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In PT-symmetric systems, the notion of non-Abelian frame charges enables multiband topological
characterization of degeneracies by examining the eigenvector-frame rotations. Interestingly, some features
of these frame charges can be viewed as an analog of electric charges confined in conducting wires, only
that they flow in momentum space along nodal lines. But different from electric charges, these frame
charges are not integers, and non-Abelian signatures emerge when braiding between adjacent band nodal
lines occurs, which flips the direction of the flow. In photonic systems, the photonic Γ point serves as the
source or sink of such a frame charge flow due to a hidden braiding induced by the often-ignored
electrostatic mode at zero frequency. This source naturally generates non-Abelian topological signatures in
PT-symmetric photonic systems that can be identified even in ordinary dielectric media. We use biaxial
photonic crystals as examples to show how complex nodal line configurations can be explained as the
topological consequences of the frame charge flow from the Γ point to the Brillouin zone boundaries. Our
results reveal that non-Abelian band topology is intrinsically manifested in general photonic systems,
making them easily accessible platforms for exploring non-Abelian physics.
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I. INTRODUCTION

Topological semimetals possess gap-closing degenera-
cies manifested as nodal points, lines, or surfaces in three-
dimensional momentum space [1–21]. These singular
nodal features serve as the origin of nontrivial topology
and play an important role in topological physics. The
topological nature of these nodal degeneracies has been
fruitfully characterized using topological invariants such as
Chern numbers or quantized Berry phases defined within a
single band. Very recently, the topological character of a
system where multiple bands are simultaneously consid-
ered has been determined and used to characterize the nodal
lines in the presence of PT or C2T symmetry [22,23].
Under such symmetry constraints, the Hamiltonian
becomes real. The classifying space of an N-band real
Hamiltonian is then MN ¼ OðNÞ=Oð1ÞN , where OðNÞ is

the orthogonal group. The first homotopy group of such a
Hamiltonian space can be found as π1ðMNÞ ¼ QN [22,24],
revealing that generalized quaternions serve as the topo-
logical charges. In such an approach, degeneracy lines are
topologically characterized by the rotations of the eigen-
vector frame along 1D loops encircling them. The group
QN denotes the non-Abelian generalized quaternion or
Salingaros vee group of Clifford algebra Cl0;N−1. It
contains 2N elements, with each generalized quaternion
charge q in QN formed by the products of generators gi,
which indicate the π rotation of ði; iþ 1Þth eigenvectors
when the system Hamiltonian goes around the loop.
Within this multiband topology, the real eigenvectors

define an orthogonal frame, similar to the axis in Cartesian
coordinates, which rotates when the system Hamiltonian
evolves in momentum space along a closed loop. The
topological charges can then be understood as the quan-
tized angles of the frame rotations around the closed loops,
i.e., the frame charges. Distinct from single-band invariants
such as Chern numbers, which are integers, quaternions are
matrixlike entities that are generally noncommutative under
multiplication. The multiband viewpoint thus opens the
door to the exploration of non-Abelian topology in energy
or frequency bands [22–39]. In addition to providing an
understanding of the formation of band degeneracies or the
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prediction of boundary modes, dynamical non-Abelian
topological effects may also benefit the pursuit of photonic
information processing and quantum logic [40,41]. The
path- or sequence-dependent behavior of non-Abelian
frame charge evolution also promises potential applications
in channel multiplexing or information encryption in
optical communication systems.
Despite the recent advances in investigating the non-

trivial multiband topology, more intriguing and funda-
mental features of the non-Abelian frame charges remain
to be discovered. As the non-Abelian multiband topology
is required to be globally self-consistent, here we take a
global perspective that provides access to more funda-
mental topological characters of the frame charges. Within
this context, a momentum-space nodal line characterized
by frame charge can be associated with a well-defined
sign, so that an “arrow” can be assigned to it [22,25].
Interestingly, the arrow presentation can be heuristically
identified as a manner of topological charge flow along
nodal lines, which is reminiscent of the classical electric
charges flowing in a conducting wire, except that the non-
Abelian braidings between nodal lines will induce a sign
change or flip of the arrow. Based on the global picture of
such a frame charge flow, we first propose a series of
novel topological features and then illustrate them with
ordinary photonic systems (such as photonic crystals),
wherein the equifrequency surfaces intersect each other
and manifest as the nodal lines in momentum space. We
discuss the governing rule, generating source, and observ-
able topological consequences of the non-Abelian frame
charge flow, respectively.
In particular, we find that a hitherto unnoticed role is

played by the zero-frequency electrostatic mode in pho-
tonic systems. With the zero-frequency mode taken into
consideration, the photonic Γ point is a triple degeneracy
which makes the photonic eigenstates intrinsically non-
trivial from an eigenvector-frame-rotation viewpoint. The
zero-frequency band induces a hidden non-Abelian braid-
ing, making the Γ point a source (or sink) of the non-
Abelian frame charge flow that has not been discovered
before. Such a source character is of fundamental impor-
tance in general photonic media that generates the non-
Abelian frame charge flow in momentum space. We note
that an important role of the zero-frequency mode has also
been noticed very recently in determining the minimal band
connectivity (when a fundamental complete gap can open)
of photonic crystals [42]. We note that the prior work
focused on the symmetry indicator of an individual
photonic band, where both the method and the scope are
very different from this manuscript. Here, we focus on the
non-Abelian multiband topological characterization based
on eigenvector-frame rotations and homotopy theory that
applies to general photonic media, and in fact to any media
that have three or more real eigenvectors to define an
orthogonal frame.

To be specific, the intersections of equifrequency surfa-
ces in ordinary optical dielectrics of uniaxial or biaxial are
shown to manifest the non-Abelian band topology. The
topological signatures of a photonic Γ point as a generating
source can be identified using conical refraction in the far
field. Uniaxial and biaxial photonic crystals are then
designed and studied, whose nodal lines evolution (inter-
section of equifrequency surfaces) in periodic momentum
space illustrate the topological frame charge flow, wherein
we see that the nodal features can be explained by
interpreting the photonic point as a source of frame charges,
which flow outward along momentum space nodal lines to
Brillouin zone (BZ) boundaries, following an analog of
Kirchhoff’s law while encountering the BZ boundaries.
The emergence of extra nodal lines on the BZ boundaries is
enforced as the topological consequences, and their exper-
imental observation substantiates the notion of frame
charge flow.
The outline of this paper is as follows. In Sec. II, we

propose and illustrate the flowing picture of non-Abelian
frame charges with the Kirchhoff-like law and braiding law.
In Sec. III, we discuss the non-Abelian band topology
embedded in the equifrequency intersections of ordinary
photonic media and identify the photonic Γ point as a source
of frame charge flow. In Sec. IV, we focus on the topological
consequences of such a frame charge flow, including the far-
field conical refraction in biaxial dielectric media and the
nodal lines evolution in the momentum space of photonic
crystals. In Sec. V, we provide direct experimental character-
izations of biaxial photonic crystal to verify the topological
properties of the nodal lines. Further insights into non-
Abelian band topology on a photonic fundamental gap
opening are discussed in Sec. VI. Section VII contains a
discussion and concluding remarks.

II. NON-ABELIAN FRAME CHARGE FLOW
WITH AND WITHOUT BRAIDING

A. General description of frame charge flow

The nodal line is the momentum-space presentation of
band degeneracies that are usually protected by symmetries
such as a mirror or PT. The nodal line carries a quantized
Berry phase and can be viewed as a singularity that is the
zero limit of a string of Berry curvature [43,44]. In such a
way, the nodal line in momentum space plays the role of
confinement, where the quantized Berry phase is a result of
the enclosed Berry flux by a loop encircling the nodal line.
To put this narrative in a heuristic and yet quantifiable
description, we can draw an analogy between the topo-
logical charges carried by the nodal line and the electrical
charges in conducting wire, as shown pictorially in
Figs. 1(a) and 1(b). In particular, the magnitude of the
“topological charge” in the nodal line can be defined as the
quantized Berry phase accumulated along an encircling
homotopy loop (π1), which manifests as the winding of an
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eigenvector. However, in a multiband scenario, the quan-
tized Berry phase becomes a non-Abelian Wilczek-Zee
phase [45], and instead of considering the rotation of one
single eigenvector, the rotation of the eigenvector frame
should be examined, as shown in Fig. 1(c). Depending on
whether the frame rotation is “clockwise” or “anticlock-
wise,” a sign can be assigned to the topological frame
rotation charge; for instance, the �π frame rotations are
noted as the elements q ¼ �gi of a generalized quaternion
group [24] (see Supplemental Material, Sec. I [46]). The
sign of frame rotation charge can be presented as the
directed arrow on the nodal line, as shown in Fig. 1(c).
When no braiding appears, the charge q ¼ �gi remains

conserved for any encircling loop along a nodal line due to
the invariance of the topology-determined Wilczek-Zee
Berry phase. As such, the frame charges do not accumulate
for nodal lines crossing the configuration shown in Fig. 1(d).
By incorporating the relative direction regarding the crossing
point, it is natural to define the “frame charge flow”
following a rule (reminiscent of Kirchhoff’s current law) as

X
n

sgn × qn ¼ 0; ð1Þ

where n labels and runs over all nodal line branches, and sgn
characterizes the flowing direction toward or away from the
junction point (in a similar manner to the definition of
electric current).

Such a “no-accumulation of charge” can be illustrated
by Fig. 1(d), which shows two arrows (or frame charges
q ¼ gi) flowing into a meeting point of nodal lines and then
flowing out. To characterize the topology with homotopy
groups, we encircle the nodal lines with 1D (π1) loops. Two
different ways of encircling a nodal line pair with π1 loops
are illustrated in Fig. 1(d), representing the charge multi-
plications of q ¼ �gi, which result in the q ¼ þ1 charge
(0 frame rotation) and q ¼ −1 charge (2π frame rotation),
respectively. We note that if the loop encircles two
“opposite arrows” (one flowing inward to and the other
flowing outward from the junction point), the total charge
encircled by the loop is the trivial “þ1” quaternion charge,
and the encircling of two “same-direction arrows” (either
both inward or both outward) gives nontrivial “−1”
quaternion charge [22] (see detailed discussion in
Supplemental Material, Sec. II [46]).

B. Braiding-induced source or sink

Although these frame charges defined along nodal lines
show resemblance to the electric charges flowing in a wire,
we note that the frame charge flow can switch sign when
braiding occurs due to its non-Abelian character, which
happens when one additional degeneracy line comes into
action. The non-Abelian nature of frame rotations results in
an anticommutative relation between frame charges as
giþ1gi ¼ −gigiþ1, which implies that a braiding between

∑ sgngi = 0

π Berry phase

Nodal line

Extra 
bands

Frame

Frame charge q = gi 

Eigenvector

ith/(i+1)th (i+1)th/(i+2)thNodal lines

(a)

(d)

e-

q = -1

q = +1

Braiding

q = -1

q = -1

Source or sink

Conducting wire

Electric charge flow

Topological
charge

Triple degeneracy

(b)

(e)

(c)

(f)

FIG. 1. Non-Abelian frame charge flow with and without braiding. (a) The electric charge moving in a conducting wire in real space.
(b) The counterpart of the topological charge (quantized Berry phase) moving along the nodal line in momentum space. (c) The
topological charge becomes the non-Abelian frame rotation charge for the PT-symmetric multiband system. (d) When two nodal lines
cross each other, the frame charges do not accumulate at the joint point and follow an analog of Kirchhoff’s current law. (e) When
“braiding”with another nodal line occurs, a sourceless junction point transforms into a source or sink of frame charges with the “all-out”
or “all-in” arrows configuration. (f) The braiding can also be manifested as a triple-degeneracy point.
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adjacent nodal lines would introduce a sign change to the
frame charge or the arrow direction on a nodal line [22]
(explained in Supplemental Material, Sec. II [46]). As the
presented case in Fig. 1(e), the existence of another nodal
line (the red line) at the junction can flip the arrows on blue
nodal lines after they pass through the junction. We thus
arrive at the arrow configuration where the arrows are
rearranged as all pointing outward from (or inward to) the
junction point. Such a braiding point thus functions as a
source or sink of the non-Abelian frame charge flow, which
has not been reported before. Meanwhile, in such a
configuration, any encircled nodal line pairs are with
same-direction arrows, and we arrive at the simultaneous
topological charges of q ¼ −1 for two π1 loops shown in
Fig. 1(e), which fully determine the relative arrow direc-
tions around the crossing of two nodal lines. This topo-
logical frame charge configuration is referred to as a
“double −1” charge in the following for convenience,
and it indicates a source or sink of frame charge flow. In
Fig. 1(f), we show that such a braiding can also be encoded
into a triple-degeneracy point, which corresponds to the
photonic band manifestation presented in the next section.

III. NON-ABELIAN BAND TOPOLOGY
IN ORDINARY PHOTONIC MEDIA

While the literature might give the impression that
abstract notions such as non-Abelian topology are only
relevant to very special materials, here we show that they
can be manifested in very ordinary optical materials, where
the proposed topological features in Sec. II can be found.
In photonic systems, two electromagnetic transverse

modes are generally supported due to the polarization
degrees of freedom. However, a zero-frequency longi-
tudinal solution is also allowed by Maxwell’s equations
even though this solution is usually considered to have no
consequence in wave propagation. By taking the zero-
frequency solution into consideration, the photonic Γ point
becomes a threefold degeneracy point, where three eigen-
vectors define an orthogonal triad frame whose rotation
along a k-space loop can be characterized by quaternions
and represents the non-Abelian topological charge. In
particular, we find that such an intrinsic triple degeneracy
at the photonic Γ point serves as the source or sink of non-
Abelian frame charge flow in momentum space that we
propose in the previous section, where a hidden braiding is
embedded at the Γ point making it a generating source.

A. Uniaxial dielectric medium

To reveal the non-Abelian topological features in simple
optical media, we start from dielectric materials with
only diagonal terms in the permittivity tensor as
ε ¼ ½εxx; εyy; εzz�. The Maxwell equations describing such
media can be encoded into a three-band Hamiltonian as
(details in Appendix A 1)

H ¼

2
666664

k2y
εxx

þ k2z
εxx

þ ω2
px

εxx
− kxkyffiffiffiffiffi

εxx
p ffiffiffiffiffi

εyy
p − kxkzffiffiffiffiffi

εxx
p ffiffiffiffi

εzz
p

− kxkyffiffiffiffiffi
εxx

p ffiffiffiffiffi
εyy

p k2x
εyy

þ k2z
εyy

þ ω2
py

εyy
− kykzffiffiffiffiffi

εyy
p ffiffiffiffi

εzz
p

− kxkzffiffiffiffiffi
εxx

p ffiffiffiffi
εzz

p − kykzffiffiffiffiffi
εyy

p ffiffiffiffi
εzz

p k2x
εzz

þ k2y
εzz

þ ω2
pz

εzz

3
777775; ð2Þ

whose eigenvalues give the photonic dispersion, and the
three eigenvectors represent the polarization states of
½ ffiffiffiffiffiffi

εxx
p

Ex
ffiffiffiffiffiffi
εyy

p Ey
ffiffiffiffiffiffi
εzz

p
Ez�, which together form a rotation

frame. The terms involving ωp are added to allow for the
incorporation of resonances.
Taking a dielectric uniaxial material with permittivity

ε ¼ ½2; 2; 1� as an example (ωp ¼ 0), the nodal line in
momentum space is shown in Fig. 2(a), where the straight
nodal line in blue is formed by the intersection between the
equifrequency contours (EFCs) shown in the inset. Taking
the zero-frequency solution into account (labeled as the
zeroth band), the Γ point is a triple degeneracy that is
marked in red. The three-band eigenpolarization frame
undergoes a 2π rotation along the π1 loop encircling the
nodal line in momentum space, as shown in Fig. 2(a).
The 2π rotation corresponds to the nontrivial −1 element of
the quaternion group and remains conserved when the
system is adiabatically perturbed (Appendix B 1).

B. Biaxial dielectric medium

More interesting, in a dielectric biaxial material with a
permittivity tensor of ε ¼ ½1; 2; 3�, the nodal lines in
momentum space become two lines crossing at the pho-
tonic Γ point, as shown in Figs. 2(b) and 2(c). In these
figures, there exist two loops lying in orthogonal planes
(one in the horizontal plane and one in the vertical plane)
that both encircle the Γ point and each gives a nontrivial
topological charge of −1 manifested as the 2π rotations of
the eigenpolarization frame around the loops. The Γ point
thus exhibits a double −1 charge, which fully determines
the arrow configuration as all pointing outward (or inward).
Such an arrow configuration characterizes the photonic Γ
point as the source or sink of non-Abelian frame charge
flow as we discuss in Sec. II B. Similar to the analysis in
Fig. 1(f), the topological origin of the source or sink role
here can be traced to the triple degeneracy at the photonic Γ
point, which can be intuitively understood as an infinitesi-
mal nodal line formed between the zeroth (zero-frequency
mode) and first bands that braids with the blue nodal lines
as we present below.

C. Hidden braiding at zero-frequency
photonic Γ point

The hidden braiding at the zero-frequency photonic Γ
point can be revealed by perturbing the system with the
addition of plasmonic resonances, as noted with ωp in
Eq. (2). We take the case of the permittivity tensor as
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ε ¼ ½1 − ω2
px=ω2; 2; 3� and proceed to study the nodal line

transformations and frame charge distribution.
The nodal structures after adding the plasmonic reso-

nance (ωpx ¼ 1) are shown in Figs. 2(d)–2(f), where the
crossing point of two blue nodal lines is broken, but due to
the nontrivial −1 frame charge confinement, the two blue
nodal line branches cannot be topologically separated. A
new nodal line in orange emerges to link to them, which is
formed between one transverse mode and the lifted
longitudinal mode (previously zero frequency; see
Appendix B 1). Because of the gauge-independent property
of the þ1 and −1 frame charges, we construct a few π1
loops in Figs. 2(d)–(2f) that encircle two branches of nodal
lines of the same color to carry q ¼ ð�giÞð�giÞ ¼ �1
frame charges and study the topological nodal structure.
By calculating the frame charges, the arrows on the

nodal lines are determined as indicated in Figs. 2(d)–2(f),

and we see that the arrows on the blue nodal lines are
all pointing outward similar to the unperturbed case of
Figs. 2(b) and 2(c). Importantly, these arrows are induced
by the braidings between the orange nodal line and the blue
nodal line. As the perturbation tends to zero, the orange
nodal line shrinks to infinitesimal and becomes the triply
degenerate photonic Γ point. Such a process illustrates the
hidden braiding and the origin of double −1 charge at the
photonic Γ point of zero frequency.
We note in Figs. 2(e) and 2(f) that the orange nodal

line from the zeroth and first bands carries only a
single −1 charge at the Γ point (two arrows flow in
and another two flow out), which is because the Γ point is
no longer a threefold degeneracy after the zero-frequency
longitudinal mode is lifted to a finite frequency. Similar
results can be found for other types of perturbations
(Appendix B 2).

(e)(d)
q = 1q = -1 q = -1

1st/2nd π1 loops 0th/1st Bands:
kx

kzky

(f)

(c)(b)(a)

Uniaxial: ε  :laixaiB]1 ,2 ,2[ = ε = [1, 2, 3]

q = -1q = -1q = -1

2nd 1st 0thPolarization:

kx/y

kz

kx

kz ky

Biaxial: ε = [1, 2, 3]

kx

kz

FIG. 2. Frame charge source and hidden braiding in photonic biaxial material. (a) The photonic Γ point is a triple degeneracy by
taking the zero-frequency mode into consideration, as marked in red. The nodal line (the intersection of the EFCs from inset) of a
uniaxial material gives rise to 2π rotation of the eigenpolarization frame, corresponding to the −1 quaternion charge. (b),(c) Nodal
lines of the biaxial material form as the cross structure in momentum space. The two π1 loops in the horizontal and vertical planes
both give 2π frame rotations, which reveals the double −1 charge that generates the frame charge (arrow) flow. (d)–(f) The
transformation of nodal lines after introducing the perturbation of ωpx ¼ 1 (ωpy;z ¼ 0) that reveals the hidden braiding at the
photonic Γ point. The original blue nodal line is separated along the kx direction, but a new orange nodal line shows up to connect
them and provides braidings, making the all the arrows on the blue nodal line point outward. The three π1 loops in (d)–(f) are used to
determine the arrows on the nodal lines. The orange nodal line carries a single −1 charge at the Γ point due to the lack of triple
degeneracy.
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IV. TOPOLOGICAL SIGNATURES INDUCED
BY FRAME CHARGE FLOW

A. Far-field identification of the source
at the Γ point in a biaxial dielectric

It is known that the conical refraction in biaxial media
carries Berry phase information [47,48]. This can be
adopted here as a means to identify the topological
signatures of arrow configurations on nodal lines around
the photonic Γ point. We numerically compute the conical
refraction patterns for the four nodal line branches in
momentum space of a biaxial material (ε ¼ ½1; 2; 3�), as
shown in Fig. 3(a). The detailed configuration (modeled in
COMSOL MULTIPHYSICS) for observing such conical refrac-
tions is shown in Fig. 3(b), where the incident Gaussian
beam with circular polarization impinges along the nodal
line (or optic axis) direction. While propagating in the
biaxial media, a tilted cone shows up, and at the truncated
plane, the polarization state experiences a π phase winding,
as expected with conical refraction.
To reveal the non-Abelian topology, we examine such

phase windings for all four branches of nodal lines as
shown in Fig. 3(c), where the observation plane is out-
wardly pierced by each nodal line branch. The results show
that the phase windings are all π on the bright ring of
conical refraction. And more importantly, the phase wind-
ing directions in the four panels of Fig. 3(c) are all the same
(clockwise or anticlockwise depending on the definition),
consistent with the all-in or all-out arrow configuration on
the nodal lines near the photonic Γ point. These far-field
patterns provide evidence for the double −1 charge
character of the photonic Γ point, which serves as a source

of non-Abelian frame charges in the homogeneous biaxial
dielectric.

B. Manifestation of frame charge flow
in the periodic Brillouin zone

Since the photonic band of a homogeneous medium
extends to infinity in k space in the absence of a minimum
length scale, the generated frame charges from the Γ point
flow to infinity in momentum space. When seeking addi-
tional observable topological signatures induced by the
generating source or sink of the photonic Γ point, it is easier
to consider periodic photonic crystal systems in which the
“flow” of frame charges can be observed within the first
Brillouin zone. In the following, we discuss the topological
consequences that are identified as momentum-space nodal
lines on BZ boundaries and available for experimental near-
field measurements.
We design an optically biaxial photonic crystal for

experimental demonstration. The unit cell is shown
in Fig. 4(a), where two resonators are oriented along
orthogonal directions. The metal bars in the resonators have
different geometrical lengths of L1 and L2. In the long-
wavelength limit, the optics of the photonic crystal can be
described by the effective permittivity tensor ε¼½εxx;εyy;1�,
where εxx¼1−ω2

px=ðω2−ω2
0xÞ and εyy¼1−ω2

py=ðω2−ω2
0yÞ

(Appendix A 2). The frequencies ωpx;y are approximately
the same due to the same periodicity of the resonators
arranged along the x and y directions. The resonator lengths
L1 and L2 determine the resonance frequencies ω0x;y

leading to an optically biaxial material with effective
permittivity εxx ≠ εyy ≠ 1 when L1 ≠ L2.
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FIG. 3. Conical refractions in biaxial material. (a) The schematic of the examined u-v plane in real space, which is perpendicular to the
nodal line branch. (b) The configuration for observing the conical refractions. (c) The winding of polarization states on the conical
refraction ring for each nodal line branch.
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The low-frequency dispersion of the photonic crystal (near the Γ point) can be described using an effective Hamiltonian
(Appendix A 2),

2
666666664

k2y þ k2z þ ω2
px −kxky −kxkz −ω0xωpx 0

−kxky k2x þ k2z þ ω2
py −kykz 0 −ω0yωpy

−kxkz −kykz k2x þ k2y 0 0

−ω0xωpx 0 0 ω2
0x 0

0 −ω0yωpy 0 0 ω2
0y

3
777777775

2
6666664

Ex

Ey

Ez

Px

Py

3
7777775
¼ ω2

2
6666664

Ex

Ey

Ez

Px

Py

3
7777775
: ð3Þ

The eigenvalues are solved to obtain the nodal structures,
and the results are shown in Fig. 4(b). Because of the
existence of a zero-frequency mode, the eigenvector-frame
rotations around the horizontal and vertical π1 loops
(indicated by the green dotted lines) can be both found
as 2π (verified in Appendix C 1), indicating that the Γ point
is a −1 quaternion charge from the point of view of two
orthogonal planes and hence carries a double −1 charge.
The nodal lines spawned from the Γ point are each
characterized by their own frame charge as indicated by
the arrows on them in Fig. 4(b).

Going beyond the effective medium description, we now
consider the frame charge flow in periodic momentum
space by computing the eigenmodes of the photonic crystal
[unit cell shown in Fig. 4(a)] using full-wave simulations
(CST Microwave Studio). The band structures are calcu-
lated as shown in Fig. 4(c), where high-symmetry positions
are marked for the BZ in Fig. 4(a). The band degeneracies
are retrieved as momentum-space nodal lines in Fig. 4(d).
The Γ point acts as a source (or equivalently, a sink) of non-
Abelian frame charge flow. Nodal lines spawning from the
Γ point carry frame charges of q ¼ �gi as indicated with
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FIG. 4. Non-Abelian frame charge flow in biaxial photonic crystal. (a) Unit cell containing two H-shaped resonators with L1 ¼ 3 mm
and L2 ¼ 2 mm. The lattice constants along the x, y, and z directions are a ¼ 4 mm, b ¼ 4 mm, and c ¼ 3.2 mm, respectively. The BZ
is shown in the right inset. (b) Nodal structures from the effective Hamiltonian calculation. The Γ point carries a double −1 charge,
which can be viewed as the source of non-Abelian frame charge flow, as indicated with directed arrows in color. Adopted parameters are
ωpx;y ¼ 1, ω0x ¼ 0.4, and ω0y ¼ 1.6. (c) Band structures calculated for the photonic crystal. Degeneracy points are marked in color.
(d) Retrieved nodal structure from photonic crystal band dispersions. Brown nodal lines are degeneracies between the first and second
bands but join from the extended BZs. Green circles indicate π1 loops characterizing the −1 (A, B, C, and D) or þ1 element of the
generalized quaternion group (C1 and D1). Nodal lines 5–12 can be viewed as topological consequences of the non-Abelian frame
charge flow originating from the source at the photonic Γ point.
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colored arrows on them, with the base point of the
homotopy loops pinned near the Γ point.
We then trace the frame charge flow in the periodic BZ of

Fig. 4(d) and examine the available topological conse-
quences. Starting from the photonic Γ point, the arrows
on the nodal lines labeled as 1–4 all go in outward directions.
This is possible due to the double −1 charge at the Γ point,
where the −1 charge can be found for both the vertical
loop A and horizontal loop B (numerically verified in
Appendix C 2). If we follow the frame charge on nodal
line 1 from Γ to the top BZ boundary (kz ¼ π=c plane), we
notice that the counterpart of nodal line 2 from the extended
zone joins it. These lines contribute to a −1 charge
(q ¼ g1 × g1 ¼ −1) when we consider the π1 loop C
encircling the junction point (verified in Appendix C 2
and discussed in Supplemental Material, Sec. 3 [46] with
the Zak phase [34]). This−1 charge fixes the arrow direction
on nodal line 2’, and the two arrows on nodal lines 1 and 2’
are all pointing toward the junction point. To preserve the
Kirchhoff-like law, additional nodal lines must emerge from
the junction. This explains the existence of two additional
nodal lines of 5 and 6 that show up on the top BZ boundary
carrying frame charges to point outward from the junction.
We then see that the complex network of nodal lines has a
topological reason to exist in the way it presents itself, and it
is recognized as the topological consequence of frame charge
flow. Furthermore, if we follow the nodal lines 5 and 6 to the
right BZ boundary, we see that they are joined by nodal lines
7’ and 8’ from the extended zone. If we consider the π1 loop
D in Fig. 4(d), we find that it encircles a−1 charge, meaning
that it must have two arrows of the same sign piercing
through the area enclosed by the loop. This requirement
enforces the direction of the arrows on nodal lines 5 and 7’ to
be the same, both flowing toward the junction point. This
arrow configuration then requires that additional nodal lines
must emerge from the meeting point to satisfy the Kirchhoff-
like law, which further explains the emergence of nodal lines
9 and 10’ on the right BZ boundary. The Kirchhoff-like law
also allows us to assign directional arrows to nodal lines 9
and 10 (or 11 and 12), as shown in Fig. 4(d). We then notice
that the arrows on 9 and 10 (or 11 and 12) are flowing in
opposite directions, and yet nodal lines 9 and 10 are joined.
So, the sign of the quaternion charge on nodal line 9 must be
flipped when the charge flow from the top to the bottom of
the BZ on the right BZ boundary. This sign-change
mechanism is provided by the braiding with the red nodal
ring (formed between the second and third bands), remem-
bering that we set the viewpoint (or basepoint) near the Γ
point in Fig. 4(d), which makes the red nodal ring lie in front
of the nodal lines 9 and 10 to provide braiding. It can also be
noticed that the braidings here (between the red nodal ring
and nodal lines 9–12) effectively serve as the sink of frame
charge flow, complementary to the source at the Γ point. We
note again that such a switching is possible because the
quaternion group is non-Abelian and there is no Abelian

analog, e.g., in electric charges. If we take a look again at the
degeneracy points in Fig. 4(c) and the degeneracy lines in
Fig. 4(d), it will be difficult to understand why they should
appear in such a geometrical arrangement without using the
non-Abelian topological interpretation. These nodal line
configurations can thus serve as evidence of the frame
charge flow, and we provide experimental demonstration in
the following.

V. EXPERIMENTAL DEMONSTRATION
OF NON-ABELIAN FRAME CHARGE FLOW

IN PHOTONIC CRYSTAL

We fabricate the photonic crystal shown schematically in
Fig. 4(a) and experimentally characterize the nodal lines on
the BZ boundaries to demonstrate the frame charge flow.
The samples are fabricated with printed circuit boards
(PCBs) and characterized at microwave frequencies. To
best present these nodal lines, we focus on the bulk band
degeneracies and present the discussions related to surface
modes in Supplemental Material, Secs. 3 and 4 [46].
In Figs. 5(a) and 5(b), we show the retrieved nodal lines

in the ky ¼ 0 and kx ¼ π=a planes, respectively. These
nodal lines can be experimentally characterized with the
configuration shown pictorially in Fig. 5(c), where the
planar resonators are fabricated on PCBs as arrays of
printed metallic elements in the x-y plane. These PCBs are
stacked along the z direction to construct a sample exposing
the x-z or y-z surfaces.
For the nodal lines in the ky ¼ 0 plane in Fig. 5(a), the

nodal degeneracies are the crossing points (marked in
green) of the bulk-mode EFCs, as shown in the top row
of Fig. 5(d). On the x-z surface of the fabricated sample, we
experimentally measure the band projections, and the
projected band EFCs are shown in the bottom row of
Fig. 5(d). The predicted EFCs can be clearly identified from
the measured results as the outer boundaries of excited
modes, verifying the nodal lines in the ky ¼ 0 plane.
The nodal lines in Fig. 5(b) can be characterized by

cutting the surface BZ (ky-kz plane) at discrete kz positions.
In the top row of Fig. 5(e), we show the calculated band
projections on the ky-kz plane for several kz-cut lines
(scanned along ky), where the nodal degeneracies can be
identified from the projected bands marked with orange
dots. In the bottom row of Fig. 5(e), we show the measured
results for the projected bands for comparison with the
calculation results, and we find very good agreement. The
bulk band dispersions with kx ¼ π=a are shown on top of
the experimental results as white lines, and the crossing
points are identified as orange dots.
In Figs. 6(a) and 6(b), we show the nodal ring in the

kz ¼ 0 plane and nodal lines in the kz ¼ �π=c plane. These
degeneracies can be experimentally identified from the
band projections onto the kx-ky plane by cutting at different
kx positions (scan along ky). We show the experimental
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configuration in Fig. 6(c), where the PCBs are stacked
along the z direction and measurements are conducted at
the x-y surface.
At small values of kx, the nodal ring in the kx-ky plane is

cut as shown in Fig. 6(a). We show the calculated band

projections in the top row of Fig. 6(d). The sliced points
from the nodal ring are marked as red dots in the projected
bands. Drumhead surface states induced by the nodal ring
can be found in the calculated results, which are marked in
magenta. Their relationship to the Zak phase is discussed in
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FIG. 5. Experimental characterization of nodal lines on the x-z and y-z surfaces of the biaxial photonic crystal. (a) The nodal line in
green is located in the ky ¼ 0 plane and can be measured from the x-z surface. (b) The nodal lines at the kx ¼ �π=a boundaries can be
characterized from the y-z surface. (c) The experimental configuration for side surface measurements. The PCBs comprising the
photonic crystal are stacked horizontally (along the x or y direction, 80 × 80 × 10 units), and the measurements are conducted on the
x-z or y-z surface. The source and probe antennas are arranged as indicated. (d) The green nodal line in (a) represents the EFC crossings
shown for different frequencies in the top row. Experimentally measured results are shown in the bottom row. (e) Calculated band
projection on the ky-kz plane with kz fixed at different values (scan along ky). Band degeneracies are marked in orange. Experimentally
measured results are shown in the bottom row, and bulk bands are plotted as white curves.
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Supplemental Material, Sec. III [46]. The light cones for the
background air (ε ¼ 1) and substrate (ε ¼ 2) are shown as
cyan and red curves, respectively. We show the experi-
mental measured results in the bottom row of Fig. 6(d). The
bulk bands are shown on top of the experimental results,
and the band degeneracy from the nodal ring is identified.

The predicted drumhead surface states are also observed in
the experimental data, as indicated with black dashed
curves in Fig. 6(d).
For larger values of kx, the nodal lines on the top (or

bottom) BZ boundaries are crossed. We show the calculated
results in the top row of Fig. 6(e), with the degenerate

(e)

(d)

(a) (b) (c)

FIG. 6. Experimental characterization of nodal lines on the x-y surface of the biaxial photonic crystal. (a) The kx ¼ const
plane at small-kx value cuts the red nodal ring at two nodal points. (b) For large values of kx, the blue nodal lines are intersected by the
kx ¼ const plane. (c) Measurement configuration, where PCBs comprising the photonic crystal are stacked along the z direction
(80 × 80 × 10 units). (d) Simulation results for the projected bands at small-kx values (scanned along ky) are shown in the first row.
Experimentally measured band projections are shown in the second row, with computed band dispersions overlaid as white curves, and
the blue line is the light cone. Drumhead surface modes are also experimentally observed. (e) Calculated band projections at large-kx
values are shown in the top row, and the degeneracy nodes are marked in blue. The experimentally measured results are shown in the
bottom row, and the computed bulk bands are plotted as white curves.
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positions marked in blue. Light cones for the air and
substrate are shown as cyan and red curves, respectively.
The experimental measurements are shown in the bottom
row, where the predicted degeneracies are observed and
marked in blue. We note that the surface modes induced by
these nodal lines are closely attached to the bulk bands, as
shown in the top row of Fig. 6(e). These surface modes thus
merge with the bulk band projections in the experimentally
measured results.
We have now experimentally characterized all the nodal

lines shown in Fig. 4(d). In particular, the observed nodal
lines on the top (bottom) and side BZ boundaries serve as
the topological consequence of non-Abelian frame charge
flow in momentum space of the biaxial photonic crystal.
These nodal lines also provide experimental evidence for
the double −1 charge at the photonic Γ point and verify the
proposed generating source of frame charge flow.

VI. MULTIBAND TOPOLOGICAL INSIGHT INTO
THE OPENING OF THE FUNDAMENTAL

PHOTONIC BAND GAP

The opening of the fundamental photonic band gap is
one of the most important problems in photonic band-gap
systems since the early days of photonic band-gap research
[49]. It is constrained by the minimal band connectivity of
the lowest set of photonic bands, which has been estab-
lished recently for the 230 space groups [42,50]. We show
here that the multiband topological characterization can
offer further insights.
For example, the biaxial photonic crystal shown in Fig. 4

complies with space group no. 47 with a minimal band
connectivity of u ¼ 2 according to Ref. [42], which permits
the gap to be opened between the second and third bands.
However, we note that such a gap is not opened in the
studied crystal as shown in Fig. 4(c). There are degeneracy
rings formed by the second and third bands, and the
degeneracy is not “accidental” in the sense that tuning
the structural parameters in Fig. 4(a) cannot gap these lines.
Interestingly, the existence of the degeneracy can be
explained using the flow of frame charge presented in
Fig. 4(d). As can be seen in Fig. 4(d), frame charges emerge
from the photonic Γ point, and flow along blue nodal lines.
They cannot vanish until encountering with a sink, which
can be the non-Abelian braidings or unbalanced Zak phases
provided at BZ boundaries [34]. With the source configu-
ration of the photonic Γ point (from the zeroth to second
bands) shown in Fig. 4(d), direct computation (see
Supplemental Material, Sec. III [46]) indicates that there
is no additional Zak phase to balance the generating source
at Γ, which leaves only one possibility: A sink by braiding
is required to exist somewhere inside the BZ. Because of
the commutive relation of frame charges for nonadjacent
bands [22,25], such a braiding can be provided only by
neighbor band-gap closing nodes, which indicates that the
second and third bands should be degenerate at some

position in momentum space, and that will be the nodal ring
in red in Fig. 4(d). The non-Abelian multiband topology
thus explains why the minimal band connectivity of u ¼ 2
is increased to u ¼ 3 for the structure shown in Fig. 4(a).
However, we should note that such a multiband topological
characterization does not invalidate the minimal band
connectivity for the referred space groups, e.g., no. 47
here, found using group theory. There are indeed certain
electromagnetic structures of space group no. 47 where the
second and third photonic bands are gapped. But there
are also structures [e.g., Fig. 4(a)] carrying robust degen-
eracies between the second and third bands that cannot be
gapped by tuning structural parameters (while maintaining
the same symmetries), showing that such degeneracies are
not accidental. Theses degeneracies can be clearly
explained using the non-Abelian multiband topology and
the observed higher-band connectivity is topologically
protected and hence cannot be broken by changing the
system parameters inside the unit cell.
Furthermore, the non-Abelian band topology relies only

on PT symmetry, rather than structural symmetry. To
illustrate this, we show a uniaxial photonic crystal in
Fig. 7, which can be easily achieved by tuning the size
of resonator in biaxial photonic crystal as L1 ¼ L2 in Fig. 4
(thus, εxx ¼ εyy; experimental characterizations are pro-
vided in Appendix D). By doing so, the space group
transforms from no. 47 to no. 131 (P42=mmc). As the PT
symmetry is still preserved during the geometrical param-
eter tuning, the non-Abelian frame charge flow along the
nodal lines remains robust. It can then be noticed from
Fig. 7 that the change of symmetry group affects only the
position of nodal lines, not the existence of them, and
the requirement of a sink for non-Abelian frame charge
also applies here to increase the band connectivity of the
presented uniaxial photonic crystal with space group no. 131
(for space group no. 131, the second and third bands can also
be gapped according to group theory). Such a geometrical
parameter tuning through different symmetry groups exem-
plifies the robustness of degeneracies in photonic systems
that cannot be explained easily using group theory [42,50]
but can be straightforwardly understood with non-Abelian
multiband topological consideration.
We note that the non-Abelian frame charge charac-

terization provides much more details in the formation
and evolution of band degeneracies in momentum space.
Take Fig. 4(d) as an example, the non-Abelian band
topology provides the reason why nodal lines should
spawn from the Γ point and predicts the new nodal lines
on BZ boundaries. It also requires the appearance of
terminative braidings with adjacent nodal lines. The non-
Abelian frame charges also predict the admissible trans-
formations of nodal lines under perturbation, e.g., as
shown in Fig. 2. All these features are due to the non-
Abelian multiband topology and cannot be obtained
directly using group theory.
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VII. DISCUSSION AND CONCLUSIONS

The flowing behavior of non-Abelian frame charges is
proposed and illustrated in effective media and photonic
crystals. The frame charge flow can be both generated and
terminated by the non-Abelian braidings and follows a
Kirchhoff-like law while flowing along nodal lines. The
topological consequences can be found from both far-field
observation and momentum-space nodal line evolutions
with optical media. The non-Abelian multiband topology
also provides further insight into the opening of funda-
mental photonic band gaps, where we note that the
non-Abelian frame charges are required only to be globally
self-consistent, and the exact confinement on band con-
nectivity relies on the detail nodal structures in momentum
space. In general, the non-Abelian topological confinement
on gap opening between the n th and (nþ 1)th bands can
be determined by the configuration of nodal lines and Zak
phases from the first to n th bands. Therefore, depending on
detail conditions, the exact minimal band connectivity of a
certain photonic crystal can either remain unchanged or
increase to a higher value compared to group theory
prediction.

The presented results show that the fundamental multi-
band non-Abelian topology is embedded in ordinary
photonic systems, which generally exists with PT sym-
metry due to the intrinsic triple degeneracy of the photonic
Γ point. By further reducing the PT symmetry to C2T
symmetries, the non-Abelian frame charges are confined to
the C2T-invariant planes, and the Berry flux will emerge
and exhibit interestingly similar flowing behavior as the
original frame charges. A detailed discussion is provided in
Appendix E.
The proposed topological descriptions can also be

applied to other multiband systems. For example, phononic
systems possess three fundamental bands at the long-
wavelength limit, which carry sufficient degrees of freedom
to use eigenvector-frame rotation descriptions, and similar
topological features can be found (see Supplemental
Material, Sec. V [46]).
In conclusion, we propose the flowing behavior of non-

Abelian frame charges along nodal lines in momentum
space. Some of the behaviors can be viewed as an analog
of electric charges flowing along conducting wires in
real space, but the possibility of sign flipping (as induced
by the passing over of an adjacent nodal line) is uniquely
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non-Abelian. Non-Abelian band topology is revealed to
manifest itself in general photonic systems, and we show
that the photonic Γ point in ordinary optical media is the
source or sink of non-Abelian frame charge flow. Such a
topological character can be verified through far-field
observation. We fabricate a biaxial photonic crystal and
experimentally characterize the degeneracy features to
demonstrate the frame charge flow in momentum space.
Our results shed new light on the fundamental under-
standing of photonic bands, which could inspire further
exploration of the novel non-Abelian physics in ordinary
materials and may promote applications in optical com-
munication systems or dynamical physical systems.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

1. Homogeneous dielectric media

For optical materials with only diagonal terms in permit-
tivity tensor as ε¼½εxx−ω2

px=ω2;εyy−ω2
py=ω2;εzz−ω2

pz=ω2�

and permeability of u ¼ 1, Maxwell’s equations can be
written as

ikyEz − ikzEy ¼ iωμ0Hx; ðA1aÞ

ikzEx − ikxEz ¼ iωμ0Hy; ðA1bÞ

ikxEy − ikyEx ¼ iωμ0Hz; ðA1cÞ

ikyHz − ikzHy ¼ −iωεxxε0Ex þ Vx; ðA1dÞ

ikzHx − ikxHz ¼ −iωεyyε0Ey þ Vy; ðA1eÞ

ikxHy − ikyHx ¼ −iωεzzε0Ez þ Vz; ðA1fÞ

ω2
pxEx ¼ −iωVx; ðA1gÞ

ω2
pyEy ¼ −iωVy; ðA1hÞ

ω2
pzEz ¼ −iωVz; ðA1iÞ

where we consider perturbations in the form of plasma
resonances, and V⃗ ¼ dP⃗=dt is the time derivative of polari-
zation.Taking ε0 ¼ μ0 ¼ 1, the equations canbe encoded into
matrices of

M ¼

2
66666666666666664

0 0 0 0 kz −ky −iωpx 0 0

0 0 0 −kz 0 kx 0 −iωpy 0

0 0 0 ky −kx 0 0 0 −iωpz

0 −kz ky 0 0 0 0 0 0

kz 0 −kx 0 0 0 0 0 0

−ky kx 0 0 0 0 0 0 0

iωpx 0 0 0 0 0 0 0 0

0 iωpy 0 0 0 0 0 0 0

0 0 iωpz 0 0 0 0 0 0

3
77777777777777775

; ðA2aÞ

N ¼

2
66666666666666664

εxx 0 0 0 0 0 0 0 0

0 εyy 0 0 0 0 0 0 0

0 0 εzz 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

3
77777777777777775

; ðA2bÞ
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and the reformulated Maxwell equations can be written as

Mφ ¼ ωNφ; ðA3Þ

with the basis being

φ ¼
�
Ex Ey Ez Hx Hy Hz

Vx
ωpx

Vy

ωpy

Vz
ωpz

�
T
:

ðA4Þ

The system Hamiltonian can then be derived as

H9×9 ¼ N−1
2MN−1

2: ðA5Þ

By taking the matrix square to block diagonalize the
Hamiltonian, we can have the simple form of a three-band
Hamiltonian:

H3×3 ¼

2
666664

k2y
εxx

þ k2z
εxx

þ ω2
px

εxx
− kxkyffiffiffiffiffi

εxx
p ffiffiffiffiffi

εyy
p − kxkzffiffiffiffiffi

εxx
p ffiffiffiffi

εzz
p

− kxkyffiffiffiffiffi
εxx

p ffiffiffiffiffi
εyy

p k2x
εyy

þ k2z
εyy

þ ω2
py

εyy
− kykzffiffiffiffiffi

εyy
p ffiffiffiffi

εzz
p

− kxkzffiffiffiffiffi
εxx

p ffiffiffiffi
εzz

p − kykzffiffiffiffiffi
εyy

p ffiffiffiffi
εzz

p k2x
εzz

þ k2z
εzz

þ ω2
pz

εzz

3
777775;

ðA6Þ

and the basis is φ0 ¼ ½ ffiffiffiffiffiffi
εxx

p
Ex

ffiffiffiffiffiffi
εyy

p Ey
ffiffiffiffiffiffi
εzz

p
Ez�T .

2. Long-wavelength limit description
of photonic crystals

For the metallic photonic crystals shown in Figs. 4 and 7,
we describe the EMW’s response as

∇ × H⃗ ¼ −iωεbε0E⃗ − iωP⃗; ðA7aÞ

∇ × E⃗ ¼ iωμ0H⃗: ðA7bÞ
Take ε0 ¼ μ0 ¼ 1 and εb ¼ 1, and we have

∇2E⃗ ¼ ∇ ×∇ × E⃗ ¼ iω∇ × H⃗ ¼ ω2E⃗þ ω2P⃗; ðA8Þ
and consider the Lorentz-type resonance

m
d2r⃗
dt2

¼ −mω2r⃗ ¼ qE⃗ −mω2
0r⃗; ðA9Þ

the polarization can be written as

P⃗ ¼ ε∞nqr⃗ ¼ −ε∞ nq2

mðω2 − ω2
0Þ
E⃗ ¼ − ω2

p

ω2 − ω2
0

E⃗; ðA10Þ

with ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε∞nq2=ε0m

p
, and then we have

D⃗ ¼ ε0E⃗þ P⃗ ¼
�
1 − ω2

p

ω2 − ω2
0

�
E⃗: ðA11Þ

Summarize the above equations together, and we have

∇ ×∇ × E⃗ ¼

2
664
k2yEx þ k2zEx − kxkyEy − kxkzEz

k2zEy þ k2xEy − kykzEz − kxkyEx

k2xEz þ k2yEz − kxkzEx − kykzEy

3
775

¼ ω2E⃗þ ω2P⃗ ¼ ω2E⃗þ ω2
0P⃗ − ω2

pE⃗; ðA12aÞ
ðω2 − ω2

0xÞPx ¼ −ω2
pxEx; ðA12bÞ

ðω2 − ω2
0yÞPy ¼ −ω2

pyEy; ðA12cÞ

which can be written into matrix form as

2
666666664

k2y þ k2z − ω2 þ ω2
px −kxky −kxkz −ω2

0x 0

−kxky k2x þ k2z − ω2 þ ω2
py −kykz 0 −ω2

0y

−kxkz −kykz k2x þ k2y − ω2 0 0

ω2
px 0 0 ω2 − ω2

0x 0

0 ω2
py 0 0 ω2 − ω2

0y

3
777777775

2
6666664

Ex

Ey

Ez

Px

Py

3
7777775
¼ 0: ðA13Þ

Take the substitution of P⃗0 ¼ ðω2
0=ω

2
pÞP⃗, and we have

2
666666664

k2y þ k2z þ ω2
px −kxky −kxkz −ω2

px 0

−kxky k2x þ k2z þ ω2
py −kykz 0 −ω2

py

−kxkz −kykz k2x þ k2y 0 0

−ω2
px 0 0 ω2

px 0

0 −ω2
py 0 0 ω2

py

3
777777775

2
6666664

Ex

Ey

Ez

P0
x

P0
y

3
7777775
¼ ω2

2
666666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0
ω2
px

ω2
0x

0

0 0 0 0
ω2
py

ω2
0y

3
777777775

2
6666664

Ex

Ey

Ez

P0
x

P0
y

3
7777775
: ðA14Þ
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Then, the Hamiltonian can be formulated as

Mφ ¼ ω2Nφ; ðA15Þ

H ¼ N−1
2MN−1

2 ¼

2
666666664

k2y þ k2z þ ω2
px −kxky −kxkz −ω0xωpx 0

−kxky k2x þ k2z þ ω2
py −kykz 0 −ω0yωpy

−kxkz −kykz k2x þ k2y 0 0

−ω0xωpx 0 0 ω2
0x 0

0 −ω0yωpy 0 0 ω2
0y

3
777777775
; ðA16Þ

which satisfies Hφ0 ¼ ω2φ0, with φ0 ¼ N
1
2φ.

APPENDIX B: DETAILED DESCRIPTION
OF DIELECTRIC MEDIA

1. Uniaxial and biaxial dielectrics

For uniaxial and biaxial optical materials, here we
provide details about the equifrequency surfaces (EFSs)
evolution, nodal structure transformation, manifestation of
the −1 charge conservation, and band dispersions.
In Figs. 8(a)–8(c), the EFSs for a uniaxial material with

ε ¼ ½2; 2; 1 − ωpz
2=ω2� are shown for different frequencies

of ω. The EFSs are found as ellipsoids for dielectric
uniaxial material in Fig. 8(a), one of which turns into a
hyperboloid for ω < ωpz when plasmonic resonance is
introduced. However, for the frequency of ω > ωpz, the
EFSs turn back into closed surfaces. The corresponding
2D-cut EFCs are shown in Figs. 8(d)–8(f). The degener-
acies between the two EFCs contain two transverse modes
(first and second bands) with orthogonal polarizations
(Ex and Ey) that both propagate along the z direction.
With the perturbation introduced as ε ¼ ½2; 2; 1−

ωpz
2=ω2�, and ωpz ¼ 1, we see in Fig. 8(g) that the original

blue nodal line in Fig. 2(a) breaks into top and bottom
branches. However, constrained by the conservation of
the −1 charge, which is manifested as the 2π eigenpola-
rization frame rotation in Fig. 8(g), the two blue nodal lines
(formed between the first and second bands) cannot be
detached, and an orange nodal line (formed between the
zeroth and first bands) emerges to connect the blue nodal
lines. To explain in detail, below plasma frequency, the
degeneracies between EFCs in Fig. 8(e) collectively form
into the orange nodal line, and above the plasma frequency,
the degeneracies in Fig. 8(f) form the blue nodal lines. In
Fig. 8(h), the manifestation of such degeneracies in band
structure is shown, where the flat band at the plasma
frequency separates the band structure into two parts, each

contributing to the orange and blue colors with different
intersection band indices.
Similarly, in Figs. 8(i)–8(k), the EFSs for biaxial material

ε ¼ ½1 − ωpx
2=ω2; 2; 3� are shown for different frequen-

cies. The transition between elliptical and hyperbolic
surfaces is similar to the uniaxial case. The 2D-cut
EFCs are shown in Figs. 8(l)–8(n). The nodal lines for
the biaxial material are shown in Fig. 8(o), where the
orange nodal lines can be traced back to the degeneracies in
Fig. 8(m), and the blue nodal lines are from the degener-
acies in Fig. 8(n). The orange nodal line links to the
blue nodal line, since the blue nodal lines cannot separate
due to the conservation of −1 frame charge, as verified
by the 2π eigenpolarization frame rotation. The band
dispersion along the kx direction is shown in Fig. 8(p),
and the longitudinal-mode-induced flat band is shown in
orange color.

2. Hidden braidings in biaxial dielectric

We show here the calculated non-Abelian frame charges
of the biaxial material when other forms of plasmonic
resonance are introduced in additional to the case in Fig. 2.
The resonances with ωpy, ωpz are introduced in the form of
ε ¼ ½1; 2 − ωpy

2=ω2; 3 − ωpz
2=ω2�, and the calculated

results are shown in Fig. 9. As can be seen in all cases,
the perturbations cannot fully separate the blue nodal lines
at the Γ point, and new nodal structure always emerges to
connect the detached blue nodal line branches. More
importantly, the resonance-induced orange nodal line
provides braiding with the blue nodal lines, which rear-
ranges the arrow configurations on blue nodal lines as all
pointing outward or inward relative to the Γ point. Such
results further verify the hidden braiding provided by the
triple degeneracy at the Γ point that gives rise to the double
−1 charge.
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ω = 0.7 < ωpz = 1 ω = 1.1 > ωpz = 1

ω = 0.7 < ωpx = 1 ω = 1.1 > ωpx = 1
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ω

kz
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1st /2nd 

kx

kz

(g)

(h)

(o)

(p)

kx

kzky

kx

kzky

π1 loops 1st/2nd  0th/1st  Bands:

π1 loops 1st/2nd  0th/1st  Bands:

ω = 0.7, ωpx = 0

ω = 0.7, ωpx = 0

ω = 0.7, ωpz = 0

FIG. 8. EFSs and nodal structures for uniaxial and biaxial materials. (a)–(c) The EFSs at different frequencies with ωpz ¼ 0 or 1
(ωpx;y ¼ 0). (d)–(f) The EFCs cut from (a)–(c). (g) The nodal line of uniaxial material after introducing perturbation. The orange nodal
line (zeroth and first bands) is formed by intersecting EFCs in (e). The blue nodal line (first and second bands) is formed by the
degeneracy in (f). (h) The band dispersions for uniaxial material, and the band degeneracy along the kz direction (kx ¼ ky ¼ 0) is
separated by the flat band at plasma frequency of ωpz ¼ 1 (ωpx;y ¼ 0). (i)–(k) The EFSs for biaxial material with ωpx ¼ 0 or 1
(ωpy;z ¼ 0). (l)–(n) The EFCs cut from (i)–(k). (o) The nodal line in biaxial material with perturbation of ωpx ¼ 1 (ωpy;z ¼ 0), and the
−1 charge and 2π eigenpolarization frame rotation remains unchanged. (p) The band dispersions along the kx direction for the biaxial
material; plasma frequency is at ωpx ¼ 1 (ωpy;z ¼ 0).
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APPENDIX C: FRAME CHARGES IN
PHOTONIC CRYSTALS

1. Double −1 charge in biaxial photonic crystal

Based on the effective Hamiltonian formulated for the
biaxial photonic crystal in Fig. 4, we check the rotation of
polarizations for the two π1 loops indicated in Fig. 4(b).
The results are shown in Figs. 10(a) and 10(b), where the
2π polarization rotations can be found for both π1 loops. On
the three mirror planes in Fig. 10, the �π rotations can be
found for the truncated nodes of the momentum-space
nodal lines, where frame charges of q ¼ �gi can be
addressed.

2. Eigenvector windings numerically checked
for photonic crystal

For the photonic crystal in Fig. 4, we can numerically
retrieve the eigenvectors parametrized by wave vector
k and verify the non-Abelian frame charge by checking
the winding of these eigenvectors. The magnetic part of
calculated electromagnetic eigenmodes is taken as
½Hx;Hy;Hz�kT ¼ U⃗k;reikr and the effective eigenvectors

are then formulated as Vi
k

�! ¼ P
r U⃗

i
k;r, where i is the band

index, and the summarization is over the entire unit cell.
The eigenvector windings for the loops indicated in
Fig. 4(d) are shown in Fig. 11. We see that the windings

ωpy = 1

ωpz = 1

(a)

(b)

q = 1q = -1 q = -1

q = -1q = -1 q = 1

q = 1q = 1 q = -1

1st /2nd  π1 loops 0th/1st Bands:
kx

kzky

FIG. 9. Hidden braiding in biaxial material. (a) The nodal line transformation after introducing plasmonic resonance of ωpy ¼ 1
(ωpx;z ¼ 0). The blue chain point is gapped along the kz direction and connected by the orange nodal line. (b) Similar results for
ωpz ¼ 1 (ωpx;y ¼ 0); the double −1 charge protection can be verified. The single −1 charge is found for the orange nodal line
crossing at the Γ point.
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in loops A and B confirm the double −1 charge with 2π
rotations. The windings along loops C and C1 or D and D1

both verify the Kirchhoff-like law for non-Abelian frame
charges, where C and D give 2π windings, and C0 and D0
give 0 winding.

APPENDIX D: EXPERIMENTAL
CHARACTERIZATION OF UNIAXIAL

PHOTONIC CRYSTAL

The uniaxial photonic crystal is put to experimental
characterization on the y-z surface (PCBs stacked along x).
The nodal lines project on the ky-kz plane as shown in
Figs. 12(a) and 12(b). The nodal lines on the top BZ
boundaries project to the surface BZ as straight lines in

Fig. 12(a), which can be examined by scanning the band
dispersions along kz at different fixed positions of ky. On
the other hand, the nodal lines on the BZ side boundaries
project on the ky-kz plane as shown in Fig. 12(b) and can be
examined by scanning along ky at fixed positions of kz. The
experimental configuration for making such measurements
is shown in Fig. 12(c) and the field on the y-z surface is
measured.
In Fig. 12(d), we first show the calculated results of band

projections at fixed-ky values (scan along kz), where the
band degeneracy points from the nodal line are located at
the end points of the projected bands as marked with blue
dots. The experimental verifications are shown below the
calculation results. Light cones for air and substrate are

1st 2ndEigenvectors for bands:

π22/π3π2/π0

Loop B: centered at θx = θy = θz = 0°

Loop C: centered at θx = 80°, θy = 0°, θz = 180°

Loop C1: centered at θx = 80°, θy = 0°, θz = 180°, 

π22/π3π2/π0

π/2 π22/π3π0

π22/π3π2/π0

Loop D: centered at θx = 180°, θy = 80°, θz = 180°

π22/π3π2/π0

Loop A: centered at θx = θy = θz = 0°

Loop D1: centered at θx = 180°, θy = 80°, θz = 180°

π22/π3π2/π0

FIG. 11. Eigenvector windings checked for biaxial photonic crystal. The numerically calculated eigenvectors rotate along the π1 loops
in Fig. 4(d). Loops A, B, C, andD carry 2π rotation, and loops C1 andD1 present 0 rotation. The values of θ specify the centers of loops,
where the first BZ is defined by θ ¼ kr ∈ ½−180°; 180°� along the kx, ky, and kz directions.

3

-3
-3 3

3

-3
-3 3

0th 1st 2ndPolarizations for bands:

3

-3
-3 3

2π rotation for 0th and 1st bands 2π rotation for 0th and 2nd bands  
(c)(b)(a)

kx 

ky 

ky 

kz 

kx 

kz 

FIG. 10. Double −1 charge verified for the Γ point of the biaxial photonic crystal with effective Hamiltonian. (a) The 2π rotations of
polarization for the π1 loop in the kx-ky plane. (b) The 2π rotations of polarization for the π1 loop in the ky-kz plane. (c) The polarization
rotations on the kx-kz plane. Nodal lines and the truncated nodes on a plane are shown in different colors representing the band indices.
Triple degeneracy at the Γ point is marked with hollow dot in red.
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shown as cyan and red curves. At the position of
ky ¼ 0.6 π=b, a gap appears between the projection of
the second and third bands, and the surface modes are
experimentally observed within the gap, as indicated with

dashed line. In Fig. 12(e), the band projection results for
fixed-kz positions are shown (scan along ky), and both the
bulk degeneracies and surface modes are experimentally
verified.

(e)

(d)

(a) (b)

FIG. 12. Experimental characterization of uniaxial photonic crystal. (a) The nodal lines embedded in the top and bottom BZ
boundaries project on the ky-kz plane. They can be characterized by fixing the ky value and scanning the band projection along kz.
(b) The nodal lines from the side BZ boundaries can be examined by fixing the kz values and scanning along ky. (c) Configuration for the
measurement. PCBs are stacked along the z direction. (d) Simulation results and experimentally measured results for the band
projections on the ky-kz plane at fixed ky positions (scan along kz). Surface states are indicated with magenta color and observed in the
experiment result at kz ¼ 0.6 π=a within the projection band gap (indicated with dashed line in black). Light cones for air and substrate
are shown with blue and red curves. Bulk band dispersions are plotted on the experimental data in white. (e) The calculated and
experimental measured band projections are cut at different kz values (scan along ky). Surface states are observed as indicated in the
experimental results with dashed black lines.
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APPENDIX E: BERRY FLUX FLOW
AND FRAME CHARGE FLOW

The nodal line can be acknowledged as the singu-
larities that generate the delta function of the Berry flux
directing along the nodal line, which integrates as a
quantized Berry phase. It is then natural to seek the

correspondence between the non-Abelian frame charge
(Wilczek-Zee Berry phase) and the Berry flux emer-
ged by slightly breaking the PT symmetry. We thus
introduce perturbations to the effective Hamiltonian of
the proposed biaxial photonic crystal in the follow-
ing form:

H ¼

2
666666664

k2y þ k2z þ ω2
px −kxky þ iδkz −kxkz þ iδky −ω0xωpx 0

−kxky þ iδkz k2x þ k2z þ ω2
py −kykz þ iδkx 0 −ω0yωpy

−kxkz þ iδky −kykz þ iδkx k2x þ k2y 0 0

−ω0xωpx 0 0 ω2
0x 0

0 −ω0yωpy 0 0 ω2
0y

3
777777775
; ðE1Þ

where the perturbation is controlled by the parameter of δ.
To minimize the influence of PT-symmetry breaking, we
break the mirror symmetries but keep the C2T symmetries
on three orthogonal planes. In this way, the non-Abelian
frame charges are inherited on the three C2T- invariant
planes.
The symmetry operators of the Hamiltonian can be

formulated asMx¼diagð−1;1;1;−1;1Þ,My ¼ diagð1;−1;
1; 1;−1Þ,Mz ¼ diagð1; 1;−1; 1; 1Þ, C2x ¼ diagð1;−1;−1;
1;−1Þ, C2y ¼ diagð−1; 1;−1;−1; 1Þ, and C2z ¼ diagð−1;
−1; 1;−1;−1Þ, and T ¼ K is the complex conjugate
representing time-reversal symmetry. It can then be easily
checked that the perturbation with δ ≠ 0 breaks all the
mirror symmetries, but the three C2 axes remain along the
kx, ky, and kz axes, respectively.
With a weak perturbation strength of δ ¼ 0.01, the Berry

curvature is calculated as shown in Fig. 13. The nodal lines
break and transform into multiple pairs of Weyl points in
momentum space to generate Berry flux. Without detail

tracking of the Weyl points distribution, the overall Berry
flux behavior shown in Figs. 13(a)–13(c) already presents
similarity to the frame charge flow in the PT-symmetric
condition. The flowing direction of the Berry flux can be
found in accordance with the frame charge flow presented
in Fig. 4(b).
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