process represented by

ρ̂f ¼
X
k;l

λ̂kρ̂iλ̂
†
l χk;l; ð6Þ

with initial (final) state ρ̂iðρ̂fÞ, λl (l ¼ 0; 1;…; d2 − 1) is the
identity matrix or d2 − 1 generators of the SUðdÞ group,

TABLE I. Error of gates.

SUðdÞ Levels Clifford π=2 pulse

SU(3) f0; 1; 2g ð5.4� 0.1Þ × 10−3 ð1.02� 0.02Þ × 10−3

SU(4) f0; 1; 2; 3g ð5.8� 0.2Þ × 10−2 ð4.1� 0.1Þ × 10−3

SU(2) f0; 1g ð4.6� 0.3Þ × 10−4 ð2.1� 0.1Þ × 10−4

SU(2) f1; 2g ð1.7� 0.1Þ × 10−3 ð7.6� 0.1Þ × 10−4

SU(2) f2; 3g ð2.3� 0.1Þ × 10−3 ð1.5� 0.1Þ × 10−3

(a) (b)

FIG. 3. Quantum-state tomography with the MLE for the state
jψi ¼ ð1 − iÞj0i= ffiffiffi

8
p þ j1i= ffiffiffi

2
p

− ð1þ iÞj2i= ffiffiffi
8

p
in the four-

level qudit, where (a) shows the experimental results and
(b) shows the expected theoretical ones. The height of each
bar represents the amplitude, while color represents the phase.
The corresponding state fidelity is 99.64%.
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corresponding to the operator λ̂l (details of its construction
are available in Algorithm 3). In particular, when d ¼ 3, the
matrices λ1; λ2;…; λ8 are known as the Gell-Mann matri-
ces. Under this basis, the superoperator χ̂ (corresponding to
matrix representation fχk;lg) has desirable properties to
guarantee the MLE in solving the overdetermined group of
equations for QPT. As an example, benchmarking of the
discrete Fourier transformation is illustrated in Sec. III.
Randomized benchmarking (RB) on three-level and

four-level systems can be used to estimate average gate
errors, just like the RB sequence on a qubit [3]. We note
that Clifford gate groups for a qudit are different from that
for a single qubit. Specifically, there are 216(768) group
elements for the d ¼ 3ð4Þ qudit (see Appendix F for more
details). We translate the matrix representations of Clifford
elements into executable sequences of π=2 pulses. The
average number of π=2 pulses required to apply the Clifford
gate in the three-dimensional Clifford group C3 and four-
dimensional Clifford group C4 are 1134=216 ¼ 5.25 and
10976=768 ≈ 14.292, respectively. The experimental
results are shown in Figs. 4 and 11, with a summary of
errors shown in Table I. We find the average errors
calculated from the SU(3) and SU(4) Clifford groups are
larger than those from SU(2).
Several explanations are now in order to help understand

the situation. First, higher levels in a transmon typically
exhibit a shorter energy relaxation time, implicating more
incoherent errors. In other words, the upper bound of fidelity
decreases as the energy level becomes higher [53], con-
sistent with the decreasing RB fidelity we observe as the
subspace expands to include higher levels. The charge-
parity effect becomes worse at higher levels as well, and the
associated frequency dichotomy causes phase uncertainty.
Second, leakage is regarded as an incoherent error in a two-
level system, whereas it is a coherent error sometimes in
multilevel cases. In the latter case, RB is insensitive to such
an error, leading to the situation where the π=2 pulse error
calculated from RB in C3 or C4 is larger than that from C2;
thus,more refined leakage control for d ¼ 3 and 4 is needed.
Both energy relaxation and frequency bandwidthwith finite-
time drive pulses contribute to the leakage error beyond the
two-level subspace. From Fig. 11, we can find an obvious
leakage error. As a result, the level population does not
converge to the expected value after evolving for a suffi-
ciently long time. Transition frequency crowding makes the
leakage error worse, because the adjacent transition fre-
quency between j1i and j2i is naturally close to the three-
photon transition frequency between j0i and j3i. If the
amplitude of the driving pulse between j1i and j2i is large
enough, the frequency bandwidth for a finite-time driving
pulse needs to be carefully modified to avoid three-photon
transitions. Finally, due to the averaging effect of the RB
sequence, specific types of errors such as non-Markovian
errors in operations [54,55] could not be observed, and only
limited manipulation errors can be detected, leading to

decreased realized manipulation fidelity. Analyzing the
sources of the abovementioned errors is of great importance
for improving the manipulation accuracy, and the limit to
which this can be achieved depends on the development of
the required theoretical tools in the future.

III. APPLICATIONS

In this section, we present three quantum algorithms
that are performed to demonstrate the capabilities of our
transmon qudit. The benchmarking methods QST and QPT
are employed to verify the relevant processes for the
respective algorithms. The experimental results are found
to be in nice agreement with theories, and they illustrate the
high efficiency and accuracy of our four-level transmon
manipulations.

A. Discrete Fourier transformation and cyclic
permutation parity check

The first application we perform is the parity check of
cyclic permutations using discrete Fourier transformation

(a)

(b)

FIG. 4. Randomized benchmarking for (a) three-level and
(b) four-level qudits. We initialize the qudit in j0i, then apply
a certain extra number of Clifford gates from the (a) three-
dimensional Clifford group C3 (involving j0i, j1i, and j2i) and
the (b) four-dimensional Clifford group C4 (involving j0i, j1i, j2i,
and j3i), and finally, we add a Clifford gate to ensure that the total
sequence is equivalent to the identity. Populations of the four states
j0i, j1i, j2i, and j3i aremeasured simultaneously in the end, which
are shown as crosses with error bars and corresponding colors.
Solid lines with corresponding colors show the exponential fits
according to the theory of RB. π=2 pulses with an average number
ofA3 ¼ 5.25 are used inC3 and an average number ofA4 ¼ 14.292
in C4, which give the average calculated fidelities of π=2 pulses as
Fπ=2pulse ¼ 1 − ð1 − FCliffordÞ=Ak; k ¼ 3, 4. Black dashed lines
indicate the populations of a mixed state after a sufficiently long
evolving time.
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(DFT). It has been studied in NMR before [56] with the
circuit diagram as shown in Fig. 5(a). To check for a
permutation of length d, the qudit is initialized into a
coherent superposition state DFTdjmi, m¼0;1;2;…;d−1.
Then, the permutation operation Ûk; k ¼ 1; 2;…; d! is
applied. Before measurement, an inverse DFT labeled by
DFT−1 is applied to transform the state into the final one.
A different final state would indicate different parity of the
cyclic permutation.
Here the process of DFT is implemented via the normal

Gaussian elimination decomposition, which translates the
matrix representation DFTd into a sequence of SU(2)
operation pulses, with matrix element DFTdðj; kÞ in row
j and column k taking the form

DFTdðj; kÞ ¼
1ffiffiffi
d

p e2ijkπ=d; j; k ¼ 0; 1;…; d − 1: ð7Þ

The operations of DFT3 and DFT4 are benchmarked by
QPT. Figures 5(b) and 5(c) show the corresponding results,
which give their respective fidelities of F ðDFT3Þ ¼
98.36% and F ðDFT4Þ ¼ 87.64%.
Ûk, the permutation operator of length d, is given by

Ûk ¼
�

0 1 � � � d − 1

pk;0 pk;1 � � � pk;d−1

�
; ð8Þ

with Ûkjji ¼ jpk;ji, where pk;j ∈ f0; 1;…; d − 1g;
∀ j ∈ f0; 1;…; d − 1g, and ∀ j1 ≠ j2; pk;j1 ≠ pk;j2 for k
in an ascending lexicographical order of pk;1; pk;2;…; pk;d.
The simplest construction of Ûk uses no more than
dðd − 1Þ=2 π pulses according to the properties of the
permutations,which constitute an example of pulse sequence
optimization for specific operations according to their
properties. More details are provided in Appendix G 2.
It is worth noting that the choice of the initial state affects

the result of this algorithm withm ¼ 0 being the trivial case
and neglected. When m and d are coprime numbers, i.e.,
gcdðm; dÞ ¼ 1, the parity of the cyclic permutation can be
directly obtained from the measurement result of the pop-
ulations for jmi and jd −mi. The jmi state indicates even
parity, and the jd −mi state affirms odd parity. If other initial
states are chosen, the results would be a bit complicated.
SupposeCd;evenðoddÞ is an arbitrary cyclic permutation of even
(odd) parity with length d, and the permutation setGðm; dÞ is
a subgroup of a permutation group CðdÞwith length d, which
depends only onm andd (more construction details are given
in Appendix G 1). If a permutation Ûk is recognized by the
population of state jmi during readout, it satisfies

Ûk ∈ ⋃
g∈Gðm;dÞ

gCd;even; ð9Þ

while the readout population of state jd −mi corresponds to
Cd;odd with d ¼ 2m a special case for which both even and
odd permutations give the same readout.
An earlier experiment [56] reported the case of d ¼ 4,

m ¼ 1. Here, other choices such as d ¼ 3, m ¼ 2 and
d ¼ 4, m ¼ 2 are studied, with the results, respectively,
displayed in Figs. 5(d) and 5(e). The parity-check algorithm
for the former case is confirmed, whereas it is not
completely established for the latter, as the result recog-
nizes the cyclic permutation from thewhole permutation set
but fails in the parity check. However, the fidelities from
QPT of DFT operations and the high consistency between
the measured populations and theoretical distribution of the
circuit show that arbitrary unitary operations within the
transmon qudit are realizable.

B. Grover’s algorithm

Next, we discuss the implementation of Grover’s algo-
rithm [57,58] in a four-level quantum system, where each

(a)

(b)

(d) (e)

(c)

FIG. 5. Discrete Fourier transformation and parity check of
cyclic permutation. (a) The qudit is initialized into a super-
position state, and the unitary permutation operation is followed
by the inverse DFTand readout. Quantum-process tomography of
(b) DFT3 and (c) DFT4 shows fidelities of 98.36% and 87.64%,
respectively. Results for each permutation k (d) for d ¼ 3 and
(e) for d ¼ 4 with initial state j2i prepared, where dashed lines
denote theoretical expectations, while crosses show total experi-
ment outputs. Different colors show the projection measurement
results for different states at the same time. The consistency of the
measured population and theoretical distribution affirms the
reliable construction of arbitrary unitary operation in the trans-
mon qudit, though the success of the parity-checking algorithm
depends on the choice of the initial-state preparation. Exper-
imental (theoretical) results in (b)–(e) are labeled by Exp. (The.),
while the real (imaginary) parts are labeled by real (imag.).
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level represents an item in an unsorted database. The goal is
to locate a specific item labeled by an oracle operation, a
black-box operation that has nontrivial effect only on the
labeled level. Without loss of generality, we choose the
oracle operation P̂label such that the amplitude of the labeled
level jlabeli flips its sign or acquires an eiπ phase.
The first four levels of our transmon qudit are used, and

the operation Ĥ for initialization carries out Ĥj0i ¼
1=2

P
3
n¼0 jni with the matrix representation H taking

the form

H ¼ 1

2

0
BBB@

1 1 1 1

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

1
CCCA; ð10Þ

which is the same as the generalized Hadamard operator. It
turns into an equal superposition of all basis states and with
the oracle marking the specific state for Grover’s algorithm
to find through a generalized phase gate P̂labelðΦ⃗Þ satisfying

ϕj ¼
�−1; j ¼ label;

1; otherwise:
ð11Þ

The simplest search operator Ĝ takes the form

G ¼ 1

2

0
BBB@

−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

1
CCCA: ð12Þ

For most instances, the search operator would be more
complicated, because an arbitrary phase rotation satisfying
the phase-matching requirement is needed to achieve an
accurate search [59]. But for d ¼ 4, this phase is just π, and
therefore Ĝ takes the original form. At the end of the
search operation, we measure the qudit to affirm the state.
Figure 6(a) shows the complete gate sequence.
The labeled state is read with data shown in Fig. 6(b) in

red, blue, green, and purple colors for j0i, j1i, j2i, or j3i
being labeled, respectively. From these results, we obtain a
trained dataset hXni ¼

P
m mPmðnÞ where PmðnÞ denotes

the probability of reading out jmi in 4096 runs when we
label state jni with a standard deviation ΔhXni from 25
repetitions. hXni � ΔhXni; n ¼ 0, 1, 2, 3 provides an
identification confidence interval. One-hundred random
test results are plotted as black crosses in Fig. 6(c), which
fits well with the range from training and confirms accurate
manipulation in the qudit and the reliable execution of the
decomposed sequence for universal SUðdÞ operations.

C. Variational quantum eigensolver
in quantum chemistry

Quantum-chemistry calculation or quantum-chemistry
simulation is a popular application for quantum-
information processing. In the noisy intermediate-scale
quantum era, a quantum algorithm like the variational
quantum eigensolver (VQE) attracts a lot of atten-
tion [60,61], and several experiments have implemented
VQE in qubit systems, solving for ground-state H2 energy
in a superconducting system [24] and HeHþ energy in a
trapped-ion system [11]. The dimension of Hilbert space in
these two early studies is limited to two qubits or four-level
systems, which we can implement (perhaps with higher
qualities) in the transmon qudit.
As detailed in Appendix H, to obtain the ground-state

energy of H2, VQE minimizes the encoded Hamiltonian

HBK
H2

¼ a0I þ a1IZ þ a2ZI þ a3ZZ þ a4XX; ð13Þ

with a trial wave function eiθXY j11i, where X, Y, and Z are
Pauli matrices of a single qubit, j11i is the Hartree-Fock

(a)

(b)

(c)

FIG. 6. Grover’s algorithm. (a) The circuit with qudit initialized
by a Hadamard operation into an equal superposition state,
followed by an oracle that labels one of the basis states, and a
standard Ĝ operation applied with measurement in the end.
(b) Training for the labeled state and readout results. We label j0i,
j1i, j2i, and j3i in the Grover circuit and collect all measurement
results shown in different colors, respectively. For each labeled
state, 25 × 4096 runs are tested and displayed in the form of a
histogram, and the light colors show original counts while dark
colors show counts after Bayesian correction. The dotted line
indicates the maximum count, which is the theoretical value
without any error channel. (c) A simple test with a random
labeled state. For each test, the expectation hXi is calculated from
4096 runs. They are remarkably differentiated from each other,
and the shadow shows the standard deviation trained from
(b) with corresponding color.
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state encoded by Bravyi-Kitaev transformation with Z2

symmetry, and coefficients falg are calculated on a
classical computer. When running in four-level system,
the two-qubit states are mapped to multilevel states, for
instance, choosing j00i → j0i, j01i → j1i, j10i → j2i, and
j11i → j3i. The trial wave function eiθXY j11i is thus
mapped to

eiθXY j11i → P̂ðΦ⃗ÞÛð4ÞÛð3ÞÛð2ÞÛð1ÞÛð0Þj0i;

Ûð0Þ ¼ Ûj0i;j1i
2

�
π; 0; π;

π

2

�
;

Ûð1Þ ¼ Ûj1i;j2i
2

�
π; 0; π;

π

2

�
;

Ûð2Þ ¼ Ûj2i;j3i
2

�
π; 0; π;

π

2

�
;

Ûð3Þ ¼ Ûj0i;j3i
2

�
2θ; 0;−π;

π

2

�
;

Ûð4Þ ¼ Ûj1i;j2i
2

�
2θ;−π; 0;

π

2

�
;

Φ⃗ ¼ ðπ; π; 0; 0ÞT ð14Þ
derived from Gaussian elimination in Algorithm 1, which
constitutes a precise decomposition. The measurements of
hIZi, hZIi, hZZi, and hXXi follow the same experimental
method as described before. The whole process is illus-
trated in Fig. 7(b). Figures 7(c) and 7(d) display the
theoretical and experimental results of the local and total
Hamiltonians (varying with parameters θ), respectively, at
the equilibrium point. Figure 7(e) shows the experimental
energy curve of the ground state of H2 as a function of the

internuclear distance, which fits well with the exact value
(black line).
HeHþ can also be simulated despite being more com-

plicated than H2 from the aspect of simulation. The
corresponding trial wave function is chosen as

exp

�
i
θ1
2
ðIY þ YIÞ þ i

θ2
2
ðXY þ YXÞ

�
j11i; ð15Þ

and the encoded Hamiltonian takes the form

HBK
HeHþ ¼ a0I þ a1IZ þ a2IX þ a3ZI þ a4XI

þ a5ZZ þ a6ZX þ a7XZ þ a8XX: ð16Þ

Similar to the case of H2, both wave-function construction
operators at given parameters and measurement operations
are represented in matrix forms and decomposed by
Gaussian eliminations. The corresponding details are not
repeated here. Afterward, VQE forHeHþ is implemented on
our system, and the results of ground-state energy are shown
in Fig. 7(f), consistent with the exact energy obtained from
theoretical calculations. A second figure for the energy error
with fluctuations is shown in Fig. 12. Our experiment
replaces two coupling transmon qubits with one transmon
qudit, saving crucial hardware resources.

IV. CONCLUSION AND OUTLOOK

We realize a set of operations for readout, calibration,
quantum-state and -process tomography, and randomized
benchmarking in a qudit constructed from a superconducting

(a) (c)

(d)

(e)

(f)(b)

FIG. 7. Solving for H2 and HeHþ ground-state energies with VQE. (a) Formation of molecular orbitals for H2. (b) VQE circuit in the
qudit, with a trial initial wave function Ψ̂ and a rotation of measurement operator Ê. (c) Expectation for each measurement operator for
local Hamiltonian in H2. (d) Hamiltonian of H2 as a function of the rotation angle θ, the variation parameter of the trial wave function.
(e) Energy of the ground state for H2. (f) Energy of the ground state for HeHþ.
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transmon. We further implement three algorithms with the
well-benchmarked quantum device and verify their advan-
tages in calculation efficiency and accuracy. It demonstrates
resources saving with simpler gate operations than two-qubit
gates and a reduction in the hardware requirement.
In the transmon qudit, the coupling strength increases asffiffiffiffi
m

p
, slower than the lifetime scaling of 1=m for m excita-

tions, which consequently would erect a level limit in high-
fidelity manipulations that can be achieved; thus, the
scalability of the qudit system is to be reconsidered. In
Ref. [2], a summary of the definitions and properties for
various examples of qudit gates are provided, including a
two-qudit SWAP gate, which can be implemented by using the
controlled-shift gate CXd satisfying CXdjxijyi¼ jxijxþyi.
Within such a framework, it shows that universal and
complete operations can be constructed in principle. We
are hopeful with the achievement reported here, one can go
one step further by implementing two-qudit gates in the
future as cross-resonant gates or some other schemes.
Meanwhile, advanced calculation schemes, more and
improved algorithms, and quantum-simulation theories
based on qudit systems are urgently needed.
On the side of hardware implementation for qudit

systems, transmons remain a popular choice due to their
inherent multilevel structure, which proves convenient for
realizing multiqudit quantum devices with slight changes in
design. What is more, the scalability of a transmon or other
choice devices in a superconducting system provides many

benefits for implementing qudits, though higher-quality
units are needed.
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Note added.—Recently, we became aware of several related
works on the qudit-based quantum computation, including
a study of the beat note in Ramsey interference [62], the
two-qutrit gate based on a cross-resonant gate and its
application [63], the quantum gate set tomography protocol
for a qutrit [64], several algorithms demonstrated on a qutrit
processor [65], the gate compilation protocol for qudit-
based architecture [66], and the comparison of gate
efficiency between the qudit and qubits [67].

APPENDIX A: PROOF OF EXCHANGING
A GENERALIZED PHASE GATE

The proof of Eq. (3) is shown below.

R̂m;nðθ;ϕÞP̂ðΦ⃗Þ

¼
�
cos

θ

2
Îm;n − i sin

θ

2
ðcosϕσ̂m;n

x þ sinϕσ̂m;n
y Þ

�� X
k¼m;n

eiϕk jkihkj
�

⊕
�X

k≠m;n

eiϕk jkihkj
�

¼
�
cos

θ

2
ðjmihmj þ jnihnjÞ − i sin

θ

2
ðe−iϕjmihnj þ eiϕjnihmjÞ

�� X
k¼m;n

eiϕk jkihkj
�

⊕
�X

k≠m;n

eiϕk jkihkj
�

¼
�X

k≠m;n

eiϕk jkihkj
�

⊕
�
cos

θ

2
ðeiϕm jmihmj þ eiϕn jnihnjÞ − i sin

θ

2
½e−iðϕ−ϕnÞjmihnj þ eiðϕþϕmÞjnihmj�

�

¼
�X

k≠m;n

eiϕk jkihkj
�

⊕
� X

k¼m;n

eiϕk jkihkj
��

cos
θ

2
ðjmihmj þ jnihnjÞ − i sin

θ

2
ðe−iϕ0 jmihnj þ eiϕ

0 jnihmjÞ
�

¼ P̂ðΦ⃗ÞR̂m;nðθ;ϕþ ϕm − ϕnÞ; ðA1Þ

with ϕ0 ¼ ϕþ ϕm − ϕn. Therefore, it is valid to swap a
generalized phase gate with any arbitrary transition, leading
to zero duration of the generalized phase gate, as in the
virtual Z strategy [47] discussed before.

APPENDIX B: ALGORITHM
FOR GAUSSIAN ELIMINATION

Based on the Gaussian elimination, an arbitrary SUðdÞ
operation can be decomposed into a sequence of SU(2)

operations [49,50]. This algorithm takes the unitary
d-dimensional matrix representation of the SUðdÞ operators
as input, and outputs an SU(2) operation sequencewith gen-
eralized phase gates, or simply expressed as the following:

Û0;1;…;d−1
d ¼ P̂ðΦ⃗ÞÛmk;nk

2 � � � Ûm1;n1
2 Ûm0;n0

2 ; ðB1Þ

where a total of (kþ 1) SU(2) operations are required in a
given order, and ml; nl ∈ f0; 1;…; d − 1g; l ¼ 0; 1;…; k.
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The strategy of Gaussian elimination affects the implemen-
tation of sequences, and the normal and the bubbling ones
are described in Algorithms 1 and 2, respectively. Although
both of them provide no more than dðd − 1Þ=2 SU(2)
operations, the level structure of each SU(2) operation
finally affects the pulse number required in the SUðdÞ
operation. Obviously, the normal Gaussian elimination is
more suitable for the trapped-ion system in Ref. [3], while
the bubbling one is more suitable for the qudit in this work,
which is close to the theoretical limit.

APPENDIX C: QUDIT PARAMETERS
AND EXPERIMENTAL SETUP

Our qudit system is implemented on a transmon regarded
as a multilevel system instead of the nominal two-level
qubit. The fabrication of our device follows the same
procedure as described in Ref. [68]. Table II shows its
control and coherence parameters. ωm;n=2π denotes the

transition frequency between levels jmi and jni, and T jmi
1

indicates the characteristic time of energy relaxation if the

qudit is initialized in the jmi state. T jmi;jni
2;Ramsey denotes the

dephasing time measured via Ramsey interferometry pro-
tocol between levels jmi and jni. Higher levels are
influenced more than lower ones by charge parity, causing
fitting of the experimental data to be more difficult; a rough
estimate of dephasing is therefore given for higher levels.
Figure 8 shows the results of time-dependent Rabi oscil-
lations under single- or two-photon transition without
readout correction or phase correction. It is obvious that
the transitions between adjacent levels are faster than the
nonadjacent ones. Therefore, single-photon transitions are
chosen as basic transitions to achieve high-fidelity
manipulations.
The qudit device is installed in a dilution refrigerator

with details shown in Fig. 9. Two microwave lines coupled
to the Josephson junction and readout resonator are used to
drive and detect. Readout signals are generated from the
arbitrary wave generator and up-converted to 7.217 GHz to
probe the four levels simultaneously at room temperature.
Table III and Fig. 10(a) present the readout response
parameters. A statistical analysis of the readout signal is
shown in Fig. 10(b). We prepare the state jki and calculate
the standard deviation of acquiring the measurement result
jki as a function of repeated runs r by bootstrapping. The
standard deviation of the experimental results decreases as
r increases, reaching the theoretical convergence rate
1=

ffiffiffi
r

p
. An instance of the readout fidelity matrix is shown

in Table IV.
The drive signal is generated from the same arbitrary

wave generator but in a different channel. Different from
the readout waveform, more frequency component waves
are required for qudit manipulations. Furthermore, pulses
of different frequencies are combined in the same drive
pulse sequence. Phase differences between these pulses are
important so that a common channel of an arbitrary
waveform generator is employed. The pulse sequence is
generated and up-converted to the frequencies we want via
an in-phase and quadrature mixer at a local frequency of
4.8 GHz. We use π=2 cosine pulses with an arbitrary phase
as basic components, whose duration between j0i and j1i
(j1i and j2i, j2i and j3i) is 45 ns (35, 85 ns) with a 10-ns
buffer.

Algorithm 1. Normal Gaussian elimination decomposition of
SUðdÞ.
1 Function GEDðd;UÞ:

Input: current dimension d and the d × d unitary
representation matrix U

Output: sequences Ans of SU(2) operations
2 initialize Ans, set empty;
3 for j ← 1 to d − 1 do
4 if not U½d − j; d� ¼ 0 then
5 calculate an SU(2) operation u0 according to U½d; d�

and U½d − j; d�;
6 add answer Ans ← Ans ∪ u0;
7 update U ← u0U;
8 end
9 end
10 add a generalized phase gate Ans ← Ans ∪ p making

U½d; d� equal to 1;
11 if d > 1 then
12 return Ans ∪ GEDðd − 1; U½1∶d − 1; 1∶d − 1�Þ;
13 else
14 return Ans;
15 end

TABLE II. Control and coherent parameters of the qudit device.

Adjacent one-photon
transition frequency (GHz)

Two-photon transition
frequency (GHz)

Lifetime of
excited levels (μs)

Dephasing time between
labeled states (μs)

ω01=2π 5.355 ω02=2π 5.241 T j1i
1

180� 3 T j0i;j1i
2;Ramsey

76� 2

ω12=2π 5.127 ω13=2π 5.000 T j2i
1

101� 1 T j1i;j2i
2;Ramsey

37� 3

ω23=2π 4.873 ω̄24=2π
a 4.727 T j3i

1
73� 1 T j2i;j3i

2;Ramsey
22.8� 0.3

ω̄34=2π
a 4.581 T j3i;j4i

2;Ramsey
≥10

aAverage transition frequency between the corresponding levels.
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To calibrate the π=2 pulse, we determine the drive
frequency using Ramsey interferometry. If interference
with a beat is found in the Ramsey signal, the mean of
the two frequencies is taken. Then we determine the
frequency shift according to the derivative reduction by
adiabatic gate [69] method for phase error. In fact, this
dichotomy of the transition frequency influences our
manipulation capability and makes the phase error difficult
to calibrate. The amplitude of the pulse will be influenced at
a nonzero frequency shift, so the above two steps are
repeated for more precise calibration. Figures 11(a)–11(c)
show randomized benchmarking sequences on SU(2)

subspace j0i and j1i, j1i and j2i, and j2i and j3i,
respectively, with a fidelity ð99.979� 0.001Þ%,
ð99.924� 0.004Þ%, and ð99.85� 0.01Þ% per π=2 pulse.
Rather than having the subspaces spanned by adjacent
levels, randomized benchmarking sequences are also
applied via composite rotations from SU(2) transitions.
Figure 11(e) shows that the fidelities of the π=2 pulses
between j0i and j2i, j1i and j3i, and j0i and j3i are,
respectively, ð99.49� 0.01Þ%, ð99.55� 0.02Þ%, and
ð99.14� 0.01Þ%. As measurements on the four levels
are implemented simultaneously, leakages induced by

(a) (b)

(d) (e)

(c)

FIG. 8. Basic microwave-driven transitions in the transmon qudit. Transitions between adjacent levels are shown in (a)–(c) without
readout correction or phase correction. Two-photon transitions are also observed and displayed in (d) and (e). The population damping in
(e) is due to the frequency dichotomy of the higher level, and the signal is within the first period of the oscillation beat.

Algorithm 2. Bubbling Gaussian elimination decomposition of
SUðdÞ.
1 Function GEDðd;UÞ:

Input: current dimension d and the d × d unitary
representation matrix U

Output: sequences Ans of SU(2) operations spanned only
on adjacent levels

2 initialize Ans, set empty;
3 for j ← 1 to d − 1 do
4 if not U½j; d� ¼ 0 then
5 calculate an SU(2) operation u0 according to

U½jþ 1; d� and U½j; d�;
6 add answer Ans ← Ans ∪ u0;
7 update U ← u0U;
8 end
9 end
10 add a generalized phase gate Ans ← Ans ∪ p making

U½d; d� equal to 1;
11 if d > 1 then
12 return Ans ∪ GEDðd − 1; U½1∶d − 1; 1∶d − 1�Þ;
13 else
14 return Ans;
15 end

FIG. 9. A schematic of the measurement system includes the
cryogenic and room-temperature setup. Digital-to-analog con-
verter (DAC) is the arbitrary waveform generator, while analog-
to-digital converter (ADC) is the waveform collector. Two
microwave generators (MW) are employed to generate local
signals.
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energy relaxation or frequency bandwidth contribute to
incoherent errors for SU(2) manipulations, which may not
be observed directly by RB in two-level systems.
Derivative reduction by an adiabatic gate is usually adopted

to suppress unwanted frequency components with driving
pulses in qubit manipulations [69]. Inspired by the above, a
similar approach could be used to suppress unwanted
frequency components in qudit manipulation. However,

(a) (b)

FIG. 10. (a) In-phase response signal at changing measurement frequency. The cavity responds differently when the qubit is prepared
in a different state jki. The black solid line indicates the frequency we select for state discrimination. (b) Standard deviation for state
discrimination calculated by bootstrapping. From a total of 20480 runs of jki state measurements, r runs are randomly chosen to
calculate the standard deviation ΔpðrÞ with p ¼ 1 when a run gives the measurement jki and otherwise p ¼ 0, and this process is
averaged over 50 000 repetitions and provides ΔpðrÞ as a function of r plotted in chosen colors for different initial states. The expected
convergence limit 1=

ffiffiffi
r

p
is given by the black solid line.

(a) (b) (c)

(d) (e) (f)

FIG. 11. Randomized benchmarking on arbitrary SU(2) subspace. Note that in (a) j0i and j1i, (b) j1i and j2i, (c) j2i and j3i, only
adjacent transitions are used in the corresponding subspace after initial-state preparation with slightly different RB sequences, requiring
different average π=2 pulses per Clifford gate, numbered 2.167, 2.167, and 1.5, respectively. (d) j0i and j2i, (e) j1i and j3i, (f) j0i and j3i
focus on operations over the corresponding subspaces and therefore are combinations of adjacent transitions. All four states are
measured, and the results are plotted as crosses with error bars and full line fitting in corresponding colors. Black dotted lines indicate the
population of a mixed state of SU(2) after evolving for a sufficiently long time.

TABLE III. Readout parameters of the qudit device.

Cavity response
frequency for
different qudit
state jki (GHz)

Half high
and half
wide (MHz) Other parameters Value

ωj0i=2π 7.217 85 γj0i=2π 0.22 Selected readout frequency ωr=2π 7.217 26 GHz
ωj1i=2π 7.217 48 γj1i=2π 0.23 Dispersive shift χ=2π 0.34 MHz
ωj2i=2π 7.217 17 γj2i=2π 0.28 Readout coupling strength g=2π 76 MHz
ωj3i=2π 7.216 83 γj3i=2π 0.27
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the driving scheme would become more involved, because
there are now more frequency components to suppress.
Unfortunately, randomizedbenchmarking cannot estimate

all error messages, due to the averaging effect of the RB
sequence. Some specific types of errors, such as the non-
Markovian error in operation, cannot be observed, and only
limited manipulation errors can be perceived. In qubit
systems, such errors can be estimated by gate set tomogra-
phy [54,55]. However, for a qudit system, related theoretical
tools are still being developed or discovered. It calls for
increased theoretical efforts, as analyzing the error source is
of great importance to improve manipulation.

APPENDIX D: QUANTUM-STATE
TOMOGRAPHY OF THE QUDIT

QST is a common method to determine the density
matrix of a quantum state. QST of a qudit system was
presented in a nuclear-magnetic-resonance system [46],
and we follow the same method. To measure elements of an
arbitrary density matrix of a qudit, for example, a four-level
system, we construct 12 operations M̂l; l ¼ 0; 1;…; 11, as
in the following:

M̂0 ¼ R̂0;1

�
−
π

2
; 0

�
;

M̂1 ¼ R̂1;2

�
−
π

2
; 0

�
;

M̂2 ¼ R̂2;3

�
−
π

2
; 0

�
;

M̂3 ¼ R̂0;1

�
−
π

2
;
π

2

�
;

M̂4 ¼ R̂1;2

�
−
π

2
;
π

2

�
;

M̂5 ¼ R̂2;3

�
−
π

2
;
π

2

�
;

M̂6 ¼ R̂1;2

�
−
π

2
; 0
�
R̂0;1

�
−
π

2
; 0
�
;

M̂7 ¼ R̂1;2

�
−
π

2
;
π

2

�
R̂0;1

�
−
π

2
; 0

�
;

M̂8 ¼ R̂2;3

�
−
π

2
; 0

�
R̂1;2

�
−
π

2
; 0

�
;

M̂9 ¼ R̂2;3

�
−
π

2
;
π

2

�
R̂1;2

�
−
π

2
; 0

�
;

M̂10 ¼ R̂2;3

�
−
π

2
;
π

2

�
R̂1;2

�
−
π

2
;
π

2

�
R̂0;1

�
−
π

2
;
π

2

�
;

M̂11 ¼ R̂2;3

�
−
π

2
; 0

�
R̂1;2

�
−
π

2
; 0

�
R̂1;2

�
−
π

2
; 0

�
: ðD1Þ

For an unknown quantum state ρ̂, we apply each operation
after state preparation, followed by a measurement gate
which projects the state into one of the four eigenstates j0i,
j1i, j2i, and j3i, and the respective probabilities Pl;k ¼
hkjM̂†

l ρ̂M̂ljki with l ¼ 0; 1;…; 11 and k ¼ 0, 1, 2, 3 are
obtained, satisfying

P
k Pl;k ¼ 1. Elements of ρ̂ are solved

according to

ρ0;0 ¼ ðP2;0 þ P5;0Þ=2;
ρ1;1 ¼ ðP2;1 þ P5;2Þ=2;
ρ2;2 ¼ ðP0;2 þ P0;3Þ=2;
ρ3;3 ¼ ðP0;3 þ P3;3Þ=2;
x0;1 ¼ ðP3;0 − P3;1Þ=2;
x1;2 ¼ ðP4;1 − P4;2Þ=2;
x2;3 ¼ ðP5;2 − P5;3Þ=2;
y0;1 ¼ ðP0;0 − P0;1Þ=2;
y1;2 ¼ ðP1;1 − P1;2Þ=2;
y2;3 ¼ ðP2;2 − P2;3Þ=2;
x0;2 ¼ ðP6;1 − P6;2 −

ffiffiffi
2

p
y1;2Þ=

ffiffiffi
2

p
;

y0;2 ¼ ðP7;2 − P7;1 þ
ffiffiffi
2

p
x1;2Þ=

ffiffiffi
2

p
;

x1;3 ¼ ðP8;2 − P8;3 −
ffiffiffi
2

p
y2;3Þ=

ffiffiffi
2

p
;

y1;3 ¼ ðP9;3 − P9;2 þ
ffiffiffi
2

p
x2;3Þ=

ffiffiffi
2

p
;

x0;3 ¼ P10;2 − P10;3 −
ffiffiffi
2

p
x2;3 þ x1;3;

y0;3 ¼ P11;3 − P11;2 þ
ffiffiffi
2

p
y2;3 þ x1;3;

ρ0;1 ¼ x0;1 þ iy0;1;

ρ0;2 ¼ x0;2 þ iy0;2;

ρ0;3 ¼ x0;3 þ iy0;3;

ρ1;2 ¼ x1;2 þ iy0;2;

ρ1;3 ¼ x1;3 þ iy0;3;

ρ2;3 ¼ x2;3 þ iy0;3: ðD2Þ

Unfortunately, the state obtained this way does not make
full use of the information in the measurement data. An
alternative method is to apply MLE according to the
properties of the density matrix [51,52], with the simple
estimation ρ̂ from Eq. (D2) regarded as an initial guess to

TABLE IV. An instance of preparation and readout fidelity.

Detect j0i Detect j1i Detect j2i Detect j3i
Prepare j0i 0.991 04 0.008 31 0.000 60 0.000 05
Prepare j1i 0.053 53 0.944 59 0.000 71 0.001 17
Prepare j2i 0.024 28 0.029 95 0.944 98 0.000 79
Prepare j3i 0.037 80 0.006 89 0.044 19 0.911 12
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reduce the impact of other undesirable errors on the output
density matrix.

APPENDIX E: QUANTUM-PROCESS
TOMOGRAPHY OF A QUDIT

QPT is based on quantum-state tomography [3] provid-
ing a convenient visible method to characterize a quantum
process. Like QPT of a qubit, we initialize our d-level
system in a given state, then apply the process we want to
determine, and end with QST to measure the final state. In
Ref. [49], for arbitrary state jmihnj, which is obviously the
basis of the density matrix, the final state after the process
EðjmihnjÞ satisfies

EðjmihnjÞ ¼ EðjþihþjÞ þ iEðj−ih−jÞ

−
1þ i
2

EðjmihmjÞ − 1þ i
2

EðjnihnjÞ; ðE1Þ

where jþi ¼ ðjmi þ jniÞ= ffiffiffi
2

p
and j−i ¼ ðjmi þ ijniÞ= ffiffiffi

2
p

,
and the pure state jni, jmi, jþi, or j−i can be prepared from
the initial state j0i. Our implementation, however, tests
another set of initial states

jami≡ jmi; ðE2Þ

m ¼ 0; 1;…; d − 1, and

jam;n;0i≡ ðjmi − jniÞ=
ffiffiffi
2

p
;

jam;n;1i≡ ðjmi − ijniÞ=
ffiffiffi
2

p
;

jam;n;2i≡ ðjmi þ ijniÞ=
ffiffiffi
2

p
; ðE3Þ

for m; n ¼ 0; 1;…; d − 1 and m < n. It is obvious that the
first d items initialize the system via

âm¼ R̂m−1;m

�
π;
π

2

�
R̂m−2;m−1

�
π;
π

2

�
� � �R̂0;1

�
π;
π

2

�
; ðE4Þ

with âmj0i ¼ jami, and therefore,

âm;n;0 ¼ R̂m;n

�
π

2
;−

π

2

�
âm;

âm;n;1 ¼ R̂m;n

�
π

2
; 0

�
âm;

âm;n;2 ¼ R̂m;n

�
π

2
;−

π

2

�
âm; ðE5Þ

with âm;n;kj0i ¼ jam;n;ki for k ¼ 0, 1, 2. A total of dþ
3dðd − 1Þ=2 ¼ dð3d − 1Þ=2 initial states are prepared
accordingly. After the final states are measured with
QST, we have

−EðjmihnjÞ ¼ Eðjam;n;0iham;n;0jÞ þ iEðjam;n;1iham;n;1jÞ

−
1þ i
2

EðjmihmjÞ − 1þ i
2

EðjnihnjÞ;
−EðjnihmjÞ ¼ Eðjam;n;0iham;n;0jÞ þ iEðjam;n;2iham;n;2jÞ

−
1þ i
2

EðjmihmjÞ − 1þ i
2

EðjnihnjÞ: ðE6Þ

If we regard state set fj0ih0j;j0ih1j;…; j0ihd−1j; j1ih0j;
j1ih1j;…; j1ihd−1j;…; jd−1ih0j; jd−1ih1j;…;jd−1ihd−
1jg as a group of basis, a superoperator representation can be
recovered from EðjmihnjÞ labeled by χ̂0 whose matrix
representation is of dimension d2 × d2. In this work, an
alternative group of basis to represent the superoperator is
taken, leading to satisfactory matrix representation of the
superoperator. We choose the identity matrix of order
d, d2 − 1 generators of the SUðdÞ matrix, and sequence
λ0; λ1;…; λd2−1 which are obtained fromAlgorithm 3, as our
basis fλ̂kg to represent the superoperator. The relationship

ρ̂ ¼
X
k;l

λ̂kρ̂λ̂
†
l χk;l; ðE7Þ

with ρ̂ an arbitrary density operator of the system, describes
the calculation of χ̂, and the results are shown in Figs. 5(b)
and 5(c) for d ¼ 3 and d ¼ 4.
The MLE can also be adapted to QPT. One can choose to

use the MLE in QST for each step to aim for a more precise
state-tomography result, or directly using it in the whole

Algorithm 3. Construction of generators of the SUðdÞ matrix.

Input: order d of SUðdÞ
Output: sequences Ans of SUðdÞ generators in matrix

representation
1 initialize Ans, set empty;
2 add answer Ans ← Ans ∪ Id×d;
3 for j ← 2 to d do
4 for k ← 0 to j − 2 do
5 add answer

Ans ← Ans ∪ ρm;n ¼
(
1; m ¼ k; n ¼ j − 1;
1; m ¼ j − 1; n ¼ k;
0; otherwise;

;

6 add answer

Ans ← Ans ∪ ρm;n ¼
(−i; m ¼ k; n ¼ j − 1;
i; m ¼ j − 1; n ¼ k;
0; otherwise;

;

7 end
8 add answer Ans ← Ans ∪ ρm;n ¼8>><
>>:

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj−1Þ=2

p ; m ¼ n ¼ 0; 1;…; j − 2;

1−jffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj−1Þ=2

p ; m ¼ n ¼ j − 1;

0; otherwise;
9 end
10 return Ans;
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calculation according to the properties of the matrix
representation of the superoperator under the special basis
chosen here. A positive-semidefinite matrix allows us to
choose the MLE.
For d ¼ 3,

λ0 ¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA; λ1 ¼

0
B@

0 1 0

1 0 0

0 0 0

1
CA;

λ2 ¼

0
B@

0 −i 0

i 0 0

0 0 0

1
CA; λ3 ¼

0
B@

1 0 0

0 −1 0

0 0 0

1
CA;

λ4 ¼

0
B@

0 0 1

0 0 0

1 0 0

1
CA; λ5 ¼

0
B@

0 0 −i
0 0 0

i 0 0

1
CA;

λ6 ¼

0
B@

0 0 0

0 0 1

0 1 0

1
CA; λ7 ¼

0
B@

0 0 0

0 0 −i
0 i 0

1
CA;

λ8 ¼
1ffiffiffi
3

p

0
B@

1 0 0

0 1 0

0 0 −2

1
CA; ðE8Þ

and for d ¼ 4,

λ0 ¼

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; λ1 ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1
CCCA;

λ2 ¼

0
BBB@

0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; λ3 ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1
CCCA;

λ4 ¼

0
BBB@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1
CCCA; λ5 ¼

0
BBB@

0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

1
CCCA;

λ6 ¼

0
BBB@

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

1
CCCA; λ7 ¼

0
BBB@

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

1
CCCA;

λ8 ¼
1ffiffiffi
3

p

0
BBB@

1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

1
CCCA; λ9 ¼

0
BBB@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1
CCCA;

λ10 ¼

0
BBB@

0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0

1
CCCA; λ11 ¼

0
BBB@

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

1
CCCA;

λ12 ¼

0
BBB@

0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

1
CCCA; λ13 ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1
CCCA;

λ14 ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

1
CCCA; λ15 ¼

1ffiffiffi
6

p

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

1
CCCA:

ðE9Þ

APPENDIX F: CONSTRUCTION OF SU(3)
AND SU(4) CLIFFORD OPERATIONS

For the Clifford group Cn
d and Pauli group P

n
d, where d is

the qudit Hilbert-space dimension and n is the number of
qudits, the quotient group Cn

d=P
n
d is isomorphic to the

symplectic group SpðdnÞ. The number of the Clifford group
elements can be calculated byNPn

d
× NSpðdnÞ for arbitraryCn

d.
We can generate a single-qudit Clifford group with the

Algorithm 4. Construction of SUðdÞ Clifford operations.

1 Function Cliffordðn ¼ 1; dÞ:
Input: qudit number n default to 1 and qudit dimension d
Output: Clifford group for SUðdÞ

2 initialize NSUðdÞ ← NPn
d
× NSpðdÞ;

3 initialize set Group ← ½Fd; Sd; Zd; Xd�;
4 initialize h ← 0, j ← 0, L ← lenðGroupÞ;
5 while h < L do
6 for k ← j to L do
7 g ← Group½h� � Group½k�;
8 Group ← Group ∪ g, a global complex factor

allowed;
9 g ← Group½k� � Group½h�;
10 Group ← Group ∪ g, a global complex factor

allowed;
11 end
12 if lenðGroupÞ ¼ NSUðdÞ then
13 return Group;
14 end
15 if lenðGroupÞ ¼ L then
16 h ← hþ 1;
17 j ← 0;
18 else
19 j ← L;
20 L ← lenðGroupÞ;
21 end
22 end
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generators Fd, Pd, Zd, and Xd. With the orthonormal
computational basis jsi; s ∈ Zd, Zd ≔ 0; 1;…; d − 1,
Fdjsi ≔ ð1= ffiffiffi

d
p ÞPs0∈Zd

ωss0 js0i which is the quantum

Fourier transform, and the phase gate Pjsi ≔ ω
sðsþρdÞ

2 jsi,
with ρd ¼ 1 for odd d and ρd ¼ 0 otherwise, to obtain
Xdjsi ¼ js ⊕ 1i andZdjsi ¼ ωsjsi, whereω≔expð2πi=dÞ.
To construct Clifford group operations for SUðdÞ, we follow
Algorithm 4.

APPENDIX G: DETAILS FOR CYCLIC
PERMUTATION PARITY CHECK

1. Parity check of cyclic permutation

One application of DFT is to check the parity of cyclic
permutation. In this algorithm, for a permutation of length
d we want to check if the qudit is initialized into a coherent
superposition state DFTjmi, and then permutation oper-
ation Ûk; k ¼ 1; 2;…; d! is applied. Before reading out the
qudit, an inverse DFT labeled by DFT−1 is applied to
transform the state. Different outcomes from the readout
reveal parities of cyclic permutations. We remind that the
choice of the initial state affects the result of the algorithm
with m ¼ 0, the trivial case, and can be neglected, and m
and d are coprime numbers, i.e., gcdðm; dÞ ¼ 1. Parities of
cyclic permutations can be directly measured from pop-
ulations of jmi and jd −mi, with the former for even parity
and the latter for odd parity. If other initial states are
chosen, the results would be more complicated, but they
remain completely determined. For example, taking
gcdðm; dÞ ¼ t, then d ¼ qt, the subgroup Gðm; dÞ ¼ hQ̂i
of permutations of length d satisfies

Q̂ ¼
�

j ðjþ qÞ mod d

ðjþ qÞ mod d j

�
; ðG1Þ

j ¼ 0; 1;…; d − 1. If the readout of Ûk is still jmi,
Ûk ∈ gCd;even; ∀ g ∈ Gðm; dÞ, where Cd;even is the set
of d-length cyclic permutation of even parity, whereas if
the readout gives jd −mi, Ûk ∈ gCd;odd; ∀ g ∈ Gðm; dÞ.
Obviously, t ¼ 1 corresponds to the trivial case where
Gðm; dÞ is the identity group.
For permutations of length-3, gcdð2; 3Þ ¼ 1, we know

the parity from j2i or j1i readout at the end of a circuit. The
cyclic operations are from

Û1¼
�
0 1 2

0 1 2

�
; Û4¼

�
0 1 2

1 2 0

�
; Û5¼

�
0 1 2

2 0 1

�
; ðG2Þ

and implicate even parity for final state j2i, while

Û2¼
�
0 1 2

0 2 1

�
; Û3¼

�
0 1 2

1 0 2

�
; Û6¼

�
0 1 2

2 1 0

�
ðG3Þ

give odd parity for final state j1i. However, for permuta-
tions of length-4, a special case satisfying N ¼ 2m, both
parities give the same readout and

⋃
g∈Gð2;4Þ

gCð4Þ ¼ Cð4Þ; ðG4Þ

where Cð4Þ is the set of all length-4 cyclic permutations
and jCð4Þj ¼ 8. In other words, the parity check of length-4
cyclic permutations is invalid, but cyclic permutations can
still be distinguished with

Û1 ¼
�
0 1 2 3

0 1 2 3

�
; Û6 ¼

�
0 1 2 3

0 3 2 1

�
;

Û8 ¼
�
0 1 2 3

1 0 3 2

�
; Û10 ¼

�
0 1 2 3

1 2 3 0

�
;

Û15 ¼
�
0 1 2 3

2 1 0 3

�
; Û17 ¼

�
0 1 2 3

2 3 0 1

�
;

Û19 ¼
�
0 1 2 3

3 0 1 2

�
; Û24 ¼

�
0 1 2 3

3 2 1 0

�
ðG5Þ

from experiment results.

2. The simplest construction
of permutation operations

In order to construct Ûk using pulses as short as possible,
some considerations can help to simplify the pulse
sequence of Ûk according to the nature of the permutation
and commutation inspired by the bubble sort algorithm
from Ref. [70]. For a permutation Ûk of length d,

Ûk ¼
�

0 1 � � � N − 1

pk;0 pk;1 � � � pk;d−1

�
ðG6Þ

satisfying Ûkjji ¼ jpk;ji, where pk;j ∈ f0; 1;…; d − 1g;
∀ j ∈ f0; 1;…; d − 1g, and ∀ j1 ≠ j2; pk;j1 ≠ pk;j2 , and
k indicate the ascending lexicographical order of
pk;1; pk;2;…; pk;d. Therefore, each Ûk takes its matrix
representation MðÛkÞ, and it is easy to prove that Ûk is
unitary. While normal Gaussian elimination is certainly a
universal method to translate matrix representations into
pulse sequences, it is a bit awkward in this situation, with
each permutation equivalent to the product of several
transpositions. The basic pulse R̂j;jþ1ðθ;ϕÞ we employ
actually corresponds to transitions between adjacent levels,
and using only adjacent transpositions can construct
arbitrary permutations, and finding minimum numbers of
adjacent transpositions is of great importance to pulse
sequence simplification. A transposition between adjacent
levels can be written as X̂j;jþ1 ¼ jjþ 1ihjj þ jjihjþ 1j.
A simple perspective to understand the lower bound

of the adjacent transposition numbers comes from the
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inversion pairs of a permutation. For a given permutation,
inversion pairs are determined, and an adjacent trans-
position would increase or decrease an inversion. The
number of adjacent transpositions is no less than the
inverse pairs in a permutation. If a sequence with a number
of adjacent transpositions equals the inverse pairs, the
minimal decomposition is found.
We can use bubbling Gaussian elimination to generate

the pulse sequence of Ûk, with the same results obtained.
Hopefully, this helps us understand why the bubbling
elimination corresponds to the limit of theoretical complex-
ity of the transmon qudit.

APPENDIX H: VQE IN A QUDIT

1. Framework of VQE

For a molecule consisting of N nuclei and M (valence)
electrons free from external field, its electronic
Hamiltonian [71] is expressed in K canonical molecular
orbitals as

Ĥ0 ¼
XK
p;q¼1

hpqa
†
paq þ

1

2

XK
p;q;r;s¼1

hpqrsa
†
pa

†
qasar; ðH1Þ

where p, q, r, and s denote different spin orbitals and
parameters (one-electron hpq and two-electron hpqrs inte-
grals), and

hpq ¼
Z

dxϕ�
pðxÞ

�
−
∇2

2
−
XN
I¼1

ZI

jr −RIj
�
ϕqðxÞ;

hpqrs ¼
Z

dx1dx2
ϕ�
pðx1Þϕ�

qðx2Þϕsðx1Þϕrðx2Þ
jx1 − x2j

ðH2Þ

are precalculated on classical computers by theHartree-Fock
method with OðK4Þ scaling. Using the VQE method to

compute the ground-state energy requires a parametrized
ansatz or a trial wave function.Many different forms of wave
functions are developed for such a purpose. A popular ansatz
used by the VQE method is the unitary coupled-cluster
ansatz with single and double excitations (UCCSD) [72]
given by

jΨUCCSDðθÞi ¼ eT̂SDþT̂†
SD jΨ0i

¼ exp

�X
ra

craða†raa − a†aarÞ

þ
X

a<b;r<s

crsabða†ra†saaab − a†ba
†
aasarÞ

�
jΨ0i;

ðH3Þ

where T̂SD ¼ T̂1 þ T̂2 contains single- and double-excitation
operators. jΨ0i is the ground-state wave function obtained by
the Hartree-Fock method. Minimizing the expectation value
of molecular energy hΨUCCSDðθÞjĤ0jΨUCCSDðθÞi, we find
theground-statewave function and the corresponding energy.
For a two-electron system equipped with STO-3G basis,

it has four spin orbitals denoted by g; ḡ; u; ū representing
gerade spin-up, gerade spin-down, ungerade spin-up, and
ungerade spin-down orbitals, respectively. It is evident that
the two electrons occupy two of the four spin orbitals, and
as a result, the ground-state function of the molecule stays
in the linear space V spanned by the following four basis
states [73]:

V ¼ fjσgσ̄gi; jσuσ̄ui; jσgσ̄ui; jσuσ̄gig: ðH4Þ

For the H2 molecule, the ground-state wave function jψH2
i

stays in a smaller linear space

Vg ¼ fjσgσ̄gi; jσuσ̄uig ðH5Þ

due to its central symmetry. As a result, the electronic
Hamiltonian (H1) for the two-electron system is simpli-
fied as

H¼ hggða†gagþa†ḡaḡÞþhμμða†μaμþa†μ̄aμ̄Þ
þhggμμða†ga†ḡaμ̄aμþa†ga

†
μ̄aḡaμþa†μa†ḡaμ̄agþa†μa†μ̄aḡagÞ

þðhgμgμ−hgμμgÞða†ga†μaμagþa†ḡa
†
μ̄aμ̄aḡÞ

þhgggga
†
ga

†
ḡagaḡþhμμμμa

†
μa†μ̄aμ̄aμ

þhgμgμða†ga†μ̄aμ̄agþa†ḡa
†
μaμaḡÞ:

To perform theVQE algorithm,we need to encode ormap
the ground-state wave function and the Hamiltonian into
quantum circuits. There exist several schemes to encode the
creation and annihilation operators into strings of Pauli
gates. The common choices are the Jordan-Wigner, parity,
and Bravyi-Kitaev transformations. In our simulation, we

Algorithm 5. Bubble construction of Ûk.

Input: an array fpk;jg; j ¼ 0; 1;…; d − 1 representing Uk to
be constructed

Output: sequences Ans of SU(2) operations in adjacent levels
1 initialize Ans, set empty;
2 while True do
3 initialize flag f ← True;
4 for j ← 0 to d − 2 do
5 if pk;j > pk;jþ1 then
6 swap pk;j and pk;jþ1;
7 add an adjacent transposition

Ans ← Ans ∪ X̂j;jþ1;
8 update flag f ← False;
9 end
10 end
11 if f then
12 return Ans;
13 end
14 end
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employ the Bravyi-Kitaev (BK) transformation [74] to
encode thewave functions andHamiltonians, which enables
the reduction of using two qubits for simulations or experi-
ments through Z2 symmetry.
For the two-electron system, we store the occupation

numbers of spin orbitals jΦ0i in the order of
jfσ̄u ; fσ̄g ; fσu ; fσgi, where f equals 1 (occupied) or 0 (unoc-
cupied). In the following, we denote the order σu, σg, σu, and
σg by 3,2,1, and 0 for simplicity. As a result, the indices in
Hamiltonian (H1) and jΦ0i are modified. Under the BK
transformation, the encoded wave function of two-electron
system (H4) stays in the space Vqubit

g ¼ fj0101i; j1010i;
j0110i; j1001ig, or ¼ fj11i; j00i; j10i; j01ig under Z2

reduction. The encoded wave function (H5) of H2 stays in
Vqubit
u ¼ fj0101i; j1010ig, or ¼ fj11i; j00ig under Z2

reduction.
After some calculation, the UCCSD operator of the two-

electron system is found to take the following form:

UðθÞ ¼ exp½θ10ða†1a0 − a†0a1Þ þ θ32ða†3a2 − a†2a3Þ
þ θ3120ða†3a†1a0a2 − a†2a

†
0a1a3Þ�: ðH6Þ

Carrying out the BK encoding, the UCCSD operator
becomes

UðθÞ ¼ exp

�
i

�
θ3120
2

ðX1Y0 þ Y1X0Þ þ
θ10
2

Y0 þ
θ32
2

Y1

��
;

and the corresponding Hamiltonian becomes

HBK
HeHþ ¼ a0I þ a1IZ þ a2IX þ a3ZI þ a4XI

þ a5ZZ þ a6ZX þ a7XZ þ a8XX: ðH7Þ

The single-excitation terms a†1a0 − a†0a1 and a†3a2 −
a†2a3 are discarded for the H2 molecule due to its spatial
symmetry, and the resulting UCCSD operator is simplified
into

UðθÞ ¼ exp

�
i
θ

2
ðX1Y0 þ Y1X0Þ

�
: ðH8Þ

For the ground state of H2 (state j11i under BK trans-
formation with Z2 symmetry), the ansatz and Hamiltonian
are further simplified into

UðθÞj11i¼ eiθX1Y0 j11i;
HBK

H2
¼ a0Iþa1Z0þa2Z1þa3Z1Z0þa4X1X0: ðH9Þ

To evaluate the ground-state energy of the system, we need
to compute the expected value of each term in HBK

H2
, which

is measured directly with quantum circuits.

2. Derivation of the UCCSD ansatz of H2

The general form of the UCC operator is given by

UðθÞ ¼ eTðθÞ−T†ðθÞ; ðH10Þ

where TðθÞ is the excitation operator defined by full
configuration interaction, and for most of the time, the
UCCSD ansatz is sufficient to deal with this problem. As
we mention above, we store the occupation numbers of spin
orbitals ordered by jfσ̄u ; fσ̄g ; fσu ; fσgi. As a result, the initial
state of H2 (obtained through classical quantum-chemistry
computation such as the Hartree-Fock method) in particle
number representation is j0101i. Accordingly, following
the BK transformation, the initial state changes to j0111i
(or j11i under Z2 reduction). Thus, for H2 with STO-3G
basis, the operator is simplified into [72]

UðθÞ ¼ eθ3120ða
†
3
a†
1
a0a2−a

†
2
a†
0
a1a3Þ: ðH11Þ

Following BK encoding, the fermionic operators are
given by

a†0 ¼
1

2
X3X1X0 −

1

2
iX3X1Y0;

a0 ¼
1

2
X3X1X0 þ

1

2
iX3X1Y0;

a†1 ¼
1

2
X3X1Z0 −

1

2
iX3Y1;

a1 ¼
1

2
X3X1Z0 þ

1

2
iX3Y1;

a†2 ¼
1

2
X3X2Z1 −

1

2
iX3Y2Z1;

a2 ¼
1

2
X3X2Z0 þ

1

2
iX3Y2Z1;

a†3 ¼
1

2
X3Z2Z1 −

1

2
iY3;

a3 ¼
1

2
X3Z2Z1 þ

1

2
iY3: ðH12Þ

For Pauli matrices (or Pauli gates), they satisfy the equalities
XX ¼ YY ¼ ZZ ¼ 1; XY ¼ −YX ¼ iZ; YZ ¼ −ZY ¼ iX,
and ZX ¼ −XZ ¼ iY. Based on the above equations, it is
easy to show that

a†3a
†
1a0a2 − a†2a

†
0a1a3

¼ 1

8
iðY2X0 þ X2Y0 − Y2Z1X0 þ X2Z1Y0 þ Z3X2Z1Y0

− Z3Y2Z1X0 þ Z3X2Y0 þ Z3Y2X0Þ: ðH13Þ

To omit the qubits 1 and 3 in j0111i by Z2 symmetry, one
needs to consider the effect of the Pauli matrices acting on
qubits 1 and 3, when the remaining two qubits (i.e., qubits 0
and 4) are concerned. For the eight terms in the above
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equation, only the Z matrix acts on the qubits 1 and 3.
At the same time, it is evident that Z3j0111i ¼ j0111i
and Z1j0111i ¼ −j0111i. Thus, the form of a†3a

†
1a0a2 −

a†2a
†
0a1a3 after Z2 reduction becomes

a†3a
†
1a0a2 − a†2a

†
0a1a3 ¼

1

2
ðX2Y0 þ Y2X0Þ; ðH14Þ

which, equivalently, can also be expressed as
1
2
ðX1Y0 þ Y1X0Þ, since qubit 1 is omitted (allowing us to

renumber qubit 2 as 1). Therefore, the ansatz UðθÞ ¼
e
1
2
iθðX1Y0þY1X0Þ is rewritten as e

1
2
iθX1Y0e

1
2
iθY1X0 . On the other

hand, e
1
2
iθX1Y0 j11i ¼ e

1
2
iθY1X0 j11i holds, and as a result the

UCCSD ansatz of H2 with STO-3G is recast as

UðθÞ ¼ eiθX1Y0 j11i ¼ eiθY1X0 j11i: ðH15Þ

The results for the measured errors for energy with
fluctuations for H2 and HeHþ are, respectively, shown
in Fig. 12.
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