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We study theoretically how local measurements performed on critical quantum ground states affect long-
distance correlations. These states are highly entangled and feature algebraic correlations between local
observables. As a consequence, local measurements can have highly nonlocal effects. Our focus is on
Tomonaga-Luttinger liquid ground states, a continuous family of critical states in one dimension whose
structure is characterized by a Luttinger parameter K. We show that arbitrarily weak local measurements,
performed over extended regions of space, can conspire to drive transitions in long-distance correlations.
Conditioning first on a translation-invariant set of measurement outcomes, we show that there is a transition
in the character of the postmeasurement quantum state for K < 1, and highlight a formal analogy with the
effect of a static defect on transport through a Tomonaga-Luttinger liquid. To investigate the full ensemble
of measurement outcomes, we consider averages of physical quantities which are necessarily nonlinear in
the system density matrix. We show how their behavior can be understood within a replica field theory, and
for the measurements that we consider we find that the symmetry of the theory under exchange of replicas
is broken for K < 1=2. Awell-known barrier to experimentally observing the collective effects of multiple
measurements has been the need to postselect on random outcomes. Here we resolve this problem
by introducing cross-correlations between experimental measurement results and classical simulations,
which act as resource-efficient probes of the transition. The phenomena we discuss are, moreover, robust
to local decoherence.
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I. INTRODUCTION

Measurements can have nontrivial effects onmany-body
quantum states. Although collapse is often associated with
the loss of quantum correlations, rich new structures can
also arise. Indeed, a curious feature of quantum mechanics
is the nonlocality of the measurement process, which has
striking manifestations in the violation of Bell inequalities
[1,2], and in the teleportation of quantum information
[3,4]. In many-body systems, measurements can further-
more be exploited to perform quantum computation [5,6],
highlighting the complexity of the states that one can
generate. The loss and generation of quantum correlations
through measurement is particularly interesting when the
quantum state is, in the first instance, highly entangled.
At low energies, long-range entanglement can arise

naturally in the presence of strong quantum fluctuations.

Key examples are at quantum phase transitions [7] and in
one-dimensional quantum liquids [8], where ground states
are critical. In this setting there are algebraic correlations
between local observables, and as a consequence a meas-
urement of one of them can modify the expectation values
of many others. This behavior should be contrasted with
that in thermal states [9], which resemble random vectors.
Although these states feature extensive entanglement entro-
pies [10], measuring a single local observable reveals almost
no information about any of the others. The information is
instead encoded in nonlocal correlations between observ-
ables, and so is inaccessible to a conventional observer.
The nonlocal effects of a single local measurement raise

questions over the effects of many. In this work we ask
whether measurements performed in different locations in
space can conspire with one another to qualitatively alter
physical correlations in a quantum state. Focusing on a
family of critical ground states, we show how these effects
can be described using standard tools from quantum
statistical mechanics. Our central result is to show that,
for local measurements performed with a finite density in
space, there are transitions between phases in which the
effects of the measurements are in the one case negligible,
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and in the other dramatic. Note that these phenomena
require that the observer keeps track of the measurement
outcomes, since otherwise there can be no teleportation
of information.
The critical states we study are described by the theory

of Tomonaga-Luttinger liquids (TLLs) [8,11–14]. This
theory captures the long-wavelength behavior of one-
dimensional quantum liquids, both fermionic and bosonic,
in terms of density and phase fluctuations. The algebraic
correlations in TLLs are highly universal, and for particles
without spin they are characterized by a single Luttinger
parameter K. Smaller values of K correspond to a slower
decay of density correlations, and a faster decay of phase
correlations. For example, K ¼ 1 for free fermions, while
K < 1 and K > 1 describe fermions with repulsive and
attractive interactions, respectively. Behavior character-
istic of TLLs has been studied experimentally in a wide
variety of systems [15–19] including ultracold quantum
gases [20–23], where it is possible to probe physical
correlations postmeasurement [24,25].
First, we study the structure of the quantum state

prepared by a particular set of weak measurement out-
comes. Allowing an ancillary qubit to weakly interact with
the local particle density, and subsequently measuring the
qubit, there are two possible results: a “click” corresponds
to a projective measurement in which we observe a particle,
while “no click” only suppresses the amplitude for there to
be a particle at the location of the measurement. If there is
no click, the particle density remains uncertain. Using this
detection scheme at spatial locations commensurate with
the mean interparticle spacing, and postselecting for the
outcome where there are no clicks, we weakly imprint
a charge density wave (CDW) on the quantum state.
A perturbative renormalization group (RG) analysis reveals
that for K < 1 and for arbitrarily weak measurements
there is a transition in the asymptotic form of algebraic
correlations in our postselected state. For K > 1 and for
anything short of projective measurement, algebraic corre-
lations characteristic of the unmeasured state persist at long
wavelengths. Interestingly, aspects of this problem map
onto the study by Kane and Fisher (KF) [26,27] of an
isolated defect in a TLL. In that problem one finds that at
low frequencies the defect causes the system to become
insulating for K < 1, whereas it has a negligible effect
for K > 1.
To characterize fully the effects of density measurements

on a quantum state, we then consider an entire ensemble
of measurement outcomes. For analytic simplicity, here we
use as our ancillary degree of freedom an oscillator rather
than a qubit. If we average physical quantities over the
ensemble of outcomes, and weight the various contribu-
tions by Born probabilities, then to characterize the
influence of our measurements we must work with quan-
tities that are nonlinear in the state. This is necessary
because averaging physical quantities linear in the state and

weighting the results by Born probabilities is equivalent to
averaging the state itself, which corresponds to ignorance
of the measurement outcomes. One can consider, for
example, squared density correlations averaged over meas-
urement outcomes. To calculate averages of nonlinear
correlation functions such as these, we formulate a replica
field theory. At long wavelengths our theory is closely
related to (but is distinct from) that in the KF problem, and
here also we find a transition in the behavior of correlation
functions. This transition corresponds to a spontaneous
breaking of the symmetry associated with the exchange of
replicas, and occurs for K < 1=2.
Finally, we discuss how phenomena occurring in the

ensemble of postmeasurement states can be observed in
experiment without the need to postselect on random
measurement outcomes. Our approach requires that
postmeasurement expectation values of local observables
can also be estimated on a classical computer; for the
critical states of interest here, the computational resource
requirements for such a calculation are only polynomial
in system size [28]. The basic idea is to cross-correlate
results of classical simulations with data from experi-
ment, and to average these cross-correlations over
experimental runs. This average washes out quantum
fluctuations, and allows one to estimate measurement-
averaged quantities that are nonlinear in the quantum
state. We note that the idea of using classical computers
to avoid a postselection overhead was previously dis-
cussed in Refs. [29–31]. A separate concern in experi-
ment is environmental decoherence. However, in the
absence of any subsequent dynamics, local quantum
channels can only alter the expectation values of observ-
ables with which they share support. Few-body corre-
lation functions are therefore a robust probe of the
effects of measurement.
A related class of problems concerns the effects of

measurements on many-body systems that are additionally
evolving under unitary dynamics [32–35], and we note that
the consequences of nonlocality have there been inves-
tigated in Refs. [36,37]. Critical quantum states are, more-
over, abundant in that setting, and this fact provides
additional motivation for understanding how they respond
to measurement. For example, when the unitary dynamics
is chaotic, there is a threshold measurement rate at
which the system undergoes a dynamical measurement-
induced phase transition (MIPT) [32,33] separating
volume-law and area-law entangled states. At the transition
itself, the system evolves within an ensemble of critical
states [32,33,38–41]. Meanwhile, in systems of noninter-
acting fermions, there appears to be critical behavior at low
measurement rates [42–47]. Strikingly, ensembles of criti-
cal states arise even under dynamics that consists solely of
measurements that do not commute [48–50].
In the static setting of interest here, related works have

considered the characterization [51] and creation [52–56]
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of entangled states using measurement. The measurement-
induced teleportation of information in many-body states
has meanwhile been investigated in Refs. [55,57]. In
particular, the results of Ref. [57] have revealed that in
two (or more) spatial dimensions the quantum states
prepared by local unitary dynamics undergo a transition
in their response to measurement at a finite time. Beyond
this time, if the observer performs projective measurements
of all but two arbitrarily well-separated degrees of freedom,
their resulting quantum state can remain entangled.
Focusing on this measurement scheme but instead consid-
ering critical states, Ref. [55] has recently shown that the
entanglement between the unmeasured degrees of freedom
is sensitive to the sign structure of the state. Notably,
Refs. [58,59] also studied the effects of measuring a finite
region of space on entanglement in a critical state,
restricting to the case of a nonrandom set of outcomes.
In this work we are instead concerned with weak local
measurements of essentially all degrees of freedom.
Such measurements extract only partial information on
local observables, and all constituents of the system
typically remain entangled with one another. Moreover,
our focus is primarily on the full ensemble of measure-
ment outcomes.
This paper is organized as follows. First, in Sec. II, we

provide an overview of the problems considered here and of
our results. In Sec. III we then discuss the state resulting
from a particular set of weak measurement outcomes.
Following this, in Sec. IV we consider averages over an
ensemble of outcomes. In Sec. V we discuss the post-
selection problem, and how it can be avoided. We provide a
summary, and indicate outstanding questions, in Sec. VI.

II. OVERVIEW

The basic structure of the problem is as follows. Starting
from a ground state jψgsi of a Hamiltonian Ĥ, we consider
performing an extensive number of weak local measure-
ments. Physically, we imagine introducing ancillary
degrees of freedom, and allowing them to briefly interact
with the system. Subsequent projective measurements of
the ancillae give rise to a nonunitary update of the state of
the system. These weak measurements alter the amplitudes
of the various contributions to the many-body state, but do
not fully disentangle the system degrees of freedom from
one another. Consequently, the measured state is still highly
nontrivial. We are interested in whether the asymptotic
properties of correlation functions are modified relative to
the ground state.
In Sec. II A we outline how this situation can be

described within a Euclidean field theory. The measure-
ments appear as a kind of randomness in this theory, and in
Sec. II B we discuss how to treat this feature of the problem.
The specific systems that we focus on in this work are
described in Sec. II C, and our theoretical results are
summarized in Sec. II D.

A. Field theory

It is convenient to express the projector onto the ground
state jψgsihψgsj as imaginary-time evolution e−βĤ with
β → ∞. Let us write this imaginary-time evolution as a
path integral in the basis of eigenstates of a Hermitian
quantum field ϕ̂ðxÞ. For example, the partition function
Tr e−βĤ ¼ R

Dϕe−S½ϕ�. Here ϕ ¼ ϕðx; τÞ is a scalar field
of eigenvalues of ϕ̂ðxÞ, the action S½ϕ� is an integral
over spatial coordinates x and the imaginary time τ,
and in the partition function the boundary conditions are
ϕðx; 0Þ ¼ ϕðx; βÞ. For a d-dimensional quantum system,
the structure of the ground state is encoded in equal-τ
correlation functions in this (dþ 1)-dimensional field
theory.
For weak measurement outcomes that we denote by m,

the state after measurement is jψmi¼ M̂mjψgsi=p1=2
m , where

M̂m is a nonunitary Hermitian operator. The normalization
is set by the Born probability pm ¼ hM̂2

migs, and h� � �igs
denotes an expectation value in state jψgsi. We require
only that the set of M̂m corresponding to the different
outcomes m satisfies the probability-conserving conditionP

m M̂2
m ¼ 1 (i.e., that together they form a quantum

channel). Correlation functions in the measured state
jψmi are computed from its density matrix:

jψmihψmj ¼ lim
β→∞

M̂me−βĤM̂m

Tr½M̂2
me−βĤ�

: ð1Þ

Expectation values h� � �im in the state jψmi are then
given by

h� � �im ¼
R
Dϕhφ0jM̂mð� � �ÞM̂mjφie−S½ϕ�R

Dϕhφ0jM̂2
mjφie−S½ϕ�

; ð2Þ

where for brevity we define the fields φðxÞ≡ ϕðx; 0Þ and
φ0ðxÞ≡ ϕðx; βÞ. In the case where M̂m and the observable
of interest (here represented by the ellipsis) commute with
ϕ̂ðxÞ, we have φ ¼ φ0, so the measurement M̂m can be
viewed as acting at a fixed imaginary time which we have
chosen to be τ ¼ 0. For M̂m that acts throughout space,
the measurements then appear as perturbations on the
d-dimensional τ ¼ 0 surface in the (dþ 1)-dimensional
field theory, and this construction is illustrated in Fig. 1(a).
Questions about the asymptotic properties of correlation
functions in the state immediately following measurement
are then questions about whether this perturbation alters
correlations within the τ ¼ 0 surface. For critical quantum
ground states that correspond to RG fixed points, we must
ask whether the perturbation representing the measurement
is relevant in the appropriate fixed-point theory.
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B. Averaging

In Secs. III and IV we approach this problem in two
different ways. In Sec. III we consider the quantum state
arising for one set of measurement outcomes. The outcomes
that we choose correspond to a perturbation in the τ ¼ 0
surface that is invariant under spatial translations. In this case
there is analytic simplicity, as well as an interesting con-
nection to equilibrium behavior in the presence of static
defects. More generally, however, we must consider physical
quantities averaged over the ensemble of measurement
outcomes, and this is the focus of Sec. IV.
It is essential that the quantities we average are non-

linear in the density matrices jψmihψmj. This is because
averaging jψmihψmj with weights given by the Born
probabilities pm is equivalent to dephasing in the basis
of eigenstates of the measured operators, and dephasing
events do not have nonlocal effects on the expectation
values of observables. In order to calculate averages of
nonlinear quantities, such as squared correlation functions
h� � �i2m, we develop a replica field theory. This comes from
first writing, e.g.,

X
m

pmh� � �i2m ¼ lim
N→1

P
mp

N
mh� � �i2mP
mp

N
m

: ð3Þ

Here the different possible measurement outcomes will
correspond to different configurations of a scalar field

mðxÞ, so the sum
P

m should be interpreted as an integral.
The above trick allows us to make analytic progress for
integer N ≥ 2. Physically, performing calculations for
N > 1 corresponds to overemphasizing contributions
from the most likely measurement outcomes.
To arrive at the replica field theory we write each of pm

and h� � �im in terms of the path-integral representation of

e−βĤ. Averages of nonlinear correlation functions become
τ ¼ 0 correlations in a theory of N replica fields ϕαðx; τÞ,
where the replica index α ¼ 0;…; ðN − 1Þ. In this theory,
each field ϕα interacts with the same τ ¼ 0 perturbation
corresponding to M̂m. Averaging over measurement out-
comes has the effect of weakly “locking” the replicas
together at τ ¼ 0, as shown in Fig. 1(b). This locking has a
physical interpretation as the suppression of quantum
fluctuations of measured observables.

C. Tomonaga-Luttinger liquids

While the framework described above is much more
general, in this paper we focus on critical states in d ¼ 1
described by the theory of TLLs [8,14], and for simplicity
we consider spinless fermions. We measure the particle
density n̂ðxÞ, which can be expressed in terms of a counting
field ϕ̂ðxÞ that describes the displacement of particles from
a putative ordered lattice arrangement. Explicitly, the
normal-ordered density operator is

n̂ðxÞ ¼ −π−1∇ϕ̂ðxÞ þ π−1 cosf2½kFx − ϕ̂ðxÞ�g; ð4Þ

where we fix the microscopic length scale in the problem
to unity. The wave number kF sets the mean interparticle
separation π=kF, and we neglect contributions to n̂ðxÞ
oscillating with wave number 4kF; 6kF;… since these do
not affect our results. In this setting the counting field will
play the role of the general quantum field ϕ̂ðxÞ discussed
earlier in this section. Note also that in an infinite system
the theory is symmetric under shifts of the counting field
by π.
The long-wavelength form of the action for a TLL,

appearing in the path-integral representation of Tr e−βĤ, is
in the density representation given by

S½ϕ� ¼ 1

2πK

Z
dx

Z
β

0

dτ½ _ϕ2 þ ð∇ϕÞ2�; ð5Þ

where _ϕ and ∇ϕ are derivatives of the real scalar field
ϕðx; τÞ with respect to τ and x, respectively. Correlations
of the phase θ̂ðxÞ follow from rewriting this action using
the canonical commutation relation ½ϕ̂ðxÞ;∇θ̂ðx0Þ� ¼
iπδðx0 − xÞ. The action describing phase fluctuations has
the same form as S½ϕ�, but with the role of K replaced
by K−1. Smaller values of K correspond to stronger density
correlations and weaker phase correlations.

(b)(a)

FIG. 1. The two classes of problem that we consider in this
work. Light gray regions represent the partition function Tr e−βĤ

for Hamiltonian Ĥ as an imaginary-time path integral over
configurations of a scalar field ϕðx; τÞ. Here x denotes the spatial
coordinates and τ the imaginary time. Our focus is on the ground
state, so we send β → ∞ and restrict our attention to correlations
in the surface τ ¼ 0. Measurements of observables in the ground
state can be represented by operators M̂m, and these correspond to
perturbations at τ ¼ 0. (a) For one set of measurement outcomes
m, this leads us to a theory describing a scalar field ϕðx; τÞ in the
presence of the perturbation originating from M̂m at τ ¼ 0. (b) To
average over the ensemble of measurement outcomes we use a
replica trick. This leads us to a theory describing the fluctuations
of a set of N replica fields ϕαðx; τÞ with α ¼ 0;…; ðN − 1Þ, and
the average over measurements couples fluctuations ϕαðx; 0Þ for
different replica index α.
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D. Results

In this work we show that there are transitions, occurring
as a function of K, in the effects that measurements have on
the ground states of TLLs. To illustrate the idea, in Sec. III
we consider weak measurements of the local density,
using ancillary qubits, at locations commensurate with
the mean interparticle separation. For a set of measurement
outcomes where no particles are detected with certainty,
which we refer to as “no clicks,” weweakly imprint a CDW
on the many-body state. At the level of the field theory,
this corresponds to a perturbation of the form δS ∝R
dx cos½2ϕðx; 0Þ� added to the action Eq. (5). This action

is equivalent, following an exchange of time and space
coordinates, to the one used to describe a local defect in a
TLL in the KF problem [26] (see Fig. 3).
Just as in the static defect problem, we can examine the

scaling of the no-click perturbation under RG with the same
result. The perturbation is relevant for K < 1 and irrelevant
for K > 1, which implies a transition in the structure of the
measured state jψnci at the critical value of the Luttinger
parameter K ¼ 1. The transition involves a change in the
exponents governing power-law decays of correlation
functions. For K > 1, the asymptotic decay of phase
correlations conditioned on observing no clicks is
unchanged relative to the ground state, i.e., hei½θ̂ðxÞ−θ̂ð0Þ�inc ∼
x−1=ð2KÞ, where h…inc denotes an expectation value com-
puted with respect to jψnci. On the other hand, for
K < 1 the asymptotic phase correlations change to
hei½θ̂ðxÞ−θ̂ð0Þ�inc ∼ x−1=K. Thus, we find that in the first case
(K > 1) anything short of a projective measurement fails to
alter the asymptotic behavior of correlation functions, in the
second (K < 1) an arbitrarily weak measurement causes a
strong suppression of phase correlations at long distances.
In Sec. IV we consider physical quantities averaged

over the ensemble of all measurement outcomes. For this
purpose it is useful to consider ancillary oscillators instead
of the qubits used in Sec. III. This choice of measurement
scheme allows us to perform the average over outcomes
analytically using a replica trick, which introduces a set of
N replica fields ϕα. In the limit of vanishing coupling μ
between system and ancillae, each of the fields ϕα is
independently described by the action S½ϕα�. With non-
vanishing coupling, the average over measurements gen-
erates a perturbation in the replica field theory, which
couples the replica fields at τ ¼ 0:

δS ∝ −μ
X
α<β

Z
dx cosf2½ϕαðx; 0Þ − ϕβðx; 0Þ�g: ð6Þ

This perturbation favors field configurations in which the
replicas are locked together.
We show that, for weak coupling (small μ) between

system and ancillae, the measurement-induced locking of
replicas is a relevant perturbation for Luttinger parameter

K < 1=2, and that it is irrelevant for K > 1=2. This criterion
is independent of N, suggesting that there is a transition in
the behavior of averaged nonlinear correlation functions
even for N → 1, i.e., when the contributions from different
measurement outcomes are weighted by the Born proba-
bilities pm. For strong coupling between system and ancillae,
we are able to show that for N ¼ 2 the critical Luttinger
parameter remains K ¼ 1=2. The transition at K ¼ 1=2 has
signatures in the power-law decays of averaged nonlinear
correlation functions; for K < 1=2 the density measure-
ments conspire to suppress quantum fluctuations of the
density, and correlations of the phase.
In Sec. V we show how this transition can be observed

without the need to postselect on random measurement
outcomes, and so with modest experimental resources.
To do this we introduce as probes of the transition cross-
correlations between measurement results and classical
simulations. Provided it is possible to calculate the condi-
tional expectation values h� � �im of interest, these probes
allow one to estimate physical quantities having, for
example, the structure of the left-hand side of Eq. (3).

III. NO CLICKS

In this section we consider weak measurements of local
densities using ancillary qubits and postselect for a par-
ticular set of outcomes. We are therefore concerned with
correlations in a single quantum state. It is simplest to first
discuss the protocol at a single site. We initialize a qubit
(representing our measurement apparatus) in eigenstate j0i
of a Pauli σ̂z operator, and then couple it to the density n̂j at
a site j. Following this, we projectively measure σ̂z. Note
that the ancilla need not correspond to a physical qubit, and
in practice there are a variety of physical implementations
of this protocol. For example, we could also imagine
scattering photons off of the system, and detecting whether
they are scattered from an initial mode j0i to another, j1i, as
illustrated in Fig. 2(a).

(b)(a)

FIG. 2. (a) Ancilla qubits initially in state j0i interact weakly with
the local particle density, and are then measured in the computa-
tional basis. If there is no particle, the result of the measurement is
j0i. If there is a particle, the result is either j0i or j1i. Therefore, ifwe
record outcome j0i, i.e. “no click,” the particle density remains
uncertain.Herewe represent the states j0i and j1i as a pair of photon
modes. (b) Illustration of the density profile hn̂ðxÞi following no
click at x ¼ 0 for (red line) K < 1 and (blue line) K > 1.
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The coupling between n̂j and the ancilla is as follows.
First note that here the lattice operator n̂j is not normal
ordered, while the continuum operator n̂ðxÞ is. In other
words, n̂ðxÞ is the continuum analog of n̂j − hn̂jigs. The
system and ancilla first evolve under the unitary operator,

Ûj ¼ exp½iujn̂j ⊗ σ̂x�
¼ 1þ ½cos uj − 1�n̂j þ i½sin uj�n̂j ⊗ σ̂x; ð7Þ

where uj sets the strength of the coupling. We simplify the
expression by using n̂2j ¼ n̂j, which applies for fermions.

After acting with Ûj we perform a projective measurement
of σ̂z, with outcome j0i or j1i. The states of the system that
result from a single measurement are, respectively,

jψ0i ¼ ð1þ ½cos uj − 1�n̂jÞjψgsi;
jψ1i ¼ i½sin uj�n̂jjψgsi: ð8Þ

These states are not normalized; for example, the proba-
bility for result j0i is hψ0jψ0i. Note that for outcome j1i,
which we refer to as a click, there is a fermion at site j with
certainty. This is due to the appearance of the projection
operator n̂j in the expression for jψ1i. For outcome j0i, i.e.,
no click, we do not know whether there is a fermion at j
(unless uj ¼ π=2, since this corresponds to a standard
projective measurement of n̂j). However, the expectation
value of n̂j is in general suppressed relative to hn̂jigs.
Before proceeding, it is helpful to develop some intuition

for the effects of these weak measurements, and for the role
of K. For smaller K there are stronger density correlations
in the ground state, with the oscillatory contribution to
the density in Eq. (4) decaying as x−2K . The effects of
individual measurements of the density are therefore felt
out to greater distances. This is illustrated in Fig. 2(b),
where we show the nonlocal effects of a single no-click
outcome on the density profile for two different values
of K.
This fact provides a hint as to the behavior we can

expect when many measurements are performed. As a first
demonstration, in this section we apply the above meas-
urement protocol to an extended region of space and
postselect for the case where no clicks are observed. The
resulting state is

jψnci ¼ hM̂2
nci−1=2gs M̂ncjψgsi;

M̂nc ≡
Y
j

ð1þ ½cos uj − 1�n̂jÞ; ð9Þ

and throughout this section we consider the structure of
correlation functions in jψnci. This problem is simplified
considerably for weak measurements (as opposed to
projective ones) since the classical information extracted
decreases continuously with uj, and for small uj we can

consider the effect of extracting this information in per-
turbation theory.

A. Field theory

Here we formulate the problem of evaluating density
correlations in jψnci in terms of the field theory out-
lined in Sec. II. It is convenient to write e−ðvj=2Þn̂j ¼
1þ ½cos uj − 1�n̂j, i.e., vj ¼ −2 ln j cos ujj. Note that for
uj ¼ π=2, corresponding to a projective measurement, we
have infinite vj. For weak measurements we instead have
vj ¼ u2j þOðu4jÞ. The effects of our measurements on the
state are described by

M̂nc ¼ e−ð1=2Þ
P

j
vjn̂j ∝ e−ð1=2Þ

R
dxvðxÞn̂ðxÞ; ð10Þ

where we switch to continuum notation, and omit a
constant prefactor arising from the fact that n̂ðxÞ is normal
ordered whereas n̂j is not.
The density correlations in jψnci are given by

hn̂ð0Þn̂ðxÞinc ¼
Tr½e−βĤM̂2

ncn̂ð0Þn̂ðxÞ�
Tr½e−βHM̂2

nc�
; ð11Þ

where we use ½n̂ðxÞ; M̂nc� ¼ 0. We can write this correlator
in terms of path integrals over ϕ. Furthermore, since we
are interested in correlations at τ ¼ 0, we integrate out
fluctuations of the field ϕðx; τÞ at τ ≠ 0. Writing
φðxÞ ¼ ϕðx; τ ¼ 0Þ, and taking the Fourier transform
φ̃ðqÞ ¼ R

dxe−iqxφðxÞ, this integration gives the nonlocal
action

s½φ� ¼ 1

πK

Z
dq
2π

jqjjφ̃ðqÞj2. ð12Þ

It can be verified that Eq. (12) generates the same τ ¼ 0
correlations as S½ϕ�. Note that the inverse Green’s function
∼ jqj corresponds to interactions decaying as ∼x−2 in
real space.
Within this formulation we can write the numerator in

Eq. (11) as

Z
Dφe−s½φ�−

R
dx0vðx0Þnðx0Þnð0ÞnðxÞ; ð13Þ

with s½φ� given in Eq. (12). The scalar field nðxÞ is a
function of φðxÞ given by replacing ϕ̂ðxÞ with φðxÞ on the
right-hand side of Eq. (4). The perturbation

R
dxvðxÞnðxÞ

due to our measurements depends sensitively on the form
of vðxÞ. As we will see, interesting effects arise from
the component oscillating with wave number 2kF. To
highlight these effects we can imagine performing weak
measurements at locations commensurate with the mean
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interparticle spacing. Density correlations in jψnci are then
evaluated as averages with respect to the action

snc½φ�≡ s½φ� − v
Z

dx cos½2φ�; ð14Þ

where v is proportional to the 2kF Fourier component of
vðxÞ. Observing no clicks then has the effect of weakly
pinning the field φ to an integer multiple of π. In the next
section we determine when this effect alters the long-
wavelength structure of correlation functions.
Equation (12) is equivalent to the action for a local

degree of freedom coupled to a zero-temperature Ohmic
bath [60], although with the roles of x and τ interchanged.
Integrating out a physical bath, for example, linearly
dispersing bosons at x ≠ 0, generates an action for a local
degree of freedom at x ¼ 0 that is nonlocal in (imaginary)
time. This temporal nonlocality encodes the memory of
the bath. In our case the “bath” is replaced by fluctuations
of the field ϕðx; τÞ at τ ≠ 0. The spatial nonlocality of
the action Eq. (12) encodes the entanglement in the
ground state.
Moreover, exchanging x and τ in Eq. (14), the action is

identical to the one generating temporal correlations at a
local defect potential in the KF problem [26,27]. This
correspondence is illustrated in Fig. 3. In that setting it was
shown that such a defect potential is relevant for K < 1,
leading to insulating behavior, but it does not affect the low-
frequency conductance for K > 1. In direct analogy with
those results, here we find that long-wavelength correla-
tions in jψnci show striking departures from those in jψgsi
for K < 1, while they are essentially unchanged for K > 1.

B. Transition

Here we identify the regime in which the asymptotic
properties of correlations are affected by the measurements
discussed above. First note that since we are post-
selecting for no clicks at locations commensurate with

CDW order, the resulting quantum state certainly has
hcos 2ϕ̂ðxÞinc > 0; by construction, there is long-range
CDW order. However, the measurements can have
nontrivial effects on correlation functions of the smooth
part of the density h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc and of the phase
hei½θ̂ðxÞ−θ̂ð0Þ�inc. To determine the effect on the long-range
correlations we apply a standard RG scheme. If the
measurement strength flows to zero under RG transforma-
tions, then the asymptotics of h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc, and of the
phase correlations hei½θ̂ðxÞ−θ̂ð0Þ�inc, will be unchanged rela-
tive to their behavior in jψgsi. On the other hand, if
measurements are relevant, we will see that the powers
governing the algebraic decays of these correlation func-
tions are altered.
We first outline the perturbative RG treatment of snc½φ�

in Eq. (14) for weak measurements. In this case we
expand e−snc½φ� to first order in v. With initial UV cutoff
Λ, we write φ̃ðqÞ ¼ φ̃<ðqÞ þ φ̃>ðqÞ, where φ̃ðqÞ ¼ φ̃<ðqÞ
for jqj < Λe−l and φ̃ðqÞ ¼ φ̃>ðqÞ for jqj > Λe−l, integrate
out the fields φ̃>ðqÞ, and rescale lengths x0 ¼ xe−l. If we
do not rescale φðxÞ, the first term in Eq. (14) is invariant
under the RG, while the parameter v flows as

dv
dl

¼ ð1 − KÞv: ð15Þ

Physically, fluctuations of φ on short wavelengths act to
minimize the effect of the CDW pinning cos 2φ. For K < 1
these fluctuations are small, which is to be expected for
fermions with repulsive interactions. As a consequence, v
increases under the RG. ForK > 1, on the other hand, there
are relatively large density fluctuations on short wave-
lengths, and so v decreases.
One can similarly carry out RG transformations that are

appropriate for strong measurements [8,61]. It is clear that
cos 2φ is maximized for φ ¼ pπ for p integer, and that
jumps in p correspond to defects in the CDWorder. We refer
to these defects as domain walls, although from Eq. (4)
we see that away from them and for any p the density
∼ cos½2kFx�. In the limit of large v every configuration of
domain walls corresponds to a different saddle point of the
action, and physical correlations are controlled by configu-
rations in which domain walls are dilute, with typical
separations much larger than their width, as illustrated
in Fig. 4(b). In Appendix A we discuss this saddle-point
approximation in detail, following Ref. [8]. Since we are
interested only in correlations on length scales much larger
than the domain wall width, it suffices to approximate

φðxÞ ≃ π
X
j

ϵjΘðx − xjÞ; ð16Þ

where ΘðxÞ is the step function, xj are locations of domain
walls, and ϵj ¼ �1 are their signs. Substituting this into

(b)(a)

FIG. 3. Relation to transport through a defect in a TLL. (a) In
this work we are interested in quantum states perturbed by
measurements M̂ at all locations in space x, and their effect on
correlations in x at fixed τ. (b) In the defect problem one is
interested in a spatially local and time-independent perturba-
tion δĤ to the Hamiltonian, and its effect on correlations in τ at
fixed x.

MEASUREMENTS CONSPIRE NONLOCALLY TO RESTRUCTURE … PHYS. REV. X 13, 021026 (2023)

021026-7



Eq. (12) one finds a logarithmic interaction between domain
walls 2K−1P

j<kϵjϵk log jxj−xkj such that domain walls
with opposite ϵ attract, while those with the same ϵ repel. As
we coarse grain in real space, changing the minimum length
scale in the problem by a factor b ¼ el, we annihilate
oppositely signed domain walls with separation smaller than
b.WhenK is sufficiently small, and so the attraction between
such domain walls sufficiently strong, this procedure causes
domain walls to become ever more dilute. For large v this
leads to the RG flow:

dv−1

dl
∝ ð1 − 1=KÞv−3=2; ð17Þ

where we omit a constant of order unity. Although Eqs. (15)
and (17) are appropriate only for weak and for strong
measurements, respectively, if we connect together the
RG flows we see that for K < 1 the long-wavelength
behavior is described by dilute domain walls while for
K > 1 it is described by the unmeasured theory in
Eq. (12); there is therefore a transition in the response of
the quantum state to measurement at K ¼ 1. Figure 4 shows
the flow of v as a function of K, as well as the behavior of
long-wavelength components of the field φ.
The transition has dramatic implications for the structure

of correlation functions in jψnci. For K > 1, where the
measurements are irrelevant, the algebraic decays of
correlation functions in jψnci are as in jψgsi. If our
measurement is strong, however, we should only expect
to see this behavior on large length scales. For K < 1 and
for an arbitrarily weak measurement, on the largest scales
the exponents governing the algebraic decays of correlation
functions are modified, as we now discuss.
It is natural to expect that forK < 1 correlations between

density fluctuations ∇ϕ̂ are suppressed relative to
h∇ϕ̂ð0Þ∇ϕ̂ðxÞigs ∼ −x−2 [8]. To see that this is the case

we consider the regime of dilute domain walls. There we
have ∇φðxÞ ≃ π

P
j ϵjδðx − xjÞ from Eq. (16). The long-

range interaction between domain walls discussed below
Eq. (16) then leads to

h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc ∼ −x−2=K; ð18Þ

with a prefactor that is set by the square of the rescaled
domain wall fugacity. From Eq. (18) we indeed find that
since K < 1, the ∇ϕ̂ correlation function decays more
rapidly than in the unmeasured TLL. Note that if wewere to
neglect domain walls, and compute h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc by
considering quadratic fluctuations around the leading
saddle point, i.e., expanding cos 2φ ≃ 1–2φ2 in Eq. (14),
one would instead find a decay as x−4. This is clearly a
subleading contribution for K > 1=2.
Separately, we can ask about phase correlations. Because

of the conjugacy of ϕ̂ and ∇θ̂ we anticipate that these
are weaker than in the unmeasured system, where
hei½θ̂ð0Þ−θ̂ðxÞ�igs ∼ x−1=ð2KÞ. Working with the domain wall
picture, in Appendix B we show that for K < 1,

hei½θð0Þ−θðxÞ�inc ∼ x−1=K: ð19Þ

Note that there is an important difference in the calculation
of phase correlations relative to density correlations, simply
because θ̂ðxÞ does not commute with density measure-
ments. The result Eq. (19) shows that phase fluctuations are
indeed enhanced by our density measurements, and this is
reflected in a doubling of the exponent in the correlation
function as one decreases K through K ¼ 1. Again, if we
also consider quadratic fluctuations around the leading
saddle point, we find only a subleading contribution to
Eq. (19); in this case the generation of mass term cos 2φ ≃
1–2φ2 causes the subleading contribution to decay expo-
nentially. In Appendix D we present numerical calcula-
tions of the correlation functions h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc and
hei½θ̂ð0Þ−θ̂ðxÞ�inc. There we use the infinite density matrix
renormalization group (iDMRG) to approximate the
ground state of a quantum spin chain whose long-
wavelength behavior is described by TLL theory, weakly
measure this state, and find that the behavior of correlation
functions agrees with that predicted above.
In this section we have so far shown that, for K < 1,

arbitrarily weak measurements conspire at long wave-
lengths to suppress density fluctuations and to enhance
phase fluctuations. For K > 1 it is perhaps more striking to
consider the regime of strong (but not quite projective)
density measurements, corresponding to large but finite v.
The implications of Eqs. (15) and (17) are that these
measurements fail to alter the long-distance behavior
of correlation functions relative to the TLL ground state.
This analysis serves to demonstrate the ideas and some
of the techniques that can be used to study the effects of

(b)(a)

FIG. 4. Transition in the structure of the state jψnci as a function
of K. (a) RG flow of the measurement strength v, which changes
direction across K ¼ 1. (b) The character of the field configu-
rations that dominate correlation functions. For K < 1 long-
wavelength components of φ are pinned to integer multiples of π
by v cos 2φ, while for K > 1 they behave as in the unmeasured
system. The directions of arrows indicate the effects of coarse
graining.
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measurements on many-body quantum states. An important
simplification is to restrict to measurement outcomes that
are translation invariant, and this allows us to establish a
connection to the behavior of an equilibrium system with a
defect. Since the connection comes through an exchange of
the roles of space and imaginary time, translation invari-
ance in our problem corresponds to a time-independent
coupling to the defect. Before proceeding to discuss the
full ensemble of postmeasurement states, let us comment
briefly on how jψnci might be characterized in experiment.

C. Coarse-grained correlations

Throughout this section we have studied a quantum state
jψnci that is extraordinarily difficult to prepare: to obtain it
we must repeat the experiment a number of times that is
exponential in the system size. Let us suppose that
we prepare it (or, as we discuss in Sec. IV E, something
close to it) just once. Because the postmeasurement state is
translation invariant, we can still determine its correlations
through a spatial average, and here we study this average
in detail.
Recall that we expect h∇ϕ̂ðxÞ∇ϕ̂ðx0Þinc to decay as

jx − x0j−2 for K > 1 and as jx − x0j−2=K for K < 1.
Unfortunately, the quantum-mechanical variance V of this
correlation function is dominated by short-wavelength
fluctuations, and is therefore large compared to the expect-
ation value. This fact prevents us from accurately determin-
ing h∇ϕ̂ðxÞ∇ϕ̂ðx0Þinc for a particular x and x0 in a single run
of the experiment.
Fortunately, because the operators ∇ϕ̂ðxÞ∇ϕ̂ðx0Þ com-

mute with one another for different values of x and x0, we
can measure all of them in a single run of the experiment.
The spatial average of the correlation function suppresses
the influence of quantum fluctuations. Let us define the
spatially averaged observable of interest as

Φ̂ðx;WÞ ¼ 1

W

Z
W

0

dx0∇ϕ̂ðx0Þ∇ϕ̂ðx0 þ xÞ; ð20Þ

where W is the size of the region over which the signal is
averaged. For W large compared with the microscopic
length scale, the quantum variance of Φ̂ðx;WÞ is propor-
tional to V=W. By contrast, its expectation value is
independent of W. Therefore, for sufficiently large W we
can expect a measurement of the observable Φ̂ðx;WÞ in a
single run to be representative of hΦ̂ðx;WÞi. Note that for
the transitions we studied the required W is polynomial
in x; for example, with K < 1 where hΦ̂ðx;WÞi ∼ −x−2=K,
we require W ≫ Vx4=K . For the phase correlations, an
independent preparation of jψnci is required because eiθ̂

and ∇ϕ̂ do not commute. The operator cos½θ̂ðxÞ − θ̂ðx0Þ�
exhibits large quantum fluctuations in jψnci, but we can
again estimate its expectation value in a single run through
a spatial average. In analogy with Φ̂ we define

Θ̂ðx;WÞ ¼ 1

W

Z
W

0

dx0 cos½θ̂ðx0 þ xÞ − θ̂ðx0Þ�; ð21Þ

and for large W a single measurement of Θ̂ðx;WÞ is
representative of its expectation value. Since hΘ̂ðx;WÞi ∼
x−1=K for K < 1, the required W ≫ Vx2=K. For K > 1 the
algebraic decay of phase correlations hΘ̂ðx;WÞi ∼ x−1=ð2KÞ

is sufficiently slow that hΘ̂2ðx;WÞi ∼W−1=ð2KÞ, so in order
to wash out the effects of quantum fluctuations, we instead
require W ≫ x2.
Performing an average of a correlation function over

space is natural when studying jψnci because it is trans-
lation invariant. However, preparing such a state even once
is exponentially costly. If we hope to observe a measure-
ment-induced phenomenon without postselection, we must
consider the structure of generic postmeasurement states.

IV. ENSEMBLE OF OUTCOMES

In the previous section we discussed a transition in the
structure of the state arising from one set of measurement
outcomes. More generally, one is interested in the entire
ensemble of measurement outcomes. In order to character-
ize fully the effect of our measurements, it is first necessary
to identify physical quantities that encode the response
of the quantum state. Second, we must average these over
the ensemble of states arising from measurement. In this
section we show that there is a transition, as a function ofK,
at the level of this ensemble. It is natural to expect that in
this setting the critical Luttinger parameter is smaller than
unity. This is because the postselection scheme in Sec. III
emphasizes the role of density correlations relative to
generic measurements. First, in Sec. IVA, we introduce
the measurement-averaged correlation functions of interest.
Sections IV B and IV C then describe a field-theoretic
technique that allows us to analyze them. The transition is
the subject of Sec. IV D, and in Sec. IV E we discuss
properties of individual postmeasurement states.
To follow this program it is useful to choose a different

measurement model to Sec. III; our choice will simplify
the analytic calculation of ensemble-averaged correlation
functions. First, we imagine coupling an observable m̂ðxÞ,
which is a property of our measurement apparatus, to the
normal-ordered density n̂ðxÞ. Second, we perform projec-
tive measurements of m̂ðxÞ for all x. We denote bymðxÞ the
outcomes. This measurement protocol is implemented by
an operator M̂m that relates jψgsi to the state jψmi arising
from the measurement outcomes mðxÞ,

jψmi≡ hM̂2
mi−1=2gs M̂mjψgsi;

M̂m ∝ e−ð1=4Þμ
R

dx½mðxÞ−n̂ðxÞ�2 ; ð22Þ

where mðxÞ can take any real value, so here sums over
outcomes

P
m should be interpreted as integrals. Note that
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the structure of M̂m is strongly constrained by the require-
ment that the set of all M̂m constitutes a quantum channel,P

m M̂2
m ¼ 1 [this condition also determines the prefactor

in the second line of Eq. (22)], with the probabilities of
different outcomes set by pm ¼ hM̂2

migs. We refer to this as
the Gaussian measurement scheme, and discuss an imple-
mentation of M̂m in Eq. (22) using ancillary quantum
harmonic oscillators (QHOs) in Appendix E. To demon-
strate the behavior of M̂m, consider first the case of an
initial state jni with definite densities: n̂ðxÞjni ¼ nðxÞjni.
We would then find from pm ¼ hnjM̂2

mjni that the meas-
urement outcomes mðxÞ are normally distributed around
nðxÞ with variance μ−1. In the following we refer to the
parameter μ as the measurement strength, with μ → ∞ the
projective limit. For small μ, the outcomesmðxÞ are weakly
correlated with hn̂ðxÞim ≡ hψmjn̂ðxÞjψmi.

A. Nonlinear observables

To quantify the response of jψgsi to local measurements,
we average density and phase correlations over the ensem-
ble of jψmi, and weight the results by the Born probabilities
pm. Because we perform this average, correlation functions
that are sensitive to the nonlocal effects of measurements
must be nonlinear in jψmihψmj. To see why, consider for
example

hn̂ð0Þn̂ðxÞim ≡ hψmjn̂ð0Þn̂ðxÞjψmi: ð23Þ

If we average hn̂ð0Þn̂ðxÞim over m, we find

X
m

pmhn̂ð0Þn̂ðxÞim ¼ hn̂ð0Þn̂ðxÞigs; ð24Þ

which follows from ½M̂m; n̂ð0Þn̂ðxÞ� ¼ 0 and
P

m M̂2
m ¼ 1.

That is, the average of hn̂ð0Þn̂ðxÞim over measurement
outcomes is totally insensitive to the fact that we have
measured the system. On the other hand, hn̂ð0Þn̂ðxÞim ≠
hn̂ð0Þn̂ðxÞigs in general, so the average in Eq. (24) fails to
capture the effect of our measurements. Another route to
this fact is to observe that averaging expectation values over
the outcomes of density measurements is equivalent to
dephasing in the basis of density eigenstates, and this does
not affect density correlations.
More generally, the averaged behavior of any correla-

tion function linear in the density matrix cannot change in
response to local measurements which act on different
sites to the operators in the correlation function. The key
point is that averaging over a measurement outcome is
equivalent to replacing the measurement with a local
quantum channel, which could just have well been
implemented using a local unitary and an ancillary degree
of freedom. The effects of local unitary operations
are strictly local, and therefore so are the effects of

measurements on averages of correlation function that
are linear in postmeasurement density matrices.
The correlation functions that we focus on are those of

∇ϕ̂ and eiθ̂. In particular, we probe correlations between
quantum fluctuations of the density via

CðxÞ≡X
m

pmh½∇ϕ̂ð0Þ − h∇ϕ̂ð0Þim�

× ½∇ϕ̂ðxÞ − h∇ϕ̂ðxÞim�im; ð25Þ

and the phase through

DðxÞ≡X
m

pmjhei½θ̂ðxÞ−θ̂ð0Þ�imj2: ð26Þ

The behavior of CðxÞ provides information on correlations
between quantum fluctuations of the smooth part of the
density. For large μ, jψmi approaches an eigenstate of the
density operators, so we expectCðxÞ → 0 for μ → ∞. Since
knowledge of the density is incompatible with knowledge
of the phase, in the limit of large μ we similarly expect
DðxÞ → 0. However, these quantities are not straight-
forward to compute analytically. Because of this we use
a replica trick, writing, e.g., DðxÞ ¼ limN→1 DNðxÞ with

DNðxÞ ¼ Z−1
N

X
m

pN
mjhei½θ̂ðxÞ−θ̂ð0Þ�imj2; ð27Þ

and analogously for CNðxÞ, where the role of the partition
function is played by

ZN ¼
X
m

pN
m: ð28Þ

Because contributions from different measurement out-
comes are in Eq. (27) weighted by pN

m as opposed to pm, we
can view these correlation functions for N > 1 as biasing
the average toward the most likely outcomes.
In the following we compute correlation functions of

the form Eq. (27) by writing the expectation values h� � �im
and probabilities pm as path integrals over configurations
of N replica fields φαðxÞ ¼ ϕαðx; τ ¼ 0Þ, with α ¼
0;…; ðN − 1Þ, that each interact with the local measure-
ment mðxÞ. Integrating out mðxÞ generates an interaction
that favors locking the replicas together at τ ¼ 0. The
strength of this coupling between replicas increases with
increasing measurement strength μ. Physically, relative
variations of the fields φα encode quantum uncertainty
in the ground state density, and the locking of these fields
together for μ ≠ 0 corresponds to the suppression of this
uncertainty due to measurement.
Note also that the “free energy” FN ¼ ð1 − NÞ−1 log ZN

has an information-theoretic interpretation as an entropy of

GARRATT, WEINSTEIN, and ALTMAN PHYS. REV. X 13, 021026 (2023)

021026-10



the measurement outcomes. Taking the limit μ → ∞ as our
reference, we have

FN − FN;∞ ¼ ð1 − NÞ−1 log

P
mp

N
mP

mp
N
m;∞

; ð29Þ

where pm;∞ denotes the distribution of measurement out-
comes for μ → ∞. For generalN the quantity FN is a Rényi
entropy, and in the replica limit N → 1 it is the Shannon
entropy.

B. Replica field theory

Here we develop a replica field theory that can be used
to calculate correlation functions such as CNðxÞ, as well
as the free energy FN. First consider the structure of the
probability density:

pm ¼ hψ jM̂2
mjψi ¼

Tr½e−βĤM̂2
m�

Tr½e−βĤ� ; ð30Þ

where the β → ∞ limit is implicit. As usual we write the
projector onto the ground state e−βĤ as an integral over
the field ϕðx; τÞ and integrate out fluctuations at τ ≠ 0. The
result is

pm ¼
Z

Dφe−sμ½φ;m�;

sμ½φ; m� ¼ s½φ� þ 1

2
μ

Z
dx½mðxÞ − nðxÞ�2; ð31Þ

with s½φ� given in Eq. (12) and nðxÞ as in Eq. (4) but with
the operator ϕ̂ðxÞ appearing there replaced by the scalar
field φðxÞ. Here we absorb the constant Tr½e−βĤ� into the
measure Dφ. We can then write, for example,

ZN ¼
X
m

Z Y
α

Dφαe
−
P

α
sμ½φα;m�; ð32Þ

where the replica fields φα appear, and the index
α ¼ 0;…; ðN − 1Þ. At the level of Eq. (32) the fluctuations
of the various φα are independent, but all interact with the
same measurement field m. The choice of the Gaussian
form for M̂m in Eq. (22) now allows us to integrate over m.
This yields

ZN ¼
Z Y

α

Dφαe−sN ½fφαg�; ð33Þ

where we omit an overall constant that does not affect
expectation values. Here the action

sN ½fφαg� ¼
X
α

s½φα� þ
μ

2

Z
dx

X
αβ

ðδαβ − N−1Þnαnβ ð34Þ

describes coupling between the N replicas φα. Note that
fluctuations of the symmetric linear combination of fieldsP

α nα are not affected by measurement; after averaging
over outcomes, the measurements only have the effect of
locking fluctuations in the different replicas together.
Using the action Eq. (34) we calculate CNðxÞ as the

average of ∇φ0ð0Þ∇φ0ðxÞ −∇φ0ð0Þ∇φ1ðxÞ with respect
to the statistical weight e−sN . The first term generates the
average of h∇ϕ̂ð0Þ∇ϕ̂ðxÞim, while the second generates the
average of h∇ϕ̂ð0Þimh∇ϕ̂ðxÞim. The choice of replicas
α ¼ 0, 1 is of course arbitrary. We represent the average
over φα configurations with double angular brackets,

⟪ � � �⟫N ¼ Z−1
N

Z Y
α

Dφα½� � ��e−sN ½fφαg�; ð35Þ

so that

CNðxÞ ¼ ⟪∇φ0ð0Þ∇φ0ðxÞ −∇φ0ð0Þ∇φ1ðxÞ⟫N: ð36Þ

An additional step is required for the phase correlations
DNðxÞ because M̂m does not commute with the operator
θ̂ðxÞ, and we describe this in Appendix C. Next we show
that the second term in Eq. (34) gives rise to a transition,
occurring as a function of K, in correlation functions such
as CNðxÞ andDNðxÞ. Since the entropy of the measurement
record FN is the logarithm of the generating function ZN
for these correlation functions, it too is sensitive to the
transition.

C. Long wavelengths

To facilitate the RG analysis we express the action (34)
in terms of the fields φα. In particular, we have

nαnβ ¼
1

π2
∇φα∇φβ þ

1

2π2
cos½2ðφα − φβÞ� þ � � � ; ð37Þ

where the ellipses represent terms that vary with wave
numbers 2kF and 4kF. The integration

R
dxnαnβ in Eq. (34)

washes these out. Note then that the first term in Eq. (37)
gives a contribution to the action of the formR
dqq2φ̃αðqÞφ̃βð−qÞ, and that this is irrelevant compared

with the term
R
dqjqjjφ̃αðqÞj2 in s½φα� that comes from the

ground-state density fluctuations.
This discussion implies that long-wavelength fluctua-

tions of the fields φα are described by

sN ½fφαg� ¼
X
α

s½φα�

−
μ

2Nπ2

Z
dx

X
α<β

cos½2ðφα −φβÞ� þ � � � ; ð38Þ

where the ellipses represent irrelevant contributions.
As required, only inter-replica fluctuations φα − φβ are
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suppressed by measurement. From here on we are only
concerned with the contributions to sN displayed in Eq. (38).
The replica action Eq. (38) should be contrasted with

Eq. (14), where there is just a single field φ and a
perturbation of the form v cos 2φ. Under the RG, fluctua-
tions of φ there have the effect of suppressing v [see
Eq. (15)]. In Eq. (38), on the other hand, the perturbation
∼μ cos½2ðφα − φβÞ� involves two fields φα;φβ. Computing
the change in μ at first order in the perturbative RG,
fluctuations of φα and φβ are independent. Consequently,
the suppression of μ is twice as severe as that of v. Note that
this is essentially the same computation as the one leading
to Eq. (15). The result is

dμ
dl

¼ ð1 − 2KÞμ; ð39Þ

which reveals a fixed point at K ¼ 1=2, corresponding
to strong repulsive interactions between fermions. For
K < 1=2 the effect of the measurements is relevant.
Note also that, at first order in μ, the critical Luttinger
parameter K ¼ 1=2 for all integer N ≥ 2. As expected, the
critical Luttinger parameter is here smaller than for the
measurement scheme discussed in Sec. III.
To discuss the opposite limit of large μ it is simplest to

separate out the symmetric linear combination of fields, so
we perform a Fourier transform over the replica index,

φ̄κ ¼
X
α

eiκαφα; ð40Þ

where κ ¼ 0; 2π=N;…; 2πðN − 1Þ=N is an integer multi-
ple of 2π=N, and φ̄κðxÞ ¼ φ̄�

−κðxÞ. In the case N ¼ 2 the
action is

s2½fφ̄κg� ¼
1

2

X
κ

s½φ̄κ� −
μ

4π2

Z
dx cos½2φ̄π�: ð41Þ

Clearly, φ̄0 is unaffected by measurement. We can view the
action for φ̄π as having the same form as in Eq. (14)
although with a modified Luttinger parameter of 2K. As in
that case, the RG analysis of the strong-measurement
limit of Eq. (41) recovers the same critical K as for weak
measurements. Therefore, in the N ¼ 2 replica theory we
find a critical K ¼ 1=2 for both weak and strong measure-
ments. The analysis of the large-μ limit for N > 2 differs
from that of the large-v limit in Sec. III, and we defer
a detailed consideration of this regime to future work. The
RG flow of μ for N ¼ 2 is shown in Fig. 5(a).

D. Transition

Here we discuss the nature of the transition at K ¼ 1=2
by comparing the structure of correlation functions in the
two phases. First, note that the replica action sN ½fφαg� in

Eq. (34) is invariant under the exchange of fields φα ↔ φβ.
However, for K < 1=2 where cos½2ðφα − φβÞ� is relevant,
we expect the path integral to be dominated by field
configurations with φα − φβ an integer multiple of π.
This suggests at small K a spontaneous breaking of the
exchange symmetry. Each of the symmetry-broken con-
figurations can be labeled by a set of N−1 integers pα ¼
π−1ðφ0 − φαÞ with α ≥ 1. To understand them, it is helpful
to consider a domain wall, for example, a sharp increase in
pα around x ¼ 0. Jumps in φα by π do not alter the local
density away from the jump. Instead, an increase of φα by π
corresponds to a missing particle in the vicinity of the jump.
This means that a domain wall, across which pα − pβ

increases by an integer, corresponds to a decrease in the
local particle density in replica α relative to replica β.
For K < 1=2, under coarse graining these domain walls
become dilute, indicating that long-wavelength features in
the particle density match across the different replicas. For
K > 1=2, fluctuations of the fields φα are independent in
the limit of long wavelengths. We illustrate these two
different behaviors in Fig. 5(b).
The correlation functions CNðxÞ and DNðxÞ describe

fluctuations between the different replicas. For N ¼ 2 they
can be expressed as

C2ðxÞ ¼
1

2
⟪∇φ̄πð0Þ∇φ̄πðxÞ⟫2;

D2ðxÞ ¼ ⟪ei½θ̄πðxÞ−θ̄πð0Þ�⟫2; ð42Þ

where θ̄π ¼ θ0 − θ1 describes the phase difference
between the replicas. These correlation functions can
be calculated by analogy with Eqs. (18) and (19),
respectively, and the fields φ̄π and θ̄π can be viewed as

(b)(a)

FIG. 5. Transition in the theory described by sN as a function
of K. (a) RG flow of measurement strength μ. For small μ the
linearized RG flow is the same for all N, and changes direction at
K ¼ 1=2. For large μ we have shown that the change in the
direction of the flow is, for N ¼ 2, also at K ¼ 1=2. (b) Structure
of the field configurations that dominate correlation functions in
the case N ¼ 2. For K < 1=2 and at long wavelengths φ0 and φ1

are locked together by μ cos½2ðφ0 − φ1Þ�, whereas for K > 1=2
their fluctuations are independent. As in Fig. 4(b) the directions
of arrows indicate the effects of coarse graining.
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experiencing effective Luttinger parameters 2K and K=2.
For K > 1=2, we then have

CNðxÞ ∼ −x−2; DNðxÞ ∼ x−1=K; ð43Þ

which is the same behavior as in jψgsi. For K < 1=2, the
discussion in Sec. III implies the behavior of C2ðxÞ and
D2ðxÞ; after changing variables to φ̄0 and φ̄π , it is clear
that the saddle points of s2 have essentially the same
structure as those of snc. These saddle points correspond
simply to configurations of domain walls in the φ̄π field,
and the leading contribution at large x comes from a pair
of oppositely signed walls at separation x. The results are

C2ðxÞ ∼ −x−1=K; D2ðxÞ ∼ x−2=K; ð44Þ

with prefactors set by the square of the domain wall
fugacity. For large μ no rescaling is necessary and this
fugacity is exponentially small in μ1=2 (see Appendix A).
This is consistent with our expectation that each of CðxÞ
and DðxÞ should vanish in the limit of projective
measurements μ → ∞. For N > 2, although the saddle
points of sN have more structure, it is natural to expect
that for large μ they also have an interpretation as domain
walls in real space. In the replica theory these are domain
walls separating different ways of locking the fields φα to
one another.
To develop a physical interpretation for the faster decay

of C2ðxÞ for K < 1=2, let us recall the definition of CðxÞ in
Eq. (25). This correlation function can be expressed as
the measurement-averaged difference between the two-
point function h∇ϕ̂ð0Þ∇ϕ̂ðxÞim and the product of one-
point functions h∇ϕ̂ð0Þimh∇ϕ̂ðxÞim and, in a disentangled
eigenstate of the density operators, this difference must
vanish. We can therefore understand the faster decay of
CðxÞ, occurring when density measurements are relevant,
as capturing the approach to behavior resembling that in a
product state.
In this section we have investigated the difference

between the phases K < 1=2 and K > 1=2, where generic
measurement outcomes behave, respectively, as relevant
and irrelevant perturbations. For all values of K we expect
that correlations of the density and phase remain algebraic,
although the exponents characterizing these decays change
their dependence on K across the transition. For the
correlation functions that we consider, the decay is more
rapid for K < 1=2. In this case arbitrarily weak local
measurements are sufficient to alter the structure of the
quantum state at the longest wavelengths and distances. For
K > 1=2, as long as μ is finite, the long-distance behavior
of the correlations is unchanged compared to the unmeas-
ured ground state. Note, however, that the results obtained
above for correlation functions in the regime K < 1=2
are strictly appropriate only for N ¼ 2. This corresponds
to averaging nonlinear correlation functions over the

ensemble of measurement outcomes with p2
m weights,

as opposed to the Born probabilities pm relevant for
experiment.

E. Individual outcomes

While there is analytic simplicity only in averages over
the ensemble of measurement outcomes, it is natural to ask
whether we can say anything concrete about the structure of
individual postmeasurement states. Here we briefly con-
sider the problem of evaluating expectation values in a
typical state jψmi. As an example, we have

hn̂ð0Þim ¼
R
DφnðxÞe−sμ½φ;m�R
Dφe−sμ½φ;m� : ð45Þ

From this expression we see that, in order to develop
some intuition for the postmeasurement state jψmi, we only
need consider the action s½φ� − 1

2
μ
R
dxmðxÞnðxÞ, where

mðxÞ appears as a field coupling to the density nðxÞ. This
is because the contribution to Eq. (31) proportional toR
dxm2ðxÞ cancels between numerator and denominator,

while the (ill-defined) contribution proportional toR
dxn2ðxÞ can be removed by starting from a concrete

lattice model and subsequently taking the continuum limit
(see Appendix E).
When discussing the coupling between mðxÞ and nðxÞ it

is important to note that, although the measurement out-
comes mðxÞ are to some extent random, they have power-
law correlations inherited from the ground state. Explicitly,

X
m

pmmð0ÞmðxÞ ¼ hn̂ð0Þn̂ðxÞigs þ μ−1δðxÞ; ð46Þ

which can be shown directly from Eq. (22). Because the
correlations of nðxÞ are most easily understood through the
decomposition into smooth and oscillatory components in
Eq. (4), we do the same for mðxÞ; i.e.,

mðxÞ ¼ m0ðxÞ þ ½m2kFðxÞe2ikFx þ c:c:�; ð47Þ

where m2kFðxÞ is in general complex. The two-point func-
tions

P
m pmm0ð0Þm0ðxÞ and

P
m pmm2kFð0Þm2kFðxÞ can

now be understood as reproducing the ground-state corre-
lations h∇ϕ̂ð0Þ∇ϕ̂ðxÞigs and hcos½2ϕ̂ð0Þ� cos½2ϕ̂ðxÞ�igs,
respectively. Inserting Eqs. (4) and (47) into the perturbation
arising frommeasurements, and choosing a fieldm2kFðxÞ that
is real for simplicity, we find

Z
dxmðxÞnðxÞ ¼

Z
dxm2kFðxÞ cos½2φðxÞ� þ � � � ; ð48Þ

where on the right-hand side we choose to display only the
term that controls the transition studied in this section. The
others can be seen to give rise to irrelevant perturbations.
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To assess the effect of a typical measurement outcome
mðxÞ, we adapt the real-space renormalization group argu-
ment in Ref. [62] to power-law correlated fields. Recall
that the scaling dimension of cos½2φðxÞ� at the μ ¼ 0
fixed point is K so that, under a change of the microscopic
length scale by b, a uniform m2kFðxÞ would be renormal-
ized by a factor b1−K [see Eq. (15)]. More generally, we
must first ask how the magnitude of the coarse-grained field
ð1=bÞ R xþb=2

x−b=2 dx0m2kFðx0Þ varies with b. The average of this
field over m2kFðxÞ is zero, so we must instead evaluate the
average of its square. Using the fact that correlations of
m2kFðxÞ are inherited from those of cos½2φðxÞ� [see
Eq. (46)], we find

X
m

pm

���� 1b
Z

xþb=2

x−b=2
dx0m2kFðx0Þ

����
2

∼ b−2K; ð49Þ

for K < 1=2, since then the double integral over positions
is dominated by points separated by ∼ b. For K > 1=2 this
integral is instead dominated by small separations and we
recover the result for uncorrelated random fields b−1.
Equation (49) shows that coarse graining m2kFðxÞ over a

length scale b typically suppresses the amplitude of its
fluctuations by a factor b−K. The coarse-grained m2kFðxÞ
within the interval ½x − b=2; xþ b=2� can then be viewed as
a uniform field coupled to b−1

R xþb=2
x−b=2 dx cos½2φðx0Þ�,

which is simply the coarse-grained cos½2φðxÞ�. There-
fore, when we eliminate fluctuations on length scales
smaller than b, we should complete the RG transformation
by rescaling the averaged field as if it were uniform [62],
i.e., by a factor b1−K. From this we find that, for K < 1=2,
the overall rescaling of the measurement strength is
μ → b1−2Kμ, consistent with result Eq. (39) obtained from
our replica approach. Note that for K > 1=2, where
averaging m2kFðxÞ suppresses the amplitude of its fluctua-
tions by a factor b−1=2 as for random fields, the above line
of reasoning leads instead to μ → bð1=2Þð1−2KÞμ.
In closing this section we note that the above reasoning

applies to general critical ground states. For a critical state
in d spatial dimensions, where we can view ground-state
correlations as τ ¼ 0 correlations in a (dþ 1)-dimensional
field theory, measurements appear as a power-law corre-
lated random field on the τ ¼ 0 surface. Correlations in
an individual postmeasurement state then correspond to
τ ¼ 0 correlations in the presence of this surface field.
Generalizing the above real-space renormalization group
arguments to d spatial dimensions, and to the measurement
of an operator having a scaling dimension which we now
denoteΔ to avoid confusion, forΔ < d=2 the measurement
strength is rescaled as μ → bd−2Δμ. For Δ > d=2 it is
instead rescaled as μ → bð1=2Þðd−2ΔÞμ. This argument sug-
gests that if uncorrelated random fields on a surface of
codimension one are relevant, so are measurements.

Finally, we comment on the relation between the results of
this section and those in Sec. III, where we considered the
effect of postselecting for a particular set of outcomes. In the
language of this section, the theory in Sec. III corresponds to
uniform m2kFðxÞ, and this corresponds to a relevant pertur-
bation for K < 1. It is natural to ask whether such extreme
postselection is necessary to generate a perturbation of this
kind, and the answer is in the negative. This is because
randomness in the field m2kFðxÞ is irrelevant for all
K > 1=2. In the Gaussian scheme, for a field m2kFðxÞ
whose average over a spatial region is independent of the
size of that region, the quantum state should therefore be
restructured in the manner described in Sec. III. Based on
this it is natural to conjecture that, within the measurement
scheme with binary outcomes discussed in that section, the
transition should be robust to a small finite density of clicks.

V. AVOIDING POSTSELECTION

A barrier to experimental studies of the effects of
measurements on quantum systems is that signatures are
only to be found in physical quantities conditioned on
the measurement outcomes. In this section we discuss this
“postselection problem” [29,33,38]. To understand the
origin of the postselection problem, let us consider the
scenario where a quantum state jψmi is prepared by a
sequence of M measurements. Given jψmi, we then try to
characterize its structure by estimating the expectation
value of a “probe” observable. To do this, we have to
measure the probe observable, and in a given run of the
experiment we can only obtain one result (i.e., one of its
eigenvalues). Determining the expectation value of the
probe observable in jψmi requires us to repeat the experi-
ment, but this is very resource intensive: the probability that
we successfully prepare jψmi again is exponentially small
in M, and so for large M we are unlikely to ever prepare
jψmi again. In this section we show that the effects of
measurements can nevertheless be observed when one has
access to an appropriate simulation on a classical computer.
As an example of the problem at hand, let us first suppose

that our aim is to determine the nonlinear contribution to
CðxÞ in Eq. (25), which isPm pmh∇ϕ̂ð0Þimh∇ϕ̂ðxÞim. In a
given run of the experiment in which we find outcomes m,
we can try to estimate the postmeasurement expectation
values of the probe observables ∇ϕ̂ð0Þ and ∇ϕ̂ðxÞ, and to
do this we must measure them. The results are eigenvalues
of ∇ϕ̂ð0Þ and ∇ϕ̂ðxÞ, and so our best estimate for
h∇ϕ̂ð0Þimh∇ϕ̂ðxÞim is the product of these eigenvalues.
However, this product of eigenvalues is also an eigenvalue
of ∇ϕ̂ð0Þ∇ϕ̂ðxÞ. Performing an average over many runs
of the experiment, we therefore find convergence toP

m pmh∇ϕ̂ð0Þ∇ϕ̂ðxÞim instead of the desired quantityP
m pmh∇ϕ̂ð0Þimh∇ϕ̂ðxÞim. The result is therefore an

average of a quantity that is linear in the postmeasurement
density matrix, and corresponds to the expectation value of
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∇ϕ̂ð0Þ∇ϕ̂ðxÞ in the case where the state is first dephased
in the measurement basis. This example illustrates the fact
that, if we do not use the information obtained from
measurement, simple averages over outcomes do not distin-
guish measurement from dephasing.
In the simplest scenario the data available consist of

(i) the outcomes m, assumed different for each run of the
experiment, and (ii) one eigenvalue λm of a probe observ-
able for each of these outcomes. Given these data, we must
ask more generally which kinds of physical quantities
we can determine, and one possibility is to compute the
average of wmλm over runs of the experiment, where wm is
anm-dependent weight that we are free to choose (note that
if wm ¼ 1, our average reproduces the effects of dephas-
ing). This average over experimental runs washes out
quantum fluctuations, and so the result of this protocol
converges to, e.g.,

P
m pmwmh∇ϕ̂ðxÞim in the case where

∇ϕ̂ðxÞ is the probe observable.
For concreteness let us consider again the nonlinear

contribution to CðxÞ in Eq. (25), a product of postmeasure-
ment expectation values h∇ϕ̂ð0Þim and h∇ϕ̂ðxÞim averaged
over runs of the experiment. Now suppose that these expect-
ationvalues can be estimated from a calculation on a classical
computer; we denote these estimates by, e.g., h∇ϕ̂ð0Þim;C,
and they are to be distinguished from the true “quantum”
expectation values h∇ϕ̂ð0Þim. We now propose that a
physically meaningful choice for the weighting wm is the
classically estimated expectation value wm ¼ h∇ϕ̂ð0Þim;C.
This leads us to define “quantum-classical” estimators

as averages of such wmλm over runs of the experiment.
For example, if we want to construct the quantum-
classical estimator for the nonlinear contribution to CðxÞ,
we can choose ∇ϕ̂ðxÞ as our probe observable and
wm ¼ h∇ϕ̂ð0Þim;C as our weighting; this quantum-classical
estimator converges to

X
m

pmh∇ϕ̂ð0Þim;Ch∇ϕ̂ðxÞim ð50Þ

and describes cross-correlations between experiment and
the classical calculation. This is an unusual situation where,
although it is not possible to directly compare experiment
with simulation for large M, one can compare their cross-
correlation with the simulation; i.e., one can compare the
quantum-classical estimator in Eq. (50) with the “classical-
classical” estimator

P
m pmh∇ϕ̂ð0Þim;Ch∇ϕ̂ðxÞim;C.

If the classical-classical probe changes its behavior as a
parameter (such as K) is tuned, and if it coincides with
the quantum-classical probe, this provides evidence for a
restructuring of the experimentally prepared quantum state.
Crucially, this is a signature that does not suffer from a
postselection problem. We note also that, for the particular
problems that we discuss in this work, the unmeasured
quantum state can be well approximated by a matrix product

state (MPS) having bond dimension χ that is polynomial
in the system size L [28]. Therefore, the classical memory
requirements ∼ Lχ2 for constructing quantities such as the
one displayed in Eq. (50) are themselves polynomial in L.
The idea of using classical simulations to construct probes

of the effects of measurement on many-body states was
previously used in Refs. [29,31] in the context of the
dynamical MIPT, although the way the classical information
is processed in that approach is quite different. The quantum-
classical estimators above do however have an interesting
parallel in the cross entropy used to demonstrate quantum
supremacy in Ref. [63]. A key distinction is that here we are
advocating for their use as observables in their own right,
rather than as benchmarks for a quantum simulation.
The quantum-classical estimator will of course be noisier

than the classical-classical one, simply because the former
is affected by quantum fluctuations while the latter is not.
A more concerning source of error is mismatch between the
real quantum system and the classical representation of its
state. To reduce these differences, one possibility in the
case where the initial state is translation invariant is to coarse
grain the observables of interest. In addition to reducing
quantum fluctuations, it is natural to expect that an averaging
procedure of this kindwill suppress the effects ofmicroscopic
differences between the quantum system and the classical
approximation. The limitations of this approach depend
sensitively on the experimental system of interest, and we
defer a detailed investigation to future work.

VI. DISCUSSION

Questions about the effects of observation on many-body
quantum states become ever more pertinent as quantum
computation and simulation technologies develop. Critical
states are of particular interest in this context since they are
highly entangled. In this work we have shown that local
measurements performed on critical quantum ground states
can conspire with one another to drive transitions in long-
wavelength correlations. Such an instantaneous restructur-
ing of the quantum state is possible due to the nonlocality
of the measurement process, and the algebraic correlations
characteristic of critical states.
A central result is to demonstrate how the nonlocal

effects of measurements can be understood using standard
tools from quantum statistical mechanics. In this language,
measurement-induced transitions in ground-state correla-
tions map to boundary phase transitions. The bulk corre-
sponds to the Euclidean action generating ground-state
correlations, while the measurements are a boundary
perturbation appearing at a fixed imaginary time. This
interpretation is quite general, and in higher spatial dimen-
sions it implies a relation between surface critical phenom-
ena and transitions in the structure of quantum states.
Our focus here has been on one-dimensional quantum

liquids, in particular, spinless TLLs. We have shown that
transitions in the structure of the weakly measured ground
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state occur as the Luttinger parameter K is varied. First, in
Sec. III, wemapped the calculation of correlation functions in
a particular measured state onto the problem of a local
potential defect in a TLL [26,27]. The state we chose was
translation invariant, and in the dual defect problem this
property corresponds to a potential barrier that does not vary
in (imaginary) time. ForK < 1, we showed that for arbitrarily
weak coupling between the quantum system and the meas-
urement apparatus there is a change in the form of correlation
functions at long distances. In particular, density fluctuations
and phase correlations are suppressed. These effects are
respectively manifest in faster power-law decays of ∇ϕ̂
and eiθ̂ correlations. For K > 1, the measurements are
irrelevant, in the sense that they do not alter the correlations
on large scales.
Following this, we investigated the full ensemble of

quantum states that can arise from measurement. To make
analytic progress, we averaged physical quantities over this
ensemble. In order to distinguish the effects of measure-
ment from the effects of coupling to an environment, it is
necessary for these quantities to be nonlinear in the system
density matrix. To calculate their averages we developed a
replica field theory, within which measurements act as a
coupling between the different replicas in all space but only
at a single imaginary time τ ¼ 0. In this formulation the
question is whether the coupling is relevant. For the density
measurements that we consider, we found that it is relevant
for K < 1=2 and irrelevant forK > 1=2. As K is decreased,
the measurements drive a transition which breaks the
symmetry of the theory under the exchange of replicas,
and which has signatures in the asymptotic forms of
averaged nonlinear correlation functions. For K > 1=2,
density correlations in the initial quantum state are too
weak, and measurements fail to restructure it.
Within our replica framework, questions remain over the

behavior of the theory in Eq. (38) forK < 1=2 andN ≠ 2. To
answer these, one must presumably account for the structure
of the saddle points at large μ. Doing so may allow for the
calculation of the averaged nonlinear correlation functions
Eqs. (25) and (26) in the replica limit. Replicas are, however,
just one of a number of possibilities when studying an
ensemble of random outcomes. Another is to adapt super-
symmetric methods from the study of disordered systems
[64], although these are unlikely to be appropriate in our
problem since the density operator n̂ is nonlinear in ϕ̂. A third
possibility is to approach the problem numerically. In
AppendixDweuse iDMRGtocalculate correlation functions
in the translation-invariant state jψnci, but tensor-network
techniques also open the door to the study of nonlinear
correlation functions in genericmeasured quantum states, and
to averagesweightedwith respect to theBornprobabilitiespm

(as opposed to pN
m). One could otherwise tackle these

problems using quantum Monte Carlo methods [65], here
applicable since we are only concerned with imaginary-time
evolution.

An important question is whether the phenomena we
have studied can be observed in experiment. In discussing
this, it is useful to recall the barriers to observations of
dynamical MIPTs. One is the necessity to postselect on
individual measurement trajectories [29,33,38,66]. This
problem arises because, when characterizing a quantum
state prepared by measurements, the experimenter ulti-
mately has to measure an observable, and this process is
destructive. In one run of an experiment, a given observable
can only be measured once, but if the quantum fluctuations
of the observable are large, the result of this measurement is
a poor estimate for its expectation value. To estimate the
latter, the same state has to be prepared a number of times,
but the probability for its successful preparation is in
general exponentially small in the number of measurements
required to do so. Since the dynamical MIPT occurs in the
limit of large times t and system sizes L with t ∝ L, the
number of measurements required scales as L2, and hence
the number of experimental runs required is astronomical
even for moderate L. The postselection requirements are in
our case less severe, since the number of measurements
is of order L rather L2, although an exponential-in-L
postselection overhead is still prohibitive. As we have
discussed in Sec. III C, the possibility for spatial averaging
does allow for quantum fluctuations to be suppressed in
individual runs of an experiment, but this does not remove
the exponential overhead.
However, if it is possible to determine conditional

expectation values of observables classically, we have
shown in Sec. V that cross-correlating the results of these
calculations with experimental data alleviates the postse-
lection problem. This idea has parallels in the context
of the dynamical MIPT in stabilizer circuits, where one
can avoid postselection by determining a “decoder func-
tion” [29,31]. In this work we have been concerned with
critical states in one spatial dimension, so the computa-
tional resources required are only polynomial in the system
size. Because of this, cross-correlations can in principle be
constructed for experiments performed on quantum simu-
lators using hundreds if not thousands of qubits.
In addition to this dramatic reduction in experimental

resource requirements, we note that measurement-induced
phenomena in this static setting are far less sensitive to
decoherence than those arising in dynamical systems. This
is because local quantum channels have strictly local effects
in the absence of any subsequent dynamics. In particular,
correlations between local observables are not affected by
channels acting elsewhere in the system, but they are
nonlocally affected by measurements. The results of this
work therefore represent a significant advance toward the
observation of measurement-induced phenomena. The
already rich history of experiments on TLL behavior in
ultracold atomic gases [20–23], as well as developments in
quantum-gas microscopy [67,68], makes this class of
systems a promising physical setting.
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APPENDIX A: DOMAIN WALLS

Here we discuss the description of the large-v limit of the
theory Eq. (14) in terms of domain walls. When v is large
we typically have φ ≃ pπ for integer p, and the integer
jumps of p are domain walls. Formally, this is a description
of the saddle point approximation to the partition functionR
Dφe−snc½φ�, and the different saddle points corresponds to

different domain wall configurations. To describe domain
walls it is necessary to first introduce a short-wavelength
regularization, and we choose to add a term 1

2

R
dxð∇φÞ2.

Writing x ¼ v−1=2x0, we find from Eq. (14)

snc½φ� ¼ s½φ� − v1=2
�Z

dx0 cos 2φ −
1

2

Z
dx0ð∇0φÞ2

�
:

ðA1Þ
For large v we can neglect the contribution s½φ� in the first
instance. Varying the term in square brackets with respect
to φ we can then find the structure of the saddle points. In
the case of a single domain wall we set φðx0Þ → 0; π and
∇0φðx0Þ → 0 for x0 →∓ ∞, and the result is

φdwðxÞ ¼
π

2
þ tan−1½sinhð2v1=2xÞ�; ðA2Þ

which is a domain wall with width ∼ v−1=2. Inserting
Eq. (A2) into Eq. (A1) and neglecting the contribution
from s½φ�, we find snc½φdw� − snc½φ ¼ 0� ¼ 4v1=2, so g≡
expð−4v1=2Þ is the fugacity of a domain wall.
For K < 1 we evaluate the asymptotic properties of

correlation functions within the dilute domain wall approxi-
mation. To see why this description is possible, note first
that if we were to neglect the interactions between domain
walls, then we would find that their typical separation
is ∼1=g. Comparing this with their width ∼v−1=2 it is
clear that for large v, and hence on large scales in the

coarse-grained theory for K < 1, we have 1=g ≫ v−1=2. If
we are interested only in correlations on scales much larger
than v−1=2, it suffices to approximate φ as a sum of step
functions φðxÞ ¼ π

P
j ϵjΘðx − xjÞ, with ϵj ¼ �1, as in

Eq. (16). Inserting this expression into s½φ�, we find a long-
range attractive interaction between domain walls with
oppositely signed ϵj, and a long-range repulsion between
those with the same sign. The partition function for the
domain walls is then

Zdw ¼
X∞
n¼0

g2n
Z
xj<xjþ1

Y2n
j¼1

dxj

×
X

fϵg;
P

j
ϵj¼0

eð2=KÞ
P

j<k
ϵjϵk log jxj−xkj: ðA3Þ

For simplicity, we consider periodic boundary conditions
in space, which gives the constraint

P
j ϵj ¼ 0 on the sum

over all possible ϵj ¼ �1 configurations. This constraint
implies that the number 2n of domain walls is even. To
remain consistent with our approximation of dilute domain
walls, we should additionally restrict jxjþ1 − xjj > v−1=2.
From the theory Eq. (A3) we can determine the RG flow

of the parameter v in the regime of strong measurements,
giving Eq. (17). Although this is standard, we include it
here for completeness. The key observation is that

Zdw ≃
Z

Dϑe−ðK=4πÞ
R
ðdq=2πÞjqjjϑ̃ðqÞj2þ2g

R
dx cos ϑðxÞ; ðA4Þ

where we introduce a real scalar field ϑðxÞ. We demonstrate
this connection below, but first note that the statistical
weight in this expression has the same form as Eq. (14)
with the substitutions φ → ϑ, K → 4=K, v → 2g, and
cos 2φ → cos ϑ. In the limit of small g, corresponding to
large v, the scaling dimension of cosϑ can be determined in
perturbation theory, and at first order we find dg=dl ¼
ð1 − 1=KÞg. Using g ¼ expð−4v1=2Þ gives Eq. (17). In the
domain wall picture, for K < 1 the attractive interaction
between oppositely signed domain walls is sufficiently
strong that they become ever more dilute under coarse
graining. This manifests as a decrease in the fugacity.
The connection between Eqs. (A3) and (A4) follows

from an expansion of the latter in powers of g. Integrating
this expansion over ϑ eliminates all terms featuring an odd
number of cosines, leading to

Zdw ≃
X∞
n¼0

ð2gÞ2n
ð2nÞ!

Z Y2n
j¼1

dxj

Z
Dϑ cosϑðx1Þ… cosϑðx2nÞe−ðK=4πÞ

R
ðdq=2πÞjqjjϑ̃ðqÞj2

¼
X∞
n¼0

g2n
Z
xj<xjþ1

Y2n
j¼1

dxj
X

fϵg;
P
j

ϵj¼0

eð2π=KÞ
P

j<k
ϵjϵk

R
ðdq=2πÞð1=jqjÞf1−cos½qðxj−xkÞ�g; ðA5Þ
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where in the second line we order the sum so that
xj < xjþ1, thereby canceling the factor ð2nÞ!. We
also use cosϑðxjÞ ¼ 1

2

P
ϵj¼�1 e

iϵjϑðxjÞ, and
P

j ϵ
2
j ¼

−2
P

j<k ϵjϵk, which follows from the constraintP
j ϵj ¼ 0. The integral

R ðdq=2πÞð1=jqjÞ cos½qðxj−xkÞ�¼
const−ð1=πÞ ln x then gives the exponent −ð2=KÞ×P

j<k ϵjϵk ln jxj − xkj, which reproduces Eq. (A3).

APPENDIX B: CORRELATIONS IN jψnci
In this appendix we discuss correlations in jψnci, which

are relevant to the transition in Sec. III. Using the domain
wall description in Appendix A, we can discuss correlation
functions in the state jψnci for K < 1 as well as K > 1.
First, we consider correlations of the smooth part of the
particle density. These are computed in jψnci as

h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc ¼ Tr½e−βĤM̂2
nc∇ϕ̂ð0Þ∇ϕ̂ðxÞ�

Tr½e−βĤM̂2
nc�

¼
R
Dφ∇φð0Þ∇φðxÞe−snc½φ�R

Dφe−snc½φ�
; ðB1Þ

where in the first line we use ½M̂nc;∇ϕ̂� ¼ 0. The field φðxÞ
describes density fluctuations at a fixed imaginary time.
The action snc is given in Eq. (14). For K > 1 the cos 2φ
term is irrelevant under RG, and so long-wavelength
correlations can be computed with respect to s½φ� in

Eq. (12). Dimensional analysis immediately reveals that
in this regime h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc ∼ x−2. For K < 1 the
cos 2φ term is relevant, and then at long wavelengths
the domain wall description is appropriate.
For K < 1 we use the approximation of sharp domain

walls ∇φðxÞ ≃ π
P

j ϵjδðx − xjÞ. With this parametriza-

tion, h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc in this theory is a correlation
function for the locations of domain walls. Expanding
Eq. (A3) in powers of g, we find that at Oðg2Þ,

h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc ≃ −g2x−2=K: ðB2Þ

This is the contribution to the correlation function from
the saddle point featuring two oppositely signed domain
walls at locations 0 and x. We can also ask about the
contribution from quadratic fluctuations around a given
saddle point. To do this for the saddle point with no domain
walls, we expand cos½2φ� to generate a mass for the field φ.
Alone, this term describes short-range correlations, and it is
straightforward to show that if we treat s½φ� perturbatively
the contribution to h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc scales as x−4.
Therefore, for 1=2 < K < 1 the asymptotic behavior is
x−2=K. These results show that correlations between density
fluctuations decay more rapidly in space than in the
unmeasured state.
The description in terms of domain walls also allows us

to calculate phase correlations, and here we focus on

hei½θ̂ðxÞ−θ̂ð0Þ�inc ¼
R
Dθ Tr½e−βĤM̂ncjθiei½θðxÞ−θð0Þ�hθjM̂nc�R

Dθ Tr½e−βĤM̂ncjθihθjM̂nc�

¼
R
DθDφDφ0e−ð1=2Þðsnc½φ�þsnc½φ0�Þþði=πÞ

R
dx0∇θ½φ−φ0�þi

R
x

0
dx0∇θ

R
DθDφDφ0e−ð1=2Þðsnc½φ�þsnc½φ0�Þþði=πÞ

R
dx0∇θ½φ−φ0�

: ðB3Þ

Here the first equality follows from inserting a resolution of
the identity in the basis of θ̂ eigenstates, and the second

follows from hφjθi ¼ eði=πÞ
R

dx∇θφ, where jφi is a ϕ̂
eigenstate. Note that here it is necessary to introduce
two fields φ and φ0 because ½M̂nc; eiθ̂� ≠ 0, and that a
factor 1=2 appears before each of snc½φ� and snc½φ0�. This
factor is a consequence of the fact that, for example, snc½φ�
is determined by the integration over fluctuations of ϕðx; τÞ
for τ > 0 only. If we integrate out the θ field, we enforce

φ0ðx0Þ ¼ φðx0Þ þ πT0;xðx0Þ ðB4Þ

in the numerator, where T0;xðx0Þ ¼ 1 for 0 ≤ x0 ≤ x and
T0;xðx0Þ ¼ 0 otherwise. In the denominator we instead
have φ0 ¼ φ. We see then that the expectation value
hei½θ̂ðxÞ−θ̂ð0Þ�inc is the ratio of two partition functions: in

the denominator φ and φ0 are forced to be equal to one
another across all of space, while in the numerator they
differ by π in the interval ½0; x�.
Although it is certainly not the simplest approach, it will

be instructive to see how the behavior hei½θ̂ðxÞ−θ̂ð0Þ�inc ∼
x−1=ð2KÞ for K > 1 arises from Eq. (B3). In this regime
measurements are irrelevant, so we consider the case where
v ¼ 0. Then,

hei½θ̂ðxÞ−θ̂ð0Þ�inc ¼
R
Dφe−ð1=2Þðs½φ�þs½φþT0;x�ÞR

Dφe−s½φ�
;

1

2
ðs½φ� þ s½φþ T0;x�Þ ¼ s½φ� þ 1

K

Z
dq
2π

jqjφ̃ðqÞT̃0;xð−qÞ

þ π

2K

Z
dq
2π

jqjjT̃0;xðqÞj2: ðB5Þ
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Integrating out φ then leads to

hei½θ̂ðxÞ−θ̂ð0Þ�inc ¼ e−ðπ=4KÞ
R
ðdq=2πÞjqjjT̃0;xðqÞj2 : ðB6Þ

The integral
R
Λ
−Λðdq=2πÞjqjjT̃0;xðqÞj2 ¼ 4

R
Λ
−Λðdq=2πÞ×

jqj−1 sin2ðqx=2Þ ≃ ð2=πÞ ln x up to an additive constant,
and from this we find the decay hei½θ̂ðxÞ−θ̂ð0Þ�inc ∼ x−1=ð2KÞ.
For K < 1 the measurements v dominate on the largest

scales. For the leading saddle point, corresponding to no
domain walls, we expand cos 2φ ≃ 1–2φ2 and then inte-
grate out φ. For x ≫ v−1 the behavior is qualitatively
similar to setting φ̃ðqÞ ∼ δðqÞ, which gives

1

2
ðsnc½φ�þsnc½φþT0;x�Þ¼

π

2K

Z
dq
2π

jqjjT̃0;xðqÞj2;

hei½θ̂ðxÞ−θ̂ð0Þ�inc¼e−ðπ=2KÞ
R
ðdq=2πÞjqjjT̃0;xðqÞj2 ∼x−1=K; ðB7Þ

to be contrasted with x−1=ð2KÞ for K > 1. Although phase
correlations remain algebraic, their decay is significantly
faster when measurements are relevant.

APPENDIX C: CORRELATIONS IN THE
ENSEMBLE OF jψmi

Here we discuss the calculations of the correlation
functions CNðxÞ and DNðxÞ in Sec. IV. For K > 1=2 the

measurements are irrelevant, and as a consequence the
long-wavelength behavior of these correlation functions
can be understood by considering perturbations around the
unmeasured system. For K < 1=2 the replicas are locked
together by the measurements, and we can compute CNðxÞ
and DNðxÞ in a similar way to h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc and
hei½θ̂ðxÞ−θ̂ð0Þ�inc, respectively.
First note that we can write C2ðxÞ as

C2ðxÞ ¼
R Q

αDφα
1
2
∇φ̄πð0Þ∇φ̄πðxÞe−s2½fφ̄κg�R Q
αDφαe−s2½fφ̄κg� : ðC1Þ

ForN ¼ 2we can use the long-wavelength action in Eq. (41)
and we immediately recognize a variant of the action
in Eq. (14) describing fluctuations of the antisymmetric
field φ̄π , albeit with a modified Luttinger parameter of 2K.
From the domain wall description used in Sec. B, we find

C2ðxÞ ∼ −x−1=K ðC2Þ

at long wavelengths. The phase correlations D2ðxÞ can be
computed similarly. First note that for integer N ≥ 2
we have

DNðxÞ ¼
R
DmDθ0Dθ1 Tr½e−βĤM̂mjθ0; θ1iei½θ0ðxÞ−θ0ð0Þ�e−i½θ1ðxÞ−θ1ð0Þ�hθ0; θ1jM̂m�R

DmTr½e−βĤM̂2
m�

¼
R
Dm

Q
N−1
α¼0 DθαDφαDφ0

αe
−ð1=2Þ

P
α
ðsμ½φα;m�þsμ½φ0

α;m�Þþði=πÞ
R

dx0∇θα½φα−φ0
α�þi

R
x

0
dx0ð∇θ0−∇θ1ÞR

Dm
Q

N−1
α¼0 Dφαe−sμ½φα;m� : ðC3Þ

In the interest of brevity, in the numerator of the second line we introduce resolutions of the identity in the θ basis for
every replica, although these are only necessary for α ¼ 0, 1. Integrating out θα for α ≥ 2 we fix φ0

α ¼ φα, whereas
φ0
0 ¼ φ0 þ πT0;x and φ0

1 ¼ φ1 − πT0;x. On integrating out the measurements m we couple the different φα and the result
has the form

DNðxÞ ¼
Q

N−1
α¼0 Dφαe

−sN ½fφαg�−ð1=KÞ
R
ðdq=2πÞjqj½φ̃0ðqÞ−φ̃1ðqÞ�T̃0;xð−qÞ−ðπ=KÞ

R
ðdq=2πÞjqjjT0;xðqÞj2þ���Q

N−1
α¼0 Dφαe−sN ½φα� ; ðC4Þ

where the ellipsis in the exponent of the numerator
represents contributions that are local to 0 and to x. These
do not affect the asymptotic behavior of the correlation
function. When measurements are irrelevant as for
K > 1=2, at long wavelengths sN ½fφαg� behaves as the
sum of N Gaussian actions s½φα�. We can then integrate out
the fields φα, and recover the result expected without
measurements DNðxÞ ∼ x−1=K . For K < 1=2 where mea-
surements are relevant, we expect that at long wavelengths
the fields φα are locked to one another. In the case N ¼ 2,
transforming variables to φ̄0 and φ̄π , we find that

fluctuations of the field φ̄π behave as for φ in the no-click
scenario (there for K < 1), although comparing the pre-
factor of jT0;xðqÞj2 in Eq. (C4) with that in Eq. (B5) we see
that the effective Luttinger parameter is here K=2. This
leads to D2ðxÞ ∼ x−2=K for K < 1=2, to be compared with
hei½θ̂ðxÞ−θ̂ð0Þ�inc ∼ x−1=K for K < 1 in Eq. (B7).

APPENDIX D: NUMERICAL RESULTS

Here we present numerical results on correlation
functions in the states jψnci discussed in Sec. III.
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Our focus is on the XXZ spin chain ĤXXZ ¼ P
j½Ŝxj Ŝxjþ1 þ

Ŝyj Ŝ
y
jþ1 þ ΔŜzjŜ

z
jþ1� in the sector with

P
j Ŝ

z
j ¼ 0. Through

a Jordan-Wigner transformation this model is equivalent to
spinless fermions with nearest-neighbor density inter-
actions and at half filling. For jΔj < 1 the ground states
of this model are critical, and at long wavelengths the
behavior is then described by TLL theory with Luttinger
parameter K given by Δ ¼ − cos½π=ð2KÞ� [8]. For Δ ¼ 0
and hence K ¼ 1, the model describes noninteracting
fermions. The state of interest here is

jψinc ∝ e−V
P

j¼0;2;…
Ŝzj jψigs; ðD1Þ

and the quantity V differs from the parameter v in Eq. (14)
only by a constant of order unity. Our approach is to
prepare approximate ground states jψigs of ĤXXZ for
various K using iDMRG methods from the TENPY library
[69]. Naturally there are limitations in using this method to
prepare critical states; for example, the use of a finite bond
dimension gives rise to a finite correlation length ξ ∝ χκ

with κ ≃ 1.3 [70]. In practice, convergence is poor for K
substantially below unity, where there are strong density
correlations, and so we restrict ourselves to K ≥ 4=5. The
iDMRG algorithm prepares a MPS representation of jψigs
with a unit cell of two sites j ¼ 0, 1. Clearly, jψinc can be
represented by a MPS with the same periodicity, so we can
prepare its MPS representation from that of jψigs simply by

acting with e−VS
z
j¼0 and normalizing the result. For K ¼ 1

(Δ ¼ 0) there is the additional possibility of performing
exact numerical calculations using fermionic Gaussian
states, and so in this casewecan compare the twoapproaches.
Two correlation functions that change their functional

dependence on K across the transition at K ¼ 1 are
h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc and hei½θ̂ðxÞ−θ̂ð0Þ�inc. The first of these
describes the smooth part of the particle density, while
the second is a phase correlator. As we show in
Appendix B, the former decays as −x−2 for K > 1 and
as −x−2=K for K < 1, while the latter decays as x−1=ð2KÞ for
K > 1 and as x−1=K for K < 1. To relate these to correlation
functions of the spins, we write

Szj ≃ −π−1∇ϕ̂ðxÞ þ π−1ð−1Þx cos½2ϕ̂ðxÞ�;
Sþj ≃ ð2πÞ−1=2e−iθðxÞfð−1Þx þ cos½2ϕ̂ðxÞ�g; ðD2Þ

where x is the continuum analog of the site j. Then, at
large x,

hSz0½Szj þ Szjþ1�i ∼ h∇ϕ̂ð0Þ∇ϕ̂ðxÞinc;
ð−1ÞjhSþ0 ½S−j − S−jþ1�i ∼ hei½θðxÞ−θð0Þ�inc; ðD3Þ

where we omit prefactors, and additionally neglect con-
tributions to the right-hand sides of these relations that
decay more rapidly with x than those displayed. For brevity

we here refer to the correlators on the left-hand side, that are
defined at the lattice scale and straightforward to calculate
numerically, as the ∇ϕ̂ and eiθ̂ correlators, respectively.
Because our weak measurements act on the even sites, we
restrict the∇ϕ̂ correlator to odd values of j; results for even j
are qualitatively similar but there is a V-dependent offset
relative to odd j. We make no such restriction for the eiθ̂

correlator. We show numerical results for these correlation
functions in Fig. 6. As noted above, for K ¼ 1 the XXZ
model corresponds to free fermions, so we also show results
from calculations based on fermionic Gaussian states.
First note that with V ¼ 0, in which case there is no

measurement and jψnci ¼ jψgsi, the power-law decays of

the ∇ϕ̂ and eiθ̂ correlators Eq. (D3) indeed match TLL
theory, decaying respectively as x−2 (upper panels) and
x−1=ð2KÞ (lower panels). Additionally, for K ¼ 1 where the
measurement is a marginal perturbation, the ∇ϕ̂ correlator
is simply rescaled: For small V the leading order contri-
bution arises at second order in perturbation theory, taking
the form V2x−2. The behavior of the eiθ̂ correlation function
at K ¼ 1 is more difficult to ascertain; our theory predicts a
sharp jump from x−1=ð2KÞ to x−1=K as K is decreased
through unity, but this jump is smoothed out for finite L
(as in the results from exact diagonalization) and for finite χ
(as in the iDMRG calculations). Our focus here is on
behavior in the two phases, and so we defer discussion of
the critical point K ¼ 1 to future work.
We now discuss the behavior of the ∇ϕ̂ correlation

function for K ¼ 4=5 and for K ¼ 7=5. For K ¼ 4=5 the
expected change in the exponent from x−2 to x−2=K ¼ x−5=2

is not straightforward to observe on these scales; it is
nevertheless clear that the measurement-induced change in
this correlation function is far more significant at smallerK.
Most striking is the fact that, for K ¼ 7=4 and a meas-
urement so strong as V ¼ 1, the ∇ϕ̂ correlation function is
essentially unchanged, while even for V ¼ 2 it clearly
approaches its unperturbed value as x is increased. This is
precisely the behavior expected for measurements that are
irrelevant in the RG sense.
The eiθ̂ correlation function shows stronger signatures

of the transition. For K ¼ 4=5 we expect for V ¼ 0 a slow
decay x−5=8, while for V ≠ 0 we expect x−5=4 provided we
go to sufficiently large x. Note that the length scales
required to observe this crossover diverge as V → 0, so
it is unsurprising that the behavior x−5=8 is only observed
for the larger values of V. For K ¼ 7=5, on the other hand,
although our density measurements suppress the prefactor
in the phase correlations, there is as expected no visible
change in the power of the decay. In summary, the results of
this section demonstrate a sharp contrast in the structure of
jψnci for K < 1 relative to K > 1.
The numerical calculations in this section are relevant

for the transition at K ¼ 1 we study in Sec. III, and it is
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natural to ask whether similar results can be obtained for
the generic transition at K ¼ 1=2 discussed in Sec. IV.
A barrier to doing this in the XXZ spin chain above is that
decreasing the Luttinger parameter toward K ¼ 1=2 cor-
responds to increasing the anisotropy parameter toward the
Heisenberg point Δ ¼ 1. For Δ > 1 there is a quantum
phase transition from the gapless phase of interest into a
phase with long-range antiferromagnetic order. In language
appropriate for spinless fermions, this corresponds to CDW
order induced by strong repulsive interactions. To study
K < 1=2 there are a number of possibilities; for example,
one could include next-nearest-neighbor interactions,
or even long-range interactions, and thereby frustrate the
order that would otherwise set in for Δ > 1. Given a lattice
model which exhibits TLL behavior for K < 1=2, it is then
necessary to ensure that the slow decay of density corre-
lations x−2K < x−1 is not cut off by bond dimension
truncation. Such a calculation is essential to observe the
K ¼ 1=2 transition using the approach we outline in Sec. V.

APPENDIX E: GAUSSIAN MEASUREMENTS

As discussed in Sec. IV, in constructing our replica field
theory it is convenient to use a measurement model of the

form Eq. (22). In this appendix we discuss how M̂m can be
implemented by coupling local densities to quantum
harmonic oscillators. For simplicity we start from a
lattice model of spinless fermions at half filling so that
the normal-ordered density operator n̂ðxÞ at site x has
the property n̂2ðxÞ ¼ 1=4. Note that this choice causes the
n2ðxÞ contribution to the action sμ½φ; m�, relevant to the
discussion below Eq. (45), to cancel between numerator
and denominator in the calculation of postmeasurement
expectation values.
Let us first write the many-body state in the basis of

density eigenstates jψgsi¼
P

nhnjψgsijni, where n̂ðxÞjni ¼
nðxÞjni for nðxÞ ¼ �1=2. At each x we introduce an
oscillator, and we denote their position operators by
m̂ðxÞ. The oscillators are taken to have frequencies ω,
and “masses” of μ=ω, so that μ is the inverse-square
oscillator length. The Hamiltonian of the QHO at x should
take the form

ĤxðtÞ ¼
ω

2μ
π̂2ðxÞ þ 1

2
μωm̂2ðxÞ − fðtÞm̂ðxÞn̂ðxÞ; ðE1Þ

where π̂ðxÞ is the momentum, with ½m̂ðxÞ; π̂ðxÞ� ¼ i. At
t ¼ 0 we suppose that fð0Þ ¼ 0 and that the QHOs are

FIG. 6. Correlation functions computed in jψnci for the XXZ model using iDMRG. The upper and lower panels show, respectively, the
∇ϕ̂ and eiθ̂ correlation functions, and the Luttinger parameters K vary from column to column. The different bond dimensions χ (shown
as dashed and solid lines) and measurement strengths (shades) are indicated on the legends, and are the same for all panels. Dotted lines
show theoretical predictions: in the upper right-hand panel the orange line shows the behavior x−2=K, while green lines in the upper
panels show x−2. In the lower panels orange lines show x−1=K, while green lines show x−1=ð2KÞ (see text for details). In the central panels
we compare iDMRG results (grays) with exact results for a system of L ¼ 3 × 103 sites with periodic boundary conditions (blue)
(V increasing from top to bottom).
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in the corresponding ground state jΩi. The initial state of
the system and QHOs is simply the tensor product
jΨðt ¼ 0Þi ¼ jψgsi ⊗ jΩi, and so has amplitudes

hnjψgsihmjΩi ∝ hnjψgsie−ðμ=4Þ
P

x
m2ðxÞ: ðE2Þ

From t ¼ 0 to t ¼ T we increase the coupling to fðTÞ ¼
μω at every x, so that

ĤxðTÞ ¼
ω

2μ
π̂2ðxÞ þ 1

2
μω½m̂ðxÞ − n̂ðxÞ�2 − 1

2
μωn̂2ðxÞ:

ðE3Þ

If this increase is adiabatic with respect to the oscillator and
sudden with respect to the system, the amplitudes become

hn;mjΨðTÞi ∝ jψgsie−ðμ=4Þ
P

x
½mðxÞ−nðxÞ�2 : ðE4Þ

Performing now a projective measurement of the QHOwith
result m generates a state jψmi with amplitudes

hnjψmi ∝ e−ðμ=4Þ
P

x
½mðxÞ−nðxÞ�2hnjψgsi: ðE5Þ

If we now take the continuum limit, we find the operation
represented by M̂m in Eq. (22). For the coupling between
the QHO and the system to be adiabatic with respect to the
QHO, we require T ≫ ω−1. On the other hand, for it to be
sudden with respect to the system, we require T ≪ Λ−1,
whereΛ is the UV cutoff. This impliesω ≫ Λ. In order that
our measurement is weak, we also require μ−1 to be large
relative to the variance of the particle density. Large ω and
small μ imply a small mass for the QHO.
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